WorldWideScience

Sample records for nuclear industry inb

  1. The Brazilian nuclear industries - INB - in the field of the rare earth

    International Nuclear Information System (INIS)

    Blatt, Victoria

    1996-01-01

    The Brazilian Nuclear Industries - INB is responsible for the execution of part of the cycle of uranium as nuclear reactor fuel for alternative energy generation. Soon INB shall increase the participation in this cycle, through the implantation of the line of powder and pastille. INB is also the successor of the monazite processing industries. The last one was NUCLEMON that was incorporated by INB. The connection of INB with this area is due to the presence of the strategic elements uranium and thorium in the monazite. The know-how was and continues to be developed by a chemical team of the National Commission of Nuclear Energy (CNEN) with the collaboration of the technical team of INB. The ever wider applications of the individual Rare Earth in the most different fields of the electrical, electronics, communication, optical, metallurgical, catalysis and other industries, as well as INB incessant inquire for the economical workability, brought INB to appraise the position regarding to the industrial production of the Rare Earth. The choice is bringing to the separation and commercialization of the individual elements and/or in groups containing a reduced number of Rare Earth, instead of the production and commercialization of the mixture of monazitic Rare Earth. This paper illustrates through quantitative information some aspects regarding to reserves, mining and physical separations of the monazite, as well as projections about INB resuming its industrial activities with insertion of technical improvements in both, the chemical treatment of the monazite and the Rare Earth separation. In this field, there will be presented in this paper the qualitative and quantitative results recently reached in a large dimension pilot plant. These results add to the technical conquest reached in the late years by the foregoers of INB, and that will be also presented. The paper contains also some appreciations regarding to the perspectives of INB's ingression in the field of

  2. Assessment of safety culture from the INB organization: A case study for nuclear fuel cycle industry

    International Nuclear Information System (INIS)

    Goncalves, J.S.; Barreto, A.C.

    2002-01-01

    The present article describes strategies, methodologies and first results on the Safety Culture Self-assessment Project under way at INB since August 2001. As a Brazilian Government company in charge of the nuclear fuel cycle activities,. the main purposes of the Project is to evaluate the present status of its safety culture and to propose actions to ensure continuous safety improvement at management level of its industrial processes. The proposed safety culture assessment describes INB's various production sites taking into account the different aspects of their activities, such as regional, social and technical issues. The survey was performed in March/2002 very good attendance (about 80%) the employees. The first global survey results are presented in item 4. (author)

  3. Information report on nuclear safety and radiation protection of the ECRIN INB - Issue 2014

    International Nuclear Information System (INIS)

    2015-06-01

    Published in compliance with the French code of the environment, this report first presents the Malvesi establishment, the ECRIN basic nuclear installation (INB), the COMURHEX II project, and the policy for a sustainable development and continuous progress of this establishment. It describes the various measures regarding nuclear safety and radiation protection: nuclear safety, safety guarantee for personnel and installations, management of emergency situations, preservation of staff health and protection, inspections, actions undertaken regarding nuclear safety and radiation protection. It reports nuclear events which occurred, describes the management of effluents and the control of the environment (environmental policy, management of effluents from the Malvesi establishment, management of effluents from the ECRIN INB, reduction of consumptions). It addresses the waste management (industrial and radioactive wastes) and the management of other impacts of the ECRIN INB. It gives an overview of actions undertaken regarding information and transparency. Recommendations of the CHSCT are reported

  4. Information report on nuclear safety and radiation protection of the ECRIN INB - Issue 2012

    International Nuclear Information System (INIS)

    2013-06-01

    Published in compliance with the French code of the environment, this report first presents the Malvesi establishment, the ECRIN basic nuclear installation (INB), the COMURHEX II project, and the policy for a sustainable development and continuous progress of this establishment. It describes the various measures regarding nuclear safety and radiation protection: nuclear safety, safety guarantee for personnel and installations, management of emergency situations, preservation of staff health and protection, inspections, actions undertaken regarding nuclear safety and radiation protection. It reports nuclear events which occurred, describes the management of effluents and the control of the environment (environmental policy, management of effluents from the Malvesi establishment, management of effluents from the ECRIN INB, reduction of consumptions). It addresses the waste management (industrial and radioactive wastes) and the management of other impacts of the ECRIN INB. It gives an overview of actions undertaken regarding information and transparency. Recommendations of the CHSCT are reported

  5. Industrias Nucleares do Brasil in the context of the Brazilian nuclear program; A INB no contexto do programa nuclear brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The activities carried out by Industrias Nucleares Brasileiras (INB) related to the nuclear fuel cycle are described. These activities comprise presently uranium prospecting and processing and fuel elements assembly.Starting in 1997,INB will also perform the reconversion of enriched uranium hexafluoride and the fabrication of fuel pellets.Furthermore, INB produces as well rare earth oxides 2 figs., 1 tab.

  6. ASN guide project. Safety policy and management in INBs (base nuclear installations)

    International Nuclear Information System (INIS)

    2010-01-01

    This guide presents the recommendations of the French Nuclear Safety Authority (ASN) in the field of safety policy and management (PMS) for base nuclear installations (INBs). It gives an overview and comments of some prescriptions of the so-called INB order and PMS decision. These regulatory texts define a framework for provisions any INB operator must implement to establish his safety policy, to define and implement a system which allows the safety to be maintained, the improvement of his INB safety to be permanently looked for. The following issues are addressed: operator's safety policy, identification of elements important for safety, of activities pertaining to safety, and of associated requirements, safety management organization and system, management of activities pertaining to safety, documentation and archiving

  7. Training in radioprotection in INB - Brazilian Nuclear Industries

    International Nuclear Information System (INIS)

    Pereira, Wagner de S.; Py Junior, Delcy de A.; Taddei, Jose F.C.; Dias, Pedro L. dos S.; Iatesta, Antonio

    2005-01-01

    This work describes the ideas that guided the training in radiation protection and the first results obtained in the first half of 2004. The training took place in the Uranium Concentrate Unit URA, in Caetite, BA, in the Ore Treatment Unit - UTM, in Caldas, MG, and in the Heavy Mineral Unit - UMP, in San Francisco de Itabapuana, RJ, Brazil. In URA it was spent 9 days. 79 students were trained in 6 classes (average 13 pupils per class). Each group spent 9 hour of training, for a total of 54 hours of training given. There was no disapproval, and the grade average of the students was 9.2, with the lowest grade 7.5 and the highest 10.0. In UTM, it was spent 9 days. 200 students were trained in 9 classes (an average of 22 students per class). Each class spent 9h of training, totaling 81 hours. There were 18 deprecations, due to the the lack of education of the students. The overall average of the grades was 8.8, with lower note zero and higher 10.0. In UTM 158 people were trained in 5 classes, with an average of 31 students per class.It is concluded that in classes with few students (7 to 12) there were few parallel discussions. In classes with many students (over thirty) there was a scattering of ideas, which interfered in the progress of training. As proposal for upcoming classes can be suggested an average 20 people per class. The division of classes in groups working together was beneficial, giving a unit, which allowed greater freedom in questions, increasing parallel content taught. The classes have evaluated positively the initiative of the work done, which will be extended to other units of DRM, and subsequently all of the INB - Brazilian Nuclear Industries

  8. Activity report 2006 - INB - Brazilian Nuclear Industries Inc

    International Nuclear Information System (INIS)

    2006-01-01

    This document reports the activities of Brazilian Nuclear Industry company during 2006 as follows: uranium isotope enrichment; production of nuclear fuel; mineral resources; finance and administration; planning and sales; quality, safety and environment, communication and social action; economic and financial management

  9. Decision No. 2008-DC-0114 of 26 September 2008 by the French Nuclear Safety Authority Setting Forth Specific Requirements to Be Met by Electricite de France - Societe anonyme (EDF-SA) at the Flamanville Nuclear site Regarding the Design and Construction of the Flamanville-3 (INB No. 167) NPP and the Operation of Flamanville-1 (INB No. 108) and Flamanville-2 (INB No. 109) NPPs

    International Nuclear Information System (INIS)

    2009-01-01

    substances), Internal hazards that may lead to hostile conditions or damages to structures, systems and components (Fires, Internal explosions, Earthquakes, Floods, Lightning, Extreme weather conditions, Industrial hazards and traffic pathways, Heat sink clogging risk); Information of authorities, territorial communities, associations and the public: Information of public authorities. Content of Annex 2 (Common requirements applicable to INBs Nos. 108 - Flamanville-1, 109 - Flamanville-2 and 167 - Flamanville-3): Accident-risk management, Process control, External hazards that may lead to hostile conditions or damages to structures and equipment, Management of construction-work site hazards induced by Flamanville-3 work site on Flamanville-1 and 2 nuclear installations; Management of emergency situations: On-site emergency plan

  10. Transparency and nuclear safety. Report 2009. INBs of the Marcoule Centre

    International Nuclear Information System (INIS)

    2009-01-01

    After a general presentation of the Marcoule Centre (missions, dismantling works, activities, Basic Nuclear Installations or INBs for 'installations nucleaires de base'), this report describes the various measures regarding security and radioprotection applied at Marcoule. It reports significant events which occurred in 2009 as far as nuclear security and radioprotection are concerned. It presents results of measurements of liquid and gaseous dismissals and of their impact on the environment. It indicates measures implemented for environmental control and management, and also to limit the volume and impacts on health and environment of radioactive wastes stored in the Centre installations

  11. DSND report on radio-ecological monitoring of INBS and management of radioactive waste old storage sites

    International Nuclear Information System (INIS)

    2010-01-01

    In its first part, this report describes the radiological monitoring of secret base nuclear installations (INBS): applicable arrangements and actors in terms of transparency and information on nuclear safety, regulatory arrangements related to surveillance of underground and surface water quality, assessment of the application of regulatory arrangements, arrangements in terms of public information, and actions of the ASND. The second part describes the management of nuclear waste old storage sites: INBS coming under the ministry of defence (air force sites, military harbors), INBS coming under the minister in charge of energy

  12. Annual and activity report 2005 - INB - Brazilian Nuclear Industries. Nuclear fuel: technology for the essential

    International Nuclear Information System (INIS)

    2005-01-01

    This document reports the activities of Brazilian Nuclear Industry company during 2005 as follows: uranium isotope enrichment; production of nuclear fuel; mineral resources; finance and administration; planning and sales; quality, safety and environment, communication and social action; economic and financial management

  13. Annual report 1999 - Brazil Nuclear Industry (INB)

    International Nuclear Information System (INIS)

    2000-01-01

    This document presents the 1999 annual report covering the following activities: nuclear fuel, resources and application, ISO 9001, environment social activities, personnel, financial indicators, and countability

  14. Industrias Nucleares do Brasil in the context of the Brazilian nuclear program

    International Nuclear Information System (INIS)

    1996-10-01

    The activities carried out by Industrias Nucleares Brasileiras (INB) related to the nuclear fuel cycle are described. These activities comprise presently uranium prospecting and processing and fuel elements assembly.Starting in 1997,INB will also perform the reconversion of enriched uranium hexafluoride and the fabrication of fuel pellets.Furthermore, INB produces as well rare earth oxides

  15. Commissioning of a passive rod scanner at INB

    Energy Technology Data Exchange (ETDEWEB)

    Junqueira, Fabio da Silva; Oliveira, Carlos A.; Palheiros, Franklin, E-mail: carlossilva@inb.gov.br, E-mail: franklin@inb.gov.br [Industrias Nucleares do Brasil (INB), Resende, RJ (Brazil). Superintendencia de Engenharia do Combustivel; Fernandez, Pablo Jesus Piñer, E-mail: pineiro@tecnatom.es [Tecnatom, San Sebastian de los Reyes, Madrid (Spain)

    2015-07-01

    For the 21st reload for Angra 1, a shift from Standard to Advanced fuel design will be introduced, where the fuel assemblies under the new design will contain fuel rods with axial blanket, in line with ELETRONUCLEAR's requirement for a higher energy efficient reactor fuel. Additionally, fuel rods for Angra 2 and 3, using gadolinium type burnable poison, have to be submitted to inspections due to the demand for the same type of inspection, which cannot be certified at INB currently. In keeping with CNEN regulations, every fuel-assembly component must be inspected and certified by a qualified method. Nevertheless, INB lacks the means to perform the certification-required inspection aimed at determining the uranium enrichment and presence of gadolinium pellets inside the closed rods. Hence, the use is necessary of a scanner capable of inspecting differently enriched fuel rods and/or gadolinium pellets (axial blanket). This work aims to present the recent Passive Rod Scanner installed at INB with most advance technology in the area, making possible to completely fulfill Angra 1, 2 and 3 rods inspection at INB Resende site. (author)

  16. Nuclear fuel cycle facilities and RP: the case of Brazil

    International Nuclear Information System (INIS)

    Tranjan Filho, Alfredo; Costa, Cesar Gustavo S.

    2008-01-01

    Full text: The renewed nuclear energy scenario, national and worldwide, calls for the strengthening of all activities involving the nuclear fuel production, from uranium extraction at the mines to fuel assemblies delivery at the nuclear power plants, which in Brazil is the mission of the Industrias Nucleares do Brasil (INB). With only a third of its territory prospected, Brazil currently has the sixth largest uranium reserve in the world. Brazil's three main deposits are: the Caldas mine (in the state of Minas Gerais) the first mineral-industrial complex that processed uranium, developed in 1982, and presently being decommissioned; Caetite mine and processing facility (located in the state of Bahia), nowadays operational and with a current production capacity of 400 tonnes per year of uranium concentrates, being in trend of doubling its annual capacity; and the Itataia/Santa Quiteria deposit (in Ceara State), the largest geological uranium reserve in Brazil, although its feasible future production depends on the exploration of the phosphate associated to it. Concerning the nuclear fuel fabrication, INB plant at Resende (in the state of Rio de Janeiro) is responsible for the conversion of Uf 6 to UO 2 the production of fuel pellets and the assembly of the fuel elements, in order to supply the demands of Brazil's two operating PWR (Angra 1 and Angra 2). In addition, in May 2006, INB-Resende inaugurated the uranium enrichment facility, employing the ultra-centrifugation technology. Today still in its first phase of operation, when completed the enrichment facility is intended to provide 100 percent of the domestic requirements, eventually by the year 2015. Detailing present status and future perspectives of INB, in face of the global and national renaissance of nuclear energy, this paper addresses the Radiation Protection (RP) aspects related to INB's achievements and performance, as well as the pressing future challenges to be dealt with, in order to guarantee

  17. Use of geoprocessing tools in uranium mining: volume estimation of sterile piles from the Osamu Utsumi Mine of INB / Caldas

    International Nuclear Information System (INIS)

    Ferreira, A.M.; Menezes, P.H.B.J.; Alberti, H.L.C.; Silva, N.C. da; Goda, R.T.

    2017-01-01

    The determination of the volumes of the sterile piles generated in the uranium mining and their respective characterization is of extreme importance for the management of mining wastes and future decommissioning actions of a nuclear facility. With the development of information technology, it becomes possible to simulate different scenarios in a computational environment, being able to store, represent and process data from existing information. In the industrial mining context, the sterile is represented with rocky materials of different granulometries and with ore content below the cut content determined by the industrial process. In this sense, the present work has the objective of calculating the volume of the sterile stacks of the Osamu Utsumi uranium mine of INB - Nuclear Industries of Brazil / Caldas. The MOU was officially inaugurated in 1977 and operated until 1995, where 1,200 tons of U 2 O 3 were produced generating about 94.5 x 106 tons of sterile material containing low levels of radioactive material and pyrite. The methodology for the development of this work initially involves integration approaches between the Geographic Information System (GIS) and terrain modeling for the sterile piles called BF4 and BF8. The results obtained were compared with the existing literature, translating the importance of GIS as a tool in the management of wastes

  18. Presentation note of the order project related to the general technical regulation applicable to INBs

    International Nuclear Information System (INIS)

    2010-01-01

    This document presents the scope of the order project which defines the main requirements applicable to INBs (base nuclear installations) in terms of protection of people and of the environment in front of risks of accident, of pollutions and other nuisances. More precisely, the document explains the scope of the several specific aspects addressed by this order: safety policy and management, accident risk management, management of nuisance and of the installation impact on population and on the environment, management and elimination of wastes and fuels spent by a base nuclear installation, management of emergency situations, population information, authorization request procedures, and other provisions

  19. 78 FR 12104 - Manufacturer of Controlled Substances; Notice of Registration; INB Hauser Pharmaceutical Services...

    Science.gov (United States)

    2013-02-21

    ...; Notice of Registration; INB Hauser Pharmaceutical Services, Inc. By Notice dated November 1, 2012, and published in the Federal Register on November 9, 2012, 77 FR 67398, InB Hauser Pharmaceutical Services, Inc... Hauser Pharmaceutical Services, Inc., to manufacture the listed basic class of controlled substance is...

  20. JPRS Report, Nuclear Developments.

    Science.gov (United States)

    1989-09-18

    the 33rd Regular Session of the MAGATE General Conference. HUNGARY Results of Leakage Tests at Power Plant 25020265a Budapest ENERGIA ES...Empresas Nucleares Brasileiras S.A. (Nuclebras) to Industrias Nucleares do Brasil S.A. (INB), and trans- ferred the shares of its capital stock...96.622 authorizes the establishment of Uranium of Brasil S.A. as a subsidiary of INB, with headquarters in the city of Caldas, Minas Gerais State

  1. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chinon nuclear power plant (Indre-et-Loire, 37 (FR)): 4 PWR reactors in operation (Chinon B, INB 107 and 132), 3 partially dismantled graphite-gas reactors (Chinon A, INB 133, 153 and 161), a workshop for irradiated materials (AMI, INB 94), and an inter-regional fuel storage facility (MIR, INB 99). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  2. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chinon nuclear power plant (Indre-et-Loire, 37 (FR)): 4 PWR reactors in operation (Chinon B, INB 107 and 132), 3 partially dismantled graphite-gas reactors (Chinon A, INB 133, 153 and 161), a workshop for irradiated materials (AMI, INB 94), and an inter-regional fuel storage facility (MIR, INB 99). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  3. Nuclear safety and radiation protection report of the Bugey nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Bugey nuclear power plant (Ain (FR)): 4 PWR reactors in operation (INB 78 and 89), one partially dismantled graphite-gas reactor (INB 45), an inter-regional fuel storage facility (MIR, INB 102), and a radioactive waste storage and conditioning facility under construction (ICEDA, INB 173). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  4. Public inquiry related to the request by EDF of a definitive stopping and complete dismantling of the hardware storage installation of the Monts d'Arree nuclear power plant (INB n.162). Opinion and conclusions of the inquiry commission

    International Nuclear Information System (INIS)

    2010-03-01

    After a recall of the project of stopping and dismantling of the hardware storage installation (INB n.162) which had been created after the stopping and dismantling of the Monts d'Arree heavy water nuclear reactor (INB n.28), this report analyzes the results of the public inquiry, and highlights the arguments of those in favour of this project and those opposed to it. Then, it states the Inquiry Commission's opinion which addresses the request for a national public debate, the project justification, the inquiry file, the site radiological status, the site radiological control during works, the impacts of dismantling, the various risks (for the population and the workers, in terms of fire risks), the issue of radioactive wastes, economic aspects (costs, jobs, local economy, tourism and site image), and site reconversion

  5. Process industry properties in nuclear industry

    International Nuclear Information System (INIS)

    Zheng Hualing

    2005-01-01

    In this article the writer has described the definition of process industry, expounded the fact classifying nuclear industry as process industry, compared the differences between process industry and discrete industry, analysed process industry properties in nuclear industry and their important impact, and proposed enhancing research work on regularity of process industry in nuclear industry. (authors)

  6. Leaching of uranium from the Osamu Utsumi mine wastes, INB Caldas, Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Santos, Elizangela A.; Ladeira, Ana Claudia Q.

    2009-01-01

    Mining is one of the leading sectors of the Brazilian economy and as any other anthropogenic activity it generates residues that impact the environment directly. The Osamu Utsumi Mine, which belongs to the Nuclear Industries of Brazil (INB), operated from 1982 to 1995 with the activities of mining and metallurgical treatment of the uranium ore. Since then the INB has as a main environmental problem, the generation of acid mine drainage from wastes having its pH around 3. The chemical treatment of this acid water incurs an extremely high cost and generates a precipitate that is rich in some metals, including uranium. This precipitate has been disposed of in the mine opening and has caused an overload of chemical pollutants and radioactive elements in a place that was not planned to receive this volume of residues and does not meet the necessary condition for the construction of a repository. The content of uranium in the precipitate is approximately 0.25% - similar to the content of the metal found in the ore in the Caetite Mine (BA) - around 0.29%. The recovery of this uranium from the precipitate would generate a total of 150 tons of U 3 O 8 . In the present study an alkaline leaching process was carried out aiming at recovering the uranium from sludge samples disposed of for over 20 years. Sodium carbonate and bicarbonate were used as the leaching agents. The experiments were carried out by varying the concentrations of the leaching agents, extraction time and the solid percentage. The other parameters such as temperature, particle size and agitation were kept constant. The results showed that the recovery of the uranium can reach 100% in 24 hours. The uranium concentration in the solutions is around 250 mg.L -1 when using 10% of solids. Preliminary results showed that the recovery of uranium from the sludge would be a feasible practice. The conversion of an environmental liability into a valuable product is one of the most important objectives of this work

  7. The regulation of radioactive effluent release in France (mainly from large nuclear installations)

    International Nuclear Information System (INIS)

    Hebert, Jean.

    1978-01-01

    In parallel with the licensing system for construction and operation of classified or so-called large nuclear installations (INB) there are in France regulations for the release of radioactive effuents from such installations. The regulations applicable to installations other than INBs are not specifically of a nuclear nature, while those covering INBs, which are analysed in this study, in particular, cover effluent release in liquid or gaseous form. The licensing and control procedures for such release are analysed in detail. (NEA) [fr

  8. Use of geoprocessing tools in uranium mining: volume estimation of sterile piles from the Osamu Utsumi Mine of INB / Caldas; Utilização de ferramentas de geoprocessamento na mineração de urânio: estimativa de volume de pilhas de estéril da Mina Osamu Utsumi da INB/ Caldas

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, A.M.; Menezes, P.H.B.J., E-mail: adrianomotaferreira@gmail.com [Universidade Federal de Alfenas (ICT/UNIFAL), Poços de Caldas, MG (Brazil). Instituto de Ciência e Tecnologia; Alberti, H.L.C.; Silva, N.C. da; Goda, R.T. [Comissão Nacional de Energia Nuclear (LAPOC/CNEN), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas

    2017-07-01

    The determination of the volumes of the sterile piles generated in the uranium mining and their respective characterization is of extreme importance for the management of mining wastes and future decommissioning actions of a nuclear facility. With the development of information technology, it becomes possible to simulate different scenarios in a computational environment, being able to store, represent and process data from existing information. In the industrial mining context, the sterile is represented with rocky materials of different granulometries and with ore content below the cut content determined by the industrial process. In this sense, the present work has the objective of calculating the volume of the sterile stacks of the Osamu Utsumi uranium mine of INB - Nuclear Industries of Brazil / Caldas. The MOU was officially inaugurated in 1977 and operated until 1995, where 1,200 tons of U{sub 2}O{sub 3} were produced generating about 94.5 x 106 tons of sterile material containing low levels of radioactive material and pyrite. The methodology for the development of this work initially involves integration approaches between the Geographic Information System (GIS) and terrain modeling for the sterile piles called BF4 and BF8. The results obtained were compared with the existing literature, translating the importance of GIS as a tool in the management of wastes.

  9. Thermal stability test of UO{sub 2}-doped pellet manufactured at INB

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Diogo R., E-mail: diogoribeiro@inb.gov.br [Indústrias Nucleares do Brasil S.A. (FCN/INB), Resende, RJ (Brazil). Fábrica de Combustível Nuclear; Freitas, Artur C., E-mail: artur.freitas@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    The thermal stability test of UO{sub 2}-doped pellet manufactured at INB was carried out in order to analyze the resintering behavior. This analysis is fundamental for predicting dimensional behavior during irradiation. INB commonly performs resintering test to qualify its production lots, and the same methodology was applied to UO{sub 2}-doped pellets. In this preliminary study, three sets of experiments have been made: 1) without any chemical additive (Z test, the standard UO{sub 2} pellets - undoped); 2) UO{sub 2} pellets doped with 0.1, 0.2 and 0.3 wt% of Al{sub 2}O{sub 3}; and 3) 0.1, 0.2 and 0.3 wt% of Nb{sub 2}O{sub 5}. The preliminary results showed an increase in sintered density in all resintering experiments. So as to obtain the percentage increase, the theoretical densities (g/cm{sup 3} and %TD) were calculated based on the undoped UO{sub 2} pellets. All samples increased in a range of 0.27 to 0.32 %TD the out-pile densification during the resintering process. However, the Z(Nb)3 test showed the lowest value of 0.08 %TD, which is not in agreement with the INB specification limits. The sintered density of this test (0.3 wt% niobia) was 96.15% TD. This fact might be related to the competitive mechanism between Kirkendall effect, forming porosity owing to niobium solubilization on UO{sub 2} matrix, and densification process as a result of uranium diffusivity. Thus, the densification was only 0.08 %TD in Z(Nb)3 sample. All the other samples were in agreement with INB specification. (author)

  10. "To sleep, perchance to tweet": in-bed electronic social media use and its associations with insomnia, daytime sleepiness, mood, and sleep duration in adults.

    Science.gov (United States)

    Bhat, Sushanth; Pinto-Zipp, Genevieve; Upadhyay, Hinesh; Polos, Peter G

    2018-04-01

    The use of mobile device-based electronic social media (ESM) in bed is rapidly becoming commonplace, with potentially adverse impacts on sleep and daytime functioning. The purpose of this study was to determine the extent to which in-bed ESM use is associated with insomnia, daytime sleepiness, mood, and sleep duration in adults. This was a cross-sectional observational study conducted among 855 hospital employees and university students (mean age, 43.6years; 85% female) via an online questionnaire. Nearly 70% of participants indulged in in-bed ESM use, with nearly 15% spending an hour or more a night doing so. The degree of in-bed ESM use did not vary by gender, but higher levels of in-bed ESM use were seen in younger and middle-aged than elderly participants. Compared with participants with no in-bed ESM use and controlling for age, gender, and ethnicity, participants with high in-bed ESM use were more likely to have insomnia, anxiety, and short sleep duration on weeknights, but not depression or daytime sleepiness; low in-bed ESM use only increased the likelihood of short sleep duration on weeknights. In-bed ESM use by a bed partner did not have an adverse association with sleep or mood. In-bed ESM use is associated with sleep and mood dysfunction in adults. These findings are of relevance to clinicians, therapists, and the public at large, as they suggest that limitation of in-bed ESM use is a potential interventional strategy in the overall management of sleep hygiene and mental health. Copyright © 2017 National Sleep Foundation. Published by Elsevier Inc. All rights reserved.

  11. Annual report 1999 - Brazil Nuclear Industry (INB); Relatorio anual 1999 - Industrias Nucleares do Brasil S.A

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This document presents the 1999 annual report covering the following activities: nuclear fuel, resources and application, ISO 9001, environment social activities, personnel, financial indicators, and countability.

  12. Additional safety assessment of the INB 29. After the Fukushima Daiichi accident

    International Nuclear Information System (INIS)

    2012-01-01

    A first part presents various general characteristics of the base nuclear installation (INB) number 29 (CIS bio International): main buildings, used materials, venting systems, electric supplies, control and command system, radiation protection measures. A second part identifies the cliff-edge effects and critical structures and equipment. The next parts address the seismic risk (installation sizing, margin assessment, robustness to fires possibly initiated by an earthquake), the flooding risk (installation sizing with respect to different flooding risks of different origins, margin assessment, active liquid waste tanks), other extreme natural phenomena (related to flooding, earthquake/flooding combination), the loss of electric supplies, thermal releases (loss of cyclotron cooling, releases related to source warehousing), the organization of severe accident management, the influence of other installations on crisis management, and subcontracting practices

  13. Implications of nuclear industry globalization for chinese nuclear industry: opportunities and challenges

    International Nuclear Information System (INIS)

    Guo Zhifeng; Ding Qihua; Wang Zheng

    2014-01-01

    In recent years, globalization of the world nuclear industry has developed into a new phase. Chinese nuclear industry will be inevitably integrated into this trend. Globalization will bring both positive and adverse effects on Chinese nuclear industry. Facing the fierce competition, Chinese companies must rise to many challenges to enter the global nuclear market. And China need to make scientific decisions and take effective measures in various fields of nuclear industry to realized the goal of global development. (authors)

  14. Complementary safety evaluation of the Phenix power station (INB n 71) in the light of the Fukushima power station accident

    International Nuclear Information System (INIS)

    2011-01-01

    This report proposes a complementary safety evaluation of the Phenix power station, one of the French basic nuclear installations (BNI, in French INB) in the light of the Fukushima accident. This evaluation takes the following risks into account: risks of flooding, earthquake, loss of power supply and loss of cooling, in addition to operational management of accident situations. It presents some characteristics of the Phenix installation (location, operator, industrial environment, installation characteristics), identifies the risks of cliff effect and the main structures and equipment, evaluates the seismic risk (installation sizing, installation conformity, margin evaluation), evaluates the flooding risk (installation sizing, installation conformity, margin evaluation), briefly examines other extreme natural phenomena (extreme meteorological conditions related to flooding, earthquake or flooding with a higher level than that for which the installation is designed). It analyzes the risk of a loss of power supply and of cooling (loss of external and internal electric sources, loss of the ultimate cooling system). It analyzes the management of severe accidents: crisis management organization, available intervention means, robustness of available means. It discusses the conditions of the use of subcontractors

  15. Nuclear power industry

    International Nuclear Information System (INIS)

    1999-01-01

    This press dossier presented in Shanghai (China) in April 1999, describes first the activities of the Framatome group in the people's republic of China with a short presentation of the Daya Bay power plant and of the future Ling Ao project, and with a description of the technological cooperation with China in the nuclear domain (technology transfers, nuclear fuels) and in other industrial domains (mechanics, oil and gas, connectors, food and agriculture, paper industry etc..). The general activities of the Framatome group in the domain of energy (nuclear realizations in France, EPR project, export activities, nuclear services, nuclear fuels, nuclear equipments, industrial equipments) and of connectors engineering are presented in a second and third part with the 1998 performances. (J.S.)

  16. Nuclear industry will soon surface

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The Japan Atomic Industrial Forum has carried out the annual survey of nuclear industry from the very inception of the development of nuclear power in Japan. The aim is to research and analyze nuclear-related expenditures, sales and manpower, as well as the future prospect of mining and manufacturing industries, electric utilities, trading companies and other related industries. The 19th fact-finding survey investigated into the actual conditions of the nuclear industry from April, 1977, to March, 1978. The number of companies surveyed increased by 75 from the previous year to 1,244, of which 883 or 71% responded to the questions. 501 companies did the business in the field of nuclear power. The first thing to be pointed out about the economic conditions of the nuclear industry is that the nuclear related expenditures increased in electric utilities, mining and manufacturing industries and trading companies, and exceeded 1 trillion yen mark for the first time in the private sector. It is likely that the current nuclear-related activities of mining and manufacturing industries will soon increase, but it will not be easy to wipe off the cumulative deficit of the industries. The employees increased by more than 7% in the nuclear-related sectors of electric utilities and mining and manufacturing industries. The facilities of nuclear supply industry were operated at the average rate of 50%. (Kako, I.)

  17. Information report on nuclear safety and radiation protection of the Tricastin AREVA site - Issue 2014. Figures and information about nuclear safety and radiation protection of the Tricastin AREVA site - Issue 2014

    International Nuclear Information System (INIS)

    2015-06-01

    Published in compliance with the French code of the environment, this report first presents different aspects of the Areva's Tricastin site which comprises five basic nuclear installations or INBs, and seven ICPE (installation classified for environment protection). The activities are dedicated to uranium conversion, uranium enrichment, uranium chemistry, industrial services, and fuel manufacturing. The report presents this important industrial site, describes the various measures regarding nuclear safety and radiation protection, reports nuclear events which occurred on this site and had to be declared, reports the management of releases by this site and the control of the environment. The next part addresses the management of the various wastes produced by the different installations present on this site. The management of other impacts is also reported. The last chapter reviews the actions undertaken in the field of transparency and information

  18. Information report on nuclear safety and radiation protection of the Tricastin AREVA site - Issue 2013. Figures and information about nuclear safety and radiation protection of the Tricastin AREVA site - Issue 2013

    International Nuclear Information System (INIS)

    2014-06-01

    Published in compliance with the French code of the environment, this report first presents different aspects of the Areva's Tricastin site which comprises five basic nuclear installations or INBs, and seven ICPE (installation classified for the protection of the environment). The activities are dedicated to uranium conversion, uranium enrichment, uranium chemistry, industrial services, and fuel manufacturing. The report presents this important industrial site, describes the various measures regarding nuclear safety and radiation protection, reports nuclear events which occurred on this site and had to be declared, reports the management of releases by this site and the control of the environment. The next part addresses the management of the various wastes produced by the different installations present on this site. The management of other impacts is also reported. The last chapter reviews the actions undertaken in the field of transparency and information

  19. Nuclear industry and territories

    International Nuclear Information System (INIS)

    Le Ngoc, B.

