WorldWideScience

Sample records for nuclear infrastructure development

  1. Nuclear Power Infrastructure Development Program: Korean Education Program

    International Nuclear Information System (INIS)

    Choi, Sung Yeol; Hwang, Il Soon; Kim, Si Hwan

    2009-01-01

    Many countries have decided nuclear power for next energy resources as one of the long-term energy supply options. IAEA projected nuclear power expansion up to 2030 reaching between 447 GWe and 691 GWe compared to 370 GWe and 2660 TWh at the end of 2006. Both low and high projection is accompanied with new nuclear power plant constructions respectively 178 and 357, about 11 units per year, and most new construction is in North America, the Far East, Eastern Europe, the Middle East, and Southeast Asia. During the last forty years, thirty three countries have established commercial nuclear power programs but only some of them have developed comprehensive and large scale peaceful nuclear power infrastructure. Although various cooperation and guidance program of nuclear power infrastructure, developing appropriate environment and infrastructure of nuclear power plant is still challenging problems for developing countries launching nuclear power program. With increasing the demand of safety and safeguard from international society, creating appropriate infrastructure becomes essential requirements in national nuclear power program. In the viewpoint of developing countries, without sufficient explanation and proper guidance, infrastructure could be seen only as another barrier in its nuclear power program. The importance of infrastructure development would be obscured by ostensible business and infrastructure program can result in increasing entering barriers to peaceful nuclear power application field without benefits to developing countries and international community. To avoid this situation by providing enough explanation and realistic case example and cooperate with the countries wanting to establish comprehensive nuclear power infrastructure in the peaceful applications, we are creating the education program of infrastructure development with basic guidelines of the IAEA infrastructure series and Korean experiences from least developed country to advanced country

  2. Infrastructure development through civil nuclear cooperation

    International Nuclear Information System (INIS)

    Humphrey, A.M.; Burkart, A.R.

    2010-01-01

    Due to growing concerns over electricity demand, energy security, and climate change, numerous countries are considering the construction of new nuclear power plants. Most of these will be built in nations with existing nuclear power programs, but an increasing number of States have expressed serious interest in developing new nuclear power programs. These countries will be faced with many challenges in establishing the robust infrastructures necessary for the safe, secure, and safeguarded deployment of nuclear power. Fortunately, there is much a State can gain through cooperation with other States with more developed programs. By sharing information on previous experience and established best practices, an emerging nuclear energy State can benefit from the lessons learned by its partners. Through a broad range of civil nuclear cooperation, the United States is helping new entrants develop the sound infrastructure necessary to deploy nuclear power plants with the highest standards of safety, security, and nonproliferation

  3. IAEA Reviews Niger’s Nuclear Power Infrastructure Development

    International Nuclear Information System (INIS)

    2018-01-01

    An International Atomic Energy Agency (IAEA) team of experts has concluded an eight-day mission to Niger to review its infrastructure development for a nuclear power programme. The Integrated Nuclear Infrastructure Review (INIR) was carried out at the invitation of the Government of the Republic of Niger. Niger, whose economic development is hampered by a lack of consistent electricity supply, is considering a potential role for nuclear power in its energy mix. A country of about 21 million people in Western Africa, Niger is currently ranked as the world’s fourth largest producer of uranium ore. The INIR team observed a strong Government commitment to developing the infrastructure for a nuclear power programme. The Government has established a Strategic Orientation Committee for the Nuclear Power Programme chaired by the Prime Minister, and a National Technical Committee for the Nuclear Power Programme chaired by the President of the Nigerien High Authority for Atomic Energy (HANEA). Those two committees form the Nuclear Energy Programme Implementing Organization (NEPIO). Niger has already completed or initiated several studies related to nuclear infrastructure development, and prepared a comprehensive report summarizing the results.

  4. Evaluation of the status of national nuclear infrastructure development

    International Nuclear Information System (INIS)

    2008-01-01

    An appropriate infrastructure is essential for the safe, reliable and peaceful use of nuclear power. The IAEA was encouraged to assess ways to meet infrastructure needs and to provide guidance to Member States considering the introduction of nuclear power. All of these countries face the challenge of building the necessary nuclear infrastructure for the first nuclear power plant. The IAEA is responding to this demand through increased technical assistance, missions and workshops, and with new and updated technical publications. A holistic view of the infrastructure for nuclear power was published in Considerations to Launch a Nuclear Power Programme (GOV/INF/2007), targeted mainly at policy makers. Milestones in the Development of a National Infrastructure for Nuclear Power, an IAEA Nuclear Energy Series publication (No. NG-G-3.1) issued in 2007, provided more detailed guidance on the three phases of development outlined in Considerations to Launch a Nuclear Power Programme. It describes the sequential development through the three phases for each of 19 infrastructure issues, ranging from a government's national position on nuclear power to the procurement of items and services for the first nuclear power plant. Member States requested additional guidance on determining how to assess the progress of their infrastructure development for nuclear power programmes. This report was prepared in response to their request. It provides an evaluation approach for the status of national nuclear infrastructure development based upon the guidance presented in the Milestones publication mentioned above. The evaluation approach provides a comprehensive means to determine the status of the infrastructure conditions covering all of the 19 issues identified in the Milestones publication. This approach can be used by any interested Member State for self-evaluation in order to establish what additional work needs to be completed to develop the appropriate national infrastructure. In

  5. Infrastructure development assistance modeling for nuclear power plant

    International Nuclear Information System (INIS)

    Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M.

    2012-01-01

    The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task would be to

  6. Infrastructure development assistance modeling for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M. [Korea Hydro and Nuclear Power Co., LTD, 23, 106 gil, Yeongdong-daero, Gangnam-gu, 153-791 (Korea, Republic of)

    2012-07-01

    The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task

  7. Role of Nuclear Knowledge Infrastructure in Building and Developing a Nuclear Industry

    International Nuclear Information System (INIS)

    Pershukov, V.

    2016-01-01

    Full text: Current level of development of nuclear technology pushes future owners and users to address several important challenges at the very beginning of preparation for introduction of nuclear power programme including development of national expertise and technical competence for safe and secure use of nuclear technology and creation of national scientific and research infrastructure. However, many times national stakeholders involved into the development of nuclear power programmes act in separate information environments. This creates confusion and may result in delays of execution of a nuclear power programmes. A common environment in this case is important to ensure information exchange and collaborative work on nuclear power programme development. A common environment facilitates transfer, preservation and spread of nuclear knowledge to all stakeholders involved in a national nuclear power programme. Due to the long life cycle of nuclear power plants, strengthening and maintaining the effective management of knowledge and information over the entire life cycle for licensed nuclear facilities is imperative. This covers areas including design, construction, commissioning, operation and decommissioning, especially in newcomer countries and new builds. Nuclear knowledge infrastructure assumes this role and helps countries deciding to develop nuclear programmes ensure the safe and secure use of its nuclear power for national development. (author

  8. Technical Meeting/Workshop on Topical Issues on Infrastructure Development: Managing the Development of a National Infrastructure for Nuclear Power Plants. Presentations

    International Nuclear Information System (INIS)

    2012-01-01

    The main purpose of the TM/Workshop is to provide an opportunity for exchange of specific information on the management of the development of a sustainable national infrastructure for Nuclear Power Plants as it is recommended in the Agency's Milestones approach. Taking into account the actual status of new nuclear power programmes in Member States, this Agency event shall focus on the moving beyond the consideration of the nuclear power and advancing to the next phase, when future partners (Consultants, NPP Vendors, EPC Contractors, etc.) shall be selected and contracted for the first Nuclear Power Plant. The objectives of the Technical Meeting/Workshop are the following: 1. To exchange specific information and to facilitate the management and coordination of the development and implementation of a national infrastructure for nuclear power; 2. To present and discuss case studies, good practices and lessons learned about recent experiences in implementing an appropriate infrastructure for nuclear power, including management methods and self-evaluation processes; 3. To allow participants to improve their knowledge of various aspects of nuclear infrastructure development; and 4. To provide a forum in which participants can discuss common challenges, opportunities for cooperation, concerns and issues their countries face in the infrastructure implementation process.

  9. Thailand: Infrastructure Development and Challenges to Launch Nuclear Power Programme

    International Nuclear Information System (INIS)

    Keinmeesuke, Sirichai

    2011-01-01

    In June 2007, the cabinet passed a resolution for Thailand's Power Development Plan (PDP 2007). It was mentioned in the plan that Thailand will have 2 x 1,000 MWe nuclear power plants in 2020 and another 2 x 1,000 MWe in 2021. The PDP 2007 was revised in March 2009 and it was agreed to change the nuclear power generation to only 1 x 1,000 MWe in 2020 and 2021 respectively due to the large excess capacity at present. Many activities related to development of infrastructures in order to support electricity generation using nuclear power are being executed. Milestones for nuclear power program implementation has been developed using the IAEA document 'Milestones in the Development of a National Infrastructure for Nuclear Power' with some amendment/additions to suit the country situation. According to the schedule, a lot of activities related to infrastructure establishment, feasibility study, utility preparation and public education and participation are being performed. Within the year 2011, various issues such as legal and regulatory systems and international commitment, industrial and commercial infrastructure, technology transfer and human resource development, safety and environmental protection, public information and public acceptance, preparation of the nuclear power utility establishment, etc. must be solved out and undertaken to assure the cabinet to make final decision to go nuclear. There are many challenges for Thailand embarking of the nuclear power programme. It is essential to plan for the establishment of a regulatory body at the national level to support and regulate the nuclear power plant industry. Currently, the application for a license and the monitoring of a power plant are administered by the authorities of various agencies under different ministries; hence the process is very time-consuming and overlaps with one another. The approach that the regulatory body and the authorities to issue licenses relevant to the nuclear power plant operation

  10. Nuclear power infrastructure and planning

    International Nuclear Information System (INIS)

    2005-01-01

    There are several stages in the process of introducing nuclear power in a country. These include feasibility studies; technology evaluation; request for proposals and proposal evaluation; project and contracts development and financing; supply, construction, and commissioning; and finally operation. The IAEA is developing guidance directed to provide criteria for assessing the minimum infrastructure necessary for: a) a host country to consider when engaging in the implementation of nuclear power, or b) a supplier country to consider when assessing that the recipient country would be in an acceptable condition to begin the implementation of nuclear power. There are Member States that may be denied the benefits of nuclear energy if the infrastructure requirements are too large or onerous for the national economy. However if co-operation could be achieved, the infrastructure burden could be shared and economic benefits gained by several countries acting jointly. The IAEA is developing guidance on the potential for sharing of nuclear power infrastructure among countries adopting or extending nuclear power programme

  11. Nuclear Safeguards Infrastructure Development and Integration with Safety and Security

    International Nuclear Information System (INIS)

    Kovacic, Donald N.; Raffo-Caiado, Ana Claudia; McClelland-Kerr, John; Van sickle, Matthew; Bissani, Mo

    2009-01-01

    Faced with increasing global energy demands, many developing countries are considering building their first nuclear power plant. As a country embarks upon or expands its nuclear power program, it should consider how it will address the 19 issues laid out in the International Atomic Energy Agency (IAEA) document Milestones in Development of a National Infrastructure for Nuclear Power. One of those issues specifically addresses the international nonproliferation treaties and commitments and the implementation of safeguards to prevent diversion of nuclear material from peaceful purposes to nuclear weapons. Given the many legislative, economic, financial, environmental, operational, and other considerations preoccupying their planners, it is often difficult for countries to focus on developing the core strengths needed for effective safeguards implementation. Typically, these countries either have no nuclear experience or it is limited to the operation of research reactors used for radioisotope development and scientific research. As a result, their capacity to apply safeguards and manage fuel operations for a nuclear power program is limited. This paper argues that to address the safeguards issue effectively, a holistic approach must be taken to integrate safeguards with the other IAEA issues including safety and security - sometimes referred to as the '3S' concept. Taking a holistic approach means that a country must consider safeguards within the context of its entire nuclear power program, including operations best practices, safety, and security as well as integration with its larger nonproliferation commitments. The Department of Energy/National Nuclear Security Administration's International Nuclear Safeguards and Engagement Program (INSEP) has been involved in bilateral technical cooperation programs for over 20 years to promote nonproliferation and the peaceful uses of nuclear energy. INSEP is currently spearheading efforts to promote the development of

  12. IAEA Catalogue of Services for Nuclear Infrastructure Development. Rev. 1, April 2014

    International Nuclear Information System (INIS)

    2014-04-01

    This IAEA Catalogue offers a wide range of services to Member States embarking on a new nuclear power programme or expanding an existing one. A new IAEA Catalogue of Services for Nuclear Infrastructure Development helps Member States to identify and request IAEA assistance for national organizations at different stages of the development or expansion of a nuclear power programme. This IAEA Catalogue of Services is presented in two tables. It is based on the IAEA Milestones Approach for nuclear power infrastructure development, documented in 'Milestones in the Development of a National Infrastructure for Nuclear Power' (IAEA Nuclear Energy Series NG-G-3.1). The two tables allow users to identify and select available IAEA services by: i) The three phases of the IAEA Milestones Approach, or ii) Organizations typically involved in the development of a nuclear power programme: the government / Nuclear Energy Programme Implementing Organization (NEPIO), the regulatory body and the owner operator of a nuclear power plant. This Catalogue includes information on the following IAEA services: i) Workshops / Training Courses; ii) Expert Missions / Advisory Services; iii) Review Missions / Peer Reviews; iv) Training tools and networks. The Catalogue lists both existing IAEA services and those being developed for the 19 issues to be addressed in developing a national nuclear infrastructure. Each existing service is linked to a relevant IAEA webpage that either describes a particular service or gives practical examples of the type of assistance that the Agency offers (e.g. workshops or missions). The owners of these webpages can be contacted for more detailed information or to request assistance. This IAEA Catalogue of Services will be updated regularly

  13. Development of the efficient emergency preparedness system for the nuclear critical infrastructure

    International Nuclear Information System (INIS)

    Kostadinov, V.; Marn, J.; Petelin, S.

    2007-01-01

    The evaluation of the critical nuclear infrastructure vulnerability to threats like human occurrences, terrorist attacks and natural disasters and the preparation of emergency response plans with the estimation of optimized costs are of the vital importance for the assurance of a safe nuclear facilities operation and the national security. In the past national emergency systems did not include vulnerability assessments of the critical nuclear infrastructure as the important part of the comprehensive preparedness framework. The fundamental aims of the efficient emergency preparedness and response system are to provide a sustained emergency readiness and to prevent an emergency situation and accidents. But when an event happens the mission is to mitigate consequences and to protect the people and environment against the nuclear and radiological damage. The efficient emergency response system, which would be activated in the case of the nuclear and/or radiological emergency and release of the radioactivity to the environment, is an important element of a comprehensive system of the nuclear and radiation safety. In the article the new methodology for the critical nuclear infrastructure vulnerability assessment as a missing part of an efficient emergency preparedness system is presented. It can help the overall national energy sectors to identify and better understand the terrorist threats and vulnerabilities of their critical infrastructure. The presented methodology could also facilitate national agencies to develop and implement a vulnerability awareness and education programs for their critical assets to enhance the security, reliability and safe operation of the whole energy infrastructure. The vulnerability assessment methodology will also assist nuclear power plants to develop, validate, and disseminate the assessment and survey of new efficient countermeasures. The significant benefits of the new vulnerability assessment research are to increase nuclear power

  14. Computational Infrastructure for Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Smith, Michael S.; Hix, W. Raphael; Bardayan, Daniel W.; Blackmon, Jeffery C.; Lingerfelt, Eric J.; Scott, Jason P.; Nesaraja, Caroline D.; Chae, Kyungyuk; Guidry, Michael W.; Koura, Hiroyuki; Meyer, Richard A.

    2006-01-01

    A Computational Infrastructure for Nuclear Astrophysics has been developed to streamline the inclusion of the latest nuclear physics data in astrophysics simulations. The infrastructure consists of a platform-independent suite of computer codes that is freely available online at nucastrodata.org. Features of, and future plans for, this software suite are given

  15. Basic infrastructure for a nuclear power project

    International Nuclear Information System (INIS)

    2006-06-01

    There are several stages in the process of introducing nuclear power in a country. These include development of nuclear policies and regulations, feasibility studies, public consultations, technology evaluation, requests for proposals and evaluations, contracts and financing, supply, construction, commissioning, operation and finally decommissioning. This publication addresses the 'basic' infrastructure needs, which are adequate until the issue of the construction license. It is obvious that a fully developed nuclear infrastructure will be required for the further implementation stages of a nuclear power reactor. The officials and experts in each country will undertake the transition from a basic infrastructure to a fully developed infrastructure that covers the stages of construction, commissioning, operation and decommissioning. The publication is directed to provide guidance for assessing the basic infrastructure necessary for: - A host country to consider when engaging in the implementation of nuclear power, and - A supplier country to consider when assessing whether the recipient country is in an acceptable condition to begin the implementation of a nuclear power project. The target users are decision makers, advisers and senior managers in the governmental organizations, utilities, industrial organizations and regulatory bodies in the countries adopting nuclear power programmes or exporting supplies for these programmes. The governmental organizations that may find this publication useful include: Ministries of Economy, Energy, Foreign Affairs, Finance, Mining, Internal Affairs, Academic Institutions, Nuclear Energy Agencies and Environmental Agencies. This publication was produced within the IAEA programme directed to increase the capability of Member States to plan and implement nuclear power programmes and to establish and enhance national nuclear infrastructure. This publication should be used in conjunction with the IAEA Safety Standards Series and other

  16. Developing Infrastructure for New Nuclear Power Programmes

    International Nuclear Information System (INIS)

    2011-09-01

    Many countries are interested in introducing or expanding nuclear energy programmes because they regard nuclear power as a clean and stable source of electricity that can help to mitigate the impact of climate change. However, the March 2011 accident at the Fukushima Daiichi nuclear power plant in Japan - caused by an earthquake and tsunami of unprecedented proportions - demonstrated that there is a constant need to improve global nuclear safety, despite the great progress made in the previous 25 years. A 'safety first' approach needs to become fully entrenched among nuclear power plant operators, governments and regulators everywhere. Safety first must also be the watchword for Member States considering the introduction of nuclear power. I believe that all IAEA Member States should have access to nuclear power if they wish to add it their energy mix. While it is up to each country to decide whether or not to opt for nuclear power, the IAEA has a key role to play in ensuring that the development of nuclear power programmes takes place in a safe, efficient, responsible and sustainable manner. The IAEA has developed guidelines and milestones to help countries work in a systematic way towards the introduction of nuclear power. Use of the 'Milestones' approach can increase transparency both within a country introducing nuclear power, and between it and other States. This brochure summarizes the services which the IAEA offers to Member States considering introducing nuclear power. These include advice on proper planning, building the required human resources and infrastructure, establishing legal and regulatory frameworks, and ensuring the highest standards of safety and security, without increasing proliferation risks. The IAEA offers independent know-how on the construction, commissioning, startup and operation of nuclear reactors. Through the Technical Cooperation programme, we provide targeted support to 'newcomer' countries in response to national development needs

  17. Development of nuclear technologies and conversion of nuclear weapon testing system infrastructure in Kazakhstan

    International Nuclear Information System (INIS)

    Cherepnin, Yu.; Takibaev, Zh.

    2000-01-01

    The article gives a brief description of the work done by the National Nuclear Center of the Republic of Kazakhstan in development of nuclear technology and conversion of nuclear weapon testing infrastructure in Kazakhstan. Content and trends of works are as follows: 1. Peaceful use of all physical facilities, created earlier for nuclear tests in Kazakhstan; 2. Development of methods and technologies for safe nuclear reactors use; 3. Examination of different materials in field of great neutron flow for thermonuclear reactor's first wall development; 4. Liquidation of all wells, which were formed in the results of underground nuclear explosions in Degelen mountain massif of former Semipalatinsk test site; 5. Study of consequences of nuclear tests in West Kazakhstan (territory of Azgir test site and Karachaganak oil field); 6. Study of radiological situation on the Semipalatinsk test site and surrounding territories; 7. Search of ways for high-level radioactive wastes disposal; 8. Construction of safe nuclear power plants in Kazakhstan

  18. Development of Secure and Sustainable Nuclear Infrastructure in Emerging Nuclear Nations Such as Vietnam

    International Nuclear Information System (INIS)

    Shipwash, Jacqueline L; Kovacic, Donald N

    2008-01-01

    The global expansion of nuclear energy will require international cooperation to ensure that nuclear materials, facilities, and sensitive technologies are not diverted to non-peaceful uses. Developing countries will require assistance to ensure the effective regulation, management, and operation of their nuclear programs to achieve best practices in nuclear nonproliferation. A developing nation has many hurdles to pass before it can give assurances to the international community that it is capable of implementing a sustainable nuclear energy program. In August of this year, the U.S. Department of Energy and the Ministry of Science and Technology of the Socialist Republic of Vietnam signed an arrangement for Information Exchange and Cooperation on the Peaceful Uses of Nuclear Energy. This event signals an era of cooperation between the U.S. and Vietnam in the area of nuclear nonproliferation. This paper will address how DOE is supporting the development of secure and sustainable infrastructures in emerging nuclear nations such as Vietnam

  19. The Gulf Nuclear Energy Infrastructure Institute (GNEII) Four Years On

    International Nuclear Information System (INIS)

    Finch, Robert J.; Mohagheghi, Amir H.; Solodov, Alexander; Beeley, Philip A.; Boyle, David R.

    2014-01-01

    Introduction: What is GNEII? • Regionally based Institution → human resource capability → Future decision makers → managers & regulators. • Education & DevelopmentNuclear energy infrastructure → Integrated safeguards, safety, and security (3S) → Nuclear power fundamentals. • Strategic effort → Coordinated partnership → Responsible national nuclear energy program → Regional context. Why GNEII? • Build indigenous human resources → Education, Research, Technical capacity → Integrated 3S Systems Approach - coupled with - Nuclear Energy Infrastructure. • GNEII Addresses a Need → Increased nuclear power demand → Regional Nuclear Infrastructure → GNEII is a sustainable mechanism for developing a responsible nuclear energy program

  20. Needs of National Infrastructure for Nuclear Energy Program in Macedonia

    International Nuclear Information System (INIS)

    Chaushevski, A.; Poceva, S.N.; Spasevska, H.; Popov, N.

    2016-01-01

    The introduction of a nuclear energy program is a major undertaking with significant implications for many aspects of national infrastructure, ranging from capacity of the power grid, access roads and production facilities, to the involvement of stakeholders and the development of human resources. For new comers countries without nuclear power, even for those who wish to realize substantial expansion of existing nuclear capacity, it can take up to 10-15 years to develop the necessary infrastructure. One of the crucial problems in nuclear energy implementation are human resources needs and educational infrastructure development in this field. No matter what will be the future energy scenario in the Republic of Macedonia, the nuclear educational program is the first step to have HR in the field of nuclear energy. This paper presents the proposed direction for having HR for establishing national infrastructure in nuclear energy program in Macedonia. This includes establishing and developing of MONEP (Macedonian NEPIO), and the enhancing the capabilities of the national regulatory body in the Republic of Macedonia. Keywords: NEP (Nuclear Energy Program), HR (Human Resources), NEPIO (Nuclear Energy Program Implementation Organization), MONEP Macedonian Organization for Nuclear Energy Program (Macedonian NEPIO), NRB (Nuclear Regulatory Body)

  1. Nuclear hybrid energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  2. Nuclear Energy Infrastructure Database Fitness and Suitability Review

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich, Brenden [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation (NE-4) initiated the Nuclear Energy-Infrastructure Management Project by tasking the Nuclear Science User Facilities (NSUF) to create a searchable and interactive database of all pertinent NE supported or related infrastructure. This database will be used for analyses to establish needs, redundancies, efficiencies, distributions, etc. in order to best understand the utility of NE’s infrastructure and inform the content of the infrastructure calls. The NSUF developed the database by utilizing data and policy direction from a wide variety of reports from the Department of Energy, the National Research Council, the International Atomic Energy Agency and various other federal and civilian resources. The NEID contains data on 802 R&D instruments housed in 377 facilities at 84 institutions in the US and abroad. A Database Review Panel (DRP) was formed to review and provide advice on the development, implementation and utilization of the NEID. The panel is comprised of five members with expertise in nuclear energy-associated research. It was intended that they represent the major constituencies associated with nuclear energy research: academia, industry, research reactor, national laboratory, and Department of Energy program management. The Nuclear Energy Infrastructure Database Review Panel concludes that the NSUF has succeeded in creating a capability and infrastructure database that identifies and documents the major nuclear energy research and development capabilities across the DOE complex. The effort to maintain and expand the database will be ongoing. Detailed information on many facilities must be gathered from associated institutions added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements.

  3. The bomb as option. Motivation for the development of a nuclear infrastructure in the Federal Republic of Germany until 1963

    International Nuclear Information System (INIS)

    Hanel, Tilmann

    2015-01-01

    The book on the motivation for the development of a nuclear infrastructure in the Federal Republic of Germany until 1963 discusses the following issues: History of the German reactor development during the time of the National Socialism and World War II, reactor research abroad (examples Sweden and Switzerland), protagonists and motivation (politics, science, economy, army), the development of a nuclear infrastructure, results and consequences of the German nuclear policy until 1963.

  4. Guidelines for Preparing and Conducting an Integrated Nuclear Infrastructure Review (INIR)

    International Nuclear Information System (INIS)

    2017-01-01

    As of 1 July 2017, there were 447 operational nuclear power reactors in 30 countries and another 60 were under construction in 15 countries. Technically and financially, access to nuclear power is no longer limited to advanced economies. Many developing countries are interested in introducing or expanding nuclear energy programmes because they regard nuclear power as a stable and reliable source of baseload electricity, which, in addition, makes a significant contribution to climate change mitigation. While several operating countries are planning to expand current capacity, about 30 Member States, mostly developing countries, are considering embarking on a nuclear power programme, some are developing the necessary infrastructure, and some others are negotiating or building their first nuclear power plant. Building a nuclear power programme is a major undertaking with significant international implications and is based upon a commitment to use nuclear power for peaceful purposes, in a safe, secure and sustainable manner. This commitment requires establishing a sustainable national infrastructure that provides governmental, legal, regulatory, managerial, technological, human resource, industrial and stakeholder support for the nuclear power programme throughout its life cycle. The demonstration of compliance with international legal instruments, internationally accepted nuclear safety standards, nuclear security guidelines and safeguards requirements is essential in establishing a responsible nuclear power programme. In response to growing demand by embarking countries for advice and assistance, the IAEA has developed an approach to assist Member States that are considering or planning their first nuclear power plant to understand the commitments and obligations associated with developing a nuclear power programme. States that already have nuclear power can also assess their preparedness for expansion. This approach is set out in the publication Milestones in the

  5. Nuclear safety infrastructure

    International Nuclear Information System (INIS)

    Moffitt, R.L.

    2010-01-01

    The introduction of nuclear power in any country requires the early establishment of a long term nuclear safety infrastructure. This is necessary to ensure that the siting, design, construction, commissioning, operation and dismantling of the nuclear power plant and any other related installations, as well as the long term management of radioactive waste and spent fuel, are conducted in a safe and secure manner. The decision to undertake a nuclear power program is a major commitment requiring strict attention to nuclear safety. This commitment is a responsibility to not only the citizens of the country developing such a program, but also a responsibility to the international community. Nobody can take on this responsibility or make the critical decisions except the host country. It is important to make sure that the decision making process and the development activities are done in as open a manner as possible allowing interested stakeholders the opportunity to review and comment on the actions and plans. It cannot be overemphasized that everyone involved in a program to develop nuclear power carries a responsibility for ensuring safety. While it is clear that the key decisions and activities are the responsibility of the host country, it is also very important to recognize that help is available. The IAEA, OECD-NEA, WANO and other international organizations along with countries with established nuclear power programs are available to provide information and assistance. In particular, the IAEA and OECD-NEA have published several documents regarding the development of a nuclear power program and they have been and continue to support many meetings and seminars regarding the development of nuclear power programs

  6. Infrastructure needs and organizational aspect of nuclear power programme

    International Nuclear Information System (INIS)

    Villanueva, M.S.

    1996-01-01

    I. Introduction. II. Infrastructure development for nuclear power program: a) pre-requisites and requirements for a nuclear power program; b) long-term national policy for a nuclear power (long-term policy reason; national commitment); c) manpower development (role of academic institutions; practical manpower training); d) laws and regulations (regulatory framework; main national laws and regulations); e) nuclear research and development implementation (researches in the university; long term nuclear R and D program; research reactors); f) functions of government organizations (Atomic Energy Commission (PNRI); Department of Science and Technology; Department of Energy; Department of Education and Culture); g) industrial infrastructure; h) technology transfer (recipients's preparedness); i) safeguards obligations; j) public acceptance activities. III. Stages of nuclear power development (stage 1: planning; stage 2: detailed study and procurement; stage 3: construction; stage 4: operation) IV. Conclusion/Recommendation. (author)

  7. Site development and demands on infrastructure

    International Nuclear Information System (INIS)

    Nieke, K.F.

    1976-01-01

    All sub-fields are examined which form the infrastructure, the infrastructure being indispensable for the site development of a nuclear power plant. The main emphasis is put on the technical infrastructure, but the social infrastructure is dealt with, too. The most important sub-fields are: traffic connections, energy supply, external communications, foundation, building mearures. (UA) [de

  8. New Features in the Computational Infrastructure for Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Smith, Michael Scott; Lingerfelt, Eric; Scott, J. P.; Nesaraja, Caroline D; Chae, Kyung YuK.; Koura, Hiroyuki; Roberts, Luke F.; Hix, William Raphael; Bardayan, Daniel W.; Blackmon, Jeff C.

    2006-01-01

    A Computational Infrastructure for Nuclear Astrophysics has been developed to streamline the inclusion of the latest nuclear physics data in astrophysics simulations. The infrastructure consists of a platform-independent suite of computer codes that are freely available online at http://nucastrodata.org. The newest features of, and future plans for, this software suite are given

  9. Integrated Nuclear Infrastructure Review (INIR) Missions: The First Six Years

    International Nuclear Information System (INIS)

    2015-12-01

    IAEA Integrated Nuclear Infrastructure Review (INIR) missions are designed to assist Member States in evaluating the status of their national infrastructure for the introduction of a nuclear power programme. INIR missions are conducted upon request from the Member State. Each INIR mission is coordinated and led by the IAEA and conducted by a team of IAEA staff and international experts drawn from Member States which have experience in different aspects of developing and deploying nuclear infrastructure. INIR missions cover the 19 infrastructure issues described in Milestones in the Development of a National Infrastructure for Nuclear Power, IAEA Nuclear Energy Series No. NG-G-3.1, published in 2007 and revised in 2015, and the assessment is based on an analysis of a self-evaluation report prepared by the Member State, a review of the documents it provides and interviews with its key officials. Phase 1 INIR missions evaluate the status of the infrastructure to achieve Milestone 1 (Ready to make a knowledgeable commitment to a nuclear power programme). Phase 2 INIR missions evaluate the status of the infrastructure to achieve Milestone 2 (Ready to invite bids/negotiate a contract for the first nuclear power plant). From 2009 to 2014, 14 IAEA INIR missions and follow-ups were conducted in States embarking on a nuclear power programme and one State expanding its programme. During this time, considerable experience was gained by the IAEA on the conduct of INIR missions, and this feedback has been used to continually improve the overall INIR methodology. The INIR methodology has thus evolved and is far more comprehensive today than in 2009. Despite the limited number of INIR missions conducted, some common findings were identified in Member States embarking on nuclear power programmes. This publication summarizes the results of the missions and highlights the most significant areas in which recommendations were made

  10. Proliferation risks from nuclear power infrastructure

    Science.gov (United States)

    Squassoni, Sharon

    2017-11-01

    Certain elements of nuclear energy infrastructure are inherently dual-use, which makes the promotion of nuclear energy fraught with uncertainty. Are current restraints on the materials, equipment, and technology that can be used either to produce fuel for nuclear electricity generation or material for nuclear explosive devices adequate? Technology controls, supply side restrictions, and fuel market assurances have been used to dissuade countries from developing sensitive technologies but the lack of legal restrictions is a continued barrier to permanent reduction of nuclear proliferation risks.

  11. Nuclear Energy Infrastructure Database Description and User’s Manual

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich, Brenden [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation initiated the Nuclear Energy (NE)–Infrastructure Management Project by tasking the Nuclear Science User Facilities, formerly the Advanced Test Reactor National Scientific User Facility, to create a searchable and interactive database of all pertinent NE-supported and -related infrastructure. This database, known as the Nuclear Energy Infrastructure Database (NEID), is used for analyses to establish needs, redundancies, efficiencies, distributions, etc., to best understand the utility of NE’s infrastructure and inform the content of infrastructure calls. The Nuclear Science User Facilities developed the database by utilizing data and policy direction from a variety of reports from the U.S. Department of Energy, the National Research Council, the International Atomic Energy Agency, and various other federal and civilian resources. The NEID currently contains data on 802 research and development instruments housed in 377 facilities at 84 institutions in the United States and abroad. The effort to maintain and expand the database is ongoing. Detailed information on many facilities must be gathered from associated institutions and added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements. This document provides a short tutorial on the navigation of the NEID web portal at NSUF-Infrastructure.INL.gov.

  12. Developing the necessary infrastructure. Chapter 1; IAEA activities in support of countries considering embarking on Nuclear Power Programme

    International Nuclear Information System (INIS)

    Akira, O.

    2010-01-01

    The IAEA supports in a variety of ways in establishing an appropriate infra-structure necessary to secure safe and reliable operation and still maintaining the international safeguards regime, especially in developing countries which are considering introduction of nuclear power programme. The TC projects to support introduction of nuclear power has been formulated and its number increased significantly recently. Various guidance documents have been published by the IAEA recently to enable progressive development of national infrastructure. The IAEA guidance documents constitute a basis of advises to newcomer countries. The recently formulated important mission is INIR mission to review the status of national infrastructure in the context of measuring the distance to the expected milestone. Finally, it is expected that the newcomers would make informed decision-making on going to nuclear power by fully understanding the necessary obligations and national long-term commitment, by confirming viability of nuclear power options in the country's energy plan through Energy Planning and long-term strategic assessment using IAEA guidance and tools

  13. Potential for sharing nuclear power infrastructure between countries

    International Nuclear Information System (INIS)

    2006-10-01

    The introduction or expansion of a nuclear power programme in a country and its successful execution is largely dependent on the network of national infrastructure, covering a wide range of activities and capabilities. The infrastructure areas include legal framework, safety and environmental regulatory bodies, international agreements, physical facilities, finance, education, training, human resources and public information and acceptance. The wide extent of infrastructure needs require an investment that can be too large or onerous for the national economy. The burden of infrastructure can be reduced significantly if a country forms a sharing partnership with other countries. The sharing can be at regional or at multinational level. It can include physical facilities, common programmes and knowledge, which will reflect in economic benefits. The sharing can also contribute in a significant manner to harmonization of codes and standards in general and regulatory framework in particular. The opportunities and potential of sharing nuclear power infrastructure is determined by the objectives, strategy and scenario of the national nuclear power programme. A review of individual infrastructure items shows that there are several opportunities for sharing of nuclear power infrastructure between countries if they cooperate with each other. International cooperation and sharing of nuclear power infrastructure are not new. This publication provides criteria and guidance for analyzing and identifying the potential for sharing of nuclear power infrastructure during the stages of nuclear power project life cycle. The target users are decision makers, advisers and senior managers in utilities, industrial organizations, regulatory bodies and governmental organizations in countries adopting or extending nuclear power programmes. This publication was produced within the IAEA programme directed to increase the capability of Member States to plan and implement nuclear power

  14. Developing industrial infrastructures to support a programme of nuclear power

    International Nuclear Information System (INIS)

    1988-01-01

    This Guidebook is intended to offer assistance in the many considerations and decisions involved in preparing the national industry for participation in a nuclear power programme. The heavy financial investment, the setting up of certain infrastructures many years ahead of plant construction, plus the high level of technology involved require early and systematic planning. A further purpose of this Guidebook is to serve particularly those decision makers and planners in the various governmental authorities, the technological institutions and in the industries likely to be involved in a nuclear project. These industries include the services of the national engineering resources, the domestic design and manufacturing groups as well as the civil construction companies. These will be responsible for plant erection, testing and commissioning and most of all for the establishment of a framework for quality assurance. All of these are the components of an essential infrastructure necessary to raise the standards of the national industry and to displace increasingly foreign suppliers to the extent possible. In addition, this Guidebook should help to show some of the implications, consequences and options involved in a nuclear power programme. It does not consider the basic decisions for going nuclear, nor does it review the choice of the technology or nuclear process selected for the programme. Instead, it limits itself to a consideration of the nuclear power plant and its essential cycle activities. Figs and tabs

  15. Nuclear Energy Infrastructure Database Description and User's Manual

    International Nuclear Information System (INIS)

    Heidrich, Brenden

    2015-01-01

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation initiated the Nuclear Energy (NE)–Infrastructure Management Project by tasking the Nuclear Science User Facilities, formerly the Advanced Test Reactor National Scientific User Facility, to create a searchable and interactive database of all pertinent NE-supported and -related infrastructure. This database, known as the Nuclear Energy Infrastructure Database (NEID), is used for analyses to establish needs, redundancies, efficiencies, distributions, etc., to best understand the utility of NE's infrastructure and inform the content of infrastructure calls. The Nuclear Science User Facilities developed the database by utilizing data and policy direction from a variety of reports from the U.S. Department of Energy, the National Research Council, the International Atomic Energy Agency, and various other federal and civilian resources. The NEID currently contains data on 802 research and development instruments housed in 377 facilities at 84 institutions in the United States and abroad. The effort to maintain and expand the database is ongoing. Detailed information on many facilities must be gathered from associated institutions and added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements. This document provides a short tutorial on the navigation of the NEID web portal at NSUF-Infrastructure.INL.gov.

  16. INIR: Integrated Nuclear Infrastructure Review Missions. Guidance on Preparing and Conducting INIR Missions (Rev. 1)

    International Nuclear Information System (INIS)

    2011-04-01

    The IAEA's Integrated Nuclear Infrastructure Review (INIR) missions are designed to assist Member States, at their request, in evaluating the status of their national infrastructure for the introduction of a nuclear power programme. Each INIR mission is coordinated and led by the IAEA and conducted by a team of international experts drawn from Member States who have experience in different aspects of developing and deploying nuclear infrastructure. The IAEA publication Milestones in the Development of a National Infrastructure for Nuclear Power (IAEA Nuclear Energy Series No. NG-G-3.1) contains a description of 19 infrastructure issues to be considered during the different stages of development of a nuclear power programme. The starting point for an INIR mission is a self-evaluation performed by the Member State against these infrastructure issues. Following the self-evaluation, the INIR mission reviews the status of the national nuclear infrastructure, identifies existing gaps in specific infrastructure-related areas and proposes recommendations to fill these gaps. The INIR mission provides Member State representatives with an opportunity to have in depth discussions with international experts about experiences and best practices in different countries. In developing its recommendations, the INIR team takes into account the comments made by the relevant national organizations. Implementation of any of the team's recommendations is at the discretion of the Member State requesting the mission. The results of the INIR mission are expected to help the Member State to develop an action plan to fill any gaps, which in turn will help the development of the national nuclear infrastructure. The IAEA stands ready to assist, as requested and appropriate, in the different steps of this action plan. This guidance publication is directed to assist in preparing and conducting the INIR missions. It was developed under the coordination of the IAEA Integrated Nuclear Infrastructure

  17. Maintaining knowledge, training and infrastructure for research and development in nuclear safety. A note by the International Nuclear Safety Advisory Group

    International Nuclear Information System (INIS)

    International Nuclear Safety Advisory Group

    2001-01-01

    The purpose of this INSAG Note is to emphasize the importance of maintaining capabilities for nuclear research and education, especially with regard to safety aspects, so that nuclear safety may be maintained in IAEA Member States, and to alert Member States to the potential for significant harm if the infrastructure for research, development and education is not maintained

  18. Nuclear power infrastructure - issues, strategy and possibilities

    International Nuclear Information System (INIS)

    Sokolov, Y.A.

    2009-01-01

    Full text: Today humanity faces daunting challenges: the pressing need for development in many parts of the world and the desire for a more effective system of international security. At the outset of the 21st century, the Millennium Development Goals and the Johannesburg Plan of Implementation have both set global objectives for sustainable development (SD) that give high priority to the eradication of poverty and hunger, environmental sustainability, universal access to plentiful fresh water and energy. In this context there are many expectations about Nuclear Renascence supported by many national and international studies, by discussions in the mass media and international forums, etc. The Agency has taken an integrated approach outlining all considerations that have to be taken into account for the introduction of a nuclear power programme, providing guiding documents, forums for sharing information, consultancies and technical meetings and sending multidisciplinary teams to countries requesting assistance with nuclear power infrastructure. The process also includes specific assistance and review services in the areas of infrastructure readiness, feasibility studies, draft nuclear law, regulatory frameworks and organization, siting issues, human resource development and planning, bid evaluation and technology assessment, owner/operator competence, and safety and security. It is important to support the decision making processes of States introducing nuclear power to ensure they can make informed choices on the role of nuclear power in their energy mixes. The IAEA helps countries prepare for the introduction or expansion of nuclear power by 1) helping them ensure that nuclear energy is used safely, securely and with minimal proliferation risk, and 2) meeting the need of developing countries to build capacity in terms of human resources, energy analysis, regulatory capabilities and other infrastructure necessary for nuclear power. The process also includes

  19. Maintaining knowledge, training and infrastructure for research and development in nuclear safety - INSAG-16. A report by the International Nuclear Safety Advisory Group

    International Nuclear Information System (INIS)

    2003-01-01

    The purpose of this report is to emphasize the importance of maintaining capabilities for nuclear research and education, especially with regard to safety aspects, so that nuclear safety may be maintained in IAEA Member States, and to alert Member States to the potential for significant harm if the infrastructure for research, development and education is not maintained. If the infrastructure for nuclear safety is not maintained, there will be a steady decrease in expertise, and thus in capability to respond to new challenges. The lead time in developing replacement educational opportunities is very long, because most institutions will require an indication of the number of enthusiastic potential students before investing in new infrastructure, and potential students may look elsewhere in the absence of an exciting analytical and experimental programme and a growing career field. Once lost, it would require massive inputs of resources from many IAEA Member States to attempt to re-establish the infrastructure, as was done to establish it when nuclear technology was new. The result could be a downward spiral in which expertise is lost, influence of the technical community on the decision making process is diminished, and complacency, fed by diminished technical capability, begins to exert a strong effect. In view of the above, INSAG has the following recommendations: In order to maintain and further enhance the safety of nuclear facilities and to protect workers and the public and the environment from radiological consequences, the infrastructure for safety research (experimental facilities, highly competent staff and modern analytical tools) must be maintained and supported by the responsible governmental organizations as well as by the operating organizations and manufacturers. This support should include international networking and co-operation, including joint funding of centres of excellence that have facilities and equipment for use in nuclear research

  20. Case Study for Effectiveness Analysis on Nuclear Regulatory Infrastructure Support for Emerging Nuclear Energy Countries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. E.; Byeon, M. J.; Yoo, J. W.; Lee, J. M.; Lim, J. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    The donor countries need to make decisions on various steps such as whether to fully accept newcomers’ requests, the depth of support, and how the supportive action will be carried out. Such is not an easy task due to limited time, resources, manpower, etc. Thus, creating an infrastructure to support emerging nuclear energy countries is needed. This paper suggests the resource portfolio concept used in business management and aims to analyze the validity of supporting the new entrants’ development of regulatory infrastructure as a case study. This study tries to develop a very simple Excel-based tool for assessing the supporting strategy quantitatively and screening the activities that is projected to be less effective and attractive. There are many countries, so called newcomers, which have expressed interests in developing their own nuclear power program. It has been recognized by the international community that every country considering embarking upon their own nuclear power program should establish their nuclear safety infrastructure to sustain a high level of nuclear safety. The newcomers have requested for considerable assistance from the IAEA and they already have bilateral cooperation programs with the advanced countries with matured nuclear regulatory programs. Currently, the regulatory bodies that provide support are confronted with two responsibilities as follows; the primary objective of the regulatory bodies is to ensure that the operator fulfills the responsibility to protect human health.

  1. Case Study for Effectiveness Analysis on Nuclear Regulatory Infrastructure Support for Emerging Nuclear Energy Countries

    International Nuclear Information System (INIS)

    Lee, Y. E.; Byeon, M. J.; Yoo, J. W.; Lee, J. M.; Lim, J. H.

    2016-01-01

    The donor countries need to make decisions on various steps such as whether to fully accept newcomers’ requests, the depth of support, and how the supportive action will be carried out. Such is not an easy task due to limited time, resources, manpower, etc. Thus, creating an infrastructure to support emerging nuclear energy countries is needed. This paper suggests the resource portfolio concept used in business management and aims to analyze the validity of supporting the new entrants’ development of regulatory infrastructure as a case study. This study tries to develop a very simple Excel-based tool for assessing the supporting strategy quantitatively and screening the activities that is projected to be less effective and attractive. There are many countries, so called newcomers, which have expressed interests in developing their own nuclear power program. It has been recognized by the international community that every country considering embarking upon their own nuclear power program should establish their nuclear safety infrastructure to sustain a high level of nuclear safety. The newcomers have requested for considerable assistance from the IAEA and they already have bilateral cooperation programs with the advanced countries with matured nuclear regulatory programs. Currently, the regulatory bodies that provide support are confronted with two responsibilities as follows; the primary objective of the regulatory bodies is to ensure that the operator fulfills the responsibility to protect human health

  2. Industrial infrastructure for the Indian nuclear power programme

    International Nuclear Information System (INIS)

    Srinivasan, M.R.

    1986-04-01

    For the inception of the Indian nuclear power programme, great emphasis has been laid on development of comprehensive indigenous capability in design, construction and operation of nuclear power plants. The choice of the pressurised heavy water reactor as the mainline for India's first generation nuclear power stations fitted into this perspective. Apart from the inherent advantages of high neutron economy, low fuelling costs and high capacity factors, this system offered significant opportunities for manufacture and design of all the components within the country. The development of indigenous capability has not been without its problems, namely cost overruns and delays. The main causes for these delays have been the developmental nature of the jobs involving learning process and continued tightening of the quality control requirements. The strategy of development to be pursued by any country is naturally dependent upon the size of the programme it wishes to embark upon and the state of industrial infrastructure in the country. The Indian experience has demonstrated that for development of a comprehensive capability, it is necessary to have a well formulated reactor policy, a good inter-disciplinary R and D base, a good base of conventional industrial infrastructure, a comprehensive manpower development programme and an innovative management. It is hoped that this experience will be of benefit to other developing countries embarking on their own nuclear programme

  3. Building infrastructure for new nuclear power programmes

    International Nuclear Information System (INIS)

    Starz, A.; Aoki, M.

    2010-01-01

    In recent years, more than sixty countries have indicated that they are considering or launching nuclear power programmes. It has been more than a decade since a country commissioned its first nuclear power plant. In meantime, the global nuclear community has faced greater concerns about safety, security and non-proliferation, resulting in increased international obligations and a greater expectation for transparency and openness regarding nuclear power programmes. Many of these 'nuclear newcomers' are turning to International Atomic Energy Agency (IAEA) to understand the implications of the nuclear power option and to receive advice about how to proceed with implementing a national programme. In response to growing demand for assistance, the IAEA developed a comprehensive, phased approach to establishing the infrastructure necessary to support a national nuclear power programme. This 'Milestones' approach is described in Nuclear Energy Series Guide NG-G-3.1 'Milestones in the Development of a National Infrastructure for Nuclear Power' (2007). From establishing the national position and legal framework to nuclear safety, security and safeguards, the Milestones covers 19 issues that need to be addressed. This approach also places special emphasis on the need for involvement of the Government, utility, industry, academic, and other stakeholders in a national decision-making process. The IAEA is also helping 'newcomers' to better understand its Safety Standards, which were written from the perspective of operating nuclear power programmes. A new safety guide is in development which provides a Road-map to the safety standards and identifies the standards that are relevant for each phase consistent with the Milestones. Several countries in the Europe region are working with the IAEA to understand the issues associated with a nuclear power programme in preparation for making a knowledgeable commitment. The starting points and approaches vary widely: some are European

  4. The US nuclear weapon infrastructure and a stable global nuclear weapon regime

    Energy Technology Data Exchange (ETDEWEB)

    Immele, John D [Los Alamos National Laboratory; Wagner, Richard L [Los Alamos National Laboratory

    2009-01-01

    US nuclear weapons capabilities -- extant force structure and nuclear weapons infrastructure as well as declared policy -- influence other nations' nuclear weapons postures, at least to some extent. This influence can be desirable or undesirable, and is, of course, a mixture of both. How strong the influence is, and its nature, are complicated, controversial, and -- in our view -- not well understood but often overstated. Divergent views about this influence and how it might shape the future global nuclear weapons regime seem to us to be the most serious impediment to reaching a national consensus on US weapons policy, force structure and supporting infrastructure. We believe that a paradigm shift to capability-based deterrence and dissuasion is not only consistent with the realities of the world and how it has changed, but also a desirable way for nuclear weapon postures and infrastructures to evolve. The US and other nuclear states could not get to zero nor even reduce nuclear arms and the nuclear profile much further without learning to manage latent capability. This paper has defined three principles for designing NW infrastructure both at the 'next plateau' and 'near zero.' The US can be a leader in reducing weapons and infrastructure and in creating an international regime in which capability gradually substitutes for weapons in being and is transparent. The current 'strategy' of not having policy or a Congressionally-approved plan for transforming the weapons complex is not leadership. If we can conform the US infrastructure to the next plateau and architect it in such a way that it is aligned with further arms reductions, it will have these benefits: The extant stockpile can be reduced in size, while the smaller stockpile still deters attack on the US and Allies. The capabilities of the infrastructure will dissuade emergence of new challenges/threats; if they emerge, nevertheless, the US will be able to deal with them in

  5. Assessment of infrastructure development requirements for embarking on nuclear power program in Macedonia

    International Nuclear Information System (INIS)

    Popov, N.; Ilijovski, I.; Popovski, V.

    2015-01-01

    Over the past decades nuclear energy has been proven as reliable and economical energy supply that is capable of meeting demanding energy market requirements. Many countries around the world consider entering into new nuclear energy programs and building new power reactors for satisfying their increasing electrical energy needs. A nuclear power program is a major undertaking requiring careful planning, preparation and investment, and human resources for building adequate nuclear infrastructure. Preparations for making a decision to enter into a new nuclear energy program requires a significant amount of financial and human resources, time, and assistance from already developed countries and international nuclear organizations. The International Atomic Energy Agency (IAEA) from Vienna provides technical help, financial assistance, and documented knowledge that are important for countries facing the challenge of entering nuclear programs for the first time. The IAEA organizes technical courses and information exchange meetings for new countries at which experiences and lessons learned are provided to new countries. This paper describes the key activities in the process for making a decision to enter a new nuclear energy program. It describes the efforts currently being conducted in the Republic of Macedonia in the direction of collecting information, performing various feasibility studies, and engaging in regional cooperation for utilizing experiences of the regional countries in performing such activities, and in developing their nuclear power programs. This paper also provides an overview of the IAEA documents and recommendations that are relevant for this topic

  6. Maintaining knowledge, training and infrastructure for research and development in nuclear safety. INSAG-16. A report by the International Nuclear Safety Advisory Group (Russian Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    The purpose of this report is to emphasize the importance of maintaining capabilities for nuclear research and education, especially with regard to safety aspects, so that nuclear safety may be maintained in IAEA Member States, and to alert Member States to the potential for significant harm if the infrastructure for research, development and education is not maintained. If the infrastructure for nuclear safety is not maintained, there will be a steady decrease in expertise, and thus in capability to respond to new challenges. The lead time in developing replacement educational opportunities is very long, because most institutions will require an indication of the number of enthusiastic potential students before investing in new infrastructure, and potential students may look elsewhere in the absence of an exciting analytical and experimental programme and a growing career field. Once lost, it would require massive inputs of resources from many IAEA Member States to attempt to re-establish the infrastructure, as was done to establish it when nuclear technology was new. The result could be a downward spiral in which expertise is lost, influence of the technical community on the decision making process is diminished, and complacency, fed by diminished technical capability, begins to exert a strong effect. In view of the above, INSAG has the following recommendations: In order to maintain and further enhance the safety of nuclear facilities and to protect workers and the public and the environment from radiological consequences, the infrastructure for safety research (experimental facilities, highly competent staff and modern analytical tools) must be maintained and supported by the responsible governmental organizations as well as by the operating organizations and manufacturers. This support should include international networking and co-operation, including joint funding of centres of excellence that have facilities and equipment for use in nuclear research

  7. Statement at TM/workshop on evaluation methodology for national nuclear infrastructure development, 10 December 2008, Vienna, Austria

    International Nuclear Information System (INIS)

    Sokolov, Y.

    2008-01-01

    In his statement at the Technical Meeting Workshop on Evaluation Methodology for National Nuclear Infrastructure Development Mr. Yuri Sokolov, IAEA Deputy Director General, Head of the Department of Nuclear Energy, thanked the co-sponsors of the workshop, namely Canada, China, France, India, Japan, the Republic of Korea, the Russian Federation and the United States for their continued support and the Nuclear Power Engineering Section for their dedication and hard work to implement this workshop. The evaluation methodology that is the main subject of this workshop is a component of building infrastructure for the implementation of cost-effective, safe and secure nuclear power programme. It aims to provide a tool for effective planning. The IAEA evaluation approach can be used either by a Member State wishing to review its own progress (self-assessment) or as a basis for an external review through which a Member State wishes to reassure others that its nuclear programme is effective. The IAEA can, upon a request from the Member State, provide Integrated Nuclear Infrastructure Review missions, INIR, conducted by international experts. These INIR missions provide a means for countries to work with the IAEA in an open and transparent way to ensure they are taking a comprehensive and integrated approach to nuclear power as promoted in the Milestones document. National self-assessments supported by INIR missions will help Member States to identify gaps and areas that need increased attention, and will help the Agency to focus the assistance on the Member States needs. Another theme of the workshop is the role of the Nuclear Energy Programme Implementing Organization (NEPIO), in studying the nuclear power option and coordinating planning among various stakeholders. During the workshop publications in preparation will be presented including one on responsibilities and capabilities of owner-operator organizations and one on workforce planning. Presentations from the

  8. 78 FR 56869 - Nuclear Infrastructure Programmatic Environmental Impact Statement Supplement Analysis...

    Science.gov (United States)

    2013-09-16

    ... DEPARTMENT OF ENERGY Nuclear Infrastructure Programmatic Environmental Impact Statement Supplement... of Energy (DOE) has completed the Supplement Analysis (SA) of the Programmatic Environmental Impact Statement for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production...

  9. IRIS guidelines. 2014 ed. Integrated Review of Infrastructure for Safety (IRIS) for self-assessment when establishing the safety infrastructure for a nuclear power programme

    International Nuclear Information System (INIS)

    2014-01-01

    The IAEA safety standards reflect an international consensus on what constitutes a high level of safety for protecting people and the environment, and therefore represent what all Member States should achieve, whilst recognizing the ultimate responsibility of each State to ensure safety when implementing a nuclear power programme. IAEA Safety Standards Series No. SSG-16, entitled Establishing the Safety Infrastructure for a Nuclear Power Programme was published in order to provide recommendations, presented in the form of sequential actions, on meeting safety requirements progressively during the initial three phases of the development of safety, as described in INSAG-22, Nuclear Safety Infrastructure for a National Nuclear Power Programme Supported by the IAEA Fundamental Safety Principles. To that end, the 200 safety related actions, which are proposed by SSG-16, constitute a roadmap to establish a foundation for promoting a high level of safety over the entire lifetime of the nuclear power plant. These actions reflect international consensus on good practice in order to achieve full implementation of IAEA safety standards. The IAEA has developed a methodology and tool, the Integrated Review of Infrastructure for Safety (IRIS), to assist States in undertaking self-assessment with respect to SSG-16 recommendations when establishing the safety infrastructure for a nuclear power programme, and to develop an action plan for improvement. The IRIS methodology and the associated tool are fully compatible with the IAEA safety standards and are also used, when appropriate, in the preparation of review missions, such as the Integrated Regulatory Review Service and advisory missions. The present guidelines describe the IRIS methodology for self-assessment against SSG-16 recommendations. Through IRIS implementation, every organization concerned with nuclear safety may gain proper awareness and engage in a continuous progressive process to develop the effective national

  10. Upgrading nuclear safety and security infrastructure in Yemen

    International Nuclear Information System (INIS)

    Bahran, M.Y.

    2007-01-01

    In 1999 the National Atomic Energy Commission of the Republic of Yemen was established with an emphasis on building Radiation Protection Infrastructure suitable for Yemen and in accordance with international standards. Since then, Yemen arguably has built one of the best such systems in the region if not in the world with respect to the country's needs. This system is going to be upgraded from Radiological Safety and Security system to a Nuclear Safety and Security system. This is to be done as a prerequisite to any further development in the Peaceful Applications of Nuclear Energy, particularly Nuclear Power and Desalination. (author)

  11. Cyber Threats to Nuclear Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Anderson; Paul Moskowitz; Mark Schanfein; Trond Bjornard; Curtis St. Michel

    2010-07-01

    Nuclear facility personnel expend considerable efforts to ensure that their facilities can maintain continuity of operations against both natural and man-made threats. Historically, most attention has been placed on physical security. Recently however, the threat of cyber-related attacks has become a recognized and growing world-wide concern. Much attention has focused on the vulnerability of the electric grid and chemical industries to cyber attacks, in part, because of their use of Supervisory Control and Data Acquisition (SCADA) systems. Lessons learned from work in these sectors indicate that the cyber threat may extend to other critical infrastructures including sites where nuclear and radiological materials are now stored. In this context, this white paper presents a hypothetical scenario by which a determined adversary launches a cyber attack that compromises the physical protection system and results in a reduced security posture at such a site. The compromised security posture might then be malevolently exploited in a variety of ways. The authors conclude that the cyber threat should be carefully considered for all nuclear infrastructures.

  12. Cyber Threats to Nuclear Infrastructures

    International Nuclear Information System (INIS)

    Anderson, Robert S.; Moskowitz, Paul; Schanfein, Mark; Bjornard, Trond; St. Michel, Curtis

    2010-01-01

    Nuclear facility personnel expend considerable efforts to ensure that their facilities can maintain continuity of operations against both natural and man-made threats. Historically, most attention has been placed on physical security. Recently however, the threat of cyber-related attacks has become a recognized and growing world-wide concern. Much attention has focused on the vulnerability of the electric grid and chemical industries to cyber attacks, in part, because of their use of Supervisory Control and Data Acquisition (SCADA) systems. Lessons learned from work in these sectors indicate that the cyber threat may extend to other critical infrastructures including sites where nuclear and radiological materials are now stored. In this context, this white paper presents a hypothetical scenario by which a determined adversary launches a cyber attack that compromises the physical protection system and results in a reduced security posture at such a site. The compromised security posture might then be malevolently exploited in a variety of ways. The authors conclude that the cyber threat should be carefully considered for all nuclear infrastructures.

  13. Opening Address [Technical Meeting/Workshop on Topical Issues on Infrastructure Development: Managing the Development of a National Infrastructure for Nuclear Power Plants, Vienna (Austria), 24-27 January 2012

    International Nuclear Information System (INIS)

    Bychkov, A.V.

    2012-01-01

    Good morning, ladies and gentlemen. I would like to express my cordial welcome to the participants of the 6th annual workshop on nuclear power infrastructure since 2006. Looking back at the development of nuclear power programmes for embarking countries since 2006, I am glad to see that many embarking countries apply the IAEA Milestones approach and have made much progress, since several countries already have entered or entering into phase 3, the construction of the first nuclear power plant. Since the last annual workshop, the most shocking event was the accident in Fukushima Daiichi in March 2011, which was caused by an earthquake and tsunami of unprecedented severity. Looking at the impact of this accident on the nuclear power, there were speculations that the expansion in interest in nuclear power, which we had experienced in recent years, could come to an end. However, it is clear now that there will be continuous and significant growth in the use of nuclear power in the next two decades, although at a slower rate than in our previous projections. Most of the growth will occur in countries that already have operating nuclear power plants, such as China, India and Russia. In countries which are considering introducing nuclear power, interest remains strong, despite Fukushima Daiichi. Most of these countries are proceeding with plans to add nuclear power to their energy mix, with the Agency's assistance. Only a few countries cancelled or revised their plans, while others have taken a ''wait and see'' approach. However, the factors that contributed to increasing interest in nuclear power before the Fukushima Daiichi accident have not changed: these include increasing global demand for energy, as well as concerns about climate change, volatile fossil fuel prices and security of energy supply. The countries strongly committed to nuclear power such as the United Arab Emirates, Turkey, Belarus, Vietnam, Jordan, Bangladesh and Poland, keep the same position even

  14. Planning for a space infrastructure for disposal of nuclear space power systems

    International Nuclear Information System (INIS)

    Angelo, J. Jr.; Albert, T.E.; Lee, J.

    1989-01-01

    The development of safe, reliable, and compact power systems is vital to humanity's exploration, development, and, ultimately, civilization of space. Nuclear power systems appear to present to offer the only practical option of compact high-power systems. From the very beginning of US space nuclear power activities, safety has been a paramount requirement. Assurance of nuclear safety has included prelaunch ground handling operations, launch, and space operations of nuclear power sources, and more recently serious attention has been given to postoperational disposal of spent or errant nuclear reactor systems. The purpose of this paper is to describe the progress of a project to utilize the capabilities of an evolving space infrastructure for planning for disposal of space nuclear systems. Project SIREN (Search, Intercept, Retrieve, Expulsion - Nuclear) is a project that has been initiated to consider post-operational disposal options for nuclear space power systems. The key finding of Project SIREN was that although no system currently exists to affect the disposal of a nuclear space power system, the requisite technologies for such a system either exist or are planned for part of the evolving space infrastructure

  15. Nuclear Safeguards Infrastructure Required for the Next Generation Nuclear Plant (NGNP)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mark Schanfein; Philip Casey Durst

    2012-07-01

    The Next Generation Nuclear Plant (NGNP) is a Very High Temperature Gas-Cooled Reactor (VHTR) to be constructed near Idaho Falls, Idaho The NGNP is intrinsically safer than current reactors and is planned for startup ca. 2021 Safety is more prominent in the minds of the Public and Governing Officials following the nuclear reactor meltdown accidents in Fukushima, Japan The authors propose that the NGNP should be designed with International (IAEA) Safeguards in mind to support export to Non-Nuclear-Weapons States There are two variants of the NGNP design; one using integral Prismatic-shaped fuel assemblies in a fixed core; and one using recirculating fuel balls (or Pebbles) The following presents the infrastructure required to safeguard the NGNP This infrastructure is required to safeguard the Prismatic and Pebble-fueled NGNP (and other HTGR/VHTR) The infrastructure is based on current Safeguards Requirements and Practices implemented by the International Atomic Energy Agency (IAEA) for similar reactors The authors of this presentation have worked for decades in the area of International Nuclear Safeguards and are recognized experts in this field Presentation for INMM conference in July 2012.

  16. Development of safety related technology and infrastructure for safety assessment

    International Nuclear Information System (INIS)

    Venkat Raj, V.