    2016-01-01

    Nuclear industry being composed of plants, laboratories, nuclear power stations, uranium mines, power lines and fluxes of materials from one facility to another is a strong shaper of the national territory. Contrary to other European countries, French nuclear industry is present all over the national territory. In 64 departments out of 101 there is at least one enterprise whose half of the revenues depends on nuclear activities. The advantage of such a geographical dispersion is when a nuclear activity is given up the social impact is less important: people tend to find a new job in the same region. French Nuclear power plants are generally set in remote places where population density is low and being the first employer by far of the area and being a major contributor to the city revenues, they are perceived as a key element the local population is proud of. In Germany, nuclear power plants are set inside dense industrial regions and appear as an industry just like any other.(A.C.)

  20. Information report on nuclear safety and radiation protection of the Tricastin AREVA site - Issue 2012

    International Nuclear Information System (INIS)

    2013-06-01

    Published in compliance with the French code of the environment, this report first presents different aspects of the Areva's Tricastin site which comprises five basic nuclear installations or INBs, and seven ICPE (installation classified for the protection of the environment). The activities are dedicated to uranium conversion, uranium enrichment, uranium chemistry, industrial services, and fuel manufacturing. The report presents this important industrial site, describes the various measures regarding nuclear safety and radiation protection, reports nuclear events which occurred on this site and had to be declared, reports the management of releases by this site and the control of the environment. The next part addresses the management of the various wastes produced by the different installations present on this site. The management of other impacts is also reported. The last chapter reviews the actions undertaken in the field of transparency and information

  1. Nuclear measurements in industry

    International Nuclear Information System (INIS)

    Rozsa, S.

    1989-01-01

    In this book the author provides a description of nuclear measurements in industry, covering the physical principles, methods, instruments and equipment, and industrial applications. One of the great advantages of industrial nuclear measurements is that their use ensures the optimum use of raw material. The increasing cost of raw materials makes it essential to adhere strictly to the standards and prescriptions related to the product and this is possible only by the application of continuous and accurate measurements. As a result, the importance of nuclear instruments is rapidly growing particularly in fields where the application of alternative methods is not possible. This is illustrated by several practical examples described in the book. Similarly important are nuclear measuring the process control equipment which serve to optimize the use of energy in industrial processes

  2. Industrial Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    2017-01-01

    This publication provides a detailed overview of the potential use of nuclear energy for industrial systems and/or processes which have a strong demand for process heat/steam and power, and on the mapping of nuclear power reactors proposed for various industrial applications. It describes the technical concepts for combined nuclear-industrial complexes that are being pursued in various Member States, and presents the concepts that were developed in the past to be applied in connection with some major industries. It also provides an analysis of the energy demand in various industries and outlines the potential that nuclear energy may have in major industrial applications such as process steam for oil recovery and refineries, hydrogen generation, and steel and aluminium production. The audience for this publication includes academia, industry, and government agencies.

  3. Nuclear industry technology boomerang

    International Nuclear Information System (INIS)

    Scholler, R.W.

    1987-01-01

    The benefits to the medical, pharmaceutical, semiconductor, computer, video, bioscience, laser, defense, and numerous high-tech industries from nuclear technology development fallout are indeed numerous and increase every day. Now those industries have made further progress and improvements that, in return, benefit the nuclear industry. The clean-air and particle-free devices and enclosures needed for protection and decontamination are excellent examples

  4. Introducing the inbed spinal traction kit for use on patients with low ...

    African Journals Online (AJOL)

    BACKGROUND: Low backpain is a common malady in our environment. BODY: The in-bed spinal Traction kit is designed and assembled by the authors for use in treatment of Low Back Pain. The aim is to reduce cost, shorten period of Hospital stay and immobilization encountered when skin Traction Devices are used in ...

  5. Nuclear industry almanac v.1

    International Nuclear Information System (INIS)

    Greenhalgh, G.; Jeffs, E.

    1982-01-01

    Nuclear Industry Almanac. National energy profiles of 17 Western European countries are given, concentrating on electricity supply and the role nuclear power plays in meeting the demand for electric power. The nuclear industries of Austria, Belgium, Finland, France, Germany, Italy, the Netherlands, Spain, Sweden, Switzerland and the United Kingdom are described and addresses of establishments and industries are listed. (U.K.)

  6. Inhibition of nuclear T3 binding by fatty acids: dependence on chain length, unsaturated bonds, cis-trans configuration and esterification

    NARCIS (Netherlands)

    Wiersinga, W. M.; Platvoet-ter Schiphorst, M.

    1990-01-01

    1. Fatty acids have the capacity for inhibition of nuclear T3 binding (INB). The present studies were undertaken to describe the INB-activity of fatty acids as a function of chain length, unsaturated bonds, cis-trans configuration, and esterification. 2. Isolated rat liver nuclei were incubated with

  7. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chooz nuclear power plant (Ardennes (FR)): 2 PWR reactors in operation (Chooz B, INB 139 and 144) and one partially dismantled PWR reactor (Chooz A, INB 163). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary followed by the viewpoint of the Committees for health, safety and working conditions. (J.S.)

  8. Working in nuclear industry? why not?

    International Nuclear Information System (INIS)

    Brechet, Y.

    2017-01-01

    Today 200 nuclear reactors are being built or scheduled in the world and despite this, nuclear energy in western countries seems to collapse under the weights of prejudices and false ideas. No matter what the opponents say, nuclear energy is safe and clean and is a bringer of jobs. In France nuclear industry is one of a few industrial sectors that have been spared by massive de-industrialization. Nuclear energy as a carbon-free energy, has an important role to play to mitigate climate warming by working with renewable energies to provide a reliable electric power. This future is a new future for nuclear energy as new challenges have to be overcome, for instance nuclear energy has to adapt itself to the intermittency of wind and solar energies, nuclear industry has to be innovative and has to fully appropriate numerical technologies. Nuclear industry is a promising sector that proposes interesting scientific and technical jobs and is also a vital interest for the country. (A.C.)

  9. 77 FR 67398 - Manufacturer of Controlled Substances; Notice of Application; INB Hauser Pharmaceutical Services...

    Science.gov (United States)

    2012-11-09

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances; Notice of Application; INB Hauser Pharmaceutical Services, Inc. Pursuant to Sec. 1301.33(a), Title 21 of... Pharmaceutical Services, Inc., 6880 N. Broadway, Suite H, Denver, Colorado 80221, made application by letter to...

  10. U.S. nuclear industry

    International Nuclear Information System (INIS)

    Sherman, R.

    1979-01-01

    At present, 72 power reactors are in the condition of being able to operate in U.S., and the total installation capacity has reached 55 million kW, which is equivalent to about 9.5% of the total power generation capacity in U.S. The nuclear power stations produced 12.5% of the total electricity consumption in 1978. Especially in the north eastern part of the U.S., the nuclear power generation occupied 42% of the total power generation at the time of recent peak load, and 47 million barrels of crude oil and 517 million dollars of foreign currency were able to be saved. Moreover, 96 plants amounting to 105 million kW are under construction, and 30 plants of 35 million kW were ordered. Electric power companies, nuclear reactor makers, nuclear fuel and other related industries believe the merits of nuclear power generation and expect that it will flourish if a certain problem is solved. Especially serious problem to which the U.S. nuclear industry is facing now is the problem of uncertainty. Many orders of nuclear power plants have been canceled, and the constructions have been postponed. The capability of the U.S. nuclear industry to construct more than the required facilities, and its extent and the necessary conditions have been investigated by the Atomic Industrial Forum. The important national and international problems of atomic energy are discussed. (Kako, I.)

  11. The nuclear industry in Canada

    International Nuclear Information System (INIS)

    Anderson, D.; Broughton, W.

    1992-01-01

    The nuclear industry in Canada comprises three identifiable groups: (1) Atomic Energy of Canada Limited (AECL), (2) electrical utilities that use nuclear power plants, (3) private engineering and manufacturing companies. At the end of World War II, AECL was charged with investigating and developing peaceful uses of atomic power. Included in the results is the Canada deuterium uranium (CANDU) reactor, a peculiarly Canadian design. The AECL maintains research capability and operates as the prime nuclear steam supply system supplier. Utilities in three Canadian provinces operate nuclear power plants, New Brunswick, Quebec, and Ontario, with the majority in Ontario. From the beginning of the nuclear program in Canada, private industry has been an important partner to AECL and the utilities, filling roles as manufacturing subcontractors and as component designers. The prime objective of this paper is to illuminate the role of private industry in developing and maintaining a competitive world-class nuclear industry

  12. Directory of the French nuclear industry

    International Nuclear Information System (INIS)

    2002-10-01

    This directory includes data sheets on the French companies operating in the nuclear industry. It begins with an introduction containing information on the French nuclear industry: 1 - nuclear power development in France (national energy plan, history, organization, economic advantages, reactors); 2 - French operator: Electricite de France (EdF); 3 - the industry (Areva, Cogema, mining activities, uranium chemistry and enrichment, processing, recycling, engineering, services, Framatome ANP); 4 - R and D and knowledge dissemination: French atomic energy commission (CEA); 5 - nuclear safety, security, control and regulation: nuclear safety authority (ASN), general direction of nuclear safety and radioprotection (DGSNR), institute of radioprotection and nuclear safety (IRSN), radioactive wastes, ANDRA's role; 6 - associations: French atomic forum (FAF), French nuclear industry trade association (GIIN), French nuclear energy society (SFEN), French radiation protection society (SFRP). Then, the data sheets of the directory follows. (J.S.)

  13. Nuclear safety and radiation protection report of the Creys-Malville nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Creys-Malville nuclear power plant (also known as Superphenix power plant, INB no. 91, Creys-Mepieu - Isere (FR)) and the other fuel and waste storage facilities of the site (INB no. 141). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2012, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  14. Nuclear safety and radiation protection report of the Creys-Malville nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Creys-Malville nuclear power plant (also known as Superphenix power plant, INB no. 91, Creys-Mepieu - Isere (FR)) and the other fuel and waste storage facilities of the site (INB no. 141). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  15. Fire protection system management in nuclear facilities: strengthening factor of integrated management system - a case study

    International Nuclear Information System (INIS)

    Santos, Joao Regis dos

    2005-01-01

    The present study investigated and analyzed the importance of a system of integrated safety manage, environment and health in a nuclear installation, having as perspective, the fire protection manage. The inquiry was made using a qualitative research involving a case study, where the considered environment was the Reconversion and UO 2 Plant of the Industrias Nucleares do Brasil (INB), located in Resende, Rio de Janeiro and the studied population, the managers and the staff directly involved with the aspects related to the safety of the industrial complex of the related company. The motivation for the research was the search of a bigger interaction of the questions related to the safety, environment and health in the nuclear industry having, as axle of the investigation, the fire protection. As a result, it was observed that in a nuclear installation, although dealing with diversified safety processes, integration is possible and necessary, since there are more reasons for integration than otherwise. (author)

  16. Comparative study of the different industrial manufacturing routes for UO2 pellet specifications through the wet process

    International Nuclear Information System (INIS)

    Palheiros, Franklin; Gonzaga, Reinaldo; Soares, Alexandre

    2009-01-01

    In the fuel cycle, converting UF 6 to UO 2 powder is an intermediate step for fabrication of pellets for fuel assemblies to be used in nuclear power plants. The basic proposal common to the different powder fabrication processes is to provide raw material capable of being processed into the form of pellets. The wet processes is the most often used industrially and are divided in two categories: the ADU (Ammonium Diuranate) and AUC (Ammonium Uranyl Carbonate) processes, whose names originate in the precipitate obtained in aqueous solution during the intermediate steps of UO 2 powder fabrication. It has known that the powder characteristics have a considerable influence in the UO 2 pellet manufacturing and quality characteristics. INB has used the AUC process to produce UO 2 pellets and supply fuel to Angra 1 and 2 Nuclear Power Plants. Despite of this process is characterized by the precipitation of a different intermediate precipitate compared to the ADU route (i.e., (NH 4 ) 4 UO 2 (CO 3 ) 3 , in the AUC process, and (NH 4 ) 2 U 2 O 7 in ADU process) leading to some slight differences in the final pellet microstructure, it has been considered that the models that predict the pellet behavior during irradiation in a nuclear reactor are basically the same compared to those used to predict the pellets form the ADU process. In order to evaluate how different the pellets originated from these two industrial routes are, this paper aims to compare the INB production historical data (Angra 1, Cycles 14 and 15) with the key parameters of a common product specification from the ADU process. (author)

  17. Responsability of nuclear industry

    International Nuclear Information System (INIS)

    Cadiz Deleito, J.C.

    1985-01-01

    Since the beginning of nuclear industry, civil responsibility with damages to the public health and properties was a critical problem, because the special conditions of this industry (nuclear accident, damages could be very high but probability of these events is very low). Legal precepts, universally accepted, in the first 60 years for all countries interested in nuclear energy are being revised, then 20 years of experience. The civil responsibility limited is being questioned and indemnities updated. (author)

  18. Fire protection system management in nuclear facilities: strengthening factor of integrated management system - a case study; Gestao de sistema de protecao contra incendio em instalacoes nucleares: fator de fortalecimento do sistema de gestao integrada - um estudo de caso

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Joao Regis dos

    2005-07-01

    The present study investigated and analyzed the importance of a system of integrated safety manage, environment and health in a nuclear installation, having as perspective, the fire protection manage. The inquiry was made using a qualitative research involving a case study, where the considered environment was the Reconversion and UO{sub 2} Plant of the Industrias Nucleares do Brasil (INB), located in Resende, Rio de Janeiro and the studied population, the managers and the staff directly involved with the aspects related to the safety of the industrial complex of the related company. The motivation for the research was the search of a bigger interaction of the questions related to the safety, environment and health in the nuclear industry having, as axle of the investigation, the fire protection. As a result, it was observed that in a nuclear installation, although dealing with diversified safety processes, integration is possible and necessary, since there are more reasons for integration than otherwise. (author)

  19. Industrial nuclear property

    International Nuclear Information System (INIS)

    Lepetre, M.

    1976-01-01

    The first requests for patents for the use of nuclear power filed in France in 1939. This paper reviews the regulations on industrial nuclear property in various countries. The patenting system in several socialist countries is characterized by the fact that inventions on the production and use of radioactive materials may not be patented. This equally applies in India. In the United States, this type of invention may be patented except for those involving military uses and which must be notified to the federal authorities. In France, all industrial nuclear property is grouped under the same body, Brevatome, created in 1958, which enables the allocation of rights to be negotiated between the different interested parties, the Atomic Energy Commission (CEA), Electricite de France (EDF) and private industry. Under the Euratom Treaty, all inventions, even those governed by secrecy in Member countries, must be communicated to the Commission of the European Communities. (NEA) [fr

  20. Spanish nuclear industry

    International Nuclear Information System (INIS)

    1994-01-01

    In this book published to commemorate the twentieth anniversary of the Spanish Nuclear Society, it is included a report on the Spanish Nuclear Industry. The Spanish Companies and Organizations in nuclear world are: CIEMAT, Empresarios Agrupados, ENRESA, ENUSA, ENDESA, Grupo Iberdrola, LAINSA, INITEC AND TECNATOM. Activities, history and research programs of each of them are included

  1. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    1979-01-01

    These notes have been prepared by the Department of Energy to provide information and to answer questions often raised about nuclear energy and the nuclear industry and in the hope that they will contribute to the public debate about the future of nuclear energy in the UK. The subject is dealt with under the headings; contribution of nuclear power, energy forecasts, nuclear fuels and reactor types, cost, thermal reactor strategy, planning margin, safety, nuclear licensing, unlike an atomic bomb, radiation, waste disposal, transport of nuclear materials, emergency arrangements at nuclear sites, siting of nuclear stations, security of nuclear installations, world nuclear programmes, international regulation and non-proliferation, IAEA safeguards arrangements in the UK, INFCE, and uranium supplies. (U.K.)

  2. Transition in the nuclear industry

    International Nuclear Information System (INIS)

    Olyniec, J.H.

    1985-01-01

    Not long ago, nuclear energy was forecast to be the dominant force in the utility industry. An environmentally safe clean and inexpensive way to produce electricity would be welcomed by all. Civil engineering challenges on the leading edge of technology awaited the designer and constructor. As we now know, changes within the past 10 years have taken place that radically alter this outlook. Energy demand, thought to be ever increasing, was shocked by the rising costs. Plant construction delays, coupled with ever increasing regulatory requirements and higher interest rates, fueled the spiral or more cost. Economy of operation became overwhelmed by utility debt burden. Where is the nuclear utility industry now and what direction can we foresee. this symposium addresses the nuclear industry past, present, and future. The first session highlights some lessons learned from past experiences that must be applied in the future to be beneficial. Existing and future challenges are presented in the sessions on plant modifications and nuclear waste and decommissioning. The final session looks at the nuclear industry in transition from the perspectives of the different segments that make up the industry

  3. The control of nuclear sector

    International Nuclear Information System (INIS)

    2007-01-01

    The Asn is loaded with the control of the nuclear safety and the radiation protection in France: it provides this control, in the name of the state, to protect the workers, the patients, the public and the environment of the risks in relation with nuclear activities. The control is the core business of Asn. Asn so checks the nuclear basic installations (I.N.B.), since their conception until their dismantling, the pressure equipment specially conceived for these installations, the management of the radioactive waste as well as the transport of radioactive substances. Asn also checks all the industrial and research installations as well as the hospitals where are used ionizing radiations. It is a more recent profession there, because dating the reform of the control of the nuclear power of 2002, which constitutes that of the radiation protection. The first responsibility of the activities at risks falls to the one who begins them. This principle applies to all the sectors checked by Asn: an industrialist is responsible for the safety of the nuclear installations which he exploits, a doctor is responsible for the use of the ionizing radiations which he uses. (N.C.)

  4. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Flamanville nuclear power plant (Manche (FR)): 2 PWR reactors in operation (INB 108 and 109), and 1 PWR under construction (Flamanville 3, INB 167). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, water consumption and waste management at Flamanville 3 construction site) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  5. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Flamanville nuclear power plant (Manche (FR)): 2 PWR reactors in operation (INB 108 and 109), and 1 PWR under construction (Flamanville 3, INB 167). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, water consumption and waste management at Flamanville 3 construction site) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  6. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chooz nuclear power plant (Ardennes (FR)): 2 PWR reactors in operation (Chooz B, INB 139 and 144) and one partially dismantled PWR reactor (Chooz A, INB 163). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  7. The control of base nuclear facilities (I.N.B.); Le controle des installations nucleaires de base (INB)

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2009-02-15

    The Authority of Nuclear Safety ( A.S.N). presents in this column the current events of the control of the nuclear basic installations during august, september, october 2008, classified by nuclear site. This information is also available in real-time on the A.S.N. web site, www.asn.fr, in the column 'news'. We can consult all the notices of significant incident published as well as the following letters of inspection, the notices of information about the reactors shutdown, press releases and the A.S.N. information notes. (N.C.)

  8. Capitalizing the contribution of the nuclear industry

    International Nuclear Information System (INIS)

    Donnadieu, G.

    1984-01-01

    The main contributions of the French nuclear industry to the country, and ways to make the most of them are presented. The advantages acquired include the nuclear power stations built; mastering of the combustion cycle; a powerful, well structured nuclear construction industry; and a nuclear-industrial complex giving France an important industrial potential. It is recommended that the industrial and research effort be maintained. The proposed strategy consists of defining an electronuclear program and associated economic development program and sticking to them; promoting exports; possibly merging certain industrial capacities; and strengthening the national position and independence concerning the fuel cycle [fr

  9. Enhanced security in the nuclear industry

    International Nuclear Information System (INIS)

    Frappier, G.

    2007-01-01

    This article describes the security in the nuclear industry. After 9/11, Canada's nuclear regulator - the Canadian Nuclear Safety Commission (CNSC) - determined that the entire industry (including its own organization) faced a need for significant enhancements in their approach to security.

  10. Nuclear industry chart

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    As part of a survey on Switzerland a pull-out organisation chart is presented of the nuclear industry showing Swiss government bodies and industrial concerns. Their interests, connections with each other and their associations with international and other national organizations and firms are indicated. (U.K.)

  11. Organization of the German nuclear industry

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Corporate ownership within the German nuclear industry has evolved constantly during the last decade, and recent acquisitions and mergers, reunification of the country, as well as preparation for a unified European power market, have led to many significant changes during the past two years. The country's nuclear industry continues to struggle under an increasingly anti-nuclear political environment, yet nuclear power provided more than one-third of Germany's total electricity generation in 1991. As in many countries, particularly in western Europe, many German companies involved in different facets of the nuclear industry are interrelated. Usually as a means of horizontal or vertical integration, the country's nuclear utilities own, directly or indirectly, shares in uranium mining projects; conversion, enrichment, and fabrication companies; or other utilities' nuclear power plants. The utilities own partial interests in companies in supporting industries as well, including transportation firms, waste management companies, uranium broker/traders, and nuclear equipment manufacturers. While the majority of the companies owned are German, numerous investments are made in non-German firms also

  12. A view from the nuclear industry

    International Nuclear Information System (INIS)

    Berry, R.J.

    1989-01-01

    The Conference is reminded that the nuclear industry regards occupational radiation-induced cancer as a putative rather than a demonstrated hazard at current dose levels. Although epidemiological studies have shown possible dose-response correlation, all such studies of nuclear industry personnel show an overall risk of malignant disease lower than that for the general public. Doses to workers in the nuclear industry have been reducing since the 1970s, largely in consequence of the optimisation of radiation protection and the injunction ''to keep doses as low as reasonably achievable'' without reduction in occupational dose limits over this period. It is argued that further reduction in individual dose limits will act to increase collective dose. The nuclear industry no longer has either the highest individual average or collective radiation doses to its workforce within British industry; higher average individual doses occur in the non-coal mining industry and the collective dose to coal miners is greater than that of nuclear fuel cycle workers and comparable to the sum of collective doses to fuel cycle and power generation workers. (author)

  13. The World Nuclear Industry Status Report 2013

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hosokawa, Komei; Thomas, Steve; Yamaguchi, Yukio; Hazemann, Julie; Bradford, Peter A.

    2013-07-01

    Two years after the Fukushima disaster started unfolding on 11 March 2011, its impact on the global nuclear industry has become increasingly visible. Global electricity generation from nuclear plants dropped by a historic 7 percent in 2012, adding to the record drop of 4 percent in 2011. This World Nuclear Industry Status Report 2013 (WNISR) provides a global overview of the history, the current status and the trends of nuclear power programs worldwide. It looks at nuclear reactor units in operation and under construction. Annex 1 provides 40 pages of detailed country-by-country information. A specific chapter assesses the situation in potential newcomer countries. For the second time, the report looks at the credit-rating performance of some of the major nuclear companies and utilities. A more detailed chapter on the development patterns of renewable energies versus nuclear power is also included. Annex 6 provides an overview table with key data on the world nuclear industry by country. The 2013 edition of the World Nuclear Industry Status Report also includes an update on nuclear economics as well as an overview of the status, on-site and off-site, of the challenges triggered by the Fukushima disaster. However, this report's emphasis on recent post-Fukushima developments should not obscure an important fact: as previous editions (see www.WorldNuclearReport.org) detail, the world nuclear industry already faced daunting challenges long before Fukushima, just as the U.S. nuclear power industry had largely collapsed before the 1979 Three Mile Island accident. The nuclear promoters' invention that a global nuclear renaissance was flourishing until 3/11 is equally false: Fukushima only added to already grave problems, starting with poor economics. The performance of the nuclear industry over the year from July 2012 to July 2013 is summed up in this report

  14. The trilogy nuclear technology-quality-reliability in nuclear energy: the interface technical regulation/industrial norm in the nuclear industry

    International Nuclear Information System (INIS)

    Costa, Jose Ribeiro da

    1995-01-01

    In this paper, it is tried to find out a compatibility among Regulations (mandatory) documents governing Quality Assurance Requirements for the Nuclear Industry (like IAEA/50-C-QA, IAEA/50-SG-QA1, IAEA/50-SG-QA7, and others), with similar documents prescribing same requirements for COnventional Industry (like ISO/900 Series), using the technical support of the prescriptions contained in the IAEA/TR-328 documents. Harmonization and compatibility of these documents is a great deal for Industries engaged -directly or indirectly - in the Nuclear Technology, taking into account that such compatibility can avoid troubles for already ISO/9000 Series Certified Industries in the fulfillment of its contract requirements in the nuclear field. Its also represents in that field a symbiosis between Technical Regulations (mandatory) and Voluntary Standards (Industrial, Consensual Standards). (author). 7 refs., 1 fig., 1 tab

  15. Special issue: the nuclear industry in Europe

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    This special issue contains papers on the following topics: French nuclear policy; nuclear energy development in Europe; nuclear diversification; Alsthom-Atlantique in the nuclear field; 1981 nuclear electricity generation; EDF siting policy; the N4 model of the 1300 MW series; Creys-Malville; the nuclear industry in Europe; pumps in the nuclear industry [fr

  16. 2009 transparency and nuclear safety report. CEA Cadarache. Volumes 1 + 2

    International Nuclear Information System (INIS)

    2009-01-01

    After a general presentation of the Cadarache site and of its nuclear installations, the first volume of this report describes the various measures concerning the site safety (safety organisation, general measures, measures related to various risks, inspections, control of emergency situations, audits and second level control, measures in basic nuclear installations) and radioprotection (organisation, significant facts, dosimeter results). It describes significant events which occurred in relationship with nuclear safety and radioprotection, presents results of measurements of releases and of their impact on the environment (chemical and radiological assessment). Then after a description of measures to limit the volume of stored radioactive wastes and their impact on health and on the environment, tables indicate the nature and quantities of wastes which are stored in the different basic nuclear installations of Cadarache. The second volume proposes the same information for two specific nuclear installations belonging to Areva and located in Cadarache, the INB 32 and 54 (INB stands for basic nuclear installation) for which a significant event occurred on the 6 October 2009. For these installations, release measurements concern gaseous and liquid releases

  17. US nuclear policy and business trend of Japan's nuclear industries

    International Nuclear Information System (INIS)

    Matsuo, Yuji

    2010-01-01

    As several countries in the east-Asia and middle-east area have been taking an increasing interest in the deployment of nuclear power generation, Japan's nuclear industries have promoted international business activities including the success in the bid of second nuclear power plants in Vietnam. While there are plans for more than thirty of new reactors in the US, the lifetime extension of existing aged reactors, development of non-existing natural gas and trend of greenhouse gases reduction measures have dampened these plans and probably most of new units will not start construction by 2030. This article reviewed the details of US's new nuclear power introduction, trend of recent government's policies, future perspective of nuclear power construction and business trend of Japan's nuclear industries. Japan's industries should be flexible regarding nuclear power as one option to realize low-carbon society. (T. Tanaka)

  18. The nuclear industry in France

    International Nuclear Information System (INIS)

    Degot, D.

    1981-02-01

    The French nuclear industry is organized around the following main participants: - The E.D.F., owners, industrial architects and operators of the power stations, - The C.E.A. for research and development, with its subsidiary the COGEMA, who deal with all problems involving the fuel cycle, - The Industry with FRAMATOME in charge of the manufacture of nuclear boilers, and ALSTHOM-ATLANTIQUE in charge of turbo-generator units. This paper deals with the activities covered by FRAMATOME and its industrial environment. The standardization of PWR power stations built by French industry and the possibilities of exporting PWR power stations are given a brief mention [fr

  19. Building world-wide nuclear industry success stories - Safe management of nuclear waste and used nuclear fuel

    International Nuclear Information System (INIS)

    Saint-Pierre, S.

    2005-01-01

    Full text: This WNA Position Statement summarizes the worldwide nuclear industry's record, progress and plans in safely managing nuclear waste and used nuclear fuel. The global industry's safe waste management practices cover the entire nuclear fuel-cycle, from the mining of uranium to the long-term disposal of end products from nuclear power reactors. The Statement's aim is to provide, in clear and accurate terms, the nuclear industry's 'story' on a crucially important subject often clouded by misinformation. Inevitably, each country and each company employs a management strategy appropriate to a specific national and technical context. This Position Statement reflects a confident industry consensus that a common dedication to sound practices throughout the nuclear industry worldwide is continuing to enhance an already robust global record of safe management of nuclear waste and used nuclear fuel. This text focuses solely on modern civil programmes of nuclear-electricity generation. It does not deal with the substantial quantities of waste from military or early civil nuclear programmes. These wastes fall into the category of 'legacy activities' and are generally accepted as a responsibility of national governments. The clean-up of wastes resulting from 'legacy activities' should not be confused with the limited volume of end products that are routinely produced and safely managed by today's nuclear energy industry. On the significant subject of 'Decommissioning of Nuclear Facilities', which is integral to modern civil nuclear power programmes, the WNA will offer a separate Position Statement covering the industry's safe management of nuclear waste in this context. The safe management of nuclear waste and used nuclear fuel is a widespread, well-demonstrated reality. This strong safety record reflects a high degree of nuclear industry expertise and of industry responsibility toward the well-being of current and future generations. Accumulating experience and

  20. Nuclear industry: a young sector of excellence

    International Nuclear Information System (INIS)

    Varin, P.

    2017-01-01

    Nuclear industry is the 3. industrial sector in France and is the good reason why the French energy mix is largely carbon-free. The medium term challenges that faces nuclear industry in this country is first to succeed the extensive refit of nuclear power plants with a view on getting the extension of their operating life and secondly to recruit the skilled staff nuclear industry needs. About 8000 jobs dispatched in the 2500 enterprises that forms the nuclear sector will be available each year up to 2020. The age pyramid shows that numerous retirements are expected in the years to come so the issue of skill and knowledge transfer is looming. 25% of recruitment will be made on the basis of work-study contracts particularly for technical jobs. Concerning recruitment, the nuclear sector is competing with other high-tech sectors like aeronautics or the automobile sector, which make things harder. The image that nuclear industry wants to promote of itself is the image of a young, modern, high-tech industry that appeared less than 50 years ago and whose main purpose is to provide a carbon-free electricity to an avid world. (A.C.)

  1. Spain's nuclear components industry

    International Nuclear Information System (INIS)

    Kaibel, E.

    1985-01-01

    Spanish industrial participation in supply of components for nuclear power plants has grown steadily over the last fifteen years. The share of Spanish companies in work for the five second generation nuclear power plants increased to 50% of total capital investments. The necessity to maintain Spanish technology and production in the nuclear field is emphasized

  2. Monitoring around the secret nuclear facilities of naval ports; Surveillance autour des INBS des ports militaires

    Energy Technology Data Exchange (ETDEWEB)

    Jaskierowicz, D. [Marine Nationale, pharmacien en chef, conseiller scientifique et technique, etat-major de la marine, 83 - Toulon (France); Quere, St. [Marine Nationale, capitaine de corvette, adjoint charge de la prise en compte des installations nucleaires sur l' environnement et le personnel, 83 - Toulon (France)

    2010-06-15

    Based within large industrial cities (Brest, Toulon, Cherbourg) or more rural areas like Crozon (Ile Longue), French navy exploits nuclear facilities where are built, maintained and decommissioned nuclear power submarines and aircraft-carrier. The safety and the security of these installations as well as the non-impact on people and environment are continuously monitored. The DSND, a governmental regulatory body dedicated to the Defense, applies the same regulations enforced by the ASN for civilian nuclear activities. Concerning environmental monitoring, the navy answers to the DSND or the ASN, depending on the type of survey. In every nuclear site, an automatic nuclear monitoring sensor system (2SNM) runs 24/7, with the supervision of specialized personnel in radioprotection. Each year, more than 7000 samples are collected in the ecosystem and thousands of measurements are carried out in four laboratories (LASEM in Cherbourg, Brest and Toulon) - SPRS ILO) of the navy. These results are sent to the DSND and have been integrated since February 2010 to the brand-new public web site of the national monitoring network of radioactivity in the environment (RMN). (author)

  3. Nuclear safety and radiation protection report of the Saint-Laurent-des-Eaux nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Laurent-des-Eaux nuclear power plant (Saint-Laurent-Nouan (FR)): 2 partially dismantled graphite-gas reactors and a graphite sleeves storage silo (INB 46 and 74), and 2 PWR reactors in operation (INB 100). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  4. Nuclear safety and radiation protection report of the Saint-Laurent-des-Eaux nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Laurent-des-Eaux nuclear power plant (Saint-Laurent-Nouan (FR)): 2 partially dismantled graphite-gas reactors and a graphite sleeves storage silo (INB 46 and 74), and 2 PWR reactors in operation (INB 100). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  5. Industry plots nuclear revival

    International Nuclear Information System (INIS)

    Nogee, A.

    1984-01-01

    A successful revival of the nuclear power industry will require standardization and a reduction in the number of companies managing construction, according to Atomic Industrial Forum spokesmen. In describing the concept of a few superutilities to build nuclear plants, they emphasize the need for a nuclear culture among construction management. Future plant designs emphasize small scale, with design, engineering, licensing, financing, operator training, and paperwork completed before the sale. Utilities continue to pursue economy-of-scale despite the evidence that small-scale reactors can be economical and are more appropriate for fluctuating demand growth. Financiers want more say in construction plans in the future, while utilities want to establish generating subsidiaries for wholesale power sales

  6. Human resources in the Japanese nuclear industry

    International Nuclear Information System (INIS)

    Katayama, M.

    1995-01-01

    Japan is becoming rapidly a nation with an elderly population. Japanese students are turning away from the manufacturing industries, including the nuclear industry, and turning towards more service oriented industries that are considered to be cleaner and to pay better. Studies have been performed to devise ways to attract young workers to the nuclear industry, which is projected to continue to grown under the current long range energy plants. The paper summarizes the findings and recommendations of the recent studies conducted by the nuclear industry and academic circles. All studies point out that insufficient emphasis is placed on science in the present Japanese educational programme and that implementation of effective programmes to revitalize education in science is most urgently needed to keep Japan in the forefront of high technology. Utilization of advanced computer technology and automation is promoted to improve working conditions and efficiency in the nuclear industry. In addition, the establishment of a professional status of engineers and technicians will be vital for an effective utilization of qualified workers in the nuclear industry. (author). 3 refs, 1 tab

  7. Human capital in nuclear industry

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    On June 7, 2010, as part of the Atomexpo 2010 exhibition, a round-table discussion took place on the topic Human capital in the nuclear industry: challenges and solutions. The article summarizes reports made during the meeting. Tatiana Kozhevnikova, deputy director general of the Rosatom Corporation, made a report about the strategy and best human resource management practices in member companies of the Corporation. She briefly described the state of the human capital in the Russian nuclear industry and outlined the key provisions of the human resource management strategy. Attendees to the round-table discussion elaborated further on the key statements of the report. The discussion has given an evidence that the Russian nuclear industry is giving an enormous importance to human resource management and is firmly intended on successfully tacking the issues associated with the provision of sufficient staff for the industry's safe and efficient development [ru

  8. Privatisation of the UK's nuclear power industry: nuclear's triple challenge

    International Nuclear Information System (INIS)

    Fraser, W.R.I.

    1997-01-01

    At the British Nuclear Congress in December 1996, Lord Fraser of Caryllie, then UK energy minister, set out the three key issues the nuclear industry must tackle for a successful future: (1) increased competition from other energy sources, (2) a growing world market for its skills and (3) a continuing tough regulatory regime. Nuclear power, with electricity generated in the UK rising to 25%, has responded well to competition from other energy sources, and also to the further competition generated by privatisation which has already generated benefits for the public. As other countries with nuclear programmes diversify and upgrade their technology this will create new export opportunities for Britain over and above those already in existence, notably by BNFL in Japan. Other areas that Britain has to offer relate to safety improvements, notably in eastern Europe, and decommissioning, in which Magnox Electric is one of the few operators in the world with experience in decommissioning a full scale commercial reactor. The regulatory framework for the nuclear industry will continue to be as rigorous as ever, but, however the industry is structured, it should be noted that commercial success and continued safe operations are inextricably linked. The industry must operate within the framework of the development of international treaties and agreements in the nuclear field. The Government will continue to take a close interest in the safety, security and prosperity of the nuclear industry, and help Britain as a whole to be a successful and influential player in the international nuclear community. (UK)

  9. The World Nuclear Industry Status Report 2004

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony

    2004-12-01

    Fifty years ago, in September 1954, the head of the US Atomic Energy Commission stated that nuclear energy would become 'too cheap to meter': The cost to produce energy by nuclear power plants would be so low that the investment into electricity meters would not be justified. By coincidence the US prophecy came within three months of the announcement of the world's first nuclear power plant being connected to the grid in.. the then Soviet Union. In June 2004, the international nuclear industry celebrated the anniversary of the grid connection at the site of the world's first power reactor in Obninsk, Russia, under the original slogan '50 Years of Nuclear Power - The Next 50 Years'. This report aims to provide a solid basis for analysis into the prospects for the nuclear power industry. Twelve years ago, the Worldwatch Institute in Washington, WISE-Paris and Greenpeace International published the World Nuclear Industry Status Report 1992. In the current international atmosphere of revival of the nuclear revival debate - it has been a periodically recurring phenomenon for the past twenty years - two of the authors of the 1992 report, now independent consultants, have carried out an updated review of the status of the world nuclear industry. The performance of the nuclear industry over the past year is summed up in this report

  10. Health and safety record of the nuclear industry

    International Nuclear Information System (INIS)

    Carter, M.W.; Carruthers, E.; Button, J.C.E.

    1975-09-01

    This paper examines the claim of the nuclear industry to have an excellent safety record, in terms of health and accident records of workers in the industry. It does not consider accidents which have not resulted in harm to the workers' health. The nuclear industry is considered to include all work with ionising radiations and radioactive materials, in education, research, medicine and industry. Since 'safety' is not an absolute concept, comparisons are made with the published records of other industries, and a study is made of the performance of the nuclear industry in relation to its own safety criteria. Data are presented on the radiation exposure of nuclear workers in Europe, America, India and Australia, in relation to the internationally recommended limits, and there is some discussion of the risks involved in these limits. The death rate in parts of the nuclear industry in America, the United Kingdom, and Australia is presented and compared with the death rate for other industries in those countries, and a listing is made of deaths caused by radiation in the period 1945 to 1968. Injury rates for the US and Australian nuclear industries are also compared with the injury rates for other industries in these countries. Consideration is given to the safety record of individual components of the nuclear industry (using the wide definition of this industry given above), special attention being given to health records of uranium miners, plutonium workers and radiologists. Although there are difficulties in obtaining sufficiently detailed information of this kind it is considered that the data presented, relative to any reasonable standard, demonstrate that the nuclear industry has a safety record to be proud of. (author)

  11. Radioactive wastes of Nuclear Industry

    International Nuclear Information System (INIS)

    1995-01-01

    This conference studies the radioactive waste of nuclear industry. Nine articles and presentations are exposed here; the action of the direction of nuclear installations safety, the improvement of industrial proceedings to reduce the waste volume, the packaging of radioactive waste, the safety of radioactive waste disposal and environmental impact studies, a presentation of waste coming from nuclear power plants, the new waste management policy, the international panorama of radioactive waste management, the international transport of radioactive waste, finally an economic analysis of the treatment and ultimate storage of radioactive waste. (N.C.)

  12. Industry based performance indicators for nuclear power plants

    International Nuclear Information System (INIS)

    Connelly, E.M.; Van Hemel, S.B.; Haas, P.M.

    1990-07-01

    This report presents the results of the first phase of a two-phase study, performed with the goal of developing indirect (leading) indicators of nuclear power plant safety, using other industries as a model. It was hypothesized that other industries with similar public safety concerns could serve as analogs to the nuclear power industry. Many process industries have many more years of operating experience, and many more plants than the nuclear power industry, and thus should have accumulated much useful safety data. In Phase 1, the investigators screened a variety of potential industry analogs and chose the chemical/petrochemical manufacturing industry as the primary analog for further study. Information was gathered on safety programs and indicators in the chemical industry, as well as in the nuclear power industry. Frameworks were selected for the development of indicators which could be transferred from the chemical to the nuclear power environment, and candidate sets of direct and indirect safety indicators were developed. Estimates were made of the availability and quality of data in the chemical industry, and plans were developed for further investigating and testing these candidate indicators against safety data in both the chemical and nuclear power industries in Phase 2. 38 refs., 4 figs., 7 tabs

  13. The Canadian nuclear power industry. Background paper

    International Nuclear Information System (INIS)

    Nixon, A.

    1993-12-01

    Nuclear power, the production of electricity from uranium through nuclear fission, is by far the most prominent segment of the nuclear industry. The value of the electricity produced, $3.7 billion in Canada in 1992, far exceeds the value of any other product of the civilian nuclear industry. Power production employs many more people than any other sector, the capital investment is much greater, and nuclear power plants are much larger and more visible than uranium mining and processing facilities. They are also often located close to large population centres. This paper provides an overview of some of the enormously complex issues surrounding nuclear power. It describes the Canadian nuclear power industry, addressing i particular its performance so far and future prospects. (author). 1 tab

  14. The Canadian nuclear power industry. Background paper

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, A [Library of Parliament, Ottawa, ON (Canada). Science and Technology Div.

    1993-12-01

    Nuclear power, the production of electricity from uranium through nuclear fission, is by far the most prominent segment of the nuclear industry. The value of the electricity produced, $3.7 billion in Canada in 1992, far exceeds the value of any other product of the civilian nuclear industry. Power production employs many more people than any other sector, the capital investment is much greater, and nuclear power plants are much larger and more visible than uranium mining and processing facilities. They are also often located close to large population centres. This paper provides an overview of some of the enormously complex issues surrounding nuclear power. It describes the Canadian nuclear power industry, addressing i particular its performance so far and future prospects. (author). 1 tab.

  15. Market competition in the nuclear industry

    International Nuclear Information System (INIS)

    Taylor, M.

    2008-01-01

    The nuclear industry provides a wide variety of specialized equipment and services to support the construction and operation of nuclear power plants (NPPs). This includes the supply of NPPs themselves, the range of materials and services required in the nuclear fuel cycle, and the services and equipment needed for maintenance and upgrading. The markets to provide these have changed substantially as they have evolved from the government-led early stages of the nuclear industry to predominantly competitive, commercial markets today. (author)

  16. The political economy of the nuclear industry

    International Nuclear Information System (INIS)

    Falk, J.

    1981-01-01

    The changing international context, in particular declining estimates of nuclear capacity and a depression in the nuclear reactor market will influence prospects for a nuclear industry in Australia. Effects of the opposition by trade unions and community groups to uranium mining are discussed. The relationship between political decisions and the economics of the nuclear power industry is stressed

  17. Continuing education in radiation protection in the nuclear fuel cycle: The case of Nuclear Industries of Brazil

    International Nuclear Information System (INIS)

    Souza Pereira, W. de; Kelecom, A.

    2014-01-01

    This paper describes the pedagogical and technical concept that guided training in radiation protection implemented by the Indústrias Nucleares do Brasil (INB; Nuclear Industries of Brazil) to maintain the competence of its technical staff to perform activities with exposure to radiation, the staff responsible for the supervision of this work and as a form of dissemination of knowledge to the staff not involved in the use of ionizing radiation. The groups of workers to be trained are here described, as well as the level of training, the frequency and types of training, the profile of trainers, the training programs, the forms of assessment and recording of training. It also describes the first general training performed in 2004. After this initial training no other general training was realized, and the option was to train small groups of workers, to avoid stopping the production as it occurred when general training was executed. The overall training was conducted in three units: the Uranium Concentration Unit (URA) under production in the city of Caetité, state of Bahia, the Ore Treatment Unit (UTM) undergoing decommissioning at Poços de Caldas, state of Minas Gerais and the Unit of Heavy Minerals (UMP), at Buena, state of Rio de Janeiro. In the initial training at URA 79 workers were trained, distributed in 6 classes (average of 13 students per class); each class had nine hours training and the grades obtained ranged from 7.5 to 10. At UTM, 200 employees were trained distributed in 9 classes (average of 22 students per class); their notes ranged from 8.8 to 10. Finally, at UMP 151 employees were trained, in 5 classes (average of 31 students per class); their grades ranged from 8.6 to 9.0. That year, a total of 180 hours were spent for training 430 employees, with no effective rebuke. Currently employees are trained when they arrive at their Units, and all along the year in small classes, as the general training has been definitely abolished. (author)

  18. Education for the nuclear power industry: Swedish perspective

    International Nuclear Information System (INIS)

    Blomgren, J.

    2005-01-01

    In the Swedish nuclear power industry staff, very few newly employed have a deep education in reactor technology. To remedy this, a joint education company, Nuclear Training and Safety Center (KSU), has been formed. To ensure that nuclear competence will be available also in a long-term perspective, the Swedish nuclear power industry and the Swedish Nuclear Power Inspectorate (SKI) have formed a joint center for support of universities, the Swedish Nuclear Technology Center (SKC). The activities of these organisations, their links to universities, and their impact on the competence development for the nuclear power industry will be outlined. (author)

  19. JAIF's 23rd nuclear industry survey: strengthening industrial foundations under low economic growth

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Each year since the beginning of nuclear development in Japan, Japan Atomic Industrial Forum has conducted the survey of the nuclear-related aspects in mining and manufacturing industries, electric utilities, trading firms, etc., regarding their expenditures, sales and personnel. The results of the 23rd survey for fiscal 1981 (April, 1981, to March, 1982,) are described. The salient points in the year, as compared with fiscal 1980, are as follows: (trend in expenditures) nuclear-related expenditures exceeded yen2 trillion, up 12 %; the operation and maintenance costs of electric utilities varied, but overall, up 25 %; the nuclear-related expenditures of mining and manufacturing industries were up 34 %; (trend in sales) the new record in mining and manufacturing industries - the sales topped yen1 trillion; the sales of reactor equipments rose by 59 %; the sales by mining and manufacturing industries to electric utilities up 42 %; the nuclear-related exports of mining and manufacturing industries grew by 13 %; the revenues and sales exceeded the expenditures in mining and manufacturing industries. (Mori, K.)

  20. Nuclear weapons industry

    International Nuclear Information System (INIS)

    Bertsch, K.A.; Shaw, L.S.

    1984-01-01

    This unique study was written specifically as a reference source for institutional investors concerned about the threat posed to their stock portfolios by the debate over nuclear arms production. The authors focus their analysis on the 26 leading companies in the field. The perspective is neutral and refreshing. Background information on strategic policy, arms control and disarmament, and the influence of the industry on defense policy and the economy is presented rationally. The study also discusses the economic significance of both the conversion from military to civilian production and nuclear freeze initiatives. An appendix contains a fact-filled guide to nuclear weapon systems

  1. JAIF formulates policy for strengthening foundation of nuclear industry

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    With recognition that conditions surrounding the nuclear industry are becoming severe with the slowdown in the growth of the Japanese economy, the Japan Atomic Industrial Forum has been discussing ways and means of strengthening the foundations of the nuclear industry. A subcommittee of the Power Reactor Development Committee has been formed. It comprizes two divisions. The first division focused on economic and social prospects for the future and other basic questions. The second division dealt with specific problems viewed from the position of the nuclear quipment supply industry and measures to resolve them. The report was prepared based on the studies done by the two divisions, and focusing on the strengthening of the basis of the nuclear industry through the year 2010. The report estimates that construction of nuclear power plants will be less than 2 units a year in the coming five year period, and will continue at about 2 units a year until about the year 2000. From this outlook, it discusses the work facing the nuclear industry and the steps to be taken to reduce nuclear power generation costs, efficient research and development and the promotion of international cooperation. The report covers four sections: the position of nuclear power development in the national economy; the present state and tasks of the nuclear industry and the nuclear equipment supply industry; measures for maintaining and strengthening the foundations of the nuclear industry, and the tasks to be done. (Nogami, K.)

  2. Localization and indigenization of China nuclear power industry

    International Nuclear Information System (INIS)

    Zhang Xingfa

    2009-01-01

    It points out that China needs to develop nuclear power to solve the shortage of energy source. Localization and independence is the key for the development of nuclear power industry. Localized and independent nuclear power possesses economical competitiveness. China has the condition and capability to realize localization and independence of nuclear power industry. Technology introduction, adaptation and assimilation can enhance the R and D capability of China's nuclear power industry, and speed up the process of localization and independence. (authors)

  3. Nuclear industry project audit and countermeasures

    International Nuclear Information System (INIS)

    Li Yongxin; Zhang Jian

    2012-01-01

    With China's increasing use of nuclear energy, nuclear power related construction projects related to the deepening of the audit, some of the nuclear industry in construction field of the dominant issues have been more effective containment, such as inflated workload, high-set fixed standards, to improve billing unit price, which overestimate the risk calculation tools and behavior completed audit of the accounts have been able to escape his stuff. However, some nuclear industry construction field with a hidden problem because of its hidden nature, not easily found, and some even have intensified the trend. Construction funds to the country such problems caused by the loss of waste is enormous, to the breeding of corruption provided the soil is fertile, if not promptly and effectively to stop the breeding will spread. This paper on the current construction of the nuclear industry in several major areas of the hidden problems are discussed, and the angle from the audit of appropriate countermeasures. (authors)

  4. Development and clinical application of a computer-aided real-time feedback system for detecting in-bed physical activities.

    Science.gov (United States)

    Lu, Liang-Hsuan; Chiang, Shang-Lin; Wei, Shun-Hwa; Lin, Chueh-Ho; Sung, Wen-Hsu

    2017-08-01

    Being bedridden long-term can cause deterioration in patients' physiological function and performance, limiting daily activities and increasing the incidence of falls and other accidental injuries. Little research has been carried out in designing effective detecting systems to monitor the posture and status of bedridden patients and to provide accurate real-time feedback on posture. The purposes of this research were to develop a computer-aided system for real-time detection of physical activities in bed and to validate the system's validity and test-retest reliability in determining eight postures: motion leftward/rightward, turning over leftward/rightward, getting up leftward/rightward, and getting off the bed leftward/rightward. The in-bed physical activity detecting system consists mainly of a clinical sickbed, signal amplifier, a data acquisition (DAQ) system, and operating software for computing and determining postural changes associated with four load cell sensing components. Thirty healthy subjects (15 males and 15 females, mean age = 27.8 ± 5.3 years) participated in the study. All subjects were asked to execute eight in-bed activities in a random order and to participate in an evaluation of the test-retest reliability of the results 14 days later. Spearman's rank correlation coefficient was used to compare the system's determinations of postural states with researchers' recordings of postural changes. The test-retest reliability of the system's ability to determine postures was analyzed using the interclass correlation coefficient ICC(3,1). The system was found to exhibit high validity and accuracy (r = 0.928, p system was particularly accurate in detecting motion rightward (90%), turning over leftward (83%), sitting up leftward or rightward (87-93%), and getting off the bed (100%). The test-retest reliability ICC(3,1) value was 0.968 (p system developed in this study exhibits satisfactory validity and reliability in detecting changes in-bed

  5. The control of nuclear sector; Le controle du nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The Asn is loaded with the control of the nuclear safety and the radiation protection in France: it provides this control, in the name of the state, to protect the workers, the patients, the public and the environment of the risks in relation with nuclear activities. The control is the core business of Asn. Asn so checks the nuclear basic installations (I.N.B.), since their conception until their dismantling, the pressure equipment specially conceived for these installations, the management of the radioactive waste as well as the transport of radioactive substances. Asn also checks all the industrial and research installations as well as the hospitals where are used ionizing radiations. It is a more recent profession there, because dating the reform of the control of the nuclear power of 2002, which constitutes that of the radiation protection. The first responsibility of the activities at risks falls to the one who begins them. This principle applies to all the sectors checked by Asn: an industrialist is responsible for the safety of the nuclear installations which he exploits, a doctor is responsible for the use of the ionizing radiations which he uses. (N.C.)

  6. Nuclear industry and radioecological safety

    International Nuclear Information System (INIS)

    Semenov, V. G.

    2006-01-01

    The beginning of XXI century is marked with increasing public concern over impact of man-made activity, including nuclear technologies, on the environment. Currently, the anthropocentric principle is applied in the course of the radioecological safety guaranteeing for the environment, which postulates that human protectability serves as guarantee of the environmental one. However, this principle correctness is called in question recently. The ecocentric principle is proposed as an alternative doctrine, defining balance between human importance and that of any other elements of biota. The system recommended isn't intended for the regulatory standards development yet, because of substantial gaps in scientific knowledge. Nevertheless, renunciation of the anthropocentric principle can result in unwarranted tightened regulatory basis, decreasing of nuclear industry evolution rates, and, consequently, breaching of societal and economical priorities. It is obvious that for the safety guaranteeing, nuclear industry shouldn't stand out against a background of other fields of human activity involved hazard factors. Therefore, new conceptions applying within the regulatory system is to be weighted and exclude formal using of discussion theses. More than semi-centennial experience of the anthropocentric approach applying serves as an evidence of safe protection of ecosystems against radiation exposure that ensures safe ecological development of nuclear power industry and other fields of nuclear technologies application. (author)

  7. Manpower development in the US nuclear power industry

    International Nuclear Information System (INIS)

    Todreas, N.E.; Foulke, L.R.

    1985-01-01

    This paper reviews the history and current status of the university nuclear education sector and the utility training sector of the United States (US) nuclear power industry. Recently, the number of programs in the university nuclear education sector has declined, and the remaining programs are in need of both strong governmental and industrial assistance if they are to remain a stable source for educating nuclear engineers and health physicists to staff the resurgence of the nuclear power industry. The utility training sector has undergone remarkable development since the TMI-2 accident. Programs to recruit, train, and qualify the variety of personnel needed, as well as the steps to accredit these programs, are being developed on a systematic, industry-wide basis. A number of new technologies for educating and training personnel are emerging which may be used to create or improve learning environments. Manpower development for the US nuclear power industry is a shared responsibility among the universities, the nuclear utilities, and the nuclear suppliers. This shared responsibility can continue to be best discharged by enhancement of the interaction among all parties with respect to evaluating the proper level of cognitive development within the utility training program

  8. The information of the nuclear industry before and during the nuclear debate

    International Nuclear Information System (INIS)

    Borgstroem, P.

    1978-10-01

    A review of the organization and resources for information and public relations, which the nuclear industry have at its disposal in Sweden as well as in other countries. Furthermore, pre-nuclear organizations in the Northern Countries, which are not financed by the nuclear industry are discussed. (E.R.)

  9. Long-Term Nuclear Industry Outlook - 2004

    Energy Technology Data Exchange (ETDEWEB)

    Reichmuth, Barbara A.; Wood, Thomas W.; Johnson, Wayne L.

    2004-09-30

    The nuclear industry has become increasingly efficient and global in nature, but may now be poised at a crossroads between graceful decline and profound growth as a viable provider of electrical energy. Predicted population and energy-demand growth, an increased interest in global climate change, the desire to reduce the international dependence on oil as an energy source, the potential for hydrogen co-generation using nuclear power reactors, and the improved performance in the nuclear power industry have raised the prospect of a “nuclear renaissance” in which nuclear power would play an increasingly more important role in both domestic and international energy market. This report provides an assessment of the role nuclear-generated power will plan in the global energy future and explores the impact of that role on export controls.

  10. Hazard and safety in the nuclear industry

    International Nuclear Information System (INIS)

    Tadmor, J.

    1978-01-01

    Although the number of victims in the nuclear industry has been extremely low as compared with the number of victims in other spheres of human activity society has been willing to put up with a high number of accidents resulting in few victims per accident but refuses to accept an extremely rare accident resulting in a high number of victims. The U.S. nuclear industry is spending almost 2000 dollars for each reduction of a man x rem unit and this investment raises the ''man-life value'' in the nuclear industry to 10 million dollars as compared with 10,000 to 20,000 dollars spent in other activities (roentgen, early cancer detection, etc.). To reduce the exaggerated burden placed on the nuclear industry the safety expenditures should be spread over a maximum possible range of human activities. (B.G.)

  11. Report on nuclear safety and transparency 2011 - Saclay

    International Nuclear Information System (INIS)

    2012-06-01

    After a brief presentation of the Saclay CEA centre, this report indicates the different safety measures related to different risks, to emergency situations, to inspections and audits, and to nuclear base installations (INB). It describes measures related to radiation protection (organisation, personnel dosimetry) and some remarkable facts which occurred in 2011. It presents the different significant events which occurred in 2011 and were declared to the ASN. It discusses the results of measurements of liquid and gaseous releases from the installations and their impact on the environment. It addresses the radioactive wastes which are warehoused on the site (measures to limit their volume and to limit their impact on health and on the environment, notably on water and soils, types and quantities of wastes stored in INBs

  12. Report on nuclear safety and transparency 2011 - Grenoble

    International Nuclear Information System (INIS)

    2012-06-01

    After a brief presentation of the Grenoble CEA centre, this report indicates the different safety measures related to different risks, to emergency situations, to inspections and audits, and to nuclear base installations (INB). It describes measures related to radiation protection organisation and some remarkable facts which occurred in 2011. It presents the different significant events which occurred in 2011 and were declared to the ASN. It discusses the results of measurements of liquid and gaseous releases from the installations and their impact on the environment. It addresses the radioactive wastes which are warehoused on the site (measures to limit their volume and to limit their impact on health and on the environment, notably on water and soils, types and quantities of wastes stored in INBs)

  13. The worldwide nuclear industry and its markets

    International Nuclear Information System (INIS)

    Mons, L.

    2000-06-01

    The world nuclear industry has entered a phase of low activity since the beginning of the 90's. The opening of electricity markets to competition, the reserve of part of the public opinion with respect to nuclear energy and the competition of other power production sources explain the lack of dynamism of nuclear markets. In this context of uncertainties, the nuclear sector has started a re-structuration in depth with new strategic trends which will be decisive for the perenniality of the nuclear industry. The front-end of the fuel cycle is disturbed by production over-capacities which lead to strong tensions on prices. The veering of the German and Belgian policies has had strong impacts on the spent fuels reprocessing activity and the reactor construction activity is in decline in Europe and in the US. On the other hand, services are developing with the extension of the service life of nuclear plants and the waste management and dismantling markets are emerging. The main stakes that the occidental nuclear actors have to face today are: improving the competitiveness of nuclear industry, mastering the management of long-living radioactive wastes, proving the safeness of nuclear power, countering the arrival of Asian competitors. In front of these stakes, the nuclear actors have to take initiatives such as: concentration, vertical integration, technological innovation, communication, diversification etc.. This study examines the overall segments of the world nuclear industry. It comprises also a behaviour and strategy analysis of 13 major actors of this sector. (J.S.)

  14. Europairs project: creating an alliance of nuclear and non-nuclear industries for developing nuclear cogeneration

    International Nuclear Information System (INIS)

    Hittner, Dominique; Bogusch, Edgar; Viala, Celine; Angulo, Carmen; Chauvet, Vincent; Fuetterer, Michael A.; De Groot, Sander; Von Lensa, Werner; Ruer, Jacques; Griffay, Gerard; Baaten, Anton

    2010-01-01

    Developers of High Temperature Reactors (HTR) worldwide acknowledge that the main asset for market breakthrough is its unique ability to address growing needs for industrial cogeneration of heat and power (CHP) owing to its high operating temperature and flexibility, adapted power level, modularity and robust safety features. HTR are thus well suited to most of the non-electric applications of nuclear energy, which represent about 80% of total energy consumption. This opens opportunities for reducing CO 2 emissions and securing energy supply which are complementary to those provided by systems dedicated to electricity generation. A strong alliance between nuclear and process heat user industries is a necessity for developing a nuclear system for the conventional process heat market, much in the same way as the electronuclear development required a close partnership with utilities. Initiating such an alliance is one of the objectives of the EUROPAIRS project just started in the frame of the EURATOM 7. Framework Programme (FP7) under AREVA coordination. Within EUROPAIRS, process heat user industries express their requirements whereas nuclear industry will provide the performance window of HTR. Starting from this shared information, an alliance will be forged by assessing the feasibility and impact of nuclear CHP from technical, industrial, economical, licensing and sustainability perspectives. This assessment work will allow pointing out the main issues and challenges for coupling an HTR with industrial process heat applications. On this basis, a Road-map will be elaborated for achieving an industrially relevant demonstration of such a coupling. This Road-map will not only take into consideration the necessary nuclear developments, but also the required adaptations of industrial application processes and the possible development of heat transport technologies from the nuclear heat source to application processes. Although only a small and short project (21 months

  15. Nuclear power industry, 1981

    International Nuclear Information System (INIS)

    1981-12-01

    The intent of this publication is to provide a single volume of resource material that offers a timely, comprehensive view of the nuclear option. Chapter 1 discusses the development of commercial nuclear power from a historical perspective, reviewing the factors and events that have and will influence its progress. Chapters 2 through 5 discuss in detail the nuclear powerplant and its supporting fuel cycle, including various aspects of each element from fuel supply to waste management. Additional dimension is brought to the discussion by Chapters 6 and 7, which cover the Federal regulation of nuclear power and the nuclear export industry. This vast body of thoroughly documented information offers the reader a useful tool in evaluating the record and potential of nuclear energy in the United States

  16. Union innovation in Ontario's nuclear industry

    International Nuclear Information System (INIS)

    MacKinnon, D.

    2003-01-01

    Over the last decade the Power Worker's Union (PWU) has embarked on a number of innovative approaches that have provided significant benefit to the nuclear industry. These include advanced labour relations approaches, equity participation and groundbreaking skills training initiatives. This presentation outlines these and other initiatives in the context of the union's view of the nuclear generation industry's future. (author)

  17. The Canadian nuclear industry - a national asset

    International Nuclear Information System (INIS)

    1985-03-01

    The economic importance of the Canadian nuclear industry in saving costs and creating jobs is expounded. The medical work of Atomic Energy of Canada Limited is also extolled. The Canadian Nuclear Association urges the federal government to continue to support the industry at home, and to continue to promote nuclear exports. This report was prepared in response to the Federal Finance Minister's 'A New Direction for Canada'

  18. Deliberated opinion of the Environment Authority on the request of modification of the exploitation of the basic nuclear installation (INB) nr 93 'Georges Besse' by EURODIF-Production of the Tricastin site (Drome and Vaucluse)

    International Nuclear Information System (INIS)

    2011-01-01

    This report proposes an environmental review of the content of a request for the modification of the decree authorizing the creation of the 'Georges Besse' INB 93 (basic nuclear installation), a uranium enrichment plant exploited by EURODIF-production on the Tricastin site. This modification notably deals with the PRISME operation. The report describes and discusses the objectives of this operation, its context and the concerned operation program. It indicated the concerned procedures. It discusses the style and content of the impact study from a general point of view, and outlines weaknesses and methodological problems. It more particularly discusses the analysis of the present site condition, the project presentation and justification, the analysis of impacts on the environment and on health, of impacts related to waste management, of non-radiological impacts on water, of impacts on air and on biodiversity, and of social and economic impacts. It also addresses the analysis of impacts of construction works. It finally discusses the analysis of the risk management study

  19. Nuclear industry is ready for digitalization

    International Nuclear Information System (INIS)

    Le Ngoc, B.

    2017-01-01

    Nuclear industry is now embracing the digital revolution by adapting existing digital technologies concerning big data, additive manufacturing, connected objects or enhanced reality to the constraints of nuclear industry. The expected benefits will be manifold: to assure and improve the competitiveness of new reactors, to accelerate the implementation of innovations, to develop preventive maintenance, and to allow a better communication between teams working on the same project. In some big enterprises a chief digital officer has been commissioned to prioritize the introduction of digital technologies in industrial projects. (A.C.)

  20. Environmental impact of the nuclear industry in China

    International Nuclear Information System (INIS)

    Pan Ziqiang; Wang Zhibo; Chen Zhuzhou; Zhang Yongxing; Xie Jianlun

    1996-01-01

    Since its foundation in 1955, the nuclear industry has become a comprehensive industrial, scientific and technical system in China. The nuclear industry has obviously brought great profit to the country, but how much environmental effect it has caused is a question of common interest which we should answer. This report shows the environmental assessment of the nuclear fuel cycle in China. (author). 4 refs, 1 fig., 22 tabs

  1. Nuclear industry after the Fukushima accident

    International Nuclear Information System (INIS)

    Branche, Thomas; Billes-Garabedian, Laurent; Salha, Bernard; Behar, Christophe; Dupuis, Marie-Claude; Labalette, Thibaud; Lagarde, Dominique; Planchais, Bernard; West, Jean-Pierre; Stubler, Jerome; Lancia, Bruno; Machenaud, Herve; Einaudi, Andre; Anglaret, Philippe; Brachet, Yves; Bonnave, Philippe; Knoche, Philippe; Gasquet, Denis

    2013-01-01

    This special dossier about the situation of nuclear industry two years after the Fukushima accident comprises 15 contributions dealing with: the nuclear industry two years after the Fukushima accident (Bernard Salha); a low-carbon electricity at a reasonable cost (Christophe Behar); nuclear engineering has to gain even more efficiency (Thomas Branche); how to dispose off the most radioactive wastes (Marie-Claude Dupuis, Thibaud Labalette); ensuring the continuation for more than 40 years onward (Denis Gasquet); developing and investing in the future (Philippe Knoche); more than just signing contracts (Dominique Lagarde); immersed power plants, an innovative concept (Bernard Planchais); R and D as a source of innovation for safety and performances (Jean-Pierre West); dismantlement, a very long term market (Jerome Stubler, Bruno Lancia); a reference industrial model (Herve Machenaud); recruiting and training (Andre Einaudi); a diversity of modern reactors and a world market in rebirth (Philippe Anglaret); an industrial revolution is necessary (Yves Brachet); contracts adapted to sensible works (Philippe Bonnave)

  2. The nuclear industry - pollution and risks

    International Nuclear Information System (INIS)

    Fremlin, J.H.