    1997-01-01

    Development and optimum utilisation of any technology calls for the building up of the necessary infrastructure and backup facilities. This is particularly true for a developing country like India and more so for an advanced technology like nuclear technology. Right from the inception of its nuclear power programme, the Indian approach has been to develop adequate infrastructure in various areas such as design, construction, manufacture, installation, commissioning and safety assessment of nuclear plants. This paper deals with the development of safety related technology and the relevant infrastructure for safety assessment. A number of computer codes for safety assessment have been developed or adapted in the areas of thermal hydraulics, structural dynamics etc. These codes have undergone extensive validation through data generated in the experimental facilities set up in India as well as participation in international standard problem exercises. Side by side with the development of the tools for safety assessment, the development of safety related technology was also given equal importance. Many of the technologies required for the inspection, ageing assessment and estimation of the residual life of various components and equipment, particularly those having a bearing on safety, were developed. This paper highlights, briefly, the work carried out in some of the areas mentioned above. (author)

  17. Report on the seminar on supporting industrial infrastructure requirements and development for nuclear power, Vienna, 14-18 April, 1986

    International Nuclear Information System (INIS)

    1986-04-01

    The Seminar on Supporting Industrial Infrastructure Requirements and Development for Nuclear Power reviewed the following problem areas: establishing the programmatic objectives of a realistic national participation and the technology transfer which would be necessary to qualify such a participation; promoting the level of industrialization which would be necessary to attain the targeted national participation; assuring quality in industry by enforcing comprehensive QA programme; setting-up a national R and D infrastructure to assist the transfer of technology and act as a permanent asset to solve problems as they arise in industry

  18. An integrated infrastructure in support of software development

    International Nuclear Information System (INIS)

    Antonelli, S; Bencivenni, M; De Girolamo, D; Giacomini, F; Longo, S; Manzali, M; Veraldi, R; Zani, S

    2014-01-01

    This paper describes the design and the current state of implementation of an infrastructure made available to software developers within the Italian National Institute for Nuclear Physics (INFN) to support and facilitate their daily activity. The infrastructure integrates several tools, each providing a well-identified function: project management, version control system, continuous integration, dynamic provisioning of virtual machines, efficiency improvement, knowledge base. When applicable, access to the services is based on the INFN-wide Authentication and Authorization Infrastructure. The system is being installed and progressively made available to INFN users belonging to tens of sites and laboratories and will represent a solid foundation for the software development efforts of the many experiments and projects that see the involvement of the Institute. The infrastructure will be beneficial especially for small- and medium-size collaborations, which often cannot afford the resources, in particular in terms of know-how, needed to set up such services.

  19. Building safeguards infrastructure

    International Nuclear Information System (INIS)

    Stevens, Rebecca S.; McClelland-Kerr, John

    2009-01-01

    Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of these three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the growth of nuclear power, and the infrastructure that supports them should be strengthened. The focus of this paper will be on the role safeguards plays in the 3S concept and how to support the development of the infrastructure necessary to support safeguards. The objective of this paper has been to provide a working definition of safeguards infrastructure, and to discuss xamples of how building safeguards infrastructure is presented in several models. The guidelines outlined in the milestones document provide a clear path for establishing both the safeguards and the related infrastructures needed to support the development of nuclear power. The model employed by the INSEP program of engaging with partner states on safeguards-related topics that are of current interest to the level of nuclear development in that state provides another way of approaching the concept of building safeguards infrastructure. The Next Generation Safeguards Initiative is yet another approach that underscored five principal areas for growth, and the United States commitment to working with partners to promote this growth both at home and abroad.

  20. Cote D’voire National Presentation on Nuclear Power Infrastructure Evaluation

    International Nuclear Information System (INIS)

    2010-01-01

    Limited production capacity to meet energy demand is 1316 MW in 2010 with impossibility to satisfy the demand in the high scenario of 41 000 GWh in 2020. There is necessity of using other sources of production that include nuclear power plant for a mass production. NEPIO not formally established, its establishment is underway to implement the entire infrastructure necessary to achieve the nuclear power plant in Côte d’Ivoire. Projects of nuclear law and decree were drawn up with the legal assistance of the IAEA. Universities and engineers schools do not offer courses adapted to the development of a nuclear industry. Therefore the Government is taking measures for implementation of the NEPIO and ratifying all the international agreement connected to nuclear power plant. Face to the constantly increasing energy demand, Côte d’Ivoire showed its intention to develop an nuclear power programme for the satisfaction of needs by 2025. To implement this programme, a national strategic plan has been established

  1. Thermal-hydraulic R and D infrastructure for water cooled reactors of the Indian nuclear power program

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Jain, V.; Saha, D.; Sinha, R.K.

    2009-01-01

    R and D has been the critical ingredient of Indian Nuclear Power Program from the very inception. Approach to R and D infrastructure has been closely associated with the three-stage nuclear power program that was crafted on the basis of available resources and technology in the short-term and energy security in the long-term. Early R and D efforts were directed at technologies relevant to Pressurized Heavy Water Reactors (PHWRs) which are currently the mainstay of Indian nuclear power program. Lately, the R and D program has been steered towards the design and development of advanced and innovative reactors with the twin objective of utilization of abundant thorium and to meet the future challenges to nuclear power such as enhanced safety and reliability, better economy, proliferation resistance etc. Advanced Heavy Water Reactor (AHWR) is an Indian innovative reactor currently being developed to realize the above objectives. Extensive R and D infrastructure has been created to validate the system design and various passive concepts being incorporated in the AHWR. This paper provides a brief review of R and D infrastructure that has been developed at Bhabha Atomic Research Centre for thermal-hydraulic investigations for water-cooled reactors of Indian nuclear power program. (author)

  2. Application of Resource Portfolio Concept in Nuclear Regulatory Infrastructure Support

    International Nuclear Information System (INIS)

    Lee, Y. E.; Ha, J. T.; Chang, H. S.; Kam, S. C.; Ryu, Y. H.

    2010-01-01

    As the new entrants in the global nuclear construction market are increasing and the establishment of an effective and sustainable regulatory infrastructure becomes more important, they have requested international assistance from the international nuclear communities with mature nuclear regulatory programmes. It needs to optimize the use of limited resources from regulatory organization providing support to regulatory infrastructure of new comers. This paper suggests the resource portfolio concept like a GE/Mckinsey Matrix used in business management and tries to apply it to the current needs considered in the regulatory support program in Korea as the case study

  3. Strengthening of Organizational Infrastructure for Meeting IAEA Nuclear Safeguards Obligations: Bangladesh Perspective

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2010-01-01

    Safeguards are arrangements to account for and control the use of nuclear materials. This verification is a key element in the international system which ensures that uranium in particular is used only for peaceful purposes. The only nuclear reactor in Bangladesh achieved critically on September 14, 1986. Reactor Operation and Maintenance Unit routinely carries out certain international obligations which need to undertake as signatory of different treaties, agreements and protocols in the international safeguards regime. Pursuant to the relevant articles of these agreements/protocols, the reactor and associated facilities of Bangladesh (Facility code: BDA- and BDZ-) are physically inspected by the designated IAEA safeguards inspectors. The Bangladesh Atomic Energy Commission (BAEC) has recently created a new division called 'Nuclear Safeguards and Security Division' for enhancing the safeguards activities as per international obligations. This division plays a leading role in the planning, implementation, and evaluation of the BAEC's nuclear safeguards and nuclear security activities. This division is actively working with USDOE, IAEA and EU to enhance the nuclear safeguards and security activities in the following areas: - Analysis of nuclear safeguards related reports of 3 MW TRIGA Mark-II research reactor; - Upgrading of physical protection system of 3 MW TRIGA Mark-II research reactor, gamma irradiation facilities, central radioactive storage and processing facility and different radiation oncology facilities of Bangladesh under GTRI programme; - Supervision for installation of radiation monitoring system of the Chittagong port under USDOE Megaports Initiative Programmes for detection of illicit trafficking of nuclear and radioactive materials; - Development of laboratory capabilities for analysis of nuclear safeguards related samples; - Planning for development of organizational infrastructure to carry out safeguards related activities under IAEA different

  4. Innovations in Nuclear Infrastructure and Education

    Energy Technology Data Exchange (ETDEWEB)

    John Bernard

    2010-12-13

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus and direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.

  5. Innovations in Nuclear Infrastructure and Education

    International Nuclear Information System (INIS)

    Bernard, John

    2010-01-01

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus and direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.

  6. Building safeguards infrastructure

    International Nuclear Information System (INIS)

    McClelland-Kerr, J.; Stevens, J.

    2010-01-01

    Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the clean and safe growth of nuclear power, and the infrastructure that supports these three areas should be robust. The focus of this paper will be on the development of the infrastructure necessary to support safeguards, and the integration of safeguards infrastructure with other elements critical to ensuring nuclear energy security

  7. The role of R and D in the nuclear infrastructure

    International Nuclear Information System (INIS)

    Boulton, J.

    1986-04-01

    A solid R and D base is an essential component of the nuclear infrastructure, particularly so when a significant degree of self-sufficiency in the nuclear power program is expected. The R and D base can be formed in a number of ways, as centres of excellence in academic institutions, in industrial or utility associations or in national institutions but, as a minimum, a national nuclear research and development laboratory should be in place. The role played by the R and D organizations is a broad one. Some aspects which will be discussed are: (a) to provide a training ground for the scientists and engineers required in an expanding nuclear program, bridging the gap from the academic world of the universities to the industrialized environment, (b) to provide the expertise necessary, at least initially, to adequately receive and absorb the technology which will have to be transferred during the early stages of development of the nuclear power program; this is particularly important for fuel cycle technology, (c) to provide ongoing support during the construction and operation of the nuclear power plants, (d) to establish credibility and seek acceptance in the world-wide research and development community so that the nation can keep abreast with ongoing technological development. (author)

  8. The bomb as option. Motivation for the development of a nuclear infrastructure in the Federal Republic of Germany until 1963; Die Bombe als Option. Motive fuer den Aufbau einer atomtechnischen Infrastruktur in der Bundesrepublik bis 1963

    Energy Technology Data Exchange (ETDEWEB)

    Hanel, Tilmann

    2015-07-01

    The book on the motivation for the development of a nuclear infrastructure in the Federal Republic of Germany until 1963 discusses the following issues: History of the German reactor development during the time of the National Socialism and World War II, reactor research abroad (examples Sweden and Switzerland), protagonists and motivation (politics, science, economy, army), the development of a nuclear infrastructure, results and consequences of the German nuclear policy until 1963.

  9. Education and Training of Safety Regulation for Nuclear Safety Infrastructure: Its Necessity and Unique Features

    International Nuclear Information System (INIS)

    Choi, Young Sung; Choi, Young Joon; Lee, Jae Cheon

    2009-01-01

    Faced with global warming and electricity demands, countries over the world recognize the comparative advantages of nuclear energy. It is estimated that about 300 nuclear power plants (NPPs) expect to be constructed until 2030 worldwide. In addition, according to the IAEA, approximately 20 new countries might have their first NPP in operation by 2030 in the high projection compared with bout 5 new countries in the low projection. When introducing nuclear power, the implementation of an appropriate infrastructure to address all of the relevant issues is a central concern of international community. In particular, nuclear power program requires, at an earlier stage than when construction starts, the development of a legal and regulatory framework and training of regulators and safety experts whose combined knowledge adequately covers all areas of nuclear safety and regulation applied at a NPP construction and operation. As an essential component of such human resource development, special attention was paid to the provision of education and training to regulators of which countries plan to introduce NPPs. In term of education theory, safety regulation has some unique features in learning and teaching, which are different from those of nuclear engineering or development. This paper overviews nuclear safety infrastructure, explores the roles of exporting countries, and presents features and components in education of nuclear safety regulation

  10. Applicability of the proposed evaluation method for social infrastructures to nuclear power plants

    International Nuclear Information System (INIS)

    Ichimura, Tomiyasu

    2015-01-01

    This study proposes an evaluation method for social infrastructures, and verifies the applicability of the proposed evaluation method to social infrastructures by applying it to nuclear power plants, which belong to social infrastructures. In the proposed evaluation method for social infrastructures, the authors chose four evaluation viewpoints and proposed common evaluation standards for the evaluation indexes obtained from each viewpoint. By applying this system to the evaluation of nuclear power plants, the evaluation index examples were obtained from the evaluation viewpoints. Furthermore, when the level of the common evaluation standards of the proposed evaluation method was applied to the evaluation of the activities of nuclear power plants based on the regulations, it was confirmed that these activities are at the highest level. Through this application validation, it was clarified that the proposed evaluation method for social infrastructures had certain effectiveness. The four evaluation viewpoints are 'service,' 'environment,' 'action factor,' and 'operation and management.' Part of the application examples to a nuclear power plant are as follows: (1) in the viewpoint of service: the operation rate of the power plant, and operation costs, and (2) in the viewpoint of environment: external influence related to nuclear waste and radioactivity, and external effect related to cooling water. (A.O.)

  11. Techniques to eliminate nuclear weapons testing infrastructure at former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Erofeev, I.E.; Kovalev, V.V.

    2003-01-01

    It was at the former Semipalatinsk Test Site where for the first time in the world the nuclear weapons testing infrastructure elimination was put into practice. Fundamentally new procedures for blasting operations have been developed by specialists of the Kazakh State Research and Production Center of Blasting Operations (KSCBO), National Nuclear Center of the Republic of Kazakhstan (NNC) and Degelen Enterprise to enhance reliability and provide safety during elimination of various objects and performance of large-scale experiments. (author)

  12. Opening Remarks [Technical Meeting/Workshop on Topical Issues on Infrastructure Development: Managing the Development of a National Infrastructure for Nuclear Power Plants, Vienna (Austria), 24-27 January 2012

    International Nuclear Information System (INIS)

    Flory, D.

    2012-01-01

    , at the 55th Agency's General Conference, our 151 Member States endorsed unanimously the IAEA Nuclear Safety Action Plan. The Action Plan is not just for the 2000 or so IAEA staff, it is aimed at the global nuclear community. That means Member States, International organizations, it also means YOU. The Action Plan will strengthen the global nuclear safety framework only with the commitment of all stakeholders. This is particularly true and important for nuclear safety in all States that already have or that are embarking on a nuclear power programme. One of the twelve actions of the IAEA Action Plan on Nuclear Safety is about how to strengthen and maintain capacity building, for Member States with nuclear power programmes, and for newcomers. Another Action is devoted to facilitating the development of the infrastructure necessary for Member States embarking on nuclear power programmes. This is typically a new opportunity to ensure that the relevant lessons from Fukushima Daiichi are properly addressed in our capacity building and infrastructure development activities. It also directs us to further strengthen and promote the use of the Agency Peer review services. The IAEA peer review missions are at the very heart of the Action Plan. I have in mind those oriented towards regulators, safe design, siting and operation of NPPs or Emergency Preparedness and Response. But I also mean the Integrated Nuclear Infrastructure Review missions. In this respect, Fukushima had also additional 'collateral benefits'. Alexander and myself, when we arrived in the Agency, not so long ago, we were unhappy with poor cooperation between our Departments and we decided to organise a joint seminar towards of March. It never happened, but we no longer need it. We have worked together for so many months, and we know that you cannot separate safety and technology.

  13. Idaho National Laboratory Ten-year Site Plan (2012 through 2021) -- DOE-NE's National Nuclear Capability -- Developing and Maintaining the INL Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Cal Ozaki

    2010-06-01

    To meet long-term objectives to transform the Idaho National Laboratory (INL), we are providing an integrated, long-term vision of infrastructure requirements that support research, development and demonstration (RD&D) goals outlined in the DOE strategic plans, including the NE Roadmap and reports such as Facilities for the Future of Nuclear Energy Research: A Twenty-year Outlook. The goal of the INL Ten-year Site Plan (TYSP) is to clearly link RD&D mission goals and INL core capabilities with infrastructure requirements (single and multi-program), establish the 10-year end-state vision for INL complexes, identify and prioritize infrastructure and capability gaps, as well as the most efficient and economic approaches to closing those gaps.

  14. Towards sustainable nuclear power development

    International Nuclear Information System (INIS)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S.

    2014-01-01

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  15. Towards sustainable nuclear power development

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S. [Obninsk Institute for Nuclear Power Engineering of NNRU MEPhl, Obninsk, Kaluga Region (Russian Federation)

    2014-05-15

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  16. Nuclear data applications in developing countries

    International Nuclear Information System (INIS)

    Mehta, M.K.; Schmidt, J.J.

    1985-01-01

    The peaceful applications of nuclear science and technology currently receive an increasing attention in many developing countries. More than 15 developing countries operate, construct or plan nuclear power reactors, 70 developing countries are using or planning to use nuclear techniques in medicine, agriculture, industry, and for other vital purposes. The generation, application and computer processing of nuclear data constitute important elements of the nuclear infrastructure needed for the successful implementation of nuclear science and technology. Developing countries become increasingly aware of this need, and, with the help and cooperation of the IAEA Nuclear Data Section, are steadily gaining in experience in this field. The paper illustrates this development in typical examples. (orig.)

  17. 6. The Global Infrastructure Development Sector

    OpenAIRE

    2017-01-01

    Studies of global infrastructure development often omit a perspective on the infrastructure development industry itself. Infrastructure development is the industry that turns infrastructure ideas into physical reality — contractors, engineering firms, hardware suppliers, and so on. Consequently, market penetration, cost functions, scale and scope economies, and other competitive variables that characterize infrastructure development have a direct effect on its economics. Vibrant competition a...

  18. Development of Reference Training Courses for the Countries Introducing Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eui-Jin; Han, Kyong-Won; Min, Byung-Joo; Nam, Young-Mi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Human resources development is an important issue for the countries introducing their first nuclear power plant. Countries, which are considering introducing the nuclear power programs, will have to establish their infrastructure required for such programs. Since Korea has successfully achieved her self-reliance in nuclear power technology over the last 3 decades with a rapid expansion of nuclear power program, most of the countries have been interested in the Korean experience on human resources development and also hoped to share the experiences on nuclear training and education. The purpose of this paper is to present reference training courses developed at KAERI which can be shared with countries that need an infrastructure development for nuclear power.

  19. Developing new methodology for nuclear power plants vulnerability assessment

    International Nuclear Information System (INIS)

    Kostadinov, Venceslav

    2011-01-01

    new methodology and solution methods for vulnerability assessment can help the overall national energy sector to identify and understand the terrorist threats to and vulnerabilities of its critical infrastructure. Moreover, adopted methodology could help national regulators and agencies to develop and implement a vulnerability awareness and education programs for their critical assets to enhance the security and a safe operation of the entire energy infrastructure. New methods can also assist nuclear power plants to develop, validate, and disseminate assessment and surveys of new efficient countermeasures. Consequently, concise description of developed new quantitative method and adapted new methodology for nuclear regulatory vulnerability assessment of nuclear power plants are presented.

  20. Implementation status of the extreme light infrastructure - nuclear physics (ELI-NP) project

    Energy Technology Data Exchange (ETDEWEB)

    Gales, S., E-mail: sydney.gales@eli-np.ro; Zamfir, N. V., E-mail: sydney.gales@eli-np.ro [ELI-NP, Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Bucharest-Magurele (Romania)

    2015-02-24

    The Project Extreme Light Infrastructure (ELI) is part of the European Strategic Forum for Research Infrastructures (ESFRI) Roadmap. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  1. Nuclear power in the developing world

    International Nuclear Information System (INIS)

    Sokolov, Y.

    2005-01-01

    Current trends in the interest in nuclear power development confirm important changes in opinions around the world about nuclear power's future. Much of the expansion of nuclear power in the sustainable development scenarios takes place in developing countries. For these countries to introduce nuclear power, they need to pass through three main steps: energy planning, infrastructure development and then deployment. The paper gives an overview of the IAEA's activity in this area. In order to meeting the energy needs of developed and developing countries, developing a global vision for nuclear energy, assessing and clarifying the afford ability and acceptability requirements for large-scale nuclear energy use in the 21st century in both developed and developed countries, facilitating international cooperation in developing different types of new generation nuclear energy systems which meet these requirement, and facilitating international discussions aimed at establishing enhanced institutional system acceptable to both developed and developing countries

  2. Rosatom Comprehensive Approach to Support Global Nuclear Development

    International Nuclear Information System (INIS)

    Artisiuk, V.V.

    2017-01-01

    Challenges in Human Resources Management for Sustainable Nuclear Power Generation: •Lack of competence in embarking states •Aging of nuclear workforce in nuclear developed countries •Language barrier in knowledge transfer form vendor to recipient countries •Multicultural environment in knowledge transfer •Large number of safety related jobs needed in embarking states •New area of knowledge transfer – nuclear infrastructure development

  3. Network computing infrastructure to share tools and data in global nuclear energy partnership

    International Nuclear Information System (INIS)

    Kim, Guehee; Suzuki, Yoshio; Teshima, Naoya

    2010-01-01

    CCSE/JAEA (Center for Computational Science and e-Systems/Japan Atomic Energy Agency) integrated a prototype system of a network computing infrastructure for sharing tools and data to support the U.S. and Japan collaboration in GNEP (Global Nuclear Energy Partnership). We focused on three technical issues to apply our information process infrastructure, which are accessibility, security, and usability. In designing the prototype system, we integrated and improved both network and Web technologies. For the accessibility issue, we adopted SSL-VPN (Security Socket Layer - Virtual Private Network) technology for the access beyond firewalls. For the security issue, we developed an authentication gateway based on the PKI (Public Key Infrastructure) authentication mechanism to strengthen the security. Also, we set fine access control policy to shared tools and data and used shared key based encryption method to protect tools and data against leakage to third parties. For the usability issue, we chose Web browsers as user interface and developed Web application to provide functions to support sharing tools and data. By using WebDAV (Web-based Distributed Authoring and Versioning) function, users can manipulate shared tools and data through the Windows-like folder environment. We implemented the prototype system in Grid infrastructure for atomic energy research: AEGIS (Atomic Energy Grid Infrastructure) developed by CCSE/JAEA. The prototype system was applied for the trial use in the first period of GNEP. (author)

  4. Research Devices Maintenance Programs and Safety Network Infrastructures in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Zainudin Jaafar; Muhammad Zahidee Taat; Ishak Mansor

    2015-01-01

    Instrumentation and Automation Center (PIA) is responsible in carrying out maintenance work for building safety infrastructure and area for nuclear scientific and research work. Care cycle and nuclear scientific tools starting from the preparation of specifications until devices disposal- to get the maximum output from devices therefore PIA has introduced Effective and Comprehensive Maintenance Plan under Management/ Trust/ Development/ Science Fund budgets and also user, Asset Management, caring and handling of the devices. This paper also discussed more on case study related to using and handling so that it can be guidance and standard when its involving mishandling, improper maintenance, inadequacy of supervision and others including improvement suggestion programs. (author)

  5. Mission Report on the Integrated Nuclear Infrastructure Review (INIR), 18-29 June 2012, Minsk, Republic of Belarus. Counterpart: Ministry of Energy

    International Nuclear Information System (INIS)

    2013-01-01

    In a letter dated 23 November 2011, the Permanent Mission of the Republic of Belarus to the International Organizations in Vienna requested the IAEA to carry out an Integrated Nuclear Infrastructure Review Mission (INIR). The Republic of Belarus (hereafter Belarus) also provided their self-evaluation report (in Russian and English) entitled: Report on the Assessment of the National Nuclear Infrastructure of the Republic of Belarus. After preparatory activities, the INIR mission was conducted from 18 to 29 June 2012 in Minsk and represents an evaluation of the development status of the infrastructure issues described in the Milestones in the Development of a National Infrastructure for Nuclear Power (Nuclear Energy Series No. NG-G-3.1). The methodology for the evaluation is described in Evaluation of the Status of National Nuclear Infrastructure Development (Nuclear Energy Series No. NG-T-3.2). Given the status of Belarus's programme, the mission covered conditions for both Phases 1 and 2. Belarus began its preparations for nuclear power in the 1980s but stopped after the Chernobyl accident. In July 2006, after strategic energy planning activities, Belarus decided to again consider the possibility of introducing nuclear power into the national energy mix. Subsequently on September 17, 2007, The Concept of Energy Security of the Republic of Belarus was approved by the Decree No. 433 of the President and included a plan to commission two nuclear power units with total power capacity of 2000 MWe by 2020. The Resolution of the Security Council of Belarus in 2008 approved the construction. The Law on the Use of Atomic Energy in Belarus was adopted on July 30, 2008 and provides the legal basis for safe nuclear power development. In 2009, the Master Plan of Key Organizational Measures for Construction of Nuclear Power Plant was adopted. The mission team concluded that the Government of Belarus has made a clear commitment to a nuclear power programme, which is important to

  6. Indonesian infrastructure development

    International Nuclear Information System (INIS)

    Djojohadikusumo, H.S.

    1991-01-01

    It is with the achievement of a competitive advantage as a motivating factor that the Indonesian coal industry is engaged in infrastructure development including both small regionally trade-based terminals and high capacity capesize bulk terminals to support large scale coal exports. The unique characteristics of Indonesian coal quality, low production costs and the optimization of transport economics in accordance with vessel size provides great incentives for the European and U.S. market. This paper reports on the infrastructure development, Indonesian coal resources, and coal exports

  7. Progress In Developing An In-Pile Acoustically Telemetered Sensor Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James A.; Garrett, Steven L.; Heibel, Michael D.; Agarwal, Vivek; Heidrich, Brenden J.

    2016-09-01

    A salient grand challenge for a number of Department of Energy programs such as Fuels Cycle Research and Development ( includes Accident Tolerant Fuel research and the Transient Reactor Test Facility Restart experiments), Light Water Sustainability, and Advanced Reactor Technologies is to enhance our fundamental understanding of fuel and materials behavior under irradiation. Robust and accurate in-pile measurements will be instrumental to develop and validate a computationally predictive multi-scale understanding of nuclear fuel and materials. This sensing technology will enable the linking of fundamental micro-structural evolution mechanisms to the macroscopic degradation of fuels and materials. The in situ sensors and measurement systems will monitor local environmental parameters as well as characterize microstructure evolution during irradiation. One of the major road blocks in developing practical robust, and cost effective in-pile sensor systems, are instrument leads. If a wireless telemetry infrastructure can be developed for in-pile use, in-core measurements would become more attractive and effective. Thus to be successful in accomplishing effective in-pile sensing and microstructure characterization an interdisciplinary measurement infrastructure needs to be developed in parallel with key sensing technology. For the discussion in this research, infrastructure is defined as systems, technology, techniques, and algorithms that may be necessary in the delivery of beneficial and robust data from in-pile devices. The architecture of a system’s infrastructure determines how well it operates and how flexible it is to meet future requirements. The limiting path for the effective deployment of the salient sensing technology will not be the sensors themselves but the infrastructure that is necessary to communicate data from in-pile to the outside world in a non-intrusive and reliable manner. This article gives a high level overview of a promising telemetry

  8. Carbon emissions of infrastructure development.

    Science.gov (United States)

    Müller, Daniel B; Liu, Gang; Løvik, Amund N; Modaresi, Roja; Pauliuk, Stefan; Steinhoff, Franciska S; Brattebø, Helge

    2013-10-15

    Identifying strategies for reconciling human development and climate change mitigation requires an adequate understanding of how infrastructures contribute to well-being and greenhouse gas emissions. While direct emissions from infrastructure use are well-known, information about indirect emissions from their construction is highly fragmented. Here, we estimated the carbon footprint of the existing global infrastructure stock in 2008, assuming current technologies, to be 122 (-20/+15) Gt CO2. The average per-capita carbon footprint of infrastructures in industrialized countries (53 (± 6) t CO2) was approximately 5 times larger that that of developing countries (10 (± 1) t CO2). A globalization of Western infrastructure stocks using current technologies would cause approximately 350 Gt CO2 from materials production, which corresponds to about 35-60% of the remaining carbon budget available until 2050 if the average temperature increase is to be limited to 2 °C, and could thus compromise the 2 °C target. A promising but poorly explored mitigation option is to build new settlements using less emissions-intensive materials, for example by urban design; however, this strategy is constrained by a lack of bottom-up data on material stocks in infrastructures. Infrastructure development must be considered in post-Kyoto climate change agreements if developing countries are to participate on a fair basis.

  9. Effects of hypothetical improvised nuclear detonation on the electrical infrastructure

    International Nuclear Information System (INIS)

    Barrett, Christopher L.; Eubank, Stephen; Evrenosoglu, C. Yaman; Marathe, Achla; Marathe, Madhav V.; Phadke, Arun; Thorp, James; Vullikanti, Anil

    2013-01-01

    We study the impacts of a hypothetical improvised nuclear detonation (IND) on the electrical infrastructure and its cascading effects on other urban inter-dependent infrastructures of a major metropolitan area in the US. We synthesize open source information, expert knowledge, commercial software and Google Earth data to derive a realistic electrical transmission and distribution network spanning the region. A dynamic analysis of the geo-located grid is carried out to determine the cause of malfunction of components, and their short-term and long-term effect on the stability of the grid. Finally a detailed estimate of the cost of damage to the major components of the infrastructure is provided.

  10. Effects of hypothetical improvised nuclear detonation on the electrical infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Christopher L.; Eubank, Stephen; Evrenosoglu, C. Yaman; Marathe, Achla; Marathe, Madhav V.; Phadke, Arun; Thorp, James; Vullikanti, Anil [Virginia Tech, Blacksburg, VA (United States). Network Dynamics and Simulation Science Lab.

    2013-07-01

    We study the impacts of a hypothetical improvised nuclear detonation (IND) on the electrical infrastructure and its cascading effects on other urban inter-dependent infrastructures of a major metropolitan area in the US. We synthesize open source information, expert knowledge, commercial software and Google Earth data to derive a realistic electrical transmission and distribution network spanning the region. A dynamic analysis of the geo-located grid is carried out to determine the cause of malfunction of components, and their short-term and long-term effect on the stability of the grid. Finally a detailed estimate of the cost of damage to the major components of the infrastructure is provided.

  11. IAEA Delivers Report on Nuclear Power Development to Belarus Deputy Prime Minister

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: The International Atomic Energy Agency today delivered the final report from an IAEA Integrated Nuclear Infrastructure Review (INIR) mission to Belarus. The report concludes that Belarus has made important progress in its development of nuclear infrastructure for a nuclear power programme and that Belarus is on its way to being well-prepared with its infrastructure to support the construction of a nuclear power plant. The report makes 16 recommendations and 22 specific recommendations to assist the national authorities in preparing the infrastructure necessary for the project. ''Belarus has already implemented some of the recommendations that we shared with them in June, and the Government plans to implement all the remaining ones,'' IAEA Deputy Director General Alexander Bychkov said after delivering the document to Belarusian Deputy Prime Minister Anatoly Tozik. ''This shows that the country is taking the report seriously.'' The main recommendations in the report include to revise Belarusian nuclear legislation to adequately address issues such as radioactive waste and spent fuel management, review the enforcement process, and norms relevant to civil liability for nuclear damage; to strengthen the regulatory body and the regulatory framework for licensing; and to develop comprehensive management systems for the nuclear project. Additionally, specific suggestions were made about its infrastructure development activities based on guidance contained in the publication Milestones in the Development of a National Infrastructure for Nuclear Power. ''The report acknowledges Belarus' strong expertise in radiation protection and environmental monitoring and recognizes that good coordination in the development of Belarus' nuclear power programme is beneficial,'' Bychkov said. Belarus began considering nuclear power in the 1980s and recently renewed its efforts. The Concept of Energy Security of the Republic of Belarus, promulgated in September 2007, called for

  12. Assessment of the human resources infrastructure for nuclear energy program in Macedonia

    International Nuclear Information System (INIS)

    Chaushevski, A.; Spasevska, H.; Nikolova-Poceva, S.; Popov, P.

    2015-01-01

    Macedonia is a country with no nuclear power and research reactors. The nuclear application is currently only in the medical industry, agriculture and food industry, accompanied by radiation measuring and protection activities in these sectors. On the other side the energy needs have been increasing in the last ten years, which resulted in electrical energy import of about 20–30% (around 3000 GWh). Nuclear power is one of the options for satisfying energy needs in the next 50 years. One of the crucial problems in nuclear energy implementation are human resources needs and educational infrastructure development in this field. No matter what will be the future energy scenario in the Republic of Macedonia, the nuclear educational program is the first step to have HR in the field of nuclear energy. This paper presents the proposed direction for having HR in nuclear energy program in a small country such as the Republic of Macedonia. Taking into account the existing national education program related to nuclear topics and in particular to nuclear power, and following the guidance and recommendations from the international nuclear educational programs at the IAEA, EHRO and others, the planning of the educational nuclear programs and human resources development in the Republic of Macedonia has been carried out. This includes the enhancing the capabilities of the national regulatory body in the Republic of Macedonia. (authors) Keywords: NEP (Nuclear Energy Program), HR (Human Resources), NEPIO (Nuclear Energy Program Implementation Organization), NRB (Nuclear Regulatory Body), NPP

  13. Developing National Capacity to Initiate Nuclear Power Programme

    International Nuclear Information System (INIS)

    Ndontchueng, M.M.

    2014-01-01

    Conclusion: ⇒ Nuclear power is needed for Developing Countries in the long term development strategy; ⇒ Developing Countries are lack of man power for both the NPP projects and the long term nuclear power program; ⇒ A long term HRD program (strategy) is needed to be established, in cooperation with Developed countries; ⇒ Education and training abroad is essential to the technology transfer; ⇒ Establishment of adequate infrastructure supporting HRD (nuclear engineering faculties, research groups, technical support centers) is indispensible for Developing Countries

  14. Analysis of economic and infrastructure issues associated with hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Summers, W.A.; Gorensek, M.B.; Danko, E.; Schultz, K.R.; Richards, M.B.; Brown, L.C.

    2004-01-01

    Consideration is being given to the large-scale transition of the world's energy system from one based on carbon fuels to one based on the use of hydrogen as the carrier. This transition is necessitated by the declining resource base of conventional oil and gas, air quality concerns, and the threat of global climate change linked to greenhouse gas emissions. Since hydrogen can be produced from water using non-carbon primary energy sources, it is the ideal sustainable fuel. The options for producing the hydrogen include renewables (e.g. solar and wind), fossil fuels with carbon sequestration, and nuclear energy. A comprehensive study has been initiated to define economically feasible concepts and to determine estimates of efficiency and cost for hydrogen production using next generation nuclear reactors. A unique aspect of the study is the assessment of the integration of a nuclear plant, a hydrogen production process and the broader infrastructure requirements. Hydrogen infrastructure issues directly related to nuclear hydrogen production are being addressed, and the projected cost, value and end-use market for hydrogen will be determined. The infrastructure issues are critical, since the combined cost of storing, transporting, distributing, and retailing the hydrogen product could well exceed the cost of hydrogen production measured at the plant gate. The results are expected to be useful in establishing the potential role that nuclear hydrogen can play in the future hydrogen economy. Approximately half of the three-year study has been completed. Results to date indicate that nuclear produced hydrogen can be competitive with hydrogen produced from natural gas for use at oil refineries or ammonia plants, indicating a potential early market opportunity for large-scale centralized hydrogen production. Extension of the hydrogen infrastructure from these large industrial users to distributed hydrogen users such as refueling stations and fuel cell generators could

  15. Site infrastructure as required during the construction and erection of nuclear power plants

    International Nuclear Information System (INIS)

    Haas, K.F.; Wagner, H.

    1978-01-01

    In general, in an exchange of experience on constructing nuclear power plants priority is given to design and lay-out, financing, quality assurance etc., but in this paper an attempt has been made to describe range and type of site infrastructure required during construction and erection. Site infrastructure will make considerable demands on the planning, supply of material and maintenance that may result from the frequently very isolated location of power plant sites. Examples for specific values and experiences are given for a nuclear power plant with two units on the 1300-MW type at present under construction of the Persian Gulf in Iran. Data concerning the site infrastructure, including examples, are given and explained on the basis of graphs. The site is split up into a technical and a social infrastructure. The main concern of the technical site infrastructure is the timely provision and continuous availability of electric energy, water, communication grids, workshops, warehouses, offices, transport and handling facilities, as well as the provision of heavy load roads, harbour facilities, etc. The social site infrastructure in general comprises accommodation, food supplies and the care and welfare of all site personnel, which includes a hospital, school, self-service shop, and sport and recreation facilities. (author)

  16. Nuclear power for developing countries. Key issue paper no. 1

    International Nuclear Information System (INIS)

    Rogner, H.-H.; Khan, A.M.

    2000-01-01

    Is there a rationale for developing countries to adopt nuclear power? This paper explores this rationale and the suitability of nuclear power for developing countries by surveying the prerequisites for and implications of developing a nuclear power program: infrastructure availability, economics and finance, environment, the needs for technology transfer, the regulatory and institutional frameworks required and the awareness of public concerns. (author)

  17. Los Alamos nuclear enterprise resource and infrastructure model (LA-NERIM)

    International Nuclear Information System (INIS)

    Li, Ning; Dale, Crystal; Kern, Kristen; Scott, Sara

    2009-01-01

    In this nascent global 'Nuclear Renaissance', potential shortages of human resources and supply chains have become the top concerns for the policymakers and industry leaders. A number of industry studies have examined the potential supply shortages in qualified labors for specific deployment scenarios, the general shortage in nuclear engineers, and ways to ramp up educational and training pipelines. A Los Alamos National Laboratory team has been developing a nuclear enterprise resource and infrastructure model (LA-NERIM) to provide a dynamic and versatile tool for the systematic study of resource needs and flows. LA-NERIM is built around a stock-and-flow model of the nuclear fuel cycle model using the iThinkTM software, with modules and connections describing all the front-end, reactor operation and back-end processes. It is driven by nuclear power demand growth. We are using LA-NERIM to study the human resource development (HRD) needs for a number of scenarios for US and Russia. The US study includes a comparison of three scenarios of maintaining current capacity, expansion at 500 MWe/yr and maintaining current market share. We are also examining the impact of the sharply peaked demographics of the ageing US nuclear workforce on future growth. LA-NERIM can be modularized with more detailed labor categories and customer defined boundary conditions to provide high fidelity projection of dynamic staffing needs for nuclear vendors, owner/operators and suppliers. With different kinds of inputs, LA-NERIM can be used to project needs of other resources, such as concrete, steels, capital outlays and manufacturing capacities. Coupled with data from NFCSim, another Los Alamos code that calculates the quantities and isotopic compositions in the flows of nuclear materials throughout the fuel cycles, LA-NERIM has the potential to become a powerful and versatile system tool for policymakers and industry leaders to examine and compare the feasibilities and impacts of various

  18. Challenges in Strengthening Regulatory Infrastructure in a Non-Nuclear Country

    International Nuclear Information System (INIS)

    Bosnjak, J.

    2016-01-01

    The State Regulatory Agency for Radiation and Nuclear Safety (SRARNS) is established as the effectively independent regulatory body for radiation and nuclear safety based on the Law on Radiation and Nuclear Safety in Bosnia and Herzegovina promulgated in November 2007. After its complete reorganization in the last few years, the regulatory system is compatible with relevant IAEA Safety Standards and Guides for safety and security of radioactive sources. The paper gives an overview of the new regulatory framework in Bosnia and Herzegovina, with special focus on challenges faced by Bosnia and Herzegovina, which are actually typical challenges for regulator in small non-nuclear country in strengthening regulatory infrastructure in regulating radiation sources and radioactive waste. (author)

  19. Buyer's participation and well developed domestic infrastructure. Keys to successful introduction of nuclear power in a small country

    International Nuclear Information System (INIS)

    Numminen, K.; Laine, P.

    1983-01-01

    Nuclear power is advantageous for a small country such as Finland which does not possess indigenous fossil fuel. For instance, the cost of imports required by nuclear fuel is essentially smaller than the cost of production of electric energy based on coal or fuel oil. In Finland the advantageousness of nuclear power was already proved in the 1950s but before starting the first power plant project it took 15 years to develop step by step the required infrastructure: building the research institutes and training their staff, creating connections to the international organizations and elsewhere abroad, training Finnish design staff, developing the domestic industry to the high quality required by nuclear power, and establishing the necessary authorities and public administration. Thanks to thorough preparation the implementation of the plant projects progressed at a good pace in the 1970s. The lesson learned from operation of the plants is that in a small country - located far from its main supplier - the staff at the plant and the supporting staff in the power company have to be able to analyse the problems occurring, usually in the conventional equipment, and carry out quick repairs without aid from the main supplier. This requires a high level of educational attainment from the staff and the best way to achieve this is for the staff to participate in the design and construction as much as possible already in the implementation phase. In order to maintain high availability, the capability of the domestic industry must also be good - especially in the fields of mechanical industry and electronics. In Finland over 30% of electric energy was produced in 1981 by four nuclear units. Two of these were built as manifold east-west adjustment work with the Soviet supplier and the other two are of Swedish origin

  20. Study for Action Plan proposal on some issues of the national nuclear infrastructure for the new research reactor project in phase 1&2

    International Nuclear Information System (INIS)

    Cao Hong Lan; Bui Dang Hanh; Nguyen Nhi Dien

    2017-01-01

    The Project on construction for a new research reactor in Vietnam is under preparation. At the same time, it is necessary to prepare a firm and comprehensive national nuclear infrastructure which is aimed to implement smoothly and ensure safety and security for the project. How is the status of the nuclear infrastructure for research reactor project in Vietnam, how can it be assessed, what is the assessment used for and what are we going to do with that? So, all of these things are the goals set out to address in this Task. However, due to time constraints and conformity with requirement of project progress, this Task assessed only 8 critical issues in infrastructure in phase 1&2, including National position; Management; Legislative framework; Regulatory framework; Human resource development; Radioactive waste; Site survey, site selection and evaluation; and Environmental protection. Conditions and criteria in the documents on milestones and assessment of the national nuclear infrastructure to support a new research reactor project of the International Atomic Energy Agency (IAEA) were used as bases for assessing the Vietnam's infrastructure status. The results of the Task are assessment and identification for gaps which need to be addressed and proposing for a plan on completing the national nuclear infrastructure for the research reactor project on 8 issues in stages 1&2. (author)

  1. Human resource development for the new nuclear power plant unit in Armenia

    International Nuclear Information System (INIS)

    Gevorgyan, A.; Galstyan, A.; Donovan, M.

    2008-01-01

    This paper presents a discussion of a study to define the programs for development of the human resource infrastructure needed for a new nuclear power plant unit in the Republic of Armenia. While Armenia has a workforce experienced in operation and regulation of a nuclear power plant (NPP), a significant portion of the current Armenia Nuclear Power Plant (ANPP) workforce is approaching retirement age and will not be available for the new plant. The Government of Armenia is performing a human resource infrastructure study in cooperation with the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), sponsored by the JAEA. The study of Human Resource Development for Armenia uses the INPRO methodology for assessment of human resources. The results of this study will provide the basis for decisions on human resource development programs for nuclear power in Armenia and provide a model for countries with the limited resources that are working to develop nuclear energy in the future. (authors)

  2. Transport infrastructure development in China

    Directory of Open Access Journals (Sweden)

    Bouraima Mouhamed Bayane

    2017-05-01

    Full Text Available This paper reviews the historical configuration process of transportation systems in China and examines the relationship between economic development and transport system at three different levels. The current status of transport infrastructure system development in China is summarized at national and regional level. The investment trends for transport infrastructure in China are also depicted. The keys issues relating to government initiatives are presented.

  3. Future spent nuclear fuel and radioactive waste infrastructure in Norway

    International Nuclear Information System (INIS)

    Soerlie, A.A.

    2002-01-01

    In Norway a Governmental Committee was appointed in 1991 to make an evaluation of the future steps that need to be taken in Norway to find a final solution for the spent nuclear fuel and for some other radioactive waste for which a disposal option does not exist today. The report from the Committee is now undergoing a formal hearing process. Based on the Committees recommendation and comments during the hearing the responsible Ministry will take a decision on future infrastructure in Norway for the spent nuclear fuel. This will be decisive for the future management of spent nuclear fuel and radioactive waste in Norway. (author)

  4. Nuclear program of Iran plans and development

    International Nuclear Information System (INIS)

    2016-01-01

    Described are the history of nuclear energy planning in Iran and the development of the Bushehr Nuclear Power Plant (BNPP-1) project and its impact on the competency building in national companies, nuclear safety infrastructure, training activities, public awareness and acceptance. The activities of Nuclear Engineering Department is also presented. In order to enhance technical support services to BNPP1 and also to use capabilities of other companies in the international arena and in line with safe and reliable operation of Bushehr Nuclear Power Plant, NPPD/TAVANA Company has attempted to make contact with many companies outside the country

  5. MONITORING MECHANISM FOR INVESTMENT DEVELOPMENT OF REGIONS’ INFRASTRUCTURE

    Directory of Open Access Journals (Sweden)

    Halyna Leshuk

    2017-09-01

    Full Text Available The subject of the research is the theoretical and methodological principles of the monitoring mechanism of investment development of regions’ infrastructure. The objectives of the research are the generalization of theoretical and methodological bases of monitoring mechanism of investment development of regions’ infrastructure, as well as analysis of the current trends of investment development of the infrastructure in the regions of Ukraine with the identification of positive and negative trends. Methodology. The article deals with theoretical and methodological approaches to the definition of conceptual foundations of the mechanism of monitoring the investment development of the regions’ infrastructure with the help of general scientific methods of analysis: systematization and generalization, induction, and deduction. Results. It is proposed to interpret a monitor of the investment development of the regional infrastructure (IDRI as a systematic and complex measurement of the indicators of regional infrastructure development, the number of implemented investment projects, monitoring compliance with the developed strategic regional programs and concepts, which will ultimately help to effectively and efficiently regulate the detected deviations and passing the appropriate decisions. The IDRI monitoring mechanism should also provide a possibility of creating a system for collecting and analysing data concerning the assessment of infrastructure objects by the territorial community, which will allow potential investors to focus not only on analytical data on monitoring of regional authorities but also to take into account the public interest in a particular region. The general principles of the monitoring mechanism of investment development of the regions infrastructure are proposed in the following directions: complex and system monitoring and data collection concerning the development of the regions’ infrastructure, while the aggregate

  6. Role of IAEA in introduction of nuclear power in developing countries

    International Nuclear Information System (INIS)

    Skjoeldebrand, R.; Csik, B.J.; Bennett, L.L.; Charpentier, J.P.

    1986-10-01

    The planning of nuclear power programmes in developing countries must be seen as an integral part of a rational and coherent long-term energy and general development policy. Consequently decisions to be taken by a country and the formulation of appropriate development programmes must be based on detailed comparative energy demand and supply analyses, economic optimizations of electricity supply systems, assessments of the infrastructure requirements, identification of possible constraints to nuclear power development in the country, and consideration of its alternatives. Since many years the International Atomic Energy Agency (IAEA) has had a broad programme for assistance in nuclear power planning and implementation in developing countries, and the individual elements of a comprehensive programme have been developed. The IAEA's demand model MAED and generating system optimization model WASP, which have been widely adopted around the world, are basic planning methodologies used in the IAEA's assistance in this field, supplemented by the IAEA's long-standing experience in nuclear power planning and infrastructure development. The IAEA's assistance in infrastructure assessment and development focusses on subjects which are not normally covered in bilateral agreements, i.e., planning activities before bilateral agreements and contracts, pre-contract activities and project supervision and control activities (e.g.: project management and QA). Manpower development work, usually a high priority in developing countries, includes interregional training courses and also the establishment of training nationally under technical co-operation and UNDP projects which increasingly have broader scopes within coherent national manpower development programmes. (author)

  7. Establishing the Safety Infrastructure for NPP in Mongolia

    International Nuclear Information System (INIS)

    Enkhbat, Norov; Lee, Y. E.

    2013-01-01

    The survey results and analyses were used to establish the basis for developing nuclear safety infrastructure in Mongolia. Power Energy effective reform or introduction of nuclear reactors should be implemented in coming future to avoid this critical situation faces us. The most participant suggested that Mongolia may cooperate in the field of nuclear safety and infrastructure development with the Republic of Korea. Nuclear Energy Agency of the government of Mongolia has organized Nuclear Power Infrastructure Development (NUPID) training in cooperating with Seoul National University and other organizations in 2008, 2010 and 2012. There is a need to improve the nuclear energy law of Mongolia. Total energy supply of Mongolia is 5124.08 MWt as of 2012. 92.4% of total energy supply produces with coal, 0.56% with liquid fuel, and 0.01% with renewable energy sources, remained 6% imports from Russia. Mongolia operates seven Thermal Centralized Systems (TCS) with total capacity of 802 MWt, which provides dual; electricity and thermal power. Energy demand in Mongolia is expected to increase, due to the dramatically expanding mining industry. It is absolutely impossible to supply such rapid growth having operated old technology and inefficient production which exists currently in Mongolia. Therefor Mongolian government is interested in utilizing nuclear energy and approved Nuclear Energy Law in 2009. National Development Strategy (2008-2021) stated as that the peaceful exploitation of the nuclear energy will be an important factor for the sustainable development of Magnolia. Action Plan of the Government for 2008-2012 stated as that ...conduct a comprehensive research for use of nuclear energy, develop technical and economic feasibility study and improve radiation control and safety. International community has developed appropriate approaches in the form of IAEA safety standards, which has a positive experience of regulation and safety. These approaches contribute to the

  8. Establishing the Safety Infrastructure for NPP in Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Enkhbat, Norov [Korea Advanced Institue of Science and Technology, Daejeon (Korea, Republic of); Lee, Y. E. [Korean Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    The survey results and analyses were used to establish the basis for developing nuclear safety infrastructure in Mongolia. Power Energy effective reform or introduction of nuclear reactors should be implemented in coming future to avoid this critical situation faces us. The most participant suggested that Mongolia may cooperate in the field of nuclear safety and infrastructure development with the Republic of Korea. Nuclear Energy Agency of the government of Mongolia has organized Nuclear Power Infrastructure Development (NUPID) training in cooperating with Seoul National University and other organizations in 2008, 2010 and 2012. There is a need to improve the nuclear energy law of Mongolia. Total energy supply of Mongolia is 5124.08 MWt as of 2012. 92.4% of total energy supply produces with coal, 0.56% with liquid fuel, and 0.01% with renewable energy sources, remained 6% imports from Russia. Mongolia operates seven Thermal Centralized Systems (TCS) with total capacity of 802 MWt, which provides dual; electricity and thermal power. Energy demand in Mongolia is expected to increase, due to the dramatically expanding mining industry. It is absolutely impossible to supply such rapid growth having operated old technology and inefficient production which exists currently in Mongolia. Therefor Mongolian government is interested in utilizing nuclear energy and approved Nuclear Energy Law in 2009. National Development Strategy (2008-2021) stated as that the peaceful exploitation of the nuclear energy will be an important factor for the sustainable development of Magnolia. Action Plan of the Government for 2008-2012 stated as that ...conduct a comprehensive research for use of nuclear energy, develop technical and economic feasibility study and improve radiation control and safety. International community has developed appropriate approaches in the form of IAEA safety standards, which has a positive experience of regulation and safety. These approaches contribute to the

  9. Nuclear power in developing countries

    International Nuclear Information System (INIS)

    Laue, H.J.; Bennett, L.L.; Skjoeldebrand, R.

    1984-01-01

    Experience clearly indicates that most developing countries actively planning and implementing nuclear power require broad-scope assistance if their use of nuclear technology is to be safe, economic, and reliable. The IAEA's assistance is directed both to general planning, and to the development of supporting structures and is based on an assessment of needs which cannot be satisfied by other means. The Agency's Division of Nuclear Power has the technical background and tools to support a comprehensive programme of assistance in nuclear power assessment, planning, and implementation. The overall objective of such a programme is to help strengthen national capabilities of executing the following tasks: Analysis of overall energy and electricity demand and supply projections; planning the possible role of nuclear power in electricity supply, through determining the economically optimal extent and schedule for the introduction of nuclear power plants; assessing the available infrastructures and the need, constraints, and possibilities for their development; and developing master schedules, programmes, and recommendations for action. Proposed programmes must be reviewed periodically, and one of the Agency's aims is to ensure that national competence to carry out such reviews exists or can be developed. Training of local staff is therefore one of the most important objectives

  10. Nuclear power and sustainable development: a vision from a developing country

    International Nuclear Information System (INIS)

    Sbaffoni, Monica; Harriague, Santiago

    2008-01-01

    From the understanding of sustainable development as 'growing assets and opening options - not foreclosing them' (IAEA, 2006a), an analysis is made on sustainability conditions for nuclear power in a developing country, based on Argentinean experience. The necessity of developing an autonomous decision-making capability and a technological-industrial infrastructure is stressed. As an example, a brief history of nuclear power in Argentina is summarized, focusing in key elements that contributed to sustainability and also pointing out some draw-backs that may have affected it. Finally, some lessons learned are presented, with the aim of sharing the experience and offering a contribution to the present debate on nuclear energy deployment in the periphery. (authors)

  11. Research and development of fusion grid infrastructure based on atomic energy grid infrastructure (AEGIS)

    International Nuclear Information System (INIS)

    Suzuki, Y.; Nakajima, K.; Kushida, N.; Kino, C.; Aoyagi, T.; Nakajima, N.; Iba, K.; Hayashi, N.; Ozeki, T.; Totsuka, T.; Nakanishi, H.; Nagayama, Y.

    2008-01-01

    In collaboration with the Naka Fusion Institute of Japan Atomic Energy Agency (NFI/JAEA) and the National Institute for Fusion Science of National Institute of Natural Science (NIFS/NINS), Center for Computational Science and E-systems of Japan Atomic Energy Agency (CCSE/JAEA) aims at establishing an integrated framework for experiments and analyses in nuclear fusion research based on the atomic energy grid infrastructure (AEGIS). AEGIS has been being developed by CCSE/JAEA aiming at providing the infrastructure that enables atomic energy researchers in remote locations to carry out R and D efficiently and collaboratively through the Internet. Toward establishing the integrated framework, we have been applying AEGIS to pre-existing three systems: experiment system, remote data acquisition system, and integrated analysis system. For the experiment system, the secure remote experiment system with JT-60 has been successfully accomplished. For the remote data acquisition system, it will be possible to equivalently operate experimental data obtained from LHD data acquisition and management system (LABCOM system) and JT-60 Data System. The integrated analysis system has been extended to the system executable in heterogeneous computers among institutes

  12. The Role of Nuclear Power for Sustainable Development: Assessment of Nuclear Power's Contribution to National Economic Development

    International Nuclear Information System (INIS)

    Min, B. J.; Lee, M. K.; Ahn, S. K.

    2008-04-01

    The study begins with a short review of nuclear power development in Korea within the overall reference energy system. It then explores changing circumstances, present energy balances and ultimately the needs underpinning future electricity requirements. The major part of the study uses a model-based approach to analyze and quantify economic linkages between nuclear technologies and other economic sectors, and to assess various techno-economic futures that include nuclear generation for the Korean power sector, exploring for each future scenario the optimal electricity supply mix. The results of the analysis represents that the nuclear industry in the Republic of Korea has already made strong contributions to the growth of the country. It has been an integral part of the country's economic development, evolving from an import- to an export-oriented industry, providing spin-offs to Korean technological innovation as well as to socio-economic development such as infrastructure and education. Furthermore, the study provides some meaningful suggestions and recommendations in order to make sound decisions for sustainable energy policy and strategies, in particular for achieving a balance in nuclear power development and socio-economic development consistent with sustainable energy development goals. In general, these reflect the increasing national (public and private) participation in the nuclear industry. Specifically, the study identifies the nuclear relevant strategies in four dimensions: innovative nuclear technology development, nuclear human resource development and management (HRD and M), investment and financing of the nuclear technology and enhancement of institutional framework

  13. The Korean nuclear ODA policy development

    International Nuclear Information System (INIS)

    Lee, Seung Hyun; Min, Kim Yoo; Park, Young Il

    2012-01-01

    Korean nuclear Official Development Assistance (ODA) is established with support from institutes such as the Korea International Cooperation Agency (KOICA) and the Korea Atomic Energy Research Institute (KAERI). KOICA's grant aid mainly made through the activities including IAEA's training program, and KAERI currently runs the inter-regional education and training cooperation called Asian Network for Education in Nuclear Technology(ANENT) which aimed to achieve the goal of encouraging web based education training network via cooperation with IAEA. Yet now these programs are focusing more on assisting nuclear infrastructure rather than highlighting nuclear education and training. This paper aims to, first, do a self-evaluation about the Korean ODA policy; second, to study the transition of the international nuclear atmosphere; and third, by apprehending the trend of the subjects of Korean nuclear ODA policy, to discuss the overall appropriate trajectory of Korean nuclear ODA

  14. Nuclear platform research and development - 2008-09 highlights

    International Nuclear Information System (INIS)

    Sadhankar, R.R.

    2009-08-01

    The Nuclear Platform R and D Program has lead responsibility for the maintenance and further development of the CANDU intellectual property covering the safety, licensing and design basis for nuclear facilities. The Nuclear Platform R and D Program is part of the Research and Technology Operation (RTO) unit of AECL and is managed through the Research and Development division, which has responsibility for maintaining and enhancing the knowledge and technology base. The RTO is also responsible for managing AECL's nuclear facilities and infrastructure (including laboratories and R and D facilities), the nuclear waste management program and other legacy liabilities (e.g., decommissioning) to demonstrate and grow shareholder value. The Nuclear Platform also provides the technology base from which new products and services can be developed to meet customer needs (including ACR and commercial products and services). (author)

  15. The Creation and Development of Innovative Infrastructure in the Danube Countries

    Directory of Open Access Journals (Sweden)

    Liudmila Rosca-Sadurschi

    2014-08-01

    Full Text Available Entrepreneurship development is supported by a developed infrastructure or innovative infrastructure. The purpose of the business infrastructure is to create favorable conditions for its development by providing support in various areas, complete and targeted to businesses. Training system infrastructure provides creation and development of innovation infrastructure objects. Thus, this article will conduct a comparative analysis of the elements of innovation infrastructure and how their development in different countries. Innovation infrastructure elements analyzed are: information infrastructure refers to access to information; Financial infrastructure refers to financial resources; infrastructure, staff training (qualified staff; material and technical infrastructure; infrastructure consulting (expert consultation; marketing infrastructure.

  16. Status of nuclear power in developing countries

    International Nuclear Information System (INIS)

    Laue, H.J.

    1982-01-01

    In the context of the world-wide energy situation and the key position energy plays and will play for the economic and social development of any country, the energy demand situation up to the year 2000 is analysed. As a result, the world-wide energy demand will continue to increase, however, mainly in the developing world. Nuclear power is one of the important component in the energy mix of today and in the future. Status of nuclear power application in developing countries up to the end of the century. Any further growth of the peaceful use of nuclear power in developing countries is closely linked with the following requirements: - qualified manpower, - industrial infrastructure, - energy demand and supply assessments, - high investments, - assurance of supply of nuclear fuel and fuel cycle services, - availability of small and medium power reactors. The possible role of the IAEA in developing countries and international measures to remove some of the limitations for the peaceful use of nuclear energy in developing countries are discussed. (orig.)

  17. A Study on the IAEA Technical Exhibition on Growth and Development during Nuclear Half a Century in Korea

    International Nuclear Information System (INIS)

    Lee, E. J.; Min, B. J.; Han, K. W.; Nam, Y. M.; Joo, Y. C.; Won, J. Y.; Seo, M. W.; Kim, M. R.; Lee, J. K.

    2009-09-01

    The Republic of Korea is holding an exhibition to share the experience and relevant knowledge on the development of nuclear infrastructure including human resources with the IAEA Member States. It is on display at Booth No. 7-9, Ground Floor of Building C, VIC Rotunda for one week from 14 to 18 September 2009. The exhibition, under the theme 'Half a Century of Nuclear Energy Progress', puts emphasis on Korea's experience and knowledge accumulated in the course of implementing nuclear power projects particularly in the development of nuclear infrastructure including human resources through the past half century. The experience and knowledge could serve as an invaluable model to the IAEA Member States that are interested in nuclear power projects. This project covers development of display material for the exhibition as follows; - Development of 6 minute video images titled 'Half a Century of Nuclear Energy Progress' to be presented for the exhibition. - Development of panels titled 'Korean Experience on Nuclear Infrastructure Development', and 'Human Resources Development as Top Priority', - Selection of display materials, i.e., SMART Panel which is recently developed by the KAERI, 4+D Technology for Nuclear Systems Engineering which is developed by the Seoul National University, - Publication of exhibition brochure which explains the development of Korea's nuclear energy, Korea's experience with human resources development, and closer cooperation between Korea and the IAEA, - Publication of the exhibition invitation card

  18. Development of the radioactive waste management infrastructure in Bulgaria - preconditions and challenges

    International Nuclear Information System (INIS)

    Ivanov, A.; Necheva, C.

    2004-01-01

    In Bulgaria there are preconditions for development of an effective system, considering the interdependence between all stages of radioactive waste /RAW/ generation and management. The national infrastructure of RAW management is built up in accordance of the classical triangle principle, i.e. the main responsibilities are of the Regulatory body, waste producers and newly created State Enterprise RAW. The organization of the infrastructure is legislatively established and aims at application of the basic internationally adopted principles of radioactive waste management. The national policy is directed towards spent fuel and radioactive waste management in a safe, economic, comprehensive and integrated approach, where the historical aspect and contemporary trends, the country's scientific, technical and financial resources are considered, and the responsibilities of the state and of the nuclear facilities operators are clearly defined. The strategic purposes of the policy and the measures for their achievement are formulated in the National Strategy on Safe Management of Spent Fuel and Radioactive Waste. The tendency is a joint national system for management of spent fuel and radioactive waste from nuclear power production and nuclear applications to be established. Decisions for storage of high level waste from spent fuel reprocessing, as well as of spent fuel, are considered in long-term perspective and possibilities at regional level are analyzed as well. The safe and effective RAW management is a precondition for the sustainable development of the Bulgarian nuclear program, including decommissioning of units 1 and 2 of Kozloduy NPP, completion of the Belene NPP construction, and use of the benefits offered by the radiation technologies. The main challenges are connected with: Establishment of a new RAW classification and of clearance levels; Encouraging the re-use and/or recycling of radioactive materials, equipment and buildings, within the framework of the

  19. Development of Strategic Technology Road map for Establishing Safety Infrastructure of Fusion Energy

    International Nuclear Information System (INIS)

    Han, B. S.; Cho, S. H.; Kam, S. C.; Kim, K. T.

    2009-01-01

    The Korean Government established an 'Act for the Promotion of Fusion Energy Development (APFED)' and formulated a 'Strategy Promotion Plan for Fusion Energy Development.' KINS has carried out a safety review of KSTAR (Korea Superconducting Tokamak Advanced Research), for which an application for use was received in 2002 and the license was issued in August 2007. With respect to the APFED, 'Atomic Energy Acts (AEAs)' shall apply in the fusion safety regulation. However the AEAs are not applicable because they aim for dealing with nuclear energy. In this regard, this study was planned to establish safety infrastructure for fusion energy and to develop technologies necessary for verifying the safety. The purpose of this study is to develop a 'Strategic Technology Roadmap (STR) for establishing safety infrastructure of the fusion energy', which displays the content and development schedule and strategy for developing the laws, safety goals and principles, and safety standards applicable for fusion safety regulation, and core technology required for safety regulation of fusion facilities

  20. Infrastructure development for ASEAN economic integration

    OpenAIRE

    Bhattacharyay, Biswa Nath

    2009-01-01

    With a population of 600 million, ASEAN is considered to be one of the most diverse regions in the world. It is also one of the world's fastest growing regions. ASEAN's aim is to evolve into an integrated economic community by 2015. Crucial to achieving this ambitious target is cooperation in infrastructure development for physical connectivity, particularly in cross-border infrastructure. This paper provides an overview of the quantity and quality of existing infrastructure in ASEAN member c...