    1985-01-01

    Unlike other power sources, the only pollution from the nuclear industry is radioactive pollution, which on average in Britain represents 0.2% of the annual dose due to natural background radiation. This 0.2% is not spread uniformly over the population and there is genuine concern about its effects where it is most concentrated. The only significant doses of radiation to the general public due to the nuclear industry are derived from the spent-fuel reprocessing plant at Sellafield, and in particular from the concentration of Caesium-134 and Caesium-137 in fish, Ruthenium-106 in edible seaweeds and plutonium in shellfish and in silt. The concern about the possible escape of high-level wastes stored at the Sellafield site is discussed, and the hazard compared with that dangerous chemicals stored at other industrial sites. The effects of pollution by the nuclear industry, based on the conventional and generally accepted view of radiation risks, add up to a few deaths per year in the 50 million population of England and Wales from an industry producing 15% of the electricity needs of those countries. When this is compared with the risk associated with other methods of electricity production, the author concludes that replacement by nuclear power of any major source of power using fossil fuel, with the possible exception of natural gas, would save lives

  3. The European nuclear industry - an overview

    International Nuclear Information System (INIS)

    Berke, Claus

    1994-01-01

    In his talk, the President of Foratom, Dr. Claus Berke, reviews the present state of the nuclear industry in Europe. The European nuclear park is still the largest of any region in the world. In some countries, there has been a moratorium on new construction in recent years. This has made life for the supplying industry very difficult. One positive side-effect o at has been a significant rationalisation of the industry. In the course of this the previous vertical integration within European states has given place to the creation of important new transnational structures. In his talk, Dr. Berke describes some of the most important facets of the 'Europeanisation' of the industry, both in the area of power-plants and of the nuclear fuel-cycle. He also describes the increasing cooperation between utilities and suppliers in Western Europe and the operators of nuclear power plant in Eastern Europe, which is aimed at introducing a safety culture and an institutional framework in the East as close as possible to that which exists in Western Europe. Dr. Berke concludes that, over the coming years, both economic and environmental arguments will start to reverse the present political opposition, in many European countries, to new building programmes, and that the industry is likely be in a healthier state by the end of the decade

  4. Atomic nanoscale technology in the nuclear industry

    CERN Document Server

    Woo, Taeho

    2011-01-01

    Developments at the nanoscale are leading to new possibilities and challenges for nuclear applications in areas ranging from medicine to international commerce to atomic power production/waste treatment. Progress in nanotech is helping the nuclear industry slash the cost of energy production. It also continues to improve application reliability and safety measures, which remain a critical concern, especially since the reactor disasters in Japan. Exploring the new wide-ranging landscape of nuclear function, Atomic Nanoscale Technology in the Nuclear Industry details the breakthroughs in nanosca

  5. Industrial nuclear gauges

    International Nuclear Information System (INIS)

    Bennerstedt, T.

    1986-01-01

    A great number of industrial nuclear gauges are used in Sweden. The administrative routines for testing, approval and licensing are briefly described. Safety standards, including basic ICRP criteria, are summarized and a theoretical background to the various measuring techniques is given. Numerous practical examples are given. (author)

  6. Preliminary cost estimating for the nuclear industry

    International Nuclear Information System (INIS)

    Klumpar, I.V.; Soltz, K.M.

    1985-01-01

    The nuclear industry has higher costs for personnel, equipment, construction, and engineering than conventional industry, which means that cost estimation procedures may need adjustment. The authors account for the special technical and labor requirements of the nuclear industry in making adjustments to equipment and installation cost estimations. Using illustrative examples, they show that conventional methods of preliminary cost estimation are flexible enough for application to emerging industries if their cost structure is similar to that of the process industries. If not, modifications can provide enough engineering and cost data for a statistical analysis. 9 references, 14 figures, 4 tables

  7. Information report on nuclear safety and radiation protection of MELOX - Issue 2012

    International Nuclear Information System (INIS)

    2013-06-01

    Published in compliance with the French code of the environment, this report first presents different aspects of the MELOX plant which produces MOX fuel: location and environment, history of basic nuclear installation or INB 151, presentation of the nuclear operator and of the industrial operator, assets of MOX fuel, MOX customers, regulatory framework of the MELOX plant, policy for sustainable development and continuous progress. It addresses the various measures regarding nuclear safety and radiation protection: general overview of nuclear safety in France, presentation of the Areva's nuclear safety Charter, measures adopted in MELOX, review for 2012 and perspectives for 2013. The next part addresses nuclear events: presentation of the INES scale and of the event declaration procedure, review of events declared in 2012 and regarding MELOX. The report gives an overview of activities and measures regarding protection and control of the environment: environmental management, consumption of natural resources, control of effluent releases, measurement of the impact on the environment, waste management, and perspectives for 2013. The last chapter reviews the actions undertaken in the field of transparency and information. Recommendations of the CHSCT are reported

  8. Information report on nuclear safety and radiation protection of MELOX - Issue 2013

    International Nuclear Information System (INIS)

    2014-06-01

    Published in compliance with the French code of the environment, this report first presents different aspects of the MELOX plant which produces MOX fuel: location and environment, history of basic nuclear installation or INB 151, presentation of the nuclear operator and of the industrial operator, assets of MOX fuel, MOX customers, regulatory framework of the MELOX plant, policy for sustainable development and continuous progress. It addresses the various measures regarding nuclear safety and radiation protection: general overview of nuclear safety in France, presentation of the Areva's nuclear safety Charter, measures adopted in MELOX, review for 2013 and perspectives for 2014. The next part addresses nuclear events: presentation of the INES scale and of the event declaration procedure, review of events declared in 2013 and regarding MELOX. The report gives an overview of activities and measures regarding protection and control of the environment: environmental management, consumption of natural resources, control of effluent releases, measurement of the impact on the environment, waste management, and perspectives for 2014. The last chapter reviews the actions undertaken in the field of transparency and information. Recommendations of the CHSCT are reported

  9. Information report on nuclear safety and radiation protection of MELOX - Issue 2014

    International Nuclear Information System (INIS)

    2015-06-01

    Published in compliance with the French code of the environment, this report first presents different aspects of the MELOX plant which produces MOX fuel: location and environment, history of basic nuclear installation or INB 151, presentation of the nuclear operator and of the industrial operator, assets of MOX fuel, MOX customers, regulatory framework of the MELOX plant, policy for sustainable development and continuous progress. It addresses the various measures regarding nuclear safety and radiation protection: general overview of nuclear safety in France, presentation of the Areva's nuclear safety Charter, measures adopted in MELOX, review for 2014 and perspectives for 2015. The next part addresses nuclear events: presentation of the INES scale and of the event declaration procedure, review of events declared in 2014 and regarding MELOX. The report gives an overview of activities and measures regarding protection and control of the environment: environmental management, consumption of natural resources, control of effluent releases, measurement of the impact on the environment, waste management, and perspectives for 2015. The last chapter reviews the actions undertaken in the field of transparency and information. Recommendations of the CHSCT are reported

  10. NIASA: Nuclear Industry Association of South Africa

    International Nuclear Information System (INIS)

    Mollard, P.; Louf, P.H.; Gentet, G.; Doix, G.

    2015-01-01

    NIASA (Nuclear Industry Association of South Africa) aims at promoting the highest standards in the development and use of nuclear technologies. NIASA was founded in 2007. South-Africa has a long history in nuclear activity since the construction of the first nuclear power plant ever built on African soil was commissioned in 1984 in South-Africa (Koeberg plant equipped with two 900 MW reactors). There is also an important center for nuclear research near Pretoria that was founded in 1948 to regulate the prospecting for uranium. NECSA (South African Nuclear Energy Corporation is a state-owned public company) that manages nuclear research, operates the Safari-1 (2 MWe - commissioned in 1965) research reactor and manages the national radioactive waste center located at Vaalputs. The South African nuclear industry employs about 4000 people. (A.C.)

  11. The World Nuclear Industry Status Report 2012

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie

    2012-07-01

    Twenty years after its first edition, World Nuclear Industry Status Report 2012 portrays an industry suffering from the cumulative impacts of the world economic crisis, the Fukushima disaster, ferocious competitors and its own planning and management difficulties. The report provides a global overview of the history, the current status and trends of nuclear power programs in the world. It looks at units in operation and under construction. Annex 1 also provides detailed country-by-country information. A specific chapter assesses the situation in potential newcomer countries. For the first time, the report looks at the credit-rating performance of some of the major nuclear companies and utilities. A more detailed chapter on the development patterns of renewable energies versus nuclear power is also included. The performance of the nuclear industry over the 18 months since the beginning of 2011 is summed up in this report

  12. Japan's nuclear industry; taking off in the mist

    International Nuclear Information System (INIS)

    1979-01-01

    This survey of the nuclear industry aimed at investigating the results and prospects of nuclear energy-related sales, expenditures and manpower in electric utilities, mining and manufacturing industries and trading companies in Japan, so that the study of the economic aspects of the nuclear industry and the analysis of problems may contribute to the sound development of the industry and provide with fundamental informations for interested persons in all sectors. It covers the fiscal year 1978, and is the 20th of a series of annual investigations. The fiscal year 1978 began with the court ruling on the Ikata case, and ended with the impact of the accident in the Three Mile Island plant, USA. As for the results of survey, the answers to questionnaire, the trend of expenditures, the trend of sales, the trend of manpower, the prospects for the future, and the flow of money in the nuclear industry are reported. The gross expenditures in private industries increased by 41% to 1,450 billion yen in comparison with the previous fiscal year. Sales exceeded expenditures by 12,600 million yen in mining and manufacturing industries. Manpower increased by 9% in electric utilities and 7% in mining and manufacturing industries. The construction of 3 nuclear power plants is due to start in fiscal 1978. (Kako, I.)

  13. Radiation safety in nuclear industry in retrospect and perspective

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1993-01-01

    More than 30 years have passed since the starting up of nuclear industry in China from the early 1950's. Over the past 30-odd years, nuclear industry has always kept a good record in China thanks to the policy of 'quality first, safety first' clearly put forward for nuclear industry from the outset and a lot of suitable effective measures taken over that period. Internationally, there is rapid progress in radiation protection and nuclear safety (hereafter refereed to as radiation safety) and a number of new concepts in the field of radiation protection have been advanced. Nuclear industry is developing based on the international standardization. To ensure the further development of nuclear utility, radiation safety needs to be further strengthened

  14. Development and issues of nuclear industry in Taiwan

    International Nuclear Information System (INIS)

    Kuangchi Liu

    1994-01-01

    Industrial and economic developments in Taiwan have achieved a so-called 'miracle' in the last decades. Endeavors by the private enterprise, prudent planning by the government, and the devoted efforts by the diligent and creative labor forces have been credited jointly with the result. To develop a sustainable nuclear industry in support of an efficient and safe power generation and other applications of nuclear energy in Taiwan, continuing efforts from the private industry, government and each individual of the nuclear industry will be required. In this paper, milestones of the past and major issues for future developments will be discussed

  15. Knowledge management for nuclear industry operating organizations

    International Nuclear Information System (INIS)

    2006-10-01

    The nuclear energy sector is characterized by lengthy time frames and technical excellence. Early nuclear plants were designed to operate for 40 years but their service life now frequently extends between 50 and 60 years. Decommissioning and decontamination of nuclear plants will also be spread over several years resulting in a life cycle - from cradle to grave - in excess of 100 years, which gives rise to two challenges for the nuclear industry: (1) Retention of existing skills and competencies for a period of over fifty years, particularly in countries where no new nuclear power plants are being planned; and (2) Development of new skills and competencies in the areas of decommissioning and radioactive waste management in many industrialized countries if younger workers cannot continue to be attracted to the nuclear disciplines. As many nuclear experts around the world are retiring, they are taking with them a substantial amount of knowledge and corporate memory. Typically, these retirees are individuals who can answer questions very easily and who possess tacit knowledge never before extracted from them. The loss of such employees who hold knowledge critical to either operations or safety poses a clear internal threat to the safe and reliable operation of nuclear power plants (NPPs). Therefore, the primary challenge of preserving such knowledge is to determine how best to capture tacit knowledge and transfer it to successors. These problems are exacerbated by the deregulation of energy markets around the world. The nuclear industry is now required to reduce its costs dramatically in order to compete with generators that have different technology life cycle profiles. In many countries, government funding has been dramatically reduced or has disappeared altogether while the profit margins of generators have been severely squeezed. The result has been lower electricity prices but also the loss of expertise as a result of downsizing to reduce salary costs, a loss of

  16. Personal radiation protection in nuclear industry

    International Nuclear Information System (INIS)

    Gol'dshtejn, D.S.; Koshcheev, V.S.

    1983-01-01

    Specific peculiarities of organization of personal radiation protection at various nuclear industry enterprises when dealing with radioactive and other toxic substances are illuminated. Effect of heatin.g and cooling microclimate is discussed. Medical and technical requirements for personal protection means and tasks of personal protection in the field of nuclear industry are considered in short along with some peculiarities of application of different kinds of personal protection means and psychological aspects of personnel protection

  17. Improving Industry-Relevant Nuclear-Knowledge Development through Special Partnerships

    International Nuclear Information System (INIS)

    Cilliers, A.

    2016-01-01

    Full text: South African Network for Nuclear Education Science and Technology (SAN NEST) has the objective to develop the nuclear education system in South Africa to a point where suitably qualified and experienced nuclear personnel employed by nuclear science and technology programmes in South Africa are predominantly produced by the South African education system. This is done to strengthen the nuclear science and technology education programmes to better meet future demands in terms of quality, capacity and relevance. To ensure sustainable relevance, it is important to develop special partnerships with industry. This paper describes unique partnerships that were developed with nuclear industry partners. The success of these partnerships has ensured more industry partners to embrace the model which has proven to develop relevant knowledge, support research and provide innovative solutions for industry. (author

  18. Business environment of nuclear power industry in Korea

    International Nuclear Information System (INIS)

    Lee, Yoon Young

    2003-01-01

    In Korea, there are total of 18 Nuclear Power Plants in operation as of the end of 2002 and 6 more plants are under construction. The first project for the Advanced Power Reactor (APR) 1400 nuclear power plant is being launched to provide reliable electricity economical competitiveness in Korea. The competitive business environment both globally and in Korea, where the power industry is undergoing significant restructuring, is requiring the Korean nuclear industry to continually improve the economic associated with nuclear power. Introduction of the APR 1400 design and continued improvement of local capabilities are two of the ways that the industry is responding to the challenge. (author)

  19. Nuclear Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Cong, W., E-mail: eweike@263.net.cn [Bureau of Geology, China National Nuclear Corporation, Beijing (China)

    2014-05-15

    The paper presents an overview of the present situation and future plans for the development of nuclear power in China. In particular it looks at the present electricity generation system, future demand and plans for nuclear power plants to meet the increasing demands for electrical power in the country. It summarizes the state of uranium exploration activities and planned production of uranium resources, both nationally and internationally. In addition, it provides a brief overview of the existing administrative situation in the nuclear power industry in China and sets out the main challenges to future development. (author)

  20. The nuclear industries in the European community

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The paper discusses the nuclear industries within the European Community. The strategic importance of nuclear energy is outlined, along with the economic benefits of nuclear power. The objectives of the Community's nuclear programme are described, and include nuclear requirements in Europe, uranium supplies and management of radioactive waste. (UK)

  1. Nuclear techniques in industry

    International Nuclear Information System (INIS)

    Hammad, F.H.

    1994-01-01

    Nuclear techniques are utilized in almost every industry. The discussion in this paper includes discussions on tracer methods and uses nucleonic control systems technology; non-destructive testing techniques and radiation technology. 1 fig., 2 tabs

  2. Nuclear dual-purpose plants for industrial energy

    International Nuclear Information System (INIS)

    Klepper, O.H.

    1976-01-01

    One of the major obstacles to extensive application of nuclear power to industrial heat is the difference between the relatively small energy requirements of individual industrial plants and the large thermal capacity of current power reactors. A practical way of overcoming this obstacle would be to operate a centrally located dual-purpose power plant that would furnish process steam to a cluster of industrial plants, in addition to generating electrical power. The present study indicates that even relatively remote industrial plants could be served by the power plant, since it might be possible to convey steam economically as much as ten miles or more. A survey of five major industries indicates a major potential market for industrial steam from large nuclear power stations

  3. Prospects of nuclear industry in Latin American

    International Nuclear Information System (INIS)

    Brito, S.; Consentino, J.; Eibenschuts, J.; Gasparian, A.E.; Lepecki, W.; Mueller, A.E.F.; Spitalnik, J.

    1984-01-01

    The prospects of nuclear generation in Latin America are presented. It is mentioned that prior to the implementation of a nuclear power programme a legal, organizational and industrial infrastructure has to be developed as a condition for an effetive technology transfer. It is also mentioned that by the expansion of regional cooperation, existing experience and know-how in Latin America nuclear industry, specially regarding small and medium power reactors, could become an important development factor for the whole region. (R.S.) [pt

  4. In-bed accountability of tritium in production scale metal hydride storage beds

    International Nuclear Information System (INIS)

    Klein, J.E.

    1995-01-01

    An ''in-bed accountability'' (IBA) flowing gas calorimetric measurement method has been developed and implemented to eliminate the need to remove tritium from production scale metal hydride storage beds for inventory measurement purposes. Six-point tritium IBA calibration curves have been completed for two, 390 gram tritium metal hydride storage beds. The calibration curves for the two tritium beds are similar to those obtained from the ''cold'' test program. Tritium inventory errors at the 95 percent confidence level ranged from ± 7.3 to 8.6 grams for the cold test results compared to ± 4.2 to 7.5 grams obtained for the two tritium calibrated beds

  5. Dialogue between the nuclear industry and environmentalists is the key

    International Nuclear Information System (INIS)

    Padley, P.J.

    1987-01-01

    'Nuclear energy - the good news for British Industry' was the title of a meeting organised by the Confederation of British Industry in July 1987. This article summarizes the contributions of each of the speakers. Between them they produced figures on the importance of the nuclear industry in various countries including the USA, France and the United Kingdom. The risks were mentioned, also the public fears following the accident at Chernobyl. The UK policy on the disposal of nuclear waste is summarized. The disposal is not technically difficult, only politically so because of adverse public opinion. These points also emerged; the nuclear industry must liaise with environmentalists and the UK manufacturing industry needs low cost energy which the nuclear industry could supply. However, the long-term development of nuclear power is only possible if there are no more reactor accidents leading to injury by radioactivity. (U.K.)

  6. Nuclear process steam for industry

    International Nuclear Information System (INIS)

    Seddon, W.A.

    1981-11-01

    A joint industrial survey funded by the Bruce County Council, the Ontario Energy Corporation and Atomic Energy of Canada Limited was carried out with the cooperation of Ontario Hydro and the Ontario Ministry of Industry and Tourism. Its objective was to identify and assess the future needs and interest of energy-intensive industries in an Industrial Energy Park adjacent to the Bruce Nuclear Power Development. The Energy Park would capitalize on the infrastructure of the existing CANDU reactors and Ontario Hydro's proven and unique capability to produce steam, as well as electricity, at a cost currently about half that from a comparable coal-fired station. Four industries with an integrated steam demand of some 1 x 10 6 lb/h were found to be prepared to consider seriously the use of nuclear steam. Their combined plants would involve a capital investment of over $200 million and provide jobs for 350-400 people. The high costs of transportation and the lack of docking facilities were considered to be the major drawbacks of the Bruce location. An indication of steam prices would be required for an over-all economic assessment

  7. C. The nuclear industry in Europe

    International Nuclear Information System (INIS)

    1976-01-01

    Most of the European states have made a large commitment to nuclear power. In some aspects, such as fast breeder technology and oxide fuel reprocessing, they clearly lead the rest of the world. The industry is highly competitive, and is able to win contracts over US firms, even though the products offered are basically of US designs. It is also characterised by a large degree of co-operation and dependency amongst member countries. Many developments and services are of a joint nature. To ensure growth in the industry, and reduce foreign involvement, many of the governments have bought large segments of domestic companies, often from US firms. Government agencies themselves have transformed their service departments (such as those involved in the fuel cycle business) so that they now operate under the guise of commercial enterprises. These steps have arisen principally because of the large financial commitments normally associated with nuclear power. As a result of this, and despite the recent economic depression, the nuclear industry in Europe generally appears healthy. It does not seem to be suffering to the same extent from the problems that the industry in the USA is currently facing. Even though some states are experiencing a decrease in the projected rate of growth of energy demand, expectations are that an increasing proportion of energy requirements in most European countries will be met from nuclear power. The industry, both for the construction of generating capacity and fuel cycle services, is anticipating growth and financial profit

  8. 2007 transparency and nuclear safety report. CEA Cadarache. Volumes 1 + 2

    International Nuclear Information System (INIS)

    2007-01-01

    After a general presentation of the Cadarache site and of its nuclear installations, the first volume of this report describes the various measures concerning the site safety: safety organisation, general measures, measures related to various risks, control of emergency situations, inspections, audits and second level control, measures in basic nuclear installations. It describes the measures concerning the radioprotection on this site: organisation, significant facts, and dose measurement results. It describes significant events which occurred in relationship with nuclear safety and radioprotection, presents results of release measurements and of radiological and chemical assessments of the impact these releases on the environment. The report then describes measures implemented to limit the volume of stored radioactive wastes and also their impact on health and on the environment. It provides a series of tables indicating the nature and quantities of wastes which are stored in the different basic nuclear installations of Cadarache. It reports the recommendations expressed by the CHSCT (committee on hygiene, security and working conditions) after the 2006 report. The second volume proposes the same information for two specific nuclear installations belonging to Areva and located in Cadarache, the INB 32 and 54 (INB stands for basic nuclear installation), for which the significant events occurred on the 13. of March and on the 25. of May 2007. For these installations, release measurements concern gaseous and liquid releases

  9. The nuclear industry in the European Community

    International Nuclear Information System (INIS)

    Gasterstaedt, N.

    1990-01-01

    In its reference program of 1984, the Commission presented the guidelines for the objectives in the field of nuclear electricity production within the Community. In addition, the effects have been investigated which concern the realization of these objectives for all persons involved in nuclear energy: local government, utility companies and industry. The question of nuclear energy is part of the general energy policy. Therefore, the reference program of 1984 was one of the elements which has been considered up to 1995 by the Council when defining the objectives for energy economy. The guidelines of the Commission in the reference program of 1984 are still valid today. It is important, however, to check the effects of the completion of the internal market on nuclear industry. Therefore, the Commission announced in its working program of 1989 that it will revise the reference nuclear program with regard to the prospects of the European internal market. The present document fulfills this obligation. The problems of the industry for the design and construction of nuclear power plants are treated intentionally. After the Commission for Economic and Social Affairs has given its statement, the commission will publish the document officially. (orig./UA) [de

  10. Nuclear industry - challenges in chemical engineering

    International Nuclear Information System (INIS)

    Sen, S.; Sunder Rajan, N.S.; Balu, K.; Garg, R.K.; Murthy, L.G.K.; Ramani, M.P.S.; Rao, M.K.; Sadhukhan, H.K.; Venkat Raj, V.

    1978-01-01

    As chemical engineering processes and operations are closely involved in many areas of nuclear industry, the chemical engineer has a vital role to play in its growth and development. An account of the major achievements of the Indian chemical engineers in this field is given with view of impressing upon the faculty members of the Indian universities the need for taking appropriate steps to prepare chemical engineers suitable for nuclear industry. Some of the major achievements of the Indian chemical engineers in this field are : (1) separation of useful minerals from beach sand, (2) preparation of thorium nitrate of nuclear purity from monazite, (3) processing of zircon sand to obtain nuclear grade zirconium and its separation from hafnium to obtain zirconium metal sponge, (4) recovery of uranium from copper tailings, (5) economic recovery of nuclear grade uranium from low grade uranium ores found in India, (6) fuel reprocessing, (7) chemical processing of both low and high level radioactive wastes. (M.G.B.)

  11. Industrial applications of nuclear technology

    International Nuclear Information System (INIS)

    Vargas, Celso

    2010-01-01

    Industrial applications of nuclear technology have been very diverse worldwide. This type of technology has begun to introduce in Costa Rica to evaluate and improve different industrial processes. These applications have been classified into two or three categories, according to the criteria used. Nucleonic control systems, the gamma logging and radiotracers are determined. (author) [es

  12. International development of Japan's Nuclear Industry. Indispensable Japan-U.S. cooperation

    International Nuclear Information System (INIS)

    Saigo, Masao

    2006-01-01

    It is significant to internationally develop the nuclear power plants technology that has been fostered by Japan's nuclear industry. It is also important to work with taking the degree of development of nuclear power plants of the recipient country into consideration. ''Forum on International Development of Nuclear Industry'' organized by the Japan Atomic Industrial Forum, Inc. (JAIF) proposed it would be indispensable for a Japan's nuclear industry to establish a Japan-U.S. Cooperation with the support of Government in order to develop the nuclear technology internationally. In November 2005, the investigating team including utilities and nuclear industry visited U.S. and exchanged opinions on its possibility. Investigating results and their evaluation were described. (T.Tanaka)

  13. Diverting indirect subsidies from the nuclear industry to the photovoltaic industry: Energy and financial returns

    International Nuclear Information System (INIS)

    Zelenika-Zovko, I.; Pearce, J.M.

    2011-01-01

    Nuclear power and solar photovoltaic energy conversion often compete for policy support that governs economic viability. This paper compares current subsidization of the nuclear industry with providing equivalent support to manufacturing photovoltaic modules. Current U.S. indirect nuclear insurance subsidies are reviewed and the power, energy and financial outcomes of this indirect subsidy are compared to equivalent amounts for indirect subsidies (loan guarantees) for photovoltaic manufacturing using a model that holds economic values constant for clarity. The preliminary analysis indicates that if only this one relatively ignored indirect subsidy for nuclear power was diverted to photovoltaic manufacturing, it would result in more installed power and more energy produced by mid-century. By 2110 cumulative electricity output of solar would provide an additional 48,600 TWh over nuclear worth $5.3 trillion. The results clearly show that not only does the indirect insurance liability subsidy play a significant factor for nuclear industry, but also how the transfer of such an indirect subsidy from the nuclear to photovoltaic industry would result in more energy over the life cycle of the technologies. - Highlights: → The indirect insurance liability subsidy has been quantified over the life cycle of the U.S. nuclear fleet. → It was found to play a significant factor in the economics of the nuclear industry. → A transfer of such an indirect subsidy from the nuclear to photovoltaic industry would result in significantly more energy over the life cycle of the technologies.

  14. Managing nuclear knowledge and expertise - An industry perspective

    International Nuclear Information System (INIS)

    Garderet, Ph.

    2002-01-01

    Full text: The industrial demand for expertise and qualified personnel in nuclear sciences and technologies will obviously continue to be strong during the next decades: in all cases, a high level of competence will necessarily continue to be required to maintain high performances in operating current nuclear facilities (up to decommissioning) ; moreover, additional skills are to be engaged to conceive new projects or to propose new services for new industrial customers. The industrial needs evidently show some quantitative or qualitative specificities according to the strategy each country has adopted in the past or is adopting now for the use of nuclear power or other nuclear technologies. But the general trends concerning the access to qualified knowledge in nuclear sciences and technologies are globally the same, so concrete actions have to be taken as soon as possible to anticipate difficult situations and overcome the problems. In the countries where nuclear industry has been strongly developed during the past decades (for example France) the problem chiefly concerns the relative ageing of the human workforce and the ability to maintain the accumulated knowledge and replace technical expertise at the very moment when all the technological companies show a significant decline in the number of entrants in all the domain of science and engineering. The problem is reinforced by the fact that (strictly for the same reasons) this phenomenon is observed concurrently within the research laboratories, among the staff of the safety authorities and, more generally, in all the offices engaged in the decision making process about nuclear affairs. Part of the solution to these serious problems stands in the human resources policy that the main nuclear industries have to achieve : internal training through enterprise universities, auto-formation, tutorage of young scientists by seniors, programs of knowledge preservation, international mobility when possible. But more

  15. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2010; Rapport sur la surete nucleaire et la radioprotection des installations nucleaires de Chooz - 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-15

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chooz nuclear power plant (Ardennes (FR)): 2 PWR reactors in operation (Chooz B, INB 139 and 144) and one partially dismantled PWR reactor (Chooz A, INB 163). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  16. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2010; Rapport sur la surete nucleaire et la radioprotection des installations nucleaires de Flamanville - 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-15

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Flamanville nuclear power plant (Manche (FR)): 2 PWR reactors in operation (INB 108 and 109), and 1 PWR under construction (Flamanville 3, INB 167). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, water consumption and waste management at Flamanville 3 construction site) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  17. Building public confidence in the world's nuclear industry

    International Nuclear Information System (INIS)

    Duncan, C.D.

    1996-01-01

    Public confidence in the nuclear industry requires two things, which are trust and understanding. Trust is an emotional response based upon an instinctive reaction. Understanding, on the other hand, is an intellectual response based upon facts. To gain public confidence, both of these levels must be communicated and proactive strategies must be implemented to do this. To achieve this objective will require confidence and courage in communication programs. Each company operating in the nuclear sector must be proactive in building its individual reputation and must not retreat from controversy. Similarly, each industry body must continue the Herculean task of building understanding. The nuclear industry has powerful arguments. ICI, BP or Ford did not achieve their licences to operate by keeping their heads down, they achieved their current market positions by building a positive corporate reputation within their respective industrial contexts over many decades. In order to achieve a similar position for the nuclear industry and the companies, their examples must be followed. If it is continued to 'keep the heads down' in the trenches, public opinion will surely bury within it. (G.K.)

  18. Tritium inventory measurements by 'in-bed' gas flowing calorimetry

    International Nuclear Information System (INIS)

    Hayashi, T.; Suzuki, T.; Yamada, M.; Okuno, K.

    1996-01-01

    In order to establish the 'in-bed' tritium accounting technology for the ITER scale tritium storage system, a gas flowing calorimetry has been studied using a scaled ZrCo bed (25 g tritium capacity). The basic calorimetric characteristics, steady state temperature raise of He gas stream flowing through a secondary coil line fixed in the ZrCo tritide, was measured and correlated with the stored tritium inventory. The results shows that about 4 degrees raise of He stream temperature can be detected for each gram of tritium storage. The sensitivity of this calorimetry is about 0.05 g of tritium, calculated by 0.2 degrees of temperature sensor error. The accuracy is better than 0.25 g of tritium on 25 g storage, evaluated by 2 times of standard deviation from the repeat measurements. This accuracy of < 1% on full storage capacity is satisfied the target accountability to measure ± 1 gram of tritium on 100 g storage for ITER. 13 refs., 7 figs

  19. South Korea's nuclear fuel industry

    International Nuclear Information System (INIS)

    Clark, R.G.

    1990-01-01

    March 1990 marked a major milestone for South Korea's nuclear power program, as the country became self-sufficient in nuclear fuel fabrication. The reconversion line (UF 6 to UO 2 ) came into full operation at the Korea Nuclear Fuel Company's fabrication plant, as the last step in South Korea's program, initiated in the mid-1970s, to localize fuel fabrication. Thus, South Korea now has the capability to produce both CANDU and pressurized water reactor (PWR) fuel assemblies. This article covers the nuclear fuel industry in South Korea-how it is structures, its current capabilities, and its outlook for the future

  20. EBSD applications in the steel and nuclear industries

    International Nuclear Information System (INIS)

    Nave, M.D.

    2005-01-01

    EBSD has established itself as an invaluable tool for materials science problem-solving in the steel and nuclear industries. In the steel industry, it increases our understanding of the deformation and recrystallization processes that influence the formability of steel sheets. It is also used to improve welding procedures and identify phases that accelerate corrosion. In the nuclear industry, EBSD plays a central role in extending the life of fuel cladding materials by shedding new light on the mechanisms of hydride formation. It is also used in efforts to improve the processing of material used for the storage of nuclear waste. This presentation provides an overview of EBSD applications within these two industries, emphasizing the broad applicability and practical usefulness of the technique. (author)

  1. The World Nuclear Industry Status Report 2017

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie; Katsuta, Tadahiro; Ramana, M.V.; Rodriguez, Juan C.; Ruedinger, Andreas; Stienne, Agnes

    2017-09-01

    The World Nuclear Industry Status Report 2017 (WNISR2017) provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. The WNISR2017 edition includes a new assessment from an equity analyst view of the financial crisis of the nuclear sector and some of its biggest industrial players. The Fukushima Status Report provides not only an update on onsite and offsite issues six years after the beginning of the catastrophe, but also the latest official and new independent cost evaluations of the disaster. Focus chapters provide in-depth analysis of France, Japan, South Korea, the United Kingdom and the United States. The Nuclear Power vs. Renewable Energy chapter provides global comparative data on investment, capacity, and generation from nuclear, wind and solar energy. Finally, Annex 1 presents a country-by-country overview of all other countries operating nuclear power plants

  2. Transfer of industry-oriented nuclear technology at NUCOR

    International Nuclear Information System (INIS)

    De Jesus, A.S.M.

    1983-10-01

    The transfer of industry-oriented nuclear technology at the Nuclear Development Corporation of South Africa (Pty) Ltd (NUCOR) is centred in a few divisions only, as most of the NUCOR's program is internally oriented. The industry-oriented activities include radiation technology, production of radioisotopes and application of nuclear techniques in solving problems of industry. The study is concerned mainly with the last of these activities. The general problem of transferring innovative technology is reviewed and a systems approach is used to analyse the transfer process at NUCOR, in terms of the organisation itself and its environment. Organisational strengths and weaknesses are identified and used as a basis to determine opportunities and threats. Possible objectives are formulated and a strategy to meet them is suggested. 'Demand-pull' as opposed to 'technology-push' is advanced as the main triggering mechanism in the transfer of industry-oriented nuclear technology. The importance of marketing this technology, as well as its commercialization, are discussed

  3. Radioactive waste: the poisoned legacy of the nuclear industry

    International Nuclear Information System (INIS)

    Rousselet, Y.