  1. Infrastructure and Economic Development in Sub-Saharan Africa

    OpenAIRE

    Calderón, César; Servén, Luis

    2008-01-01

    An adequate supply of infrastructure services has long been viewed by both academics and policy makers as a key ingredient for economic development. Sub-Saharan Africa ranks consistently at the bottom of all developing regions in terms of infrastructure performance, and an increasing number of observers point to deficient infrastructure as a major obstacle for growth and poverty reduction ...

  2. Development of a public health nursing data infrastructure.

    Science.gov (United States)

    Monsen, Karen A; Bekemeier, Betty; P Newhouse, Robin; Scutchfield, F Douglas

    2012-01-01

    An invited group of national public health nursing (PHN) scholars, practitioners, policymakers, and other stakeholders met in October 2010 identifying a critical need for a national PHN data infrastructure to support PHN research. This article summarizes the strengths, limitations, and gaps specific to PHN data and proposes a research agenda for development of a PHN data infrastructure. Future implications are suggested, such as issues related to the development of the proposed PHN data infrastructure and future research possibilities enabled by the infrastructure. Such a data infrastructure has potential to improve accountability and measurement, to demonstrate the value of PHN services, and to improve population health. © 2012 Wiley Periodicals, Inc.

  3. Developing a grid infrastructure in Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Aldama, D.; Dominguez, M.; Ricardo, H.; Gonzalez, A.; Nolasco, E.; Fernandez, E.; Fernandez, M.; Sanchez, M.; Suarez, F.; Nodarse, F.; Moreno, N.; Aguilera, L.

    2007-07-01

    A grid infrastructure was deployed at Centro de Gestion de la Informacion y Desarrollo de la Energia (CUBAENERGIA) in the frame of EELA project and of a national initiative for developing a Cuban Network for Science. A stand-alone model was adopted to overcome connectivity limitations. The e-infrastructure is based on gLite-3.0 middleware and is fully compatible with EELA-infrastructure. Afterwards, the work was focused on grid applications. The application GATE was deployed from the early beginning for biomedical users. Further, two applications were deployed on the local grid infrastructure: MOODLE for e-learning and AERMOD for assessment of local dispersion of atmospheric pollutants. Additionally, our local grid infrastructure was made interoperable with a Java based distributed system for bioinformatics calculations. This experience could be considered as a suitable approach for national networks with weak Internet connections. (Author)

  4. The Creation and Development of Innovative Infrastructure in the Danube Countries

    OpenAIRE

    Liudmila Rosca-Sadurschi

    2014-01-01

    Entrepreneurship development is supported by a developed infrastructure or innovative infrastructure. The purpose of the business infrastructure is to create favorable conditions for its development by providing support in various areas, complete and targeted to businesses. Training system infrastructure provides creation and development of innovation infrastructure objects. Thus, this article will conduct a comparative analysis of the elements of innovation infrastructure and how...

  5. Planning and development of the Spanish nuclear power programme

    International Nuclear Information System (INIS)

    Lopez-Rodriguez, M.

    1983-01-01

    The paper analyses the Spanish nuclear power programme from its inception to the present time, doing so within the context of the country, characterized by the fairly rapid change from a basically agricultural economy to an economy in which industry and services play an important part and the transformation of which took place mainly during the decade prior to the energy crisis 1973. Reference is made to the early establishment of the Junta de Energia Nuclear (Nuclear Energy Board) (JEN), which was set up as a research body even before nuclear energy became competitive with other sources for the production of electric power and which, by adapting its structure and programmes to the different phases in the development and utilization of nuclear energy in the country, contributed the necessary scientific, technical and legal infrastructure. There is also an analysis of the most striking features of the Spanish energy system and an account of the planning and construction of the first three Spanish nuclear power stations. A further subject of discussion is the energy planning and development projects devised by the Government which gave rise to the second generation of nuclear power plants, some of which are already in operation and the remainder in an advanced state of construction. Emphasis is placed on the action taken by the Spanish Government to increase the participation of Spanish industry in the construction of nuclear power plants and in the supply of equipment and services required for their operation. Reference is made to the experimental changes which have been made in the institutional infrastructure in order to adapt it to the phase of development which has been reached and to the objectives subsequently laid down in the planning: establishment of ENUSA (the national uranium enterprise), the Equipos Nucleares corporation and the Nuclear Safety Council, and also the changes made in the JEN

  6. Collaborative development of Estonian nuclear master's program

    Energy Technology Data Exchange (ETDEWEB)

    Tkaczyk, A. H.; Kikas, A.; Realo, E.; Kirm, M.; Kiisk, M.; Isakar, K.; Suursoo, S.; Koch, R.; Feldbach, E.; Lushchik, A.; Reivelt, K. [Inst. of Physics, Univ. of Tartu, Riia 142, Tartu 51014 (Estonia)

    2012-07-01

    In 2009 Estonia approved the National Development Plan for the Energy Sector, including the nuclear energy option. This can be realized by construction of a nuclear power plant (NPP) in Estonia or by participation in neighboring nuclear projects (e.g., Lithuania and/or Finland). Either option requires the availability of competent personnel. It is necessary to prepare specialists with expertise in all aspects related to nuclear infrastructure and to meet workforce needs (e.g. energy enterprises, public agencies, municipalities). Estonia's leading institutions of higher education and research with the support of the European Social Fund have announced in this context a new nuclear master's curriculum to be developed. The language of instruction will be English. (authors)

  7. IAEA news: • Newcomer countries face common challenges in nuclear infrastructure development. • Safety and licensing requirements for small modular reactors: IAEA hosts first workshop for regulators. • IAEA reaches milestone in disposal of radioactive sources

    International Nuclear Information System (INIS)

    Kollar, Lenka; Dyck, Elisabeth; Dixit, Aabha; Gaspar, Miklos; Gil, Laura

    2016-01-01

    • Newcomer countries face common challenges in nuclear infrastructure development: Countries embarking on a nuclear power programme need to make sure that the development of their legal, regulatory and support infrastructure keeps pace with the construction of the power plant itself. This is the only way to ensure that the programme proceeds in a safe, secure and sustainable way, concluded participants of a workshop on nuclear power infrastructure development hosted at the IAEA last February. • Safety and licensing requirements for small modular reactors: IAEA hosts first workshop for regulators: A new generation of advanced, prefab nuclear power reactors called small modular reactors (SMRs) could be licensed and hit the market as early as 2020, and the IAEA is helping regulators prepare for their debut. In a series of workshops that began earlier this year, the IAEA is working closely with regulators on approaches to safety and licensing ahead of potential SMR deployment worldwide. • IAEA reaches milestone in disposal of radioactive sources: Successful tests of a promising technology for moving and storing low level radioactive sealed sources are paving the way for a new disposal method for dealing with small volumes of radioactive waste around the world. The method, which involves placing and covering sealed sources in a narrow hole a few hundred metres deep, would allow countries to safely and securely take charge of their own disused radioactive sources. The proof of concept for the technology was tested in Croatia late last year — without the use of actual radioactive material.

  8. Infrastructure development to support the hydrocarbon industry

    International Nuclear Information System (INIS)

    Mack, T.

    1993-01-01

    Tengiz and Jubail represent areas in which the exploitation of oil and gas resources have, and are, providing enormous opportunities for regional development. Each has required a vision of the future and an understanding that infrastructure input is very broadly defined. Tengiz and Jubail are extreme examples. There are probably no cases in the Americas that will exactly mirror these. But opportunities for oil and gas development here may share some of these projects characteristics - extraction from remote areas, challenging transportatoin needs, and perhaps most importantly, opportunities for related industrial and economic development. Just as Jubail's master plan was part of a larger Saudi vision, oil and gas infrastructure planning can support Latin and North American countries individual visions of their nation's future. Where regional economic integration and interaction is increasing, there are even greater opportunities for good infrastructure planning. In some cases, such economic integration will provide the key which will unlock oil and gas development. Once these keys are provided - be it through the intangible innovations of creative project finance or tangible links through roadways, pipeline and rail - the opening will provide real chances to develop the infrastructure of the entire region

  9. NUCLEAR 2010 international conference on sustainable development through nuclear research and education.Part 2/2

    International Nuclear Information System (INIS)

    Turcu, Ilie

    2010-01-01

    The Proceedings of the 'NUCLEAR 2010 international conference on sustainable development through nuclear research and education' held at INR-Pitesti on May, 26 - 28 2010 contain communications published in two parts. The second part contains 34 talks adressing themes of nuclear energy, in the following three sections: Section 2.1 - Radioactive waste management (13 papers); Section 2.2 and 3 - Radioprotection and air, water and soil protection (12 papers); Section 3.1 - Strategies in energy (3 papers); Section 3.2 - Education, continuous formation, and knowledge transfer (1 paper); Section 3. - International Partnership for a sustainable development (2 papers); Section 3.4 - Research infrastructure (3 papers)

  10. Infrastructure development for radioactive materials at the NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Sprouster, D. J.; Weidner, R.; Ghose, S. K.; Dooryhee, E.; Novakowski, T. J.; Stan, T.; Wells, P.; Almirall, N.; Odette, G. R.; Ecker, L. E.

    2018-02-01

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this article, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilities at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. We describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.

  11. Human Resources Development for Jordan’s Nuclear Energy Programme

    International Nuclear Information System (INIS)

    Malkawi, Salaheddin; Amawi, Dala’

    2014-01-01

    Jordan's HRD strategy: • Utilize Jordan’s academic infrastructure: – 25 Universities (10 public & 15 private); – 35 Community Colleges (15 public & 20 private). • Build on existing programmes and establish new ones to support Nuclear Energy Programme. • Nuclear Education in Jordan: – B. Sc. Nuclear Engineering at Jordan University of Science & Technology (JUST); – M. Sc. Nuclear Physics at University of Jordan, Yarmouk University and Al-Balqa Applied University. • Scholarships for M. Sc. and Ph. D in Nuclear Engineering and Nuclear Science from Universities outside Jordan: – United States, Russia, France, Japan, China, Korea. Utilization of JSA and JRTR; • Vendor supplied training; • Support through Nuclear Cooperation Agreements; • IAEA Technical Cooperation; • Development of a Jordan-Specific Qualification and Certification Programmes; • Specialized Training in International Codes & Standards: – Transition to JNRC Developed/Adopted Standards, Codes, Regulations

  12. The practical problems and issues pertaining to nuclear energy in less-developed countries

    International Nuclear Information System (INIS)

    Kemeny, L.

    1984-01-01

    The subject is covered in sections, entitled; introduction; role of the International Atomic Energy Agency; infrastructure and training; fuel cycle supply; safety and safeguards; developing countries in the nuclear future; a role for Australia; some national programmes; nuclear power costs in developing countries; specialized technologies; conclusions -ethical and societal considerations. (U.K.)

  13. Development perspectives of nuclear energy in Morocco

    International Nuclear Information System (INIS)

    Mekki-Berrada, A.

    1987-01-01

    Morocco is on the way to developing and gaining access to advanced technologies which will allow it to take good advantage of its natural resources. Most of the fuels necessary for electricity production have to be imported. Nuclear energy appears a better alternative to imported oil or coal, mainly due to kWh price competitivness, great potential of uranium in phosphates and to the limitations placed on the coal option by harbour and transport infrastructure. The first nuclear power plant is planned to go into operation in the year 2000

  14. Policy Model of Sustainable Infrastructure Development (Case Study : Bandarlampung City, Indonesia)

    Science.gov (United States)

    Persada, C.; Sitorus, S. R. P.; Marimin; Djakapermana, R. D.

    2018-03-01

    Infrastructure development does not only affect the economic aspect, but also social and environmental, those are the main dimensions of sustainable development. Many aspects and actors involved in urban infrastructure development requires a comprehensive and integrated policy towards sustainability. Therefore, it is necessary to formulate an infrastructure development policy that considers various dimensions of sustainable development. The main objective of this research is to formulate policy of sustainable infrastructure development. In this research, urban infrastructure covers transportation, water systems (drinking water, storm water, wastewater), green open spaces and solid waste. This research was conducted in Bandarlampung City. This study use a comprehensive modeling, namely the Multi Dimensional Scaling (MDS) with Rapid Appraisal of Infrastructure (Rapinfra), it uses of Analytic Network Process (ANP) and it uses system dynamics model. The findings of the MDS analysis showed that the status of Bandarlampung City infrastructure sustainability is less sustainable. The ANP analysis produces 8 main indicators of the most influential in the development of sustainable infrastructure. The system dynamics model offered 4 scenarios of sustainable urban infrastructure policy model. The best scenario was implemented into 3 policies consist of: the integrated infrastructure management, the population control, and the local economy development.

  15. Development of the nuclear safety infrastructure in Lithuania

    International Nuclear Information System (INIS)

    Vilemas, J.

    1999-01-01

    After Lithuania took over the electric power plant, it had to form ties with Western specialists while not breaking off ties with Russian institutions; form a nucleus from known Lithuanian energy professionals, who, while being occupied only with problem of nuclear security, would become specialists in this area; attract Lithuanian specialists in related fields, acquaint them with the problems of nuclear energy and, where possible, use their skills; begin the preparation of new specialists in this field

  16. Nuclear power for developing countries

    International Nuclear Information System (INIS)

    Kendall, J.; Kupitz, J.; Rogner, H. H.

    2000-01-01

    Nuclear power is a proven technology which currently makes a large contribution to the electricity supply in a number of countries and, to a much less extent, to heat supply in some countries. Nuclear power is economically competitive with fossil fuels for base load electricity generation in many countries, and is one of the commercially proven energy supply options that could be expanded in the future to reduce environmental burdens, especially greenhouse gas emissions, from the electricity sector. Over the past five decades, nearly ten thousand reactor-years of operating experience have been accumulated with current nuclear power plants. Building upon this background of success and applying lessons learned from the experience of operating plants, new generations of nuclear power plants have been, or are being developed. Improvements incorporated into these advance designs include features that will allow operators more time to perform equipment protection and safety actions in response to equipment failures and other off normal operating conditions, and that will reduce and simplify the actions required. Great attention is also paid to making new plants simpler to operate, inspect, maintain and repair, thus increasing their overall cost efficiency and their compatibility with the infrastructure of developing countries. The paper provides a discussion of future world energy supply and demand projections, current status and prospects for nuclear power, a short summary of advanced reactor concepts and non-electrical applications of nuclear energy for developing countries, and a review of the role of the IAEA. (author)

  17. The IAEA international project on innovative nuclear reactors and fuel cycles (INPRO): study on opportunities and challenges of large-scale nuclear energy development

    International Nuclear Information System (INIS)

    Khoroshev, M.; Subbotin, S.

    2006-01-01

    Existing scenarios for global energy use project that demand will at least double over the next 50 years. Electricity demand is projected to grow even faster. These scenarios suggest that the use of all available generating options, including nuclear energy, will inevitably be required to meet those demands. If nuclear energy is to play a meaningful role in the global energy supply in the foreseeable future, innovative approaches will be required to address concerns about economic competitiveness, environment, safety, waste management, potential proliferation risks and necessary infrastructure. In the event of a renaissance of nuclear energy, adequate infrastructure development will become crucial for Member States considering the future use of nuclear power. The IAEA should be ready to provide assistance in this area. A special resolution was adopted by the General Conference in September 2005 on 'Strengthening the Agency's Activities Related to Nuclear Science, Technology and Applications: Approaches to Supporting Nuclear Power Infrastructure Development'. Previously, in 2000, taking into account future energy scenarios and the needs of Member States, the IAEA General Conference had adopted a resolution initiating the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). Based on scenarios for the next fifty years, INPRO identified requirements for different aspects of future nuclear energy systems, such as economics, environment, safety, waste management, proliferation resistance and infrastructure and developed a methodology to assess innovative nuclear systems and fuel cycles. Using this assessment tool, the need for innovations in nuclear technology can be defined, which can be achieved through research, development and demonstration (RD and D). INPRO developed these requirements during its first stage, Phase 1A, which lasted from 2001 to mid-2003. In the second stage, Phase 1B (first part), INPRO organized 14 case studies (8 by

  18. NGNP Infrastructure Readiness Assessment: Consolidation Report

    International Nuclear Information System (INIS)

    Castle, Brian K.

    2011-01-01

    The Next Generation Nuclear Plant (NGNP) project supports the development, demonstration, and deployment of high temperature gas-cooled reactors (HTGRs). The NGNP project is being reviewed by the Nuclear Energy Advisory Council (NEAC) to provide input to the DOE, who will make a recommendation to the Secretary of Energy, whether or not to continue with Phase 2 of the NGNP project. The NEAC review will be based on, in part, the infrastructure readiness assessment, which is an assessment of industry's current ability to provide specified components for the FOAK NGNP, meet quality assurance requirements, transport components, have the necessary workforce in place, and have the necessary construction capabilities. AREVA and Westinghouse were contracted to perform independent assessments of industry's capabilities because of their experience with nuclear supply chains, which is a result of their experiences with the EPR and AP-1000 reactors. Both vendors produced infrastructure readiness assessment reports that identified key components and categorized these components into three groups based on their ability to be deployed in the FOAK plant. The NGNP project has several programs that are developing key components and capabilities. For these components, the NGNP project have provided input to properly assess the infrastructure readiness for these components.

  19. NGNP Infrastructure Readiness Assessment: Consolidation Report

    Energy Technology Data Exchange (ETDEWEB)

    Brian K Castle

    2011-02-01

    The Next Generation Nuclear Plant (NGNP) project supports the development, demonstration, and deployment of high temperature gas-cooled reactors (HTGRs). The NGNP project is being reviewed by the Nuclear Energy Advisory Council (NEAC) to provide input to the DOE, who will make a recommendation to the Secretary of Energy, whether or not to continue with Phase 2 of the NGNP project. The NEAC review will be based on, in part, the infrastructure readiness assessment, which is an assessment of industry's current ability to provide specified components for the FOAK NGNP, meet quality assurance requirements, transport components, have the necessary workforce in place, and have the necessary construction capabilities. AREVA and Westinghouse were contracted to perform independent assessments of industry's capabilities because of their experience with nuclear supply chains, which is a result of their experiences with the EPR and AP-1000 reactors. Both vendors produced infrastructure readiness assessment reports that identified key components and categorized these components into three groups based on their ability to be deployed in the FOAK plant. The NGNP project has several programs that are developing key components and capabilities. For these components, the NGNP project have provided input to properly assess the infrastructure readiness for these components.

  20. FORMATION AND DEVELOPMENT OF INSTITUTIONS OF EFFICIENCY PRODUCTION INFRASTRUCTURE

    Directory of Open Access Journals (Sweden)

    Anzor H. Jankaziev

    2015-01-01

    Full Text Available The article presents the methodological andmethodical bases of research and development institutes forming effi ciency production infrastructure. Focuses on the organizationalside of the issue as the comparative characteristics. It is proposed allocation of integraland differential approach to assessing the investment attractiveness of the industrial infrastructure of the enterprise. Consideredsectoral, regional, national and internationallevels of development of industrial infrastructure.

  1. MODERNIZATION OF NATIONAL ECONOMY THROUGH DEVELOPMENT OF REGIONAL PRODUCTION INFRASTRUCTURE

    Directory of Open Access Journals (Sweden)

    T. G. Guilyadov

    2011-01-01

    Full Text Available Any region’s economy comprises production and non-production spheres which are interconnected and equivalent. Key part of any regional production sphere is its production infrastructure whose value is double: it defines the level of regional economic development on one hand, andinterrelation with the whole national economy on the other hand. The greatest and most important regional production infrastructure elements are transportation infrastructure, information/communication infrastructure and communal infrastructure. Analysis and solution of issues related to development of the basic regional production infrastructure elements as suggested in the article will be very useful for modernization of the national economy.

  2. The high quality of safety culture is absolutely necessary for the nuclear industry development

    International Nuclear Information System (INIS)

    Amiruddin, A.

    1998-01-01

    Batan as a facilitator in achieving the nuclear programme, has to start to introduce the nuclear science and technology to the publics and announces the nuclear activities results. By this mean time, most of people is still quite sure considering that the use of fossil fuel is better than that of nuclear fuel, even though there will be no other choice ultimately to use nuclear energy. This contradiction appears due to three reasons i.e., public's unbelieveness crisis dealt with less of knowledge of public about nuclear sciences and technology, their confident of nuclear-danger risks and the broadly miss-information sprout by the opposition. The main challenge created from the crisis of the safety culture of human activities. Some points to anticipated those situation are to establish infrastructure, maintain co-operation, links and coordination within points in the infrastructure, also to create the working culture system based on professional development and high quality safety management, and to increase publics information by a birds point approach through regional, cultural, social and political communication. Publics knowledge and understanding will bring about their supports and acceptances to the nuclear programme and its development (Nuclear Power Plant as a particular)

  3. Perspectives for photonuclear research at the Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility

    Energy Technology Data Exchange (ETDEWEB)

    Filipescu, D.; Balabanski, D.L.; Constantin, P.; Gales, S.; Tesileanu, O.; Ur, C.A.; Ursu, I.; Zamfir, N.V. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Bucharest-Magurele (Romania); Anzalone, A.; La Cognata, M.; Spitaleri, C. [INFN-LNS, Catania (Italy); Belyshev, S.S. [Lomonosov Moscow State University, Physics Faculty, Moscow (Russian Federation); Camera, F. [Departement of Physics, University of Milano, Milano (Italy); INFN section of Milano, Milano (Italy); Csige, L.; Krasznahorkay, A. [Hungarian Academy of Sciences (MTA Atomki), Institute of Nuclear Research, Post Office Box 51, Debrecen (Hungary); Cuong, P.V. [Vietnam Academy of Science and Technology, Centre of Nuclear Physics, Institute of Physics, Hanoi (Viet Nam); Cwiok, M.; Dominik, W.; Mazzocchi, C. [University of Warsaw, Warszawa (Poland); Derya, V.; Zilges, A. [University of Cologne, Institute for Nuclear Physics, Cologne (Germany); Gai, M. [University of Connecticut, LNS at Avery Point, Connecticut, Groton (United States); Gheorghe, I. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Bucharest-Magurele (Romania); University of Bucharest, Nuclear Physics Department, Post Office Box MG-11, Bucharest-Magurele (Romania); Ishkhanov, B.S. [Lomonosov Moscow State University, Physics Faculty, Moscow (Russian Federation); Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Kuznetsov, A.A.; Orlin, V.N.; Stopani, K.A.; Varlamov, V.V. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Pietralla, N. [Technische Universitat Darmstadt, Institut fur Kernphysik, Darmstadt (Germany); Sin, M. [University of Bucharest, Nuclear Physics Department, Post Office Box MG-11, Bucharest-Magurele (Romania); Utsunomiya, H. [Konan University, Department of Physics, Kobe (Japan); University of Tokyo, Center for Nuclear Study, Saitama (Japan); Weller, H.R. [Triangle Universities Nuclear Laboratory, North Carolina, Durham (United States); Duke University, Department of Physics, North Carolina, Durham (United States)

    2015-12-15

    The perspectives for photonuclear experiments at the new Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility are discussed in view of the need to accumulate novel and more precise nuclear data. The parameters of the ELI-NP gamma beam system are presented. The emerging experimental program, which will be realized at ELI-NP, is presented. Examples of day-one experiments with the nuclear resonance fluorescence technique, photonuclear reaction measurements, photofission experiments and studies of nuclear collective excitation modes and competition between various decay channels are discussed. The advantages which ELI-NP provides for all these experiments compared to the existing facilities are discussed. (orig.)

  4. Cyber security in nuclear power plants and its portability to other industrial infrastructures

    International Nuclear Information System (INIS)

    Champigny, Sebastien; Gupta, Deeksha; Watson, Venesa; Waedt, Karl

    2017-01-01

    Power generation increasingly relies on decentralised and interconnected computerised systems. Concepts like ''Industrial Internet of Things'' of the Industrial Internet Consortium (IIC), and ''Industry 4.0'' find their way in this strategic industry. Risk of targeted exploits of errors and vulnerabilities increases with complexity, interconnectivity and decentralization. Inherently stringent security requirements and features make nuclear computerised applications and systems a benchmark for industrial counterparts seeking to hedge against those risks. Consequently, this contribution presents usual cyber security regulations and practices for nuclear power plants. It shows how nuclear cyber security can be ported and used in an industrial context to protect critical infrastructures against cyber-attacks and industrial espionage.

  5. Preparation of the Regulatory Infrastructure for the New Nuclear Build

    International Nuclear Information System (INIS)

    Cimesa, Sinisa; Persic, Andreja; Vrankar, Leopold; Stritar, Andrej

    2011-01-01

    Slovenia is seriously considering building a new nuclear power plant. The Slovenian Nuclear Safety Administration (SNSA) is very much aware of the complexity of such a project as well as of the fact that at the moment the SNSA does not have sufficient resources for licensing and overseeing the design, construction and operation of the possible new plant. Likewise, the question arises whether technical support organizations which support SNSA in supervising the existing Krsko nuclear power plant have sufficient capacity. Therefore SNSA established a special project team with the task to prepare the Administration for the possible start of the new nuclear build. In the beginning of 2009, the project team prepared the analysis of licensing process, which is basically an overview of spatial planning, construction and nuclear safety regulation processes. The purpose of the review of the whole process, from spatial planning to the issuance of the operating license, was to identify phases which will require most effort. The next step was to set the strategy for the review process as well as to analyze and establish the basis for resource demands needed for SNSA's and other stakeholders involvements and decision making in the process. This will enable SNSA to establish a qualified and effective infrastructure for a possible new nuclear build. (authors)

  6. Comparative Analysis of the Indian and Pakistani Nuclear Energy Development Programmes

    Directory of Open Access Journals (Sweden)

    A. A. Boyko

    2015-01-01

    Full Text Available Due to the traditional competition between India and Pakistan, their strategic fields developing are interdependent. Nuclear power development programs are concerned as well. Pakistan falls behind India in this branch, however the specifics of the nuclear infrastructure let the potential of the states be relatively balanced. After Nuclear Suppliers Group granted a waiver to India in 2008 and Russia, France and USA, the new participants, broke into the market, India obtained an opportunity to make a breakthrough in the national nuclear program development, thus violating a status quo in fuel cycle technologies. Such chances stimulated China to violate the NSG guidelines and non-proliferations principles to get involved in Pakistani nuclear program development. The nuclear power Indian-Pakistani competition prospects largely depend on the Chinese position. Despite the international community suspects the Pakistani officials in nuclear black market dealing and the NSG guidelines China obviously supports the Pakistani nuclear field. This may result in preventing of escalation of tensions in the region. 

  7. The role of private developers in local infrastructure provision in Malaysia

    Science.gov (United States)

    Salleh, Dani; Okinono, Otega

    2016-08-01

    Globally, the challenge of local infrastructure provision has attracted much debate amongst different nations including Malaysia, on how to achieve an effective and efficient infrastructural management. This approach therefore, has intensified the efforts of local authorities in incorporating private developers in their developmental agenda in attaining a sustainable infrastructural development in local areas. Basically, the knowledge of the need for adequate provision of local infrastructure is well understood by both local and private authorities. Likewise, the divergent opinions on the usage of private delivery services. Notwithstanding the common perception, significant loopholes have been identified on the most appropriate and ideal approach and practices to adopt in enhancing local infrastructure development. The study therefore examined the role of private developers in local infrastructure provision and procedure adopted by both local authorities and the privates sector in local infrastructure development. Data was obtained using the questionnaire through purposive sampling, administered to 22 local authorities and 16 developers which was descriptively analysed. Emanating from the study findings, the most frequently approved practices by local authorities are joint venture and complete public delivery systems. Likewise, negotiation was identified as a vital tool for stimulating the acquisition of local infrastructure provision. It was also discovered the one of the greatest challenge in promoting private sector involvement in local infrastructure development is due to unregulated-procedure. The study therefore recommends, there is need for local authorities to adopt a collective and integrated approach, nevertheless, cognisance and priority should be given to developing a well-structured and systematic process of local infrastructure provision and development.

  8. Development Model for Research Infrastructures

    Science.gov (United States)

    Wächter, Joachim; Hammitzsch, Martin; Kerschke, Dorit; Lauterjung, Jörn

    2015-04-01

    Research infrastructures (RIs) are platforms integrating facilities, resources and services used by the research communities to conduct research and foster innovation. RIs include scientific equipment, e.g., sensor platforms, satellites or other instruments, but also scientific data, sample repositories or archives. E-infrastructures on the other hand provide the technological substratum and middleware to interlink distributed RI components with computing systems and communication networks. The resulting platforms provide the foundation for the design and implementation of RIs and play an increasing role in the advancement and exploitation of knowledge and technology. RIs are regarded as essential to achieve and maintain excellence in research and innovation crucial for the European Research Area (ERA). The implementation of RIs has to be considered as a long-term, complex development process often over a period of 10 or more years. The ongoing construction of Spatial Data Infrastructures (SDIs) provides a good example for the general complexity of infrastructure development processes especially in system-of-systems environments. A set of directives issued by the European Commission provided a framework of guidelines for the implementation processes addressing the relevant content and the encoding of data as well as the standards for service interfaces and the integration of these services into networks. Additionally, a time schedule for the overall construction process has been specified. As a result this process advances with a strong participation of member states and responsible organisations. Today, SDIs provide the operational basis for new digital business processes in both national and local authorities. Currently, the development of integrated RIs in Earth and Environmental Sciences is characterised by the following properties: • A high number of parallel activities on European and national levels with numerous institutes and organisations participating

  9. Launching a nuclear nower programme in a developing country - Technical and Scientific Support Organisations (TSO) in capacity building

    International Nuclear Information System (INIS)

    Ngotho, E.M.

    2010-01-01

    The need for involvement of Technical and Scientific Support Organisations (TSO) in developing countries intending to launch a nuclear power programme (NPP) cannot be overemphasized. In an International Conference on Topical Issues in Nuclear Installation Safety held in 2008, Mumbai, India, I presented a paper entitled 'Launching a Nuclear Power Programme - a third world country's perspective' - IAEA-CN-158/9. I pointed out some real constraints encountered by a developing country while trying to introduce a nuclear power programme. This was inadequate base infrastructure, financial incapability and lack of skilled manpower. Granted there are areas where the role of TSOs is minimal like in carrying the actual cost of infrastructure but their input in areas of technology, evaluation, assessment and skills development cannot be gainsaid. (author)

  10. Potential role of nuclear power in developing and transition economies

    International Nuclear Information System (INIS)

    Ganiage, D.; Dierstein, P.

    1995-01-01

    The potential role of nuclear power is different in developing or in transition economies; in developing countries such as China, the growth of electricity consumption is high and the construction of several standardized plants is economically justified; in transitional economies, such as Ukraine, the needs are uncertain, old and unsafe plants have to be decommissioned and uncompleted nuclear plants (due to financial problems) should be completed. Nuclear power may provide the developing and transition economies with several advantages such as energy independence and fuel supply security, minimal environmental pollution, support to local industry and employment. It also means the support of national authorities and the development of a suitable infrastructure for plant safety and waste management, financial help and local population acceptance

  11. Nuclear science and technology education and training in Indonesia

    International Nuclear Information System (INIS)

    Karsono

    2007-01-01

    Deployment of nuclear technology requires adequate nuclear infrastructure which includes governmental infrastructure, science and technology infrastructure, education and training infrastructure, and industrial infrastructure. Governmental infrastructure in nuclear, i.e. BATAN (the National Nuclear Energy Agency) and BAPETEN (the Nuclear Energy Control Agency), need adequate number of qualified manpower with general and specific knowledge of nuclear. Science and technology infrastructure is mainly contained in the R and D institutes, education and training centers, scientific academies and professional associations, and national industry. The effectiveness of this infrastructure mainly depends on the quality of the manpower, in addition to the funding and available facilities. Development of human resource needed for research, development, and utilization of nuclear technology in the country needs special attention. Since the national industry is still in its infant stage, the strategy for HRD (human resource development) in the nuclear field addresses the needs of the following: BATAN for its research and development, promotion, and training; BAPETEN for its regulatory functions and training; users of nuclear technology in industry, medicine, agriculture, research, and other areas; radiation safety officers in organizations or institutions licensed to use radioactive materials; the education sector, especially lecturers and teachers, in tertiary and secondary education. Nuclear science and technology is a multidisciplinary and a highly specialized subject. It includes areas such as nuclear and reactor physics, thermal hydraulics, chemistry, material science, radiation protection, nuclear safety, health science, and radioactive waste management. Therefore, a broad nuclear education is absolutely essential to master the wide areas of science and technology used in the nuclear domain. The universities and other institutions of higher education are the only

  12. Systematic Approach for Development of Innovative Infrastructure

    Directory of Open Access Journals (Sweden)

    Zarema Muhamedova

    2014-07-01

    Full Text Available The necessity for development of innovative infrastructure is proved. Its nature, reasonability of systematic approach use and purpose has been identified. The author suggests considering the regime of infrastructural provision aimed at offering horizontal and vertical integration of institutions. This model is designed to create and integral complex for innovative support. The grounds of establishment the state politics are identified. The conceptual recommendations on its development and formation of relevant model, strategy and regulatory mechanism are outlined.

  13. Comparative evaluation of nuclear power in developing countries

    International Nuclear Information System (INIS)

    Obermair, G.M.

    1990-01-01

    Even in those developing countries where nuclear power is technically feasible and competitive against the alternatives, most other factors weigh heavily against the nuclear path for the next decades. This does not mean that nuclear power should be completely ruled out in the longer run. At the moment several problems of nuclear power, in particular its follow-up effects and costs, are not really solved. The results of present efforts toward their solution can probably only be judged in the 1990s. It is not now clear whether the total outcome of nuclear energy is positive, even in the industrialized countries. Any country with an evenly developed technical infrastructure and a sufficiently broad basis of intellectual and technical skills will be able to acquire the specialized nuclear knowhow within a few years. For the meantime,in the opinion of the author, national and international efforts should establish technical school and faculties, study groups should be set up that analyse the energy situation in the individual countries in depth and watch international developments in the nuclear sector. A thorough knowledge of the unresolved problems will prevent their being ignored in the intellectual fascination and political challenge of nuclear power. (author). 11 refs., 3 tabs

  14. Basic plan for nuclear power development and utilization in 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This report presents specific measures to be carried out in 1987 to promote research, development and application of nuclear power. The first part deals with the strengthening of safety measures, centering on the improvement in regulation and administration for nuclear power safety; promotion of safety studies; improvement and strengthening of disaster prevention measures; improvement and strengthening of environmental activity surveys; improvement in exposure control measures for nuclear power operation workers; and establishment of the nuclear fuel cycle and safety in such activities as development of new reactors. The second part of the report addresses the promotion of nuclear power generation. Measures for this will be focused on the promotion of location of nuclear power plants and the development of advanced technology for light water reactors. The third part describes measures for establishing the nuclear fuel cycle, which cover the procurement of uranium resources; enrichment of uranium; reprocessing of spent fuel and utilization of plutonium and recovered uranium; and disposal of radioactive waste. Other parts presents measures to be carried out for the development of new power reactors; research on nuclear fusion; development of nuclear powered vessels; application of radiations; improvement in the infrastructure for nuclear power development and utilization; etc. (Nogami, K.)

  15. Managing Transportation Infrastructure for Sustainable Development

    NARCIS (Netherlands)

    Akinyemi, Edward O.; Zuidgeest, M.H.P.

    Major requirements for operationalization of the concept of sustainable development in urban transportation infrastructure operations management are presented. In addition, it is shown that the current approach to management is incompatible with the requirements for sustainable urban development.

  16. New nuclear plant development - balancing localization with competitiveness

    International Nuclear Information System (INIS)

    Caplan, M.; Thompson, T.S.

    2014-01-01

    Nuclear power plants are large infrastructure projects that require government support and approval. This paper will highlight and contrast the larger, mostly government-desired, nuclear program localization objectives with the more utility-specific requirements for successful project implementation. Governments are concerned about sustainable industrial development, particularly manufacturing, and job creation while utilities are focused on delivering reliable electricity to consumers at the lowest cost. Numerous countries emphasize local content as a key requirement when procuring a station. For countries like China and Korea that have large programs, their strategy has been to localize to the point of having their own indigenous design. However, developing a workable localization strategy that truly benefits the local economy for others including existing nuclear markets like Canada, the UK, South Africa and Brazil as well as in newly developing markets such as Vietnam and Malaysia is more challenging. These countries may not look to indigenize a new design, rather they would localize elements of the nuclear program that best fit their strengths. The paper will discuss the issues related to developing successful localization and industrialization strategies in a changing nuclear world. (author)

  17. New nuclear plant development - balancing localization with competitiveness

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M.; Thompson, T.S. [MZ Consulting Inc., ON (Canada)

    2014-07-01

    Nuclear power plants are large infrastructure projects that require government support and approval. This paper will highlight and contrast the larger, mostly government-desired, nuclear program localization objectives with the more utility-specific requirements for successful project implementation. Governments are concerned about sustainable industrial development, particularly manufacturing, and job creation while utilities are focused on delivering reliable electricity to consumers at the lowest cost. Numerous countries emphasize local content as a key requirement when procuring a station. For countries like China and Korea that have large programs, their strategy has been to localize to the point of having their own indigenous design. However, developing a workable localization strategy that truly benefits the local economy for others including existing nuclear markets like Canada, the UK, South Africa and Brazil as well as in newly developing markets such as Vietnam and Malaysia is more challenging. These countries may not look to indigenize a new design, rather they would localize elements of the nuclear program that best fit their strengths. The paper will discuss the issues related to developing successful localization and industrialization strategies in a changing nuclear world. (author)

  18. Cyber security in nuclear power plants and its portability to other industrial infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Champigny, Sebastien; Gupta, Deeksha; Watson, Venesa; Waedt, Karl [AREVA GmbH, Erlangen (Germany)

    2017-06-15

    Power generation increasingly relies on decentralised and interconnected computerised systems. Concepts like ''Industrial Internet of Things'' of the Industrial Internet Consortium (IIC), and ''Industry 4.0'' find their way in this strategic industry. Risk of targeted exploits of errors and vulnerabilities increases with complexity, interconnectivity and decentralization. Inherently stringent security requirements and features make nuclear computerised applications and systems a benchmark for industrial counterparts seeking to hedge against those risks. Consequently, this contribution presents usual cyber security regulations and practices for nuclear power plants. It shows how nuclear cyber security can be ported and used in an industrial context to protect critical infrastructures against cyber-attacks and industrial espionage.

  19. Human resource development, National Nuclear Energy Agency, Indonesia

    International Nuclear Information System (INIS)

    Karsono

    2007-01-01

    The development of an adequate national education and training infrastructure is the solution to solve the demand for qualified manpower to meet the national requirements of any nuclear program. Education and training activities were initiated in the year of 1981 with the forming of the Education and Training Center (ETC). The aging of manpower and the government policy on zero growth results in the discontinuity of knowledge transfer within the organization, and may be in the future of nuclear technology implementation. Since 1981 ETC has contributed to the training of its employees and industrial personnel through 800 training and involving around eleven thousand participants. Education and Training Center of BATAN accredited by BAPETEN as the nuclear training institutes for Radiation Protection Officer Certification, and in process of accreditation by National Accreditation Board as training institute for Non Destructive Test Personnel Certification. Annually ETC conduct 5 RPO training and 5 NDT Level I and 3 NDT Level II training. As shown in attached Table, there are at least 2999 RPO in Indonesia responsible for the safe operation of 4843 radioactive sources and 3741 radiation sources. Among the approximately 3700 employees of BATAN, national infrastructure has contributed to the education of 911 S1-graduates program, 24 master degree and 21 doctoral degree programs, while 46 bachelors degree, 201 master degree and 98 doctoral degree were taken overseas. Human resources have been identified on many occasions as being one of the most important elements for engaging in various types of nuclear applications. Major efforts must be directed towards attracting sufficient number of bright and interested students to the nuclear field for both current and future nuclear technology utilization. Therefore, it is necessary to transfer knowledge and know-how to the young generation for the sustainable development of nuclear science and technology. Courses in nuclear

  20. MENA. New Nuclear

    International Nuclear Information System (INIS)

    Kovachev, Milko

    2012-01-01

    MENA region summary: UAE - Ground broken on reactor site; Turkey - Contracts for NPP signed, legal and regulatory infrastructure well-developed; Jordan - Committed plans, NPP procurement process initiated, legal and regulatory infrastructure developing; Egypt - Well-developed plans and legal & regulatory infrastructure, but commitment pending; Saudi Arabia – Commitment made; Algeria, Tunisia - Developing Plans; Kuwait, Oman, Qatar , Bahrain, Morocco - Considered civil nuclear power as an option but no immediate prospects for development. MENA region continues to express strong willingness to diversify its power mix with nuclear and renewables. Gulf States, GCC countries are participating in the collaborative study of a potential nuclear energy programme in the region since 2006. Bahrain, Kuwait, Qatar and Oman are studying the option, however given their small populations and the limited size of their electricity grids, Qatar, Bahrain, and Oman have less capacity to support domestic nuclear power programs. The Fukushima accident has played a role in one country’s decision to abandon nuclear energy for power generation: Kuwaiti government— largely influenced by the events in Japan—decided to reverse its policy on nuclear energy. Valued at US$200 billion, the Middle East’s new nuclear build market holds immense opportunities for expertise, component suppliers and service providers

  1. The spatio-temporal Development of Copenhagen's bicycle infrastructure 1912-2013

    DEFF Research Database (Denmark)

    Carstensen, Trine Agervig; Olafsson, Anton Stahl; Bech, Nynne Marie

    2015-01-01

    Cycling plays an important role in low-carbon transitions. Around the globe, cities are constructing bicycle infrastructure. The city of Copenhagen has a bicycle-friendly infrastructure celebrated for its fine-meshed network. This study documents the spatio-temporal development of Copenhagen......’s bicycle infrastructure and explores how the development corresponds to other processes of urban transformation. The study builds on historical maps of bicycle infrastructure that are digitised into geographical information, which allows for a comprehensive analysis of the formation of the network....... In search for identifying drivers, the study analyses the city’s spatial growth pattern, migration pattern, development of road network and changes in the transport culture. Analyses reveal that the bicycle infrastructure expanded at a relatively constant pace during distinct periods of urban transformation...

  2. Public Tourism Infrastructure: Challenges in the Development and Maintenance Activities

    Directory of Open Access Journals (Sweden)

    Abdullah Shardy

    2014-01-01

    Full Text Available In Malaysia, the tourism sector is a major contributor to the nation’s development and is spearheaded by the government’s efforts in investing heavily towards providing sufficient and well-functioning public tourism infrastructure. This infrastructure should be ideally developed with a clear and systematic maintenance plan in hand. The challenge herein is not merely providing the necessary infrastructure to sustain tourism activities but rather a pro-active approach towards establishing and subsequently maintaining this infrastructure at its optimal level. The aim of this paper therefore is to identify critical aspects that need to be in place to further enhance the Malaysian tourism industry. The paper discusses the issues and challenges that need to be addressed as a precursor towards an effectively developed and maintained tourism infrastructure system. Development issues that have been identified revolve around the dimensions of quality, quantity and ability of the public agencies involved, particularly issues of inadequate infrastructure, quality of infrastructure and the capability of the agencies in undertaking efficient maintenance activities. These issues were found to lead towards challenges of working with resource constraints, lack of an effective maintenance culture and system as well as the need for clear and effective policies and strategies.

  3. Infrastructures Development Strategy in Energy Engineering Education and Research: a Bonus to Introduce a Safe and Secure Nuclear Power Program

    International Nuclear Information System (INIS)

    Bouhelal, Oum Keltoum

    2008-01-01

    In the area of Energy Engineering, high education programs including nuclear activities are currently running in collaboration with the employment sector to provide skills oriented profiles; the available packages are thus characterized by a limited size and a low impact in enhancing power technology teaching and industrial partnerships. However, ongoing nuclear applications activities are undertaken through strong legal and institutional infrastructures as Morocco has joined a large number of international conventions and agreements trusted by the IAEA. The introduction of nuclear power is subject to a close attention today to investigate if it is an alternative solution to meet the increasing energy needs. For a country not much industrialized and characterized by a medium electricity grid, the decision on the recourse to nuclear power needs to carry up early a training, R and D federative program on behalf of the engineering sector and the international cooperation. As the challenges associated to develop a successful nuclear power program requires an important effort directed toward increasing capacity, new education and training programs in the field of Energy Sciences and Engineering are presently targeted in several high education institutions prior to the goals of the education and research national reform. The preparation of a new master and engineer diploma at ENIM 'Power Systems Engineering and Management' is in process: the curricula introduces innovative concepts bringing together academic teachers, researchers and stakeholders to establish new discipline-based teaching and learning tools: what is mainly focused is to increase competency profile in consultation with the industry sector and to attract high quality students to ensure availability of human resources at the right time in the field of power technology utilization including nuclear power. A coordinated approach joining national and international partnership to implement oriented R and D

  4. Infrastructures Development Strategy in Energy Engineering Education and Research: a Bonus to Introduce a Safe and Secure Nuclear Power Program

    Energy Technology Data Exchange (ETDEWEB)

    Bouhelal, Oum Keltoum [National School of Mineral Industry, ENIM, BP 753, Agdal, 10000 Rabat (Morocco)

    2008-07-01

    In the area of Energy Engineering, high education programs including nuclear activities are currently running in collaboration with the employment sector to provide skills oriented profiles; the available packages are thus characterized by a limited size and a low impact in enhancing power technology teaching and industrial partnerships. However, ongoing nuclear applications activities are undertaken through strong legal and institutional infrastructures as Morocco has joined a large number of international conventions and agreements trusted by the IAEA. The introduction of nuclear power is subject to a close attention today to investigate if it is an alternative solution to meet the increasing energy needs. For a country not much industrialized and characterized by a medium electricity grid, the decision on the recourse to nuclear power needs to carry up early a training, R and D federative program on behalf of the engineering sector and the international cooperation. As the challenges associated to develop a successful nuclear power program requires an important effort directed toward increasing capacity, new education and training programs in the field of Energy Sciences and Engineering are presently targeted in several high education institutions prior to the goals of the education and research national reform. The preparation of a new master and engineer diploma at ENIM 'Power Systems Engineering and Management' is in process: the curricula introduces innovative concepts bringing together academic teachers, researchers and stakeholders to establish new discipline-based teaching and learning tools: what is mainly focused is to increase competency profile in consultation with the industry sector and to attract high quality students to ensure availability of human resources at the right time in the field of power technology utilization including nuclear power. A coordinated approach joining national and international partnership to implement oriented R

  5. South Africa's nuclear hydrogen production development programme

    International Nuclear Information System (INIS)

    Van Ravenswaay, J.P.; Van Niekerk, F.; Kriek, R.J.; Blom, E.; Krieg, H.M.; Van Niekerk, W.M.K.; Van der Merwe, F.; Vosloo, H.C.M.

    2010-01-01

    In May 2007 the South African Cabinet approved a National Hydrogen and Fuel Cell Technologies R and D and Innovation Strategy. The strategy will focus on research, development and innovation for: i) wealth creation through high value-added manufacturing and developing platinum group metals catalysis; ii) building on the existing knowledge in high temperature gas-cooled reactors (HTGR) and coal gasification Fischer-Tropsch technology, to develop local cost-competitive hydrogen production solutions; iii) to promote equity and inclusion in the economic benefits from South Africa's natural resource base. As part of the roll-out strategy, the South African Department of Science and Technology (DST) created three Competence Centres (CC), including a Hydrogen Infrastructure Competence Centre hosted by the North-West University (NWU) and the Council for Scientific and Industrial Research (CSIR). The Hydrogen Infrastructure CC is tasked with developing hydrogen production, storage, distribution as well as codes and standards programmes within the framework of the DST strategic objectives to ensure strategic national innovation over the next fifteen years. One of the focus areas of the Hydrogen Infrastructure CC will be on large scale CO 2 free hydrogen production through thermochemical water-splitting using nuclear heat from a suitable heat source such as a HTGR and the subsequent use of the hydrogen in applications such as the coal-to-liquid process and the steel industry. This paper will report on the status of the programme for thermochemical water-splitting as well as the associated projects for component and technology development envisaged in the Hydrogen Infrastructure CC. The paper will further elaborate on current and future collaboration opportunities as well as expected outputs and deliverables. (authors)

  6. Directions of development of transport infrastructure of Ukraine

    Directory of Open Access Journals (Sweden)

    V.I. Kopytko

    2012-08-01

    Full Text Available The trends of the transport infrastructure development as a basic factor of national security, the stable and dynamic economic growth, its integration into the European and world economic space are considered. The most important element of the transport infrastructure in the modern economy is a network of logistic providers, which reduce transaction costs and improve the quality of transport service. And the main direction of government policy according to infrastructure should be a gradual transition of activities for establishing and operating the infrastructure objects, that is a burden for the State, from a cost sphere to an efficient business based on the state-private partnership.

  7. Hydrogen infrastructure development in The Netherlands

    International Nuclear Information System (INIS)

    Smit, R.; Weeda, M.; De Groot, A.

    2007-08-01

    Increasingly people think of how a hydrogen energy supply system would look like, and how to build and end up at such a system. This paper presents the work on modelling and simulation of current ideas among Dutch hydrogen stakeholders for a transition towards the widespread use of a hydrogen energy. Based mainly on economic considerations, the ideas about a transition seem viable. It appears that following the introduction of hydrogen in niche applications, the use of locally produced hydrogen from natural gas in stationary and mobile applications can yield an economic advantage when compared to the conventional system, and can thus generate a demand for hydrogen. The demand for hydrogen can develop to such an extent that the construction of a large-scale hydrogen pipeline infrastructure for the transport and distribution of hydrogen produced in large-scale production facilities becomes economically viable. In 2050, the economic viability of a large-scale hydrogen pipeline infrastructure spreads over 20-25 of the 40 regions in which The Netherlands is divided for modelling purposes. Investments in hydrogen pipelines for a fully developed hydrogen infrastructure are estimated to be in the range of 12,000-20,000 million euros

  8. Developing hydrogen infrastructure through near-term intermediate technology

    International Nuclear Information System (INIS)

    Arthur, D.M.; Checkel, M.D.; Koch, C.R.

    2003-01-01

    The development of a vehicular hydrogen fuelling infrastructure is a necessary first step towards the widespread use of hydrogen-powered vehicles. This paper proposes the case for using a near-term, intermediate technology to stimulate and support the development of that infrastructure. 'Dynamic Hydrogen Multifuel' (DHM) is an engine control and fuel system technology that uses flexible blending of hydrogen and another fuel to optimize emissions and overall fuel economy in a spark ignition engine. DHM vehicles can enhance emissions and fuel economy using techniques such as cold-starting or idling on pure hydrogen. Blending hydrogen can extend lean operation and exhaust gas recirculation limits while normal engine power and vehicle range can be maintained by the conventional fuel. Essentially DHM vehicles are a near-term intermediate technology which provides significant emissions benefits in a vehicle which is sufficiently economical, practical and familiar to achieve significant production numbers and significant fuel station load. The factors leading to successful implementation of current hydrogen filling stations must also be understood if the infrastructure is to be developed further. The paper discusses important lessons on the development of alternative fuel infrastructure that have been learned from natural gas; why were natural gas vehicle conversions largely successful in Argentina while failing in Canada and New Zealand? What ideas can be distilled from the previous successes and failures of the attempted introduction of a new vehicle fuel? It is proposed that hydrogen infrastructure can be developed by introducing a catalytic, near-term technology to provide fuel station demand and operating experience. However, it is imperative to understand the lessons of historic failures and present successes. (author)

  9. The National Implementation of Nuclear Export Controls: Developing a Best Practices Model

    Energy Technology Data Exchange (ETDEWEB)

    Viski, Andrea [European University Institute, Department of Law, Badia Fiesolana, S.Domenico di Fiesole, Firenze (Italy)

    2011-12-15

    The nuclear renaissance promises significant benefits to the international community, but also raises security challenges, particularly relating to the trade of nuclear materials and equipment. The objective of this paper is to examine how supply-side non-proliferation efforts can be strengthened by developing a best practices model for national nuclear export control implementation. In order to achieve this goal, nuclear export control measures identified by the 1540 Committee will be used as a framework from which a best practices model can be formed. Such a model concentrates specifically on national legislation and enforcement measures delineated by the Committee in order to bring countries in accordance with international law. Developing a best practices model seeks to deliver an ideal process for national export control law actualization in order to encourage the peaceful development of nuclear energy and develop the infrastructure and framework for precluding nuclear proliferation.

  10. Environmental impacts of dispersed development from federal infrastructure projects.

    Science.gov (United States)

    Southerland, Mark T

    2004-06-01

    Dispersed development, also referred to as urban growth or sprawl, is a pattern of low-density development spread over previously rural landscapes. Such growth can result in adverse impacts to air quality, water quality, human health, aquatic and terrestrial ecosystems, agricultural land, military training areas, water supply and wastewater treatment, recreational resources, viewscapes, and cultural resources. The U.S. Environmental Protection Agency (U.S. EPA) is charged with protecting public health and the environment, which includes consideration of impacts from dispersed development. Specifically, because federal infrastructure projects can affect the progress of dispersed development, the secondary impacts resulting from it must be assessed in documents prepared under the National Environmental Policy Act (NEPA). The Council on Environmental Quality (CEQ) has oversight for NEPA and Section 309 of the Clean Air Act requires that U.S. EPA review and comment on federal agency NEPA documents. The adverse effects of dispersed development can be induced by federal infrastructure projects including transportation, built infrastructure, modifications in natural infrastructure, public land conversion and redevelopment of properties, construction of federal facilities, and large traffic or major growth generation developments requiring federal permits. This paper presents an approach that U.S. EPA reviewers and NEPA practitioners can use to provide accurate, realistic, and consistent analysis of secondary impacts of dispersed development resulting from federal infrastructure projects. It also presents 24 measures that can be used to mitigate adverse impacts from dispersed development by modifying project location and design, participating in preservation or restoration activities, or informing and supporting local communities in planning.

  11. Kenya's Integrated Nuclear Infrastructure Review Experience

    International Nuclear Information System (INIS)

    Ayacko, Ochilo G.M.

    2015-01-01

    Lessons learnt for INIR preparation: → A detailed Self Evaluation report is critical to proper evaluation of each infrastructure; → Involvement of all relevant organizations in preparation of self evaluation report and the main mission; → Meetings on individual infrastructure issues to consolidate the country position; → Openness during interviews and provision of adequate information

  12. Proposals on development strategy of the financial market infrastructure in Ukraine

    Directory of Open Access Journals (Sweden)

    Igor Rekunenko

    2014-11-01

    Full Text Available Development strategy of such financial market infrastructure that is able to optimize the processes of institutional component’s functioning and increase an efficiency of various operations in this market has to become an important direction of improvement and development of the financial market infrastructure. This paper aimed to rationale the development strategy of financial market infrastructure in Ukraine

  13. Developing Sustainable Urban Water-Energy Infrastructures: Applying a Multi-Sectoral Social-Ecological-Infrastructural Systems (SEIS) Framework

    Science.gov (United States)

    Ramaswami, A.

    2016-12-01

    Urban infrastructure - broadly defined to include the systems that provide water, energy, food, shelter, transportation-communication, sanitation and green/public spaces in cities - have tremendous impact on the environment and on human well-being (Ramaswami et al., 2016; Ramaswami et al., 2012). Aggregated globally, these sectors contribute 90% of global greenhouse gas (GHG) emissions and 96% of global water withdrawals. Urban infrastructure contributions to such impacts are beginning to dominate. Cities are therefore becoming the action arena for infrastructure transformations that can achieve high levels of service delivery while reducing environmental impacts and enhancing human well-being. Achieving sustainable urban infrastructure transitions requires: information about the engineered infrastructure, and its interaction with the natural (ecological-environmental) and the social sub-systems In this paper, we apply a multi-sector, multi-scalar Social-Ecological-Infrastructural Systems framework that describes the interactions among biophysical engineered infrastructures, the natural environment and the social system in a systems-approach to inform urban infrastructure transformations. We apply the SEIS framework to inform water and energy sector transformations in cities to achieve environmental and human health benefits realized at multiple scales - local, regional and global. Local scales address pollution, health, wellbeing and inequity within the city; regional scales address regional pollution, scarcity, as well as supply risks in the water-energy sectors; global impacts include greenhouse gas emissions and climate impacts. Different actors shape infrastructure transitions including households, businesses, and policy actors. We describe the development of novel cross-sectoral strategies at the water-energy nexus in cities, focusing on water, waste and energy sectors, in a case study of Delhi, India. Ramaswami, A.; Russell, A.G.; Culligan, P.J.; Sharma, K

  14. TRANSPORT INFRASTRUCTURE OF UKRAINE: THE MODERN REALITIES AND DEVELOPMENT PROSPECTS

    Directory of Open Access Journals (Sweden)

    Tetiana Stroiko

    2017-11-01

    Full Text Available The purpose of the article is to conduct a complex research of the state of transport structure of Ukraine and substantiate prospects of its development. The developed transport system and corresponding infrastructure are a guarantee of high level of the country’s development, increasing the level of its investing attractiveness. Moreover, transport infrastructure serves as a uniting factor in the process of integration. Thus, the main function of transport infrastructure is the formation of external conditions for the management of economic entities. It is determined that the development of a state directly depends on how efficiently it performs management in different spheres. First of all, it concerns transport infrastructure. Today, the global trends necessitate constant perfection of management of transport infrastructure, in particular, investment attraction. The state and development level of transport infrastructure is one of the most important factors of socio-economic development of both member states of the European Union and Ukraine. Transport infrastructure occupies a services market sector with a market share of 75%. And in the macroeconomic context, the share of transport infrastructure in the overall volume of gross domestic product of Ukraine is 7%. In the modern management conditions, a negative dynamics of transportation and its share in the gross domestic product of Ukraine are determined mostly by the influence of economic crisis processes and negative state of development of transport infrastructure of the country. For the evaluation of activities of transport of Ukraine, we used the main indicators of its performance as criteria. The main criteria of performance evaluation of transport are: the volume of cargo transportation, cargo turnover, the ratio of modes of transport in cargo transportation, the volume of passenger transportation, passenger turnover, the cost of transportation, the ratio of passenger and cargo

  15. Trends and prospects of nuclear power development programs in the Asian countries

    International Nuclear Information System (INIS)

    Kim, Kyoung Pyo; Lee, Jeong Kong

    1998-12-01

    This report is intended to look into the trends and prospects of nuclear power development programs in the Asian countries which will emerge as major business markets for the international nuclear industry and will seek to strengthen nuclear cooperation with Korea. In Asia, which accounts for about half of the world's population, there are many countries which have already expanded and are ready to embark on nuclear programs to meet increasing energy demands resulting from the rapidly growing economic development in the region. The Asian region will also emerge as a new area for economic development in the 21st century. The future demand for nuclear power programs will also increase in booming Asia where rapid industrialization has been in progress. The main constraints to nuclear power deployment in Asia include fund-raising for nuclear development, weakness of technical infrastructure and so on. In this regard, these problems need to be addressed to successfully implement nuclear programs in the region. This report could be used to establish national policies for nuclear cooperation and nuclear business with Asian countries expected to develop active nuclear power programmes in the future. (author). 8 refs., 11 tabs

  16. Green infrastructure development at European Union's eastern border: Effects of road infrastructure and forest habitat loss.

    Science.gov (United States)

    Angelstam, Per; Khaulyak, Olha; Yamelynets, Taras; Mozgeris, Gintautas; Naumov, Vladimir; Chmielewski, Tadeusz J; Elbakidze, Marine; Manton, Michael; Prots, Bohdan; Valasiuk, Sviataslau

    2017-05-15

    The functionality of forest patches and networks as green infrastructure may be affected negatively both by expanding road networks and forestry intensification. We assessed the effects of (1) the current and planned road infrastructure, and (2) forest loss and gain, on the remaining large forest landscape massifs as green infrastructure at the EU's eastern border region in post-socialistic transition. First, habitat patch and network functionality in 1996-98 was assessed using habitat suitability index modelling. Second, we made expert interviews about road development with planners in 10 administrative regions in Poland, Belarus and Ukraine. Third, forest loss and gain inside the forest massifs, and gain outside them during the period 2001-14 were measured. This EU cross-border region hosts four remaining forest massifs as regional green infrastructure hotspots. While Poland's road network is developing fast in terms of new freeways, city bypasses and upgrades of road quality, in Belarus and Ukraine the focus is on maintenance of existing roads, and no new corridors. We conclude that economic support from the EU, and thus rapid development of roads in Poland, is likely to reduce the permeability for wildlife of the urban and agricultural matrix around existing forest massifs. However, the four identified forest massifs themselves, forming the forest landscape green infrastructure at the EU's east border, were little affected by road development plans. In contrast, forest loss inside massifs was high, especially in Ukraine. Only in Poland forest loss was balanced by gain. Forest gain outside forest massifs was low. To conclude, pro-active and collaborative spatial planning across different sectors and countries is needed to secure functional forest green infrastructure as base for biodiversity conservation and human well-being. Copyright © 2017. Published by Elsevier Ltd.

  17. Managing nuclear knowledge in developing countries. A view from Pakistan

    International Nuclear Information System (INIS)

    Ahmad, I.

    2002-01-01

    Full text: For the developing countries, managing nuclear knowledge requires both acquiring know-how from the developed countries as well as building and conserving their own knowledge resource. The rapid growth of information technology culture has made vast amounts of information and database universally accessible although some bars do indeed apply. The challenge, therefore, lies in having a continuous supply of different tiers of trained and competent professionals who can benefit from what is available and can carry on developing the indigenous capability. This presentation focuses on the issues and problems faced in meeting the above challenge. Steps taken in a developing country like Pakistan to manage nuclear knowledge will be discussed. These measures include developing an interface between the universities and the industry as well as concentrating on meeting the specific infrastructure requirements. The task is, however, becoming increasingly difficult for the developing countries because of the fall out of the lack of proper growth in the nuclear industry at the global level, and the large and long-term financial commitments associated with nuclear energy which leave the entire burden of the nuclear power program development on the public sector. (author)

  18. Vulnerability assessment as a missing part of efficient regulatory emergency preparedness system for nuclear critical infrastructure

    International Nuclear Information System (INIS)

    Kostadinov, V.

    2007-01-01

    One introduces a new model to assess the vulnerability of the nuclear infrastructure critical facilities. The new procedure of the vulnerability assessment (the VA) aims to reevaluate the efficiency of the present-day safeguards. On the basis of deeper insight into the VA new strategy and of the elaborated procedure to analyze the hazards for the nuclear power facilities one recommends the key safeguards affecting the damage magnitude [ru

  19. Does Infrastructure Matter In Tourism Development? Seetanah B ...

    African Journals Online (AJOL)

    kpo

    sound infrastructure in promoting tourism development in the island. The networks ... as an interesting case whereby the effect of infrastructure on tourist arrivals into .... Gearing et al (1974) study the case of Turkey as a tourist destination and find that ... et al (2000) in discussing the case of Sun Lost City, South Africa, and ...