    2011-01-01

    The nuclear industry produces a huge amount of radioactive waste from one end to the other of the nuclear cycle: i.e. from mining uranium to uranium enrichment through reactor operating, waste reprocessing and dismantling nuclear power plants. Nuclear power is now being 'sold' to political leaders and citizens as an effective way to deal with climate change and ensure security of energy supplies. Nonetheless, nuclear energy is not a viable solution and is thus a major obstacle to the development of clean energy for the future. In addition to safety and security issues, the nuclear industry is, above all, faced with the huge problem of how to deal with the waste it produces and for which it has no solution. This ought to put a brake on the nuclear industry, but instead, against all expectations, its development continues to gather pace. (author)

  4. Ranking French nuclear industry on international market

    International Nuclear Information System (INIS)

    Labbe, B.

    1987-01-01

    Based on the success of its own ambitious nuclear power station program, France has been able to export its technology to many parts of the world, providing everything from individual components to complete power stations on a turnkey basis. Industrial partners who regurarly work together have set up the necessary structures to ensure the dovetailing of their activities during joint operations on the foreign market. These structures are matched to the needs of individual clients, and can be dispensed with completely in cases where a sole supplier is involved. Not one single unit under construction has been halted and no contract cancelled after the Chernobyl accident. France, like Japan and the USSR, is pressing on with its nuclear power program. China has ordered two PWR units for Daya Bay, while Britain has decided to construct its first PWR at Sizewell. Although a number of countries have deferred decisions in this field, this has been mainly on financial grounds. The French nuclear power industry has demonstrated its mastery of the technology, which can now be placed at the disposal of countries wishing to build nuclear power units, to improve their existing nuclear capacity, to develop parts of this future-oriented industry, or to supply their power stations with advanced nuclear fuel

  5. Decision no. 2011-DC-0214 of the French nuclear safety authority from May 5, 2011, ordering CIS bio international company to proceed to a complementary safety evaluation of its basic nuclear facility in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to CIS bio international company, operator of the radiopharmaceuticals fabrication facility (INB 29) of Saclay (France). (J.S.)

  6. EPRI expert system activities for nuclear utility industry application

    International Nuclear Information System (INIS)

    Naser, J.A.

    1990-01-01

    This paper reports on expert systems which have reached a level of maturity where they offer considerable benefits for the nuclear utility industry. The ability of expert systems to enhance expertise makes them an important tool for the nuclear utility industry in the areas of engineering, operations and maintenance. Benefits of expert system applications include comprehensive and consistent reasoning, reduction of time required for activities, retention of human expertise and ability to utilize multiple experts knowledge for an activity. The Electric Power Research Institute (EPRI) has been performing four basic activities to help the nuclear industry take advantage of this expert system technology. The first is the development of expert system building tools which are tailored to nuclear utility industry applications. The second is the development of expert system applications. The third is work in developing a methodology for verification and validation of expert systems. The last is technology transfer activities to help the nuclear utility industry benefit from expert systems. The purpose of this paper is to describe the EPRI activities

  7. Considerations about the licensing process of special nuclear industrial facilities

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, M.A., E-mail: talaricomarco@hotmail.com [Marinha do Brasil, Rio de Janeiro, RJ (Brazil). Coordenacao do Porgrama de Submarino com Propulsao Nuclear; Melo, P.F. Frutuoso e [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  8. Considerations about the licensing process of special nuclear industrial facilities

    International Nuclear Information System (INIS)

    Talarico, M.A.; Melo, P.F. Frutuoso e

    2015-01-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  9. The nuclear industry and the young generation

    International Nuclear Information System (INIS)

    Hanti, A.

    2000-01-01

    The European Nuclear Society was founded in 1975. It is a federation of 25 nuclear societies from 24 countries-stretching from the Atlantic to the Urals and on across Russia to the Pacific. Through Russia's membership in the Pacific Nuclear Council. ENS is directly linked to that area, too. ENS comprises more than 20 000 professionals from industry, power stations, research centers and authorities, working to advance nuclear energy. ENS has three Member Societies in Australia, Israel and Morocco. Also it has collaboration agreements with the American Nuclear Society, the Argentinean Nuclear Energy Association, the Canadian and the Chinese Nuclear Societies. ENS is doing pioneering work with its Young Generation Network, standing for positive measures to recruit and educate young people as engineers, technicians and skilled staff ion the nuclear field: from school to university and in industry. The goals of the YGN are: to promote the establishment of national Young Generation networks; to promote the exchange of knowledge between older and younger generation cross-linked all over Europe; to encourage young people in nuclear technology to provide a resource for the future; to communicate nuclear issues to the public (general public, media, politicians). (N.C.)

  10. Nuclear industry chart no. 20 - Sweden

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    A folding chart is presented of the Swedish nuclear industry, which shows the government bodies, companies, utilities and other groups who participate in the nuclear field. Their special interests and activities and affiliations with each other and with international organisations are indicated. (U.K.)

  11. Preservation and re-use of nuclear knowledge in the UK nuclear industry

    International Nuclear Information System (INIS)

    Workman, R.

    2004-01-01

    This paper addresses the need for the UK nuclear industry to preserve knowledge generated during the 6 decades of its existence for re-use by future generations. It outlines the major government restructuring of the industry and its impact on knowledge preservation. Work within British Nuclear Fuels plc to meet the knowledge preservation requirements of its business is described. The focus is shown to be the alignment of tacit knowledge - gained through interviews with key specialists - with the explicit knowledge contained within the major knowledge base (Corporate Memory). The creation of knowledge packages to hold key knowledge on core technologies and nuclear plants is described. The paper also covers developments in securing the nuclear skill base through University Research Alliances and the Dalton Nuclear Institute. Returning to the major new challenges ahead it is shown how a knowledge portal could be implemented, linking the knowledge repositories present within the organisations that will feature in the restructured UK nuclear industry in 2005. The UK nuclear industry is facing its greatest challenge in terms of its organisation and commercial interests, at a time when the technical challenges presented by the decommissioning of old nuclear plants and the remediation of its nuclear sites are building up. In terms of knowledge preservation there has never been a greater need to ensure that knowledge associated with the key technologies that underpin the nuclear plants, and the plants themselves, is made available for use now and in the future. The Nuclear Decommissioning Authority [NDA] - a new government body that will come into being in April 2005 - will own the liabilities (the nuclear plants). Those organisations bidding to operate and decommission plants on the UK nuclear sites will utilise the assets to best effect as Site Licensing Companies [SLC] under contract to the NDA. The key asset is knowledge. Knowledge is present in explicit forms within

  12. Options contracts in the nuclear fuel industry

    International Nuclear Information System (INIS)

    Fuller, D.M.

    1995-01-01

    This article discusses options trading in the nuclear fuels industry. Although there now exists no formal options market in the nuclear industry, flexibilities, or embedded options, are actually quite common in the long-term supply contracts. The value of these flexibilities can be estimated by applying the methods used to evaluate options. The method used is the Black-Scholes Model, and it is applied to a number of examples

  13. Energy policy and nuclear power. Expectations of the power industry

    International Nuclear Information System (INIS)

    Harig, H.D.

    1995-01-01

    In the opinion of the power industry, using nuclear power in Germany is a responsible attitude, while opting out of nuclear power is not. Electricity utilities will build new nuclear power plants only if the structural economic and ecological advantages of nuclear power are preserved and can be exploited in Germany. The power industry will assume responsibility for new complex, capital-intensive nuclear plants only if a broad societal consensus about this policy can be reached in this country. The power industry expects that the present squandering of nuclear power resources in Germany will be stopped. The power industry is prepared to contribute to finding a speedy consensus in energy policy, which would leave open all decisions which must not be taken today, and which would not constrain the freedom of decision of coming generations. The electricity utilities remain committed proponents of nuclear power. However, what they sell to their customers is electricity, not nuclear power. (orig.) [de

  14. TryCYCLE: A Prospective Study of the Safety and Feasibility of Early In-Bed Cycling in Mechanically Ventilated Patients.

    Directory of Open Access Journals (Sweden)

    Michelle E Kho

    Full Text Available The objective of this study was to assess the safety and feasibility of in-bed cycling started within the first 4 days of mechanical ventilation (MV to inform a future randomized clinical trial.We conducted a 33-patient prospective cohort study in a 21-bed adult academic medical-surgical intensive care unit (ICU in Hamilton, ON, Canada. We included adult patients (≥ 18 years receiving MV who walked independently pre-ICU. Our intervention was 30 minutes of in-bed supine cycling 6 days/week in the ICU. Our primary outcome was Safety (termination, measured as events prompting cycling termination; secondary Safety (disconnection or dislodgement outcomes included catheter/tube dislodgements. Feasibility was measured as consent rate and fidelity to intervention. For our primary outcome, we calculated the binary proportion and 95% confidence interval (CI.From 10/2013-8/2014, we obtained consent from 34 of 37 patients approached (91.9%, 33 of whom received in-bed cycling. Of those who cycled, 16(48.4% were female, the mean (SD age was 65.8(12.2 years, and APACHE II score was 24.3(6.7; 29(87.9% had medical admitting diagnoses. Cycling termination was infrequent (2.0%, 95% CI: 0.8%-4.9% and no device dislodgements occurred. Cycling began a median [IQR] of 3 [2, 4] days after ICU admission; patients received 5 [3, 8] cycling sessions with a median duration of 30.7 [21.6, 30.8] minutes per session. During 205 total cycling sessions, patients were receiving invasive MV (150 [73.1%], vasopressors (6 [2.9%], sedative or analgesic infusions (77 [37.6%] and dialysis (4 [2.0%].Early cycling within the first 4 days of MV among hemodynamically stable patients is safe and feasible. Research to evaluate the effect of early cycling on patient function is warranted.Clinicaltrials.gov: NCT01885442.

  15. The American nuclear power industry. A handbook

    International Nuclear Information System (INIS)

    Pearman, W.A.; Starr, P.

    1984-01-01

    This book presents an overview of the history and current organization of the American nuclear power industry. Part I focuses on development of the industry, including the number, capacity, and type of plants in commercial operation as well as those under construction. Part II examines the safety, environmental, antitrust, and licensing issues involved in the use of nuclear power. Part III presents case studies of selected plants, such as Three Mile Island and Seabrook, to illustrate some of the issues discussed. The book also contains a listing of the Nuclear Regulatory Commission libraries and a subject index

  16. A comparative analysis of managing radioactive waste in the Canadian nuclear and non-nuclear industries

    Energy Technology Data Exchange (ETDEWEB)

    Batters, S.; Benovich, I.; Gerchikov, M. [AMEC NSS Ltd., Toronto, ON (Canada)

    2011-07-01

    Management of radioactive waste in nuclear industries in Canada is tightly regulated. The regulated nuclear industries include nuclear power generation, uranium mining and milling, nuclear medicine, radiation research and education and industrial users of nuclear material (e.g. radiography, thickness gauges, etc). In contrast, management of Naturally Occurring Radioactive Material (NORM) waste is not regulated by the Canadian Nuclear Safety Commission (CNSC), with the exception of transport above specified concentrations. Although these are radioactive materials that have always been present in various concentrations in the environment and in the tissues of every living animal, including humans, the hazards of similar quantities of NORM radionuclides are identical to those of the same or other radionuclides from regulated industries. The concentration of NORM in most natural substances is so low that the associated risk is generally regarded as negligible, however higher concentrations may arise as the result of industrial operations such as: oil and gas production, mineral extraction and processing (e.g. phosphate fertilizer production), metal recycling, thermal electric power generation, water treatment facilities. Health Canada has published the Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM). This paper presents a comparative analysis of the requirements for management of radioactive waste in the regulated nuclear industries and of the guidelines for management of NORM waste. (author)

  17. A comparative analysis of managing radioactive waste in the Canadian nuclear and non-nuclear industries

    International Nuclear Information System (INIS)

    Batters, S.; Benovich, I.; Gerchikov, M.

    2011-01-01

    Management of radioactive waste in nuclear industries in Canada is tightly regulated. The regulated nuclear industries include nuclear power generation, uranium mining and milling, nuclear medicine, radiation research and education and industrial users of nuclear material (e.g. radiography, thickness gauges, etc). In contrast, management of Naturally Occurring Radioactive Material (NORM) waste is not regulated by the Canadian Nuclear Safety Commission (CNSC), with the exception of transport above specified concentrations. Although these are radioactive materials that have always been present in various concentrations in the environment and in the tissues of every living animal, including humans, the hazards of similar quantities of NORM radionuclides are identical to those of the same or other radionuclides from regulated industries. The concentration of NORM in most natural substances is so low that the associated risk is generally regarded as negligible, however higher concentrations may arise as the result of industrial operations such as: oil and gas production, mineral extraction and processing (e.g. phosphate fertilizer production), metal recycling, thermal electric power generation, water treatment facilities. Health Canada has published the Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM). This paper presents a comparative analysis of the requirements for management of radioactive waste in the regulated nuclear industries and of the guidelines for management of NORM waste. (author)

  18. Nuclear power and carbon dioxide; The fallacy of the nuclear industry's new propaganda

    Energy Technology Data Exchange (ETDEWEB)

    Mortimer, N. (Sheffield City Polytechnic (UK). School of Urban and Regional Studies)

    The increasingly beleaguered nuclear industry is now highlighting the threat of global warming as a justification for its continued expansion. The industry argues that it produces no carbon dioxide and that nuclear power is therefore a key element in any plan to reduce emissions of this greenhouse gas. However an analysis of the entire nuclear fuel cycle shows that nuclear power is responsible for much larger carbon dioxide emissions than several renewable energy options and efficiency measures. Furthermore, a major expansion of nuclear generating capacity would result in huge increases in CO{sub 2} emissions from the nuclear industry due to the need to mine and process progressively lower quality uranium ores. Nuclear power is an expensive, unsustainable, dangerous and ineffective option in any realistic strategy to combat global warming. (Author).

  19. A practicable signal processing algorithm for industrial nuclear instrument

    International Nuclear Information System (INIS)

    Tang Yaogeng; Gao Song; Yang Wujiao

    2006-01-01

    In order to reduce the statistical error and to improve dynamic performances of the industrial nuclear instrument, a practicable method of nuclear measurement signal processing is developed according to industrial nuclear measurement features. The algorithm designed is implemented with a single-chip microcomputer. The results of application in (radiation level gauge has proved the effectiveness of this method). (authors)

  20. A telerobot for the nuclear industry

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Industrial robots are not widely used in the nuclear industry. More use is made of telemanipulators, in which tasks are performed under total human control via a master-slave actuation system. AEA Technology have developed a Nuclear Engineered Advanced TEle Robot (NEATER), a telerobot which combines industrial robot technology with the skills of a human operator. It has been designed for use in radioactive decommissioning work and has a number of radiation tolerant properties. NEATER can be operated in a pure robotic mode using a standard computer controller and software. Or it can operate as a telerobot in a remote control mode via a television input. In this mode the operator controls the robot's movement by using a joystick or a simple six degrees of freedom input device. (UK)

  1. The partnership with other nuclear industries is important for the French industry

    International Nuclear Information System (INIS)

    Le Ngoc, B.

    2016-01-01

    After the French bid for the construction of a nuclear power plant in the United Arab Emirates (AE) failed in 2011, Assystem, a French engineering company decided to develop in the Middle-East and now has become one of the most important partners of KEPCO, the company in charge of constructing the Barakah plant in AE. In Turkey, Assystem has bought a Turkish enterprise to back the Franco-Japanese SINOP project and to initiate a partnership with Rosatom building the Akkuyu plant. Today Assystem has become an important player in nuclear industry and has been able to bring back to French nuclear industry its experience of different practices and know-how in international nuclear markets. Assystem employs 12.200 staff worldwide and realized a 908 Meuros turnover in 2015. (A.C.)

  2. Reviewing industrial safety in nuclear power plants

    International Nuclear Information System (INIS)

    1990-02-01

    This document contains guidance and reference materials for Operational Safety Review Team (OSART) experts, in addition to the OSART Guidelines (TECDOC-449), for use in the review of industrial safety activities at nuclear power plants. It sets out objectives for an excellent industrial safety programme, and suggests investigations which should be made in evaluating industrial safety programmes. The attributes of an excellent industrial safety programme are listed as examples for comparison. Practical hints for reviewing industrial safety are discussed, so that the necessary information can be obtained effectively through a review of documents and records, discussions with counterparts, and field observations. There are several annexes. These deal with major features of industrial safety programmes such as safety committees, reporting and investigation systems and first aid and medical facilities. They include some examples which are considered commendable. The document should be taken into account not only when reviewing management, organization and administration but also in the review of related areas, such as maintenance and operations, so that all aspects of industrial safety in an operating nuclear power plant are covered

  3. Competency assessments for nuclear industry personnel

    International Nuclear Information System (INIS)

    2004-04-01

    In 1996, the IAEA published Technical Reports Series No. 380, Nuclear Power Plant Personnel Training and its Evaluation: A Guidebook. This publication provides guidance for the development, implementation and evaluation of training programmes for all nuclear power plant personnel using the systematic approach to training (SAT) methodology. The SAT methodology has since been adopted and used for the development and implementation of training programmes for all types of nuclear facility and activities in the nuclear industry. The IAEA Technical Working Group on Training and Qualification of Nuclear Power Plant Personnel recommended that an additional publication be prepared to provide further guidance concerning competency assessments used for measuring the knowledge, skills and attitudes of personnel as the result of training. This publication has been prepared in response to that recommendation. A critical component of SAT (as part of the implementation phase) is the assessment of whether personnel have achieved the standards identified in the training objectives. The nuclear industry spends a significant amount of resources conducting competency assessments. Competency assessments are used for employee selection, trainee assessment, qualification, requalification and authorization (in some Member States the terminology may be 'certification' or 'licensing'), and job advancement and promotion. Ineffective testing methods and procedures, or inappropriate interpretation of test results, can have significant effects on both human performance and nuclear safety. Test development requires unique skills and, as with any skill, training and experience are needed to develop and improve them. Test item and examination development, use, interpretation of results and examination refinement, like all other aspects of SAT, should be part of an ongoing, systematic process. This publication is primarily intended for use by personnel responsible for developing and administering

  4. Activities of nuclear human resource development in nuclear industry

    International Nuclear Information System (INIS)

    Tsujikura, Yonezo

    2010-01-01

    Since 2007, the JAIF (Japan Atomic Industrial Forum) had established the nuclear energy human resource development council to make analysis of the issue on nuclear human resource development. The author mainly contributed to develop its road map as a chairman of working group. Questionnaire survey to relevant parties on issues of nuclear human resource development had been conducted and the council identified the six relevant issues and ten recommendations. Both aspects for career design and skill-up program are necessary to develop nuclear human resource at each developing step and four respective central coordinating hubs should be linked to each sector participating in human resource development. (T. Tanaka)

  5. The development of Chinese power industry and its nuclear power

    International Nuclear Information System (INIS)

    Zhou Dabin

    2002-01-01

    The achievements and disparity of Chinese power industry development is introduced. The position and function of nuclear power in Chinese power industry is described. Nuclear power will play a role in ensuring the reliable and safe supply of primary energy in a long-term and economic way. The development prospects of power source construction in Chinese power industry is presented. Challenge and opportunity in developing nuclear power in China are discussed

  6. Nuclear industry prospects: A Canadian perspective

    International Nuclear Information System (INIS)

    Morden, Reid

    1995-01-01

    Canada, with its proven, safe and versatile CANDU reactor is well poised for the second half-century of nuclear fission. Canada's nuclear pedigree goes back to the turn-of-the-century work of Ernest Rutherford in Montreal. This year, Canada's nuclear industry celebrates the 50th anniversary of the start-up of its first research reactor at Chalk River. Last year, the pioneering work of Bert ram Blockhouse in Physics was honoured with a Nobel Prize. Future international success for the nuclear industry, such as has been achieved here in Korea, depends on continued cooperative and collaborative team work between the public and private sectors, continued strong research and development backing by the government, and new strategic partnerships. The biggest challenge is financing for the emerging markets. The brightness or dimness of future prospects are relative to the intensity of the lessons learned from history. In Canada we have a fairly long nuclear pedigree, It goes back almost a century to 1898, when Ernest Rutherford set up a world centre at McGill University in Montreal for research into the structure of the atom and into radioactivity

  7. Status of nuclear power industry in Ukraine

    International Nuclear Information System (INIS)

    Kadenko, I.M.; Vlasenko, M.I.

    2007-01-01

    There are five nuclear power plants and sites (NPPs) with 15 units in operation, 3 units under decommissioning and 1 drastically known as the 'Shelter' object in Ukraine. Ukraine has ambitions plans to develop nuclear industry based on own mineral, human financial resources as well as world wide international cooperation with nuclear countries

  8. Westinghouse support for Spanish nuclear industry

    International Nuclear Information System (INIS)

    Rebollo, R.

    1999-01-01

    One of the major commitments Westinghouse has with the nuclear industry is to provide to the utilities the support necessary to have their nuclear units operating at optimum levels of availability and safety. This article outlines the organization the Energy Systems Business Unit of Westinghouse has in place to fulfill this commitment and describes the evolution of the support Westinghouse is providing to the operation o f the Spanish Nuclear Power plants. (Author)

  9. Nuclear fuel industry of the republic of Kazakhstan

    International Nuclear Information System (INIS)

    Parfenov, D.; Dara, S.

    2001-01-01

    National Atomic Company Kazatomprom has been established in 1997 by special presidential decree with the purpose to coordinate the former USSR Nuclear Industry enterprises located on the territory of Kazakhstan. The Government of Kazakhstan entrusts the republican nuclear sector's future to Kazatomprom. Although Kazatomprom is a state-owned company and operates on behalf of the government, it is private in terms of ownership, being organized in a form of a closed type joint stock company, and within its structure there are daughter companies with a certain share of private capital. Formally Kazatomprom has started only a few years ago, but it should not create confusion. Because Kazatomprom has only united the USSR traditional nuclear cycle units, which, I want to emphasize for, count as long history as that of the nuclear industry itself. This fact is the guarantee of high quality production culture inherent to the former USSR Defense Industry

  10. Long-range goal setting in the nuclear utility industry

    International Nuclear Information System (INIS)

    Beard, P.M.

    1986-01-01

    The Institute of Nuclear Power Operation's (INPO's) programs support the industry's efforts to improve performance in nuclear plant safety and reliability. The success of these programs can best be measured by the progress of the industry. As utilities focused their attention on nuclear plant performance, the Institute's goal was to make sure its programs and activities provided the best possible support for these efforts. INPO continues to coordinate an industry-wide plant performance indicator program to assist member utilities in assessing station performance. Closely related to this effort is the nuclear industry's establishment of long-range plant performance goals. The US nuclear utility industry currently sends INPO quarterly data on 28 key performance indicators. INPO analyzes these data and provides periodic reports to its members and participants. Selected highlights of INPO's Performance Indicators for the US Nuclear Utility, dated June 1986, are discussed. Throughout 1985, INPO interacted with members, participants, and three external ad hoc review groups to refine the overall performance indicators and to develop background for each unit. By April 1986, each utility had developed long-term goals for each unit. By April 1986, each utility had developed long-term goals for most of the overall indicators. These goals represent a commitment to achievement of excellence when applied to the day-to-day conduct of plant operations, and provide a framework for action

  11. UK strategy for nuclear industry LLW - 16393

    International Nuclear Information System (INIS)

    Clark, Matthew; Fisher, Joanne

    2009-01-01

    In March 2007 the UK Government and devolved administrations (for Scotland, Wales and Northern Ireland, from here on referred to as 'Government') published their policy for the management of solid low level waste ('the Policy'). The Policy sets out a number of core principles for the management of low level waste (LLW) and charges the Nuclear Decommissioning Authority with developing a UK-wide strategy in the case of LLW from nuclear sites. The UK Nuclear Industry LLW Strategy has been developed within the framework of the principles set out in the policy. A key factor in the development of this strategy has been the strategic partnership the NDA shares with the Low Level Waste Repository near Drigg (LLWR), who now have a role in developing strategy as well as delivering an optimised waste management service at the LLWR. The strategy aims to support continued hazard reduction and decommissioning by ensuring uninterrupted capability and capacity for the management and disposal of LLW in the UK. The continued availability of a disposal route for LLW is considered vital by both the nuclear industry and non-nuclear industry low level waste producers. Given that the UK will generate significantly more low level waste (∼ 3.1 million m 3 ) than there is capacity at the LLWR (∼0.75 million m 3 ), developing alternative effective ways to manage LLW is critical. The waste management hierarchy is central to the strategy, which includes strategic goals at all levels of the hierarchy to improve its application across the industry. (authors)

  12. Nuclear heat for industrial purposes and district heating

    International Nuclear Information System (INIS)

    1974-01-01

    Studies on the various possibilities for the application of heat from nuclear reactors in the form of district heat or process steam for industrial purposes had been made long before the present energy crisis. Although these studies have indicated technical feasibility and economical justification of such utilization, the availability of relatively cheap oil and difficulties in locating a nuclear heat source inside industrial areas did not stimulate much further development. Since the increase of oil prices, the interest in nuclear heat application is reawakened, and a number of new potential areas have been identified. It now seems generally recognized that the heat from nuclear reactors should play an important role in primary energy supply, not only for electricity production but also as direct heat. At present three broad areas of nuclear heat application are identified: Direct heat utilization in industrial processing requiring a temperature above 800 deg. C; Process steam utilization in various industries, requiring a temperature mainly in the range of 200-300 deg. C; Low temperature and waste heat utilization from nuclear power plants for desalination of sea water and district heating. Such classification is mainly related to the type and characteristics of the heat source or nuclear reactor which could be used for a particular application. Modified high temperature reactor types (HTR) are the candidates for direct heat application, while the LWR reactors can satisfy most of the demands for process steam. Production of waste heat is a characteristic of all thermal power plants, and its utilization is a major challenge in the field of power production

  13. SOVT analysis of the nuclear industry in Mexico

    International Nuclear Information System (INIS)

    Fernandez R, E.; Hernandez B, M. C.

    2011-11-01

    In this work the analysis of strengths, opportunities, vulnerabilities and threats (SOVT) of the nuclear industry in Mexico is presented. This industry presents among its strengths that Mexico is a highly electrified country and has a good established normative mark of nuclear security. Although the Secretaria de Energia in Mexico, with base to the exposed in the Programa Sectorial de Energia 2007-2012, is analyzing the convenience of the generation starting from this source, considering the strong technological dependence of the exterior and the limited federal budget dedicated to this field. As a result of the analysis of the SOVT matrix, were found a great number of strengths that threats, although the vulnerabilities list is major to the strengths, the opportunities list is the bigger. Therefore, the nuclear industry can be a sustainable industry, taking the necessary decisions and taking advantage of the detected opportunities. (Author)

  14. The financing of nuclear industry

    International Nuclear Information System (INIS)

    Cazauran, B.

    1978-01-01

    Having first recalled the usual financing rules related to the economic activities, the author analyses the applying of those rules in the nuclear field, taking into account the specific characteristics of this industrial branch [fr

  15. A. The nuclear power industry in U.S.A

    International Nuclear Information System (INIS)

    1976-01-01

    The nuclear industry in the USA at present is on the defensive - opposition to nuclear power is growing, costs are escalating, new orders are outweighed by cancellations and spent fuel is accumulating as no commercial fuel reprocessing plants are operating. This latter is probably the greatest problem facing the industry and the lack of a decision on the use of mixed oxide fuel is a complicating factor. Other controversial subjects are the safety of power plants, the long term disposal of high level waste, the supply of uranium, enrichment facilities and safeguards. However nuclear power is already supplying 10% of the nations electricity and it may be that some of the current problems stem directly from the rapid growth of the industry. Thus, the current slowing of the growth rate could be advantageous. The industry has an enviable safety record and referenda held in a number of states on various nuclear issues have all suggested that in spite of the well-publicised problems, the public does not want nuclear power to be abandoned or too seriously constrained

  16. Promoting nuclear power, achieving sustainable development of nuclear industry in China

    International Nuclear Information System (INIS)

    Kang, R.

    2006-01-01

    The past 5 decades witnessed the rapid growth of China's nuclear industry. The sustained and rapid economic growth and continuous improvement of people's living standards have placed higher requirements for energy and power supplies. As a safe and clean energy source, nuclear energy has been gradually and widely accepted by the Chinese government and the public. The Chinese government has adopted the policy a ctively pushing forward the nuclear power development , set up the target to reach 40GWe of nuclear power installed capacity by 2020, accounting for about 4% of the total installed capacity in China. In this regard, this paper presents the China's nuclear program to illustrate how China is going to achieve the target. The paper is composed of 3 parts. The first part gives a review of the achievements in nuclear power in the last 20 years. The second part presents China's ''three approach'' strategy for furthering the nuclear power development: carrying out duplication projects at the existing plant sites; introducing GUI technology via international bidding; developing the brand C NP1000 , i.e. Chinese Nuclear Power lOOOMwe class, with China's own intellectual property. This part also explores the ways of securing the fuel supply for nuclear power development. The third part concludes with CNNC's ''3221'' strategy which aims at building a world class conglomerate, and expresses its sincere wish to work with the nuclear community to push the nuclear industry worldwide by strengthening international cooperation

  17. Continuous improvement methods in the nuclear industry

    International Nuclear Information System (INIS)

    Heising, Carolyn D.

    1995-01-01

    The purpose of this paper is to investigate management methods for improved safety in the nuclear power industry. Process improvement management, methods of business process reengineering, total quality management, and continued process improvement (KAIZEN) are explored. The anticipated advantages of extensive use of improved process oriented management methods in the nuclear industry are increased effectiveness and efficiency in virtually all tasks of plant operation and maintenance. Important spin off include increased plant safety and economy. (author). 6 refs., 1 fig

  18. Lessons and future prospects for the nuclear industry in the USA

    International Nuclear Information System (INIS)

    Graham, John

    1995-01-01

    The most visible portion of the nuclear industry in the United States is its ongoing electrical generation program, in which 109 nuclear plants provide 21% of the nations electrical needs. However, the nuclear industry also includes nuclear medicine, agricultural uses of radiation sources, food irradiation, research, industrial applications of radiation sources, and even nuclear waste clean-up from old facilities and sites. Nuclear proponents need to be far more active in demonstrating to the public the wealth, and breadth, of all of the benefits that accrue from nuclear radiation even beyond the generation of electricity. We should also make known the damage that would be done to everyday lives if we were to lose the nuclear industry. There are certain issues which cut across all nuclear industries: the regulation of nuclear facilities, the disposal of wastes, the provision of isotopes, and the attitude and policy of the U. S. Government. It is necessary to understand these issues in order to formulate a proactive policy and a manner in which to conduct our advocacy of the beneficial uses of nuclear science and technology. The economic benefits, in terms of dollars and jobs, of the nuclear industry in sectors other than the power program are much larger than in the power program, and are not subject to the same hysterical opposition that has affected the power sector for the past twenty years. Moreover, industrial applications of nuclear radiation are so pervasive throughout the U. S. economy that they affect everyone. These applications have much less visibility than the power program, but they have some of the same problems. The non-power nuclear industry dose have its detractors, and, for example, the issue of low-level waste disposal, in particular, cuts across all sectors of the industry -- potentially damaging to a wide-ranging set of economic factors. Headlines seem to indicate that the end of the nuclear industry is at hand. Yet, public opinion polls

  19. Situation of nuclear industry in Japan

    International Nuclear Information System (INIS)

    2002-08-01

    This document is a reprint of a note published by the nuclear service of the French embassy in Japan. It evokes the present day situation of nuclear facilities in Japan, the public acceptance and its attitude in front of accidents, the national energy program, the deregulation and competitiveness of nuclear power, the carrying out of the nuclear program, the future reactors, the fast neutron reactors, the dismantling activities, the fuel enrichment and reprocessing of spent fuels, the use of MOX fuel, the off-site storage, the vitrified and radiological wastes, the geological disposal of wastes, the prospects of the nuclear program, the companies involved in the Japan nuclear industry, the French-Japanese bilateral cooperation, and the ITER project in the domain of nuclear fusion. (J.S.)