  20. Securing a better future for all: Nuclear techniques for global development and environmental protection. NA factsheet on nuclear physics: Facilitating the peaceful and practical uses of nuclear science

    International Nuclear Information System (INIS)

    2012-01-01

    When properly applied, nuclear science - the study of atomic nuclei and other subatomic particles - can contribute in many ways to the health, development and security of communities around the world. In this context, the IAEA plays an important role in helping interested Member States develop the capabilities and infrastructure necessary to manage their own programmes devoted to nuclear and radiological applications. The IAEA's nuclear science programme helps Member States to establish sound frameworks for the efficient, safe and secure use of new nuclear technologies, including accelerator facilities, research reactors and future nuclear fusion facilities. By applying nuclear technologies in a wide variety of areas such as energy production, health care, food and agriculture, industry and the environment, Member States can benefit immensely from the ensuing socioeconomic developments, as well as providing better living conditions for their citizens.

  1. Potential role of nuclear power in developing and transitional economies

    International Nuclear Information System (INIS)

    Ganiage, D.; Dierstein, Ph.

    1996-01-01

    In some developing countries, such as Asia, the growth of electricity consumption is high, and a nuclear programme based on the construction of several standardised plants could be implemented and economically justified. In transitional economies, such as in Central and Eastern Europe countries, electricity authorities were forced to stop the construction of several nuclear plants, mainly because of financial problems. Nuclear power can provide the developing and transition economies with several advantages, such as energy independence and fuel supply security, minimal environmental pollution, support to local industry and employment. On the other hand, nuclear energy also means the support of national authorities and the development of a suitable infrastructure in order to check the enforcement of legal procedures, plants safety and waste management. Local population must understand and accept this commitment linked hand to hand with the choice of nuclear energy. Finally, nuclear industry is very capital-intensive. Therefore, financial resources are to be found by the local electricity authorities, along with the development of a suitable legal framework and the implementation of new tariff policies which must reflect the real costs of electricity. (R.P.)

  2. Nuclear cardiology for developing countries

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    1986-01-01

    The role of nuclear medicine in developing countries must be oriented to the local needs for clinical practice, the health care of large populations and the demands for research with sometimes extremely limited resources. To help define the locally differing needs, it is stressed that nuclear medicine provides the unique opportunity to observe the body at the molecular level of organization and thus makes the body biochemically transparent. Depending on the particular diagnostic demands, complex imaging with gamma scintigraphy or emission tomography may be the only method to choose in some instances, but for others it may be an unnecessary luxury. Nuclear cardiology, with the purpose of non-invasively assessing cardiac function, myocardial perfusion and myocardial metabolism, is a particular challenge in both respects for developing countries. Given such requirements, single-probe devices with multipurpose application are less expensive than gamma cameras and promise advanced diagnostic uses. In one examination, left ventricular function, global cardio-pulmonary circulation and the general circulatory adaptation to exercise can be investigated by non-gated simultaneous blood pool measurements over four lung regions, the heart and the liver. In addition, such devices have the advantages of compactness, robustness and electronic stability. Despite enormous difficulties regarding funding, infrastructure, equipment and maintenance, developing countries should be encouraged to participate in the evolution of nuclear medicine by responding and adapting to defined needs and perhaps by maintaining at least one national centre of excellence with capacities for research and training. Funds are best secured by providing an indispensable service in co-operation with the various clinical disciplines. (author)

  3. The status and prospects of nuclear reactor technology development

    International Nuclear Information System (INIS)

    Juhn, P.E.

    2001-01-01

    Nuclear power is a proven technology which currently contributes about 16% to the world electricity supply and, to a much lesser extent, to heat supply in some countries. Nuclear Power is economically competitive with fossil fuels for base load electricity generation in many countries, and is one of the commercially proven energy supply options that could be extended in the future to reduce environmental burdens, especially greenhouse gas emissions, from the electricity sector. Over the past five decades, nearly ten thousand reactor-years of operating experience have been accumulated with current nuclear power plants. However, nuclear power is currently at a cross-road. There are no new nuclear power construction projects in most parts of the world, except some countries in East Asia and Eastern Europe. The main issues are economic competitiveness with cheap gas plants and public concerns on nuclear waste disposal and safety. Strong economic growth and the shrinking of existing electricity over-capacities could favour nuclear power. Since nuclear power emits no greenhouse gases to the environment, its development could be further accelerated by a breakthrough in innovative nuclear reactor technology development. Great attention also needs to be paid to the design of new nuclear reactors, which are modularized and faster to construct, thus reducing capital investment and construction period, and thereby improving their overall economics and their compatibility with the infrastructure of, in particular, developing countries, where new energy demands are expected. This paper discusses the future world energy outlook, challenges for and progresses on nuclear power; overview of new nuclear reactor technology development; and the role of the International Atomic Energy Agency (IAEA) in the development of new innovative nuclear reactors. (author)

  4. Investigating 3S Synergies to Support Infrastructure Development and Risk-Informed Methodologies for 3S by Design

    International Nuclear Information System (INIS)

    Suzuki, M.; Izumi, Y.; Kimoto, T.; Naoi, Y.; Inoue, T.; Hoffheins, B.

    2010-01-01

    In 2008, Japan and other G8 countries pledged to support the Safeguards, Safety, and Security (3S) Initiative to raise awareness of 3S worldwide and to assist countries in setting up nuclear energy infrastructures that are essential cornerstones of a successful nuclear energy program. The goals of the 3S initiative are to ensure that countries already using nuclear energy or those planning to use nuclear energy are supported by strong national programs in safety, security, and safeguards not only for reliability and viability of the programs, but also to prove to the international audience that the programs are purely peaceful and that nuclear material is properly handled, accounted for, and protected. In support of this initiative, Japan Atomic Energy Agency (JAEA) has been conducting detailed analyses of the R and D programs and cultures of each of the 'S' areas to identify overlaps where synergism and efficiencies might be realized, to determine where there are gaps in the development of a mature 3S culture, and to coordinate efforts with other Japanese and international organizations. As an initial outcome of this study, incoming JAEA employees are being introduced to 3S as part of their induction training and the idea of a President's Award program is being evaluated. Furthermore, some overlaps in 3S missions might be exploited to share facility instrumentation as with Joint-Use-Equipment (JUE), in which cameras and radiation detectors, are shared by the State and IAEA. Lessons learned in these activities can be applied to developing more efficient and effective 3S infrastructures for incorporating into Safeguards by Design methodologies. They will also be useful in supporting human resources and technology development projects associated with Japan's planned nuclear security center for Asia, which was announced during the 2010 Nuclear Security Summit. In this presentation, a risk-informed approach regarding integration of 3S will be introduced. An initial

  5. PUBLIC AND PRIVATE PARTENERSHIP IN INFRASTRUCTURE DEVELOPMENT: ESSENCE, EXPERIENCE, PROBLEMS

    Directory of Open Access Journals (Sweden)

    Alexander E. Lantsov

    2014-01-01

    Full Text Available Infrastructure is of high importance for human society, so the state pay great attention to it. Characteristics inherent to infrastructure, its development, maintenance and consumption don’t always explain only the state involvement in the sector.The article considers preconditions and basis of private sector involvement in the process of infrastructure supply, experience of different countries, public and private sectors relationships in the matter and private sector effectiveness in infrastructure supply.

  6. Human resource development (HRD) with the introduction of nuclear & research reactors in Kenya

    International Nuclear Information System (INIS)

    Shadrack, A.

    2014-01-01

    Capacity building is one of the most important infrastructures towards the realization of any project undertaking. Infrastructure has been identified as a key priority under the African Union's strategic Plan for 2009-2012 which seeks to promote integration, socioeconomic development and cooperation on the continent. For effective capacity building and implementation of a sustainable nuclear power program, a country needs a diversity of professionals in the fields of planning, siting, designing, licensing, construction, commissioning, operation, maintenance, decommissioning, and waste management system. The purpose of this paper was to develop human resource development (HRD) with the introduction of nuclear power program in Kenya by using the realistic development strategies and lessons learned from the successful Korean and Japanese experience based on the milestones structure of the IAEA. To do this, this paper assessed human resource development (HRD) strategies that have been and are currently applied in Korea and Japan in order to drive rationales for development process. The lessons learned for a successful human resource development were identified as: Workforce planning; Nuclear Energy Program Implementing Organization (NEPIO); bilateral & multilateral partnerships; availability of research & development (R&D); international exchange programmes; long-term domestic education and training; good remuneration packages; high cadre personnel positions; good working environments; and stakeholder engagement. A total projected workforce of approximately 4,000 was estimated and that includes preoperational, operational, and permanent operational staff when the country's four NPPs is scheduled to be operational. This study is useful for developing countries newly starting nuclear power program as a long-term energy supply option and will help decision makers, and national planners of nuclear power program. (author)

  7. Human resource development (HRD) with the introduction of nuclear & research reactors in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Shadrack, A., E-mail: ashadrack6@gmail.com [Kenyatta National Hospital (KNH), Radiation Protection Board, Kenyatta National Hospital Grounds, Nairobi (Kenya)

    2014-07-01

    Capacity building is one of the most important infrastructures towards the realization of any project undertaking. Infrastructure has been identified as a key priority under the African Union's strategic Plan for 2009-2012 which seeks to promote integration, socioeconomic development and cooperation on the continent. For effective capacity building and implementation of a sustainable nuclear power program, a country needs a diversity of professionals in the fields of planning, siting, designing, licensing, construction, commissioning, operation, maintenance, decommissioning, and waste management system. The purpose of this paper was to develop human resource development (HRD) with the introduction of nuclear power program in Kenya by using the realistic development strategies and lessons learned from the successful Korean and Japanese experience based on the milestones structure of the IAEA. To do this, this paper assessed human resource development (HRD) strategies that have been and are currently applied in Korea and Japan in order to drive rationales for development process. The lessons learned for a successful human resource development were identified as: Workforce planning; Nuclear Energy Program Implementing Organization (NEPIO); bilateral & multilateral partnerships; availability of research & development (R&D); international exchange programmes; long-term domestic education and training; good remuneration packages; high cadre personnel positions; good working environments; and stakeholder engagement. A total projected workforce of approximately 4,000 was estimated and that includes preoperational, operational, and permanent operational staff when the country's four NPPs is scheduled to be operational. This study is useful for developing countries newly starting nuclear power program as a long-term energy supply option and will help decision makers, and national planners of nuclear power program. (author)

  8. Infrastructure investments in developing economies the case of Vietnam

    CERN Document Server

    Dang, Giang

    2015-01-01

    This book aims to provide knowledge on how infrastructure is planned and built in a typical developing country, and what key variables are there in the system limiting the efficient use of public investments in infrastructure. The book begins with a comprehensive literature review on construction and economic development, and trade and economic development. The focus of the book is on the case of Vietnam, with lessons drawn for other developing economies. The book employs the mixed use of data to provide a stronger basis for analysis and interpretation of related government policies. Based on the research findings, the book recommends significant capacity building work for Vietnam to develop capacities that would remove constraints on the efficient use of public investments in infrastructure. The general principles of significant capacity building work which are useful for policy implications are introduced in the book. Analysts, academics, public and private communities in developing countries can adopt the ...

  9. Kenya National Presentation on Nuclear Power Infrastructure Evaluation

    International Nuclear Information System (INIS)

    Kinyanjui, B

    2010-01-01

    Kenya will factored 1200MW of nuclear energy in the period 2022-2023 of the national Least Cost Power Development Plan and 4200MW by 2030. A national nuclear power programme is now at inception. The National Economic and Social Council endorsed adoption of the nuclear programme in April 2010. Electricity demand is expected to rise from the current 1200 MW to over 15000 MW by 2030. The achievement of the Vision 2030 requires affordable and stable electricity tariffs. Formation of a Nuclear Power Committee to study and initially promote the development of the nuclear power program will be established e.g. Nuclear Power Committee - Kenyan version of Nuclear Energy Programme Implementing Organization formed. The Nuclear Power Committee is expected to precede formation of the NEPIO. There was proposal to review of current laws –e.g. Energy Act, Radiation Protection Act, Environmental Management and Control Act, Penal Code, etc. Potential sites proposed along the Indian Ocean Coastal areas, near Lake Victoria and the central region near the main national hydropower plants, based on power grid layout and water bodies. Kenya is in Phase 1 of milestones- Consideration before a decision is taken to start a NPP. Capacity Building towards Development of a Nuclear Power Programme (NPP) in Kenya is underway. To implement the national least cost power development plan so as to increase the capacity from current 1,300MW to 18,000MW by 2030 to support achievement of the ‘Vision 2030’

  10. Infrastructural development factors of leasing entrepreneurship in real sector of economy

    Science.gov (United States)

    Aleksandrova, Olga; Ivleva, Elena; Kirdyashkin, Alexey; Shashina, Nina

    2017-10-01

    Given paper is aimed at determining factors, which influence leasing infrastructure development. It also examines the possibilities of overcoming infrastructural growth restrictions and barriers to the development of enterprises of industry, and construction sector. The phenomenon of infrastructural changes has been poorly researched economically and institutionally. These are a kind of quantitative and qualitative growth potential for the economy, for short and long-term periods for transportation or energy company and real estate development company.

  11. USE OF PUBLIC-PRIVATE PARTNERSHIP FOR DEVELOPMENT OF INFRASTRUCTURE

    Directory of Open Access Journals (Sweden)

    Igor Viktorovich Linev

    2016-01-01

    Full Text Available Need of research and introduction of innovative mechanisms of growth of economy of Russia in the conditions of the accruing crisis tendencies and external restrictions causes relevance of consideration of close interaction and mutually providing production and social infrastructures of the economic development forming additional eff ects in all variety of branches of industrial complex. Formation becomes the initiating factor of such interaction in modern conditions and eff ective use of domestic enterprise potential a necessary condition of which is state – private partnership (PPP. In this regard it is necessary to consider problems and problems of formation of conditions, forms and methods of use of PPP, for development of infrastructure as necessary complex of BasicElements of formation of advanced socially oriented market economy. As an object of research in article the organizational and economic relations assuming eff ective partnership of the government and private institutions for formation of complete and highly eff ective system of the production and social infrastructure causing an intensifi cation of synergetic and multiplicative eff ects of development of a civilized society are considered. Purposes/tasks. The main objective of a statement of materials in this article consists in theoretical justifi cation of basic provisions of realization of PPP in system of production and social infrastructure. The task to prove need of application of PPP for strengthening of multiplicative eff ect at development of this system is set. Methodology. In the methodological plan this work represents the state-of-the-art review of the social and economic processes happening in system of social and production infrastructure. When writing article the complex of general scientifi c methods of research including generalization, economical and statistical, system and analytical cluster and others was applied Results. As a result of performance of this

  12. Space-based Communications Infrastructure for Developing Countries

    Science.gov (United States)

    Barker, Keith; Barnes, Carl; Price, K. M.

    1995-01-01

    This study examines the potential use of satellites to augment the telecommunications infrastructure of developing countries with advanced satellites. The study investigated the potential market for using satellites in developing countries, the role of satellites in national information infractructures (NII), the technical feasibility of augmenting NIIs with satellites, and a nation's financial conditions necessary for procuring satellite systems. In addition, the study examined several technical areas including onboard processing, intersatellite links, frequency of operation, multibeam and active antennas, and advanced satellite technologies. The marketing portion of this study focused on three case studies: China, Brazil, and Mexico. These cases represent countries in various stages of telecommunication infrastructure development. The study concludes by defining the needs of developing countries for satellites, and recommends steps that both industry and NASA can take to improve the competitiveness of U.S. satellite manufacturing.

  13. Development of Bioinformatics Infrastructure for Genomics Research.

    Science.gov (United States)

    Mulder, Nicola J; Adebiyi, Ezekiel; Adebiyi, Marion; Adeyemi, Seun; Ahmed, Azza; Ahmed, Rehab; Akanle, Bola; Alibi, Mohamed; Armstrong, Don L; Aron, Shaun; Ashano, Efejiro; Baichoo, Shakuntala; Benkahla, Alia; Brown, David K; Chimusa, Emile R; Fadlelmola, Faisal M; Falola, Dare; Fatumo, Segun; Ghedira, Kais; Ghouila, Amel; Hazelhurst, Scott; Isewon, Itunuoluwa; Jung, Segun; Kassim, Samar Kamal; Kayondo, Jonathan K; Mbiyavanga, Mamana; Meintjes, Ayton; Mohammed, Somia; Mosaku, Abayomi; Moussa, Ahmed; Muhammd, Mustafa; Mungloo-Dilmohamud, Zahra; Nashiru, Oyekanmi; Odia, Trust; Okafor, Adaobi; Oladipo, Olaleye; Osamor, Victor; Oyelade, Jellili; Sadki, Khalid; Salifu, Samson Pandam; Soyemi, Jumoke; Panji, Sumir; Radouani, Fouzia; Souiai, Oussama; Tastan Bishop, Özlem

    2017-06-01

    Although pockets of bioinformatics excellence have developed in Africa, generally, large-scale genomic data analysis has been limited by the availability of expertise and infrastructure. H3ABioNet, a pan-African bioinformatics network, was established to build capacity specifically to enable H3Africa (Human Heredity and Health in Africa) researchers to analyze their data in Africa. Since the inception of the H3Africa initiative, H3ABioNet's role has evolved in response to changing needs from the consortium and the African bioinformatics community. H3ABioNet set out to develop core bioinformatics infrastructure and capacity for genomics research in various aspects of data collection, transfer, storage, and analysis. Various resources have been developed to address genomic data management and analysis needs of H3Africa researchers and other scientific communities on the continent. NetMap was developed and used to build an accurate picture of network performance within Africa and between Africa and the rest of the world, and Globus Online has been rolled out to facilitate data transfer. A participant recruitment database was developed to monitor participant enrollment, and data is being harmonized through the use of ontologies and controlled vocabularies. The standardized metadata will be integrated to provide a search facility for H3Africa data and biospecimens. Because H3Africa projects are generating large-scale genomic data, facilities for analysis and interpretation are critical. H3ABioNet is implementing several data analysis platforms that provide a large range of bioinformatics tools or workflows, such as Galaxy, the Job Management System, and eBiokits. A set of reproducible, portable, and cloud-scalable pipelines to support the multiple H3Africa data types are also being developed and dockerized to enable execution on multiple computing infrastructures. In addition, new tools have been developed for analysis of the uniquely divergent African data and for

  14. ENEA infrastructures toward the LFR development

    International Nuclear Information System (INIS)

    Tarantino, M.; Agostini, P.; Del Nevo, A.; Di Piazza, I.; Rozzia, D.

    2013-01-01

    ENEA has one of the most relevant EU R&D infrastructures for HLM technological development, and it is strongly involved in the main research programs worldwide supporting the development of sub-critical (MYRRHA) and critical lead cooled reactors (ALFRED). In these frames a large experimental program ranging from HLM thermal-hydraulic to large scale experiment has been implemented

  15. Promotion and financing of nuclear power programmes in developing countries

    International Nuclear Information System (INIS)

    Bennett, L.L.; Skjoeldebrand, R.

    1988-01-01

    Nuclear power has been introduced only to a small extent in a few developing countries. A group of senior experts conducted a study of the existing constraints on nuclear power in developing countries, the requirements to be met for successful introduction of a nuclear power programme, and mechanisms to assist developing countries in overcoming the identified constraints. Financing represents one (but not the only) major constraint to nuclear power development in developing countries. The present schemes of export credits and commercial financing are seen as not adequately meeting the needs of nuclear power financing in terms of repayment periods and profiles, or in terms of flexibility to meet delays and cost overruns. Innovative and workable arrangements to share the economic and financial risks would be helpful in obtaining financing for a nuclear power project. All possible efforts should be made by all parties involved in the development of nuclear power to reduce as far as possible the uncertainties surrounding the cost and schedule of a nuclear power project, as an essential step to improve the overall climate for financing the project. Government commitment, soundly based and thorough planning, development of qualified manpower and other key infrastructures, and good project management are important mechanisms to achieve greater predictability in project schedule and cost. Technical assistance provided by the IAEA can be very helpful in building these capabilities in developing countries. (author). 1 tab

  16. Development tools for risk implementation of entrepreneurship infrastructure

    Directory of Open Access Journals (Sweden)

    Rustam Ilkamovich Malikov

    2013-12-01

    Full Text Available In the present article, we consider the organizational, economic and institutional aspects of the implementation of infrastructure projects in the Russian Federation. The main objective of the work is to try to organize the parameters of the national economy on the criteria of quality and availability of infrastructure for domestic business. According to the authors, an effective solution to the problem of modernization of infrastructure businesses in the regions may be the result of interaction between the state, the public and businesses to achieve the consolidation of their joint efforts. However, inadequate institutional and legal framework for the interaction of the institutions of government and business can be a significant barrier to the implementation of infrastructure projects to ensure economic activities of businesses. For this reason it is necessary to increase the loyalty and mutual benefit relationship of relevant government agencies and commercial organizations to develop the infrastructure of the complex in the context of meeting the mutual expectations of the parties at all stages of interaction. With the use of fuzzy set theory researchers presented a risk assessment model for infrastructure projects. The use of the model will allow for the participation of the rationale business structure in the formation of infrastructure resources to meet emerging potential benefits in the prevailing levels of risk.

  17. Application of the principle of Open Initiatives in developing Trakai tourism infrastructure

    Directory of Open Access Journals (Sweden)

    Eugenijus Nazelskis

    2013-01-01

    Full Text Available This article aims to identify the principle of open initiatives, launched by Trakai resort municipality, which is focused on infrastructure development in order to open the way for widespread participation of natural and legal persons in infrastructure projects and to define the strategic directions in tourism development and infrastructure projects that apply this principle. In addition, it aims to assess the effectiveness of this principle as well as its practical benefits to the expansion of tourism infrastructure and the development of new tourism products.

  18. Information infrastructure development in NRU «MPEI»

    Directory of Open Access Journals (Sweden)

    E. G. Gridina

    2016-01-01

    Full Text Available The article describes the work on support and development of information infrastructure NRU «MPEI». Information infrastructure have different approaches to the defi nition. The authors defi ne the information infrastructure as a set of basic information services, computing, storage and data transmission systems that provide user access to information resources. New conditions dictate new approaches to building the education system in general and the educational process in each educational institution. NRU «MPEI» working to create a modern information infrastructure, including automated control systems, information resources and services, modular systems disciplines. This article describes the requirements for a modern information infrastructure of the NRU «MPEI», that provides students and teachers with the necessary services. Information infrastructure includes a set of software and hardware to ensure interaction between the participants of the educational process. All services and NRU «MPEI» system included in the unifi ed information educational environment (UIEE. Architecture UIEE NRU «MPEI» is displayed in the article. UIEE NRU «MPEI» is deployed on the basis of information network NRU «MPEI» and enables a comprehensive optimization of university management in various areas. Information and Computing Center supporting information and computer network NRU «MPEI», bought more than 4800 licenses in 43 different license versions of the software manufacturers. The server segment information network NRU «MPEI» contains a complex infrastructure and application servers for processing and storing information.The segment there are 20 high-performance server and storage system capacity of over 30 TB. In the server segment deployed complex systems to meet the needs in the various fi elds of activity NRU «MPEI», and the educational system to support the economic , scientifi c and human complex. Currently, ICC also pays great

  19. Establishment of nuclear knowledge and information infrastructure

    International Nuclear Information System (INIS)

    Chang, Jong Hwa; Yoo, K. J.; Kim, Y. T. and others

    2002-11-01

    An internet portal site which can be a hub web site of information, was developed and disclosed to enhance the information production and dissimination. The representative functions of the portal site are to provide a site map which provide categorized service of domestic and global internet home pages, and a bulletin board, a closed user group. The serviced databases consist of an encyclopedia of nuclear information, which contains detailed description of nuclear relevant topics, a software database for computer program services, a newspaper database for proving up to date news articles, a descriptive database on the incident and accident on the nuclear power plant, and a central search engine on the bibliographic informations. The training lecture texts for the experts on the field of nuclear energy and radiation technology was converted into HTML formatted text and are on service on an internet web site. Six coursewares for the students studying the nuclear engineering are developed and six digital education platforms are introduced for the nuclear engineering departments of domestic universities. The platforms are used in teaching students utilizing the courseware intergrated with engineering simulation programs for substituting experiments which are difficult, dangerous and sometimes impossible in real situation

  20. Infrastructure development, income inequality, and urban sustainability in the People's Republic of China

    OpenAIRE

    Mendoza, Octasiano M. Valerio

    2017-01-01

    This paper examines the relationship between infrastructure development and income inequality in urban People's Republic of China. Recent policies target reductions in income inequality while increasing sustainable urban development. Infrastructure investment plays a key role in achieving both goals, yet the effects of different infrastructures on income disparities at the city level remain undetermined. Using 10 city-level infrastructure indicators relating to sustainable urban development a...

  1. A National Strategy to Develop Pragmatic Clinical Trials Infrastructure

    Science.gov (United States)

    Guise, Jeanne‐Marie; Dolor, Rowena J.; Meissner, Paul; Tunis, Sean; Krishnan, Jerry A.; Pace, Wilson D.; Saltz, Joel; Hersh, William R.; Michener, Lloyd; Carey, Timothy S.

    2014-01-01

    Abstract An important challenge in comparative effectiveness research is the lack of infrastructure to support pragmatic clinical trials, which compare interventions in usual practice settings and subjects. These trials present challenges that differ from those of classical efficacy trials, which are conducted under ideal circumstances, in patients selected for their suitability, and with highly controlled protocols. In 2012, we launched a 1‐year learning network to identify high‐priority pragmatic clinical trials and to deploy research infrastructure through the NIH Clinical and Translational Science Awards Consortium that could be used to launch and sustain them. The network and infrastructure were initiated as a learning ground and shared resource for investigators and communities interested in developing pragmatic clinical trials. We followed a three‐stage process of developing the network, prioritizing proposed trials, and implementing learning exercises that culminated in a 1‐day network meeting at the end of the year. The year‐long project resulted in five recommendations related to developing the network, enhancing community engagement, addressing regulatory challenges, advancing information technology, and developing research methods. The recommendations can be implemented within 24 months and are designed to lead toward a sustained national infrastructure for pragmatic trials. PMID:24472114

  2. ECONOMIC AND LEGAL GROUNDS FOR INVESTMENT IN DEVELOPMENT OF TRANSPORT INFRASTRUCTURE

    Directory of Open Access Journals (Sweden)

    V. V. Zhelezniak

    2017-02-01

    Full Text Available Purpose. In Ukraine, as in many countries of the world, transport is one of the most fundamental sectors of the national economy, important part of the industrial and social spheres. But in the conditions of industry reforming there are problems of investing in development of rail transport. So the work is devoted to the grounds of potentially available sources of investment in infrastructure of railway transport of Ukraine. The work stresses the importance of the problem of attracting foreign investment in the economy, highlights the proposals to solve this problem. Methodology. To solve the problems of this class the work presents the proposed methods of analysis, synthesis and comparison, deduction, induction, logic and abstraction. It becomes necessary to search for and study of new conceptual approaches to organization of investment processes at railway transport enterprises, appropriate management and financial decisions and schemes of railway infrastructure development. Findings. The paper shows ways to optimize investment for modernization and technical re-equipment of the transport complex of Ukraine. It proposes the ways of attracting capital of investors for development of transport infrastructure: compliance with European laws and regulations; reforming of the tax system of Ukraine; combating corruption in the country; implementation of public-private partnership tools into the mechanism of state regulation of investment processes; creating a favourable investment climate for implementation of rail transport infrastructure projects; creating a system of compensation to investors; guarantees of transport infrastructure investment protection. Originality. The work offers the sources of investment for development of railway infrastructure in Ukraine, which should include: state budget funds, use of targeted loans and leasing. The main direction of the state policy concerning infrastructure should be a gradual transition of activity in

  3. Regional planning and urban infrastructure development in the ...

    African Journals Online (AJOL)

    Regional planning and urban infrastructure development in the Gongola region, ... PROMOTING ACCESS TO AFRICAN RESEARCH ... In North-eastern Nigeria, the Gongola region has been one of the least developed since independence.

  4. Developing an infrastructure index : phase I.

    Science.gov (United States)

    2010-04-01

    Over the past decade the American Society of Civil Engineers has used the Infrastructure Report : Card to raise awareness of infrastructure issues. Aging and deteriorating infrastructure has : recently been highlighted in the popular media. However, ...

  5. IAEA Launches Expert Advisory Service for Research Reactor Infrastructure, First Mission to Nigeria

    International Nuclear Information System (INIS)

    2018-01-01

    The International Atomic Energy Agency (IAEA) has launched a new peer review service to assist Member States in the development of infrastructure for nuclear research reactors, expanding the range of its expert advisory missions. The first Integrated Nuclear Infrastructure Review for Research Reactors (INIR-RR) was conducted this week in Nigeria at the invitation of the Government, which is planning to build the country’s second research reactor. Research reactors are used for research, development, education and training. They play a vital role across several fields, producing radioisotopes used in research, medicine, industry and agriculture. Operation of a research reactor requires a national infrastructure — including a legal and regulatory framework — to ensure that national and international obligations are met during planning, design, construction, operation and decommissioning.

  6. Resilience framework for critical infrastructures: An empirical study in a nuclear plant

    International Nuclear Information System (INIS)

    Labaka, Leire; Hernantes, Josune; Sarriegi, Jose M.

    2015-01-01

    The safety and proper functioning of Critical Infrastructures (CIs) are essential for ensuring the welfare of society, which puts the issue of improving their resilience level at the forefront of the field of crisis management. Most of the resilience-building principles defined in the literature do not cover all the dimensions that make up resilience and most of them only focus within the boundaries of the CI, neglecting the role of the external agents that also have an influence on enhancing resilience. Furthermore, most of the principles that are present in the literature are theoretical and difficult to implement in practice. In light of this situation, the aim of this research is to present a holistic resilience framework for critical infrastructures in order to improve their resilience level by taking into account internal and external agents and covering all the resilience dimensions. Furthermore, this framework has been defined in close collaboration with the general management of CIs to facilitate its implementation in practice. Finally, in order to illustrate the value added of this framework it was implemented in a nuclear plant. - Highlights: • Resilience protects against foreseen and unpredicted events. • There are two types of resilience: internal resilience and external resilience. • Sixteen policies and thirty sub-policies assist on building resilience. • Power nuclear plant focused on risk management approach rather than resilience. • The plant’s event driven risk management was enhanced with an all hazard approach

  7. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Infrastructure. Vol. 3 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    country, region and globally. As discussed in Section 5.2 of Volume 1 of the INPRO manual, a country considering whether to acquire its first NPP, needs to identify, early in its planning, what steps it will need to take to establish the required infrastructure. The INRO methodology can be helpful to such a country in identifying these requirements. Thus, the current volume 3 of the INPRO Manual is directed primarily at an assessor who is seeking to use the INPRO methodology in the area of infrastructure to identify areas of concern that need to be addressed in planning for a first NPP. The manual can, nevertheless, also be used to look at infrastructure requirements when planning for other components of an INS, for example, fuel manufacturing, when planning for an expansion of an existing nuclear power program, and/or for the replacement of currently operating plants when they reach the end of their useful life. The INPRO Manual for the area of infrastructure starts with an introduction in Chapter 1. In Chapter 2 the main information that is needed for an INPRO assessment in the area of infrastructure is specified. A prerequisite for performing an INPRO assessment is the planning of the nuclear power program. In Chapter 3 background information concerning the INPRO basic principle, user requirements and criteria in the area of infrastructure is set out and a process for assessing the criteria is presented. From the discussion in the preceding section, it is clear that a number of factors or topics need to be considered in the area of infrastructure. These factors are grouped together and discussed, in Chapter 3 of the manual, under the following general headings, each of which represents a user requirement (UR) in the area of infrastructure: Legal and institutional considerations (UR1); Industrial and economic considerations (UR2); Political support and public acceptance (UR3); and o Human resources (UR4). Annex A sets out suggestions for possible future developments of

  8. Upgrading nuclear regulatory infrastructure in Armenia

    International Nuclear Information System (INIS)

    Martirosyan, A.; Amirjanyan, A.; Kacenelenbogen, S.

    2010-01-01

    Armenia is contemplating an upgrade to its national power generation capacity to meet replacement and future energy needs. Unit 2 of ANPP is scheduled for shutdown after replacement power generation capacities are in place. A recent alternative energy study indicates viability of the nuclear option to replace this capacity. Some technology-specific proposals are being considered by the Ministry of Energy of Armenia. It is likely that the reactor technology decision will be made in the not too distant future. The existing reactor continues to be operated in the regulatory framework developed in the Soviet Union and adopted in Armenia. Given the interest in the new reactor, Armenia launched a project to review the existing system of regulation and to bring it into harmony with modern practice in preparation for the new reactor project development. The new regulatory framework will be needed as a basis for any potential tendering process. The US NRC and ANRA have agreed to perform a review and update nuclear legislation and the system of regulation in this area. The first step in this process was to develop an action plan for such program. The action plan describes the overall strategy of ANRA to modify existing or develop new processes and requirements, identifies the major Laws that need to be reviewed given practical legal considerations to construct and operate the reactor and Armenia's international obligations under various conventions. This work included review of existing models of regulation in different countries with 'small' nuclear program, including IAEA recommendations as well as existing legislation in Armenia in this area and development of a strategy for the regulatory model development. In addition, the plan to develop requirements for ANRA staffing and training needs to meet its regulatory obligations under the new reactor development process was developed

  9. Human resources development in nuclear field in Japan

    International Nuclear Information System (INIS)

    Seki, Y.

    2007-01-01

    In this report, the recent topics in the nuclear field, some investigated data on human resources development (HRD) in nuclear field in Japan and the status of HRD and strategy are presented. We have investigated the basic data on HRD in nuclear field in some Asian countries so that the data could be used to develop HRD strategy. The basic data have been investigated for Japan in the following area. (1) Numbers of graduate and undergraduate students and faculty members for each of the nuclear related departments in the universities have been investigated; (2) The information on the academic associations and societies related to nuclear field has been collected; (3) In addition to the basic data directly related to human resources, the data related to the strategy for nuclear utilization such as the data on research reactors, the data on the level of the application of RI and radiation in medicine, agriculture, industry and environment and the future plan to construct NPPs, the number of NPPs being constructed and NPPs under operation have been collected and tabulated for each country. In Japan, many of the experienced nuclear engineers and scientists who have constructed nuclear power plants and developed the application methodology of RI and radiation, are aging and retiring. Also with the decrease in the construction of nuclear power plants and decrease in the nuclear energy research expenditures, it is becoming more difficult to maintain the present level of capability in designing and manufacturing of nuclear facilities. On the other hand, the educational infrastructures in the universities such as nuclear research reactors and the facilities where handling of radioactive materials is permitted, are deteriorating due to the difficulties to meet the more strict regulatory requirements. With the decrease in the popularity of nuclear energy and maturing of nuclear technology it is becoming more difficult to attract sufficient number of promising young individuals

  10. Infrastructure for Detector Research and Development towards the International Collider

    CERN Document Server

    Aguilar, J.; Fiutowski, T.; Idzik, M.; Kulis, Sz.; Przyborowski, D.; Swientek, K.; Bamberger, A.; Kohli, M.; Lupberger, M.; Renz, U.; Schumacher, M.; Zwerger, Andreas; Calderone, A.; Cussans, D.G.; Heath, H.F.; Mandry, S.; Page, R.F.; Velthuis, J.J.; Attie, D.; Calvet, D.; Colas, P.; Coppolani, X.; Degerli, Y.; Delagnes, E.; Gelin, M.; Giomataris, I.; Lutz, P.; Orsini, F.; Rialot, M.; Senee, F.; Wang, W.; Alozy, J.; Apostolakis, J.; Aspell, P.; Bergsma, F.; Campbell, M.; Formenti, F.; Santos, H.Franca; Garcia, E.Garcia; de Gaspari, M.; Giudice, P.A.; Grefe, Ch.; Grichine, V.; Hauschild, M.; Ivantchenko, V.; Kehrli, A.; Kloukinas, K.; Linssen, L.; Cudie, X.Llopart; Marchioro, A.; Musa, L.; Ribon, A.; Trampitsch, G.; Uzhinskiy, V.; Anduze, M.; Beyer, E.; Bonnemaison, A.; Boudry, V.; Brient, J.C.; Cauchois, A.; Clerc, C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Jauffret, C.; Jeans, D.; Karar, A.; Mathieu, A.; de Freitas, P.Mora; Musat, G.; Rouge, A.; Ruan, M.; Vanel, J.C.; Videau, H.; Besson, A.; de Masi, G.Claus.R.; Doziere, G.; Dulinski, W.; Goffe, M.; Himmi, A.; Hu-Guo, Ch.; Morel, F.; Valin, I.; Winter, M.; Bonis, J.; Callier, S.; Cornebise, P.; Dulucq, F.; Giannelli, M.Faucci; Fleury, J.; Guilhem, G.; Martin-Chassard, G.; de la Taille, Ch.; Poschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Benyamna, M.; Bonnard, J.; Carloganu, C.; Fehr, F.; Gay, P.; Mannen, S.; Royer, L.; Charpy, A.; Da Silva, W.; David, J.; Dhellot, M.; Imbault, D.; Ghislain, P.; Kapusta, F.; Pham, T.Hung; Savoy-Navarro, A.; Sefri, R.; Dzahini, D.; Giraud, J.; Grondin, D.; Hostachy, J.Y.; Morin, L.; Bassignana, D.; Pellegrini, G.; Lozano, M.; Quirion, D.; Fernandez, M.; Jaramillo, R.; Munoz, F.J.; Vila, I.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Kvasnicka, P.; Aplin, S.; Bachynska, O.; Behnke, T.; Behr, J.; Dehmelt, K.; Engels, J.; Gadow, K.; Gaede, F.; Garutti, E.; Gottlicher, P.; Gregor, I.M.; Haas, T.; Henschel, H.; Koetz, U.; Lange, W.; Libov, V.; Lohmann, W.; Lutz, B.; Mnich, J.; Muhl, C.; Ohlerich, M.; Potylitsina-Kube, N.; Prahl, V.; Reinecke, M.; Roloff, P.; Rosemann, Ch.; Rubinski, Igor; Schade, P.; Schuwalov, S.; Sefkow, F.; Terwort, M.; Volkenborn, R.; Kalliopuska, J.; Mehtaelae, P.; Orava, R.; van Remortel, N.; Cvach, J.; Janata, M.; Kvasnicka, J.; Marcisovsky, M.; Polak, I.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Bergauer, T.; Dragicevic, M.; Friedl, M.; Haensel, S.; Irmler, C.; Kiesenhofer, W.; Krammer, M.; Valentan, M.; Piemontese, L.; Cotta-Ramusino, A.; Bulgheroni, A.; Jastrzab, M.; Caccia, M.; Re, V.; Ratti, L.; Traversi, G.; Dewulf, J.P.; Janssen, X.; De Lentdecker, G.; Yang, Y.; Bryngemark, L.; Christiansen, P.; Gross, P.; Jonsson, L.; Ljunggren, M.; Lundberg, B.; Mjornmark, U.; Oskarsson, A.; Richert, T.; Stenlund, E.; Osterman, L.; Rummel, S.; Richter, R.; Andricek, L.; Ninkovich, J.; Koffmane, Ch.; Moser, H.G.; Boisvert, V.; Green, B.; Green, M.G.; Misiejuk, A.; Wu, T.; Bilevych, Y.; Carballo, V.M.Blanco; Chefdeville, M.; de Nooij, L.; Fransen, M.; Hartjes, F.; van der Graaf, H.; Timmermans, J.; Abramowicz, H.; Ben-Hamu, Y.; Jikhleb, I.; Kananov, S.; Levy, A.; Levy, I.; Sadeh, I.; Schwartz, R.; Stern, A.; Goodrick, M.J.; Hommels, L.B.A.; Ward, R.Shaw.D.R.; Daniluk, W.; Kielar, E.; Kotula, J.; Moszczynski, A.; Oliwa, K.; Pawlik, B.; Wierba, W.; Zawiejski, L.; Bailey, D.S.; Kelly, M.; Eigen, G.; Brezina, Ch.; Desch, K.; Furletova, J.; Kaminski, J.; Killenberg, M.; Kockner, F.; Krautscheid, T.; Kruger, H.; Reuen, L.; Wienemann, P.; Zimmermann, R.; Zimmermann, S.; Bartsch, V.; Postranecky, M.; Warren, M.; Wing, M.; Corrin, E.; Haas, D.; Pohl, M.; Diener, R.; Fischer, P.; Peric, I.; Kaukher, A.; Schafer, O.; Schroder, H.; Wurth, R.; Zarnecki, A.F.

    2012-01-01

    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.

  11. Iran's nuclear program - for power generation or nuclear weapons?

    International Nuclear Information System (INIS)

    Kippe, Halvor

    2008-11-01

    This report addresses the development of a nuclear infrastructure in Iran, and assessments are made on the near-term potential this infrastructure might yield of either nuclear power or nuclear arms production. The most significant facilities are treated in a more elaborate fashion, as these are assumed to have key roles in either a true civilian programme, or in the prospect of weapons-grade fissile material production. The future potential capacity for the latter is calculated under certain presumptions, both in the case that Iran focuses its efforts on uranium-based nuclear weapons, and in the case that it should choose the plutonium path to nuclear weapons. All the conclusions and findings in this report are based on technological considerations. This means that social or political assessments have not prevailed, rather the picture of Iran's nuclear programme is drawn through descriptions and assessments of facilities and systems, and their role in the bigger context. Definite conclusions have not been made as to whether Iran's nuclear programme currently is aimed towards nuclear arms or nuclear power. The secrecy surrounding some of the most prominent nuclear sites together with more or less credible allegations of purely weapons-related activities in the past, make it hard not to conclude that Iran until the disclosures in 2002 made as great an effort as it could on its way on developing nuclear weapons covertly. The scope of today's nuclear programme seems, on the other hand, most likely to be in part to help relieve the ever-increasing need for energy, although considerable deficits to this strategy are identified, at the same time as the Iranian people are united in a giant, high-prestige project in defiance of massive international pressure. Adding to this is a much-feared ability to rapidly being able to redirect their nuclear efforts, and develop nuclear arms in perhaps as little as one year. This so-called break-out scenario, where Iran presumably

  12. Practitioners’ Views Promoting Infrastructure Investment: The G20 and the Multilateral Development Banks

    Directory of Open Access Journals (Sweden)

    Hannah Wurf

    2017-12-01

    Full Text Available The G20 is committed to promoting infrastructure investment and has called on multilateral development banks (MDBs to increase their infrastructure lending to help boost global growth. Alongside long-standing MDBs such as the World Bank and Asian Development Bank (ADB, new MDBs such as the Asian Infrastructure and Investment Bank (AIIB and the New Development Bank have been established, and G20 members would like both old and new multilateral banks to scale up their infrastructure investment by developing a pipeline of bankable projects. Even with all the MDBs investing more, they will not be able to satisfy the global need for infrastructure. What they can do, however, is start to fill the infrastructure gap by catalyzing private investment and cooperating on standards and regional infrastructure. Concerns have been raised about the geo-political implications of the new MDBs which underscore the need for MDB cooperation. There are challenges to and opportunities for this cooperation. The G20 needs to be clear about the role it can play in encouraging MDB cooperation and infrastructure investment, and must also be aware of the limitations on its role given that each MDB has its own mandate. Specifically, the G20 can downplay the perceived trade-off between efficiency and standards in the MDBs, encourage cooperation on new standards for sustainable or green infrastructure, invest in the Global Connectivity Alliance as a coordinating body for the MDBs and help align the G20 work on infrastructure with the United Nations Sustainable Development Agenda

  13. Supporting life-long competence development using the TENCompetence infrastructure: a first experiment

    NARCIS (Netherlands)

    Schoonenboom, J.; Sligte, H.; Moghnieh, A.; Hernàndez-Leo, D.; Stefanov, K.; Glahn, C.; Specht, M.; Lemmers, R.; Sligte, H.; Koper, R.

    2008-01-01

    This paper describes a test of the TENCompetence infrastructure that was developed for supporting lifelong competence development. The infrastructure contains supportive elements, among others the listing of competences and their components, competence development plans attached to competences and

  14. The national response for preventing healthcare-associated infections: infrastructure development.

    Science.gov (United States)

    Mendel, Peter; Siegel, Sari; Leuschner, Kristin J; Gall, Elizabeth M; Weinberg, Daniel A; Kahn, Katherine L

    2014-02-01

    In 2009, the US Department of Health and Human Services (HHS) launched the Action Plan to Prevent Healthcare-associated Infections (HAIs). The Action Plan adopted national targets for reduction of specific infections, making HHS accountable for change across the healthcare system over which federal agencies have limited control. This article examines the unique infrastructure developed through the Action Plan to support adoption of HAI prevention practices. Interviews of federal (n=32) and other stakeholders (n=38), reviews of agency documents and journal articles (n=260), and observations of interagency meetings (n=17) and multistakeholder conferences (n=17) over a 3-year evaluation period. We extract key progress and challenges in the development of national HAI prevention infrastructure--1 of the 4 system functions in our evaluation framework encompassing regulation, payment systems, safety culture, and dissemination and technical assistance. We then identify system properties--for example, coordination and alignment, accountability and incentives, etc.--that enabled or hindered progress within each key development. The Action Plan has developed a model of interagency coordination (including a dedicated "home" and culture of cooperation) at the federal level and infrastructure for stimulating change through the wider healthcare system (including transparency and financial incentives, support of state and regional HAI prevention capacity, changes in safety culture, and mechanisms for stakeholder engagement). Significant challenges to infrastructure development included many related to the same areas of progress. The Action Plan has built a foundation of infrastructure to expand prevention of HAIs and presents useful lessons for other large-scale improvement initiatives.

  15. Methodology for Analyzing and Developing Information Management Infrastructure to Support Telerehabilitation

    Directory of Open Access Journals (Sweden)

    Andi Saptono

    2009-09-01

    Full Text Available The proliferation of advanced technologies led researchers within the Rehabilitation Engineering Research Center on Telerehabilitation (RERC-TR to devise an integrated infrastructure for clinical services using the University of Pittsburgh (PITT model. This model describes five required characteristics for a telerehabilitation (TR infrastructure: openness, extensibility, scalability, cost-effectiveness, and security. The infrastructure is to deliver clinical services over distance to improve access to health services for people living in underserved or remote areas. The methodological approach to design, develop, and employ this infrastructure is explained and detailed for the remote wheelchair prescription project, a research task within the RERC-TR. The availability of this specific clinical service and personnel outside of metropolitan areas is limited due to the lack of specialty expertise and access to resources. The infrastructure is used to deliver expertise in wheeled mobility and seating through teleconsultation to remote clinics, and has been successfully deployed to five rural clinics in Western Pennsylvania. Keywords: Telerehabilitation, Information Management, Infrastructure Development Methodology, Videoconferencing, Online Portal, Database

  16. Cooperation of nuclear manpower development between Viet Nam and Korea in order to enhance establishment of infrastructure in exporting nuclear technology to Viet Nam

    International Nuclear Information System (INIS)

    Lee, E. J.; Han, K. W.; Park, J. K.; Kim, Y. T.; Nam, Y. M.; Jang, Y. H.; Yang, M. H.

    2003-08-01

    Through this project, KAERI provided OJT Programme to 3 nuclear experts of Viet Nam at the KAERI for 3 months as a cooperation of human resource development in the field of nuclear policy, nuclear safety analysis and thermo hydraulic. We could have publicity activities of S/W and H/W then achieve an advantage position of economical and technical in exporting nuclear technology to Viet Nam. Also we have provided a training course and seminar for a high-level delegation of nuclear policy decision makers, which is consisted of 5 deputy ministers and general directors of Viet Nam in Korea. Thus we could have Vietnamese who are favoring Korea. The KAERI will also prepare a data base of trained Vietnamese in Korea for the maximum utilization of them in cooperating with Viet Nam. We accomplished the cooperation of human resource development and providing program and curriculum of the nuclear education and training in Viet Nam. Furthermore, it is expected that the enhancement of nuclear technical cooperation between Viet Nam and Korea and the nuclear human resource development

  17. Cooperation of nuclear manpower development between Viet Nam and Korea in order to enhance establishment of infrastructure in exporting nuclear technology to Viet Nam

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. J.; Han, K. W.; Park, J. K.; Kim, Y. T.; Nam, Y. M.; Jang, Y. H.; Yang, M. H

    2003-08-15

    Through this project, KAERI provided OJT Programme to 3 nuclear experts of Viet Nam at the KAERI for 3 months as a cooperation of human resource development in the field of nuclear policy, nuclear safety analysis and thermo hydraulic. We could have publicity activities of S/W and H/W then achieve an advantage position of economical and technical in exporting nuclear technology to Viet Nam. Also we have provided a training course and seminar for a high-level delegation of nuclear policy decision makers, which is consisted of 5 deputy ministers and general directors of Viet Nam in Korea. Thus we could have Vietnamese who are favoring Korea. The KAERI will also prepare a data base of trained Vietnamese in Korea for the maximum utilization of them in cooperating with Viet Nam. We accomplished the cooperation of human resource development and providing program and curriculum of the nuclear education and training in Viet Nam. Furthermore, it is expected that the enhancement of nuclear technical cooperation between Viet Nam and Korea and the nuclear human resource development.

  18. Development or Deployment of 'Grid-Appropriate' Reactors for the Global Nuclear Energy Partnership

    International Nuclear Information System (INIS)

    Ingersoll, D. T.

    2008-01-01

    The world energy demand is expected to nearly double by 2030, largely driven by rapidly increasing demand in the developing parts of the world. Many of the countries that will experience the greatest growth in energy demand have little or no current nuclear power experience and have significant constraints on the size and type of power plant that can be accommodated. Although a few reactor vendors are beginning to address this market need, most traditional vendors continue to offer only very large nuclear power plants with capacities exceeding 1500 MWe per unit. The Global Nuclear Energy Partnership (GNEP), which was initiated in the United States and now includes a partnership of 20 countries, seeks to facilitate the large-scale global growth in nuclear power. Within the GNEP program, the 'grid-appropriate' reactors (GAR) campaign has been initiated to coordinate and facilitate the development, demonstration, and deployment of reactor designs that are better suited for those countries that need or prefer smaller power plant capacities. The GNEP/GAR program addresses the full spectrum of issues for the deployment of new reactor designs to new nuclear power countries, including: reactor technology and engineering, licensing and regulatory impacts, and infrastructure needs (physical, workforce, and institutional). Initially, the program is focused on meeting the current global demand for small or medium-sized reactors using demonstrated technologies. The program will also address the development of new reactor technologies that will further enhance the safety, security, and proliferation resistance of future designs. International collaborations are being established to: (1) develop suitable requirements and criteria for GAR designs, (2) conduct R and D for longer-term reactor technologies and innovative designs, and (3) assisting new nuclear power countries in assessing their infrastructure needs. The status of these activities will be presented and future program

  19. Role of the national R and D organization in the nuclear industrial infrastructure of Korea

    International Nuclear Information System (INIS)

    Duck Seung Kim

    1986-04-01

    Korea now operates five units of nuclear power plants delivering nearly 30f of her electrical energy and four more units are under construction. Korea gained gradual localization of materials and skills through first generation of power reactors (unit 1,2,3) under complete turn-key contracts and second generation (unit 5 through 10) under component approach contracts. National infrastructure in support of large scale nuclear power program is at forming stages through localization of design and engineering, manufacturing, construction, operation, services and fuel cycle activities. However, Korea is seeking full scope technology transfer along with the next ambitious nuclear project KNU 11 and 12 to be started in 1987. KAERI, the sole national nuclear R and D organization, is now deeply committed in three folds in direct support of Korea's expanding nuclear power program. KAERI is responsible for delivering NSSS system design from KNU 11 and 12, nuclear fuel design from 1989 for all Korea's PWRs as well as CANDU fuels from 1988, and responsible for radwaste management for all the power reactors. (author). 4 figs, 3 tabs

  20. Nuclear Power Newsletter, Vol. 11, no. 1, January 2014

    International Nuclear Information System (INIS)

    2014-01-01

    An IAEA-led team of international experts reviewed Turkey's programme for introducing nuclear power and found that important progress has been made in the development of the country's nuclear infrastructure. In November 2013, an Integrated Nuclear Infrastructure Review (INIR) mission, invited by the Government of Turkey, reviewed the country's progress in developing a national infrastructure for Turkey's new nuclear power programme. The INIR Mission team consisted of IAEA staff from the Departments of Nuclear Energy, Nuclear Safety and Security, Safeguards and Technical Cooperation, the IAEA Office of Legal Affairs and international experts recruited by the IAEA in consultation with Turkey. Turkey, which has considered nuclear power generation since the 1970s, decided to build nuclear power plants to meet the rapidly increasing demand for electricity and support the country's economic development. The share of nuclear power in Turkish electricity generation is aimed to reach at least 10 per cent by 2023. In 2010, Turkey and the Russian Federation signed an agreement for the construction and operation of the first nuclear power plant at the Akkuyu site in southern Turkey, as a build-own-operate (BOO) project. The first of Akkuyu's four units, with a total capacity of 4800 MWe, is scheduled to be commissioned in 2021. A second nuclear power plant will be built at the Sinop site on the Black Sea, with Japan. Turkey and the IAEA agreed on a close cooperation in the development of the national nuclear infrastructure already a year ago, when the roadmap for the INIR mission was established during a meeting of IAEA and Turkish senior officials in November 2012. This included IAEA assistance for the self-evaluation. During the two-week meetings, the review team worked closely with Turkish counterparts from the 25 organizations involved in building the national nuclear infrastructure, such as the Ministry of Energy and Natural Resources (MENR), which hosted the mission in

  1. Nuclear Power Newsletter, Vol. 11, no. 1, January 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-01-15

    An IAEA-led team of international experts reviewed Turkey's programme for introducing nuclear power and found that important progress has been made in the development of the country's nuclear infrastructure. In November 2013, an Integrated Nuclear Infrastructure Review (INIR) mission, invited by the Government of Turkey, reviewed the country's progress in developing a national infrastructure for Turkey's new nuclear power programme. The INIR Mission team consisted of IAEA staff from the Departments of Nuclear Energy, Nuclear Safety and Security, Safeguards and Technical Cooperation, the IAEA Office of Legal Affairs and international experts recruited by the IAEA in consultation with Turkey. Turkey, which has considered nuclear power generation since the 1970s, decided to build nuclear power plants to meet the rapidly increasing demand for electricity and support the country's economic development. The share of nuclear power in Turkish electricity generation is aimed to reach at least 10 per cent by 2023. In 2010, Turkey and the Russian Federation signed an agreement for the construction and operation of the first nuclear power plant at the Akkuyu site in southern Turkey, as a build-own-operate (BOO) project. The first of Akkuyu's four units, with a total capacity of 4800 MWe, is scheduled to be commissioned in 2021. A second nuclear power plant will be built at the Sinop site on the Black Sea, with Japan. Turkey and the IAEA agreed on a close cooperation in the development of the national nuclear infrastructure already a year ago, when the roadmap for the INIR mission was established during a meeting of IAEA and Turkish senior officials in November 2012. This included IAEA assistance for the self-evaluation. During the two-week meetings, the review team worked closely with Turkish counterparts from the 25 organizations involved in building the national nuclear infrastructure, such as the Ministry of Energy and Natural Resources (MENR), which hosted the mission in

  2. 78 FR 71565 - Secretarial Infrastructure Business Development Mission to Mexico

    Science.gov (United States)

    2013-11-29

    ... DEPARTMENT OF COMMERCE Office of Business Liaison Secretarial Infrastructure Business Development... amending the Notice published at 78 FR 48855, August 12, 2013, regarding the Secretarial Infrastructure..., Trade Program Assistant. [FR Doc. 2013-28579 Filed 11-27-13; 8:45 am] BILLING CODE 3510-FP-P ...

  3. Decision analysis and risk models for land development affecting infrastructure systems.

    Science.gov (United States)

    Thekdi, Shital A; Lambert, James H

    2012-07-01

    Coordination and layering of models to identify risks in complex systems such as large-scale infrastructure of energy, water, and transportation is of current interest across application domains. Such infrastructures are increasingly vulnerable to adjacent commercial and residential land development. Land development can compromise the performance of essential infrastructure systems and increase the costs of maintaining or increasing performance. A risk-informed approach to this topic would be useful to avoid surprise, regret, and the need for costly remedies. This article develops a layering and coordination of models for risk management of land development affecting infrastructure systems. The layers are: system identification, expert elicitation, predictive modeling, comparison of investment alternatives, and implications of current decisions for future options. The modeling layers share a focus on observable factors that most contribute to volatility of land development and land use. The relevant data and expert evidence include current and forecasted growth in population and employment, conservation and preservation rules, land topography and geometries, real estate assessments, market and economic conditions, and other factors. The approach integrates to a decision framework of strategic considerations based on assessing risk, cost, and opportunity in order to prioritize needs and potential remedies that mitigate impacts of land development to the infrastructure systems. The approach is demonstrated for a 5,700-mile multimodal transportation system adjacent to 60,000 tracts of potential land development. © 2011 Society for Risk Analysis.

  4. Development of a lunar infrastructure

    Science.gov (United States)

    Burke, J. D.

    If humans are to reside continuously and productively on the Moon, they must be surrounded and supported there by an infrastructure having some attributes of the support systems that have made advanced civilization possible on Earth. Building this lunar infrastructure will, in a sense, be an investment. Creating it will require large resources from Earth, but once it exists it can do much to limit the further demands of a lunar base for Earthside support. What is needed for a viable lunar infrastructure? This question can be approached from two directions. The first is to examine history, which is essentially a record of growing information structures among humans on Earth (tribes, agriculture, specialization of work, education, ethics, arts and sciences, cities and states, technology). The second approach is much less secure but may provide useful insights: it is to examine the minimal needs of a small human community - not just for physical survival but for a stable existence with a net product output. This paper presents a summary, based on present knowledge of the Moon and of the likely functions of a human community there, of some of these infrastructure requirements, and also discusses possible ways to proceed toward meeting early infrastructure needs.

  5. AUTOMATION OF CALCULATION ALGORITHMS FOR EFFICIENCY ESTIMATION OF TRANSPORT INFRASTRUCTURE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Sergey Kharitonov

    2015-06-01

    Full Text Available Optimum transport infrastructure usage is an important aspect of the development of the national economy of the Russian Federation. Thus, development of instruments for assessing the efficiency of infrastructure is impossible without constant monitoring of a number of significant indicators. This work is devoted to the selection of indicators and the method of their calculation in relation to the transport subsystem as airport infrastructure. The work also reflects aspects of the evaluation of the possibilities of algorithmic computational mechanisms to improve the tools of public administration transport subsystems.

  6. MARKETING AND LOGISTICS INFRASTRUCTURE DEVELOPMENT OF THE TRANSPORT SERVICES MARKET

    OpenAIRE

    Kopytko, V. I.

    2009-01-01

    Taking into account the modern trends of world economy development, the opportunities of increasing the competitiveness of the Ukrainian transport system on the base of marketing-logistical providing the development of infrastructure of transport services market are presented. The analysis of marketing-logistical approaches of estimation of the efficiency of operation of transport infrastructure objects is performed. The condition of theoretical and practical aspects of the transport services...

  7. Assessing large-scale wildlife responses to human infrastructure development.

    Science.gov (United States)

    Torres, Aurora; Jaeger, Jochen A G; Alonso, Juan Carlos

    2016-07-26

    Habitat loss and deterioration represent the main threats to wildlife species, and are closely linked to the expansion of roads and human settlements. Unfortunately, large-scale effects of these structures remain generally overlooked. Here, we analyzed the European transportation infrastructure network and found that 50% of the continent is within 1.5 km of transportation infrastructure. We present a method for assessing the impacts from infrastructure on wildlife, based on functional response curves describing density reductions in birds and mammals (e.g., road-effect zones), and apply it to Spain as a case study. The imprint of infrastructure extends over most of the country (55.5% in the case of birds and 97.9% for mammals), with moderate declines predicted for birds (22.6% of individuals) and severe declines predicted for mammals (46.6%). Despite certain limitations, we suggest the approach proposed is widely applicable to the evaluation of effects of planned infrastructure developments under multiple scenarios, and propose an internationally coordinated strategy to update and improve it in the future.

  8. Development on Guidance of Cyber Security Exercise for the Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyundoo [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2016-10-15

    Cyber threats and attacks are increasing rapidly against infrastructure including energy and utilities industry over the world. Because of lack of human resource and incident response system to prevent or defend increased cyber threats, many governments and major national infrastructures perform cyber security exercises to improve capabilities of cyber security incident response. Accordingly there are exponential growth in the number of cyber security exercises over the past decade with the trend expecting to accelerate in the coming years. Even though there were many cyber security exercises in the Nuclear Facilities, this exercise was first which focused on mitigation and recovery of the system of the Nuclear Facility against cyber incident. So many insufficient items were deduced such as absence of a procedure for mitigation and recovery of cyber incident. These procedures should be developed and established through 3rd phase of Cyber Security Plan (CSP) and other technical complement actions under regulatory body’s guidance. Also developed and existed procedures should be regularly performed to make cyber incident response team and related people rapidly response against cyber incident through exercises or other training. The insufficient items come from the exercise should be reflected to developed and existed procedures by periods.

  9. Development on Guidance of Cyber Security Exercise for the Nuclear Facilities

    International Nuclear Information System (INIS)

    Kim, Hyundoo

    2016-01-01

    Cyber threats and attacks are increasing rapidly against infrastructure including energy and utilities industry over the world. Because of lack of human resource and incident response system to prevent or defend increased cyber threats, many governments and major national infrastructures perform cyber security exercises to improve capabilities of cyber security incident response. Accordingly there are exponential growth in the number of cyber security exercises over the past decade with the trend expecting to accelerate in the coming years. Even though there were many cyber security exercises in the Nuclear Facilities, this exercise was first which focused on mitigation and recovery of the system of the Nuclear Facility against cyber incident. So many insufficient items were deduced such as absence of a procedure for mitigation and recovery of cyber incident. These procedures should be developed and established through 3rd phase of Cyber Security Plan (CSP) and other technical complement actions under regulatory body’s guidance. Also developed and existed procedures should be regularly performed to make cyber incident response team and related people rapidly response against cyber incident through exercises or other training. The insufficient items come from the exercise should be reflected to developed and existed procedures by periods

  10. INFRASTRUCTURE ACTIVATION OF INNOVATIVE DEVELOPMENT OF UKRAINIAN AGRARIAN SECTOR

    Directory of Open Access Journals (Sweden)

    Svitlana Syrtseva

    2017-12-01

    Full Text Available The purpose of the paper is a justification of roles and identifying areas of improving the functioning of innovation infrastructure that will boost innovation in the agricultural sector of Ukraine. Methodology. The methodical basis of the study consists of general scientific cognition methods of economic phenomena and processes. Realization of the work tasks required such methods: theoretical generalization method – during study of scientific papers, legislative and regulatory acts; abstract logical method – to summarize theoretical and methodological provisions, as well as define the research goal; system approach method – identifying areas for improving the functioning of the innovation infrastructure of Ukrainian agrarian sector. Results. Found that in modern development conditions, a network of innovative structures that would provide infrastructure support for innovation development in the agricultural sector should be represented by such institutions as: agricultural innovation clusters, science parks, business incubators, venture funds, advisory services. Taking into account the international experience of the main institutions of infrastructural maintenance of innovative development, suggested areas of improvement and optimization of their formation and functioning to ensure innovation in the agricultural sector of Ukraine. Proved that the formation of agricultural innovation regional clusters should be represented by the following stages: a preliminary analysis and identifying promising areas and productions; selection of the cluster members; the strategic planning stage; setting goals and objectives; work scheduling of the cluster members in order to implement strategies; control over the execution of the approved programs and projects. Taking into account the global model of organization of advisory services, determined that the development of agricultural advisory system should be implemented through extension services

  11. 78 FR 57619 - Secretarial Infrastructure Business Development Mission to Mexico November 18-23, 2013

    Science.gov (United States)

    2013-09-19

    ..., 2013, regarding the Secretarial Infrastructure Business Development Mission to Mexico November 18-23... and Applications section of the Notice of the Secretarial Infrastructure Business Development Mission... DEPARTMENT OF COMMERCE International Trade Administration Secretarial Infrastructure Business...