  20. Report of nuclear utility industry responses to Kemeny Commission recommendations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-02-15

    The purpose of this paper is to provide a report of nuclear utility industry progress in responding to the recommendations of the President's Commission on the Accident at Three Mile Island (The Kemeny Commission). On April 11, 1979, in response to TMI, President Carter established a Commission to conduct '.... a comprehensive study and investigation of the recent accident involving the nuclear power facility on Three Mile Island in Pennsylvania'. The Commission was chaired by Dr. John G. Kemeny, then President of Dartmouth College. (A list of all members of The Kemeny Commission is provided in Attachment to the Appendix ). The report of the commission's findings and recommendations was transmitted to the President in October 1979. During this same period, the nuclear utility industry responded to TMI by creating the Institute of Nuclear Power Operations (INPO) with a mission to promote the highest levels of safety and reliability - to promote excellence - in the operation of nuclear electric generating plants. In addition, the Nuclear Safety Analysis Center (NSAC) was established at the Electric Power Research Institute (EPRI to evaluate the accident and assist in determining the best industry response. In a White House paper (and press release) of December 7 1979, the President announced that he agreed fully with the spirit and intent of al the Kemeny Commission recommendations and requested that the industry and The Nuclear Regulatory Commission (NRC) comply with the recommendations. The President also recognized the industry initiative in establishing INPO and called for several actions involving the Institute; the President directed the Department of Energy and other government agencies to provide assistance to INPO and the industry. An overall status of the nuclear utility industry responses to Kemeny Commission recommendations in the key areas directly related to nuclear plant operations is provided below. A more detailed status of industry responses to the

  1. Report of nuclear utility industry responses to Kemeny Commission recommendations

    International Nuclear Information System (INIS)

    1989-02-01

    The purpose of this paper is to provide a report of nuclear utility industry progress in responding to the recommendations of the President's Commission on the Accident at Three Mile Island (The Kemeny Commission). On April 11, 1979, in response to TMI, President Carter established a Commission to conduct '.... a comprehensive study and investigation of the recent accident involving the nuclear power facility on Three Mile Island in Pennsylvania'. The Commission was chaired by Dr. John G. Kemeny, then President of Dartmouth College. (A list of all members of The Kemeny Commission is provided in Attachment to the Appendix ). The report of the commission's findings and recommendations was transmitted to the President in October 1979. During this same period, the nuclear utility industry responded to TMI by creating the Institute of Nuclear Power Operations (INPO) with a mission to promote the highest levels of safety and reliability - to promote excellence - in the operation of nuclear electric generating plants. In addition, the Nuclear Safety Analysis Center (NSAC) was established at the Electric Power Research Institute (EPRI to evaluate the accident and assist in determining the best industry response. In a White House paper (and press release) of December 7 1979, the President announced that he agreed fully with the spirit and intent of al the Kemeny Commission recommendations and requested that the industry and The Nuclear Regulatory Commission (NRC) comply with the recommendations. The President also recognized the industry initiative in establishing INPO and called for several actions involving the Institute; the President directed the Department of Energy and other government agencies to provide assistance to INPO and the industry. An overall status of the nuclear utility industry responses to Kemeny Commission recommendations in the key areas directly related to nuclear plant operations is provided below. A more detailed status of industry responses to the

  2. Actual state of the nuclear industry in Japan and trends of nuclear development in the world

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    Nuclear industry in Japan established a fixed foundation as a large complex system industry by elapsing about forty years since beginning of its development at top of 1930s. For Japan with little energy resources, nuclear power generation is one of essential choices because not only of keeping energy security but also of response to global warming problem such as global warming protection. Then, in order to intend to promote sound development of the nuclear industry in Japan, further upgrading of technology aimed at maintenance and improvement of safety and formation of understanding and agreement of the peoples must be established. Here was introduced a report on actual state of the nuclear industry in Japan in 1997 fiscal year prepared on February, 1999 by the Japan Atomic Industrial Forum. (G.K.)

  3. Situation of nuclear industry in Japan

    International Nuclear Information System (INIS)

    2004-03-01

    This document presents the situation of nuclear industry in Japan: cooperation with France in the domain of the fuel cycle (in particular the back-end) and of for the industrial R and D about fast reactors and nuclear safety; present day situation characterized by a series of incidents in the domain of nuclear safety and by an administrative reorganization of the research and safety organizations; power of local representatives, results of April 2003 elections, liberalization of the electric power sector, impact of the TEPCO affair (falsification of safety reports) on the nuclear credibility, re-start up of the Monju reactor delayed by judicial procedures, stopping of the program of MOX fuel loading in Tepco's reactors, discovery of weld defects in the newly built Rokkasho-mura reprocessing plant, an ambitious program of reactors construction, the opportunity of Russian weapons dismantling for the re-launching of sodium-cooled fast reactors; the competition between France and Japan for the setting up of ITER reactor and its impact of the French/Japanese partnership. (J.S.)

  4. Future trends for electrolysers in nuclear industry

    International Nuclear Information System (INIS)

    Manifar, T.; Robinson, J.; Ozemoyah, P.; Robinson, V.; Suppiah, S.; Boniface, H.

    2011-01-01

    The nuclear industry, through the application of electrolysers, can provide a solution to energy shortage with its competitive cost and can be one of the major future sources of hydrogen production with zero carbon emission. In addition, development of complementary, yet critical processes for upgrading or detritiation of the heavy water in the nuclear industry can be advanced with the application of electrolysers. Regardless of the technology, the electrolyser's development and application are facing many technical challenges including radiation and catalysis. In this paper, three main types of electrolysers are discussed along with their advantages and disadvantages. Proton Exchange Membrane (PEM) electrolysers look promising for hydrogen (or its isotopes) production. For this reason, Atomic Energy of Canada Limited (AECL) in collaboration with Tyne Engineering has started design and fabrication of PEM electrolysers with more than 60 Nm 3 /hr hydrogen production capacity for the application in nuclear industry. This electrolyser is being designed to withstand high concentrations of tritium. (author)

  5. An Overview of the Regulation of Low Dose Radiation in the Nuclear and Non-nuclear Industries

    International Nuclear Information System (INIS)

    Menon, Shankar; Valencia, Luis; Teunckens, Lucien

    2003-01-01

    Now that increasing numbers of nuclear power stations are reaching the end of their commercially useful lives, the management of the large quantities of very low level radioactive material that arises during their decommissioning has become a major subject of discussion, with very significant economic implications. Much of this material can, in an environmentally advantageous manner, be recycled for reuse without radiological restrictions. Much larger quantities--2-3 orders of magnitude larger--of material, radiologically similar to the candidate material for recycling from the nuclear industry, arise in non-nuclear industries like coal, fertilizer, oil and gas, mining, etc. In such industries, naturally occurring radioactivity is artificially concentrated in products, by-products or waste to form TENORM (Technologically Enhanced Naturally Occurring Radioactive Material). It is only in the last decade that the international community has become aware of the prevalence of TENORM, specially the activity levels and quantities arising in so many non-nuclear industries. The first reaction of international organizations seems to have been to propose different standards for the nuclear and non-nuclear industries, with very stringent release criteria for radioactive material from the regulated nuclear industry and up to thirty to a hundred times more liberal criteria for the release/exemption of TENORM from the as yet unregulated non-nuclear industries. There are significant strategic issues that need to be discussed and resolved. Some examples of these are: - Disposal aspects of long-lived nuclides, - The use of radioactive residues in building materials, - Commercial aspects of differing and discriminating criteria in competing power industries in a world of deregulated electric power production. Of even greater importance is the need for the discussion of certain basic issues, such as - The quantitative risk levels of exposure to ionizing radiation, - The need for in

  6. Technology transfer by industry for the construction of nuclear power plants

    International Nuclear Information System (INIS)

    Frewer, H.; Altvater, W.

    1977-01-01

    The construction of nuclear power plants call for a wide sphere of industrial activities, nuclear as well as conventional. For a specific country the ways and methods of developing an industrial nuclear power program and reaching the target of independence, will widely differ, depending on the size of the country, the economic situation, the already existing industrial manufacturing and engineering capacities, the time schedule of the program and the type of contracting. The experience in effective technology transfer for the strengthening and setting up the national industry, and the engineering capacities, needed for the construction of nuclear power plants up to the largest size existing today are considered. The German nuclear power industry gained this experience in connection with the turn-key supply of the first units in various countries. The prerequisites and national nuclear power programs were different. Based on a successful technological development, including standardization, the German nuclear power industry could meet the demand and different approaches in these countries. The main features and practices followed for the transfer of technology is described for three different cases, namely Argentina, Brazil and Iran. (author)

  7. Diffusion of information about the nuclear industry

    International Nuclear Information System (INIS)

    Galvan, C.G.

    1983-01-01

    The diffusion of nuclear technology means a development of a large network of activities (e.g. capital goods, construction, metallurgical and chemical industries) than a path for solving energy problems. Its ties with the arms race cause specific non-proliferation problems. A close state-capital articulation emerges, which strengthens the subsumption of labour and introduces new processes of social control. Already fulfilled investments give impulse to this tendency. The Tlatelolco regime, banishing nuclear weapons from Latin America, seems to establish a pre-condition for a regional solution to the problems thus arising. But, besides the imperfect adhesion to the Treaty, technical and political reasons obstruct a regional integration of the nuclear fuel cycle. Among other things, a lack of regional integration in other industries makes nuclear expansion more dependent on extra-regional technological ties. (Author) [pt

  8. Nuclear power: which industrial approach will preserve a French asset?

    International Nuclear Information System (INIS)

    Machenaud, H.

    2012-01-01

    France's strategic decision in favor of nuclear energy in the 1970's has given rise to an organization of this industry with clearly defined roles and responsibilities for all parties. This has led to the mastering of industrial production of the whole chain from mining to fuel reprocessing and to waste disposal. Nuclear safety was at any stage of the chain the priority number one. The French nuclear industry is present on the international scene and thus maintain its know-how and capacities despite the ups and downs of the nuclear market. Today 240.000 people work in France in the nuclear sector. France has followed a consistent energy policy during the last 50 years and benefits from an important and homogeneous fleet of reactors which has generated a rich feedback experience on reactor operation. The tasks that face the French nuclear industry are: -) to comply with the requirements of the Complementary Safety Assessments that have been performed on all French nuclear facilities, -) to maintain and upgrade the power plants (most of them are facing their 3. decennial overhaul), -) to prepare the nuclear systems of tomorrow, and -) to export the French know-how

  9. Women in the new era of nuclear power industry

    International Nuclear Information System (INIS)

    Junko Ogawa

    2009-01-01

    In modern society, it is important that men and women share and equally participate in every aspect of society. Nevertheless the field of nuclear energy and radiation technology is traditionally a man-centric?industry, so women make up very small minority. However, recently even in this nuclear industry, we can sometimes see the phenomena that women are playing an active part.The nuclear industry has a big impact on society. It is necessary that we are accountable for all information given out to the public and we listen and respond to the public's concern. We do this so that nuclear technology will be able to grow and develop smoothly. In such area as better understanding, women working as nuclear engineers, scientists or communicators will be able to act in a significant role because women in general have excellent ability in communication and networking. Women in Nuclear, WiN is a worldwide association for the professional women working in the nuclear energy and radiation applications. WiN was founded in 1993, by European women involved in nuclear industry among the mood of anti-nuclear movement after the Chernobyl accident. The goals of WIN are to improve proper understanding of nuclear energy among the general public by presenting the factual information and to empower members' ability by world-wide exchange of lessons and human relationship. According to the recent data, there are 74 countries with at least one WiN member. and 38 chapters (countries/regions/organizations) that have WiN formal chapter like WIN-Japan, WIN-Korea, WIN-US, for examples. The registered members of WiN Global is about 2500. My presentation will introduce recent activities and topics of WiN Global and WiN Japan. I hope this will be able to convey that women working in nuclear field are indeed gaining in their brilliance and carrying out their mission steadily in our industry now and in the future. (Author)

  10. Develop a wearable ankle robot for in-bed acute stroke rehabilitation.

    Science.gov (United States)

    Ren, Yupeng; Xu, Tao; Wang, Liang; Yang, Chung Yong; Guo, Xin; Harvey, Richard L; Zhang, Li-Qun

    2011-01-01

    Movement training is important in motor recovery post stroke and early intervention is critical to stroke rehabilitation. However, acute stroke survivors are actively trained with activities helpful for recovery of mobility in only 13% of the time in the acute phase. Considering the first few months post stroke is critical in stroke recovery (neuroplasticity), there is a strong need for movement therapy and manipulate/mobilize the joints. There is a lack of in-bed robotic rehabilitation in acute stroke. This study seeks to meet the clinic need and deliver intensive passive and active movement therapy using a wearable robot to enhance motor function in acute stroke. Passively, the wearable robot stretches the joint to its extreme positions safely and forcefully. Actively, movement training is conducted and game playing is used to guide and motivate the patient in movement training.

  11. Report on nuclear safety and transparency 2011 - Fontenay-aux-Roses CEA centre

    International Nuclear Information System (INIS)

    2012-06-01

    After a brief presentation of the Fontenay-aux-Roses CEA centre, this report indicates the different safety measures in the different nuclear base installations (INB) of this site (measures related to different risks, to emergency situations, to inspections and audits). It describes measures related to radiation protection: organisation, dosimetry results. It presents the different significant events which occurred in 2011 and were declared to the ASN. It discusses the results of measurements of liquid, gaseous and chemical releases from the installations and their impact on the environment. It addresses the radioactive waste management (measures to limit their volume and to limit their impact on health and on the environment, notably on water and soils, type and quantities of wastes stored in INBs). It presents the different measures and actions related to information transparency

  12. A revolution is underway, nuclear industry will be transformed

    International Nuclear Information System (INIS)

    Le Ngo, B.

    2016-01-01

    Nuclear industry is the third industrial sector in France but it has to cope with a difficult financial situation and internal difficulties. We have to turn these difficulties into an opportunity to re-invent nuclear industry itself. Digit tools concerning 'product life management', big-data or 3-dimension simulations must be fully used to reduce construction or maintenance costs. Tomorrow's nuclear industry will use the additive manufacturing that consists in building 3-dimension objects by adding layer-upon-layer of material and that will reduce by a factor 5 the quantity of materials used in production. A new work organizing including a better cooperation between all the links of a chain of suppliers in order to detect and develop new ideas or find new solutions. (A.C.)

  13. Applications of nuclear methods in the automotive industry

    International Nuclear Information System (INIS)

    Schneider, E.W.; Yusuf, S.O.

    1996-01-01

    Over the years nuclear methods have proved to be a valuable asset to industry in general and to the automotive industry in particular. This paper summarizes some of the most important recent contributions of nuclear technology to the development of vehicles having high quality and long-term durability. Radiotracer methods are used to measure engine oil consumption and the wear rates of inaccessible components. Radiographic and tomographic methods are used to image fluids and structures in engines and accessory components. Tracers are used to understand combustion chemistry and quantify fluid flow. Gauging methods are used for inspection and process control. Nuclear analytical methods are used routinely for materials characterization and problem solving. Although nuclear methods are usually considered as the means of last resort, they can often be applied more easily and quickly than conventional methods when those in industrial engineering and R and D are aware of their unique capabilities. (author). 51 refs., 5 figs

  14. nuclea'10. Third industry meeting of the Swiss nuclear forum. Framework conditions for the renaissance of nuclear power

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The Swiss government and the Swiss power industry agree: Switzerland will have to renew its nuclear power plant park in a foreseeable time frame so as to prevent a threatenting gap in electricity supply. At the same time, the present lowest-CO 2 electricity mix in any industrialized country ensured by hydroelectric power and nuclear power must be safeguarded. The power industry is meeting these challenges by actively planning the replacement of existing nuclear power plants and the construction of new ones. Three framework applications for permits have been filed, and the first tenders connected to the new construction projects have been invited. This raises the question not only whether Switzerland is willing to embark on this project of a century, but also whether the country is able to do so. What are the factors helping nuclear power to achieve a breakthrough in Switzerland and its neighboring countries, provided there is public acceptance? Besides providing the necessary technical and economic resources it is the need for political and economic acceptance of nuclear power which constitutes an ongoing task for nuclear industry. nuclea is considered the meeting point of the nuclear industry in Switzerland. nuclea'10, held on November 11, 2010, served for exchanges of information between the nuclear industry and other stakeholders in nuclear power. More than 200 participants from public authorities, politics, the power industry, research and development, and vendors and service providers attended the informative and always interesting event accompanied by an industrial exhibition. (orig.)

  15. Manipulating meanings. [Advertising by the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, J. (University College, London (United Kingdom). Dept. of Geography)

    Nuclear industry advertising in the United Kingdom is becoming more and more frequent, and is often controversial. The content and impact of recent campaigns are considered, especially the advertisement which portrays nuclear power as beneficial to the greenhouse effect. (author).

  16. Enhancing Safety Culture in Complex Nuclear Industry Projects

    International Nuclear Information System (INIS)

    Gotcheva, N.

    2016-01-01

    This paper presents an on-going research project “Management principles and safety culture in complex projects” (MAPS), supported by the Finnish Research Programme on Nuclear Power Plant Safety 2015-2018. The project aims at enhancing safety culture and nuclear safety by supporting high quality execution of complex projects in the nuclear industry. Safety-critical industries are facing new challenges, related to increased outsourcing and complexity in technology, work tasks and organizational structures (Milch and Laumann, 2016). In the nuclear industry, new build projects, as well as modernisation projects are temporary undertakings often carried out by networks of companies. Some companies may have little experience in the nuclear industry practices or consideration of specific national regulatory requirements. In large multinational subcontractor networks, the challenge for assuring nuclear safety arises partly from the need to ensure that safety and quality requirements are adequately understood and fulfilled by each partner. Deficient project management practices and unsatisfactory nuclear safety culture in project networks have been recognised as contributing factors to these challenges (INPO, 2010). Prior evidence indicated that many recent major projects have experienced schedule, quality and financial challenges both in the nuclear industry (STUK, 2011) and in the non-nuclear domain (Ahola et al., 2014; Brady and Davies, 2010). Since project delays and quality issues have been perceived mainly as economic problems, project management issues remain largely understudied in safety research. However, safety cannot be separated from other performance aspects if a systemic view is applied. Schedule and quality challenges may reflect deficiencies in coordination, knowledge and competence, distribution of roles and responsibilities or attitudes among the project participants. It is increasingly understood that the performance of the project network in all

  17. Fukushima two years after: the 'irresponsible' nuclear industry

    International Nuclear Information System (INIS)

    Froggatt, Antony; McNeill, David; Thomas, Stephen; Teule, Rianne; Blomme, Brian; Erwood, Steve; Schulz, Nina; Encina, Delphine de la; Beranek, Jan; Casper, Kristin; Haverkamp, Jan; Higashizawa, Yasushi; McNevin, Greg; Riccio, Jim; Sekine, Ayako; Stensil, Shawn-Patrick; Suzuki, Kazue; Takada, Hisayo; Tumer, Aslihan; Cowell, Sue

    2013-03-01

    This report demonstrates how the nuclear sector evades responsibility for its failures. The nuclear industry is unlike any other industry: it is not required to fully compensate its victims for the effects of its large, long-lasting, and trans-boundary disasters. In this report, the current status of compensation for victims of the Fukushima disaster is analysed as an example of the serious problems due to lack of accountability for nuclear accidents. The report also looks into the role of nuclear suppliers in the failure of the Fukushima reactors. In addition, this report addresses two main protections for the industry: - Liability conventions and national laws limit the total amount of compensation available and protect nuclear suppliers, the companies that profit from the construction and operation of reactors, from any liability. This caps the funds available for victims at a fraction of real costs and removes incentives for supplier companies to take measures to reduce nuclear risks. - The complexity of and multiple layers in the nuclear supply chain exacerbate the lack of accountability for nuclear suppliers. Even though hundreds of different suppliers are providing components and services that are critical for reactor safety, these companies cannot be held accountable in case of problems. Chapter 1 of this report details the struggle of nuclear victims for fair compensation. Chapter 1 also investigates the role of the nuclear supplier companies in the Fukushima reactors. Chapter 2 gives an overview of the existing international nuclear liability conventions, and maps the impact of these problematic rules, such as capping total compensation, excluding suppliers from accountability, and allowing operators not to have sufficient financial security to cover the damages. Chapter 3 explores the involvement of suppliers throughout the lifetime of a nuclear reactor, and their responsibilities in terms of nuclear risks

  18. Risk in Nuclear Industry. Liability for Nuclear Damage. Status of the Problem in the Russian Federation

    International Nuclear Information System (INIS)

    Kovalevich, Oleg M.; Gavrilov, Sergey D.; Voronov, Dmitry B.

    2001-01-01

    Russia is one of a few nuclear power states obtaining the whole number of nuclear fuel cycle (NFC) components - from mining of uranium and on-site electricity production, from NPP spent nuclear fuel processing and extracted fissile materials and radionuclides, which are available in industry, in medicine and in other relevant areas, to radioactive waste processing and disposal. For this reason it is very important to solve the problem of nuclear fuel cycle safety as it is a single system task with an adequate approach for all cycle components. The problem is that NFC facilities are technologically various and refer to different industries (mining, machinery engineering, power engineering, chemistry, etc.). Besides, the above facilities need the development of various scientific bases. The most NFC facilities is directly connected with peaceful use of nuclear energy and with military nuclear industry, as the defense orders stimulated the development of NFC. The specific attention to safety problems at the beginning of nuclear complex foundation adversely affected the state attitude towards the risk in nuclear industry, it has left the traces at present. In our paper we touch upon the problems of risk and the liability for nuclear damage for the third persons. The problems of nuclear damage compensation for nuclear facilities personnel and for the owners (operating organizations) are beyond our subject

  19. Efforts for nuclear energy human resource development by industry-government-academic sectors cooperation. Nuclear Energy Human Resource Development Council Report

    International Nuclear Information System (INIS)

    Yamamoto, Shinji

    2009-01-01

    The report consists of eighteen sections such as the present conditions of nuclear energy, decreasing students in the department of technology and decreasing numbers of nuclear-related subjects, The Nuclear Energy Human Resources Development Program (HRD Program), The Nuclear Energy Human Resources Development Council (HRD Council), the industry-academia partnership for human resource development, the present situation of new graduates in the nuclear field, new workers of nuclear industry, the conditions of technical experts in the nuclear energy industry, long-range forecast of human resource, increasing international efforts, nuclear energy human resources development road map, three points for HRD, six basic subjects for HRD, the specific efforts of the industrial, governmental and academic sectors, promoting a better understanding of nuclear energy and supporting job hunting and employment, students to play an active part in the world, and support of the elementary and secondary schools. Change of numbers of nuclear-related subjects of seven universities, change of number of new graduates in nuclear field of various companies from 1985 to 2006, number of people employed by nuclear industries from 1998 to 2007, number of technical experts in the electric companies and the mining and manufacturing industries and forecast of number of technical experts in total nuclear industries are illustrated. (S.Y.)

  20. The human factor in the nuclear industry

    International Nuclear Information System (INIS)

    Colas, Armand

    1998-01-01

    After having evoked the progressive reduction and stabilization of significant incidents occurring every year in French nuclear power plants, and the challenges faced by nuclear energy (loss of public confidence, loss of competitiveness), and then outlined the importance of safety to overcome these challenges, the author comments EDF's approach to the human factor. He first highlights the importance of information and communication towards the population. He briefly discusses the meaning of human factors for the nuclear industry, sometimes perceived as the contribution people to the company's safety and performance. He comments the evolution observed in the perception of human error in different industrial or technical environments and situations, and outlines what is at stake to reduce the production of faults and organize a 'hunt for latent defects'

  1. The rebirth of the US nuclear industry

    International Nuclear Information System (INIS)

    Pitron, G.

    2008-01-01

    Fought during a long time by ecologists but recently rehabilitated by politicians, the US civil nuclear industry has started its comeback in the first power-consuming country of the world. Utilities and industrialists are already in action, and the first cooperation agreements with foreign groups, like EdF or Areva, have been signed. After three decades of stagnation, the US nuclear industry has to re-launch its fuel cycle activities, from the fuel enrichment to the waste management, and the recruitment of a new competent manpower is one of the main concerns. (J.S.)

  2. Supplier quality assurance systems: a study in the nuclear industry

    International Nuclear Information System (INIS)

    Singer, A.J.; Churchill, G.F.; Dale, B.G.

    1988-01-01

    The results are reported of a study which investigated the impact of quality assurance on 13 suppliers to the nuclear industry. The purpose of the study was to determine the benefits and problems of applying quality assurance in the supply of high risk plant items and material for nuclear installations. The paper discusses the problems facing the industry including: multiple audits and inspections, the irritation with having to contend with two quality system standards (namely BS 5750 and BS 5882) and the cost effectiveness of the more stringent quality system and quality control surveillance requirements imposed by the nuclear industry. It is also pointed out that companies supplying non-nuclear industrial customers were dissatisfied with the qualifications, experience and professional competence of some auditors and many inspectors. (author)

  3. Environmental management in nuclear industry

    International Nuclear Information System (INIS)

    Pillai, K.C.; Bhat, I.S.

    1988-01-01

    Safety of the environment is given due attention right at the design state of nuclear energy installations. Besides this engineered safety environmental protection measures are taken on (a) site selection criteria (b) waste management practices (c) prescribing dose limits for the public (d) having intensive environmental surveillance programme and (e) emergency preparedness. The paper enumerates the application of these protection measures in the environmental management to make the nuclear industry as an example to follow in the goal of environmental safety. (author)

  4. The nuclear industry and communication: a personal view

    International Nuclear Information System (INIS)

    Morvan, P.

    1989-01-01

    The nuclear industry should not be hesitant in proclaiming its belief that nuclear energy is justifiable politically, economically and ecologically. Some of the basic principles of company communication with the public as they apply to the nuclear industry, are examined. Security is of the utmost importance at all nuclear sites. The commitment to security must be based on mutual confidence between specialists and the public particularly those living in the vicinity of a nuclear plant. A precise scale by which nuclear incidents can be measured must be defined, indicating their degree of seriousness and consequently what should be done. The public must be immediately informed about nuclear accidents by specialists as unequivocally as possible. It is essential that those who work at nuclear plants be confident and proud of their jobs and the company that employs them. It is impossible to establish and maintain good public relations without a permanent flow of information within the company at all levels. The economic factors, such as increased employment opportunities, must not be overlooked either. (author)

  5. Reliability estimation for multiunit nuclear and fossil-fired industrial energy systems

    International Nuclear Information System (INIS)

    Sullivan, W.G.; Wilson, J.V.; Klepper, O.H.

    1977-01-01

    As petroleum-based fuels grow increasingly scarce and costly, nuclear energy may become an important alternative source of industrial energy. Initial applications would most likely include a mix of fossil-fired and nuclear sources of process energy. A means for determining the overall reliability of these mixed systems is a fundamental aspect of demonstrating their feasibility to potential industrial users. Reliability data from nuclear and fossil-fired plants are presented, and several methods of applying these data for calculating the reliability of reasonably complex industrial energy supply systems are given. Reliability estimates made under a number of simplifying assumptions indicate that multiple nuclear units or a combination of nuclear and fossil-fired plants could provide adequate reliability to meet industrial requirements for continuity of service

  6. Nuclear engineering. Stable industry for bright minds

    International Nuclear Information System (INIS)

    Geisler, Maja

    2009-01-01

    The Deutsches Atomforum (DAtF) invited 35 students and graduate students for 'colloquies for professional orientation' to Luenen on March 8-11, 2009. Another 39 students were guests in Speyer between March 15 and 18 this year. Participants included graduates in physics, chemistry, radiation protection, and mechanical engineering as well as students of process engineering, electrical engineering and environmental technology. The colloquies for professional orientation are a service provided by the Informationskreis Kernenergie (IK) to member firms of DAtF. At the same time, the IK in this way fulfils its duty to promote young scientists and engineers within the framework of the DAtF's basic public relations activities. After all, nuclear technology in Germany is not about to end its life. Firms with international activities are in urgent need of highly qualified young staff members. Personnel is needed for a variety of activities ranging from nuclear power plant construction to fuel fabrication to waste management and the demolition and disposal of nuclear power plants. All these areas are in need of new qualified staff. Some 750 students so far have attended the DAtF colloquies for professional orientation since 2002. Many participants were hired by industries straight away or were given opportunities as trainees or students preparing their diploma theses in the nuclear industry. These contacts with the nuclear industry should not remain a one-off experience for the students. For this reason, the IK invites the participants in colloquies again this year to attend the Annual Meeting on Nuclear Technology in Dresden on May 12-14, 2009. (orig.)

  7. The development process and tendency of nuclear instruments applied in industry

    International Nuclear Information System (INIS)

    Ji Changsong

    2005-01-01

    The development process of nuclear technique application in industry may be divided into three stages: early stage--density, thickness and level measurement; middle stage--neutron moisture, ash content and X-ray fluorescence analysis; recent state--container inspection and industrial CT, nuclear magnetic resonance, neutron capture and non-elastic collision analysis techniques. The development tendency of nuclear instruments applied in industry is: spectrum measurement; detector array and image technique; nuclide analysis and new kinds of nuclear detectors are widely adopted. (authors)

  8. Nuclear energy and the steel industry

    International Nuclear Information System (INIS)

    Barnes, R.S.

    1977-01-01

    Fossil fuels represent a large part of the cost of iron and steel making and their increasing cost has stimulated investigation of methods to reduce the use of fossil fuels in the steel industry. Various iron and steel making routes have been studied by the European Nuclear Steelmaking Club (ENSEC) and others to determine to what extent they could use energy derived from a nuclear reactor to reduce the amount of fossil fuel consumed. The most promising concept is a High-Temperature Gas-Cooled Nuclear Reactor heating helium to a temperature sufficient to steam reform hydrocarbons into reducing gases for the direct reduction of iron ores. It is proposed that the reactor/reformer complex should be separate from the direct-reduction plant/steelworks and should provide reducing gas by pipeline, not only to a number of steel works but to other industrial users. The composition of suitable reducing gases and the methods of producing them from various feedstocks are discussed. Highly industrialised countries with large steel and chemical industries have shown greatest interest in the concept, but those countries with large iron-ore reserves and growing direct capacity should consider the future value of the High-Temperature Gas-Cooled Reactor as a means of extending the life of their gas reserves. (author)

  9. The roles of industry for internationalization of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Choi, Jor-Shan; Oda, Takuji; Tanaka, Satoru; Kuno, Yusuke

    2011-01-01

    To meet increasing energy demand and counter climate change, nuclear energy is expected to expand during the next decades in both developed and developing countries. The Fukushima accident in Japan in March 2011 may dampen the expansion, but it would proceed and continue when the Fukushima lessons are learned. This expansion, most visibly in Asian would be accompanied with complex and intractable challenges to global stability and nuclear security, notably, on 'how to reduce security and proliferation concerns if nuclear power is introduce and when used fuel is generated in less stable regions of the world?' The answers to the question may lie in the possibility of multilateral control of nuclear materials and technologies in the nuclear fuel cycle, including the provision of a 'cradle-to-grave' fuel cycle service, presumably by the nuclear industries and their respective governments. This paper evaluates the importance of such industry-government cooperative initiative and explores into the roles which the nuclear industry should play to ensure that the world would not be 'creating proliferation when expanding the application of nuclear power to emerging nuclear countries'. (author)

  10. The safety of a nuclear industry in South Australia

    International Nuclear Information System (INIS)

    Higson, D.J.

    2016-01-01

    On 19 March 2015, the South Australian Government established a Royal Commission to consider and analyse the potential of South Australia to further participate in the nuclear fuel cycle, whether through the expansion of the current level of exploration, extraction and milling of uranium (the only parts of the nuclear power industry that are currently allowed in Australia) or by undertaking the conversion and enrichment of materials for the nuclear fuel cycle, the generation of electricity from nuclear fuels and/or the management, storage and disposal of nuclear wastes. This provides a timely opportunity to review the performance of the nuclear industry throughout the world, particularly in the safety of electricity generation and waste management, showing that - despite misconceptions about radiological risks and the significance of the accidents that have occurred - the record of this industry is exceptionally good. The Federal and South Australian State governments both have the policy that uranium mining is acceptable providing it is properly regulated. The success of this policy suggests that it is exactly the policy that should be adopted for all other parts of the nuclear fuel cycle, including the generation of electricity.

  11. Deregulation and internationalisation - impact on the Swedish nuclear industry

    International Nuclear Information System (INIS)

    Haukeland, Sverre R.

    2010-01-01

    The deregulation of the Swedish electricity market in 1996 was well known in advance, and the nuclear power plants in Sweden, as well as their main suppliers, made early preparations for a this new situation. In a study - performed by the author at Malardalen University in Sweden - it is concluded that the electricity industry, including the nuclear power plants, was fundamentally transformed in conjunction with market liberalisation. Two large foreign companies, E-on and Fortum, entered the Swedish market and became part-owners of the nuclear plants. After deregulation, the electricity market in Sweden is dominated by these two companies and the large national company Vattenfall. Similarly, Vattenfall has recently grown into an international energy company, acquiring generation capacity in Northern Europe outside of Sweden, including nuclear power plants in Germany. Restructuring of the nuclear industry on the supplier side started in the 1980's, when the Swedish company ASEA and BBC of Switzerland merged to become ABB. Several years later the Swedish nuclear plant supplier ABB-Atom became part of Westinghouse Electric Company, today owned by Toshiba. The Swedish experience thus confirms an international trend of mergers and consolidation in the nuclear industry. (authors)

  12. Quality management certification for the nuclear industry

    International Nuclear Information System (INIS)

    Wilmer, T.J.

    1993-01-01

    Historically for safety critical items, the United Kingdom nuclear companies either conducted their own inspection and audit of suppliers or sub-contracted staff to do so on their behalf. However, it is becoming unrealistic for these services to be undertaken in-house for economic reasons. The power industry is looking outside its own immediate expertise to that of 3rd Party Certification Bodies. There is a danger of introducing an element of risk unless the Certification Body really does understand the industry and its requirements. The Nuclear Installations Inspectorate (NII) makes it mandatory for nuclear installations to have in place Quality management systems that meet the requirements of BS 5882. This standard requires the use of quality assurance programmes and a greater degree of understanding of nuclear regulations and codes of practice than is required by BS 5750. This is a very significant factor, recognising as it does the need to harmonise the management interface between an operator of a nuclear installation and suppliers to that same installation. (author)

  13. Integrated project management information systems: the French nuclear industry experience

    International Nuclear Information System (INIS)

    Jacquin, J.-C.; Caupin, G.-M.

    1990-01-01

    The article discusses the desirability of integrated project management systems within the French nuclear power industry. Change in demand for nuclear generation facilities over the last two decades has necessitated a change of policy concerning organization, cost and planning within the industry. Large corporate systems can benefit from integrating equipment and bulk materials tracking. Project management for the nuclear industry will, in future, need to incorporate computer aided design tools and project management information systems data bases as well as equipment and planning data. (UK)

  14. Integrated project management information systems: the French nuclear industry experience

    Energy Technology Data Exchange (ETDEWEB)

    Jacquin, J.-C.; Caupin, G.-M.