  12. Transportation infrastructure between nuclear power plant gates and nearest line-haul networks: Plan and procedure for data development

    International Nuclear Information System (INIS)

    Saricks, C.L.; Singh, M.K.; Stammer, R.E. Jr.

    1988-06-01

    This study is concerned with the segments of the transportation system that include possible routings over public roads and private (or public) rail links, and waterway access (within 25 miles) from the gates of typical reactor sites to proximate links of what can be termed the national through-route system. These routings are by no means uniform throughout the United States. Local roads and rail links near reactor sites may be subject to a wide variety of jurisdictions for maintenance, repair, and inspection; may or may not (at present) qualify for federal assistance under the Federal-Aid Highway and related funding programs; may or may not meet accepted construction standards for facilities expected to bear heavy loads; and, perhaps most importantly for the spent-fuel transportation program, may be subject to occasional and currently unavoidable disruptions that could seriously impair shipment schedules. The overall objectives of the study are to describe a framework for identifying the characteristics of the near-site transportation networks of all existing nuclear power plants that could give rise to important shipment scheduling and programming constraints. These characteristics cover both transportation infrastructure and existing structural and environmental limitation, and define a scope and schedule for constructing a data base for the transportation networks surrounding all nuclear power plants. 6 refs., 4 figs., 8 tabs

  13. Development of Nuclear Energy in Ukraine. Necessity, Advantages and Disadvantages

    International Nuclear Information System (INIS)

    Litvinsky, L.; Purtov, O.; Vasilchenko, V.

    2012-01-01

    According to current projections of economic development of Ukraine, domestic consumption of electricity will grow from the present level of 190 billion kWh / year to about 280 billion kWh / year in 2030, which determines the prospects of the electricity industry development. Alternative ''green'' energy sources - solar, wind and small hydropower can develop only within a commercially reasonable considering temporary ''green'' tariff, which is far above the rates for traditional sources. According to prognoses the share of ''green'' energy sources in Ukraine in 2030 will not exceed 10-15% regardless of their environmental appeal. The updated nuclear energy development strategy by 2030 will save the share of nuclear electricity generation at the achieved level about half of total domestic electricity production. Development of nuclear power generation in the period to 2030 provides: increase the safety of the operating NPP; efficiency increase of existing nuclear power plants (up to 85% in terms of the basic mode of operation); continued of NPP units operation for 20 years over time, provided the original design; completion of the units 3,4 Khmelnitsky nuclear power plant in 2017; construction and commissioning prior to 2027 three new nuclear power units the total capacity to 3.5 GW on new NPP site; beginning in 2022-2029 years construction of new nuclear reactors at sites of existing nuclear power plants to replace existing units that will be decommissioned after 2030; implementation of the units preparation to decommissioning after an additional period of operation; improvement of infrastructure support and development of nuclear power generation. In the article analyzes the necessity, advantages and disadvantages of nuclear energy in Ukraine in the Updated Energy Strategy of Ukraine until 2030.(author).

  14. Configuration management in large scale infrastructure development

    NARCIS (Netherlands)

    Rijn, T.P.J. van; Belt, H. van de; Los, R.H.

    2000-01-01

    Large Scale Infrastructure (LSI) development projects such as the construction of roads, rail-ways and other civil engineering (water)works is tendered differently today than a decade ago. Traditional workflow requested quotes from construction companies for construction works where the works to be

  15. Influence of road transport infrastructure on agricultural sector development in Nigeria

    Directory of Open Access Journals (Sweden)

    Ogunleye Olusogo

    2018-02-01

    Full Text Available The study investigated the effects of road transport infrastructure on agricultural sector development in Nigeria from 1985 to 2014, using secondary annual time series data on agricultural development (proxy by gross domestic product in the Agric sector road transport infrastructure (proxy by length of paved road per square kilometer of area export and capital, all obtained from the Central Bank of Nigeria (CBN [3], and National Bureau of Statistics (NBS [16], statistical bulletins. The data were analyzed using Granger Causality test and Ordinary Least Square estimation techniques. The study concluded that a positive and statistically significant relationship exists between road transport infrastructures (LRT also evidence was found of a unidirectional causality from agricultural sector development to transport infrastructure. The study, therefore, recommends that adequate and timely maintenance of existing roads should be carried out as well as enacting appropriate regulations that ensure proper implementation and completion of new road construction contracts in the country in order to boost agricultural sector development, reduce wastage of farm produce and increase the possibility of economic diversification.

  16. Modular Infrastructure for Rapid Flight Software Development

    Science.gov (United States)

    Pires, Craig

    2010-01-01

    This slide presentation reviews the use of modular infrastructure to assist in the development of flight software. A feature of this program is the use of model based approach for application unique software. A review of two programs that this approach was use on are: the development of software for Hover Test Vehicle (HTV), and Lunar Atmosphere and Dust Environment Experiment (LADEE).

  17. Plant infrastructure development and life management

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, K. [World Association of Nuclear Operators (United Kingdom)

    2014-07-01

    This presentation by the World Association of Nuclear Operators (WANO) MD Ken Ellis's will focus on the growing need for electricity and the role of nuclear energy in fulfilling this. This will include looking at the nuclear industry at large and the impact of Fukushima on the development of the nuclear industry. As MD of an organisation dealing primarily with ensuring nuclear safety, Mr. Ellis will stress the importance of ensuring that safety must permeate all aspects of the nuclear industry and its necessity to secure public confidence. (author)

  18. Ecological considerations in constructing marine infrastructure: The Falmouth cruise terminal development, Jamaica

    NARCIS (Netherlands)

    Korbee, D.; Mol, A.P.J.; Tatenhove, van J.P.M.

    2015-01-01

    Cruise tourism is an important and expanding global industry. The growth of this sector,coupled with the continuous development of larger cruise ships, creates demands for new marine infrastructure. The development of these marine infrastructures takes place at the intersection of global cruise

  19. Identifying urban infrastructure multi-hazard risk in developing country contexts

    Science.gov (United States)

    Taylor, Faith; Malamud, Bruce; Millington, James

    2017-04-01

    This work presents a method to coarsely zone urban areas into different infrastructure typologies, from which physical vulnerability to a range of natural hazards and multi-hazard interactions can be estimated, particularly for developing country contexts where access to data can be a challenge. This work builds upon techniques developed for urban micrometeorology for classifying 12 urban typologies (Stewart and Oke, 2011) using Landsat 8 30 m × 30 m remote sensing imagery (Betchel et al., 2015). For each of these 12 urban typologies, we develop general rules about the presence, type and level of service of 10 broad categories of infrastructure (including buildings, roads, electricity and water), which we refer to as 'urban textures'. We have developed and applied this technique to five urban areas varying in size and structure across Africa: Nairobi (Kenya); Karonga (Malawi); Mzuzu (Malawi); Ibadan (Nigeria) and Cape Town (South Africa). For each urban area, a training dataset of 10 samples of each of the 12 urban texture classes is digitised using Google Earth imagery. A random forest classification is performed using SAGA GIS, resulting in a map of different urban typologies for each city. Based on >1200 georeferenced field photographs and expert interviews for Karonga (Malawi) and Nairobi (Kenya), generally applicable rules about the presence, type and level of service of 12 infrastructure types (the 'urban texture') are developed for each urban typology. For each urban texture, we are broadly reviewing how each infrastructure might be physically impacted by 21 different natural hazards and hazard interactions. This can aid local stakeholders such as emergency responders and urban planners to systematically identify how the infrastructure in different parts of an urban area might be affected differently during a natural disaster event.

  20. Fourteen lessons learned from the successful nuclear power program of the Republic of Korea

    International Nuclear Information System (INIS)

    Choi, Sungyeol; Jun, Eunju; Hwang, IlSoon; Starz, Anne; Mazour, Tom; Chang, SoonHeung; Burkart, Alex R.

    2009-01-01

    This paper summarized a development history and lessons of Korean nuclear power infrastructures from the beginning of the nuclear power program in 1956 to the localization of complete scope of PWR technology in 1990. The objective of this paper is to show the guideline on the issues that the development of a national infrastructure for nuclear power using the realistic experiences in order to help the developing countries newly starting nuclear power program as a long-term energy supply option. Development strategies and lessons learned from the successful Korean experience have been presented based on milestones structure of IAEA in order to help decision makers, advisers, senior managers and national planners of nuclear power program. Lessons for national nuclear power programs include considerations before launching a program, preparation and decision making, and the construction of the first nuclear power plant. Scope of these lessons includes knowledge and human resources management, financial and industrial infrastructure development, nuclear safety, legislative and regulatory experiences, fuel cycle and waste management, international cooperation. Fourteen lessons learned either positive or not are derived from the Korean case and are suggested for incorporation in the IAEA's efforts in support of developing countries' development of nuclear infrastructure and planning.

  1. The Cuban nuclear program and its Scientific and Technical Infrastructure

    International Nuclear Information System (INIS)

    Gandarias Cruz, D.; Codorniu Pujals, D.

    1995-01-01

    The present paper shows the aspects including the Cuban Nuclear Program and underlines its close connection with the strategy of economic, social and scientific technical development in the country, the organizing structure of the Cuban nuclear activity is explained. The application of nuclear techniques and research development activity in the nuclear field are also expressed in detailed in this paper

  2. Technology Needs of Future Space Infrastructures Supporting Human Exploration and Development of Space

    Science.gov (United States)

    Carrington, Connie; Howell, Joe

    2001-01-01

    The path to human presence beyond near-Earth will be paved by the development of infrastructure. A fundamental technology in this infrastructure is energy, which enables not only the basic function of providing shelter for man and machine, but also enables transportation, scientific endeavors, and exploration. This paper discusses the near-term needs in technology that develop the infrastructure for HEDS.

  3. Changing Research Practices and Research Infrastructure Development

    Science.gov (United States)

    Houghton, John W.

    2005-01-01

    This paper examines changing research practices in the digital environment and draws out implications for the development of research infrastructure. Reviews of the literature, quantitative indicators of research activities and our own field research in Australia suggest that there is a new mode of knowledge production emerging, changing research…

  4. Critical Infrastructure Protection- Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bofman, Ryan K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-24

    Los Alamos National Laboratory (LANL) has been a key facet of Critical National Infrastructure since the nuclear bombing of Hiroshima exposed the nature of the Laboratory’s work in 1945. Common knowledge of the nature of sensitive information contained here presents a necessity to protect this critical infrastructure as a matter of national security. This protection occurs in multiple forms beginning with physical security, followed by cybersecurity, safeguarding of classified information, and concluded by the missions of the National Nuclear Security Administration.

  5. Development of an Integrated Education/Training based Nuclear Outreach Model

    International Nuclear Information System (INIS)

    Han, Kyongwon; Nam, Youngmi; Hwang, Ina; Lee, Jisuk; Ko, Hansuk; Lee, Taejoon

    2013-01-01

    The Korean nuclear community also recognizes the importance of outreach from its experience with rad waste and nuclear power programs. Accordingly, nationwide programs dealing with public information, support for local community development, and HRD are implemented continuously involving a number of organizations concerned. The Nuclear Training and Education Center (NTC) of the Korea Atomic Energy Research Institute (KAERI), with its unique function and capability as a national research organization, has needs for the enhancement of public acceptance for KAERI programs, a better contribution to the national effort, and addressing the emerging needs for international education/training on nuclear outreach. This paper presents an integrated education/training based nuclear outreach model with a set of reference program, which is developed for NTC. An integrated education/training based nuclear outreach model for NTC is developed addressing the increasing needs for public acceptance on the peaceful use of nuclear energy, in terms of supporting KAERI activities, contributing to the national nuclear outreach efforts, and promoting international education and training on nuclear outreach. The model, harmonized with the national nuclear outreach system, consists of objectives, target audiences, a set of reference program supported by infrastructure and networking, and an evaluation system. The program is further specified into sub-programs with detailed design for the respective audiences. The developed model with a reference program is characterized by its integrity in terms of encompassing the whole outreach process cycle, and setting up of a target audience based total program structure with existing and new sub-programs. Also, it intends to be sustainable by addressing future generations' needs as well as innovative in the program delivery. The model will be continuously upgraded and applied addressing respective needs of the audiences

  6. Development of an Integrated Education/Training based Nuclear Outreach Model

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kyongwon; Nam, Youngmi; Hwang, Ina; Lee, Jisuk; Ko, Hansuk; Lee, Taejoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The Korean nuclear community also recognizes the importance of outreach from its experience with rad waste and nuclear power programs. Accordingly, nationwide programs dealing with public information, support for local community development, and HRD are implemented continuously involving a number of organizations concerned. The Nuclear Training and Education Center (NTC) of the Korea Atomic Energy Research Institute (KAERI), with its unique function and capability as a national research organization, has needs for the enhancement of public acceptance for KAERI programs, a better contribution to the national effort, and addressing the emerging needs for international education/training on nuclear outreach. This paper presents an integrated education/training based nuclear outreach model with a set of reference program, which is developed for NTC. An integrated education/training based nuclear outreach model for NTC is developed addressing the increasing needs for public acceptance on the peaceful use of nuclear energy, in terms of supporting KAERI activities, contributing to the national nuclear outreach efforts, and promoting international education and training on nuclear outreach. The model, harmonized with the national nuclear outreach system, consists of objectives, target audiences, a set of reference program supported by infrastructure and networking, and an evaluation system. The program is further specified into sub-programs with detailed design for the respective audiences. The developed model with a reference program is characterized by its integrity in terms of encompassing the whole outreach process cycle, and setting up of a target audience based total program structure with existing and new sub-programs. Also, it intends to be sustainable by addressing future generations' needs as well as innovative in the program delivery. The model will be continuously upgraded and applied addressing respective needs of the audiences.

  7. Responsibilities and capabilities of a nuclear energy programme implementing organization

    International Nuclear Information System (INIS)

    2009-01-01

    An appropriate infrastructure is essential for the efficient, safe, reliable and peaceful use of nuclear power. The IAEA was encouraged by its Member States to provide assistance to those considering the introduction of nuclear power. These countries face the challenge of building a national nuclear infrastructure to support a first nuclear power plant. The IAEA is responding to their needs through increased technical assistance, missions and workshops, and with new and updated technical publications in the IAEA Nuclear Energy Series. Milestones in the Development of a National Infrastructure for Nuclear Power, an IAEA Nuclear Energy Series publication (NG-G-3.1), provides detailed guidance on a holistic approach to national nuclear infrastructure development, over three phases. Nineteen issues are identified in this guide, ranging from development of a government's national position on nuclear power to planning for procurement related to the first NPP. An important element of the holistic approach is an entity that can help prepare the decision makers in a country to make a knowledgeable commitment to nuclear power, and then to coordinate infrastructure development efforts among various implementing organizations so that they arrive at the point of readiness to issue a bid tender at the same time. In the Milestones guide, this entity is called a nuclear energy programme implementing organization (NEPIO). As a growing number of Member States started to consider the nuclear power option, they asked for guidance from the IAEA on how to launch a nuclear power programme. In particular, Member States requested additional information on how to establish a NEPIO, especially in the earliest phases of a programme. This report has been prepared to provide information on the responsibilities and capabilities of a NEPIO, as well as to give an indication on how it relates to other key national organizations in the implementation of a nuclear power programme, such as the owner

  8. The Department of Energy nuclear criticality safety program

    International Nuclear Information System (INIS)

    Felty, J.R.

    2004-01-01

    This paper broadly covers key events and activities from which the Department of Energy Nuclear Criticality Safety Program (NCSP) evolved. The NCSP maintains fundamental infrastructure that supports operational criticality safety programs. This infrastructure includes continued development and maintenance of key calculational tools, differential and integral data measurements, benchmark compilation, development of training resources, hands-on training, and web-based systems to enhance information preservation and dissemination. The NCSP was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 97-2, Criticality Safety, and evolved from a predecessor program, the Nuclear Criticality Predictability Program, that was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 93-2, The Need for Critical Experiment Capability. This paper also discusses the role Dr. Sol Pearlstein played in helping the Department of Energy lay the foundation for a robust and enduring criticality safety infrastructure.

  9. Highways of the future : a strategic plan for highway infrastructure research and development

    Science.gov (United States)

    2008-07-01

    This Highways of the FutureA Strategic Plan for Highway Infrastructure Research and Development was developed in response to a need expressed by the staff of the Federal Highway Administration (FHWA) Office of Infrastructure Research and Developme...

  10. Investigating Safety, Safeguards and Security (3S) Synergies to Support Infrastructure Development and Risk-Informed Methodologies for 3S by Design

    International Nuclear Information System (INIS)

    Suzuki, M.; Izumi, Y.; Kimoto, T.; Naoi, Y.; Inoue, T.; Hoffheins, B.

    2010-01-01

    In 2008, Japan and other G8 countries pledged to support the Safeguards, Safety, and Security (3S) Initiative to raise awareness of 3S worldwide and to assist countries in setting up nuclear energy infrastructures that are essential cornerstones of a successful nuclear energy program. The goals of the 3S initiative are to ensure that countries already using nuclear energy or those planning to use nuclear energy are supported by strong national programs in safety, security, and safeguards not only for reliability and viability of the programs, but also to prove to the international audience that the programs are purely peaceful and that nuclear material is properly handled, accounted for, and protected. In support of this initiative, Japan Atomic Energy Agency (JAEA) has been conducting detailed analyses of the R and D programs and cultures of each of the 'S' areas to identify overlaps where synergism and efficiencies might be realized, to determine where there are gaps in the development of a mature 3S culture, and to coordinate efforts with other Japanese and international organizations. As an initial outcome of this study, incoming JAEA employees are being introduced to 3S as part of their induction training and the idea of a President's Award program is being evaluated. Furthermore, some overlaps in 3S missions might be exploited to share facility instrumentation as with Joint-Use-Equipment (JUE), in which cameras and radiation detectors, are shared by the State and IAEA. Lessons learned in these activities can be applied to developing more efficient and effective 3S infrastructures for incorporating into Safeguards by Design methodologies. They will also be useful in supporting human resources and technology development projects associated with Japan's planned nuclear security center for Asia, which was announced during the 2010 Nuclear Security Summit. In this presentation, a risk-informed approach regarding integration of 3S will be introduced. An initial

  11. Autonomous rendezvous and capture development infrastructure

    Science.gov (United States)

    Bryan, Thomas C.; Roe, Fred; Coker, Cindy; Nelson, Pam; Johnson, B.

    1991-01-01

    In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the ultimate test facility, using a Shuttle-based reusable free-flying testbed to perform a Technology Demonstration Test Flight which can be structured to include a variety of additional sensors, control schemes, and operational approaches. This conceptual testbed and flight demonstration will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.

  12. A Study on intensifying efficiency for international collaborative development of Advanced Nuclear Energy Technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J.; Chang, J. H.; Hahn, D. H.; Bae, Y. Y.; Kim, W. W.; Jeong, I.; Lee, D. S.; Lee, J. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-06-15

    Generation IV International Forum(GIF), where 13 countries including Korea collaborate to develop future nuclear energy systems, put into force 'Generation IV International Forum Project Arrangement' in 2007 for the international research and development of Gen IV Systems, following the entry into force of Framework Agreement in 2005. The International Nuclear Research Initiative(I-NERI) between Korea and United States and the International Project on Innovative Nuclear Energy Systems and Fuel Cycles(INPRO) of IAEA are continued in this year, produced lots of visible outcomes. These international activities have a common goal of the collaborative development of advanced nuclear system technologies but differ in the main focusing areas and aspects, so Korea needs to establish the integrated strategy based on the distinguished and complementary approach for the participation of each international programs, as examples the GIF for the advanced system technology development, INPRO for the set-up of institution and infra-structure, and I-NERI for the access of the core technologies and acquisition of the transparency of nuclear R and D.

  13. A Study on intensifying efficiency for international collaborative development of Advanced Nuclear Energy Technology

    International Nuclear Information System (INIS)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J.; Chang, J. H.; Hahn, D. H.; Bae, Y. Y.; Kim, W. W.; Jeong, I.; Lee, D. S.; Lee, J. H.

    2008-06-01

    Generation IV International Forum(GIF), where 13 countries including Korea collaborate to develop future nuclear energy systems, put into force 'Generation IV International Forum Project Arrangement' in 2007 for the international research and development of Gen IV Systems, following the entry into force of Framework Agreement in 2005. The International Nuclear Research Initiative(I-NERI) between Korea and United States and the International Project on Innovative Nuclear Energy Systems and Fuel Cycles(INPRO) of IAEA are continued in this year, produced lots of visible outcomes. These international activities have a common goal of the collaborative development of advanced nuclear system technologies but differ in the main focusing areas and aspects, so Korea needs to establish the integrated strategy based on the distinguished and complementary approach for the participation of each international programs, as examples the GIF for the advanced system technology development, INPRO for the set-up of institution and infra-structure, and I-NERI for the access of the core technologies and acquisition of the transparency of nuclear R and D

  14. Human Resource Development in a Newcomer Country: MNPC’s Experience as a Dedicated Nuclear Energy Programme Implementing Organization (NEPIO)

    International Nuclear Information System (INIS)

    Mohd Zamzam Jaafar

    2014-01-01

    Concluding remarks: The establishment of MNPC as a fully dedicated NEPIO facilitates a focused drive towards implementation of a nuclear energy development program for Malaysia. Now, 3 years after its establishment, MNPC will continue to spearhead and coordinate collaborative national efforts towards enabling a well-informed Government decision on the option of using nuclear power post-2020. Nuclear Power Infrastructure Development Plan (NPIDP) is being prepared by Consultant engaged by MNPC and expected to be completed in Dec 2014 Professionals including stakeholders involved with nuclear power planning and programmeimplementation, could also serve as a pool of experts & personnel to staff relevant future organisations needed for NPP development

  15. Workforce planning and knowledge management for new nuclear programmes

    International Nuclear Information System (INIS)

    Molloj, B.; Mazur, T.; ); Kosilov, A.; Pastori, Z.; )

    2010-01-01

    The authors discusses the report Milestones in the Development of a National Infrastructure for Nuclear Power produced by the IAEA to provide guidance on the use of integrated workforce planning as a tool to effectively develop these resources. The report describes three distinct phases in the development of a national infrastructure. It shows how to elaborate a workforce plan for implementing a national nuclear power program. The authors emphasize that the nuclear power field, comprising industry, government authorities, regulators, R and D organizations and educational institutions, relies for its continued success on a specialized, highly trained and motivated workforce. The role of knowledge management in nuclear power is underlined [ru

  16. A model of optimization for local energy infrastructure development

    International Nuclear Information System (INIS)

    Juroszek, Zbigniew; Kudelko, Mariusz

    2016-01-01

    The authors present a non-linear, optimization model supporting the planning of local energy systems development. The model considers two forms of final energy – heat and electricity. The model reflects both private and external costs and is designed to show the social perspective. It considers the variability of the marginal costs attributed to local renewable resources. In order to demonstrate the capacity of the model, the authors present a case study by modelling the development of the energy infrastructure in a municipality located in the south of Poland. The ensuing results show that a swift and significant shift in the local energy policy of typical central European municipalities is needed. The modelling is done in two scenarios – with and without the internalization of external environmental costs. The results confirm that the internalization of the external costs of energy production on a local scale leads to a significant improvement in the allocation of resources. - Highlights: • A model for municipal energy system development in Central European environment has been developed. • The variability of marginal costs of local, renewable fuels is considered. • External, environmental costs are considered. • The model reflects both network and individual energy infrastructure (e.g. individual housing boilers). • A swift change in Central European municipal energy infrastructure is necessary.

  17. Sudan Country Profile - Human Resource Development (HRD) for the first Nuclear Power Program

    International Nuclear Information System (INIS)

    Yousif, Eltayeb H. Elneel

    2014-01-01

    Sudan has been decided to prepare a strategy plan for the first nuclear power plant for various reasons like production electricity and increase the national industries besides the capabilities to do the scientific and research activities. Sudan has been started to establish and develop a master plan for the human resource development and makes a comprehensive realistic assessment about the organizational, educational and industrial capabilities and determines the requirements for developing the quality and quantity of human resources needed. The national nuclear regulatory authority has been started to update all legislation and regulations and also reviews and evaluates the international agreements and conventions related to the nuclear energy. In this profile we used the methodology of the international atomic energy agency to assess and evaluate the capacity building in Sudan. The expected outcomes from this profile are identified the gaps regarding the strengthening the national infrastructure and nuclear regulatory framework and issuing regulations to met the requirements for safety and security of the nuclear power plant. The availability of the human resources skills are important for effectively monitors the activities of the companies and facilities involved in nuclear power plant. The new nuclear law and the new national policy of the nuclear program are now under the process of approval.(author)

  18. Near-Site Transportation Infrastructure Project

    International Nuclear Information System (INIS)

    Viebrock, J.M.; Mote, N.

    1992-02-01

    There are 122 commercial nuclear facilities from which spent nuclear fuel will be accepted by the Federal Waste Management System (FWMS). Since some facilities share common sites and some facilities are on adjacent sites, 76 sites were identified for the Near-Site Transportation Infrastructure (NSTI) project. The objective of the NSTI project was to identify the options available for transportation of spent-fuel casks from each of these commercial nuclear facility sites to the main transportation routes -- interstate highways, commercial rail lines and navigable waterways available for commercial use. The near-site transportation infrastructure from each site was assessed, based on observation of technical features identified during a survey of the routes and facilities plus data collected from referenced information sources. The potential for refurbishment of transportation facilities which are not currently operational was also assessed, as was the potential for establishing new transportation facilities

  19. The Influence of Infrastructure Management on Sports Development at State Polytechnics in Bandung

    Directory of Open Access Journals (Sweden)

    Dede Sujana

    2018-03-01

    Full Text Available Polytechnic as a higher educational institution trains students to be capable of becoming independent human. It is also responsible for equipping students with competence to compete in the workplace. Sport serves as a means of character and life skills development in students. It is well supported by the infrastructure management in Polytechnic.  Based on the formulation of the problem mentioned above, the general purpose of this study is to determine the effect of infrastructure management on sports development in the State Polytechnic of Bandung. This study employed quantitative approach with survey method to obtain data from questionnaires and physical fitness test. The participants of the study are 77 students from two state polytechnics in Bandung. The result from data processing and analysis showed that 95.7% of sports participation rate is influenced by infrastructure management and the rest of 4.35 is influenced by other unexplainable variables, which means that facility and infrastructure management give positive influence on sports participation.   In addition, other results showed that 93.0% of physical fitness figures are influenced by infrastructure management and 7.0% is influenced by other unexplainable variable, which means that infrastructure gives significant influence on physical fitness. It shows that if sports infrastructure is managed well, then it will greatly influence sports development.

  20. International seminar on the role of nuclear energy for sustainable development

    International Nuclear Information System (INIS)

    1998-01-01

    The Department of Atomic Energy in collaboration with the International Atomic Energy Agency, organised a two-day International Seminar on The Role of Nuclear Energy for Sustainable Development, during September 8 and 9, 1997 at New Delhi. Dr R. Chidambaram, Chairman, Atomic Energy Commission in his Welcome Address dealt with the disparity in per capita consumption of energy between developed and developing countries in the world and also told that for India the requirement of power generation capacity for accelerated growth and industrial and infrastructural development to attain a reasonable standard of living for all its citizens would call for substantial increase in the per capita electricity consumption. He also told that nuclear energy can play a very important role in meeting the future energy requirements of India. In the seminar a scenario where nuclear power is called upon to play a major role in meeting the energy requirements of mankind and the peaceful uses of nuclear energy like the application of radiation and radioactive isotopes in agriculture, industry, health care etc. was discussed in detail. The design and construction of fast breeder reactors, the indigenous design of advanced heavy water reactors with passive safety features, uranium resources for global energy requirements, manufacturing of nuclear components, fusion energy, role of nuclear energy in some countries like Brazil, Islamic Republic of Iran, France, China, Bangladesh and India were some of the other topics covered. Papers relevant to INIS are indexed separately

  1. Institutional Infrastructure Component of Innovative University as a Resource for Strategic Development

    Directory of Open Access Journals (Sweden)

    Belokrylova Olga, S.

    2016-03-01

    Full Text Available The paper analyzes the mission of the organization innovative infrastructure on the selection of production routines and selecting those that provide it a competitive advantage, since the introduction of innovations is a total change of abilities, skills, competencies demanded in the economic process and requires a fundamentally new organizational structure and the types of innovative infrastructure to ensure that the new working environment, and support the reproduction of innovation. We show the dominance in the domestic trials of hard state-centric models of construction and development of innovation infrastructure, including the academic world, although international experience demonstrates a shift in emphasis towards "soft" institutionalization of public infrastructure policy. We tested production of innovative active agents of the general standards activity, optimal behaviors that reduce transaction costs and ensure the development and dissemination of innovative organizational competencies in the external environment.

  2. MARKETING AND LOGISTICS INFRASTRUCTURE DEVELOPMENT OF THE TRANSPORT SERVICES MARKET

    Directory of Open Access Journals (Sweden)

    V. I. Kopytko

    2009-02-01

    Full Text Available Taking into account the modern trends of world economy development, the opportunities of increasing the competitiveness of the Ukrainian transport system on the base of marketing-logistical providing the development of infrastructure of transport services market are presented. The analysis of marketing-logistical approaches of estimation of the efficiency of operation of transport infrastructure objects is performed. The condition of theoretical and practical aspects of the transport services market is elucidated, the examples of logistical concepts are given, considering the work experience of transport enterprises, the ways of formation of regional transport-logistical associations are offered.

  3. The contribution of nuclear-related technical cooperation to national development

    International Nuclear Information System (INIS)

    Cook, D.

    1988-01-01

    The present situation of nuclear technical assistance and the IAEA's programs are reviewed. The perspectives of the developing and of the developed countries are discussed. Australia's aid administrators have been showing an increasing preference for administering its nuclear technical assistance through the Regional Cooperation Agreement for Asia and the Pacific (RCA), because of its direct benefits to the countries in the region, its flexibility, its emphasis on training, and its cooperative nature. The RCA also benefits from IAEA management and IAEA and United Nations Development Program funding. Two examples of Australia's successful RCA activities are the 1988 radiation protection training course held in Sydney and one of the many individual projects within the 1980-86 RCA hydrology program - the application of radioisotope tracer techniques to locating the seepage areas in the Pedu dam in Kedah State, Malaysia. Australia's experience has shown that project design, successful training of the right people, adequate infrastructure in both donor and recipient countries, and detailed post-project evaluation are the keys to successful project implementation. The RCA has achieved wide recognition as a successful tool in nuclear-related technology transfer

  4. Information system of forecasting infrastructure development in tourism

    Directory of Open Access Journals (Sweden)

    Gats Bogdan

    2013-01-01

    Full Text Available Manuscript is devoted to the development of information system for tourist objects infrastructure growth and its practical implementation in form of information system using methods of fuzzy logic, theory of fractals and diffusion. Developed technology allows compute attractiveness of Carpathian region, structure, dynamics of the main tourist settlements Vorochta and Slavske, prospective territories for tourist business, growing strategies for region.

  5. Nuclear Power Newsletter, Vol. 8, No. 1, March 2011

    International Nuclear Information System (INIS)

    2011-03-01

    Countries have improved their understanding of the issues of a nuclear programme and are making progress in their infrastructure development. This was a main conclusion from an annual workshop entitled Introduction of Nuclear Power Programmes: Management and Evaluation of a National Nuclear Infrastructure, held in Vienna from 8-11 February 2011. Since the first workshop in 2006, countries have been participating in annual workshops to share their experiences and find solutions to common challenges. This year, 89 participants from more than 45 countries discussed the development of a national position, their experiences with self-evaluation of infrastructure status and Integrated Nuclear Infrastructure Review Missions. Many countries made presentations on their infrastructure status. They also exchanged views on becoming an intelligent customer, international cooperation, and received updates on IAEA activities related to the introduction of nuclear power. A highlight of the agenda was a keynote address by Ambassador Al-Kaabi of the United Arab Emirates. As in past years, the participants appreciated the opportunity to discuss common challenges and to share their experiences in smaller groups in breakout sessions. Participants identified that engaging all political parties and the public in the development of a national position can lead to a stable Government policy over a multi year planning timeline. The relationship between the technical community performing studies on nuclear power and the policy-makers (Government bureaucrats) together with media, public and decision-makers at the political level all contribute to the development of a national position. A clear position on how nuclear power will be introduced will form the foundation for the planning and implementation of the national infrastructure and nuclear power plant project. The use of self-evaluations to support continuous improvement was recognized. Countries gave their experiences that they can be in

  6. The manpower training and development programs of NUCLEBRAS for the Brazilian nuclear program

    International Nuclear Information System (INIS)

    Spitalnik, J.; Lerner Neto, C.; Stilben, V.; Botelho, O.

    1984-01-01

    As technology transfer is one of the main objectives of the Brazilian Nuclear Program, the principal aim of manpower training has been to provide the conditions for absorbing this technology. The strategy used for such a program required a quantitative and qualitative planning of manpower needs, through medium-range and long-term forecasts, with the condition of maximum utilization of the existing educational infra-structure. On-the-job training which is considered one of the most important means for technology transfer, was given highest priority. Also, management development was considered very important for the implementation of the Nuclear Program. This paper shows the results achieved from 1973 up to now by the manpower training and development programs. (Author) [pt

  7. ROLE OF TRANSPORT INFRASTRUCTURE IN EFFICIENCY IMPROVEMENT OF SPATIAL SOCIO-ECONOMIC DEVELOPMENT OF THE REGION

    Directory of Open Access Journals (Sweden)

    Ekaterina C. Chimitdorzhieva

    2013-01-01

    Full Text Available The problems of spatial socio-economic development of the region are considered in this article. Special attention is given to transport infrastructure. The authors propose methodical instruments for evaluating the influence of transport infrastructure on spatial development of region based on research of theoretic-methodical aspects of economic growth theory, location of economic activity and development concepts of infrastructural provision.

  8. Tourism infrastructure development prioritization in Sabang Island using analytic network process methods

    Science.gov (United States)

    Rani, Hafnidar A.; Afifuddin, Moch.; Akbar, Herry

    2017-11-01

    Indonesia has been widely known as an archipelago country, with its geographical location is at the equator, which make this country as a tropical country. It has the topography of diverse islands which consist of lakes, mountains, and one of countries which have the longest coastline. This condition cause Indonesia has various beautiful tourism objects and become the attraction to the international tourists to come. Indonesia still has the other islands which are as beautiful as Bali Island offering different beauties. One of them is an island located in the most western island of Indonesia, which becomes the zero point of the country. It is Sabang Island in Aceh Province. Sabang Island is the small volcanic island located in the most western island of Sumatra. Infrastructure becomes the basic device in supporting this tourism aspect, which the buildings and service institutions play the important role in appropriate managing of economic and community needs. The problem in this study is how to determine the priority of tourism infrastructure development in Sabang Island. The objective of this study is to determine the priority rank of tourism infrastructure development and the priority rank of the potential investment in Sabang Island to be developed. The ranking results of the Analytic Network Process (ANP) calculations of tourism locations/zones and tourism supporting infrastructure found that Teupin Layeu and Gapang, and Rubiah Island have the highest priority to be developed in the hotel/accommodation infrastructure which scores are 0.02589 and 0.02120. Then followed by parking infrastructure in Teupin Layeu and access road to Km 0 which became as the main priority determined by Sabang government which scores are 0.01750 and 0.01618.

  9. Peaceful nuclear programme and front end nuclear fuel cycle activities in Pakistan

    International Nuclear Information System (INIS)

    S. Mukhtar Ahmed

    1999-01-01

    Pakistan has a modest but broad based nuclear programme related to peaceful uses of atomic energy in nuclear power, agriculture, medicine and industry. While development projects in these areas form the major segment of Pakistan Atomic Energy Commission's work, complimentary activities in basic research and human resource development are also supported. PAEC through its activities has been moving towards the goal of achieving self-reliance for its existing programme in an international atmosphere of embargoes and restrictions and in pursuit of creating an infrastructure to help sustain an indigenous nuclear power programme. To solve the local needs and requirements, radioisotopes and nuclear techniques have been applied in agriculture, medicine, hydrology and industry. PAEC has one large research and development establishment in physical sciences, three R and D centers in agriculture, one in biotechnology, and ten nuclear medical centers for diagnostics and oncology treatment. Two research reactors form nucleus of research and development activities in nuclear sciences. In the power sector a 137 Mew CANDU power reactor is in operation in Karachi since 1971. Another 300 Mew PWR is under construction and is nearing completion. Front-end fuel cycle and engineering infrastructure facilities have been established to support continued operation of Karachi Nuclear Power Plant (KANUPP). To support the engineering activities it has established facilities for precision workshops, non-destructive testing center and a welding institute. (author)

  10. IAEA's role in manpower development for nuclear power in developing countries

    International Nuclear Information System (INIS)

    Csik, B.J.; Skjoeldebrand, R.

    1985-01-01

    Strengthening the manpower infrastructures in the developing countries that have nuclear power programs or plan to start one is of primary importance. Though manpower development is mainly a national effort, outside assistance is also needed. The IAEA is heavily engaged in providing such assistance through an integral, co-ordinated program employing different means: publications, courses, information exchange meetings, fellowships, equipment grants and expert missions. The program is aimed at promoting awareness of need, importance, requirements and problems; providing guidance for assessment of manpower requirements; assisting in manpower development program planning and implementation; and providing specialized training. Within this program, efforts are concentrated mainly in those critical areas where the need for external assistance seems greatest and where the largest benefits are expected, such as planning, management, safety and quality assurance. The sustained and increasing demand of the member States for such assistance provides a measure of the success of this program

  11. Spent fuel management and closed nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kudryavtsev, E.G.

    2012-01-01

    Strategic objectives set by Rosatom Corporation in the field of spent fuel management are given. By 2030, Russia is to create technological infrastructure for innovative nuclear energy development, including complete closure of the nuclear fuel cycle. A target model of the spent NPP nuclear fuel management system until 2030 is analyzed. The schedule for key stages of putting in place the infrastructure for spent NPP fuel management is given. The financial aspect of the problem is also discussed [ru

  12. Development of a Flexible Computerized Management Infrastructure for a Commercial Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ali, Syed Firasat; Hajek, Brian K.; Usman, Shoaib

    2006-01-01

    The report emphasizes smooth transition from paper-based procedure systems (PBPSs) to computer-based procedure systems (CBPSs) for the existing commercial nuclear power plants in the U.S. The expected advantages and of the transition are mentioned including continued, safe and efficient operation of the plants under their recently acquired or desired extended licenses. The report proposes a three-stage survey to aid in developing a national strategic plan for the transition from PBPSs to CBPSs. It also includes a comprehensive questionnaire that can be readily used for the first stage of the suggested survey

  13. Development of a Flexible Computerized Management Infrastructure for a Commercial Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Syed Firasat; Hajek, Brian K.; Usman, Shoaib

    2006-05-01

    The report emphasizes smooth transition from paper-based procedure systems (PBPSs) to computer-based procedure systems (CBPSs) for the existing commercial nuclear power plants in the U.S. The expected advantages and of the transition are mentioned including continued, safe and efficient operation of the plants under their recently acquired or desired extended licenses. The report proposes a three-stage survey to aid in developing a national strategic plan for the transition from PBPSs to CBPSs. It also includes a comprehensive questionnaire that can be readily used for the first stage of the suggested survey.

  14. An Institutional Approach to Developing Research Data Management Infrastructure

    Directory of Open Access Journals (Sweden)

    James A. J. Wilson

    2011-10-01

    Full Text Available This article outlines the work that the University of Oxford is undertaking to implement a coordinated data management infrastructure. The rationale for the approach being taken by Oxford is presented, with particular attention paid to the role of each service division. This is followed by a consideration of the relative advantages and disadvantages of institutional data repositories, as opposed to national or international data centres. The article then focuses on two ongoing JISC-funded projects, ‘Embedding Institutional Data Curation Services in Research’ (Eidcsr and ‘Supporting Data Management Infrastructure for the Humanities’ (Sudamih. Both projects are intra-institutional collaborations and involve working with researchers to develop particular aspects of infrastructure, including: University policy, systems for the preservation and documentation of research data, training and support, software tools for the visualisation of large images, and creating and sharing databases via the Web (Database as a Service.

  15. Nuclear power newsletter Vol. 1, no. 2

    International Nuclear Information System (INIS)

    2004-12-01

    The newsletter provides information on: Nuclear Power Plant Operating Performance and Life Cycle Management; Improving Human Performance, Quality and Technical Infrastructure Co-ordination of International Collaboration for the Development of Innovative Nuclear Technology; Technology Developments and Applications for Advanced Reactors

  16. Nuclear Symbiosis - A Means to Achieve Sustainable Nuclear Growth While Limiting the Spread of Sensitive Nuclear Technology

    International Nuclear Information System (INIS)

    Shropshire, David

    2009-01-01

    Global growth of nuclear energy in the 21. century is creating new challenges to limit the spread of nuclear technology without hindering adoption in countries now considering nuclear power. Independent nuclear states desire autonomy over energy choices and seek energy independence. However, this independence comes with high costs for development of new indigenous fuel cycle capabilities. Nuclear supplier states and expert groups have proposed fuel supply assurance mechanisms such as fuel take-back services, international enrichment services and fuel banks in exchange for recipient state concessions on the development of sensitive technologies. Recipient states are slow to accept any concessions to their rights under the Non Proliferation Treaty. To date, decisions to not develop indigenous fuel enrichment capabilities have been driven by economics. However, additional incentives may be required in the future to offset the user state's perceived loss of energy independence. In order for a country to forgo development of sensitive nuclear capabilities, the basis for an equitable economic tradeoff must be established. This paper proposes that the nuclear trade-off can be made through a combination of fuel supply assurances, leveraging work by the United Nations and International Atomic Energy Agency on sustainable nuclear development, and use of 'nuclear symbiosis'. The primary focus of this paper is on how nuclear symbiosis could be used to achieve a user-state's desired economic, energy, and infrastructure development end states. The desired result from this 'symbiosis' is a nuclear-centered industrial complex that creates new economic opportunities through infrastructure improvements, human resource skills development and the development of new sustainable industries. This paper also describes the Nuclear Materials Exchange (NME) as a practical tool for performing nuclear symbiosis. The NME can be used to define existing and new international nuclear resources and

  17. A Model of Digital Payment Infrastructure Formation and Development

    DEFF Research Database (Denmark)

    Staykova, Kalina; Damsgaard, Jan

    2014-01-01

    in the regulatory environment and combining it with the disruptive and innovative nature of the mobile phone, the result is a market that is rapidly transforming from well-established structure into a state of flux. We build a model to understand and explain this transformation of the digital payment infrastructure....... The model captures the formation and development of the digital payment infrastructure with a particular emphasis on the regulator´s and innovator’s perspective. It consists of four stages characterized by slow incremental change which are followed by short and rapid bursts of discontinuity. Each stage...

  18. Development Perspective of Regulatory Audit Code System for SFR Nuclear Safety Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Moo Hoon; Lee, Gil Soo; Shin, An Dong; Suh, Nam Duk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-05-15

    A sodium-cooled fast reactor (SFR) in Korea is based on the KALIMER-600 concept developed by KAERI. Based on 'Long-term R and D Plan for Future Reactor Systems' which was approved by the Korea Atomic Energy Commission in 2008, the KAERI designer is scheduled to apply the design certification of the prototype SFR in 2017. In order to establish regulatory infrastructure for the licensing of a prototype SFR, KINS has develop the regulatory requirements for the demonstration SFR since 2010, and are scheduled to develop the regulatory audit code systems in regard to core, fuel, and system, etc. since 2012. In this study, the domestic code systems used for core design and safety evaluation of PWRs and the nuclear physics and code system for SFRs were briefly reviewed, and the development perspective of regulatory audit code system for SFR nuclear safety evaluation were derived

  19. Nuclear power newsletter. Vol. 7, no. 3, September 2010

    International Nuclear Information System (INIS)

    2010-09-01

    The Integrated Nuclear Infrastructure Group (INIG) was established by the IAEA Director General, effective 1 July 2010. Its objective is to manage activities related to the introduction of nuclear power in Member States and to improve coordination within the IAEA of integrated services. The establishment of INIG allows the IAEA to better implement the comprehensive approach to nuclear power development described in the Milestones publication. In addition to the launching of the Integrated Nuclear Infrastructure Review (INIR), another means for strengthening support to countries introducing nuclear power is in the establishment of a Technical Working Group (TWG) for Nuclear Power Infrastructure. This TWG will be composed of experts from countries introducing nuclear power and those with operating experience. It will provide means for ensuring that the IAEA programme is aligned with the priority needs of Member States and a forum for information sharing and coordination of bilateral assistance and IAEA activities

  20. Romanian network of nuclear education RONEN

    Energy Technology Data Exchange (ETDEWEB)

    Ghitescu, P.; Prisecaru, I.; Dupleac, D. [Bucharest Univ. Politehnica (Romania)

    2007-07-01

    RONEN (Romanian Network of Nuclear Education) aims at developing an efficient, flexible and modern training system in the nuclear education area, which answers the requirements of nuclear industry (NPP, regulatory bodies, subcontractors, dismantling, radioprotection, waste management). The first step was the investigation of the actual stage of the training in nuclear field in Romania. The second step was the investigation of the actual stage of training in the field of nuclear physics and engineering in other European countries. The third step was to create the infrastructure for the implementation and development of modern/learning programs and technologies. RONEN developed a data base on the project web-site, and proposed a global strategy in order to harmonize the curricula (by guidelines and self-evaluation reports), to implement pilot modern teaching programs (by handbooks for courses/modules), to introduce advanced learning technologies (like recommendations for Systematic Approach to Training, e-learning and distance-learning platforms), to strengthen and better use the existing research infrastructure for research and development among the network partners.

  1. Romanian network of nuclear education RONEN

    International Nuclear Information System (INIS)

    Ghitescu, P.; Prisecaru, I.; Dupleac, D.

    2007-01-01

    RONEN (Romanian Network of Nuclear Education) aims at developing an efficient, flexible and modern training system in the nuclear education area, which answers the requirements of nuclear industry (NPP, regulatory bodies, subcontractors, dismantling, radioprotection, waste management). The first step was the investigation of the actual stage of the training in nuclear field in Romania. The second step was the investigation of the actual stage of training in the field of nuclear physics and engineering in other European countries. The third step was to create the infrastructure for the implementation and development of modern/learning programs and technologies. RONEN developed a data base on the project web-site, and proposed a global strategy in order to harmonize the curricula (by guidelines and self-evaluation reports), to implement pilot modern teaching programs (by handbooks for courses/modules), to introduce advanced learning technologies (like recommendations for Systematic Approach to Training, e-learning and distance-learning platforms), to strengthen and better use the existing research infrastructure for research and development among the network partners

  2. Natural Assurance Scheme: A level playing field framework for Green-Grey infrastructure development.

    Science.gov (United States)

    Denjean, Benjamin; Altamirano, Mónica A; Graveline, Nina; Giordano, Raffaele; van der Keur, Peter; Moncoulon, David; Weinberg, Josh; Máñez Costa, María; Kozinc, Zdravko; Mulligan, Mark; Pengal, Polona; Matthews, John; van Cauwenbergh, Nora; López Gunn, Elena; Bresch, David N

    2017-11-01

    This paper proposes a conceptual framework to systematize the use of Nature-based solutions (NBS) by integrating their resilience potential into Natural Assurance Scheme (NAS), focusing on insurance value as corner stone for both awareness-raising and valuation. As such one of its core goal is to align research and pilot projects with infrastructure development constraints and priorities. Under NAS, the integrated contribution of natural infrastructure to Disaster Risk Reduction is valued in the context of an identified growing need for climate robust infrastructure. The potential of NAS benefits and trade-off are explored by through the alternative lens of Disaster Resilience Enhancement (DRE). Such a system requires a joint effort of specific knowledge transfer from research groups and stakeholders to potential future NAS developers and investors. We therefore match the knowledge gaps with operational stages of the development of NAS from a project designer perspective. We start by highlighting the key role of the insurance industry in incentivizing and assessing disaster and slow onset resilience enhancement strategies. In parallel we place the public sector as potential kick-starters in DRE initiatives through the existing initiatives and constraints of infrastructure procurement. Under this perspective the paper explores the required alignment of Integrated Water resources planning and Public investment systems. Ultimately this will provide the possibility for both planners and investors to design no regret NBS and mixed Grey-Green infrastructures systems. As resources and constraints are widely different between infrastructure development contexts, the framework does not provide explicit methodological choices but presents current limits of knowledge and know-how. In conclusion the paper underlines the potential of NAS to ease the infrastructure gap in water globally by stressing the advantages of investment in the protection, enhancement and restoration of

  3. Summary report on transportation of nuclear fuel materials in Japan : transportation infrastructure, threats identified in open literature, and physical protection regulations.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John Russell; Ouchi, Yuichiro (Japan Atomic Energy Agency, Japan); Furaus, James Phillip; Marincel, Michelle K.

    2008-03-01

    This report summarizes the results of three detailed studies of the physical protection systems for the protection of nuclear materials transport in Japan, with an emphasis on the transportation of mixed oxide fuel materials1. The Japanese infrastructure for transporting nuclear fuel materials is addressed in the first section. The second section of this report presents a summary of baseline data from the open literature on the threats of sabotage and theft during the transport of nuclear fuel materials in Japan. The third section summarizes a review of current International Atomic Energy Agency, Japanese and United States guidelines and regulations concerning the physical protection for the transportation of nuclear fuel materials.

  4. Comparative study of Malaysian and Philippine regulatory infrastructures on radiation and nuclear safety with international standards

    International Nuclear Information System (INIS)

    Cayabo, Lynette B.

    2013-06-01

    This study presents the results of the critical reviews, analysis, and comparison of the regulatory infrastructures for radiation and nuclear safety of Malaysis and the Philippines usi ng the IAEA safety requirements, GSR Part 1, G overnment, Legal and Regulatory Framework for Safety'' as the main basis and in part, the GSR Part 3, R adiation Protection and Safety of Radiation Sources: International Basic Safety Standards . The scope of the comparison includes the elements of the relevant legislations, the regulatory system and processes including the core functions of the regulatory body (authorization, review and assessment, inspection and enforcement, development of regulations and guides); and the staffing and training of regulatory body. The respective availabe data of the Malaysian and Philippine regulatory infrastructures and current practices were gathered and analyzed. Recommendations to fill the gaps and strengthen the existing regulatory infrastructure of each country was given using as bases relevant IAEA safety guides. Based on the analysis made, the main findings are: the legislations of both countries do not contain al the elements of teh national policy and strategy for safety as well as those of teh framework for safety in GR Part I. Among the provision that need to be included in the legislations are: emergency planning and response; decommissioning of facilities safe management of radioactive wastes and spent fuel; competence for safety; and technical sevices. Provisions on coordination of different authorities with safety responsibilities within the regulatory framework for safety as well as liaison with advisory bodies and support organizations need to be enhanced. The Philippines needs to establish an independent regulatory body, ie. separate from organizations charged with promotion of nuclear technologies and responsible for facilitiesand activities. Graded approach on the system of notification and authorization by registration and

  5. Development of a lunar infrastructure

    Science.gov (United States)

    Burke, J. D.

    1988-01-01

    The problem of building an infrastructure on the moon is discussed, assuming that earth-to-moon and moon-to-earth transport will be available. The sequence of events which would occur in the process of building an infrastructure is examined. The human needs which must be met on a lunar base are discussed, including minimal life support, quality of life, and growth stages. The technology available to meet these needs is reviewed and further research in fields related to a lunar base, such as the study of the moon's polar regions and the limits of lunar agriculture, is recommended.

  6. Conclusions and Recommendations of the IAEA International Conference on Topical Issues in Nuclear Safety: Ensuring Safety for Sustainable Nuclear Development

    International Nuclear Information System (INIS)

    El-Shanawany, Mamdouh

    2011-01-01

    Over 200 participants from 33 countries and three international organizations came and actively participated and contributed to focused discussions and the success of the conference. The following points summarize the key conclusions and recommendations of the conference with respect to nuclear safety. 1. The nuclear safety approach is based on the philosophy developed in the 60's: defense in depth principles and deterministic criteria. When properly applied and completed by probabilistic analyses and operational experience feedback, it continues to be a successful approach. However, guarding against the risk of accidents requires constant vigilance and high technical competence and a never ending fight against complacency. In this context, having a strong leadership with a commitment to continuous improvement and a vision of sustained excellence is a key element of nuclear safety. Continuous improvement in safety also should be pursued through scientific research and operational experience feedback. 2. An accident anywhere is of concern to all Member States. Therefore, it is in the interest of all Member States to share and collaborate on safety matters. Participation of all Member States in international nuclear safety instruments and conventions, including liability for nuclear damage, is considered beneficial to global safety. The Convention on Nuclear Safety, the Joint Convention, international cooperation through IAEA and other organizations, bilateral or multilateral arrangements are important elements for establishing networks for sharing and transferring knowledge. It is acknowledged that the IAEA's Safety Fundamentals and Safety Requirements provide a sound foundation for high level nuclear safety. IAEA Safety Standards should be the basis for the establishment and maintenance of safety infrastructure. The IAEA's peer reviews and services such as IRRS, OSART, Site Evaluation and Reactor Safety Reviews provide also a valuable platform for sharing

  7. Main Conclusions and Recommendations of International Conference on Topical Issues in Nuclear Installation Safety: Ensuring Safety for Sustainable Nuclear Development

    International Nuclear Information System (INIS)

    El-Shanawany, Mamdouh

    2011-01-01

    Over 200 participants from 33 countries and three international organizations came and actively participated and contributed to focused discussions and the success of the conference. The following points summarize the key conclusions and recommendations of the conference with respect to nuclear safety. 1. The nuclear safety approach is based on the philosophy developed in the 60's: defense in depth principles and deterministic criteria. When properly applied and completed by probabilistic analyses and operational experience feedback, it continues to be a successful approach. However, guarding against the risk of accidents requires constant vigilance and high technical competence and a never ending fight against complacency. In this context, having a strong leadership with a commitment to continuous improvement and a vision of sustained excellence is a key element of nuclear safety. Continuous improvement in safety also should be pursued through scientific research and operational experience feedback. 2. An accident anywhere is of concern to all Member States. Therefore, it is in the interest of all Member States to share and collaborate on safety matters. Participation of all Member States in international nuclear safety instruments and conventions, including liability for nuclear damage, is considered beneficial to global safety. The Convention on Nuclear Safety, the Joint Convention, international cooperation through IAEA and other organizations, bilateral or multilateral arrangements are important elements for establishing networks for sharing and transferring knowledge. It is acknowledged that the IAEA's Safety Fundamentals and Safety Requirements provide a sound foundation for high level nuclear safety. IAEA Safety Standards should be the basis for the establishment and maintenance of safety infrastructure. The IAEA's peer reviews and services such as IRRS, OSART, Site Evaluation and Reactor Safety Reviews provide also a valuable platform for sharing

  8. The Role of Public Infrastructure in Market Development in Rural Peru

    OpenAIRE

    Escobal, J.A.

    2005-01-01

    Keywords:Peru, rural infrastructure, poverty, economic geography, rural roads, impact evaluation, non-agricultural employment.This study provides a conceptual framework toanalysethe impact of rural infrastructure investment on market development for the enhancement of income generating opportunities for the poor in ruralPeru. The study uses descriptive methods and regression analysis together with relatively new impact evaluation techniques, like propensity score matching, to understand the c...

  9. Aspects related to the introduction of nuclear power in developing countries

    International Nuclear Information System (INIS)

    Ursu, I.

    1994-05-01

    Taking as basic premises a foreseen growth in the world energy demand, a marked trend towards more electricity in power generation, and an increasingly substantial share of the nuclear in the latter the paper examines the part developing countries may play in the process both as determining factors and subjects. Demography, resources, the natural drive for the betterment of the economic performance and improvements in the standard of living as well as for assertion on the international scene, and the awareness on the disparities in these regards in comparison with the developed countries are indicated as major incentives for the developing countries' seeking enhanced access to nuclear power technology in the decades to come. Flaws in infrastructures, finances, labour force average education, and management capabilities are, on the other hand, pointed at as inhibiting factors, while a prolonged world economic recession and the uncertainties introduced by the current political changes at world scale in conjunction with the intrinsic dual nature of the nuclear technology are believed to further compound the situation. It is argued that an internationally concerted monitoring and assistance involving cooperative donors and acceptors is, probably, the only solution to ensure an orderly, economically sound and politically safe expansion of the nuclear power technology in developing countries. (author). 16 refs, 2 figs, 4 tabs

  10. Nuclear power newsletter Vol. 2, no. 1

    International Nuclear Information System (INIS)

    2005-03-01

    This newsletter presents information on the following topics: 7th meeting of the INPRO Steering Committee; Nuclear Power Plant Operating Performance and Life Cycle Management; Improving Human Performance, Quality and Technical Infrastructure; Co-ordination of International Collaboration for the Development of Innovative Nuclear Technology; Technology Developments and Applications for Advanced Reactors; 1st European Nuclear Assembly

  11. Nuclear Power Newsletter, Vol. 10, No. 1, January 2013

    International Nuclear Information System (INIS)

    2013-01-01

    Several countries have made a decision to start a nuclear power programme in recent years. The IAEA has been providing them with integrated assistance across a wide range of infrastructure areas. The Integrated Nuclear Infrastructure Review (INIR) missions are a key component in assessing infrastructure status and identifying areas for further action. INIR missions have been conducted to Bangladesh, Belarus, Indonesia, Jordan, Thailand, the United Arab Emirates (UAE) and Vietnam since the mission was established in 2009. In 2013, INIR missions are planned to South Africa - the first country with an operating nuclear power programme that has requested this service - Poland and Turkey. Bangladesh and Jordan may consider follow-up missions while other countries such as Egypt, Kenya, Malaysia, and Nigeria have also expressed interest in receiving this mission. The INIR Mission is an integral part of the IAEA's Milestones approach, which comprises three phases of development of a national nuclear infrastructure programme and covers 19 infrastructure issues, ranging from a government's national position on nuclear power to the procurement of items and services for the first nuclear power plant. The end of each phase is marked by a 'milestone', i.e. when a country is making the decision to move forward with nuclear power (Milestone 1), as a follow-up review of progress and before initiating the bidding process (Milestone 2), and at the end of phase three, when a country is ready to commission and operate its first nuclear power plant (Milestone 3). 'The INIR Mission can support Member States in building confidence that their national infrastructure is adequately established, by identifying areas which need further recommendations on progress towards the next milestone', explained JK Park, Director of the Division of Nuclear Power, who has been the IAEA team leader for most INIR Missions. By providing a comprehensive assessment of all facets of a nuclear power programme

  12. Nuclear Power Newsletter, Vol. 10, No. 1, January 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    Several countries have made a decision to start a nuclear power programme in recent years. The IAEA has been providing them with integrated assistance across a wide range of infrastructure areas. The Integrated Nuclear Infrastructure Review (INIR) missions are a key component in assessing infrastructure status and identifying areas for further action. INIR missions have been conducted to Bangladesh, Belarus, Indonesia, Jordan, Thailand, the United Arab Emirates (UAE) and Vietnam since the mission was established in 2009. In 2013, INIR missions are planned to South Africa - the first country with an operating nuclear power programme that has requested this service - Poland and Turkey. Bangladesh and Jordan may consider follow-up missions while other countries such as Egypt, Kenya, Malaysia, and Nigeria have also expressed interest in receiving this mission. The INIR Mission is an integral part of the IAEA's Milestones approach, which comprises three phases of development of a national nuclear infrastructure programme and covers 19 infrastructure issues, ranging from a government's national position on nuclear power to the procurement of items and services for the first nuclear power plant. The end of each phase is marked by a 'milestone', i.e. when a country is making the decision to move forward with nuclear power (Milestone 1), as a follow-up review of progress and before initiating the bidding process (Milestone 2), and at the end of phase three, when a country is ready to commission and operate its first nuclear power plant (Milestone 3). 'The INIR Mission can support Member States in building confidence that their national infrastructure is adequately established, by identifying areas which need further recommendations on progress towards the next milestone', explained JK Park, Director of the Division of Nuclear Power, who has been the IAEA team leader for most INIR Missions. By providing a comprehensive assessment of all facets of a nuclear power programme

  13. Challenges new entrant countries face in establishing a nuclear program

    International Nuclear Information System (INIS)

    Brister, J.

    2012-01-01

    Challenges new entrant countries face in establishing a nuclear programme are distilled into four major categories: human resource development, financing, infrastructure and process. In implementing a successful nuclear programme role of the government is key to success. It requires clear and sustained policy support, international and bilateral agreements, developing the depth required of technical skills and infrastructure, proven delivery programme, management of radioactive waste and spent fuel, decommissioning and electricity market regulation.

  14. Financing small-scale infrastructure investments in developing countries

    OpenAIRE

    Daniel L. Bond; Daniel Platz; Magnus Magnusson

    2012-01-01

    In most developing countries a shortage of long-term, local-currency financing for small-scale infrastructure projects impedes local economic development. Inadequate fiscal transfers, little own source revenue and low creditworthiness make it difficult for local governments to fully fund projects on their own. This paper proposes the use of project finance as a means to attract financing from domestic banks and institutional investors. Donors can play a catalytic role by providing technical a...

  15. Comparative Prospects of the New Development Bank and Asian Infrastructure Investment Bank

    Directory of Open Access Journals (Sweden)

    Andrei Shelepov

    2016-11-01

    Full Text Available In this article the author focuses on the recently established New Development Bank (NDB and Asian Infrastructure Investment Bank (AIIB. It identifies two factors of demand for this new model of multilateral development banks (MDBs, namely a lack of infrastructure financing and the aspirations of developing countries for a greater role in the global financial system. The author also compares the NDB and AIIB according to membership, management structure, distribution of capital and votes, and options for attracting capital in the financial market. Based on this comparison, he forecasts the banks’ credit portfolios growth until 2025. The author concludes that both institutions should accumulate and use the best practices of existing MDBs, improve their image to attract investors and actively engage in sharing expertise and co-financing projects with development institutions as well as commercial banks. By doing so, the volume of their operations could reach $40 billion per year in 10 years, which is close to the volume of infrastructure financing provided by major traditional banks, and could contribute substantially to addressing the financing needs of developing countries.