    1990-03-01

    The article discusses the desirability of integrated project management systems within the French nuclear power industry. Change in demand for nuclear generation facilities over the last two decades has necessitated a change of policy concerning organization, cost and planning within the industry. Large corporate systems can benefit from integrating equipment and bulk materials tracking. Project management for the nuclear industry will, in future, need to incorporate computer aided design tools and project management information systems data bases as well as equipment and planning data. (UK).

  15. Developing world class leader-managers for the evolving nuclear industry

    International Nuclear Information System (INIS)

    Konettsni, A.L.

    2010-01-01

    The author discusses the problems of educating and training the world-class leaders for nuclear industry. He specifies the leader's characters, emphasizing that common high standards of performance have been the hallmark of the industry for years. Rapid growth in the nuclear industry could diminish the self-discipline that has been developed over decades. He lists the US Naval Nuclear Propulsion Program fundamental principles developed over six decades. The author also dwells on corporate self-motivation, self-control, self-expectancy of optimism and company's image [ru

  16. Laser robot in the nuclear industry

    International Nuclear Information System (INIS)

    Contre, M.

    1987-05-01

    Possibilities of power lasers for welding, cutting, drilling, plugging surface treatment and hard-facing are reviewed. CO 2 and Nd:YAG lasers only have adequate power for nuclear applications. Radiation effects on lasers and contamination problems are examined. Then examples of applications to nuclear industry are given: PWR fuel fabrication, oxide thickness measurement in Magnox reactors, laser cutting of a cylindrical piece of steel on the bottom of a fuel channel in a gas graphite reactor, nuclear plant dismantling and fuel reprocessing. 51 refs [fr

  17. Analysis on Japanese nuclear industrial technologies and their military implications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H S; Yang, M H; Kim, H J. and others

    2000-10-01

    This study covered the following scopes : analysis of Japan's policy trend on the development and utilization of nuclear energy, international and domestic viewpoint of Japan's nuclear weapon capability, Japan's foreign affairs and international cooperation, status of Japan's nuclear technology development and its level, status and level of nuclear core technologies such as nuclear reactor and related fuel cycle technologies. Japan secures the whole spectrum of nuclear technologies including core technologies through the active implementation of nuclear policy for the peaceful uses of nuclear energy during the past five decades. Futhermore, as the result of the active cultivation of nuclear industry, Japan has most nuclear-related facilities and highly advanced nuclear industrial technologies. Therefore, it is reasonable that Japan might be recognized as one of countries having capability to get nuclear capability in several months.

  18. Analysis on Japanese nuclear industrial technologies and their military implications

    International Nuclear Information System (INIS)

    Kim, H. S.; Yang, M. H.; Kim, H. J. and others

    2000-10-01

    This study covered the following scopes : analysis of Japan's policy trend on the development and utilization of nuclear energy, international and domestic viewpoint of Japan's nuclear weapon capability, Japan's foreign affairs and international cooperation, status of Japan's nuclear technology development and its level, status and level of nuclear core technologies such as nuclear reactor and related fuel cycle technologies. Japan secures the whole spectrum of nuclear technologies including core technologies through the active implementation of nuclear policy for the peaceful uses of nuclear energy during the past five decades. Futhermore, as the result of the active cultivation of nuclear industry, Japan has most nuclear-related facilities and highly advanced nuclear industrial technologies. Therefore, it is reasonable that Japan might be recognized as one of countries having capability to get nuclear capability in several months

  19. Qualification of NDE personnel in the nuclear industry

    International Nuclear Information System (INIS)

    Epps, T.N.

    1984-01-01

    There has been evidence of ineffective programs for certifying nondestructive examination (NDE) personnel who conduct periodic inservice examinations in nuclear power plants under ASME Section XI Code requirements. This was brought to the attention of a group from the electric utility industry, the Electric Power Research Institute (EPRI), some NDE consultants and representatives from the American Society of Mechanical Engineers (ASME) by the Nuclear Regulatory Commission (NRC) in a May, 1982 meeting in Bethesda, Maryland. One problem pointed out by the NRC was the lack of a clear definition of qualification requirements for certification of NDE personnel who conduct ASME Section XI Inservice Inspection work in nuclear power plants. The NRC requested that the nuclear industry resolve this problem by formulating definitive qualification requirements for personnel certification that could be made an industry requirement. In June, 1982 the EPRI NDE Subcommittee held a general meeting for utility representatives to discuss the results of the May, 1982 meeting to develop a plan for industry response to the issue. The consensus was that an Ad Hoc Committee of utility representatives be convened to develop a document outlining qualification requirements for vertification of NDE personnel. The Ad Hoc Committee was formally convened on September 29, 1982

  20. Subcontracting in nuclear industry - legal aspects

    International Nuclear Information System (INIS)

    Leger, M.

    2012-01-01

    This article describes the legal framework of subcontracting in France. Subcontracting is considered as a normal mode of functioning for an enterprise: an enterprise contracts another enterprise to do what it can not do itself or does not want to do. According to the 1975 law, cascade subcontracting is allowed but subcontractors have to be accepted by the payer. In some cases the payer can share responsibility when the subcontracting enterprises do not comply to obligations like the payment of some taxes. The main subcontractor who is the one who contracted with the payer is the only one responsible for the right execution of the whole contract. In nuclear industry there are 2 exceptions to the freedom of subcontracting. The first one concerns radiation protection: in a nuclear facility the person in charge of radioprotection must be chosen among the staff. The second concerns the operations and activities that are considered important for radiation protection, it is forbidden to subcontract them. In some cases like maintenance in nuclear sector the law imposes some qualification certification for subcontracting enterprises. The end of the article challenges the common belief about subcontracting in nuclear industry. (A.C.)

  1. The World Nuclear Industry Status Report: 1992

    International Nuclear Information System (INIS)

    Flavin, Christopher; Lenssen, Nicholas; Froggatt, Antony; Willis, John; Kondakji, Assad; Schneider, Mycle

    1992-05-01

    The World Nuclear Industry Status Report provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. This first WNISR Report was issued in 1992 in a joint publication with WISE-Paris, Greenpeace International and the World Watch Institute, Washington

  2. Further activities of safety culture toward nuclear transportation industry

    International Nuclear Information System (INIS)

    Machida, Y.; Shimakura, D.

    2004-01-01

    On September 30, 1999, a criticality accident occurred at the uranium processing facility of the JCO Co. Ltd. (hereinafter referred to as ''JCO'') Tokai plant, located in Tokaimura, Ibaraki Prefecture. This was an unprecedented accident in Japan's history of peaceful use of nuclear power, resulting in three workers exposed to severe radiation, two of whom died, and the evacuation and enforced indoor confinement of local residents. Nuclear power suppliers must take personal responsibility for ensuring safety. In this connection, the electric power industry, heavy electric machinery manufacturers, fuel fabricators, and nuclear power research organizations gathered together to establish the Nuclear Safety Network (NSnet) in December 1999, based on the resolve to share and improve the level of the safety culture across the entire nuclear power industry and to assure that such an accident never occurs again. NSnet serves as a link between nuclear power enterprises, research organizations, and other bodies, based on the principles of equality and reciprocity. A variety of activities are pursued, such as diffusing a safety culture, implementing mutual evaluation among members, and exchanging safety-related information. Aiming to share and improve the safety culture throughout the entire nuclear power industry, NSnet thoroughly implements the principle of safety first, while at the same time making efforts to restore trust in nuclear power

  3. Qualification test of packages for transporting radioactive materials and wastes

    International Nuclear Information System (INIS)

    Oliveira Santos, P. de; Miaw, S.T.W.

    1990-01-01

    Since 1979 the Waste Treatment Division of Nuclear Tecnology Development Center has been developed and tested packagings for transporting radioactive materials and wastes. The Division has designed facilities for testing Type A packages in accordance with the adopted regulations. The Division has tested several packages for universities, research centers, industries, INB, FURNAS, etc. (author) [pt

  4. The nuclear power industry in the Asia-Pacific region

    International Nuclear Information System (INIS)

    Lester, R.K.

    1984-01-01

    The development of the nuclear reactor industry in the Pacific Basin began in the United States and Canada and spread to Japan and, more recently, to South Korea and Taiwan. The American and Canadian industries face serious economic and political difficulties; indeed, their current plight is so severe that their survival no longer seems assured. Because of the key regional role played up to now by the North American industries, and by the U.S. industry in particular, the realization of this scenario would have important repercussions for nuclear trade and investment throughout the region. In the longer run some basic structural changes would seem likely, with the focal point of industrial strength and technological leadership in the region shifting to Northeast Asia, and to Japan in particular. Already there is evidence of this shift. But the prospect of a smooth, gradual transition toward a new regional industrial structure centered on Japan may be misleading. What is missing from this picture is a full measure of the extent to which nuclear industrial development elsewhere in the region is positively correlated with the trend in the United States. (author)

  5. Biological response of Tradescantia stamen-hairs in Brazilian radioactive waste deposits

    International Nuclear Information System (INIS)

    Gomes, Heliana A.; Macacini, Jose Flavio

    2005-01-01

    The objective of the present study was to apply a highly sensitive botanical test of mutagenicity (the Tradescantia stamen-hair mutation bioassay), to assess in situ the biological responses induced by occurring radiation in Brazilian radioactive waste deposits (waste deposits from the Mineral Treatment Unit/Brazilian Nuclear Industries (UTM/INB), from the Centro de Desenvolvimento de Tecnologia Nuclear (CDTN) and from the Instituto de Pesquisas Energeticas e Nucleares (IPEN). The mutagenesis was evaluated in environments presenting gamma radiation exposure rates ranging from 1.6 μR.min -1 up to 3300.0 μR.min -1 . It was detected a significant increase in the mutation rate for pink Tradescantia stamen-hair only for the local presenting the highest exposition rate within UTM/INB which had a radiation exposition rate of 750 μR.min -1 . The Tradescantia plants exposed to the radioactive waste deposits from CDTN and IPEN presented an insufficient number of flowers for the statistical evaluation of mutagenicity. (author)

  6. Nuclear energy and the nuclear energy industry

    International Nuclear Information System (INIS)

    Bromova, E.; Vargoncik, D.; Sovadina, M.

    2013-01-01

    A popular interactive multimedia publication on nuclear energy in Slovak. 'Nuclear energy and energy' is a modern electronic publication that through engaging interpretation, combined with a number of interactive elements, explains the basic principles and facts of the peaceful uses of nuclear energy. Operation of nuclear power plants, an important part of the energy resources of developed countries, is frequently discussed topic in different social groups. Especially important is truthful knowledgeability of the general public about the benefits of technical solutions, but also on the risks and safety measures throughout the nuclear industry. According to an online survey 'Nuclear energy and energy' is the most comprehensive electronic multimedia publication worldwide, dedicated to the popularization of nuclear energy. With easy to understand texts, interactive and rich collection of accessories stock it belongs to modern educational and informational titles of the present time. The basic explanatory text of the publication is accompanied by history and the present time of all Slovak nuclear installations, including stock photos. For readers are presented the various attractions legible for the interpretation, which help them in a visual way to make a more complete picture of the concerned issue. Each chapter ends with a test pad where the readers can test their knowledge. Whole explanatory text (72 multimedia pages, 81,000 words) is accompanied by a lot of stock of graphic materials. The publication also includes 336 photos in 60 thematic photo galleries, 45 stock charts and drawings, diagrams and interactive 31 videos and 3D models.

  7. Intelligent robotics and remote systems for the nuclear industry

    International Nuclear Information System (INIS)

    Wehe, D.K.; Lee, J.C.; Martin, W.R.; Tulenko, J.

    1989-01-01

    The nuclear industry has a recognized need for intelligent, multitask robots to carry out tasks in harsh environments. From 1986 to the present, the number of robotic systems available or under development for use in the nuclear industry has more than doubled. Presently, artificial intelligence (AI) plays a relatively small role in existing robots used in the nuclear industry. Indeed, the lack of intelligence has been labeled the ''Achilles heel'' of all current robotic technology. However, larger-scale efforts are underway to make the multitask robot more sensitive to its environment, more capable to move and perform useful work, and more fully autonomous via the use of AI. In this paper, we review the terminology, the history, and the factors which are motivating the development of robotics and remove systems; discuss the applications related to the nuclear industry; and, finally, examine the state of the art of the technologies being applied to introduce more autonomous capabilities. Much of this latter work can be classified as within the artificial intelligence framework. (orig.)

  8. Big problems for Swedish nuclear industry

    International Nuclear Information System (INIS)

    Holmstroem, Anton; Runesson, Linda

    2006-01-01

    A report of the problems for Swedish nuclear industry the summer of 2006. A detailed description of the 25th of July incident at Forsmark 1 is provided. The incident was classified as level two on the INIS scale. The other Swedish nuclear plants were subject to security evaluations in the aftermath, and at Forsmark 2 similar weaknesses were found in the security system (ml)

  9. Transfer of Knowledge Management Methods and Tools to and from the Nuclear Industry

    International Nuclear Information System (INIS)

    Pasztory, Z.; Gyulay, T.

    2016-01-01

    Full text: The discipline of the knowledge management was firstly introduced in Japan by the leading technology companies like Toyota, Canon, Honda, Mitsubishi, Sharp and others. It means outside the nuclear industry. The nuclear industry organizations including the IAEA started to deal with the knowledge management about ten years later and adapted those approaches, methods and tools developed and used in other industry organizations. After more than fifteen-years of its programmatic existence of the nuclear knowledge management in the IAEA, the trend is turn round in many topics. The nuclear industry organizations have more and more good practices to share with other industries. Meanwhile the world leading companies working in a quickly changing market environment are still developing and using KM practices which can be useful also in the “slowly-changing” nuclear industry environment. In this article we would like to pay attention—through some examples—to the importance of the benchmarking with companies outside the nuclear industry for the further safe and reliable operation of nuclear facilities and to educate and train the next nuclear generation. (author

  10. Nuclear safety and radiation protection report of the nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  11. The changing structure of the international commercial nuclear power reactor industry

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Hill, L.J.; Reich, W.J.; Rowan, W.J.

    1992-12-01

    The objective of this report is to provide an understanding of the international commercial nuclear power industry today and how the industry is evolving. This industry includes reactor vendors, product lines, and utility customers. The evolving structure of the international nuclear power reactor industry implies different organizations making decisions within the nuclear power industry, different outside constraints on those decisions, and different priorities than with the previous structure. At the same time, cultural factors, technical constraints, and historical business relationships allow for an understanding of the organization of the industry, what is likely, and what is unlikely. With such a frame of reference, current trends and future directions can be more readily understood

  12. Nuclear industry - challenges in chemical engineering

    International Nuclear Information System (INIS)

    Sen, S.; Sunder Rajan, N.S.; Balu, K.; Garg, R.K.; Murthy, L.G.K.; Ramani, M.P.S.; Rao, M.K.; Sadhukhan, H.K.; Venkat Raj, V.

    1978-01-01

    Chemical engineering processes and operations are closely involved in every step of the nuclear fuel cycle. Starting from mining and milling of the ore through the production of fuel and other materials and their use in nuclear reactors, fuel reprocessing, fissile material recycle and treatment and disposal of fission product wastes, each step presents a challenge to the chemical engineer to evolve and innovate processes and techniques for more efficient utilization of the energy in the atom. The requirement of high recovery of the desired components at high purity levels is in itself a challenge. ''Nuclear Grade'' specifications for materials put a requirement which very few industries can satisfy. Recovery of uranium and thorium from low grade ores, of heavy water from raw water, etc. are examples. Economical and large scale separation of isotopes particularly those of heavy elements is a task for which processess are under various stages of development. Further design of chemical plants such as fuel reprocessing plants and high level waste treatment plants, which are to be operated and maintained remotely due to the high levels of radio-activity call for engineering skills which are being continually evolved. In the reactor, analysis of the fluid mechanics and optimum design of heat removal system are other examples where a chemical engineer can play a useful role. In addition to the above, the activities in the nuclear industry cover a very wide range of chemical engineering applications, such as desalination and other energy intensive processes, radioisotope and radiation applications in industry, medicine and agriculture. (auth.)

  13. Advances in chemical engineering in nuclear and process industries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately.

  14. Advances in chemical engineering in nuclear and process industries

    International Nuclear Information System (INIS)

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately

  15. The European nuclear power industry: Restructuring for combined strength and worldwide leadership

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Norman, R.E.; Reich, W.J.; Hill, L.J.

    1993-01-01

    The European nuclear power industry is being restructured from an industry drawn along national lines to a European-wide industry. This, in part, reflects growth of the European Economic Community, but it also reflects changes in the international nuclear power industry. The objectives of the participants, beyond better integration of the nuclear industry in Western Europe, are to (1) obtain European leadership of the worldwide commercial nuclear power industry, (2) improve medium- and long-term safety of Eastern Europe and the former Soviet Union (FSU) power reactors, and (3) reduce domestic concerns about nuclear power. The activities to achieve these goals include (1) formation of Nuclear Power International (a joint venture of the German and French nuclear power plant vendors for design and construction of nuclear power plants), (2) formation of a utility group to forge agreement throughout Europe on what the requirements are for the next generation of nuclear power plants, and (3) agreement by regulators in multiple European countries to harmonize regulations. This is to be achieved before the end of the decade. These changes would allow a single design of nuclear power plant to be built anywhere in Europe. The creation of European-wide rules (utility requirements, engineering standards, and national regulations) would create strong economic and political forces for other European countries (Eastern Europe and FSU) to meet these standards

  16. The European nuclear power industry: Restructuring for combined strength and worldwide leadership

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Norman, R.E.; Reich, W.J.; Hill, L.J.

    1993-06-18

    The European nuclear power industry is being restructured from an industry drawn along national lines to a European-wide industry. This, in part, reflects growth of the European Economic Community, but it also reflects changes in the international nuclear power industry. The objectives of the participants, beyond better integration of the nuclear industry in Western Europe, are to (1) obtain European leadership of the worldwide commercial nuclear power industry, (2) improve medium- and long-term safety of Eastern Europe and the former Soviet Union (FSU) power reactors, and (3) reduce domestic concerns about nuclear power. The activities to achieve these goals include (1) formation of Nuclear Power International (a joint venture of the German and French nuclear power plant vendors for design and construction of nuclear power plants), (2) formation of a utility group to forge agreement throughout Europe on what the requirements are for the next generation of nuclear power plants, and (3) agreement by regulators in multiple European countries to harmonize regulations. This is to be achieved before the end of the decade. These changes would allow a single design of nuclear power plant to be built anywhere in Europe. The creation of European-wide rules (utility requirements, engineering standards, and national regulations) would create strong economic and political forces for other European countries (Eastern Europe and FSU) to meet these standards.

  17. Chernobyl coverage: how the US media treated the nuclear industry

    International Nuclear Information System (INIS)

    Friedman, S.M.; Gorney, C.M.; Egolf, B.P.

    1992-01-01

    This study attempted to uncover whether enough background information about nuclear power and the nuclear industries in the USA, USSR and Eastern and Western Europe had been included during the first two weeks of US coverage of the Chernobyl accident so that Americans would not be misled in their understanding of and attitudes toward nuclear power in general. It also sought to determine if reporters took advantage of the Chernobyl accident to attack nuclear technology or the nuclear industry in general. Coverage was analysed in five US newspapers and on the evening newscasts of the three major US television networks. Despite heavy coverage of the accident, no more than 25% of the coverage was devoted to information on safety records, history of accidents and current status of nuclear industries. Not enough information was provided to help the public's level of understanding of nuclear power or to put the Chernobyl accident in context. However, articles and newscasts generally balanced use of pro- and anti-nuclear statements, and did not include excessive amounts of fear-inducing and negative information. (author)

  18. National standards for the nuclear industry

    International Nuclear Information System (INIS)

    Laing, W.R.; Corbin, L.T.

    1981-01-01

    Standards needs for the nuclear industry are being met by a number of voluntary organizations, such as ANS, ASTM, AWS, ASME, and IEEE. The American National Standards Institute (ANSI) coordinates these activities and approves completed standards as American National Standards. ASTM has two all-nuclear committees, E-10 and C-26. A C-26 subcommittee, Test Methods, has been active in writing analytical chemistry standards for twelve years. Thirteen have been approved as ANSI standards and others are ready for ballot. Work is continuing in all areas of the nuclear fuel cycle

  19. Assessment of industrial energy options based on coal and nuclear systems

    International Nuclear Information System (INIS)

    Anderson, T.D.; Bowers, H.I.; Bryan, R.H.; Delene, J.G.; Hise, E.C.; Jones, J.E. Jr.; Klepper, O.H.; Reed, S.A.; Spiewak, I.

    1975-07-01

    Industry consumes about 40 percent of the total primary energy used in the United States. Natural gas and oil, the major industrial fuels, are becoming scarce and expensive; therefore, there is a critical national need to develop alternative sources of industrial energy based on the more plentiful domestic fuels--coal and nuclear. This report gives the results of a comparative assessment of nuclear- and coal-based industrial energy systems which includes technical, environmental, economic, and resource aspects of industrial energy supply. The nuclear options examined were large commercial nuclear power plants (light-water reactors or high-temperature gas-cooled reactors) and a small [approximately 300-MW(t)] special-purpose pressurized-water reactor for industrial applications. Coal-based systems selected for study were those that appear capable of meeting environmental standards, especially with respect to sulfur dioxide; these are (1) conventional firing using either low- or high-sulfur coal with stack-gas scrubbing equipment, (2) fluidized-bed combustion using high-sulfur coal, (3) low- and intermediate-Btu gas, (4) high-Btu pipeline-quality gas, (5) solvent-refined coal, (6) liquid boiler fuels, and (7) methanol from coal. Results of the study indicated that both nuclear and coal fuel can alleviate the industrial energy deficit resulting from the decline in availability of natural gas and oil. However, because of its broader range of application and relative ease of implementation, coal is expected to be the more important substitute industrial fuel over the next 15 years. In the longer term, nuclear fuels could assume a major role for supplying industrial steam. (U.S.)

  20. Development present situation analysis of nuclear power industry in China and South Korea

    International Nuclear Information System (INIS)

    Huang Gang

    2011-01-01

    This paper introduces the present state and primary development experiences of South Korean nuclear power industry and the present state of Chinese nuclear power industry development, and comparatively analyzes and researches the differences between China and South Korea in nuclear power industry. At last, we come up with some suggestions and ideas to refer the follow-up development of Chinese nuclear power industry. (author)

  1. The industrial nuclear fuel cycle in Argentina

    International Nuclear Information System (INIS)

    Koll, J.H.; Kittl, J.E.; Parera, C.A.; Coppa, R.C.; Aguirre, E.J.

    1977-01-01

    The nuclear power program of Argentina for the period 1976-85 is described, as a basis to indicate fuel requirements and the consequent implementation of a national fuel cycle industry. Fuel cycle activities in Argentina were initiated as soon as 1951-2 in the prospection and mining activities through the country. Following this step, yellow-cake production was initiated in plants of limited capacity. National production of uranium concentrate has met requirements up to the present time, and will continue to do so until the Sierra Pintada Industrial Complex starts operation in 1979. Presently, there is a gap in local production of uranium dioxide and fuel elements for the Atucha power station, which are produced abroad using Argentine uranium concentrate. With its background, the argentine program for the installation of nuclear fuel cycle industries is described, and the techno-economical implications considered. Individual projects are reviewed, as well as the present and planned infrastructure needed to support the industrial effort [es

  2. Analysis on Japanese nuclear industrial technologies and their military implications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. S.; Yang, M. H.; Kim, H. J. and others

    2000-10-01

    This study covered the following scopes : analysis of Japan's policy trend on the development and utilization of nuclear energy, international and domestic viewpoint of Japan's nuclear weapon capability, Japan's foreign affairs and international cooperation, status of Japan's nuclear technology development and its level, status and level of nuclear core technologies such as nuclear reactor and related fuel cycle technologies. Japan secures the whole spectrum of nuclear technologies including core technologies through the active implementation of nuclear policy for the peaceful uses of nuclear energy during the past five decades. Futhermore, as the result of the active cultivation of nuclear industry, Japan has most nuclear-related facilities and highly advanced nuclear industrial technologies. Therefore, it is reasonable that Japan might be recognized as one of countries having capability to get nuclear capability in several months.

  3. Establishing a Nuclear Industrial Structure The Spanish Case

    International Nuclear Information System (INIS)

    Palacios, L.

    1989-01-01

    Nuclear industry is nationalistic all over the world. This fact is at first glance rather surprising, since one would guess that the localization drive should start with segments of industry of a less sophisticated nature. The reason probably lies on the fact that nuclear disciplines are new and can be conceived as an easier task for planners than other techniques where industrial relationships are already established. The process of increasing domestic content has important implications and crucial decisions have to be made. A general process of technology transfer has to be assured, investments have to be made in new plant and a sizable number of engineers and technicians has to be trained. Technology transfer in the nuclear field seems to be the practical extent dictated by the availability of raw materials and the economy of scale for some components. Table V lists the content achieved in specific classes of equipment. The process has been successful and has enabled Spanish Industry to be present in the world market. Countries embarking in similar programs have expressed interest in the Spanish process as representative of medium development industry that, by determination and serious work, has achieved an advanced status, overcoming deficiencies that are not normally encountered in more developed societies. Spanish Industry is of course ready to share its experience with interested parties, thus contributing to orient local industries by advising them on the successes achieved as an example to follow, and the mistakes made, to prevent occurrence

  4. NIC (Nuclear Industry in China) exhibition. Press file

    International Nuclear Information System (INIS)

    1998-01-01

    Framatome participated to the NIC exhibition which took place in Beijing (China) on March 1998. This press dossier was distributed to visitors. It presents in a first part the activities of the Framatome group in people's republic of China (new constructions (Daya Bay, Ling Ao project), technological cooperation and contracts in the nuclear domain, technology transfers in the domain of nuclear fuels, activities and daughter companies in the domain of industrial equipments, Framatome Connectors International (FCI) daughter company in the domain of connectors engineering). Then, the general activities of Framatome in the nuclear, industrial equipment, and connectors engineering domains are summarized in the next 3 parts. (J.S.)

  5. News from nuclear industry

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    A cooperation agreement has been signed between Indian and French governments concerning energy and research. This agreement opens the Indian market to Areva for the supply of power reactors. Areva will face Russian and American competitors. Areva is already present in India in the sectors of power transmission and distribution, it employs 3500 people and operates 8 industrial plants. Areva and Northrop Grumman have signed an agreement to build the biggest site on American soil dedicated to the manufacturing of big nuclear components like reactor vessels, steam generators and pressurizers. An opinion poll shows that 78% Americans favor the use of nuclear energy for producing electricity, while 24% are opposed to it and that nuclear power plants are considered safe by 78% of the population. The Areva-Bechtel corporation has signed an agreement with Unistar Nuclear Energy for doing the preliminary studies for the construction of an EPR near the Calvert Cliffs site. More than 500 engineers are working on the project that benefit from the feedback experience of 4 EPR that are presently being built in Finland, France and China. The European Commission wants the European Union to play a major role in nuclear safety, a task group has been created whose purpose is to define new regulations illustrating common priorities and approaches for unifying national nuclear safety standards among the member states. (A.C.)

  6. Activities of Japan Nuclear Technology Institute Japanese TSO of Industry

    International Nuclear Information System (INIS)

    Nagata, T.

    2010-01-01

    Nuclear energy is a superior form of energy in that it delivers stable power supplies and counters global warming, and it is important to promote nuclear power generation as the core power sources for a nation. However, the Japanese environment surrounding nuclear energy is changing drastically, following the liberalization of market and recent series of troubles or falsifications shaking public confidence in nuclear energy. In the above mentioned situation, nuclear industries and organizations must fulfill their individual roles, and amass its strength to work toward enhancing industry initiatives for safety activities, securing safe / stable plant operations, restoring public confidence and initiate revitalization of nuclear energy operations. The Japan Nuclear Technology Institute (JANTI) has been established as a new entity for supporting and leading the industry's further progress in March 2005. Members of JANTI are not only utilities but also component manufacturers and constructors. JANTI enhance the technological foundation of nuclear energy based on scientific and rational data, coordinates its use among a wide range of relevant organizations, and helps members enhance their voluntary safety activities. At the same time, it is independent of utilities, and exercises a function of checking industry at the objective, third-party standpoint. As for the activities of JANTI itself, information disclosure and the establishment of a council comprising external members will enhance administration transparency. (author)

  7. Tritium measurement technique using ''in-bed'' calorimetry

    International Nuclear Information System (INIS)

    Klein, J.E.; Mallory, M.K.; Nobile, A. Jr.

    1991-01-01

    One of the new technologies that has been introduced to the Savannah River Site (SRS) is the production scale use of metal hydride technology to store, pump, and compress hydrogen isotopes. For tritium stored in metal hydride storage beds, a unique relationship does not exist between the amount of tritium in the bed and the pressure-volume-temperature properties of the hydride material. Determining the amount of tritium in a hydride bed after desorbing the contents of the bed to a tank and performing pressure, volume, temperature, and composition (PVTC) measurements is not practical due to long desorption/absorption times and the inability to remove tritium ''heels'' from the metal hydride materials under normal processing conditions. To eliminate the need to remove tritium from hydride storage beds for measurement purposes, and ''in-bed'' tritium calorimetric measurement technique has been developed. The steady-state temperature rise of a gas stream flowing through a jacketed metal hydride storage bed is measured and correlated with power input to electric heaters used to simulate the radiolytic power generated by the decay of tritium to 3 He. Temperature rise results for prototype metal hydride storage beds and the effects of using different gases in the bed are shown. Linear regression results shows that for 95% confidence intervals, temperature rise measurements can be obtained in 14 hours and have an accuracy of ±1.6% of a tritium filled hydride storage bed

  8. The Nuclear Power Institute Programs for Human Resource Development for the Nuclear Industry

    International Nuclear Information System (INIS)

    Peddicord, K.L.

    2014-01-01

    Principal conclusions: 1. NPI is a full-scope, end-to-end, integrated approach to human resource development. Participation of government and government agencies, and elected officials and decision makers is vital. These key individuals and organizations encourage the effort, and provide support, a voice and advocacy for NPI and its programs. 2. Critical role of vocational training. The majority of the workforce does not involve only B.S. level engineers, but are graduates from two-year programs that are developed in collaboration with industry that prepare them for careers as technologists and technicians at a nuclear power plant. 3. In education and training, education is only part of the story. Collaboration with industry results in: – curricula, material, inputs and programs, – opportunities for students to benefit from industry mentors and get onsite experience, and – work on real-world, industry defined problems. 4. Outreach is instrumental in: –engaging with the next generation both for support of nuclear power and in building the workforce, and –generating vital contacts with the community to foster public understanding and acceptance of nuclear energy

  9. The future of the nuclear industry: a matter of communication

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, H S

    1993-11-01

    Since the very first successes achieved by the early scientists the infant nuclear industry was plagued by an atmosphere of uncertainty, conflict, anxiety and expectations. After the initial euphoria the Chernobyl accident shocked public opinion and perspectives changed. Nuclear energy is experience by the public in three dimensions. Firstly there are the technical realities of the reactor and its fantastically reduced source of power. Secondly, there is a psychological and political meaning, including the association of modern technology with authority, government, and control. The third dimension is the product of old myths about `divine secrets`, mad scientists dreadful pollution and cosmic apocalypse. To a large extent the nuclear industry is at fault for these emotional connotations. An early lapse in the communication process can be blamed for many of the misconceptions. The nuclear industry lost an opportunity by sticking to `vagueness`. Recent trends show that a pattern of conditional acceptance is present in public opinion with regard to the nuclear industry. Possible solutions, including better communication, aggressive marketing, and the training of scientists to become communicators, are discussed. A study was done of community attitudes around Koeberg, and it is concluded that the public must be convinced of the fact that nuclear power is clean, safe, cheap and accepted as such by the industrially developed word. 62 refs., 13 figs.

  10. The future of the nuclear industry: a matter of communication

    International Nuclear Information System (INIS)

    De Waal, H.S.

    1993-11-01

    Since the very first successes achieved by the early scientists the infant nuclear industry was plagued by an atmosphere of uncertainty, conflict, anxiety and expectations. After the initial euphoria the Chernobyl accident shocked public opinion and perspectives changed. Nuclear energy is experience by the public in three dimensions. Firstly there are the technical realities of the reactor and its fantastically reduced source of power. Secondly, there is a psychological and political meaning, including the association of modern technology with authority, government, and control. The third dimension is the product of old myths about 'divine secrets', mad scientists dreadful pollution and cosmic apocalypse. To a large extent the nuclear industry is at fault for these emotional connotations. An early lapse in the communication process can be blamed for many of the misconceptions. The nuclear industry lost an opportunity by sticking to 'vagueness'. Recent trends show that a pattern of conditional acceptance is present in public opinion with regard to the nuclear industry. Possible solutions, including better communication, aggressive marketing, and the training of scientists to become communicators, are discussed. A study was done of community attitudes around Koeberg, and it is concluded that the public must be convinced of the fact that nuclear power is clean, safe, cheap and accepted as such by the industrially developed word. 62 refs., 13 figs

  11. Nuclear industry strategic asset management: Managing nuclear assets in a competitive environment

    International Nuclear Information System (INIS)

    Mueller, H.; Hunt, E.W. Jr.; Oatman, E.N.