  16. Influence of transport infrastructure on the industrial development of the Russian regions

    Directory of Open Access Journals (Sweden)

    Elizaveta Eduardovna Kolchinskaya

    2015-06-01

    Full Text Available Objective to build a model describing the relationship between the level of transport infrastructure development of the region and the level of industrial development in the region. Methods calculation of the integral indicators of a particular industry development regression analysis method of the production function constructing. For regression analysis the paper uses panel data models with random and fixed effects and the pooled panel data model. To check the quality of the regression model the Fisher and Student ttests were used. To test the model for heteroskedastic properties tests by Park Glazer GoldfeldQuandt and White were applied. Results models of linear and logarithmic specifications with random and fixed effects were built as well as pooled panel data models. Significant coefficients of transport infrastructure indicators were obtained in both cases only in the pooled panel data models. The model which considered the railway density index as one of the characteristics of the transport infrastructure of the region showed the negative coefficient of this variable. Scientific novelty for the first time on the basis of Russian regions statistics using regression models of panel data the dependence has been studied between the level of transport development in the region and the dynamics of industrial production in it. As the characteristic of transport infrastructure development the specially designed integral indicator was used i.e. the transport enterprises and communications functioning in the region summarizing several characteristics of enterprises in the industry. Practical value the obtained results can be used to predict effects of adopting decisions on improving the transport infrastructure in the Russian Federation regions. The results and conclusion can serve as a basis for further research on this topic and be applied in the characterization of the Russian economy. In addition the results can be used in the educational

  17. Big infrastructures effects on local developments

    Directory of Open Access Journals (Sweden)

    Bruna Vendemmia

    2011-10-01

    Full Text Available This research aims to clarify the consequences generated by regional infrastructures strategies on local city growth.Do regional infrastructure strategies activate transformation processes at a local level? And may these  processes generate virtuous rules for local development in bottom-up transformations?To answer at these questions, in my opinion,  the Metropolitan Area of Naples represents an interesting case study. In these area, and due to the lack of Institutions, the processes, object of this work, are clearly visible: a coexistence between “top-down” projects and “bottom-up” transformations is highlighted. In 2010 Naples lies on a huge conurbation: the high-way infrastructures reduced the distance, increasing the accessibility of the region but without building a clear relation with the surroundings; as a consequence, the city sprawls, messing  up the previous rural structure. At the same time, the industrial areas produced visible fractures on the configuration of the territory.The different technologies produced physical changes in the Metropolitan Area, as well as in citizens life style. We are trying to understand, here, the relations between this two dynamics in order to measure the influences and forecast the transformations.An important fact is that nowadays and worldwide, we are assisting to the replacement of the industrial sector with global services and transport; commercial activities are transforming the landscape, finding their location in places that have well defined characteristics: big plots, high visibility, global connectivity and easy accessibility. In Naples they have been established in the same area where agriculture, industries and residential suburbs have already layered. Even though, here, they symbolize territorial references: “land-marks” (Lynch, 2006. New infrastructure have to been built in order to support this renewed uses of the territory. If the city can be described “as points of

  18. Nuclear process steam for industry: potential for the development of an Industrial Energy Park adjacent to the Bruce Nuclear Power Development

    Energy Technology Data Exchange (ETDEWEB)

    Seddon, W A

    1981-11-01

    This report summarizes the results of an industrial survey jointly funded by the Bruce County Council, the Ontario Energy Corporation, Atomic Energy of Canada Limited and conducted with the cooperation of Ontario Hydro and the Ontario Ministry of Industry and Tourism. The objective of the study was to identify and assess the future needs and interest of energy-intensive industries in the concept of an Industrial Energy Park adjacent tof the Bruce Nuclear Power Development. The proposed Energy Park would capitalize on the infrastructure of the existing CANDU reactors and Ontario Hydro's proven and unique capability to produce steam, as well as electricity, at a cost currently about half that from a comparable coal-fired station.

  19. Development of Social Infrastructure in the Management Practices of Local Authorities: Trends and Factors

    Science.gov (United States)

    Frolova, Elena V.; Vinichenko, Mikhail V.; Kirillov, Andrey V.; Rogach, Olga V.; Kabanova, Elena E.

    2016-01-01

    The relevance of the article is conditioned by the exceptional importance of the social infrastructure for the development of the state, society and each individual. Social infrastructure ensures the development of the municipal unit, satisfaction of the basic needs and interests of the population, creation of the conditions for its subsistence…

  20. Assessment of municipal infrastructure development and its critical influencing factors in urban China: A FA and STIRPAT approach.

    Directory of Open Access Journals (Sweden)

    Yu Li

    Full Text Available Municipal infrastructure is a fundamental facility for the normal operation and development of an urban city and is of significance for the stable progress of sustainable urbanization around the world, especially in developing countries. Based on the municipal infrastructure data of the prefecture-level cities in China, municipal infrastructure development is assessed comprehensively using a FA (factor analysis model, and then the stochastic model STIRPAT (stochastic impacts by regression on population, affluence and technology is examined to investigate key factors that influence municipal infrastructure of cities in various stages of urbanization and economy. This study indicates that the municipal infrastructure development in urban China demonstrates typical characteristics of regional differentiation, in line with the economic development pattern. Municipal infrastructure development in cities is primarily influenced by income, industrialization and investment. For China and similar developing countries under transformation, national public investment remains the primary driving force of economy as well as the key influencing factor of municipal infrastructure. Contribution from urbanization and the relative consumption level, and the tertiary industry is still scanty, which is a crux issue for many developing countries under transformation. With economic growth and the transformation requirements, the influence of the conventional factors such as public investment and industrialization on municipal infrastructure development would be expected to decline, meanwhile, other factors like the consumption and tertiary industry driven model and the innovation society can become key contributors to municipal infrastructure sustainability.

  1. Assessment of municipal infrastructure development and its critical influencing factors in urban China: A FA and STIRPAT approach.

    Science.gov (United States)

    Li, Yu; Zheng, Ji; Li, Fei; Jin, Xueting; Xu, Chen

    2017-01-01

    Municipal infrastructure is a fundamental facility for the normal operation and development of an urban city and is of significance for the stable progress of sustainable urbanization around the world, especially in developing countries. Based on the municipal infrastructure data of the prefecture-level cities in China, municipal infrastructure development is assessed comprehensively using a FA (factor analysis) model, and then the stochastic model STIRPAT (stochastic impacts by regression on population, affluence and technology) is examined to investigate key factors that influence municipal infrastructure of cities in various stages of urbanization and economy. This study indicates that the municipal infrastructure development in urban China demonstrates typical characteristics of regional differentiation, in line with the economic development pattern. Municipal infrastructure development in cities is primarily influenced by income, industrialization and investment. For China and similar developing countries under transformation, national public investment remains the primary driving force of economy as well as the key influencing factor of municipal infrastructure. Contribution from urbanization and the relative consumption level, and the tertiary industry is still scanty, which is a crux issue for many developing countries under transformation. With economic growth and the transformation requirements, the influence of the conventional factors such as public investment and industrialization on municipal infrastructure development would be expected to decline, meanwhile, other factors like the consumption and tertiary industry driven model and the innovation society can become key contributors to municipal infrastructure sustainability.

  2. Iran's nuclear program - for power generation or nuclear weapons?; Irans kjernefysiske program - for kraftproduksjon eller kjernevaapen?

    Energy Technology Data Exchange (ETDEWEB)

    Kippe, Halvor

    2008-11-15

    This report addresses the development of a nuclear infrastructure in Iran, and assessments are made on the near-term potential this infrastructure might yield of either nuclear power or nuclear arms production. The most significant facilities are treated in a more elaborate fashion, as these are assumed to have key roles in either a true civilian programme, or in the prospect of weapons-grade fissile material production. The future potential capacity for the latter is calculated under certain presumptions, both in the case that Iran focuses its efforts on uranium-based nuclear weapons, and in the case that it should choose the plutonium path to nuclear weapons. All the conclusions and findings in this report are based on technological considerations. This means that social or political assessments have not prevailed, rather the picture of Iran's nuclear programme is drawn through descriptions and assessments of facilities and systems, and their role in the bigger context. Definite conclusions have not been made as to whether Iran's nuclear programme currently is aimed towards nuclear arms or nuclear power. The secrecy surrounding some of the most prominent nuclear sites together with more or less credible allegations of purely weapons-related activities in the past, make it hard not to conclude that Iran until the disclosures in 2002 made as great an effort as it could on its way on developing nuclear weapons covertly. The scope of today's nuclear programme seems, on the other hand, most likely to be in part to help relieve the ever-increasing need for energy, although considerable deficits to this strategy are identified, at the same time as the Iranian people are united in a giant, high-prestige project in defiance of massive international pressure. Adding to this is a much-feared ability to rapidly being able to redirect their nuclear efforts, and develop nuclear arms in perhaps as little as one year. This so-called break-out scenario, where Iran

  3. The Efficiency of Development of the Social Infrastructure of Region with Orientation on its Priority

    Directory of Open Access Journals (Sweden)

    Panasjuk Valentyna M.

    2017-12-01

    Full Text Available The article is aimed at researching the criteria for assessing the efficiency of development of social infrastructure of region with orientation on its priority. It has been determined that the main measures and instruments for substantiating the social infrastructure development priorities can include: targeting, targeted programming; operational regulation; strategic planning; rationing and budgeting; predictive modeling according to the scale of its potential on the basis of methodical assessments of efficiency of its development. It has been defined that the types of activity providing the population with production and social services have their own specificity and features, as well as corresponding methods for assessing their activity. Five groups of indicators were allocated, considering which it is recommended to carry out assessments of the types of activity providing the population with production and social services: structural, production, personnel, financial, investment-innovative. Given the small number of indicators of development of each type of infrastructure, as well as regional specificity and type of development of infrastructure industries, it is necessary to apply a regional-differentiated approach to the assessment of their provision with infrastructural facilities.

  4. Effects of shoreline erosion on infrastructure development along the ...

    African Journals Online (AJOL)

    ... coastal environment and affected the socio-economic life of local populations, threatened cultural heritage and hindered coastal tourism development. This paper assessed the extent of shoreline recession and its effects on buildings and infrastructure along Ghana's coastline through a study of the Nkontompo Community ...

  5. Greening infrastructure

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2014-10-01

    Full Text Available The development and maintenance of infrastructure is crucial to improving economic growth and quality of life (WEF 2013). Urban infrastructure typically includes bulk services such as water, sanitation and energy (typically electricity and gas...

  6. Nuclear standardization development study

    International Nuclear Information System (INIS)

    Pan Jianjun

    2010-01-01

    Nuclear industry is the important part of national security and national economic development is key area of national new energy supported by government. nuclear standardization is the important force for nuclear industry development, is the fundamental guarantee of nuclear safe production, is the valuable means of China's nuclear industry technology to the world market. Now nuclear standardization faces to the new development opportunity, nuclear standardization should implement strategy in standard system building, foreign standard research, company standard building, and talented people building to meet the requirement of nuclear industry development. (author)

  7. The new technologies and infrastructure conversion of nuclear testing in Kazakhstan

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.

    1999-01-01

    It is known, that in August, 1991, in accordance with Decree by the Kazakhstan President, the Semipalatinsk test site (STS) was shut down, and practical works on its conversion were initiated. In 1991 the decision on creation of the Kazakhstan National Nuclear Center (KNNC) on a base of the test site scientific and industrial enterprises and Inst. of Nuclear Physics was taken. In 1993 within frame KNNC three new institutes (Inst. of Atomic Energy, Inst. of Geophysical Research, Inst. of Radiation Safety and Ecology) were created. Owing to this, at the condition of USSR disintegration and liquidation of military division in test site territory, high-qualified personnel was saved, the facilities that represent nuclear danger were left under operation and surveillance, and the full-scale program of STS conversion was developed and put into life. At present guidelines for the major research activities at KNNC on conversion program are as follows: liquidation of consequences of nuclear tests; liquidation of technological structure used before for preparation and implementation of nuclear weapons tests; creation of technology, equipment and locations for receipt and storage of radioactive wastes; working out the concept of nuclear power development in Kazakhstan; investigation of the behaviour of melted reactor core in view of potential heavy accidents at nuclear power plants; development of technique and means for detection of nuclear test in the world, continuous control for nuclear explosions; experimental works on investigation of behaviour of the materials-candidates for role of constructional materials for the thermonuclear reactor ITER; creation of high-technology industries. These and other activities undertaken in this respect allow to attract considerable foreign investments, to create in Kurchatov city hundreds of additional working places.The Government support rendered to KNNC in future will allow to expand substantially this area of activities as well as to

  8. Flowscapes : Infrastructure as landscape, landscape as infrastructure. Graduation Lab Landscape Architecture 2012/2013

    NARCIS (Netherlands)

    Nijhuis, S.; Jauslin, D.; De Vries, C.

    2012-01-01

    Flowscapes explores infrastructure as a type of landscape and landscape as a type of infrastructure, and is focused on landscape architectonic design of transportation-, green- and water infrastructures. These landscape infrastructures are considered armatures for urban and rural development. With

  9. Eco-logical : an ecosystem approach to developing transportation infrastructure projects in a changing environment

    Science.gov (United States)

    2009-09-13

    The development of infrastructure facilities can negatively impact critical habitat and essential ecosystems. There are a variety of techniques available to avoid, minimize, and mitigate negative impacts of existing infrastructure as well as future i...

  10. Analysis of the international environment for the national nuclear technology development in the post-coldwar era

    International Nuclear Information System (INIS)

    Yang, Maeng Ho; Kim, Hwa Sup; Kim, Ji Whan; Lee, Dong Jin; Kim, Jong Sook; Kim, Hyun Joon; Yoon, Young Woo; Ham, Chul Hoon; Cho, Suck Hong

    1992-12-01

    The main objective of this study is to suggest future policy directions of national nuclear technology development and to define the role of nuclear power in the post-coldwar era. This study first reviews how the collapse of USSR have exerted subsequent effects on the international nuclear industry and analyses the efforts of the multinational nuclear enterprises to obtain technological, competitiveness and to expand the share in the international nuclear market in order to compete the economical and technological superiority. Finally, this study analyses scenarios for the global environmental regulations which may be imposed over internationally in the near future. This study suggests; firstly, increasing investment on science and technology, secondly, diversifying international cooperation, thirdly, rearranging and strengthening a national system for information collecting and analysis, fourthly, making up infrastructure to expand the role of nuclear power, fifthly, expanding the applications of nuclear energy including district heating, etc. (Author)

  11. Contribution of International and Regional Networks in Developing and Maintaining Human Capacity Building for Nuclear Power Programmes

    International Nuclear Information System (INIS)

    Osman, O. E.

    2015-01-01

    Capacity is defined as; the ability of individuals and organizations or organizational units to perform functions effectively, efficiently and sustainably. Capacity building is an evidence-driven process of strengthening the abilities of individuals, organizations, and systems to perform core functions sustainably, and to continue to improve and develop over time. This article will explain the contributions of knowledge networks at the national, regional and international level in developing the existing capacity building and human resources for regulatory body in Sudan, to confront the future challenges regarding to nuclear power program- safety and security. The article will compare the advantages and effectiveness of these knowledge networks (IAEA, ANNuR, FNRBA) in capacity building and enhance the infrastructure of national regulatory body. And how these networks contribute to enable the regulatory bodies in Africa and Arab countries, to establish and strengthen their regulatory infrastructure for nuclear power programme consistent with international standards and recommendations. As well as the recommendations resulting and deduced from comparative study to promote the exchange of knowledge, experience and information among its members. (author)

  12. Making Network Markets in Education: The Development of Data Infrastructure in Australian Schooling

    Science.gov (United States)

    Sellar, Sam

    2017-01-01

    This paper examines the development of data infrastructure in Australian schooling with a specific focus on interoperability standards that help to make new markets for education data. The conceptual framework combines insights from studies of infrastructure, economic markets and digital data. The case of the Australian National Schools…

  13. Developing Spatial Data Infrastructure in Croatia – Incorporating National and Regional Approach

    Directory of Open Access Journals (Sweden)

    Željko Bačić

    2010-12-01

    Full Text Available Although still not a member State of the European Union, Croatia has recognized in the spatial data infrastructure a concept that can significantly incite the modernization and effectiveness of the State administration, and create preconditions for the accelerated economic growth. Given this fact, Croatia has defined, after preparations which lasted several years, the legal framework for the national spatial data infrastructure establishment by adopting the Law on State Survey and Real Property Cadastre in 2007. During the adoption of this Law, great attention was paid to it being in line with the EU INSPIRE Directive (European Union, 2007 that was being adopted at the time, so the adopted provisions were fully compatible with the INSPIRE provisions. Regarding the model that Croatia has chosen in the establishment of its National Spatial Data Infrastructure (NSDI, the role of the State Geodetic Administration (SGA, the Croatian National Mapping and Cadastre Agency (NMCA, is significant. The SGA acts as a coordination body for the NSDI establishment, giving technical support to the NSDI bodies. One of the obligations is the establishment of a metadata catalogue through the national geoportal. Significant activities have been undertaken in the field of raising the awareness. The most important studies describing the manner of the NSDI establishment and current national as well as European situation have been translated into Croatian language and distributed to more than 1,000 NSDI stakeholders. Several workshops have been organised in order to transfer the best practices from the countries that have achieved big progress in this field. In parallel with the national activities, Croatia, or rather the SGA, has recognized that the spatial data infrastructure (SDI development cannot be based on isolated national activities connected exclusively to the INSPIRE Directive but that the Croatian spatial data infrastructure development activities must be

  14. On the development of small nuclear power stations

    International Nuclear Information System (INIS)

    Goetzmann, C.A.

    1989-01-01

    There are weighty reasons for and against the building of small nuclear power stations. Factors such as specific investment costs, opportunities for and areas of application, geographical conditions as well as those relating to infrastructure, security and availability play an important role in the planning, construction and running of a nuclear power station. For the usual large power stations, the comparatively low specific investment costs and a proven technology are favorable factors which minimize the investment risk. The article presents an overview of reasons for using small power stations and also considers the difficulties which would arise in practice. (orig.) [de

  15. Closed nuclear facilities in Estonia: developments and problems

    International Nuclear Information System (INIS)

    Realo, E.; Realo, K.

    2000-01-01

    At present Estonia has no operating nuclear or a radioactive material production facility. As a legacy of the past the country has become responsible for the decommissioning of two large nuclear cycle facilities of the former USSR. Besides limited funding, major problems arise from deficiencies in legislation, expertise, training and research. International co-operation has been of immense importance to overcome the problems, to establish the national radiation protection and radioactive waste management infrastructure and to launch decommissioning and remediation activities. An overview is given on the status and problems. Copyright (2000) Australasian Radiation Protection Society Inc

  16. NS [Nuclear Safety] update. Current safety and security activities and developments taking place in the Department of Nuclear Safety and Security, Issue no. 12, September 2009

    International Nuclear Information System (INIS)

    2009-09-01

    The current issue presents information about the following topics: Nuclear Security Report 2009; G8 Nuclear Safety and Security Group (NSSG); Uranium Production Site Appraisal Team (UPSAT); New Entrant Nuclear Power Programmes Safety Guide on the Establishment of the Safety Infrastructure (DS424)

  17. Transportation infrastructure upgrades in the South: A compilation of state plans for construction near nuclear reactor sites

    International Nuclear Information System (INIS)

    1992-03-01

    There are currently 27 nuclear reactor sites located in the southern region. In many instances, the most practicable modes of transportation of spent nuclear fuel from these sites we through the use of highway and rail systems. These two transportation modes have important differences that affect their applicability; chief among these, perhaps, is the fact that while highway systems are publicly owned and maintained rail lines are owned by private entities. For this reason, track condition and maintenance, usage rates and other aspects of rail transport can vary widely. This report reviews southern state, department plans for infrastructure upgrades in the vicinity of nuclear reactor sites. This report includes a summary of planned modifications to bridges, access highways, and rail spurs (where applicable) over the next five years. The information contained herein was gathered from interviews with officials within state departments of transportation. With few exceptions, the contact person was an official within the departmental planning division

  18. Development of road infrastructure as a tool of transforming Ibiono ...

    African Journals Online (AJOL)

    Global Journal of Social Sciences ... Development of road infrastructure as a tool of transforming Ibiono Ibom local government area. V Umoren ... The improvement of transportation network in the rural area in this regard becomes imperative.

  19. Workforce Planning for New Nuclear Power Programmes

    International Nuclear Information System (INIS)

    2011-01-01

    An appropriate infrastructure is essential for the efficient, safe, reliable and sustainable use of nuclear power. The IAEA continues to be encouraged by its Member States to provide assistance to those considering the introduction of nuclear power. Its response has been to increase technical assistance, organize more missions and hold workshops, as well as to issue new and updated publications in the IAEA Nuclear Energy Series. Milestones in the Development of a National Infrastructure for Nuclear Power, an IAEA Nuclear Energy Series publication (NG-G-3.1), provides detailed guidance on a holistic approach to national nuclear infrastructure development involving three phases. Nineteen issues are identified in this guide, ranging from development of a government's national position on nuclear power to planning for procurement related to the first nuclear power plant. One of these 19 issues upon which each of the other 18 depend is suitable human resources development. As a growing number of Member States begin to consider the nuclear power option, they ask for guidance from the IAEA on how to develop the human resources necessary to launch a nuclear power programme. The nuclear power field, comprising industry, government authorities, regulators, R and D organizations and educational institutions, relies on a specialized, highly trained and motivated workforce for its sustainability and continued success, quite possibly more than any other industrial field. This report has been prepared to provide information on the use of integrated workforce planning as a tool to effectively develop these resources for the spectrum of organizations that have a stake in such nuclear power programmes. These include, during the initial stages, a nuclear energy programme implementing organization (NEPIO), as well as the future operating organization, nuclear regulatory body, government authorities and technical support organizations if a decision is made to initiate a nuclear power

  20. Developing Globally Compatible Institutional Infrastructures for Indian Higher Education

    Science.gov (United States)

    Chakrabarti, Raj; Bartning, Augustine; Sengupta, Shiladitya

    2010-01-01

    The authors profile developments in the globalization of Indian higher education, with an emphasis on emerging globally compatible institutional infrastructures. In recent decades, there has been an enormous amount of brain drain: the exodus of the brightest professionals and students to other countries. The article argues that the implementation…

  1. Japanese experiences in human resources development in the nuclear fields and proposal on procedure of the 1st seminar

    International Nuclear Information System (INIS)

    Murao, Yoshio

    2000-01-01

    The Atomic Energy Basic Act was enforced in 1956. The law prescribed establishment of the Atomic Energy Commission (establishment of the Nuclear Safety Commission was added in 1978), definition of administrative bodies for nuclear fuel materials and reactors and radiation protection, and necessary regulatory laws. The law also prescribed establishment of a national nuclear center for R and D and human resources development, i.e. Japan Atomic Energy Research Institute (JAERI) was established in 1956. The Nuclear Technology and Education Center (NuTEC) RI school was opened in 1958. Establishments of Power Reactor and Nuclear Fuel Development Corporation and National Institute of Radiological Science were in 1956 and 1957, respectively. In universities, nuclear facilities were constructed for supplying young human resources based on decision by Ministry of Education after 1961. The foundation of Japan Atomic Energy Power Co. (JAPCO) was in 1957. In the NuTEC, a variety of training courses had been prepared and carried out to meet the requirements of the nuclear community. Many leaders and experts had been produced and they worked for development of nuclear infrastructure in Japan. International training programs were started in 1985 and the experiences were applied for helping Asian countries to develop the manpower for nuclear infrastructure. Japanese safety actions for nuclear technology had strongly depended on that of USA. Therefore, much efforts on safety evaluation and phenomenological understanding are necessary in Japan. Recent tendency is changed from development-minded approach to safety-minded approach and is focused more on efforts to get public consent on nuclear energy. However, Japanese experiences will be useful for developing human resources in other countries. The NuTEC of JAERI will operate the seminar once a year. The seminar will be implemented; to get mutual recognition on present status and problems of regional countries by gathering information

  2. The development of a cislunar space infrastructure

    Science.gov (United States)

    Buck, C. A.; Johnson, A. S.; Mcglinchey, J. M.; Ryan, K. D.

    1989-01-01

    The primary objective of this Advanced Mission Design Program is to define the general characteristics and phased evolution of a near-Earth space infrastructure. The envisioned foundation includes a permanently manned, self-sustaining base on the lunar surface, a space station at the Libration Point between earth and the moon (L1), and a transportation system that anchors these elements to the Low Earth Orbit (LEO) station. The implementation of this conceptual design was carried out with the idea that the infrastructure is an important step in a larger plan to expand man's capabilities in space science and technology. Such expansion depends on low cost, reliable, and frequent access to space for those who wish to use the multiple benefits of this environment. The presence of a cislunar space infrastructure would greatly facilitate the staging of future planetary missions, as well as the full exploration of the lunar potential for science and industry. The rationale for, and a proposed detailed scenario in support of, the cislunar space infrastructure are discussed.

  3. Developing geographic information infrastructure : The role of information policies

    NARCIS (Netherlands)

    Van Loenen, B.

    2006-01-01

    Within information societies, information availability is a key issue affecting societyâs well being. The infrastructure underlying the foundation of the information society may be referred to as the information infrastructure. A geographic information infrastructure (GII) supports the information

  4. Public-Private Partnership and Infrastructural Development in Nigerian Universities

    Science.gov (United States)

    Oduwaiye, R. O.; Sofoluwe, A. O.; Bello, T. O.; Durosaro, I. A.

    2014-01-01

    This study investigated the degree to which Public-Private Partnership (PPP) services are related to infrastructural development in Nigerian Universities. The research design used was descriptive survey method. The population for the study encompassed all the 20 universities in South-west Nigeria. Stratified random sampling was used to select 12…

  5. The Collaborative Management Model on Developing the Infrastructure of the Pomalaa’s Airport, Indonesia

    Directory of Open Access Journals (Sweden)

    Dr.Sc. Abdul Sabaruddin

    2017-06-01

    Full Text Available Collaborative management of public sector is being introduced as a new approach to solve the problems which is mainly on the restrictiveness of bureaucracy in answering such public demand. Therefore, collaboration approach presents new actors out of the government in processing the public sectors. The relationship among actors in its collaboration is well developed through consensus to gain valuable decision to all. Based on the problems mentioned, this study focuses on the model of collaborative management on developing the infrastructure of an airport. To answer the objective of the study, therefore, this research applied qualitative approach in which the respondents are those who were being involved in construction process of the airport. The data gained from interview will be analysed through interactive model consisting of some procedures; data reduction, data presentation, verification of the data/ drawing conclusion. The result showed that collaborative management model in infrastructure development of the airport was a management model, in this case collective action based on the principle of synergetic participation. In this context, there was no single actor on the development of infrastructure of the airport. Through collective action, the related aspects, in this case the development of infrastructure, was transparently communicated to avoid miscommunication among the members. Therefore, the actors which were being involved on the collaboration bore the needs reasonably and also there was no such member who were being burden. Thus, the implication of collaboration based on the consensus, the collaboration on the development of infrastructure of the airport is on the basis of participative, which pointed out the appointment and the continuation of the development.

  6. Nuclear knowledge management: a very fundament of a national radiation protection infrastructure

    International Nuclear Information System (INIS)

    Jovanovic, Slobodan

    2008-01-01

    Full text: Knowledge is fundament of any progress, and so is the case with nuclear knowledge (NK) for radiation protection. However, this axiomatic and notorious fact is sometimes interpreted/understood in a sense that knowledge is there for granted. If persistent, this dangerously wrong attitude may silently lead to prevailing of ignorance vs. knowledge/ competence and to RP degradation in much respect, with far reaching consequences. Having behind many decades of experience with research, development and utilization of radiation sources for various purposes (including both electric power generation and non-power applications) and with renewed expectations from nuclear sector in solving global energy crisis in front, nuclear knowledge management (NKM) is getting a growing attention lately. This comes due to accentuation, in many counties, of issues with NK creation, dissemination, transfer, preservation and maintenance, or its proper verification/ employing, positioning versus other knowledge, even valorization and public acceptance. Therein, RP is among the areas much sensitive and depending on the effects mentioned. RP infrastructure in a country comprising regulatory elements (institutional and legal framework), technical support organizations (service providers), educational institutions (universities, training centers), RP associations, source manufacturers, traders and users themselves is, as a matter of fact, a complex system of multidisciplinary nature. Physicists, chemists, biologists, environmentalists, medical physicists and practitioners, engineers, managers, lawyers, technicians have their place within the system. It is a common denominator for them all to need a particular NK pertinent to their duties. This very knowledge cannot be missed. Also, it cannot be improvised or substituted by some other knowledge from their respective specialties, neither by that of other people with different backgrounds, who might come in replacement. Unfortunately, it

  7. Harmonizing Settlement, Infrastructure, and Population Data to Support Sustainable Development

    Science.gov (United States)

    Chen, R. S.; de Sherbinin, A. M.; Yetman, G.

    2016-12-01

    The geospatial data community has been developing global-scale georeferenced population, human settlements, and infrastructure data for more than two decades, pushing available technologies to process ever growing amounts of data and increase the resolution of the outputs. These population, settlement, and infrastructure data products have seen wide use in varied aspects of sustainable development, including agriculture, energy, water, health, land use, transportation, risk management, and climate impact assessment. However, in most cases, data development has been driven by the availability of specific data sources (e.g., census data, night-time lights, radar data, or moderate- to high-resolution imagery), rather than by an integrated view of how best to characterize human settlement patterns over time and space on multiple dimensions using diverse data sources. Such an integrated view would enhance our ability to observe, model, and predict where on the planet people live and work—in the past, present, and future—and under what conditions, i.e., in relationship not only to environmental systems, resources, extremes, and changes, but also to the human settlements and built infrastructure that mediate impacts on both people and the environment. We report here on a new international effort to improve understanding of the strengths and weaknesses of existing and planned georeferenced data products, and to create a collaborative community across the natural, social, health, engineering, and data sciences and the public and private sectors supporting data integration and coordination to meet sustainable development data needs. Opportunities exist to share data and expertise, coordinate activities, pool computing resources, reduce duplication, improve data quality and harmonization, and facilitate effective data use for sustainable development monitoring and decision making, especially with respect to the 17 Sustainable Development Goals adopted by the international

  8. National waste management infrastructure in Ghana

    International Nuclear Information System (INIS)

    Darko, E.O.; Fletcher, J.J.

    1998-01-01

    Radioactive materials have been used in Ghana for more than four decades. Radioactive waste generated from their applications in various fields has been managed without adequate infrastructure and any legal framework to control and regulate them. The expanded use of nuclear facilities and radiation sources in Ghana with the concomitant exposure to human population necessitates effective infrastructure to deal with the increasing problems of waste. The Ghana Atomic Energy Act 204 (1963) and the Radiation Protection Instrument LI 1559 (1993) made inadequate provision for the management of waste. With the amendment of the Atomic Energy Act, PNDCL 308, a radioactive waste management centre has been established to take care of all waste in the country. To achieve the set objectives for an effective waste management regime, a waste management regulation has been drafted and relevant codes of practice are being developed to guide generators of waste, operators of waste management facilities and the regulatory authority. (author)

  9. Northeast Asia regional energy infrastructure proposals

    International Nuclear Information System (INIS)

    Hippel, David von; Gulidov, Ruslan; Kalashnikov, Victor; Hayes, Peter

    2011-01-01

    Economic growth in the countries of Northeast Asia has spurred a massive increase in the need for energy, especially oil, gas, coal, and electricity. Although the region, taken as a whole, possesses financial, technical, labor, and natural resources sufficient to address much of the region's needs now and into the future, no one country has all of those attributes. As a result, over the past two decades, there has been significant interest in regional proposals that would allow sharing of resources, including infrastructure to develop and transport energy resources from the Russian Far East to South Korea, China, and Japan, and cooperation on energy-efficiency, renewable energy, and the nuclear fuel cycle as well. In this article we review some of these proposals, identify some of the factors that could contribute to the success or failure of infrastructure proposals, and explore some of the implications and ramifications of energy cooperation activities for energy security in the region.

  10. Study on Urban Infrastructure Development Financing in China(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>4.Typical modes of infrastructure financing in China After summarizing the general situations of infrastructure financing in China,further analyses will be made on several typical modes of infrastructure financing on the basis of the interviews,surveys,and data collections in certain Chinese cities.

  11. Development of closed cycle infrastructure at VNIPIET

    International Nuclear Information System (INIS)

    Onufrienko, S.V.; Kuzin, A.S.; Shafrova, N.P.; Zavadskij, M.I.

    2012-01-01

    Background to the creation of a closed nuclear fuel cycle is described. Achievements and future development projects of the Leading Institute VNIPIET are listed. The diagram of the closed nuclear fuel cycle in Russia with separate uranium and plutonium recycling is given. The major milestones of the VNIPIET history are reported [ru

  12. Development and Operation of the D-Grid Infrastructure

    Science.gov (United States)

    Fieseler, Thomas; Gűrich, Wolfgang

    D-Grid is the German national grid initiative, granted by the German Federal Ministry of Education and Research. In this paper we present the Core D-Grid which acts as a condensation nucleus to build a production grid and the latest developments of the infrastructure. The main difference compared to other international grid initiatives is the support of three middleware systems, namely LCG/gLite, Globus, and UNICORE for compute resources. Storage resources are connected via SRM/dCache and OGSA-DAI. In contrast to homogeneous communities, the partners in Core D-Grid have different missions and backgrounds (computing centres, universities, research centres), providing heterogeneous hardware from single processors to high performance supercomputing systems with different operating systems. We present methods to integrate these resources and services for the DGrid infrastructure like a point of information, centralized user and virtual organization management, resource registration, software provision, and policies for the implementation (firewalls, certificates, user mapping).

  13. Assessing the development of Kenya National Spatial Data Infrastructure (KNSDI)

    NARCIS (Netherlands)

    Okuku, J.; Bregt, A.K.; Grus, L.

    2014-01-01

    Spatial data plays a vital role in developmental activities, whether natural resource management or socio-economic development. Spatial Data Infrastructures (SDIs) facilitate access, sharing and dissemination of spatial data necessary for complex decision-making processes of the future. Thus,

  14. Information management in civil engineering infrastructural development : With focus on geological and geotechnical information

    NARCIS (Netherlands)

    Tegtmeier, W.; Zlatanova, S.; Van Oosterom, P.J.M.; Hack, H.R.G.K.

    2009-01-01

    In civil engineering infrastructural projects, information exchange and (re-) use in and between involved parties is difficult. This is mainly caused by a lack of information harmonization. Various specialists are working together on the development of an infrastructural project and are all using

  15. The CSIR’s work in infrastructure innovation as an enabler for industrial development

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2017-10-01

    Full Text Available % 26% 2% 22% 37% 0% 5% CIDB 2017. Contractor skills survey 2011. Pretoria: Construction Industry Development Board 8 “Modernise or die” • “A plan for change needs to recognise, based on past evidence, that the industry will not change itself... stream_source_info The CSIR?s work in infrastructure innovation as an enabler for industrial development.pdf.txt stream_content_type text/plain stream_size 5661 Content-Encoding UTF-8 stream_name The CSIR?s work in infrastructure...

  16. Cernavoda NPP - A competitive energy source for sustainable development

    International Nuclear Information System (INIS)

    Rotaru, Ioan; Bilegan, I.C.; Jelev, Adrian

    2004-01-01

    At present a trend manifests world wide toward promoting nuclear power, for increasing its performances, toward maintaining competitiveness and sustaining the programs of development and application of advanced nuclear technologies. These objectives will be achieved by improving: operation performances; management of life-cycle, quality management; technical infrastructure; human resource performances; international cooperation for developing innovative nuclear technologies; technologies and applications of advanced reactors. Fostering the Romanian nuclear power on the basis of CANDU 6 type rectors, the developing in Romania of an advanced industrial infrastructure, the economical, environmental and social aspects and their interplay with nuclear power development are the main subjects presented in this work

  17. Sustainable development and peaceful use of nuclear energy in Romania

    International Nuclear Information System (INIS)

    Valeca, Serban Constantin; Popescu, Dan

    2004-01-01

    natural environment. The principles that support the radiation protection approach are consistent with the goals of sustainable development. The effectiveness of the protection systems against radiation may be measured by the status and trends in radioactive emissions from nuclear facilities and the exposure of the public and workers to radiation. Maintaining this framework is essential to address social and environmental concerns. To the extent that these concerns are addressed successfully, the nuclear industry, and the scientific knowledge and institutional infrastructure supporting it, can represent assets for present and future generations. The governments have an important role in making the public to understand social, ethical and political issues related to nuclear energy into perspective with the issues raised by alternatives. In conclusion, nuclear power is consistent with the objectives of sustainable development related to the creation and effective use of natural resources and their preservation for future generations. For Romania the concept of sustainable development implies also that acceptance of nuclear field development means an increase in the Romanian research and industry participation. Cernavoda NPP fully complies with applicable requirements of the national and international standards. Romanian experience in the field of production and use of nuclear energy demonstrates that operating of Cernavoda NPP Unit 1 and other nuclear facilities, in normal conditions and according to nuclear safety rules, regulations and provisions has a reduced impact on health of population and environment. The fruitful co-operation with IAEA Vienna, EURATOM and other international organizations in the nuclear field was and is a very important support for Romania. (authors)

  18. Development of infrastructure for the regulatory authority to implement risk-informed regulation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    It is important to assure the technical adequacy of probabilistic risk assessment (PRA) to implement risk-informed regulation of nuclear power plants (NPPs). JNES has been conducting various activities, such as development of PRA model, method, and data base, in order to assure the technical adequacy of PRA as development of the infrastructure for the regulatory authority to implement risk-informed regulation. In 2012, JNES updated the reliability data base used in PRA and improved PRA models to enhance the technical bases of PRA. In addition, JNES has been establishing the PRA model for fuel damage in the spent fuel storage pool in NPPs. As for improvement of PRA model for core damage in reactor, JNES conducted the study including feasibility of a simplified reliability model for digital I and C system developed by the digital I and C task group of OECD/NEA CSNI WGRISK by reproducing the sample calculation, and improvement of PRA models of individual NPPs in Japan. JNES is making effort to develop the procedures of internal fire PRA and internal flooding PRA. To improve the internal fire PRA, JNES is participating in OECD/NEA FIRE project to obtain the latest information and to validate and improve the fire propagation analysis codes and the parameters. JNES is establishing a method for analyzing internal influence due to flooding in NPPs, and this method is the base to develop the procedure of internal flooding PRA. (author)

  19. Forecast of energy demand in China and introduction of nuclear power using the clean development mechanism

    International Nuclear Information System (INIS)

    Ikemoto, Ichiro

    2003-01-01

    As an economic energy source with low greenhouse gas emissions and essentially no resource limitations, nuclear power is a promising option for meeting the rapidly growing energy demands of China that is being driven by rapid population and economic growth. This paper examines an introduction scenario for nuclear power in China by using the clean development mechanism, based on quantitative evaluation of energy demand forecasts and the nuclear fuel cycle through 2100. The results of the case study concluded that in the short to mid term, large-scale light water reactors will primarily be sited in coastal areas where infrastructure development is advanced. In the future, as dispersed power sources in inland areas, small scale FBRs will be preferred due to their promising safety, operation and maintenance characteristics, ease of transportation of plant equipment and plant construction and the possibility of on-site nuclear fuel cycle. Evaluation of nuclear fuel cycle showed that this introduction scenario is feasible considering natural Uranium demand, Uranium enrichment capacity and reprocessing capacity. (author)

  20. The update of competence and infrastructure to the near future

    International Nuclear Information System (INIS)

    Dias, Marcio Soares; Mattos, Joao Roberto Loureiro de

    2009-01-01

    Currently, the Brazilian nuclear organizations are conducting joint efforts toward the management of existing personnel and infrastructure in order to update their competence to study and develop the nuclear fuel elements for high performance and extended burnup. As contribution to this effort, the Nuclear Technology Development Centre is promoting the update of the fuel rod design codes to ensure they are fit and appropriate to design purposes and to evaluations of the fuel rod performance in accordance with current and near future insertion conditions. Comprehensive models of thermal properties and in-pile behavior of the fuel are in development by the CDTN's expert staff, insertion into performance codes and validation against a representative database as the International Fuel Performance Experiments. The thermal properties of UO 2 and (U,Gd)O 2 have been reviewed and reduced into the analytical models based on a topological view of the matter and its properties. The current status of this project is presented in this paper. (author)

  1. The strategy for the development of information society in Serbia by 2020: Information security and critical infrastructure

    Directory of Open Access Journals (Sweden)

    Danijela D. Protić

    2012-10-01

    Full Text Available The development of technology has changed the world economy and induced new political trends. The European Union (EU and many non-EU member states apply the strategies of information society development that raise the level of information security (IS. The Serbian Government (Government has adopted the Strategy for Information Society in Serbia by 2020 (Strategy, and pointed to the challenges for the development of a modern Serbian information society. This paper presents an overview of the open-ended questions about IS, critical infrastructures and protection of critical infrastructures. Based on publicly available data, some critical national infrastructures are listed. As a possible solution to the problem of IS, the Public Key Infrastructure (PKI-based Information security integrated information system (ISIIS is presented. The ISIIS provides modularity and interoperability of critical infrastructures both in Serbia and neighboring countries.

  2. Sustainable management of infrastructures using risks

    International Nuclear Information System (INIS)

    Gerard, B.

    2005-01-01

    Today, maintenance costs of industrial infrastructures are growing up continuously. It is thus necessary to have a general and systematic method allowing to hierarchize the investment priorities in order to optimize the benefits. Taking into account the diversity of infrastructures, components and stakes, such a task is far to be easy. However, methods are implementing in the civil engineering world in order to give help to engineers and decision-makers to jointly develop strategies answering their technical, financial or environmental problems. Oxand, a counsel company of the Electricite de France (EdF) group, has developed and implemented a decisive decision-help tool. By combining the notion of risk with social, financial or environmental impacts, it becomes possible to estimate and compare different activities submitted to exploitation, safety and budget constraints. Moreover, it is possible to introduce the time dimension in the analysis by the integration of the most recent knowledge on materials aging, still with the aim of an optimized technical and financial management. This article presents the concepts of this methodology and its applications in particular in the domain of nuclear industry. (J.S.)

  3. Integration of research infrastructures and ecosystem models toward development of predictive ecology

    Science.gov (United States)

    Luo, Y.; Huang, Y.; Jiang, J.; MA, S.; Saruta, V.; Liang, G.; Hanson, P. J.; Ricciuto, D. M.; Milcu, A.; Roy, J.

    2017-12-01

    The past two decades have witnessed rapid development in sensor technology. Built upon the sensor development, large research infrastructure facilities, such as National Ecological Observatory Network (NEON) and FLUXNET, have been established. Through networking different kinds of sensors and other data collections at many locations all over the world, those facilities generate large volumes of ecological data every day. The big data from those facilities offer an unprecedented opportunity for advancing our understanding of ecological processes, educating teachers and students, supporting decision-making, and testing ecological theory. The big data from the major research infrastructure facilities also provides foundation for developing predictive ecology. Indeed, the capability to predict future changes in our living environment and natural resources is critical to decision making in a world where the past is no longer a clear guide to the future. We are living in a period marked by rapid climate change, profound alteration of biogeochemical cycles, unsustainable depletion of natural resources, and deterioration of air and water quality. Projecting changes in future ecosystem services to the society becomes essential not only for science but also for policy making. We will use this panel format to outline major opportunities and challenges in integrating research infrastructure and ecosystem models toward developing predictive ecology. Meanwhile, we will also show results from an interactive model-experiment System - Ecological Platform for Assimilating Data into models (EcoPAD) - that have been implemented at the Spruce and Peatland Responses Under Climatic and Environmental change (SPRUCE) experiment in Northern Minnesota and Montpellier Ecotron, France. EcoPAD is developed by integrating web technology, eco-informatics, data assimilation techniques, and ecosystem modeling. EcoPAD is designed to streamline data transfer seamlessly from research infrastructure

  4. Coexistence and conflict: IWRM and large-scale water infrastructure development in Piura, Peru

    Directory of Open Access Journals (Sweden)

    Megan Mills-Novoa

    2017-06-01

    Full Text Available Despite the emphasis of Integrated Water Resources Management (IWRM on 'soft' demand-side management, large-scale water infrastructure is increasingly being constructed in basins managed under an IWRM framework. While there has been substantial research on IWRM, few scholars have unpacked how IWRM and large-scale water infrastructure development coexist and conflict. Piura, Peru is an important site for understanding how IWRM and capital-intensive, concrete-heavy water infrastructure development articulate in practice. After 70 years of proposals and planning, the Regional Government of Piura began construction of the mega-irrigation project, Proyecto Especial de Irrigación e Hidroeléctrico del Alto Piura (PEIHAP in 2013. PEIHAP, which will irrigate an additional 19,000 hectares (ha, is being realised in the wake of major reforms in the ChiraPiura River Basin, a pilot basin for the IWRM-inspired 2009 Water Resources Law. We first map the historical trajectory of PEIHAP as it mirrors the shifting political priorities of the Peruvian state. We then draw on interviews with the newly formed River Basin Council, regional government, PEIHAP, and civil society actors to understand why and how these differing water management paradigms coexist. We find that while the 2009 Water Resources Law labels large-scale irrigation infrastructure as an 'exceptional measure', this development continues to eclipse IWRM provisions of the new law. This uneasy coexistence reflects the parallel desires of the state to imbue water policy reform with international credibility via IWRM while also furthering economic development goals via largescale water infrastructure. While the participatory mechanisms and expertise of IWRM-inspired river basin councils have not been brought to bear on the approval and construction of PEIHAP, these institutions will play a crucial role in managing the myriad resource and social conflicts that are likely to result.

  5. Supply and demand of nuclear education

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    On June 6, 2011, the Atomexpo-2011 International Forum held a round-table discussion dedicated to Prospects of nuclear education in countries that plan to advance their nuclear power, and in countries that are about to launch their nuclear programmes. More than 80 participants representing many nations and international organizations discussed issues associated with the development of nuclear education and training infrastructure, as well as prospects for international cooperation in this sector [ru

  6. Establishing operational stability--developing human infrastructure.

    Science.gov (United States)

    Gomez, Max A; Byers, Ernest J; Stingley, Preston; Sheridan, Robert M; Hirsch, Joshua A

    2010-12-01

    Over the past year, Toyota has come under harsh scrutiny as a result of several recalls. These well publicized mishaps have not only done damage to Toyota's otherwise sterling reputation for quality but have also called into question the assertions from a phalanx of followers that Toyota's production system (generically referred to as TPS or Lean) is the best method by which to structure one's systems of operation. In this article, we discuss how Toyota, faced with the pressure to grow its business, did not appropriately cadence this growth with the continued development and maintenance of the process capabilities (vis a vis the development of human infrastructure) needed to adequately support that growth. We draw parallels between the pressure Toyota faced to grow its business and the pressure neurointerventional practices face to grow theirs, and offer a methodology to support that growth without sacrificing quality.

  7. Developing competition while building up the infrastructure of the Brazilian gas industry

    International Nuclear Information System (INIS)

    De Mello Sant Ana, Paulo Henrique; De Martino Jannuzzi, Gilberto; Valdir Bajay, Sergio

    2009-01-01

    For the last 20 years, countless countries have been carrying out structural reforms in the natural gas industry, trying to achieve efficiency and economic rationality with the introduction of competition. The objective of the paper is to present an approach to the development of competition and infrastructure of the Brazilian natural gas industry. This approach is based on a market projection to 2011, on the international experience and on the characteristics of the Brazilian market, infrastructure and regulatory framework. Possible impacts of the proposed measures are also provided. According to the market projection carried out in this paper, in 2011 there will be a possible surplus of natural gas in the country, which includes a dependence diminishing of the Bolivian gas supply. This gas surplus, allied to an upcoming Gas Law and the trade liberalization in the states of Sao Paulo and Rio de Janeiro, can stimulate the development of competition, if some changes that proposed in this paper are made in the current Gas Bills. The approach proposed herein seeks to stimulate non-discriminatory open access, focused on information transparency and tariff regulation to help the development of infrastructure and competition. (author)

  8. Measuring Spatiality in Infrastructure and Development of High School Education in Hooghly District of West Bengal, India

    Directory of Open Access Journals (Sweden)

    Shovan Ghosh

    2018-06-01

    Full Text Available An increasing access and enrolment do not necessarily ensure school effectiveness or educational progress. They are, of course, other parameters of development of education, rather than being measures of standards of quality education. The present paper opts to scrutinize whether infrastructural development in schools at all ensures good educational development or not. To accomplish this, Education Infrastructural Index has been prepared through Access, Facility and Teacher Index whereas a combination of Enrollment Index and Literacy Index gave rise Educational Development Index. The study reveals that accessibility factor begets a division within rural spaces in the form of backward rural, rural and prosperous rural that manifests through the availability of the teachers and facilities. In the urban areas, wherein accessibility is not a matter of concern, facilities and teachers matter in making difference between the less developed and developed urban areas. The higher Educational Development Index at the non-rural areas indicates town- centric nature of the development of our educational system. Superimposition of the infrastructural and developmental parameters revealed that good infrastructure does not always ensure good educational achievement. In the light of these backdrops, the key purpose of this article is to measuring spatiality in infrastructure and development of high school education in Hooghly District of West Bengal, India.

  9. International co-operation and the transfer of nuclear technology

    International Nuclear Information System (INIS)

    di Primio, J.C.

    1977-01-01

    The transfer of technology from developed countries is usually done through industrial enterprises. The local industrialization of imported technology does not necessarily imply that full benefit is extracted from its application. A pre-established scientific and technical infrastructure is needed to understand and incorporate it, and to develop methods for improvement and use at the industrial level, in the frame of national conditions. The transference of nuclear technology has recently shown new concepts for implementation. It is becoming a rule that massive industrial nuclear technology transfer to developing nations is tied to a requirement for simultaneous assistance in creating or promoting the infrastructure. An example of international co-operation to meet this requirement is the Argentine-German Agreement for the Peaceful Applications of Nuclear Energy. Since 1971 this has been used to strengthen the scientific and technical programmes of the Argentine Atomic Energy Commission in the relevant fields of industrial applications. The objectives and implementation of the agreement are described: co-operative actions were initially directed to the infrastructure needed to support the nuclear fuel cycle industry. The results achieved during the period 1971-1976 are critically analysed. This analysis has influenced the selection of future co-operative projects as well as the extension of the co-operation to other nuclear fields of common interest. (author)

  10. Mali. Challenges for a Developing Country in Building Human Resource Development for Nuclear Power Programmes: Case of Mali

    International Nuclear Information System (INIS)

    Kone, Nagantie

    2014-01-01

    Present situation: National Regulatory infrastructure of Radiation Protection: • A legislation and regulations, but not adapted to the case of Nuclear Power Programme; • A Regulatory Body as the sole nuclear institution - very few trained persons in the field of safety and security; - No E and T Institutions; - Lack of adopted system for the management of regulatory activities of practices and activities in NPP field

  11. Development and Integration of a HEMS with an Advanced Smart Metering Infrastructure

    DEFF Research Database (Denmark)

    Diaz, Enrique Rodriguez; Palacios-Garcia, Emilio; Savaghebi, Mehdi

    2016-01-01

    Advanced metering infrastructures (AMI) are required for the future smart grid operation by providing useful information about users’ behavior as well as grid performance such as the consumption and power quality. This paper is focused on the development of a LabVIEW application for user-interfac......Advanced metering infrastructures (AMI) are required for the future smart grid operation by providing useful information about users’ behavior as well as grid performance such as the consumption and power quality. This paper is focused on the development of a LabVIEW application for user......-interface and implementation of a Home Energy Management System (HEMS) based on AMI....

  12. Analysis of the coupling coordination between transportation infrastructure investment and economic development in Hubei province

    Directory of Open Access Journals (Sweden)

    Wenxia Zhai

    2017-06-01

    Full Text Available The relationship between transportation infrastructure investment and regional economic growth has been the focus of domestic and foreign academic research. Using the models of coupling degree and coupling coordination degree, this paper calculated the coupling degree and coupling coordination degree between the comprehensive level of transportation infrastructure investment and economic development in Hubei province and its 17 cities, and analyzed its temporal and spatial characteristics. The result showed that, from 2001 to 2013, the coupling and coupling coordination between transportation infrastructure investment and economic development in Hubei province were on a steady rise in the time sequence characteristics. It experienced the upgrade from the uncoordinated – nearly uncoordinated – barely coordinated – intermediately coordinated stages. In the year of 2013, the coupling and coupling coordination of transportation infrastructure investment and economic development in the 17 prefecture-level cities of Hubei Province showed a very uneven spatial difference. Good coordination, primary coordination, barely coordinate, and barely in-coordination are distributed in the province. The average coordination degree of the 17 prefecture-level cities in Hubei is relatively low, and there is a negative tend to expand the difference. This study has confirmed the relationship between transportation infrastructure investment and the economic development to be in an interactive coupling and coordination, but in different regions and different stages, the degree of coordination has obvious spatial and temporal differences.

  13. Nuclear power newsletter Vol. 4, no. 1, March 2007

    International Nuclear Information System (INIS)

    2007-03-01

    The topics presented in this newsletter are: Workshop on Issues for the Introduction of Nuclear Power; Message from the Director of the Division of Nuclear Power: The Nuclear Energy Series documents: Structure and the process; Nuclear power plant operation; Strengthening nuclear power infrastructures; Technology developments and applications for advanced reactors; New staff in Nuclear Power Division; Current vacancy notice for professional posts in Nuclear Power Division; Meetings in 2007

  14. Nuclear engineering career - Phase 2 Argentina. Final report

    International Nuclear Information System (INIS)

    1993-01-01

    The objective of the project was to consolidate and extend the conditions necessary for the development of nuclear technology, and to observe the problems posed by the application of the nuclear energy through the increase and improvement of the scientific and technical infrastructure. The immediate objective of the project was to complete the advancement of research and development activities in nuclear engineering at the Centro Atomico Bariloche and Instituto Balseiro

  15. Nuclear power newsletter. Vol. 1, no. 1

    International Nuclear Information System (INIS)

    2004-09-01

    This first issue of newsletter describes the Nuclear Power Division of the Department of Nuclear Energy responsible for implementation of the IAEA programme on Nuclear Power. The mission of the Division is to increase the capability of interested Member States to implement and maintain competitive and sustainable nuclear power programmes and to develop and apply advanced nuclear technologies. The topics covered in this publication are: Engineering and Management Support for Competitive Nuclear Power; Improving Human Performance, Quality and Technical Infrastructure; Co-ordination of International Collaboration for the Development of Innovative Nuclear Technology; Technology Developments and Applications for Advanced Reactors; The International Conference on 'Fifty Years of Nuclear Power - the Next Fifty Years'. A list of documents published recently by the Nuclear Power Division in enclosed

  16. Bridging the gap between private industry and government in infrastructure development planning

    CSIR Research Space (South Africa)

    Ittmann, HW

    2013-07-01

    Full Text Available , to keep up with economic growth and remain regionally competitive. To this end the government and state-owned enterprises have made significant investment commitments and encouraging development plans are being drafted. But infrastructure development...

  17. Planning for a soft landing : non-renewable resource development and community infrastructure in the Northwest Territories

    International Nuclear Information System (INIS)

    2006-02-01

    This paper provided a high-level overview of research related to the boom and bust cycle of resource-based economic development and community infrastructure in the north, particularly in the Northwest Territories. The paper focused on what is known and on knowledge gaps that needed to be filled in each of 3 theme areas for an experts workshop on northern communities. The themes that were discussed at the workshop and in this paper were: the connections between non-renewable resources development and community infrastructure in the north; planning for resource development; and strategies for moving ahead and putting ideas into practice. The paper discussed the objectives of the research and discussed findings under each of the 3 themes. Topics discussed included: changes in the infrastructure mix; infrastructure and climate change; infrastructure financing; uncertainty; knowledge; planning tools; stakeholder participation; and measuring and monitoring planning implementation. Data availability was also discussed along with funding mechanisms, technological innovations and community capacity building. It was concluded that strategies for dealing with the boom-induced infrastructure challenges facing communities in the Northwest Territories should focus on making more creative use of available funding; promoting technical innovation; and improving maintenance capacity at the community level. 62 refs

  18. E-Infrastructure Concertation Meeting

    CERN Multimedia

    Katarina Anthony

    2010-01-01

    The 8th e-Infrastructure Concertation Meeting was held in the Globe from 4 to 5 November to discuss the development of Europe’s distributed computing and storage resources.   Project leaders attend the E-Concertation Meeting at the Globe on 5 November 2010. © Corentin Chevalier E-Infrastructures have become an indispensable tool for scientific research, linking researchers to virtually unlimited e-resources like the grid. The recent e-Infrastructure Concertation Meeting brought together e-Science project leaders to discuss the development of this tool in the European context. The meeting was part of an ongoing initiative to develop a world-class e-infrastructure resource that would establish European leadership in e-Science. The e-Infrastructure Concertation Meeting was organised by the Commission Services (EC) with the support of e-ScienceTalk. “The Concertation meeting at CERN has been a great opportunity for e-ScienceTalk to meet many of the 38 new proje...

  19. Beyond public acceptance of energy infrastructure: How citizens make sense and form reactions by enacting networks of entities in infrastructure development

    International Nuclear Information System (INIS)

    Aaen, Sara Bjørn; Kerndrup, Søren; Lyhne, Ivar

    2016-01-01

    This article adds to the growing insight into public acceptance by presenting a novel approach to how citizens make sense of new energy infrastructure. We claim that to understand public acceptance, we need to go beyond the current thinking of citizens framed as passive respondents to proposed projects, and instead view infrastructure projects as enacted by citizens in their local settings. We propose a combination of sensemaking theory and actor–network theory that allows insight into how citizens enact entities from experiences and surroundings in order to create meaning and form a reaction to new infrastructure projects. Empirically, we analyze how four citizens make sense of an electricity cable project through a conversation process with a representative from the infrastructure developer. Interestingly, the formal participation process and the materiality of the cable play minor roles in citizens' sensemaking process. We conclude that insight into the way citizens are making sense of energy infrastructure processes can improve and help to overcome shortcomings in the current thinking about public acceptance and public participation. - Highlights: •Attention to citizens' sensemaking enables greater insight into the decision-making process. •A combination of sensemaking and actor-network theory (ANT) is relevant for studies of public acceptance. •Sensemaking explains why citizens facing similar situations act differently. •Complexity of citizens' sensemaking challenges the predictability of processes.

  20. Infrastructure needs for waste management

    International Nuclear Information System (INIS)

    Takahashi, M.

    2001-01-01

    National infrastructures are needed to safely and economically manage radioactive wastes. Considerable experience has been accumulated in industrialized countries for predisposal management of radioactive wastes, and legal, regulatory and technical infrastructures are in place. Drawing on this experience, international organizations can assist in transferring this knowledge to developing countries to build their waste management infrastructures. Infrastructure needs for disposal of long lived radioactive waste are more complex, due to the long time scale that must be considered. Challenges and infrastructure needs, particularly for countries developing geologic repositories for disposal of high level wastes, are discussed in this paper. (author)

  1. Easing the capacity crunch : infrastructure requirements to support rapidly developing oil sands

    International Nuclear Information System (INIS)

    Zupan, L.

    2003-01-01

    Through annual consultation with its customers, Enbridge develops a supply and demand forecast which forms the basis for the company's development. It is complex to develop the appropriate pipeline infrastructure to support resource development, based on the significant forecast growth in supply in Alberta from oil sands and the limited traditional markets. The largest crude oil pipeline serving the oil sands industry in Alberta is owned and operated by Enbridge. The first customer was Suncor, followed by PetroCanada and EnCana. In 2002, a pipeline concept was developed by Enbridge to provide a link to Edmonton via a new large diameter pipeline. The mainline system which originates in Edmonton is expected to evolve and grow as oil sands production comes on line. The completion of Terrace Phase III expansion is one of the priorities for Enbridge in 2003. Other projects involve the extension of one of its lines from Mokena to Chicago, the segregation of batches on the system to improve quality of its deliveries, and extension and expansion into new markets. Shipper support will determine the scale of these developments. The Canadian Association of Petroleum Producers (CAPP) has undergone a market study, as has Enbridge (Oil Sands Markets Study) in an effort to better understand markets and potential markets. It will assist in the determination of which pipeline infrastructure requires expansion, as well as the extent of infrastructure required to support new markets. tabs., figs

  2. Development of urban solar infrastructure to support low-carbon mobility

    International Nuclear Information System (INIS)

    Mendoza, Joan-Manuel F.; Sanyé-Mengual, Esther; Angrill, Sara; García-Lozano, Raúl; Feijoo, Gumersindo; Josa, Alejandro

    2015-01-01

    The provision of an adequate network of urban infrastructures is essential to create clean and energy-efficient urban mobility systems. However, the urban infrastructure to support sustainable mobility can produce a substantial environmental burden if no life cycle environmental criteria are applied in its design and management. This paper demonstrates the potential to support energy-efficient and CO 2 -free pedestrian and electric bike (e-bike) mobility through the ecological design (eco-design) of urban elements. An eco-design approach is applied to reconceptualize a conventional pergola toward an eco-product (solar pergola). The solar pergola generates surplus photovoltaic electricity that provides a multifunctional character. According to the end-use of this energy, different scenarios are analyzed for robust decision-making. The deployment of solar pergolas can contribute to save from 2,080 kg to over 47,185 kg of CO 2 eq. and from 350,390 MJ to over 692,760 MJ eq. in 10 years, depending on the geographic emplacement (solar radiation and electricity grid system). These savings are equivalent to charging 2–9 e-bikes per day using clean energy. Instead of maximizing infrastructure deployment to shift to environmentally friendly modes of mobility, the implementation of multifunctional urban elements represents a key area of action in the context of smart city development. -- Highlights: •Infrastructure eco-design is key to mitigate environmental impacts of urban mobility. •Solar pergolas can support pedestrian and e-bike mobility with no environmental cost. •Over 47 tons of CO 2 and 692 GJ can be avoided in 10 years per implemented pergola. •Each pergola can support daily charging of 2–9 e-bikes by supplying clean energy. •Multifunctional infrastructure is key to support sustainable multimodal mobility

  3. Infrastructure, Women’s Time Allocation, and Economic Development

    OpenAIRE

    P R Agénor; M Agénor

    2009-01-01

    This paper develops a gender-based OLG model of endogenous growth to analyze the impact of infrastructure on women’s time allocation between market work, raising children, own health care, home production, and leisure. Gender bias occurs as a result of firms discriminating between men and women, and of mothers devoting relatively more time to rearing their sons. Women’s health status in adulthood, which affects productivity and wages, depends on their health status in childhood. A stagnation ...

  4. Nuclear power project management information system

    International Nuclear Information System (INIS)

    Zou Lailong; Zhang Peng; Xiao Ziyan; Chun Zengjun; Huang Futong

    2001-01-01

    Project Management Information System is an important infrastructure facility for the construction and operation of Nuclear Power Station. Based on the practice of Lingao nuclear power project management information system (NPMIS), the author describes the NPMIS design goals, system architecture and software functionality, points out the outline issues during the development and deployment of NPMIS

  5. The European space of research: what fundamental role for the development of nuclear energy

    International Nuclear Information System (INIS)

    Kaluzny, Y.; Chaix, P.

    2010-01-01

    The SET (Strategic Energy Technology) plan draws the priority axis for the development of no-carbon energies on the whole and of nuclear energy in particular. The double aim of SET for 2020 is to maintain the competitiveness of fission reactors and to find a valid solution for the management of radioactive wastes. The SET plan also includes a system (SETIS) for assessing the progress made and an organization (ESFRI) whose role is to earmark the projects that are most relevant for research infrastructure projects. The SNETPR (Sustainable Nuclear Energy Technology Platform) gathers the actors of a given sector with the objective to develop the public-private collaboration around strategic topics. The purpose of the European sustainable Nuclear Industrial Initiative (ESNII) is to assure a sustainable nuclear energy by the management of radioactive wastes and by a better use of natural resources. ESNII has led to the selection of fast reactor with a closed cycle. ESNII includes the design of a sodium prototype (ASTRID), of a gas cooled demonstrator (ALLEGRO) and of lead cooled pilot plant (MYRRHA). The achievement of all these projects is very dependent on the financial perspectives of the E.U. (A.C.)

  6. Nuclear imaging technology and global requirements

    International Nuclear Information System (INIS)

    Lele, R.D.

    1991-01-01

    After a brief review of the present state of availability of nuclear medicine services in the countries of world, a mention has been made of WHO programme on nuclear medicine. Nuclear medicine services in the developing countries are dependent on the availability of appropriate instrumentation and radiopharmaceuticals at affordable costs and existence of basic infrastructure required for giving such services. Basic infrastructure requirements are stable power supplies, air-conditioning systems, preventive maintenance and repair facilities. These are discussed. It is pointed out that the use of rectilinear scanners with 113m In instead of costly gamma cameras is still relevant in the third world countries. Need to develop a too low-cost gamma camera is emphasized. Electronics Corporation of India Ltd has plans to manufacture such cameras. Design of this camera is described. Foreign collaboration or technology transfer through concerned governement department needs to be explored so that the benefits of nuclear medicine can be brought to the third world countries by 2000 AD. (M.G.B.). 2 tabs

  7. Nuclear Manpower Development

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, I. A.; Lee, T. J.; Lee, K. B.; and others

    2012-12-15

    The nuclear manpower development project has concentrated on the systemization and specialization of education and training programs and has actively carried out diverse activities to create new nuclear courses based on the experience of the Nuclear Training and Education Center (NTC) accumulated over the past years. NTC has developed customized education programs on 'Nuclear Introduction' to educate new employees of the Korea Electric Power Corporation (KEPCO) and on 'Technical education for criticality and shielding analysis of the spent fuel' for employees of the Doosan Heavy Industries and Construction. NTC has also developed specialized education programs for the students of nuclear engineering departments and sciences and engineering departments in universities making the most use of experimental equipment at KAERI and providing practical exercise with the research reactor, HANARO. For improving organizational performance and the development of skilled manpower, KAERI-ACE system has offered diverse programs addressing individual competency of industry personnel in terms of type of occupation and position. Also education on IT has been carried out to improve public relations on nuclear and field trips have been arranged to encourage local residents' better understanding of the nuclear industry. As the final outcome, NTC has developed 6 new education programs for employees in industry and students in academia, and offered 64 courses to 9,630 persons (273 domestic nuclear personnel, 509 university students, 8,075 KAERI staff, 773 local resident). Especially, in 2012, NTC is honored to won 'Presidential Awards of National Quality Management Awards'. This present that KAERI-ACE system has performed well through a improvement in recent years.

  8. Nuclear manpower development

    International Nuclear Information System (INIS)

    Hwang, I. A.; Lee, K. B.; Shin, B. C.

    2011-12-01

    The nuclear manpower development project has concentrated on the systemisation and specialization of education and training programs and has actively carried out diverse activities to create new nuclear courses based on the experience of the Nuclear Training and Education Center (NTC) accumulated over the past years. As the demand of education program for training nuclear manpower is increasing due to the remarkable growth of nuclear industry, NTC developed customized education programs making the most use of nuclear experiment equipment and providing practical exercise with research reactor. For improving organizational performance and the development of skilled manpower, KAERI-ACE 2.0 system offered diverse programs addressing the type of occupation and position based on individual competency. Also education on IT was carried out to improve public relations on nuclear and field trips were arranged to encourage local residents' better understanding of the nuclear industry. As a continuous effort, In 2011, NTC specially conducted a survey of employees who are attached to small and medium sized business, and analyzed the present business situations and education requirements for the development of a Pre/under job education program. Prior to this, a briefing session took place for mutual exchange of opinions of industry and academia, based on which a test operation on 'Basic Radiation Education' was carried out. This program has a significance that it was first step toward connection between the nuclear industry and academia as well as an opportunity to educate the employee involved in nuclear engineering field. In 2012, this program is planned to be expanded. With reference to the in-house training, NTC established an 'e-HRD system' providing available resources concerned with education program for cultivating talented personnel. All the education programs are based on individual competency. The e-HRD system will be test operated in 2012 and applied to the

  9. Nuclear fuel cycle modelling using MESSAGE

    International Nuclear Information System (INIS)

    Guiying Zhang; Dongsheng Niu; Guoliang Xu; Hui Zhang; Jue Li; Lei Cao; Zeqin Guo; Zhichao Wang; Yutong Qiu; Yanming Shi; Gaoliang Li

    2017-01-01

    In order to demonstrate the possibilities of application of MESSAGE tool for the modelling of a Nuclear Energy System at the national level, one of the possible open nuclear fuel cycle options based on thermal reactors has been modelled using MESSAGE. The steps of the front-end and back-end of nuclear fuel cycle and nuclear reactor operation are described. The optimal structure for Nuclear Power Development and optimal schedule for introducing various reactor technologies and fuel cycle options; infrastructure facilities, nuclear material flows and waste, investments and other costs are demonstrated. (author)

  10. Infrastructure Development: Public Private Partnership Path for Developing Rural Telecommunications in Africa

    Directory of Open Access Journals (Sweden)

    Idongesit William Williams

    2012-06-01

    Full Text Available It is the quest of every government to achieve universal Access and service of telecommunication services and ICTs. Unfortunately due to the high cost of deploying infrastructure in rural areas of developing countries due to non-significant or no economic activity, this dream of achieving Universal access and service of telecommunications/ICTs have been stalled. This paper throws light on a possible Public Private Partnership framework as a development path that will enable affordable network technologies to be deployed in rural areas at a cost that will translate to what the rural dweller in a developing country in Africa can afford. The paper is a conceptual paper

  11. Development of nuclear power plant management system for Kyushu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Nakamura, Kenichi; Akiyoshi, Tatsuo; Tanimoto, Kazuo; Ogura, Kazuhito; Ibi, Yuji; Kawasaki, Michiyuki

    2002-01-01

    The Kyushu Electric Power Co., Ltd. progresses development of the nuclear power plant management system using IT under aims at upgrading of efficiency, level, and reliability on maintenance and administration business under five years planning since 1999 fiscal year. The outline of the system are explained in this paper. As a result of preparation on power station net work and personal computers set in all of company, an environment capable of using these infrastructures and introducing large scale systems on transverse business over every groups of each power station could be established. (G.K.)

  12. Self-Development of Competences for Social Inclusion Using the TENCompetence Infrastructure

    NARCIS (Netherlands)

    Louys, Amelie; Hernández-Leo, Davinia; Schoonenboom, Judith; Lemmers, Ruud; Pérez-Sanagustín, Mar

    2009-01-01

    Louys, A., Hernández-Leo, D., Schoonenboom, J., Lemmers, R., & Pérez-Sanagustín, M. (2009). Self-Development of Competences for Social Inclusion Using the TENCompetence Infrastructure. Educational Technology & Society, 12(3), 70–81.

  13. Introducing nuclear power into currently non-nuclear states

    International Nuclear Information System (INIS)

    Gert, Claassen

    2007-01-01

    As the nuclear renaissance gains momentum, many countries that currently have no nuclear power plants will begin to consider introducing them. It is anticipated that smaller reactors such as the Pebble Bed Modular Reactor (PBMR) will not only be sold to current nuclear states to also to states where there is currently no nuclear experience. A range of issues would have to be considered for nuclear plants to be sold to non-nuclear states, such as the appropriate regulatory environment, standardization and codes, non-proliferation, security of supply, obtaining experienced merchant operators, appropriate financial structures and education and training. The paper considers nine major issues that need to be addressed by governments and vendors alike: 1) political enabling framework, 2) regulatory framework, 3) responsible owner, 4) responsible operator, 5) finance, 6) contact management, 7) fuel supply and waste management framework, 8) training and education, and 9) industrial infrastructure. International cooperation by organisations such as the IAEA, financial institutions and international suppliers will be required to ensure that developing countries as well as developed ones share the benefits of the nuclear renaissance. The opportunities that the nuclear industry affords to develop local skills, create job opportunities and to develop local manufacturing industries are among the important reasons that the South African Government has decided to support and fund the development of the Pebble Bed Modular Reactor project. (author)

  14. GC Side Event: Africa's Energy Needs and the Potential Role of Nuclear Power. Presentations

    International Nuclear Information System (INIS)

    2015-01-01

    Energy is central to development, and energy availability, accessibility and affordability are central challenges for most African countries. Due to rapidly growing energy demand, the need for socioeconomic development, persistent concerns over climate change and environmental impacts and dependence on imported supplies of fossil fuels, African Member States are looking into possible options to secure sustainable energy supplies, including nuclear energy. The IAEA assists those countries in assessing the nuclear power option and building the necessary infrastructure for a safe, secure and sustainable nuclear power programme. This year, the IAEA is conducting Integrated Nuclear Infrastructure Review (INIR) missions to three African countries (Nigeria, Kenya and Morocco) considering introducing nuclear power. The side event presents recent updates from Africa on the potential role of nuclear power, including the IAEA Third Regional Conference on Energy and Nuclear Power in Africa, held in Mombasa, Kenya, in April 2015, an initiative to launch a new African network for enhancing nuclear power programme development, and others. The event reports on recent developments in several African Member States considering, embarking on, or expanding national nuclear power programmes.

  15. INNOVATIVE INFRASTRUCTURE OF ENTREPRENEURSHIP DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    O. Mykytyuk

    2014-06-01

    Full Text Available Practical realization of sustainable development general conception is passing to the organic production, that allows to satisfy society problems, not putting health and future generations' existence under a threat. At this entrepreneurs, which work in the consumer products' field, must displace accents from economic oriented to social oriented entrepreneurship. The article is dedicated to research negative and positive factors that influence on social oriented Ukrainian enterprises in the sphere of organic goods production. The special attention is attended to the analysis of foodstuffs producers' activity, the results of which have considerable direct influence on consumers' health. The value of informative influences on consumers and producers is analyzed. State support directions of organic goods production, creation of internal market ecologically safe products infrastructure are defined. Recommendations are given according to research results in relation to stimulation social responsibility of businessmen and model forming, which combines interests of consumers and producers, environmental preservation, population health refinement and ecological situation improvement.

  16. Global nuclear safety culture

    International Nuclear Information System (INIS)

    1997-01-01

    As stated in the Nuclear Safety Review 1996, three components characterize the global nuclear safety culture infrastructure: (i) legally binding international agreements; (ii) non-binding common safety standards; and (iii) the application of safety standards. The IAEA has continued to foster the global nuclear safety culture by supporting intergovernmental collaborative efforts; it has facilitated extensive information exchange, promoted the drafting of international legal agreements and the development of common safety standards, and provided for the application of safety standards by organizing a wide variety of expert services

  17. National Computational Infrastructure for Lattice Gauge Theory: Final report

    International Nuclear Information System (INIS)

    Reed, Daniel A.

    2008-01-01

    In this document we describe work done under the SciDAC-1 Project National Computerational Infrastructure for Lattice Gauge Theory. The objective of this project was to construct the computational infrastructure needed to study quantum chromodynamics (QCD). Nearly all high energy and nuclear physicists in the United States working on the numerical study of QCD are involved in the project, as are Brookhaven National Laboratory (BNL), Fermi National Accelerator Laboratory (FNAL), and Thomas Jefferson National Accelerator Facility (JLab). A list of the senior participants is given in Appendix A.2. The project includes the development of community software for the effective use of the terascale computers, and the research and development of commodity clusters optimized for the study of QCD. The software developed as part of this effort is publicly available, and is being widely used by physicists in the United States and abroad. The prototype clusters built with SciDAC-1 fund have been used to test the software, and are available to lattice gauge theorists in the United States on a peer reviewed basis

  18. Nuclear energy and security

    International Nuclear Information System (INIS)

    Blejwas, Thomas E.; Sanders, Thomas L.; Eagan, Robert J.; Baker, Arnold B.

    2000-01-01

    Nuclear power is an important and, the authors believe, essential component of a secure nuclear future. Although nuclear fuel cycles create materials that have some potential for use in nuclear weapons, with appropriate fuel cycles, nuclear power could reduce rather than increase real proliferation risk worldwide. Future fuel cycles could be designed to avoid plutonium production, generate minimal amounts of plutonium in proliferation-resistant amounts or configurations, and/or transparently and efficiently consume plutonium already created. Furthermore, a strong and viable US nuclear infrastructure, of which nuclear power is a large element, is essential if the US is to maintain a leadership or even participatory role in defining the global nuclear infrastructure and controlling the proliferation of nuclear weapons. By focusing on new fuel cycles and new reactor technologies, it is possible to advantageously burn and reduce nuclear materials that could be used for nuclear weapons rather than increase and/or dispose of these materials. Thus, the authors suggest that planners for a secure nuclear future use technology to design an ideal future. In this future, nuclear power creates large amounts of virtually atmospherically clean energy while significantly lowering the threat of proliferation through the thoughtful use, physical security, and agreed-upon transparency of nuclear materials. The authors must develop options for policy makers that bring them as close as practical to this ideal. Just as Atoms for Peace became the ideal for the first nuclear century, they see a potential nuclear future that contributes significantly to power for peace and prosperity

  19. Nuclear power newsletter Vol. 2, no. 4, December 2005

    International Nuclear Information System (INIS)

    2005-12-01

    The topics presented in this newsletter are: Small and medium sized reactors for developing countries and remote applications; Message from the Director of the Division of Nuclear Power; International workshop on external flooding hazards at nuclear power plant sites; Nuclear power plant operating performance and life cycle management; Improving human performance, Quality and technical infrastructure; Technology developments and applications for advanced reactors; Recent publications; Planned meetings in 2006; WebSite link

  20. Nuclear power newsletter Vol. 3, no. 1, April 2006

    International Nuclear Information System (INIS)

    2006-04-01

    The topics presented in this newsletter are: Nuclear power technology and operations databases; Message from the Director of the Division of Nuclear Power; Announcement of Mr. Atam Rao, the new Head of Nuclear Power Technology Development Section; Nuclear power plant operating performance and life cycle management; Improving human performance, quality and technical infrastructure; Technology developments and applications for advanced reactors; Recent publications; Planned meetings in 2006; Division of Nuclear Power Web site links; The 7th IAEA - FORATOM Joint Workshop on Successful Management of Organizational Change

  1. Prospects of nuclear industry in Latin American

    International Nuclear Information System (INIS)

    Brito, S.; Consentino, J.; Eibenschuts, J.; Gasparian, A.E.; Lepecki, W.; Mueller, A.E.F.; Spitalnik, J.

    1984-01-01

    The prospects of nuclear generation in Latin America are presented. It is mentioned that prior to the implementation of a nuclear power programme a legal, organizational and industrial infrastructure has to be developed as a condition for an effetive technology transfer. It is also mentioned that by the expansion of regional cooperation, existing experience and know-how in Latin America nuclear industry, specially regarding small and medium power reactors, could become an important development factor for the whole region. (R.S.) [pt

  2. Nuclear power newsletter Vol. 3, no. 2, June 2006

    International Nuclear Information System (INIS)

    2006-06-01

    The topics presented in this newsletter are: The 7th IAEA - FORATOM Joint Workshop on Successful Management of Organizational Change; Message from the Director of the Division of Nuclear Power; Nuclear power plant operation; Management system, infrastructure and training; International Project on Innovative Nuclear Reactors and Fuel Cycles; Technology developments and applications for advanced reactors

  3. International regularity development partnership (IRDP)

    Energy Technology Data Exchange (ETDEWEB)

    Melani, Ai; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2010-10-15

    Nuclear Energy enters a renaissance era. Several countries consider nuclear as one of their energy resources. For example at the present Vietnam just sign an agreement with Russia for their first nuclear power plants, Malaysia expected that the first nuclear power plant will be operated and commercially available in around the year of 2021. Thailand, Singapore and Indonesia also consider having nuclear power plant in the time frame around 2025. Each country recently tries to prepare their regulatory infrastructure for their first nuclear power plant. The problems are each country doesn't have enough human resource and experience in preparing the nuclear power plant regulations infrastructure. The remains regulations resource is from IAEA which are too general to implement and USNRC which are too detail and difficult to implement for the lack of human resources. Therefore this International Regulatory Development Partnership (IRDP) could be the solutions for the demand of regulatory infrastructure preparations for those countries who's want to emerging nuclear power plant in their country

  4. Developing multinational radioactive waste repositories: Infrastructural framework and scenarios of cooperation

    International Nuclear Information System (INIS)

    2004-10-01

    Currently the management of radioactive wastes centres on national strategies for collection, treatment, interim storage and disposal. This tendency to focus exclusively on national strategies reflects the fact that radioactive waste is a sensitive political issue, making cooperation among countries difficult. It is consistent with the accepted principle that a country that enjoys the benefit of nuclear energy, or the utilization of nuclear technology, should also take full responsibility for managing the generated radioactive waste. However, there are countries whose radioactive waste volumes do not easily justify a national repository, and/or countries that do not have the resources or favourable natural conditions for waste disposal to dedicate to a national repository project or would prefer to collaborate in shared initiatives because of their economic advantages. In such cases it may be appropriate for these countries to engage in a multinational collaborative effort to ensure that they have access to a common repository, in order that they can fulfil their responsibilities for their managing wastes safely. In response to requests from several Member States expressing an interest in multinational disposal options, the IAEA produced in 1998 a TECDOC outlining the important factors to be taken into account in the process of realizing such options. These factors include for example, technical (safety), institutional (legal, safeguards), economic (financial) socio-political (public acceptance) and ethical considerations. The present report reviews the work done in the previous study, taking into account developments since its publication as well as current activities in the field of multinational repositories. The report attempts to define the concepts involved in the creation of multinational repositories, to explore the likely scenarios, to examine the conditions for successful implementation, and to point out the benefits and challenges inherent to

  5. Towards sustainable infrastructure development in Africa : design principles and strategies for lifespan-based building performance

    NARCIS (Netherlands)

    Agyefi-Mensah, S.; Post, J.M.; Egmond - de Wilde De Ligny, van E.L.C.; Mohammadi, M.; Badu, E

    2012-01-01

    Societies and economies the world over develop on the wheels of infrastructure. In Africa, it accounts for about one-third to one-half of all public investment (Kessides, 1993). Significant about infrastructure in general, however is the fact that they have very long lives. Consequently, their

  6. Technology development in road infrastructure: the relevance of government championing behavior

    NARCIS (Netherlands)

    Caerteling, J.S.; Di Benedetto, A.C.; Dorée, A.; Halman, J.I.M.; Song, Michael

    2011-01-01

    Low-technology industries are largely neglected in technology management literature. Yet, recent studies show the crucial importance of innovation in low-technology industries. In this study, we analyze technology development projects in a specific low-technology industry, road infrastructure, being

  7. Western Nuclear Science Alliance

    International Nuclear Information System (INIS)

    Reese, Steve; Miller, George; Frantz, Stephen; Beller, Denis; Morse, Ed; Krahenbuhl, Melinda; Flocchini, Bob; Elliston, Jim

    2010-01-01

    The Western Nuclear Science Alliance (WNSA) was formed at Oregon State University (OSU) under the DOE Innovations in Nuclear Infrastructure and Education (INIE) program in 2002. The primary objective of the INIE program is to strengthen nuclear science and engineering programs at the member institutions and to address the long term goal of the University Reactor Infrastructure and Education Assistance Program. WNSA has been very effective in meeting these goals. The infrastructure at several of the WNSA university nuclear reactors has been upgraded significantly, as have classroom and laboratory facilities for Nuclear Engineering, Health Physics, and Radiochemistry students and faculty. Major nuclear-related education programs have been inaugurated, including considerable assistance by WNSA universities to other university nuclear programs. Research has also been enhanced under WNSA, as has outreach to pre-college and college students and faculty. The INIE program under WNSA has been an exceptional boost to the nuclear programs at the eight funded WNSA universities. In subsequent years under INIE these programs have expanded even further in terms of new research facilities, research reactor renovations, expanded educational opportunities, and extended cooperation and collaboration between universities, national laboratories, and nuclear utilities.

  8. Succeeding criteria of community based on land transportation infrastructure for Johor innovation valley development

    Science.gov (United States)

    Redzuan, Amir A.; Aminudin, Eeydzah; Zakaria, Rozana; Ghazali, Farid Ezanee Mohamed; Baharudin, Nur Azwa Amyra; Siang, Lee Yong

    2017-10-01

    Developing countries around the world have developed innovative centre, or known as innovation hub, to meet the demand of today's changing global competitive environment. The shift of economic sector from manufacturing to services has allowed numerous regions and cities around the world to undergo major structural changes. In Malaysia, Skudai area is on its way of becoming a community-based innovation hub under the Johor State Economic Growth Strategic Plan called Johor Innovation Valley (JIV). Towards this new-city concept, land transportation infrastructure is among the most important network in being a linkage to the source of contribution in enhancing the local innovative environment. This paper highlights the requirement of land transportation infrastructure criteria that would be effective in making Skudai a community-based innovation hub. Data were collected through survey questionnaires involving stakeholders with the knowledge of land transportation infrastructure who also lives within the area. Descriptive analysis was employed with further rank breakdown using Average Index analysis. The findings distinguish the differences between each criteria of land transportation infrastructure. Change in traffic system, easier accessibility to one place to another and attraction to outside investor are among the impacts of growth of JIV. This paper concluded that selected requirement of land transportation infrastructure criteria is necessary for future contribution towards the growth of the JIV.

  9. Nuclear Manpower Development

    International Nuclear Information System (INIS)

    Hwang, I. A.; Lee, K. B.; Shin, B. C.

    2010-12-01

    The industry-university-research collaborative education is aiming at developing national nuclear human resources to satisfy with the increasing needs from the industry. For this efforts are being made to develop curricula customized to respective industry needs by improving existing ones. As the demand for training programs for the university students and domestic nuclear personnel was increasing owing to revitalization of nuclear industry, Nuclear Training Center (NTC) improved previous education programs to meet the needs. NTC has operated 2 education programs on research reactor experiments for the university students, and 18 programs on nuclear technology related experiment courses in 2010. Furthermore, the NTC developed new education programs related to 'standardized research reactor system design'. Also the request from universities for internship programs was increased by about three times in 2010 compared to those of the previous year, and this required to develop relevant curricula. In 2005, NTC developed KAERI-ACE, as a unique competency-based staff education system of Korea Atomic Energy Research Institute (KAERI). Based on the system, the NTC has performed 'systematic education'. In 2008, NTC was awarded Best HRD(Human Resource Development) in Public sector for the first time as a government-supported research institute. In 2009, the system was improved to become KAERI-ACE 2.0, based on which, in 2010, NTC improved and diversified education programs including various cyber training programs

  10. Developing research career indicators using open data: the RISIS infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Cañibano, C.; Woolley, R.; Iversen, E.; Hinze, S.; Hornbostel, S.; Tesch, J.

    2016-07-01

    This paper introduces the research infrastructure for rsearch and innovation policy studies (RISIS) and its ongoing work on the development of indicators for research careers. The paper first describes the rationale for developing an information system on research careers. It then uses and example to demonstratate the possibilities arising from aggregating open data from different datasets within the RISIS platform to create new information and monitoring possibilies with regard to research careers. (Author)

  11. Global evaluation of nuclear infrastructure utilization scenarios (GENIUS)

    International Nuclear Information System (INIS)

    unzik-Gougar, Mary Lou; Juchau, Christopher A.; Pasamehmetoglu, Kemal; Wilson, Paul P.H.; Oliver, Kyle M.; Turinsky, Paul J.; Abdel-Khalik, Hany S.; Hays, Ross; Stover, Tracy E.

    2007-01-01

    A new and unique fuel cycle systems code has been developed. Need for this analysis tool was established via methodical development of technical functions and requirements followed by an evaluation of existing fuel cycle codes. As demonstrated by analysis of GNEP-type scenarios, the GENIUS code discretely tracks nuclear material from beginning to end of the fuel cycle and among any number of independent regions. Users can define scenarios starting with any/all existing reactors and fuel cycle facilities or with an ideal futuristic arrangement. Development and preliminary application of GENIUS capabilities in uncertainty analysis/propagation and multi-parameter optimization have also been accomplished. (authors)

  12. National Computational Infrastructure for Lattice Gauge Theory

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Richard C.

    2014-04-15

    SciDAC-2 Project The Secret Life of Quarks: National Computational Infrastructure for Lattice Gauge Theory, from March 15, 2011 through March 14, 2012. The objective of this project is to construct the software needed to study quantum chromodynamics (QCD), the theory of the strong interactions of sub-atomic physics, and other strongly coupled gauge field theories anticipated to be of importance in the energy regime made accessible by the Large Hadron Collider (LHC). It builds upon the successful efforts of the SciDAC-1 project National Computational Infrastructure for Lattice Gauge Theory, in which a QCD Applications Programming Interface (QCD API) was developed that enables lattice gauge theorists to make effective use of a wide variety of massively parallel computers. This project serves the entire USQCD Collaboration, which consists of nearly all the high energy and nuclear physicists in the United States engaged in the numerical study of QCD and related strongly interacting quantum field theories. All software developed in it is publicly available, and can be downloaded from a link on the USQCD Collaboration web site, or directly from the github repositories with entrance linke http://usqcd-software.github.io

  13. Prospects of nuclear power development in Romania

    International Nuclear Information System (INIS)

    Valeca, Serban Constantin; Popescu, Dan

    2003-01-01

    Nuclear Power Development in Romania of a series of projects and national programs among which the Research Development and Innovation National Plan, Rainless, Infrastructure and Standardization, Infra, Quality and Standardization, Castle, Agriculture and Food, Aural, Environment Power and Energy Resources, Territory Remedy and Transportation, Aminotris, Life and Health, Vitasan, Stimulation of Patent Applications, Invent, Information based Society, Infancies, Bio technologies, Biotech, New Materials, Micro-Nano Technologies Machinate, Aeronautical and Space Technologies, Basic Research of Socioeconomic and Cultural Significance, Cereus, International Cooperation and Partnership, Coring, Also discussed are the nuclear national organizations implication in connection with numerous international on-going programs and projects such as U E Frame Program 6, IAEA Technical Cooperation Programs, Jr Research Programs, Technical Cooperation with DOE-USA (LANL), JINR Research Programs, CERN Research Programs and the programs of other international organizations working in the field of nuclear regulations, radiation protection, radioactive waste and spent fuel management, nuclear safety at Cernavoda NPP and improvement of radiotherapy services, The paper presents the major issues of the peaceful uses of nuclear energy worldwide and in Romania as well as the objectives and strategies of the National Nuclear Plan. The objective of covering 40% of the energy demand from nuclear sources will be reached under strict compliance with the principles of sustainable socio-economic development, in a competitive market environment and strict observance of nuclear safety assurance within the international standard provisions. Finally, the paper addresses issues relating to personnel education and training, public information and acceptance, legislative aspects, the great advantages of nuclear power (small cost, implication of domestic industry in the nuclear effort, environment friendly, earth

  14. Development of a Free-Flight Simulation Infrastructure

    Science.gov (United States)

    Miles, Eric S.; Wing, David J.; Davis, Paul C.

    1999-01-01

    In anticipation of a projected rise in demand for air transportation, NASA and the FAA are researching new air-traffic-management (ATM) concepts that fall under the paradigm known broadly as ":free flight". This paper documents the software development and engineering efforts in progress by Seagull Technology, to develop a free-flight simulation (FFSIM) that is intended to help NASA researchers test mature-state concepts for free flight, otherwise referred to in this paper as distributed air / ground traffic management (DAG TM). Under development is a distributed, human-in-the-loop simulation tool that is comprehensive in its consideration of current and envisioned communication, navigation and surveillance (CNS) components, and will allow evaluation of critical air and ground traffic management technologies from an overall systems perspective. The FFSIM infrastructure is designed to incorporate all three major components of the ATM triad: aircraft flight decks, air traffic control (ATC), and (eventually) airline operational control (AOC) centers.

  15. Nuclear knowledge, trust and public acceptance of nuclear developments

    Energy Technology Data Exchange (ETDEWEB)

    Berdahl, A.L.; Bell, B.S.; Bourassa, C.M.; Fried, D.J., E-mail: Loleen.Berdahl@usask.ca, E-mail: Bourassa@edwards.usask.ca, E-mail: Scott.Bell@usask.ca, E-mail: Jana.Fried@usask.ca [Univ. of Saskatchewan, Saskatoon, SK (Canada)

    2014-07-01

    While nuclear sector activities remain contentious public issues, studies suggest that knowledge levels and trust in nuclear actors can influence public attitudes. Drawing on original data from a 2013 representative telephone survey of Saskatchewan residents, this paper considers the extent to which knowledge and trust influence support for nuclear developments. Saskatchewan provides an interesting case study: while the province has a robust uranium mining industry, there are no nuclear power facilities, and the potential development of nuclear energy and nuclear fuel waste storage has been a source of spirited public debate. The study's results have implications for public education and policy initiatives regarding nuclear power developments. (author)

  16. Nuclear knowledge, trust and public acceptance of nuclear developments

    International Nuclear Information System (INIS)

    Berdahl, A.L.; Bell, B.S.; Bourassa, C.M.; Fried, D.J.

    2014-01-01

    While nuclear sector activities remain contentious public issues, studies suggest that knowledge levels and trust in nuclear actors can influence public attitudes. Drawing on original data from a 2013 representative telephone survey of Saskatchewan residents, this paper considers the extent to which knowledge and trust influence support for nuclear developments. Saskatchewan provides an interesting case study: while the province has a robust uranium mining industry, there are no nuclear power facilities, and the potential development of nuclear energy and nuclear fuel waste storage has been a source of spirited public debate. The study's results have implications for public education and policy initiatives regarding nuclear power developments. (author)

  17. Nuclear power newsletter Vol. 3, no. 4, December 2006

    International Nuclear Information System (INIS)

    2006-12-01

    The topics presented in this newsletter are: The 1st Joint IAEA-EPRI Workshop on Modernization of Instrumentation and Control Systems in Nuclear Power Plants; Message from the Director of the Division of Nuclear Power; Nuclear power plant operation; Management system, infrastructure and training; International Project on Innovative Nuclear Reactors and Fuel Cycles; Technology developments and applications for advanced reactors; Planned meetings in 2007

  18. Radiation protection and safety infrastructures in Albania

    International Nuclear Information System (INIS)

    Paci, Rustem; Ylli, Fatos

    2008-01-01

    The paper intends to present the evolution and actual situation of radiation protection and safety infrastructure in Albania, focusing in its establishing and functioning in accordance with BBS and other important documents of specialized international organizations. There are described the legal framework of radiation safety, the regulatory authority, the services as well the practice of their functioning. The issue of the establishing and functioning of the radiation safety infrastructure in Albania was considered as a prerequisite for a good practices development in the peaceful uses of radiation sources . The existence of the adequate legislation and the regulatory authority, functioning based in the Basic Safety Standards (BSS), are the necessary condition providing the fulfilment of the most important issues in the mentioned field. The first document on radiation protection in Albania stated that 'for the safe use of radiation sources it is mandatory that the legal person should have a valid permission issued by Radiation Protection Commission'. A special organ was established in the Ministry of Health to supervise providing of the radiation protection measures. This organization of radiation protection showed many lacks as result of the low efficiency . The personnel monitoring, import, transport, waste management and training of workers were in charge of Institute of Nuclear Physics (INP). In 1992 an IAEA RAPAT mission visited Albania and proposed some recommendations for radiation protection improvements. The mission concluded that 'the legislation of the radiation protection should be developed'. In 1995 Albania was involved in the IAEA Model Project 'Upgrading of Radiation Protection Infrastructure'. This project, which is still in course, intended to establish the modern radiation safety infrastructures in the countries with low efficiency ones and to update and upgrade all aspects related with radiation safety: legislation and regulations, regulatory

  19. Development of Presentation Model with Cloud Based Infrastructure

    Directory of Open Access Journals (Sweden)

    Magdalena Widiantari Maria

    2018-01-01

    Full Text Available Computer mediated communication are the communication activities using technology which have rapidly in progress. Communication interactive activities nowadays has no longer only involving person to person but mediated by technology, and have been done in many fields including in education and teaching activity. In this study, presentation media based on cloud's infrastructure designed to replace face to face or in class lectures. In addition, the presentation will allow media data storage indefinitely, and accessible wherever and anytime. This is in line with the concept of student center learning where students were encouraged to more active in the lecture activities. The purpose of this research is making or designing a presentation model based on cloud‘s infrastructure. This research is using research and development method which is consists of four stages, where the first phase is composing the concept of media presentation design. The second phase are choosing the subject that will be designed as the subject of presentation. The third stage is designing presentation model. And the fourth phase is collecting materials of the subject that will be presented by each lecturer.

  20. Modelling a critical infrastructure-driven spatial database for proactive disaster management: A developing country context

    Directory of Open Access Journals (Sweden)

    David O. Baloye

    2016-04-01

    Full Text Available The understanding and institutionalisation of the seamless link between urban critical infrastructure and disaster management has greatly helped the developed world to establish effective disaster management processes. However, this link is conspicuously missing in developing countries, where disaster management has been more reactive than proactive. The consequence of this is typified in poor response time and uncoordinated ways in which disasters and emergency situations are handled. As is the case with many Nigerian cities, the challenges of urban development in the city of Abeokuta have limited the effectiveness of disaster and emergency first responders and managers. Using geospatial techniques, the study attempted to design and deploy a spatial database running a web-based information system to track the characteristics and distribution of critical infrastructure for effective use during disaster and emergencies, with the purpose of proactively improving disaster and emergency management processes in Abeokuta. Keywords: Disaster Management; Emergency; Critical Infrastructure; Geospatial Database; Developing Countries; Nigeria

  1. Advanced Electrical, Optical and Data Communication Infrastructure Development

    Energy Technology Data Exchange (ETDEWEB)

    Simon Cobb

    2011-04-30

    The implementation of electrical and IT infrastructure systems at the North Carolina Center for Automotive Research , Inc. (NCCAR) has achieved several key objectives in terms of system functionality, operational safety and potential for ongoing research and development. Key conclusions include: (1) The proven ability to operate a high speed wireless data network over a large 155 acre area; (2) Node to node wireless transfers from access points are possible at speeds of more than 50 mph while maintaining high volume bandwidth; (3) Triangulation of electronic devices/users is possible in areas with overlapping multiple access points, outdoor areas with reduced overlap of access point coverage considerably reduces triangulation accuracy; (4) Wireless networks can be adversely affected by tree foliage, pine needles are a particular challenge due to the needle length relative to the transmission frequency/wavelength; and (5) Future research will use the project video surveillance and wireless systems to further develop automated image tracking functionality for the benefit of advanced vehicle safety monitoring and autonomous vehicle control through 'vehicle-to-vehicle' and 'vehicle-to-infrastructure' communications. A specific advantage realized from this IT implementation at NCCAR is that NC State University is implementing a similar wireless network across Centennial Campus, Raleigh, NC in 2011 and has benefited from lessons learned during this project. Consequently, students, researchers and members of the public will be able to benefit from a large scale IT implementation with features and improvements derived from this NCCAR project.

  2. Why nuclear power will continue to grow

    International Nuclear Information System (INIS)

    Blix, Hans

    1988-01-01

    The author, who is Director General of the IAEA, is optimistic about the continued growth of nuclear energy worldwide, despite the accident at Chernobyl. Since then, new reactor orders have been placed in France, Japan, South Korea and Britain. The demand for electricity is rising, in both industrialized and developing countries. In many locations, nuclear is half the price of coal-fired electricity. The average capacity factor of nuclear plants has risen from 61% to 70% in nine years. Although nuclear generation accounts for about 16% worldwide, it is only 3.5% in developing countries; and probably nuclear development will continue to be small in developing countries because of stringent infrastructure requirements and high capital cost. Public confidence in nuclear energy must be regained, and future accidents must be avoided

  3. Risk management of infrastructure development in border area Indonesia - Malaysia

    Science.gov (United States)

    Fitri, Suryani; Trikariastoto, Reinita, Ita

    2017-11-01

    Border area is geographically adjacent to neighboring countries with the primary function of maintaining state sovereignty and public welfare. Area in question is part of the provinces, districts or cities that directly intersect with national boundaries (or territory) and / or that have a functional relationship (linkage) and has a strategic value for the state. The border area is considered strategic because it involves the national lives of many people in terms of the interests of political, economic, social and cultural as well as defense and security (poleksosbudhankam) both located on land, sea or air. The border area is geographically adjacent to neighboring countries with the primary function of maintaining state sovereignty and public welfare. Area in question is part of the provinces, districts or cities that directly intersect with national boundaries (or territory) and / or that have a functional relationship (linkage) and has a strategic value for the state. To realize the necessary research on the development of the area, based on good practices from other countries some of the city that can meet all these challenges and at least can be applied with minor changes / adjustments. Furthermore, the application must be supported by the availability of funds. This study to discuss about any problems either obstacles or things that drive to develop function becomes an ideal border area with major support infrastructure for housing, transportation, energy availability, and distribution of clean water which will strengthen in its function which consists of five pillars, namely: central community service; trade and distribution center; financial center; tourism center; related to the field of community development. Articulation between key stakeholders such as government, private, and community is a major concern in this study, including in determining the appropriate financing schemes. The results of this study will be recommended to the government to improve

  4. Nuclear power newsletter Vol. 4, no. 2, June 2007

    International Nuclear Information System (INIS)

    2007-06-01

    The topics presented in this newsletter are: International Conference on Non-Electric Application of Nuclear Power; Message from the Director of the Division of Nuclear Power; Nuclear power plant operation; Management systems, nuclear power infrastructures and human resources; Technology developments and applications for advanced reactors; New staff in Nuclear Power Division; Current vacancy notice for professional post in Nuclear Power Division; Upcoming meetings; 2nd International Symposium on PLiM; 8th IAEA-FORATOM Joint Workshop

  5. The growth of nuclear power in the Pacific and the IAEA's support for its development

    Energy Technology Data Exchange (ETDEWEB)

    Bychkov, A. [International Atomic Energy Agency, Dept. of Nuclear Energy, Vienna (Austria)

    2014-07-01

    'Full text:' According to the International Atomic Energy Agency's projections produced in 2013 and for the period up to 2030, the world's nuclear power generation capacity is expected to grow by 17% in a low case scenario and by 94% in a high case scenario. These figures are both slightly lower than the equivalent scenario projections made in 2012, reflecting the continuing impact of the accident at the Fukushima Daiichi nuclear power plant, the low price of natural gas and the increasing use of renewable energy. As of 1 July 2014,435 nuclear power reactors are in operation worldwide, and the total global nuclear energy generating capacity surpassed 372 gigawatts-electric (GW(e)).Additionally, 72 reactors are under construction, the highest number since 1989. Of these,48 are in Asia, which remains the centre of near and long term growth prospects. Also, of the 30 countries currently using nuclear power, 25 are either expanding or planning to expand their fleet. In addition to those countries operating nuclear power plants, over 30 countries are currently considering a nuclear power programme or are introducing nuclear power into their energy mix. In 2013, the UAE and Belarus have ongoing construction for their first nuclear power plants. Furthermore, Bangladesh, and Turkey made significant progress on developing their first nuclear power plant projects and construction is expected to begin shortly. In the Pacific Basin, several countries are considering the introduction of nuclear power to meet their growing energy needs and overall development goals. Viet Nam currently plans to begin construction on its first nuclear power plant in 2017, which will make it the first operating country in the local region. Similar efforts are also underway in Malaysia and Indonesia, which are taking steps to develop the infrastructure necessary to support nuclear power, while continuing to evaluate whether to proceed. Recently, the Philippines announced that it

  6. The growth of nuclear power in the Pacific and the IAEA's support for its development

    International Nuclear Information System (INIS)

    Bychkov, A.

    2014-01-01

    'Full text:' According to the International Atomic Energy Agency's projections produced in 2013 and for the period up to 2030, the world's nuclear power generation capacity is expected to grow by 17% in a low case scenario and by 94% in a high case scenario. These figures are both slightly lower than the equivalent scenario projections made in 2012, reflecting the continuing impact of the accident at the Fukushima Daiichi nuclear power plant, the low price of natural gas and the increasing use of renewable energy. As of 1 July 2014,435 nuclear power reactors are in operation worldwide, and the total global nuclear energy generating capacity surpassed 372 gigawatts-electric (GW(e)).Additionally, 72 reactors are under construction, the highest number since 1989. Of these,48 are in Asia, which remains the centre of near and long term growth prospects. Also, of the 30 countries currently using nuclear power, 25 are either expanding or planning to expand their fleet. In addition to those countries operating nuclear power plants, over 30 countries are currently considering a nuclear power programme or are introducing nuclear power into their energy mix. In 2013, the UAE and Belarus have ongoing construction for their first nuclear power plants. Furthermore, Bangladesh, and Turkey made significant progress on developing their first nuclear power plant projects and construction is expected to begin shortly. In the Pacific Basin, several countries are considering the introduction of nuclear power to meet their growing energy needs and overall development goals. Viet Nam currently plans to begin construction on its first nuclear power plant in 2017, which will make it the first operating country in the local region. Similar efforts are also underway in Malaysia and Indonesia, which are taking steps to develop the infrastructure necessary to support nuclear power, while continuing to evaluate whether to proceed. Recently, the Philippines announced that it

  7. Evaluation of nuclear power development scenarios in romania envisaging the long-term national energy sustainability

    International Nuclear Information System (INIS)

    Margeanu, C.; Apostol, M.; Visan, I.; Prodea, I.

    2015-01-01

    The paper summarizes the results of RATEN ICN Pitesti experts' activities in the IAEA's Collaborative Project INPRO-SYNERGIES. Romanian study proposes to evaluate and analyze development of the nuclear capacity and increasing of its share in national energy sector, envisaging the long term national and regional energy sustainability by keeping options open for the future while bringing solutions to short/medium-term challenges. The study focused on the modelling of national NES (Nuclear Energy System) development on short and medium-term (time horizon 2050), considering the existing NFC (Nuclear Fuel Cycle) infrastructure and legislation, provisions of strategic documents in force and including also the possibility of regional collaboration regarding U/fresh fuel supply and SF (Spent Fuel) storage, as services provided at international market prices. The energy system modelling was realized by using the IAEA's MESSAGE program. The study results offer a clear image and also the possible answer to several key questions regarding: potential of nuclear energy to participate with an important share in national energy mix, in conditions of cost competitiveness, safety and security of supply; impact on national energy mix portfolio of capacities and electricity production; impact on Uranium domestic resources; economic projection/investments needed for new nuclear capacities addition; fresh fuel requirements for nuclear capacities; SF annually discharged and transferred to interim wet storage for cooling; SF volume in interim dry storage, etc. (authors)

  8. A NeISS collaboration to develop and use e-infrastructure for large-scale social simulation

    OpenAIRE

    Doherty, Thomas; Skipsey, Samuel; Turner, Andy; Watt, John

    2011-01-01

    The National e-Infrastructure for Social Simulation (NeISS) project is focused on\\ud developing e-Infrastructure to support social simulation research. Part of NeISS aims to\\ud provide an interface for running contemporary dynamic demographic social simulation\\ud models as developed in the GENESIS project. These GENESIS models operate at the\\ud individual person level and are stochastic. This paper focuses on support for a simplistic\\ud demographic change model that has a daily time steps, an...

  9. Accelerating nuclear power standards development and promoting sound nuclear power development in China

    International Nuclear Information System (INIS)

    Yang Changli

    2008-01-01

    The paper expounds the importance of quickening establishment and perfection of nuclear power standard system in China, analyzes achievements made and problems existed during the development of nuclear power standards, put forward proposals to actively promote the work in this regard, and indicates that CNNC will further strengthen the standardization work, enhance coordination with those trades related to nuclear power standards, and jointly promote the development of nuclear power standards. (authors)

  10. Activities of nuclear human resource development in nuclear industry

    International Nuclear Information System (INIS)

    Tsujikura, Yonezo

    2010-01-01

    Since 2007, the JAIF (Japan Atomic Industrial Forum) had established the nuclear energy human resource development council to make analysis of the issue on nuclear human resource development. The author mainly contributed to develop its road map as a chairman of working group. Questionnaire survey to relevant parties on issues of nuclear human resource development had been conducted and the council identified the six relevant issues and ten recommendations. Both aspects for career design and skill-up program are necessary to develop nuclear human resource at each developing step and four respective central coordinating hubs should be linked to each sector participating in human resource development. (T. Tanaka)

  11. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    Mautner-Markhof, F.

    1988-01-01

    Experience has shown that one of the critical conditions for the successful introduction of a nuclear power programme is the availability of sufficient numbers of personnel having the required education and experience qualifications. For this reason, the introduction of nuclear power should be preceded by a thorough assessment of the relevant capabilities of the industrial and education/training infrastructures of the country involved. The IAEA assists its Member States in a variety of ways in the development of infrastructures and capabilities for engineering and science education for nuclear power. Types of assistance provided by the IAEA to Member States include: Providing information in connection with the establishment or upgrading of academic and non-academic engineering and science education programmes for nuclear power (on the basis of curricula recommended in the Agency's Guidebook on engineering and science education for nuclear power); Expert assistance in setting up or upgrading laboratories and other teaching facilities; Assessing the capabilities and interest of Member States and their institutions/organizations for technical co-operation among countries, especially developing ones, in engineering and science education, as well as its feasibility and usefulness; Preparing and conducting nuclear specialization courses (e.g. on radiation protection) in various Member States

  12. Emergency preparedness and its enhancement in Japan: From perspectives of infrastructure preparation, and exercise enhancement

    International Nuclear Information System (INIS)

    Funahashi, T.

    2010-01-01

    The organizational structure, procedures and infrastructures for the nuclear emergency response were established in Japan in the aftermath of the JCO accident and have been improved through exercises, drills and training. This paper overviews the infrastructure for the emergency response prepared by JNES and exercises implemented or supported by JNES for nuclear emergency preparedness. Approaches to feeding back exercise results are also addressed. (author)

  13. Communication dated 16 July 2008 received from the Resident Representative of Japan to the Agency concerning an International Initiative on 3S-Based Nuclear Energy Infrastructure

    International Nuclear Information System (INIS)

    2008-01-01

    The Director General has received a communication dated 16 July 2008 from the Resident Representative of Japan attaching a document entitled 'International Initiative on 3S-based Nuclear Energy Infrastructure'. The communication, and as requested therein, its attachment, are circulated herewith for information

  14. The importance of nuclear power in a developing country - The case of Argentina

    International Nuclear Information System (INIS)

    Castro-Madero, C.

    1983-01-01

    For a developing country, the Argentine Republic has certain non-typical features: a low birth rate, a high per capita income and a skilled work force. These characteristics, together with the variety and quantity of its natural resources, have enabled it to attain self-sufficiency in the matter of energy by making use, for the most part, of fossil fuels and hydroelectric resources. The century ahead, however, will require extensive exploitation of nuclear power resources if this independence in the domain of energy is to be maintained. The situation so described makes it necessary to draw up a nationwide energy programme and, in conjunction with this, a nuclear power plan, the overall objective of which is, by the end of the century, to achieve self-sufficiency in the nuclear power sector so as to be able to meet the country's energy requirements. In order to attain this goal, it is necessary, according to our experience, to acquire local capabilities in the following areas related to nuclear power plants: operation and maintenance, development of engineering skills, management and implementation of projects and, lastly, the production of supplies. As part of the conceptual framework under review, there is a description of the past and future development of the activities under the nuclear power plan and of their present stage of progress. Particular attention is drawn to: (1) The extent of the manpower and financing requirements; (2) the gradually increasing participation of local industry and engineering; (3) the development of a capacity for large-scale project management; (4) formation of the necessary scientific and technical infrastructure. In conclusion, there is an analysis of certain fundamental aspects which necessarily underlie the development of scientific-technical-industrial programmes of these dimensions and complexity of implementation

  15. The challenge of developing ethical guidelines for a research infrastructure

    Science.gov (United States)

    Kutsch, Werner Leo

    2016-04-01

    The mission of the Integrated Carbon Observation System (ICOS RI) is to enable research to understand the greenhouse gas (GHG) budgets and perturbations. The ICOS RI provides the long-term observations required to understand the present state and predict future behaviour of the global carbon cycle and GHG emissions. Technological developments and implementations, related to GHGs, will be promoted by the linking of research, education and innovation. In order to provide this data ICOS RI is a distributed research infrastructure. The backbones of ICOS RI are the national measurement stations such as ICOS atmosphere, ecosystem and ocean stations. ICOS Central Facilities are the European level ICOS RI Centres, which have the specific tasks in collecting and processing the data and samples received from the national measurement networks. During the establishment of ICOS RI ethical guidelines were developed. These guidelines describe principles of ethics in the research activities that should be applied within ICOS RI. They should be acknowledged and followed by all researchers affiliated to ICOS RI and should be supported by all participating institutions. The presentation describes (1) the general challenge to develop ethical guidelines in a complex international infrastructure and (2) gives an overview about the content that includes different kinds of conflicts of interests, data ethics and social responsibility.

  16. Traffic Infrastructure in the Development of the Croatian Traffic System

    Directory of Open Access Journals (Sweden)

    Damir Šimulčik

    2012-10-01

    Full Text Available The absence of a long-term traffic policy and of the policyof financing the constntction and maintenance of traffic infrastructurefacilities, represents a synthesis of numerous unresolvedrelations whose negative effects are felt in the overalleconomic and traffic development and consequently theevaluation of national potentials in the field. Adverse aspectcaused by the lack of a clear and feasible policy of financing thetraffic infrastructure facilities, is also a result of not having definedan adequate traffic policy, programme and strategiccourses of development, nor financing models that would be inaccordance with the market and economy system.This indicates that it is necessary to determine a policy forfinancing the constntction and maintenance of traffic infrastntcture,which has to be based on scientific development,team work, availability of plans and programmes to scientistsand experts, determined methodology based on marketing andeconomic logic in defining the programme and strategic tasksand assignments so as to make them feasible.In the near future, intensive preparations for investments inthe overall traffic sysiem are necessary, especially regarding thetraffic infrastntcture facilities - the pivotal points in the processof evaluating the traffic in our national tenitory. Croatia needsto define clearly its strategy in constructing and maintaining thegeneral traffic infrastructure, appointing at the same time thosewho will carry out the given tasks.

  17. Infrastructure: concept, types and value

    Directory of Open Access Journals (Sweden)

    Alexander E. Lantsov

    2013-01-01

    Full Text Available Researches of influence of infrastructure on the economic growth and development of the countries gained currency. However the majority of authors drop the problem of definition of accurate concept of studied object and its criteria out. In the given article various approaches in the definition of «infrastructure» concept, criterion and the characteristics of infrastructure distinguishing it from other capital assets are presented. Such types of infrastructure, as personal, institutional, material, production, social, etc. are considered. Author’s definition of infrastructure is given.

  18. Analyzing water/wastewater infrastructure interdependencies

    International Nuclear Information System (INIS)

    Gillette, J. L.; Fisher, R. E.; Peerenboom, J. P.; Whitfield, R. G.

    2002-01-01

    This paper describes four general categories of infrastructure interdependencies (physical, cyber, geographic, and logical) as they apply to the water/wastewater infrastructure, and provides an overview of one of the analytic approaches and tools used by Argonne National Laboratory to evaluate interdependencies. Also discussed are the dimensions of infrastructure interdependency that create spatial, temporal, and system representation complexities that make analyzing the water/wastewater infrastructure particularly challenging. An analytical model developed to incorporate the impacts of interdependencies on infrastructure repair times is briefly addressed

  19. A method for the efficient prioritization of infrastructure renewal projects

    International Nuclear Information System (INIS)

    Karydas, D.M.; Gifun, J.F.

    2006-01-01

    The infrastructure renewal program at MIT consists of a large number of projects with an estimated budget that could approach $1 billion. Infrastructure renewal at the Massachusetts Institute of Technology (MIT) is the process of evaluating and investing in the maintenance of facility systems and basic structure to preserve existing campus buildings. The selection and prioritization of projects must be addressed with a systematic method for the optimal allocation of funds and other resources. This paper presents a case study of a prioritization method utilizing multi-attribute utility theory. This method was developed at MIT's Department of Nuclear Engineering and was deployed by the Department of Facilities after appropriate modifications were implemented to address the idiosyncrasies of infrastructure renewal projects and the competing criteria and constraints that influence the judgment of the decision-makers. Such criteria include minimization of risk, optimization of economic impact, and coordination with academic policies, programs, and operations of the Institute. A brief overview of the method is presented, as well as the results of its application to the prioritization of infrastructure renewal projects. Results of workshops held at MIT with the participation of stakeholders demonstrate the feasibility of the prioritization method and the usefulness of this approach

  20. Nuclear Energy Development and New Build Expansion

    International Nuclear Information System (INIS)

    Stosic, Z. V.

    2012-01-01

    Early afternoon on March 11th, 2011, a devastating earthquake hit Japan, causing a powerful tsunami which had catastrophic consequences in the Tohoku District. A nuclear accident followed with core meltdowns at the Fukushima Daiichi NPPs (Nuclear Power Plants) at an unprecedented scale and over a lengthy period of time. The findings so far suggest that the insufficient design for tsunamis of the reactor units was responsible for the accident that occurred in the Japanese Fukushima Daiichi NPP. Thus the accident does not fall into the category of residual risk; rather it was due to the fact that the basic design for external impact was insufficient in this case. This is why the design and the safety concept of NPPs around the world had to be reviewed with respect to possible improvement potential. The impact of the Tohoku natural disaster is present not only in Japan but world-wide. The context post-Fukushima creates new challenges, but nuclear perspectives remain solid despite shaken public acceptance and the fundamentals driving nuclear role in sustainable energy mix remain. These are: GROWING DEMAND: Need for new capacity is unchanged to meet growing energy demand (multiplied by two in overall consumption and an 80% increase in global electricity consumption by 2050); REDUCTION OF CO 2 EMISSIONS: Although 50% of world electricity today is generated from burning coal, combating climate change remains a priority and greenhouse gas emissions are to be cut by half by 2050; SECURITY OF SUPPLY: Need for an increased security of supply in a changing geopolitical environment; FOSSIL ENERGY: Fossil resources are dwindling, remain uncertain and are volatile in prices; COMPETITIVENESS: Nuclear remains one of the most competitive low-carbon energy sources and will remain an important option for many countries for a sustainable energy mix. To supply seven billion people (nine billion in 2030) with secure energy needs infrastructure development. This means huge investments

  1. Why Replacing Legacy Systems Is So Hard in Global Software Development: An Information Infrastructure Perspective

    DEFF Research Database (Denmark)

    Matthiesen, Stina; Bjørn, Pernille

    2015-01-01

    We report on an ethnographic study of an outsourcing global software development (GSD) setup between a Danish IT company and an Indian IT vendor developing a system to replace a legacy system for social services administration in Denmark. Physical distance and GSD collaboration issues tend...... to be obvious explanations for why GSD tasks fail to reach completion; however, we account for the difficulties within the technical nature of software system task. We use the framework of information infrastructure to show how replacing a legacy system in governmental information infrastructures includes...... the work of tracing back to knowledge concerning law, technical specifications, as well as how information infrastructures have dynamically evolved over time. Not easily carried out in a GSD setup is the work around technical tasks that requires careful examination of mundane technical aspects, standards...

  2. Status of nuclear data activities in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ouk; Chang, Jonghwa [Nuclear Data Evaluation Lab., Korea Atomic Energy Research Inst., Yusung, Taejon 305-600 (Korea, Republic of)

    1998-03-01

    Although nuclear data activities in Korea are still in the early stage, considerable demands for more accurate and wide-range nuclear data from nuclear R and D fields activated a new nuclear data project titled as `Development of Nuclear Data System`. It was launched this year as one of nation-wide long-term nuclear R and D programs in Korea for the next decade. Its main goals are (1) to establish nuclear data system, (2) to build up the infra-structure for utilization of nuclear data and (3) to develop highly reliable nuclear data system. To achieve these goals, international cooperation and cultivation of human resource as well as construction of measurement facilities will be indispensable. This report briefly describes the demands of nuclear data from the nuclear R and D programs, current nuclear data activities and future plan with its strategy. (author)

  3. Status of nuclear data activities in Korea

    International Nuclear Information System (INIS)

    Lee, Young-Ouk; Chang, Jonghwa

    1998-01-01

    Although nuclear data activities in Korea are still in the early stage, considerable demands for more accurate and wide-range nuclear data from nuclear R and D fields activated a new nuclear data project titled as 'Development of Nuclear Data System'. It was launched this year as one of nation-wide long-term nuclear R and D programs in Korea for the next decade. Its main goals are 1) to establish nuclear data system, 2) to build up the infra-structure for utilization of nuclear data and 3) to develop highly reliable nuclear data system. To achieve these goals, international cooperation and cultivation of human resource as well as construction of measurement facilities will be indispensable. This report briefly describes the demands of nuclear data from the nuclear R and D programs, current nuclear data activities and future plan with its strategy. (author)

  4. Neural Network Based Intrusion Detection System for Critical Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  5. A study on the establishment of strengthened infrastructures for bilateral nuclear cooperation

    International Nuclear Information System (INIS)

    Choi, Pyung Hoon; Jung, Jun Keuk; Shim, Jae Sun; Kim, Myug Ro; Seo, Min Won; Lee, Jeong Kong

    2001-12-01

    The objectives of this study are to look into and analyze the current status of international cooperation activities so far conducted, especially focused on the Joint Standing Committees on Nuclear Energy Cooperation which have served as channels of dialogue for promoting nuclear cooperation between Korea and the counterpart countries, to present the identified problems to be addressed and to come up with appropriate measures to actively and effectively participate in international nuclear cooperation activities in the future by nuclear-related industries, academia and institute with the aim of establishing a firm foundation for implementing more systematic cooperation while the government takes lead. Further, effective and systematic implementation of nuclear bilateral cooperation through full participation of industries, academia and institutes will contribute to national development by advancing nuclear technology

  6. Strategic Guidelines for Development of the Infocommunication Sphere as a Component of the National Innovation Infrastructure

    Directory of Open Access Journals (Sweden)

    Koval Victor V.

    2017-03-01

    Full Text Available The aim of the article is to study and systematize the factors affecting the potential of the innovation infrastructure to improve the quality of conditions of its formation on the basis of elaborating a strategy for the development of the infocommunication sphere. The article considers the current state of development of the infocommunication sphere and approaches to analyzing its role in relation to the goals and tasks facing the national innovation system. It is substantiated that infocommunication technologies act as an innovative tool that contributes to the development of innovations and their commercialization, while enterprises of the infocommunication sphere act as subjects of the innovation infrastructure, which main goal is to intensify innovation efforts and ensure innovation activity. The strategic problems of formation and prospects of development of the infocommunication sphere as a component of the national innovation infrastructure are analyzed.

  7. Technical and scientific support organizations and strengthening of nuclear regulation (Case study of Moldova)

    International Nuclear Information System (INIS)

    Buzdugan, Artur; Buzdugan, Aurelian

    2010-01-01

    Authors present arguments for establishing of technical and scientific support organizations (TSO) infrastructure as obligatory components of the national radiation protection and nuclear safety infrastructure. In the small countries, like the Republic of Moldova, characterized by insufficient development of nuclear technologies, different social, economic, scientific and, why not, national peculiarities impose opportunity of efficient interaction of regulatory body with TSO. Are presents certain examples of interaction of those organizations. As mentioned, that synergy of such interaction will contribute essentially in implementation of adequate nuclear culture in the country. (author)

  8. Building Technical Capability for the Development of Nuclear Power Programme: Uganda's Experience

    International Nuclear Information System (INIS)

    Jagenu, A.

    2012-01-01

    The Republic of Uganda is a landlocked country in East Africa with a population of about 33 million. It lies along the equator and is bordered on the east by Kenya, north by Sudan, west by the Democratic Republic of the Congo, southwest by Rwanda, and south by Tanzania. Uganda has continued to suffer power shortage, mainly due to slow investment in the power sector as well as unreliable rainfall. To supplement the power supply, it has contracted independent power producers to supply electricity from fossil fuels. The Thermal power is expensive and contributes to emission of large amount of carbon dioxide - a major greenhouse gas causing global warming. The total estimated electricity generation potential is in the long term will be about 5300MW. In view of the increasingly energy needs and urgent environmental concerns related to power production using fossil fuels, the government recognizes that nuclear technology will play important role in future sustainable energy systems. The Government is therefore considering nuclear energy as part of the future energy mix. However, Uganda is not yet having the capacity to build a nuclear power plant, but is making earnest efforts to prepare for nuclear power programme. These include putting in place appropriate legislation and capacity building in nuclear power technology, implementing human resources development plan, which involves recruiting fresh graduate and sending them abroad for further studies in nuclear science and technology for power generation and regulations, and infrastructure requirement.

  9. Standards life cycle and a methodolgy and infrastructure for standards development and implementation

    CSIR Research Space (South Africa)

    Cooper, Antony K

    2006-02-01

    Full Text Available -practice methodology and infrastructure for selecting, developing, implementing and refining standards across Stats SA. The life cycle for standards in an organisation is also described...

  10. Progress and Challenges in Developing Reference Data Layers for Human Population Distribution and Built Infrastructure

    Science.gov (United States)

    Chen, R. S.; Yetman, G.; de Sherbinin, A. M.

    2015-12-01

    Understanding the interactions between environmental and human systems, and in particular supporting the applications of Earth science data and knowledge in place-based decision making, requires systematic assessment of the distribution and dynamics of human population and the built human infrastructure in conjunction with environmental variability and change. The NASA Socioeconomic Data and Applications Center (SEDAC) operated by the Center for International Earth Science Information Network (CIESIN) at Columbia University has had a long track record in developing reference data layers for human population and settlements and is expanding its efforts on topics such as intercity roads, reservoirs and dams, and energy infrastructure. SEDAC has set as a strategic priority the acquisition, development, and dissemination of data resources derived from remote sensing and socioeconomic data on urban land use change, including temporally and spatially disaggregated data on urban change and rates of change, the built infrastructure, and critical facilities. We report here on a range of past and ongoing activities, including the Global Human Settlements Layer effort led by the European Commission's Joint Research Centre (JRC), the Global Exposure Database for the Global Earthquake Model (GED4GEM) project, the Global Roads Open Access Data Working Group (gROADS) of the Committee on Data for Science and Technology (CODATA), and recent work with ImageCat, Inc. to improve estimates of the exposure and fragility of buildings, road and rail infrastructure, and other facilities with respect to selected natural hazards. New efforts such as the proposed Global Human Settlement indicators initiative of the Group on Earth Observations (GEO) could help fill critical gaps and link potential reference data layers with user needs. We highlight key sectors and themes that require further attention, and the many significant challenges that remain in developing comprehensive, high quality

  11. The status report on the nuclear data project in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.N.; Baek, W.Y.; Kang, H.S.; Choi, J.Y.; Cho, M.H.; Ko, I.S.; Namkung, W. [Pohang Accelerator Laboratory, POSTECH, Pohang (Korea, Republic of); Chang, J.H.

    1999-03-01

    The nuclear data project as one of the nation-wide nuclear R and D programs was launched by the Korea Atomic Energy Research Institute (KAERI) in 1996. Its main goals are to establish a nuclear data system, to construct the infrastructure for the nuclear data productions and evaluations, and to develop a highly reliable nuclear data system. In order to build the infrastructure for the nuclear data production, KAERI wants to build an intense pulsed neutron source by utilizing accelerator facilities, technologies, and manpower at the Pohang Accelerator Laboratory (PAL). The PAL proposed the Pohang Neutron Facility (PNF), which consists of a 100-MeV electron linac, a water-cooled Ta target, and at least three different time-of-flight (TOF) paths. The 100-MeV electron linac was designed and constructed based on experiences obtained from construction and operation of the 2-GeV linac at PAL. We report a status report on the nuclear data production and evaluation in Korea. (author)

  12. IAEA support for operating nuclear reactors

    International Nuclear Information System (INIS)

    Akira, O.

    2010-01-01

    The IAEA programme, under the pillar of science and technology, provides support to the existing fleet of nuclear power plants (NPPs) for excellence in operation, support to new countries for infrastructure development, stimulating technology innovation for sustainable development and building national capability. Practical activities include methodology development, information sharing and providing guidance documents and state-of-the-art reports, networking of research activities, and review services using guidance documents as a basis of evaluation. This paper elaborates more on the IAEA's activities in support of the existing fleet of nuclear power plants

  13. Electricity utilities: Nuclear sector

    International Nuclear Information System (INIS)

    Brosche, D.

    1992-01-01

    The safe and economic operation of nuclear power plants requires an appropriate infrastructure on the part of the operator as well as a high level of technical quality of the plants and of qualification of the personnel. Added to this are a variety of services rendered by specialist firms. The Bayernwerk utility, with plants of its own, has played a major role in the development of nuclear power in the Federal Republic of Germany. The importance of nuclear power to this firm is reflected in the pattern of its electricity sources and in the composition of its power plants. (orig.) [de

  14. Challenges to nuclear suppliers : positioning for the nuclear renaissance

    International Nuclear Information System (INIS)

    Reimels, R.

    2006-01-01

    With energy demand rising and the increasing recognition of the role of nuclear power as part of the energy mix, opportunities and challenges face the nuclear industry. The ability of nuclear industries to respond to utility requirements in terms of costs, schedule and quality will be determined by entire supplier base. The author speaks to the challenge of the entire infrastructure of suppliers to respond to these opportunities and challenges. Key issues are resource planning, procurement, risk management, supplier collaborations (such as teaming and partnerships); standardization of practices to minimize costs and time; and not least of which, the training, development and recruitment of labour. The author shares his perspective on the role of the supply chain to ensure it has the right resources to provide safe, cost-effective and reliable nuclear deliverables

  15. Scaling up climate finance for sustainable infrastructure in developing cities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun

    2010-09-15

    This article investigates the role of carbon finance and seeks to establish a policy framework that allows reorientation of upfront investment in urban infrastructure for facilitating transition towards low-carbon development trajectory in developing cities. It draws on an in-depth exploration of different climate finance mechanisms and their applicability in the context of fast urbanization. We suggest an integrated approach should be adopted to aggregate city-based multiple individual GHG mitigation projects dealing with buildings and transport efficiency. The sectoral approach and NAMAs-based financing schemes be included in post-Kyoto regime for shifting the current trajectories in fast growing developing cities.

  16. IAEA activities in support of rising expectation to the role of nuclear power in developing countries

    International Nuclear Information System (INIS)

    Omoto, A.

    2006-01-01

    The Paris Conference N uclear energy for the 21st Century , which was held in March 2005 organized by the IAEA, is a strong indication of the interest in the role of nuclear power. At this conference, rising expectations were indicated as representatives from many countries expressed recognition of the potential of nuclear energy to meet their energy needs in a sustainable manner. A similar indication was recognized by the June 2004 Conference held by the IAEA in Obninsk, Russia, to celebrate 50 years of nuclear electricity production. Many developing countries that currently do not operate a nuclear power plant are expressing their view that nuclear power is an important option in their energy planning in order to alleviate energy price instability, to secure long-term energy supply and to achieve an energy mix that assures sustainability. India, China and other developing countries in Asia have ambitious nuclear power deployment programmes in order to support growing energy demand and per capita energy consumption. The IAEA has a mandate to secure the benefit of the peaceful use of nuclear technology for sustainability while working against the misuse of nuclear material. Under this mandate, many guidance documents have been prepared and various technical cooperation projects are carried out to support energy planning and infrastructure building to prepare for and to sustain nuclear power operation. Basically, the IAEA can provide support by four types of activities; a) helping the process in various stages, b) helping informed decision-making through providing analytical tools and publishing technical documents, and c) reducing institutional impediments through regional cooperation, multi-national arrangement and others; and d) supporting collaborative assessments and research toward development of nuclear plants and their applications. The paper describes the observed rising expectation and the IAEA's activities in response to the rising expectation of the role

  17. Development of nuclear energy and nuclear policy in China

    International Nuclear Information System (INIS)

    You Deliang

    1993-11-01

    Status of nuclear power development in China, nuclear policy and nuclear power programme are described. Issues regarding nuclear fuel cycle system, radioactive waste management and international cooperation in the field of peaceful use of nuclear energy are discussed

  18. The sustainable development of nuclear energy

    International Nuclear Information System (INIS)

    Guo Huifang

    2012-01-01

    The wide use of nuclear energy has promoted the development of China's economy and the improvement of people's living standards. To some extent, the exploitation of nuclear power plants will solve the energy crisis faced with human society. Before the utilization of nuclear fusion energy, nuclear fission energy will be greatly needed for the purpose of alleviating energy crisis for a long period of time. Compared with fossil fuel, on the one hand, nuclear fission energy is more cost-efficient and cleaner, but on the other hand it will bring about many problems hard to deal with, such as the reprocessing and disposal of nuclear spent fuel, the contradiction between nuclear deficiency and nuclear development. This paper will illustrate the future and prospect of nuclear energy from the perspective of the difficulty of nuclear development, the present reprocessing way of spent fuel, and the measures taken to ensure the sustainable development of nuclear energy. By the means of data quoting and comparison, the feasibility of sustainable development of nuclear energy will be analyzed and the conclusion that as long as the nuclear fuel cycling system is established the sustainable development of nuclear energy could be a reality will be drawn. (author)

  19. Transport Infrastructure and Economic Growth: Spatial Effects

    Directory of Open Access Journals (Sweden)

    Artyom Gennadyevich Isaev

    2015-09-01

    Full Text Available The author specifies an empirical framework of neoclassical growth model in order to examine impact of transport infrastructure on economic growth in Russian regions during period of 2000-2013. Two different effects of infrastructure are considered. First, infrastructure is viewed as part of region’s own production function. Second, infrastructure generates spillover effect on adjacent regions’ economic performance which can be negative or positive. Results imply that road infrastructure has a positive influence on regional growth, but sign of railroad infrastructure coefficient depends on whether or not congestion effect is considered. Negative spillover effect is shown to exist in the case of road infrastructure. This apparently means that rapid road infrastructure development in some regions moves mobile factors of production away from adjacent regions retarding their economic development. The spillover effect of railroad infrastructure is significant and negative again only if congestion effect is considered. The results of estimation for the Far East and Baikal Regions separately demonstrate no significant effect of both types of infrastructure for economic performance and negative spillover effect of road infrastructure

  20. India's nuclear program

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    India made an early commitment to being as self-sufficient as possible in nuclear energy and has largely achieved that goal. The country operates eight nuclear reactors with a total capacity of 1,304 MWe, and it remains committed to an aggressive growth plan for its nuclear industry, with six reactors currently under construction, and as many as twelve more planned. India also operates several heavy water production facilities, fabrication facilities, reprocessing works, and uranium mines and mills. Due to India's decision not to sign the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), the country has had to develop nearly all of its nuclear industry and infrastructure domestically. Overall, India's nuclear power program is self-contained and well integrated, with plans to expand to provide up to ten percent of the country's electrical generating capacity

  1. Technology development projects in road infrastructure : The relevance of government championing behavior

    NARCIS (Netherlands)

    Caerteling, Jasper; Di Benedetto, Anthony; Doree, Andries G.; Halman, Johannes I.M.; Song, Michael

    2011-01-01

    Low-technology industries are largely neglected in technology management literature. Yet, recent studies show the crucial importance of innovation in low-technology industries. In this study, we analyze technology development projects in a specific low-technology industry, road infrastructure, being

  2. Effect of space structures against development of transport infrastructure in Banda Aceh by using the concept of transit oriented development

    Science.gov (United States)

    Noer, Fadhly; Matondang, A. Rahim; Sirojuzilam, Saleh, Sofyan M.

    2017-11-01

    Due to the shifting of city urban development causing the shift of city services center, so there is a change in space pattern and space structure in Banda Aceh, then resulting urban sprawl which can lead to congestion problem occurs on the arterial road in Banda Aceh, it can be seen from the increasing number of vehicles per year by 6%. Another issue occurs by urban sprawl is not well organized of settlement due to the uncontrolled use of space so that caused grouping or the differences in socioeconomic strata that can impact to the complexity of population mobility problem. From this background problem considered to be solved by a concept that is Transit Oriented Development (TOD), that is a concept of transportation development in co-operation with spatial. This research will get the model of transportation infrastructure development with TOD concept that can handle transportation problem in Banda Aceh, due to change of spatial structure, and to find whether TOD concept can use for the area that has a population in medium density range. The result that is obtained equation so the space structure is: Space Structure = 0.520 + 0.206X3 + 0.264X6 + 0.100X7 and Transportation Infrastructure Development = -1.457 + 0.652X1 + 0.388X5 + 0.235X6 + 0.222X7 + 0.327X8, So results obtained with path analysis method obtained variable influences, node ratio, network connectivity, travel frequency, travel destination, travel cost, and travel time, it has a lower value when direct effect with transportation infrastructure development, but if the indirect effect through the structure of space has a greater influence, can be seen from spatial structure path scheme - transportation infrastructure development.

  3. Nuclear power development

    International Nuclear Information System (INIS)

    Nealey, S.

    1990-01-01

    The objective of this study is to examine factors and prospects for a resumption in growth of nuclear power in the United States over the next decade. The focus of analysis on the likelihood that current efforts in the United States to develop improved and safer nuclear power reactors will provide a sound technical basis for improved acceptance of nuclear power, and contribute to a social/political climate more conducive to a resumption of nuclear power growth. The acceptability of nuclear power and advanced reactors to five social/political sectors in the U.S. is examined. Three sectors highly relevant to the prospects for a restart of nuclear power plant construction are the financial sector involved in financing nuclear power plant construction, the federal nuclear regulatory sector, and the national political sector. For this analysis, the general public are divided into two groups: those who are knowledgeable about and involved in nuclear power issues, the involved public, and the much larger body of the general public that is relatively uninvolved in the controversy over nuclear power

  4. Pakistan's experience in transfer of nuclear technology

    International Nuclear Information System (INIS)

    Ahmad Khan, Nunir

    1977-01-01

    Of all technologies, nuclear technology is perhaps the most interdisciplinary in character as it encompasses such varied fields as nuclear physics, reactor physics, mechanical, electrical electronics controls, metallurgical and even civil and geological engineering. When we speak of transfer of acquisition of nuclear technology we imply cumulative know-how in many fields, most of which are not nuclear per se but are essential for building the necessry infrastructure and back-up facilities for developing and implementing any nuclear energy program. In Pakistan, efforts on utilization of nuclear energy for peaceful applications were initiated about twenty years ago. During these years stepwise development of nuclear technology has taken place. The experience gained by Pakistan so far in transfer of nuclear technology is discussed. Suggestions have been made for continuing the transfer of this most essential technology from the advanced to the developing countries while making sure that necessary safeguard requirements are fullfilled

  5. Development of a two-stage inspection process for the assessment of deteriorating infrastructure

    International Nuclear Information System (INIS)

    Sheils, Emma; O'Connor, Alan; Breysse, Denys; Schoefs, Franck; Yotte, Sylvie

    2010-01-01

    Inspection-based maintenance strategies can provide an efficient tool for the management of ageing infrastructure subjected to deterioration. Many of these methods rely on quantitative data from inspections, rather than qualitative and subjective data. The focus of this paper is on the development of an inspection-based decision scheme, incorporating analysis on the effect of the cost and quality of NDT tools to assess the condition of infrastructure elements/networks during their lifetime. For the first time the two aspects of an inspection are considered, i.e. detection and sizing. Since each stage of an inspection is carried out for a distinct purpose, different parameters are used to represent each procedure and both have been incorporated into a maintenance management model. The separation of these procedures allows the interaction between the two inspection techniques to be studied. The inspection for detection process acts as a screening exercise to determine which defects require further inspection for sizing. A decision tool is developed that allows the owner/manager of the infrastructural element/network to choose the most cost-efficient maintenance management plan based on his/her specific requirements.

  6. Clarkesville Green Infrastructure Implementation Strategy

    Science.gov (United States)

    The report outlines the 2012 technical assistance for Clarkesville, GA to develop a Green Infrastructure Implementation Strategy, which provides the basic building blocks for a green infrastructure plan:

  7. Infrastructures for healthcare

    DEFF Research Database (Denmark)

    Langhoff, Tue Odd; Amstrup, Mikkel Hvid; Mørck, Peter

    2018-01-01

    The Danish General Practitioners Database has over more than a decade developed into a large-scale successful information infrastructure supporting medical research in Denmark. Danish general practitioners produce the data, by coding all patient consultations according to a certain set of classif...... synergy into account, if not to risk breaking down the fragile nature of otherwise successful information infrastructures supporting research on healthcare....

  8. EURATOM achievements and challenges in facilitating Pan-European infrastructure collaborative efforts

    International Nuclear Information System (INIS)

    Garbil, Roger

    2017-01-01

    The European Atomic Energy Community (Euratom) Research and Training framework programmes are benefiting from a consistent success in pursuing excellence in research and facilitating Pan European collaborative efforts across a broad range of nuclear science and technologies, nuclear fission and radiation protection. To fulfil Euratom R and D programmes keys objectives of maintaining high levels of nuclear knowledge and building a more dynamic and competitive European industry, promotion of Pan-European mobility of researchers are implemented by co-financing transnational access to research infrastructures (RIs) and joint research activities. 'Euratom Achievements and Challenges' show the benefits of research efforts in key fields, of building an effective 'critical mass', of promoting the creation of 'centres of excellence' with an increased support for 'open access to key research infrastructures', exploitation of research results, management of knowledge, dissemination and sharing of learning outcomes.

  9. Nuclear power in developing countries

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1980-01-01

    A few of the essential issues which arise when we consider nuclear power and development together in the context of energy policy are discussed. Ethical concerns must ultimately be expressed through policies and their impact on people. There are ethical issues associated with nuclear power in the developing countries which deserve our attention. Four aspects of the question of nuclear power in developing countries are considered: their energy situation; the characteristics of nuclear power which are relevant to them; whether developing countries will undertake nuclear power programmes; and finally the ethical implications of such programmes. It is concluded that what happens in developing countries will depend more on the ethical nature of major political decisions and actions than on the particular technology they use to generate their electricity. (LL)

  10. Challenges in developing human resources for nuclear safety in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Tsatsi, Louisa [National Nuclear Regulator, PO BOX 7106, 00046 Centurion (South Africa)

    2008-07-01

    Challenges in developing Human Resources for nuclear safety in South Africa ESKOM Holding Limited which is the South African Government owned utility, operates over 10 power stations. The total installed is about 40 GW, and nuclear contributes only 6 percent. The existing nuclear power station, Koeberg NPP, is comprised of two 900 MW(e) units at the South African west coast near Cape Town. The South African Government has a policy to increase the share of nuclear in the generation mix from 6 percent to 15 percent before the year 2020. The challenge is that there have been a 'greying' of nuclear experts and a shrinking of nuclear engineering and science departments. As a consequence of this, ESKOM has realized that a large number of young engineers and scientists would have to be recruited and then trained in South Africa and abroad. Some people, especially high performers in the industry are continually looking for new challenges and opportunities and though it is important in the nuclear industry to retain these key staff members it have proved to be a serious challenge. The nuclear industry had to consider their national training infrastructures and the South African government in partnership with ESKOM, NECSA and PBMR has started a process of funding university chairs in reactor engineering and allied subjects. These departments undertake research and provide training for the South African nuclear industry. The recruitment process has initially involved the transfer of personnel from ESKOM, NECSA as well as direct recruitment from the market. The primary recruitment process going forward will be from universities and other Further Education Training (FET) institutions with a focus on ESKOM and PBMR providing the specific nuclear training. In this regard, both ESKOM and PBMR provide bursaries, project work and other assistance to selected candidates. Upon completion of studies, the specific training is provided both in-house and with partner national

  11. Challenges in developing human resources for nuclear safety in South Africa

    International Nuclear Information System (INIS)

    Tsatsi, Louisa

    2008-01-01

    Challenges in developing Human Resources for nuclear safety in South Africa ESKOM Holding Limited which is the South African Government owned utility, operates over 10 power stations. The total installed is about 40 GW, and nuclear contributes only 6 percent. The existing nuclear power station, Koeberg NPP, is comprised of two 900 MW(e) units at the South African west coast near Cape Town. The South African Government has a policy to increase the share of nuclear in the generation mix from 6 percent to 15 percent before the year 2020. The challenge is that there have been a 'greying' of nuclear experts and a shrinking of nuclear engineering and science departments. As a consequence of this, ESKOM has realized that a large number of young engineers and scientists would have to be recruited and then trained in South Africa and abroad. Some people, especially high performers in the industry are continually looking for new challenges and opportunities and though it is important in the nuclear industry to retain these key staff members it have proved to be a serious challenge. The nuclear industry had to consider their national training infrastructures and the South African government in partnership with ESKOM, NECSA and PBMR has started a process of funding university chairs in reactor engineering and allied subjects. These departments undertake research and provide training for the South African nuclear industry. The recruitment process has initially involved the transfer of personnel from ESKOM, NECSA as well as direct recruitment from the market. The primary recruitment process going forward will be from universities and other Further Education Training (FET) institutions with a focus on ESKOM and PBMR providing the specific nuclear training. In this regard, both ESKOM and PBMR provide bursaries, project work and other assistance to selected candidates. Upon completion of studies, the specific training is provided both in-house and with partner national and

  12. Development of stainless steels for nuclear power plant - Advanced nuclear materials development -

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Ryu, Woo Seog; Chi, Se Hwan; Lee, Bong Sang; Oh, Yong Jun; Byun, Thak Sang; Oh, Jong Myung

    1994-07-01

    This report reviews the status of R and D and the material specifications of nuclear components in order to develop the stainless steels for nuclear applications, and the technology of computer-assisted alloy design is developed to establish the thermodynamic data of Fe-Cr-Ni-Mo-Si-C-N system which is the basic stainless steel systems. High strength and corrosion resistant stainless steels, 316LN and super clean 347, are developed, and the manufacturing processes and heat treatment conditions are determined. In addition, a martensitic steel is produced as a model alloy for turbine blade, and characterized. The material properties showed a good performance for nuclear applications. (Author)

  13. Development of nuclear power

    International Nuclear Information System (INIS)

    1960-01-01

    The discussion on the development of nuclear power took place on 28 September 1960 in Vienna. In his opening remarks, Director General Cole referred to the widespread opinion that 'the prospect of cheap electricity derived from nuclear energy offers the most exciting prospect for improving the lot of mankind of all of the opportunities for uses of atomic energy'. He then introduced the four speakers and the moderator of the discussion, Mr. H. de Laboulaye, IAEA Deputy Director General for Technical Operations. n the first part of the discussion the experts addressed themselves in turn to four topics put forward by the moderator. These were: the present technical status of nuclear power, the present costs of nuclear power, prospects for future reductions in the cost of nuclear power, and applications of nuclear power in less-developed areas

  14. Dynamic Systems Analysis Report for Nuclear Fuel Recycle

    Energy Technology Data Exchange (ETDEWEB)

    Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

    2008-12-01

    This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

  15. Nuclear power newsletter Vol. 2, no. 2

    International Nuclear Information System (INIS)

    2005-06-01

    The main topics in the newsletter are: International Ministerial Conference 'Nuclear Power for the 21st Century 'NPP operating performance and life cycle management; improving human performance quality and technical infrastructure; and technology development and applications for advanced reactors

  16. Improving nuclear safety at international research reactors: The Integrated Research Reactor Safety Enhancement Program (IRRSEP)

    International Nuclear Information System (INIS)

    Huizenga, David; Newton, Douglas; Connery, Joyce

    2002-01-01

    Nuclear energy continues to play a major role in the world's energy economy. Research and test reactors are an important component of a nation's nuclear power infrastructure as they provide training, experiments and operating experience vital to developing and sustaining the industry. Indeed, nations with aspirations for nuclear power development usually begin their programs with a research reactor program. Research reactors also are vital to international science and technology development. It is important to keep them safe from both accident and sabotage, not only because of our obligation to prevent human and environmental consequence but also to prevent corresponding damage to science and industry. For example, an incident at a research reactor could cause a political and public backlash that would do irreparable harm to national nuclear programs. Following the accidents at Three Mile Island and Chernobyl, considerable efforts and resources were committed to improving the safety posture of the world's nuclear power plants. Unsafe operation of research reactors will have an amplifying effect throughout a country or region's entire nuclear programs due to political, economic and nuclear infrastructure consequences. (author)

  17. Prioritizing Infrastructure Investments in Panama : Pilot Application of the World Bank Infrastructure Prioritization Framework

    OpenAIRE

    Marcelo, Darwin; Mandri-Perrott, Cledan; House, Schuyler

    2016-01-01

    Infrastructure services are significant determinants of economic development, social welfare, trade, and public health. As such, they typically feature strongly in national development plans. While governments may receive many infrastructure project proposals, however, resources are often insufficient to finance the full set of proposals in the short term. Leading up to 2020, an estimated US$836 ...

  18. Nuclear waste. Last stop Siberia?

    International Nuclear Information System (INIS)

    Popova, L.

    2006-01-01

    Safe and environmentally sound management of nuclear waste and spent fuel is an unresolved problem of nuclear power. But unlike other nuclear nations, Russia has much more problems with nuclear waste. Russia inherited these problems from the military programs and decades of nuclear fuel cycle development. Nuclear waste continue to mount, while the government does not pay serious enough attention to the solution of the waste problem and considers to increase the capacity of nuclear power plants (NPPs). There are more than 1000 nuclear waste storages in Russia.1 More than 70 million tons of the solid waste has been accumulated by the year 2005, including 14 million tons of tails of the decommissioned uranium mine in the North Caucasus. President Putin said that ''infrastructure of the waste processing is extremely insufficient''. (orig.)

  19. Final report for the Integrated and Robust Security Infrastructure (IRSI) laboratory directed research and development project

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, R.L.; Hamilton, V.A.; Istrail, G.G.; Espinoza, J.; Murphy, M.D.

    1997-11-01

    This report describes the results of a Sandia-funded laboratory-directed research and development project titled {open_quotes}Integrated and Robust Security Infrastructure{close_quotes} (IRSI). IRSI was to provide a broad range of commercial-grade security services to any software application. IRSI has two primary goals: application transparency and manageable public key infrastructure. IRSI must provide its security services to any application without the need to modify the application to invoke the security services. Public key mechanisms are well suited for a network with many end users and systems. There are many issues that make it difficult to deploy and manage a public key infrastructure. IRSI addressed some of these issues to create a more manageable public key infrastructure.

  20. TRANSVAC research infrastructure - Results and lessons learned from the European network of vaccine research and development.

    Science.gov (United States)

    Geels, Mark J; Thøgersen, Regitze L; Guzman, Carlos A; Ho, Mei Mei; Verreck, Frank; Collin, Nicolas; Robertson, James S; McConkey, Samuel J; Kaufmann, Stefan H E; Leroy, Odile

    2015-10-05

    TRANSVAC was a collaborative infrastructure project aimed at enhancing European translational vaccine research and training. The objective of this four year project (2009-2013), funded under the European Commission's (EC) seventh framework programme (FP7), was to support European collaboration in the vaccine field, principally through the provision of transnational access (TNA) to critical vaccine research and development (R&D) infrastructures, as well as by improving and harmonising the services provided by these infrastructures through joint research activities (JRA). The project successfully provided all available services to advance 29 projects and, through engaging all vaccine stakeholders, successfully laid down the blueprint for the implementation of a permanent research infrastructure for early vaccine R&D in Europe. Copyright © 2015. Published by Elsevier Ltd.

  1. Nuclear power newsletter, Vol. 5, no. 1, March 2008

    International Nuclear Information System (INIS)

    2008-03-01

    The current issue presents information about the following: Development of Nuclear Energy Series - Clickable Map; NPP I and C Technologies; Plant Life Management; NPP Databases; Management Systems; NPP Infrastructure; Training and NPP Personnel; INPRO; Water Cooled Reactors; Fast Reactors and Accelerator Driven Systems; Small and Medium Sized Reactors; Gas Cooled Reactors; Nuclear Desalination and other

  2. Electric Power Infrastructure Reliability And Security Research And Development Initiative. Final report

    International Nuclear Information System (INIS)

    Dale, S.; Meeker, R.; Steurer, M.; Li, H.; Pamidi, S.; Rodrigo, H.; Suryanarayanan, S.; Cartes, D.; Ordonez, J.; Domijan, A.; Liu, W.; Cox, D.; McLaren, P.; Hovsapian, R.; Edwards, D.; Simmons, S.; Wilde, N.; Woodruff, S.; Kopriva, D.; Hussaini, Y.; Mohammed, O.; Zheng, J.; Baldwin, T.L.

    2008-01-01

    This is the final scientific/technical report for the Electric Power Infrastructure Reliability and Security R and D Initiative sponsored by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability, under award number DE-FG02-05CH11292. This report covers results from the FSU-led, multi-institution effort conducted over the period 8/15/05 to 10/14/2007. Building upon existing infrastructure for power systems research, modeling, and simulation, the Center for Advanced Power Systems (CAPS) at Florida State University (FSU) is developing world-class programs in electric power systems research and education to support future electric power system needs and challenges. With U.S. Department of Energy Support, FSU CAPS has engaged in a multi-faceted effort to conduct basic and applied research towards understanding, developing, and deploying technologies and approaches that can lead to improved reliability and security of the North American electric power generation and delivery infrastructure. This wide-reaching project, through a number of carefully selected thrusts cutting across several research disciplines, set out to address key terrestrial electric utility power system issues and challenges. The challenges and the thrusts to address them were arrived at through analysis of a number of national reports and recommendations combined with input from an experienced multi-disciplined team of power systems research staff and faculty at FSU CAPS. The resulting project effort can be grouped into four major areas: - Power Systems and New Technology Insertion - Controls, Protection, and Security - Simulation Development - High Temperature Superconductivity (HTS)

  3. Cultured Construction: Global Evidence of the Impact of National Values on Piped-to-Premises Water Infrastructure Development.

    Science.gov (United States)

    Kaminsky, Jessica A

    2016-07-19

    In 2016, the global community undertook the Sustainable Development Goals. One of these goals seeks to achieve universal and equitable access to safe and affordable drinking water for all people by the year 2030. In support of this undertaking, this paper seeks to discover the cultural work done by piped water infrastructure across 33 nations with developed and developing economies that have experienced change in the percentage of population served by piped-to-premises water infrastructure at the national level of analysis. To do so, I regressed the 1990-2012 change in piped-to-premises water infrastructure coverage against Hofstede's cultural dimensions, controlling for per capita GDP, the 1990 baseline level of coverage, percent urban population, overall 1990-2012 change in improved sanitation (all technologies), and per capita freshwater resources. Separate analyses were carried out for the urban, rural, and aggregate national contexts. Hofstede's dimensions provide a measure of cross-cultural difference; high or low scores are not in any way intended to represent better or worse but rather serve as a quantitative way to compare aggregate preferences for ways of being and doing. High scores in the cultural dimensions of Power Distance, Individualism-Collectivism, and Uncertainty Avoidance explain increased access to piped-to-premises water infrastructure in the rural context. Higher Power Distance and Uncertainty Avoidance scores are also statistically significant for increased coverage in the urban and national aggregate contexts. These results indicate that, as presently conceived, piped-to-premises water infrastructure fits best with spatial contexts that prefer hierarchy and centralized control. Furthermore, water infrastructure is understood to reduce uncertainty regarding the provision of individually valued benefits. The results of this analysis identify global trends that enable engineers and policy makers to design and manage more culturally appropriate

  4. National Nuclear Technology Map Development

    International Nuclear Information System (INIS)

    Shin, J. I.; Lee, T. J.; Yoon, S. W.

    2005-03-01

    The objective of NuTRM is to prepare a plan of nuclear R and D and technological innovations which is very likely to make nuclear technology a promising power source for future national developments. The NuTRM finds out systematically the nuclear R and D vision and the high-value-added strategic technologies to be developed by the efficient cooperation of actors including government, industry, academy and research institute by 2020. In other words, NuTRM aims at a long-term strategic planning of nuclear R and D and technological innovation in order to promote the socio-economic contributions of nuclear science and technology for the nation's future competitiveness and sustainable development and to raise the global status of the Korean nuclear R and D and Industry

  5. Support Process Development for Assessing Green Infrastructure in Omaha, NE

    Science.gov (United States)

    Evaluates Omaha’s current process for assessing green infrastructure projects and recommends improvements for comparing green and gray infrastructure. Compares Omaha’s design criteria to other cities. Reviews other US programs with rights-of-way criteria.

  6. Nuclear power - international and national dimensions

    International Nuclear Information System (INIS)

    Yanev, Ya.

    1994-01-01

    A strong internationalization of nuclear problems is observed recently. International links have acted as a powerful force for improvement of safety standards and plant performance. The prospects for nuclear industry, its safety and excellent operation, its acceptance and tolerance from society in general will strongly influence the future of nuclear power generation in Bulgaria. The most important problems of Bulgarian nuclear energy are: implementation of safety upgrading program; building and operating new nuclear units; developing infrastructure which will permit safe and reliable operation of the existing units and solve the fuel cycle problems in a reliable and acceptable by the society manner. (I.P.)

  7. Infrastructure and Other Considerations to Launch Nuclear Power Programme: The Case of Sub-Sahara African Developing Countries like Ethiopia

    International Nuclear Information System (INIS)

    Meshesha, Atnatiwos Zeleke

    2011-01-01

    Trends in the world's population and energy use during the past decades show dramatic increases; and the demand for electricity, mainly from developing countries, is expected to increase more rapidly than the demand for other forms of energy. Besides, concern of climate change led to the need for production of significant amount of 'safe and clean' energy which in turn favours to nuclear option. Other alternative renewable sources like solar and wind can assist but currently they are short of supplying the required high energy demand either economically or/and in substantial amount. Nuclear option therefore remains a possible (developed) technology to fill this energy gap; and many countries including developing one show interest to make use of this energy source. In this paper the economic situations and energy production of six East Africa Sub-Saharan developing countries, with total population of 240 million were assessed, and 6.8% and 2.9% average GDP and population growth respectively registered in the last four years; however, their energy production in 2008 (est.) was 17.662 billion kWh, which is the least in the world. The contribution of inadequate energy and its poor coverage in hampering development, increase poverty and unstability were also analyzed. To come out of this cyclic challenge; it is recommended that countries based on regional economic cooperation should interconnect their electricity grid like EAPP and cooperate to invest commonly or unilaterally to launch Nuclear Power Programmes in relatively stable countries. Candid support of the international community is crucial, and IAEA should support and encourage such arrangements. It is also noted that the best candidate to start NP programme in these countries would be the worldwide dominant water cooled reactors. However, for countries with low grid capacity and to carry out projects in remote areas which are far-away from national grid systems or to desalinate water, considerations for smaller

  8. Referring to IAEA system to improve Chinese standards system on nuclear and radiation safety

    International Nuclear Information System (INIS)

    Shang Zhaorong; Wang Wenhai

    2010-01-01

    Referring to the standards system of IAEA, to build and improve the Chinese standards system of nuclear and radiation safety is a long term infrastructure work and an assurance to keep sustainable development of nuclear industry and nuclear technology application in China. The paper analyses the current main problem, and gives some suggestions on developing and improving the system. (authors)

  9. Nuclear Power Plant Control and Instrumentation in Pakistan

    International Nuclear Information System (INIS)

    Iqleem, J.; Hashmi, J.A.; Siddiqui, Z.H.

    1990-01-01

    Nuclear reactors generate 15% of the world's supply electric power. The substantial growth in world energy demand is inevitably continuing throughout the next century. Nuclear power which has already paid more than enough for itself and its development, will provide increasing share of electricity production both in the developed and developing countries. For Pakistan with limited natural resources such as oil, gas, and fully tapped hydel power, nuclear power is the only viable option. However, things are not simple for developing countries which embark on nuclear power program. A technical infrastructure should be established as it has been shown by the experience of Control and Instrumentation of the Karachi Nuclear Power Plant. The national report describes the program of Pakistan Atomic Energy Commission in (NPP) Computers, Control and Instrumentation for design, construction, operation, and maintenance of nuclear power plants. (author)

  10. Nuclear power development

    International Nuclear Information System (INIS)

    Povolny, M.

    1980-01-01

    The development and uses of nuclear power in Czechoslovakia and other countries are briefly outlined. In the first stage, the Czechoslovak nuclear programme was oriented to the WWER 440 type reactor while the second stage of the nuclear power plant construction is oriented to the WWER 10O0 type reactor. It is envisaged that 12 WWER 440 type reactors and four to five WWER 1000 type reactors will be commissioned till 1990. (J.P.)

  11. Nuclear Power Newsletter, Vol. 8, No. 2, June 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-15

    The Technical Working Group on Nuclear Power Infrastructure (TWG-NPI) is a group of international experts from 19 Member States and includes both nuclear power newcomer and experienced countries. The TWG is designed to provide valuable advice to the IAEA which relates to the development and implementation of national nuclear power programmes. The second meeting of the TWG-NPI was held at the IAEA on 23-26 May 2011. Twenty-four experts discussed topics such as IAEA technical assistance to new- comers; the role of research in nuclear power infrastructure development; 'soft' coordination between bilateral assistance and IAEA assistance; and future IAEA activities for newcomers. The possible impacts of the Fukushima Daiichi accident on the Milestone approach (documented in IAEA Nuclear Energy Series No. NGG-3.1) were also on the meeting's agenda. As everybody knows, a monster earthquake and an unpredictable tsunami that struck Japan on 11 March 2011 crippled Fukushima Daiichi Nuclear Power Units 1 to 4 and destroyed offsite power lines and emergency diesel generators. The IAEA Incident and Emergency Centre (IEC) immediately started its action to respond to the Fukushima accident from day 1 and the IAEA Director General, Mr Y. Amano, established the Fukushima Accident Coordination Team (FACT) to coordinate the response to the accident in-house, with the Japanese Government and Nuclear Industry Safety Authority (NISA), Member States and international organizations such as CTBTO, WMO and FAO. Many staff members of the Division of Nuclear Power volunteered to support coordination activities of the IAEA, working day and night shifts at the IEC, the Reactor Engineering Support Team and the Fukushima Nuclear Safety Team. Special thanks go to Mr Masahiro Aoki of the Integrated Nuclear Infrastructure Group (INIG) who volunteered to join NISA in Tokyo to coordinate the IAEA activities with Japanese authorities for a month working 12-17 hours a day. Mr Katsumi Yamada of the

  12. Nuclear Power Newsletter, Vol. 8, No. 2, June 2011

    International Nuclear Information System (INIS)

    2011-06-01

    The Technical Working Group on Nuclear Power Infrastructure (TWG-NPI) is a group of international experts from 19 Member States and includes both nuclear power newcomer and experienced countries. The TWG is designed to provide valuable advice to the IAEA which relates to the development and implementation of national nuclear power programmes. The second meeting of the TWG-NPI was held at the IAEA on 23-26 May 2011. Twenty-four experts discussed topics such as IAEA technical assistance to new- comers; the role of research in nuclear power infrastructure development; 'soft' coordination between bilateral assistance and IAEA assistance; and future IAEA activities for newcomers. The possible impacts of the Fukushima Daiichi accident on the Milestone approach (documented in IAEA Nuclear Energy Series No. NGG-3.1) were also on the meeting's agenda. As everybody knows, a monster earthquake and an unpredictable tsunami that struck Japan on 11 March 2011 crippled Fukushima Daiichi Nuclear Power Units 1 to 4 and destroyed offsite power lines and emergency diesel generators. The IAEA Incident and Emergency Centre (IEC) immediately started its action to respond to the Fukushima accident from day 1 and the IAEA Director General, Mr Y. Amano, established the Fukushima Accident Coordination Team (FACT) to coordinate the response to the accident in-house, with the Japanese Government and Nuclear Industry Safety Authority (NISA), Member States and international organizations such as CTBTO, WMO and FAO. Many staff members of the Division of Nuclear Power volunteered to support coordination activities of the IAEA, working day and night shifts at the IEC, the Reactor Engineering Support Team and the Fukushima Nuclear Safety Team. Special thanks go to Mr Masahiro Aoki of the Integrated Nuclear Infrastructure Group (INIG) who volunteered to join NISA in Tokyo to coordinate the IAEA activities with Japanese authorities for a month working 12-17 hours a day. Mr Katsumi Yamada of the

  13. The Mais Médicos (More Doctors) Program, the infrastructure of Primary Health Units and the Municipal Human Development Index.

    Science.gov (United States)

    Soares, Joaquim José; Machado, Maria Helena; Alves, Cecília Brito

    2016-09-01

    The main objective of this article was to examine the context in which professionals working within the Mais Médicos (More Doctors) Program operate. This study used the infrastructure scale of primary health units (PHUs), which was recently developed by Soares Neto and colleagues to provide more information regarding the relationship between the infrastructure of PHUs and the Municipal Human Development Index (MHDI) of municipalities that received Mais Médicos Program doctors. Using exploratory and inferential statistics, the article shows that 65.2% of the PHUs that received Mais Médicos Program doctors had medium-quality infrastructure and only 5.8% of them had low-quality infrastructure. The correlation of 0.50 between the infrastructure indicator and the MHDI points to a moderate tendency for municipalities with low MHDIs to have more precarious PHUs. Using multiple linear regression analysis it can be inferred that the main factor that contributed to the increase in the infrastructure indicator of the PHUs was the average municipal income. On the other hand, the factor that negatively affected the infrastructure of the PHUs was being located in the north or northeast regions.

  14. Nuclear knowledge development in Armenia

    International Nuclear Information System (INIS)

    Gevorgyan, A.A.

    2004-01-01

    Armenia has rather rich history of nuclear knowledge development. During the last several decades, depending on circumstances related with the ANPP main mile stones - construction, putting into operation, shutdown, restarting - nuclear knowledge was having its ups and downs. Though it has high level of development, there has been yet a need of preservation accumulated nuclear knowledge, and appropriate proceeding with the nuclear knowledge in Armenia. (author)

  15. District-Scale Green Infrastructure Scenarios for the Zidell Development Site, City of Portland

    Science.gov (United States)

    The report outlines technical assistance to develop green infrastructure scenarios for the Zidell Yards site consistent with the constraints of a recently remediated brownfield that can be implemented within a 15-20 year time horizon.

  16. China’s Aid and Oil-for-Infrastructure in Nigeria: Resource-Driven or Development Motive?

    Directory of Open Access Journals (Sweden)

    Gold Kafilah Lola

    2017-12-01

    Full Text Available China’s ascent influences the Western aid dynamic significantly and changes the landscape in aid-donor and aid-recipient relationship for resource-endowed countries in Africa. Similarly, within China-Africa relations, Nigeria established diplomatic relations with China in 2006 for a concessional oil-for-infrastructure plan to fill the development aperture. However, Nigeria opted out as political uncertainty and elite interest in rent-seeking supersedes development and well-being motive. We conclude that two interrelated causal factors – accountability and transparency – overwhelmingly obstruct Nigeria from optimising China interest in infrastructure development. The study recommends the review of National Planning Commission (NPC 2007 ODA policy document on technical assistance, grants, and concessional loans to identify new problems and challenges associated with formulation and implementation of donor-assisted programmes.

  17. The TENCompetence Infrastructure: A Learning Network Implementation

    Science.gov (United States)

    Vogten, Hubert; Martens, Harrie; Lemmers, Ruud

    The TENCompetence project developed a first release of a Learning Network infrastructure to support individuals, groups and organisations in professional competence development. This infrastructure Learning Network infrastructure was released as open source to the community thereby allowing users and organisations to use and contribute to this development as they see fit. The infrastructure consists of client applications providing the user experience and server components that provide the services to these clients. These services implement the domain model (Koper 2006) by provisioning the entities of the domain model (see also Sect. 18.4) and henceforth will be referenced as domain entity services.

  18. Urban Green Infrastructure: German Experience

    Directory of Open Access Journals (Sweden)

    Diana Olegovna Dushkova

    2016-06-01

    Full Text Available The paper presents a concept of urban green infrastructure and analyzes the features of its implementation in the urban development programmes of German cities. We analyzed the most shared articles devoted to the urban green infrastructure to see different approaches to definition of this term. It is based on materials of field research in the cities of Berlin and Leipzig in 2014-2015, international and national scientific publications. During the process of preparing the paper, consultations have been held with experts from scientific institutions and Administrations of Berlin and Leipzig as well as local experts from environmental organizations of both cities. Using the German cities of Berlin and Leipzig as examples, this paper identifies how the concept can be implemented in the program of urban development. It presents the main elements of green city model, which include mitigation of negative anthropogenic impact on the environment under the framework of urban sustainable development. Essential part of it is a complex ecological policy as a major necessary tool for the implementation of the green urban infrastructure concept. This ecological policy should embody not only some ecological measurements, but also a greening of all urban infrastructure elements as well as implementation of sustainable living with a greater awareness of the resources, which are used in everyday life, and development of environmental thinking among urban citizens. Urban green infrastructure is a unity of four main components: green building, green transportation, eco-friendly waste management, green transport routes and ecological corridors. Experience in the development of urban green infrastructure in Germany can be useful to improve the environmental situation in Russian cities.

  19. The Indian nuclear power programme: Challenges in PHWR technology

    International Nuclear Information System (INIS)

    Prasad, Y.S.R.

    1997-01-01

    The long-term strategy for development of nuclear power generation in India is based on a three-stage programme, formulated by Dr. H.J. Bhabha. This strategy takes into account and is optimally suited for achieving self reliance in nuclear technology; India's technological infrastructure; limited resources of Natural Uranium and abundant availability of Thorium within the country

  20. Using a CRIS for e-Infrastructure: e-Infrastructure for Scholarly Publications

    Directory of Open Access Journals (Sweden)

    E Dijk

    2010-05-01

    Full Text Available Scholarly publications are a major part of the research infrastructure. One way to make output available is to store the publications in Open Access Repositories (OAR. A Current Research Information System (CRIS that conforms to the standard CERIF (Common European Research Information Format could be a key component in the e-infrastructure. A CRIS provides the structure and makes it possible to interoperate the CRIS metadata at every stage of the research cycle. The international DRIVER projects are creating a European repository infrastructure. Knowledge Exchange has launched a project to develop a metadata exchange format for publications between CRIS and OAR systems.

  1. Digital Strategies in Action - a Comparative Analysis of National Data Infrastructure Development

    NARCIS (Netherlands)

    Klievink, A.J.; Neuroni, Alessia; Fraefel, Marianne; Zuiderwijk-van Eijk, AMG

    2017-01-01

    In recent years, many countries have started to draft strategies and policies related to the data economy. To support new data- driven activities and innovations, the development of a national data infrastructure (NDI) is seen as key. The concept of NDI has entered governmental strategic discussions

  2. Spatial data infrastructure and policy development in Europe and the United States

    NARCIS (Netherlands)

    Van Loenen, B.; Kok, B.C.; OTB Research Institute for Housing, Urban and Mobility Studies

    2004-01-01

    Many national governments throughout the world are involved in developing spatial data infrastructures (SDI) to facilitate the availability of information in such a way that the needs of the agencies, organization, citizens, commerce, and society in general are met. This book covers some of the most

  3. Integrative Curriculum Development in Nuclear Education and Research Vertical Enhancement Program

    International Nuclear Information System (INIS)

    Egarievwe, Stephen U.; Jow, Julius O.; Edwards, Matthew E.; Montgomery, V. Trent; James, Ralph B.; Blackburn, Noel D.; Glenn, Chance M.

    2015-01-01

    Using a vertical education enhancement model, a Nuclear Education and Research Vertical Enhancement (NERVE) program was developed. The NERVE program is aimed at developing nuclear engineering education and research to 1) enhance skilled workforce development in disciplines relevant to nuclear power, national security and medical physics, and 2) increase the number of students and faculty from underrepresented groups (women and minorities) in fields related to the nuclear industry. The program uses multi-track training activities that vertically cut across the several education domains: undergraduate degree programs, graduate schools, and post-doctoral training. In this paper, we present the results of an integrative curriculum development in the NERVE program. The curriculum development began with nuclear content infusion into existing science, engineering and technology courses. The second step involved the development of nuclear engineering courses: 1) Introduction to Nuclear Engineering, 2) Nuclear Engineering I, and 2) Nuclear Engineering II. The third step is the establishment of nuclear engineering concentrations in two engineering degree programs: 1) electrical engineering, and 2) mechanical engineering. A major outcome of the NERVE program is a collaborative infrastructure that uses laboratory work, internships at nuclear facilities, on-campus research, and mentoring in collaboration with industry and government partners to provide hands-on training for students. The major activities of the research and education collaborations include: - One-week spring training workshop at Brookhaven National Laboratory: The one-week training and workshop is used to enhance research collaborations and train faculty and students on user facilities/equipment at Brookhaven National Laboratory, and for summer research internships. Participants included students, faculty members at Alabama A and M University and research collaborators at BNL. The activities include 1) tour and

  4. Integrative Curriculum Development in Nuclear Education and Research Vertical Enhancement Program

    Energy Technology Data Exchange (ETDEWEB)

    Egarievwe, Stephen U.; Jow, Julius O.; Edwards, Matthew E.; Montgomery, V. Trent [Nuclear Engineering and Radiological Science Center, Alabama A and M University, Huntsville, AL (United States); James, Ralph B.; Blackburn, Noel D. [Nonproliferation and National Security Department, Brookhaven National Laboratory, Upton, NY (United States); Glenn, Chance M. [College of Engineering, Technology and Physical Sciences, Alabama A and M University, Huntsville, AL (United States)

    2015-07-01

    Using a vertical education enhancement model, a Nuclear Education and Research Vertical Enhancement (NERVE) program was developed. The NERVE program is aimed at developing nuclear engineering education and research to 1) enhance skilled workforce development in disciplines relevant to nuclear power, national security and medical physics, and 2) increase the number of students and faculty from underrepresented groups (women and minorities) in fields related to the nuclear industry. The program uses multi-track training activities that vertically cut across the several education domains: undergraduate degree programs, graduate schools, and post-doctoral training. In this paper, we present the results of an integrative curriculum development in the NERVE program. The curriculum development began with nuclear content infusion into existing science, engineering and technology courses. The second step involved the development of nuclear engineering courses: 1) Introduction to Nuclear Engineering, 2) Nuclear Engineering I, and 2) Nuclear Engineering II. The third step is the establishment of nuclear engineering concentrations in two engineering degree programs: 1) electrical engineering, and 2) mechanical engineering. A major outcome of the NERVE program is a collaborative infrastructure that uses laboratory work, internships at nuclear facilities, on-campus research, and mentoring in collaboration with industry and government partners to provide hands-on training for students. The major activities of the research and education collaborations include: - One-week spring training workshop at Brookhaven National Laboratory: The one-week training and workshop is used to enhance research collaborations and train faculty and students on user facilities/equipment at Brookhaven National Laboratory, and for summer research internships. Participants included students, faculty members at Alabama A and M University and research collaborators at BNL. The activities include 1) tour and

  5. Nuclear power development: History and outlook

    International Nuclear Information System (INIS)

    Char, N.L.; Csik, B.J.

    1987-01-01

    The history of nuclear power development is briefly described (including the boosts from oil price shocks to the promotion of nuclear energy). The role of public opinion in relation to nuclear power is mentioned too, in particular in connection with accidents in nuclear plants. The recent trends in nuclear power development are described and the role of nuclear power is foreseen. Estimates of total and nuclear electrical generating capacity are made

  6. Development situation about the Canadian CANDU Nuclear Power Generating Stations

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Yu Mi; Kim, Yong Hee; Park, Joo Hwan

    2009-07-15

    The CANDU reactor is the most versatile commercial power reactor in the world. The acronym 'CANDU', a registered trademark of Atomic Energy of Canada Limited, stands for 'CANada Deuterium Uranium'. CANDU uses heavy water as moderator and uranium (originally, natural uranium) as fuel. All current power reactors in Canada are of the CANDU type. Canada exports CANDU type reactor in abroad. CANDU type is used as the nuclear power plants to produce electrical. Today, there are 41 CANDU reactors in use around the world, and the design has continuously evolved to maintain into unique technology and performance. The CANDU-6 power reactor offers a combination of proven, superior and state-of-the-art technology. CANDU-6 was designed specifically for electricity production, unlike other major reactor types. One of its characteristics is a very high operating and fuel efficiency. Canada Nuclear Power Generating Stations were succeeded in a commercial reactor of which the successful application of heavy water reactor, natural uranium method and that on-power fuelling could be achieved. It was achieved through the joint development of a major project by strong support of the federal government, public utilities and private enterprises. The potential for customization to any country's needs, with competitive development and within any level of domestic industrial infrastructure, gives CANDU technology strategic importance in the 21st century.

  7. Development situation about the Canadian CANDU Nuclear Power Generating Stations

    International Nuclear Information System (INIS)

    Jeon, Yu Mi; Kim, Yong Hee; Park, Joo Hwan

    2009-07-01

    The CANDU reactor is the most versatile commercial power reactor in the world. The acronym 'CANDU', a registered trademark of Atomic Energy of Canada Limited, stands for 'CANada Deuterium Uranium'. CANDU uses heavy water as moderator and uranium (originally, natural uranium) as fuel. All current power reactors in Canada are of the CANDU type. Canada exports CANDU type reactor in abroad. CANDU type is used as the nuclear power plants to produce electrical. Today, there are 41 CANDU reactors in use around the world, and the design has continuously evolved to maintain into unique technology and performance. The CANDU-6 power reactor offers a combination of proven, superior and state-of-the-art technology. CANDU-6 was designed specifically for electricity production, unlike other major reactor types. One of its characteristics is a very high operating and fuel efficiency. Canada Nuclear Power Generating Stations were succeeded in a commercial reactor of which the successful application of heavy water reactor, natural uranium method and that on-power fuelling could be achieved. It was achieved through the joint development of a major project by strong support of the federal government, public utilities and private enterprises. The potential for customization to any country's needs, with competitive development and within any level of domestic industrial infrastructure, gives CANDU technology strategic importance in the 21st century

  8. Nuclear energy for developing countries

    International Nuclear Information System (INIS)

    Kemery, L.S.

    1980-01-01

    This paper examines the circumstances which must prevail before a reasonable technical, administrative and sociological case can be made to justify the introduction of nuclear power technology to a developing country. The role played by the IAEA in responding to needs of developing countries is considered and problems of nuclear plant safety and materials safeguards discussed. Plans for nuclear power in several developing countries are outlined

  9. Flowscapes: Designing infrastructure as landscape

    OpenAIRE

    Nijhuis, S.; Jauslin, D.T.; Van der Hoeven, F.D.

    2015-01-01

    Social, cultural and technological developments of our society are demanding a fundamental review of the planning and design of its landscapes and infrastructures, in particular in relation to environmental issues and sustainability. Transportation, green and water infrastructures are important agents that facilitate processes that shape the built environment and its contemporary landscapes. With movement and flows at the core, these landscape infrastructures facilitate aesthetic, functional,...

  10. An interoperable research data infrastructure to support climate service development

    Science.gov (United States)

    De Filippis, Tiziana; Rocchi, Leandro; Rapisardi, Elena

    2018-02-01

    Accessibility, availability, re-use and re-distribution of scientific data are prerequisites to build climate services across Europe. From this perspective the Institute of Biometeorology of the National Research Council (IBIMET-CNR), aiming at contributing to the sharing and integration of research data, has developed a research data infrastructure to support the scientific activities conducted in several national and international research projects. The proposed architecture uses open-source tools to ensure sustainability in the development and deployment of Web applications with geographic features and data analysis functionalities. The spatial data infrastructure components are organized in typical client-server architecture and interact from the data provider download data process to representation of the results to end users. The availability of structured raw data as customized information paves the way for building climate service purveyors to support adaptation, mitigation and risk management at different scales.This work is a bottom-up collaborative initiative between different IBIMET-CNR research units (e.g. geomatics and information and communication technology - ICT; agricultural sustainability; international cooperation in least developed countries - LDCs) that embrace the same approach for sharing and re-use of research data and informatics solutions based on co-design, co-development and co-evaluation among different actors to support the production and application of climate services. During the development phase of Web applications, different users (internal and external) were involved in the whole process so as to better define user needs and suggest the implementation of specific custom functionalities. Indeed, the services are addressed to researchers, academics, public institutions and agencies - practitioners who can access data and findings from recent research in the field of applied meteorology and climatology.

  11. EURATOM achievements and challenges in facilitating Pan-European infrastructure collaborative efforts

    Energy Technology Data Exchange (ETDEWEB)

    Garbil, Roger [European Commission, Brussels (Belgium). DG Research and Innovation, Euratom Fission

    2017-10-15

    The European Atomic Energy Community (Euratom) Research and Training framework programmes are benefiting from a consistent success in pursuing excellence in research and facilitating Pan European collaborative efforts across a broad range of nuclear science and technologies, nuclear fission and radiation protection. To fulfil Euratom R and D programmes keys objectives of maintaining high levels of nuclear knowledge and building a more dynamic and competitive European industry, promotion of Pan-European mobility of researchers are implemented by co-financing transnational access to research infrastructures (RIs) and joint research activities. 'Euratom Achievements and Challenges' show the benefits of research efforts in key fields, of building an effective 'critical mass', of promoting the creation of 'centres of excellence' with an increased support for 'open access to key research infrastructures', exploitation of research results, management of knowledge, dissemination and sharing of learning outcomes.

  12. Nuclear power newsletter Vol. 2, no. 3

    International Nuclear Information System (INIS)

    2005-09-01

    The topics presented in this newsletter are: factors contributing to increased nuclear electricity production for the period 1990-2004 ; NPP operating performance and life cycle management; improving human performance quality and technical infrastructure; and technology development and applications for advanced reactors. Three factors contributing the electricity production increase are analysed and presented - growth due to new power plants building (36%); existing NPP uprating (7%); and energy availability improvements (57%). Trends of installed capacity and available production are given. The newsletter also presents technical issues that influence decisions on operation and nuclear power infrastructure and delayed NPPs. In the last article technology advances are presented in details for water cooled reactors, fast reactors and accelerator driven systems, gas cooled reactors and desalination plants

  13. Renovation of the 'old' NPP units as an economically effective way of nuclear power development

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Toshinsky, G.I.; Komlev, O.G.; Dragunov, Yu.G.; Stepanov, V.S.; Klimov, N.N.; Kopytov, I.I.; Krushelnitsky, V.N.

    2005-01-01

    In the process of nuclear power development there comes a phase when the old' power-units, which reactor installations have expired the designed and extended service lifetime are withdrawn from operating. At this phase in the case of the same annual investments into nuclear power, the increase of the total set up capacity of the nuclear power will be terminated because introduction of capacities due to construction of 'new' power-units only compensates for the reduction of capacities caused by withdrawing from operating the 'old' power-units. Along with this, taking into account a sizeable difference in the service lifetime of the nuclear steam supplying systems and the rest infrastructure of the nuclear power plants, it is an opportunity to find the solution to the problem of compensating for the withdrawn capacities without considerable increasing the annual investments. This opportunity is connected with use of the innovative nuclear power technology based on multipurpose small power modular fast reactors with lead-bismuth coolant for replacement of the withdrawn capacities (renovation of power-units). The features of the innovative nuclear power technology based on the SVBR-76/100 reactor installations, the results of the technical and economical investigations that demonstrate the high economical efficiency of use of the renovation technology using the SVBR-75/100 reactor modules are presented in the Paper. (author)

  14. Contextual-Analysis for Infrastructure Awareness Systems

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Tabard, Aurelien; Alt, Florian

    Infrastructures are persistent socio-technical systems used to deliver different kinds of services. Researchers have looked into how awareness of infrastructures in the areas of sustainability [6, 10] and software appropriation [11] can be provided. However, designing infrastructure-aware systems...... has specific requirements, which are often ignored. In this paper we explore the challenges when developing infrastructure awareness systems based on contextual analysis, and propose guidelines for enhancing the design process....

  15. SARC: Development and Support of a Sarcoma Research Consortium Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Arkison, Jim

    2007-10-29

    SARC is a non-for-profit organization whose mission and vision is to advocate for the collaboration on the design of clinical trials on sarcoma, to further the knowledge regarding the diagnosis and treatment of sarcoma and provide accurate and up to date information to physicians, patients and families. The objectives are to assist in the development of the infrastructure for the continued growth and spectrum of clinical research, to facilitate biannual meeting of investigators, and to develop a preclinical research base that would design and conduct research that would improve the process of drug treatments selected for clinical research trials.

  16. Understanding the infrastructure of European Research Infrastructures

    DEFF Research Database (Denmark)

    Lindstrøm, Maria Duclos; Kropp, Kristoffer

    2017-01-01

    European Research Infrastructure Consortia (ERIC) are a new form of legal and financial framework for the establishment and operation of research infrastructures in Europe. Despite their scope, ambition, and novelty, the topic has received limited scholarly attention. This article analyses one ER....... It is also a promising theoretical framework for addressing the relationship between the ERIC construct and the large diversity of European Research Infrastructures.......European Research Infrastructure Consortia (ERIC) are a new form of legal and financial framework for the establishment and operation of research infrastructures in Europe. Despite their scope, ambition, and novelty, the topic has received limited scholarly attention. This article analyses one ERIC...... became an ERIC using the Bowker and Star’s sociology of infrastructures. We conclude that focusing on ERICs as a European standard for organising and funding research collaboration gives new insights into the problems of membership, durability, and standardisation faced by research infrastructures...

  17. The Development of the Regional Sea Port Infrastructure on the Basis of Dry Port

    Directory of Open Access Journals (Sweden)

    Aleksandr Nelevich Rakhmangulov

    2016-09-01

    Full Text Available This article contributes to the solution of the relevant problem of the seaport infrastructure development for the purpose of increasing the cargo turnover in the regions of seaport location as well as to improve the quality of freight traffic on the basis of the creation of container hinterlands — dry ports. The options of dry ports as the potentially effective solution to increase the cargo turnover of existing seaports, improve the timeliness of freight transportation and overcome the environmental problems of the regions of seaport location are shown. This work analyzes the transport infrastructure of the region, the cargo turnover of major Russian sea and dry ports as well as the experience of creating dry ports in the Russian Federation and abroad. The authors propose the system of parameters for dry ports, which are recommended for the assessment of seaport infrastructure development scenarios on the stage of strategic planning. The authors have developed the approach of optimal values determination of the main parameters of dry ports by simulation modeling method. The features of construction and research of the simulation models of system “seaport — dry port” in programming software AnyLogic are considered. The results of modeling experiments with a developed simulation model are provided. This model is aimed to assess the maximum estimated capacity of the existing seaport in the conditions of the increasing irregularity of cargo traffic, and also to determine the optimum parameters of the constructed «dry port». The obtained dependencies as a result of modeling experiments prove the adequacy of the selected main parameters of dry ports for the effective evaluation of the scenarios of the strengthening of carrying and estimated capacity of existing seaports on the stage of strategic planning. The article shows that the methodology of this research can be used by the investors and public authorities as grounds for a decision on

  18. Nuclear Power Newsletter, Vol. 11, No. 3, September 2014

    International Nuclear Information System (INIS)

    2014-01-01

    The International Conference on Human Resource Development for Nuclear Power Programmes: Building and Sustaining Capacity, was successfully held at the IAEA in mid-May 2014 with over 300 participants. The Conference focused on the global challenges of capacity building, human resource development, education and training, nuclear knowledge management and establishing and maintaining knowledge networks. The Conference concluded that good progress has been made in human resource development in the last few years. Also, capacity building continues to be important in ensuring the continued availability of competent personnel for the safe, secure and sustainable use of nuclear power. During the 58th IAEA General Conference, to be held on 22–26 September 2014, the Division of Nuclear Power is organizing three side events which will address IAEA services on nuclear power infrastructure, the 4th Nuclear Operator Organizations Cooperation Forum, and new developments in power reactor technologies, cogeneration, and fuel cycle back end. Short descriptions of the side events are on the front page of this newsletter. We look forward to welcoming many delegates. The Division will also participate in the exhibi-tion of the Department of Nuclear Energy held during the General Conference. The past few months have been a busy time for all of us. Among other major activities were the Phase 2 INIR Mission to Jordan; the Joint IAEA-GIF Workshop on Safety of Sodium-Cooled Fast Reactors; the 22nd INPRO Steering Committee Meeting, the Technical Meeting on Updating the Milestones document; an Interregional Workshop on Design, Technology and Deployment Considerations for SMRs; an Interregional Training Course on Nuclear Power Infrastructure Capacity Building in Member States Introducing and Expanding Nuclear Power; and the first module of the 2014 International Nuclear Leadership Education Program, held at the Massachusetts Institute for Technology (MIT), USA. More information on these

  19. The future of infrastructure security :

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Pablo; Turnley, Jessica Glicken; Parrott, Lori K.

    2013-05-01

    Sandia National Laboratories hosted a workshop on the future of infrastructure security on February 27-28, 2013, in Albuquerque, NM. The 17 participants came from backgrounds as diverse as federal policy, the insurance industry, infrastructure management, and technology development. The purpose of the workshop was to surface key issues, identify directions forward, and lay groundwork for cross-sectoral and cross-disciplinary collaborations. The workshop addressed issues such as the problem space (what is included in infrastructure problems?), the general types of threats to infrastructure (such as acute or chronic, system-inherent or exogenously imposed) and definitions of secure and resilient infrastructures. The workshop concluded with a consideration of stakeholders and players in the infrastructure world, and identification of specific activities that could be undertaken by the Department of Homeland Security (DHS) and other players.

  20. TCIA Secure Cyber Critical Infrastructure Modernization.

    Energy Technology Data Exchange (ETDEWEB)

    Keliiaa, Curtis M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The Sandia National Laboratories (Sandia Labs) tribal cyber infrastructure assurance initiative was developed in response to growing national cybersecurity concerns in the the sixteen Department of Homeland Security (DHS) defined critical infrastructure sectors1. Technical assistance is provided for the secure modernization of critical infrastructure and key resources from a cyber-ecosystem perspective with an emphasis on enhanced security, resilience, and protection. Our purpose is to address national critical infrastructure challenges as a shared responsibility.