    1999-01-01

    The former Electric Power Research Institute took the lead in developing an approach now widely known as strategic asset management (SAM). The SAM methodology applies the tools of decision/risk analysis used in the financial community to clarify effective use of physical assets and resources to create value: to build a clear line of sight to value creation. SAM processes have been used in both the power and other industries. The rapid change taking place in the nuclear business creates the need for competitive decision making regarding the management of nuclear assets. The nuclear industry is moving into an era in which shareholder value is determined by the net revenues earned on power marketed in a highly competitive and frequently low-priced power market environment

  12. Computer systems and nuclear industry

    International Nuclear Information System (INIS)

    Nkaoua, Th.; Poizat, F.; Augueres, M.J.

    1999-01-01

    This article deals with computer systems in nuclear industry. In most nuclear facilities it is necessary to handle a great deal of data and of actions in order to help plant operator to drive, to control physical processes and to assure the safety. The designing of reactors requires reliable computer codes able to simulate neutronic or mechanical or thermo-hydraulic behaviours. Calculations and simulations play an important role in safety analysis. In each of these domains, computer systems have progressively appeared as efficient tools to challenge and master complexity. (A.C.)

  13. Nuclear Industry Family Study

    International Nuclear Information System (INIS)

    1993-01-01

    This is a copy of the U.K.A.E.A. Question and Answer brief concerning an epidemiological study entitled the Nuclear Industry Family Study, to investigate the health of children of AEA, AWE, and BNFL Workers. The study is being carried out by an independent team of medical research workers from the London School of Hygiene and Tropical Medicine, and the Imperial Cancer Research Fund. (UK)

  14. Industry, university and government partnership to address research, education and human resource challenges for nuclear industry in Canada

    International Nuclear Information System (INIS)

    Mathur, R.M.

    2004-01-01

    Full text: This paper describes the outcome of an important recent initiative of Canadian nuclear industry to reinvigorate interest in education and collaborative research in prominent Canadian universities. This initiative has led to the formation of the University Network of Excellence in Nuclear Engineering (UNENE), incorporated in 2002. During the recent past, the slowdown in nuclear power development in Canada has curtailed the demand for new nuclear professionals down to a trickle. Without exciting job opportunities in sight the interest of prospective students in nuclear education and research has plunged. Consequently, with declining enrolment in nuclear studies and higher demand from competing disciplines, most universities have found it difficult to sustain nuclear programs. As such the available pool of graduating students is small and insufficient to meet emerging industry demand. With nuclear industry employees' average age hovering around mid-forties and practically no younger cohort to back up, nuclear industry faces the risk of knowledge loss and significant difficulty in recruiting new employees to replenish its depleting workforce. It is, therefore, justifiably concerned. Also, since nuclear generation is now the purview of smaller companies, their in-house capability for mid- to longer-term research is becoming inadequate. Recognizing the above challenges, Ontario Power Generation, Bruce Power and Atomic Energy of Canada Limited have formed an alliance with prominent Canadian universities and undertaken to invest money and offer in-kind support to accomplish three main objectives: Reinvigorate university-based nuclear engineering research by augmenting university resources by creating new industry supported research professorships and supporting research of other professors; Promote enrolment in graduate programs by supporting students and making use of a course-based Master of Engineering (M.Eng.) Program that is taught collectively by

  15. The nuclear industry and the NPT: a perspective from Washington

    International Nuclear Information System (INIS)

    Porter, D.J.

    1987-01-01

    Whilst exporting nuclear reactors, the nuclear industry in the United States and other nuclear exporting countries also supports the Non-Proliferation Treaty. The nuclear industry needs the IAEA safeguards and the NPT as these allow the nuclear trade to be conducted in an orderly fashion. Non-sensitive equipment, materials and technology can be made available to other nations which adhere to the NPT. Indeed article IV of the NPT encourages this. Many developing countries do not, however, have the money to pay for the imported technology. This article looks at the current situation in the world where nuclear technology has been, is being, or will be, transferred. (U.K.)

  16. The adventure of nuclear energy: a scientifical and industrial history

    International Nuclear Information System (INIS)

    Reuss, P.

    2007-01-01

    The nuclear energy history is one of the most exciting scientifical and industrial adventure. In France, in a few decades, nuclear energy has become the main energy source for power generation. The aim of this book is to present the stakes of this challenge, to better outline the difficulties that have been encountered all along its development in order to better understand the complexness of such a development. After an overview of the successive advances of atomic and nuclear physics since more than a century, the book describes the genesis of nuclear energy, its industrial developments and its still wide open perspectives. The conclusions makes a status of the advantages and risks linked with this energy source. The book contains also the testimonies of two French nuclear actors: P. Benoist and S. David. The forewords by H. Langevin, daughter of F. and I. Joliot-Curie, stresses on the past and future role of nuclear energy in the live synergy between research and industry. (J.S.)

  17. Nuclear power supply. The future perspective; services industries: scope and opportunities

    International Nuclear Information System (INIS)

    Tilbe, H.E.

    1984-01-01

    The Canadian nuclear industry seems not to have recognized the opportunities that exist in the nuclear service industries. The total market in this area ranges from $1 to $4 billion in the United States alone. The author describes briefly the experiences of his company, London Nuclear. (L.L.)

  18. Further activities of safety culture toward nuclear transportation industry

    Energy Technology Data Exchange (ETDEWEB)

    Machida, Y.; Shimakura, D. [NSnet, Tokyo (Japan)

    2004-07-01

    On September 30, 1999, a criticality accident occurred at the uranium processing facility of the JCO Co. Ltd. (hereinafter referred to as ''JCO'') Tokai plant, located in Tokaimura, Ibaraki Prefecture. This was an unprecedented accident in Japan's history of peaceful use of nuclear power, resulting in three workers exposed to severe radiation, two of whom died, and the evacuation and enforced indoor confinement of local residents. Nuclear power suppliers must take personal responsibility for ensuring safety. In this connection, the electric power industry, heavy electric machinery manufacturers, fuel fabricators, and nuclear power research organizations gathered together to establish the Nuclear Safety Network (NSnet) in December 1999, based on the resolve to share and improve the level of the safety culture across the entire nuclear power industry and to assure that such an accident never occurs again. NSnet serves as a link between nuclear power enterprises, research organizations, and other bodies, based on the principles of equality and reciprocity. A variety of activities are pursued, such as diffusing a safety culture, implementing mutual evaluation among members, and exchanging safety-related information. Aiming to share and improve the safety culture throughout the entire nuclear power industry, NSnet thoroughly implements the principle of safety first, while at the same time making efforts to restore trust in nuclear power.

  19. A new context for the nuclear research and industry

    International Nuclear Information System (INIS)

    2000-01-01

    Pascal Colombani, general administrator of the CEA, develops in this presentation the situation of the nuclear industry to introduce the new orientations of the CEA group. The energy context, the deregulation impacts, the energy dependence and the greenhouse effect project are discussed before the presentation of the research programs and the necessary reorganizing of the nuclear industry. (A.L.B.)

  20. Quantity and quality in nuclear engineering professional skills needed by the nuclear power industry

    International Nuclear Information System (INIS)

    Slember, R.J.

    1990-01-01

    This paper examines the challenge of work force requirements in the context of the full range of issues facing the nuclear power industry. The supply of skilled managers and workers may be a more serious problem if nuclear power fades away than if it is reborn in a new generation. An even greater concern, however, is the quality of education that the industry needs in all its future professionals. Both government and industry should be helping universities adapt their curricula to the needs of the future. This means building a closer relationship with schools that educate nuclear professionals, that is, providing adequate scholarships and funding for research and development programs, offering in-kind services, and encouraging internships and other opportunities for hands-on experience. The goal should not be just state-of-the-art engineering practices, but the broad range of knowledge, issues, and skills that will be required of the nuclear leadership of the twenty-first century

  1. Organization, structure, and performance in the US nuclear power industry

    International Nuclear Information System (INIS)

    Lester, R.K.

    1986-01-01

    Several propositions are advanced concerning the effects of industry organization and structure on the economic performance of the American commercial nuclear power industry. Both the electric utility industry and the nuclear power plant supply industry are relatively high degree of horizontal disaggregation. The latter is also characterized by an absence of vertical integration. The impact of each of these factors on construction and operating performance is discussed. Evidence is presented suggesting that the combination of horizontal and vertical disaggregation in the industry has had a significant adverse effect on economic performance. The relationship between industrial structure and regulatory behavior is also discussed. 43 references, 4 figures, 9 tables

  2. Study on the Application of PSA Method on Non-Nuclear Industry Facilities

    International Nuclear Information System (INIS)

    Andi Sofrany E; Anhar R Antariksawan; Sony T, D.T.; Puradwi IW; Sugiyanto; Giarno

    2003-01-01

    A preliminary study related to utilization of probabilistic method in non-nuclear industry facilities has been conducted The study has been performed by examining literature studies and results of research paper related to the topic. The objective of this study is to know how far the method, which is a standard in the nuclear industry, is applied in the non-nuclear fields. The PSA application in the non-nuclear process industry is mainly performed as risk management. The concept of risk management enables a systematic and realistic framework to be established for accident prevention as a whole process of hazard identification, risk estimation, risk evaluation, control measures establishment, its implementation. The most important part of this study is indeed the hazard identification and risk estimation in order to assess the consequences and to estimate event probability. The risk assessment methodology, which is also used in the probabilistic assessment of nuclear and non-nuclear industry, is performed both quantitatively and qualitatively approached by several technique analysis. Based on literature and research paper study, there are 3 main technique analysis, which can be applied in the risk management of non-nuclear industry, which are fault tree analysis (FTA), event tree analysis (ETA), and Hazard and Operability Studies (HAZOPS). The potential hazard arise in the non-nuclear process industry are flammability hazard; toxicity hazard; reactivity hazard; and elevated pressure hazard The fault tree analysis has been practically applied in the petroleum industry, chemical industry, and also other industry for improvement of safety installation by modification in the installation design or operation procedures. The event tree analysis has been applied only limited in the chemical process industry or other process industry. On the other application, HAZOPS technique can be combined with the event tree analysis with approach of accident scenario identification

  3. Cyber security best practices for the nuclear industry

    International Nuclear Information System (INIS)

    Badr, I.

    2012-01-01

    When deploying software based systems, such as, digital instrumentation and controls for the nuclear industry, it is vital to include cyber security assessment as part of architecture and development process. When integrating and delivering software-intensive systems for the nuclear industry, engineering teams should make use of a secure, requirements driven, software development life cycle, ensuring security compliance and optimum return on investment. Reliability protections, data loss prevention, and privacy enforcement provide a strong case for installing strict cyber security policies. (authors)

  4. Cyber security best practices for the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Badr, I. [Rational IBM Software Group, IBM Corporation, Evanston, IL 60201 (United States)

    2012-07-01

    When deploying software based systems, such as, digital instrumentation and controls for the nuclear industry, it is vital to include cyber security assessment as part of architecture and development process. When integrating and delivering software-intensive systems for the nuclear industry, engineering teams should make use of a secure, requirements driven, software development life cycle, ensuring security compliance and optimum return on investment. Reliability protections, data loss prevention, and privacy enforcement provide a strong case for installing strict cyber security policies. (authors)

  5. The structure of the nuclear industry

    International Nuclear Information System (INIS)

    Leaist, G.T.; Morisette, E.F.

    1981-01-01

    Since 1952, when Canadians began to study the application of reactors to power generation, the CANDU reactor design and the manufacturing and and engineering capability supporting it have evolved into a world-class technology. At present, Atomic Energy of Canada Ltd. works directly with provincial electrical utilities in developing their power reactor requirements. It assumes responsibility for the detailed design of the nuclear steam supply system of stations, undertakes some procurement activities, and may represent the utilities in licensing applications. The detailed design and supply of components for the remainder of the nuclear steam plant, as well as for the secondary plant, are provided in Ontario by Ontario Hydro together with manufacturers, and in Quebec and New Brunswick by private firms. Canadian utilities have always assumed the project managment function themselves, but with export sales AECL has taken turnkey responsiblity for either the nuclear steam plant or the complete power station. AECL owns design specifications and other documentation, the use of which it can license, but manufacturing technology resides with Canadian industry. Canadian manufacturers have supported AECL design licensing initiatives overseas. The Canadian nuclear industry's major problem is the current lack of a vigorous domestic market combined with an uncertain international one

  6. Recovery of thorium and uranium from monazite processing Liquor produced by INB/Caldas, M G, by solvent extraction

    International Nuclear Information System (INIS)

    Amaral, Janubia Cristina Braganca da Silva

    2006-01-01

    This work describes the study of thorium and uranium recovery from sulfuric liquor generated in chemical monazite treatment by solvent extraction technique. The sulfuric liquor was produced by Industries Nuclear of Brazil - INB, Caldas - Minas Gerais State. The study was carried out in two steps: in the first the process variable were investigated through discontinuous experiments; in the second, the parameters were optimized by continuous solvent extraction experiments. The influence of the following process variables was investigated: type and concentration of extracting agents, contact time between phases and aqueous/organic volumetric ratio. Extractants used in this study included: Primene J M-T, Primene 81-R, Alamine 336 and Aliquat 336. Thorium and uranium were simultaneously extracted by a mixture of Primene J M-T and Alamine 336, into Exxsol D-100. The stripping was carried out by hydrochloric acid (HCl) 2.0 mol/L. The study was carried out at room temperature. After selected the best process conditions, two continuous experiments of extraction and stripping were carried out. In the first experiment a mixture of 0.15 mol/L Primene J M-T and 0.05 mol/L Alamine 336 were used. The second experiment was carried out using 0.15 mol/L Primene J M-T and 0.15 mol/L Alamine 336. Four extraction stages and five stripping stages were used in both experiments. The first experiment showed a ThU 2 and U 3 O 8 content in loaded strip solution of 34.3 g/L and 1.49 g/L respectively and 0.10 g/L Th) 2 and 0.05 g/L U 3 O 8 in the raffinate. In the second experiment a loaded strip solution with 29.3 g/L ThO 2 and 0.94 g/L U 3 O 8 was obtained. In this experiment, the metals content in raffinate was less than 0.001 g/L, indicating a thorium recovery over 99.9% and uranium recovery of 99.4%. (author)

  7. Crisis in the French nuclear industry

    International Nuclear Information System (INIS)

    Nectoux, F.

    1991-02-01

    This report discusses the economics of the French nuclear power industry. It considers the dominant position of nuclear power in the French energy system, stresses the scale and causes of the current (1990) economic crisis and dispels the popular misconceptions on the cost efficiency of the French programme. The evidence is based on widely available French documents and articles. The report begins by looking at the background of nuclear power in France then discusses the problem of overcapacity, the technical problems and fall in load factors, generating costs and electricity prices and finally, strategic issues are considered. (UK)

  8. Consensus together to jointly promote the safe and efficient development of China's Nuclear industry

    International Nuclear Information System (INIS)

    Lei Zengguang

    2012-01-01

    After the development of China's nuclear industry 56 years, and a certain ability to form a strategic advantage for sustainable development, laying a solid foundation for the development of the national nuclear energy. 2011 Japan's Fukushima Daiichi nuclear accident occurred seven. 2011 of the 'Economic and Social Development Twelfth Five Five Year plan' clearly stated: 'on the basis of ensuring efficient and safe development of nuclear power', the development of China's nuclear industry is facing unprecedented opportunities and challenges, requiring the nuclear industry and nuclear academia work together to jointly promote China's nuclear industry safe and efficient, development

  9. Applications of neutron radiography for the nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    Craft, Aaron E.; Barton, John P.

    2016-11-01

    The World Conference on Neutron Radiography (WCNR) and International Topical Meeting on Neutron Radiography (ITMNR) series have been running over 35 years. The most recent event, ITMNR-8, focused on industrial applications and was the first time this series was hosted in China. In China, more than twenty new nuclear power plants are in construction and plans have been announced to increase the nuclear capacity further by a factor of three within fifteen years. There are additional prospects in many other nations. Neutron tests were vital during previous developments of materials and components for nuclear power applications, as reported in this conference series. For example a majority of the 140 papers in the Proceedings of the First WCNR are for the benefit of the nuclear power industry. Included are reviews of the diverse techniques being applied in Europe, Japan, the United States, and at many other centers. Many of those techniques are being utilized and advanced to the present time. Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Applications include examination of nuclear waste, nuclear fuels, cladding, control elements, and other critical components. In this paper, the techniques developed and applied internationally for the nuclear power industry since the earliest years are reviewed, and the question is asked whether neutron test techniques can be of value in development of the present and future generations of nuclear power plants world-wide.

  10. Perception of the nuclear industry by general practitioner in Champagne-Ardennes (France)

    International Nuclear Information System (INIS)

    Bouet, P.; Goasguen, P.; Lewicki, M.; Petit, J.F.; Villette, M.

    1990-06-01

    In the case of a nuclear accident, the general practitioners should be the relay in the population information. In order to confront their knowledge and sensitivity with the nuclear industry problems, the authors have conducted an inquiry near to 144 general practitioners in Champagne-Ardennes area, in the immediate neighbourhood of nuclear facilities (CHOOZ, Nogent-sur-Seine, Gravelines) or not. Four subjects are studied: -their perception of the nuclear industry in the environment problems - their knowledge in nuclear physics - their knowledge about the nuclear power plant - their attitude in front of a radiation accident. The authors show that their education and knowledges about the nuclear industry is insufficient and propose several solutions in order to cope with these difficulties

  11. The Safety of Hospital Beds: Ingress, Egress, and In-Bed Mobility.

    Science.gov (United States)

    Morse, Janice M; Gervais, Pierre; Pooler, Charlotte; Merryweather, Andrew; Doig, Alexa K; Bloswick, Donald

    2015-01-01

    To explore the safety of the standard and the low hospital bed, we report on a microanalysis of 15 patients' ability to ingress, move about the bed, and egress. The 15 participants were purposefully selected with various disabilities. Bed conditions were randomized with side rails up or down and one low bed with side rails down. We explored the patients' use of the side rails, bed height, ability to lift their legs onto the mattress, and ability to turn, egress, and walk back to the chair. The standard bed was too high for some participants, both for ingress and egress. Side rails were used by most participants when entering, turning in bed, and exiting. We recommend that side rails be reconsidered as a means to facilitate in-bed movement, ingress, and egress. Furthermore, single deck height settings for all patients are not optimal. Low beds as a safety measure must be re-evaluated.

  12. Optimalisation of national industry participation in nuclear power plant construction

    International Nuclear Information System (INIS)

    Sriyana

    2008-01-01

    A study of national industry participation based on recent data has already been conducted. The current industry data is used to estimate the optimum level of national industry participation in nuclear power plant (NPP) construction based on the prior study. The purpose of the study is to give a figure of the optimum level of national industry participation in NPP construction. The scope of the study is the NPP construction project in related to the potency of national industry to participate in the project. The methodology used in the study are literature study, web surfing for industrial data, and on-the-spot industry survey that are potential to participate in NPP construction. In addition to that, discussion with expertise of industrial practitioner was also conducted. The study concludes that (1) based on the recent national industry capability provided and compared to prior similar study, it is estimated that the level of national industry participation in the first NPP construction with the capacity of 1000 MWe PWR is about 40%. (2) to accelerate NPP technology transfer, we need to build a small size NPP. The nuclear island will be developed by BATAN in cooperation with national industry and the non-nuclear island will be developed by national industry. Universities and other academicians should be involved to support and keep the sustainability of man power availability in developing the NPP technology. (author)

  13. Prospects for revitalization of the U.S. nuclear energy industry

    International Nuclear Information System (INIS)

    Colvin, Joe F.

    1998-01-01

    Today I want to make two key points about the U.S. nuclear energy industry. First, key policy issues are beginning to converge in a way that is very positive for our industry - and for society as a whole. And Second, the industry has worked hard to prepare for the future - and we are ready to make the most of these positive developments. Nuclear energy's prospects are the brightest they have been at any time in history. The plan identifies the building blocks that must be in place before utilities start building the next generation of nuclear plants. One, we wanted to improve the efficiency and reliability of our operating nuclear plants. Two, we wanted to establish a regulatory framework for license renewal. Three, we wanted to develop a more efficient licensing process for new plants. In closing, I am confident that the 21st century will bring a renaissance for nuclear energy-in the United States and around the world. The U.S. nuclear energy industry has a renewed vitality and sense of mission today. We've worked hard preparing for the future- and we will continue to be strong players in worldwide energy policy development in the 21st century. (Cho, G. S.)

  14. Radioactive waste management in the VS military nuclear industry

    International Nuclear Information System (INIS)

    Kobal'chuk, O.V.; Kruglov, A.K.; Sokolova, I.D.; Smirnov, Yu.V.

    1989-01-01

    Organization and plans of radioactive waste management in the US military nuclear industry, determining transition from the policy of temporal waste storage to their final and safe disposal are presented. Programs of long-term management of high-level, transuranium and low-level wastes, the problems of the work financing and the structure of management activities related to the radioactive waste processing military nuclear industry enterprises are considered

  15. Industrial aspects of nuclear energy: French experience

    International Nuclear Information System (INIS)

    Lebreton, G.

    1986-11-01

    France decides to develop nuclear energy on a wide scale about 12 years ago. To cope with this ambitious program, the roles have been distributed within a very cohesive organization, as follows: EDF, the french national electricity utility is owner, prime contractor, and plant operator. The Atomic Energy Commission, CEA performs part of the research and development work, and supplies the necessary technical support to the safety authorities. A few leading industrial firms design and build the major parts of the nuclear power plants. Among them is Framatome, which is responsible for the design, manufacture, erection, and startup of nuclear steam supply systems (the NSSSs), and related auxiliaries. Alsthom is responsible for the supply of the turbine and its auxiliaries. It would not be proper to describe the French nuclear industry without focussing our attention on the care given to transfer of technology. Technology transfer agreements can take several forms, but local factors have to be taken into account. These forms are discussed in this paper. A typical and highly significant example (KNU 9-10 project) is given

  16. Links between operating experience feedback of industrial accidents and nuclear safety

    International Nuclear Information System (INIS)

    Eury, S.P.

    2012-01-01

    Since 1992, the bureau for analysis of industrial risks and pollutions (BARPI) collects, analyzes and publishes information on industrial accidents. The ARIA database lists over 40.000 accidents or incidents, most of which occurred in French classified facilities (ICPE). Events occurring in nuclear facilities are rarely reported in ARIA because they are reported in other databases. This paper describes the process of selection, characterization and review of these accidents, as well as the following consultation with industry trade groups. It is essential to publicize widely the lessons learned from analyzing industrial accidents. To this end, a web site (www.aria.developpement-durable.gouv.fr) gives free access to the accidents summaries, detailed sheets, studies, etc. to professionals and the general public. In addition, the accidents descriptions and characteristics serve as inputs to new regulation projects or risk analyses. Finally, the question of the links between operating experience feedback of industrial accidents and nuclear safety is explored: if the rigorous and well-documented methods of experience feedback in the nuclear field certainly set an example for other activities, nuclear safety can also benefit from inputs coming from the vast diversity of accidents arisen into industrial facilities because of common grounds. Among these common grounds we can find: -) the fuel cycle facilities use many chemicals and chemical processes that are also used by chemical industries; -) the problems resulting from the ageing of equipment affect both heavy and nuclear industries; -) the risk of hydrogen explosion; -) the risk of ammonia, ammonia is a gas used by nuclear power plants as an ingredient in the onsite production of mono-chloramine and ammonia is involved in numerous accidents in the industry: at least 900 entries can be found in the ARIA database. The paper is followed by the slides of the presentation

  17. Ecknomic benefits arising from the Canadian nuclear industry

    International Nuclear Information System (INIS)

    1982-03-01

    This document is a collection of surveys of the Canadian nuclear industry, with forecasts covering a number of possible scenarios. Topics covered include uranium mining and processing; economic benefits arising from the design, manufacture and construction of CANDU generating stations; employment and economic activity in the Canadian nqclear industry; and an overview of the remainder of the industry

  18. Deeline and Fail: The ailing nuclear power industry

    International Nuclear Information System (INIS)

    Stoler, P.

    1985-01-01

    Peter Stoler, a Time correspondent, believes that if the government had regulated the nuclear power industry more strictly instead of being so friendly to it, the industry would be better off today. But Stoler thinks the dying industry can and should be saved. Better management, learning from foreign experience plus more governmental concern with safety are the main prescriptions. Most of the book contains a detailed history of the industry

  19. Study on CNPEC's nuclear AE organization, its characteristics and industrial value

    International Nuclear Information System (INIS)

    Zhao Jianguang; Kuang Wei

    2014-01-01

    The paper studies and analyzes CNPEC's AE organizational operation model and its characteristics in details to explore its value and contribution to the reform of Chinese state-owned enterprises. By building the design and construction integration platform, CNPEC integrates the resources of the nuclear industry chain to effectively ensure the whole performance, the safety and high quality of nuclear power plants under construction; by establishing the total quality partnership which focuses on the cross-border quality management and control, CNPEC enhances the quality management level of enterprises in the nuclear industry chain; by promoting the technology development cooperation, CNPEC improves the technological advancement of the whole nuclear industry chain. (authors)

  20. Nuclear industry chart no. 21 - France

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    A fold-out chart shows the relationship between the government bodies and industrial concerns. Nuclear power plant orders under the 1970-84 programme are tabulated. A directory is included of national bodies, firms and establishments. (U.K.)

  1. Personnel supply and demand issues in the nuclear power industry. Final report of the Nuclear Manpower Study Committee

    International Nuclear Information System (INIS)

    1981-01-01

    The anticipated personnel needs of the nuclear power industry have varied widely in recent years, in response to both increasing regulatory requirements and declining orders for new plants. Recent employment patterns in the nuclear energy field, with their fluctuations, resemble those of defense industries more than those traditionally associated with electric utilities. Reactions to the accident at Three Mile Island Unit 2 by industry and regulators have increased the demand for trained and experienced personnel, causing salaries to rise. Industry, for example, has established several advisory organizations like the Institute for Nuclear Power Operations (INPO). At the same time, the US Nuclear Regulatory Commission (NRC) has imposed many new construction and operating requirements in an effort to take advantage of lessons learned from the Three Mile Island incident and to respond to the perceived public interest in better regulation of nuclear power. Thus, at present, utilities, architect-engineer firms, reactor vendors, and organizations in the nuclear development community have heavy workloads

  2. Project WANT - Women's Access to Nuclear Technology, a successful industry/education partnership

    International Nuclear Information System (INIS)

    Widen, W.C.; Roth, G.L.; NIU)

    1987-01-01

    In 1984, the U.S. Congress issued the Carl D. Perkins Act, which charges vocational educators to increase their focus on two broad themes: (a) the elimination of sexual bias and sexual stereotyping in vocational education and (b) the provision of marketable skills to the economically deprived of the nation's work force. In response to this charter, an industry/education partnership was established among the Illinois State Board of Education, Norther Illinois University, and the Westinbghouse Nuclear Training Center. In essence, these partners established Project WANT - Women's Access to Nuclear Technology - with two premier goals: (a) to increase women's awareness regarding nuclear career opportunities and (b) to train and place women in technical professions within the nuclear industry. Feedback from the U.S. Department of Energy (DOE), the Atomic Industrial Forum, and the Bureau of Labor Statistics identifies that <2% of all technical positions within the nuclear power industry are held by women. Hence, one may conclude that there is a definite need to promote sexual equity in the nuclear industry and that Illinois represents a unique environment of opportunity to accomplish this

  3. 48 CFR 652.237-71 - Identification/Building Pass.

    Science.gov (United States)

    2010-10-01

    ..., Information Security Programs Division, Industrial Security Branch (DS/ISP/INB) on its cleared employees..., Information Security Programs Division, Industrial Security Branch (DS/ISP/INB): (i) SF-85P, Questionnaire for... Pass (APR 2004) (a) Contractors working in domestic facilities who already possess a security clearance...

  4. Environmental racism: the US nuclear industry and native Americans

    International Nuclear Information System (INIS)

    Lehtinen, Ulla

    1997-01-01

    The author argues that the United States nuclear industry has acted in a discriminatory fashion towards Native American peoples and the land they hold as reservations. Both uranium mining and nuclear weapons testing is commonplace and plans now exist to locate a low-level radioactive waste dump in the Mojave desert in California, a sacred site for many native people. Opposition to such plans is growing among the Native Americans, sharpened by their existing commitment to conservation of the environment, but on their own, they are not a lobby powerful enough to oppose the might of the nuclear industry. (UK)

  5. Environmental racism: the US nuclear industry and native Americans

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, Ulla [Organization of the Fourth World - First Peoples (Finland)

    1997-03-01

    The author argues that the United States nuclear industry has acted in a discriminatory fashion towards Native American peoples and the land they hold as reservations. Both uranium mining and nuclear weapons testing is commonplace and plans now exist to locate a low-level radioactive waste dump in the Mojave desert in California, a sacred site for many native people. Opposition to such plans is growing among the Native Americans, sharpened by their existing commitment to conservation of the environment, but on their own, they are not a lobby powerful enough to oppose the might of the nuclear industry. (UK).

  6. e-Cluster Building and Using for Nuclear Industry Human Resources

    International Nuclear Information System (INIS)

    Hur, Jung Hoon; Suh, Jang Soo

    2009-01-01

    In line with its industry support policy, KHNP provides training courses for small and medium sized companies within the nuclear sector. The courses cover three main areas; technical development, market expansion and human resource and finance. They are provided in traditional classroom settings and on-line. Employees from small and medium sized companies can take any of the available courses according to company and individual training and development requirements. While the training and development opportunities serve a role in the growth and development of skills and capabilities industry-wide, KHNP also sees the involvement of a wide range of nuclear industry participants in the program as a means of developing a safety consensus that addresses both operational and social safety concerns. The purpose of this paper is to outline the successes of the KHNP industry training support program to date and to propose the development of an e-Cluster model. This model envisages the development of a nuclear industry. It will provide a means for sharing information and developing and maintaining industry-wide technical, management and safety standards

  7. Fostering of Innovative Talents Based on Disciplinary Construction: HRD Strategy of Chinese Nuclear Power Industry

    International Nuclear Information System (INIS)

    Ye Yuanwei

    2014-01-01

    Workforce challenge to nuclear power industry: • We are facing the aging workforce and talent loss since the tough time of nuclear power industry. • Professional workforce fostering in nuclear power industry always needs a long period of time. • Professional workforce fostering in nuclear power industry is a systematic and interdisciplinary work. Talents fostering in nuclear power industry: Major measures → national overall planning; engineering practice; knowledge management; disciplinary construction; cooperation and communication

  8. Microprocessors applications in the nuclear industry

    International Nuclear Information System (INIS)

    Ethridge, C.D.

    1980-01-01

    Microprocessors in the nuclear industry, particularly at the Los Alamos Scientific Laboratory, have been and are being utilized in a wide variety of applications ranging from data acquisition and control for basic physics research to monitoring special nuclear material in long-term storage. Microprocessor systems have been developed to support weapons diagnostics measurements during underground weapons testing at the Nevada Test Site. Multiple single-component microcomputers are now controlling the measurement and recording of nuclear reactor operating power levels. The CMOS microprocessor data-acquisition instrumentation has operated on balloon flights to monitor power plant emissions. Target chamber mirror-positioning equipment for laser fusion facilities employs microprocessors

  9. A Study of Distance Education for the Needs of the Nuclear Power Industry

    Science.gov (United States)

    Reckline, Sigmund Joseph

    2010-01-01

    This research presents an examination of student satisfaction related to online training for adult learners in the nuclear power industry. Both groups, the nuclear industry and its associated workforce, have demonstrable needs which might be met by such programs. The nuclear industry itself faces an expansion of facilities and services combined…

  10. Work performed by the nuclear industry - personnel structure and personnel requirement

    International Nuclear Information System (INIS)

    Simon, M.

    1984-01-01

    The development of the nuclear industry in the Federal Republic of Germany can be phased as follows: Phase 1 (1956-1968): initial stage, Phase 2 (1968-1975): expansion of the business volume, Phase 3 (1975-1982): decreasing business volume, more conditions and technical requirements, Phase 4 (after 1982): consolidation of technologies and project management. Accordingly, the requirements made on the personnel employed in the nuclear industry had to change. Between 1982 and today, there has been a decrease of personnel employed in nuclear industry to about 35.000. This decrease is mainly due to the supplying industry. Adding to this figure the number of people employed in research centres, authorities and experts, there are over 40.000 nuclear technology jobs, a figure which, taking into account indirect employment effect, could be in the range of 100.000 to 150.000. (orig./HSCH) [de

  11. Manpower requirements in the nuclear power industry, 1982-1991

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1982-09-01

    The objective of this study is to project occupational employment needs, created by growth and employee turnover, for the nuclear power industry over the next decade. Employment data for 1981 were collected in a survey conducted by the Institute of Nuclear Power Operations of its 60 member utilities. The data were analyzed statistically to identify factors that account for variations in power plant staffing and the number of off-site nuclear support personnel employed by a utility. Total employment in the nuclear power industry is predicted to increase from 54,400 in 1981 to 73,600 in 1991. Nuclear generating capacity will increase from 58 to 124 gigawatts, based on the midline forecast of the Energy Information Administration. The projections assume that current regulations will remain in effect and no new plans for additional generating facilities will be initiated

  12. Nuclear English: Language skills for a globalizing industry

    International Nuclear Information System (INIS)

    Gorlin, S.

    2005-01-01

    Nuclear English is a new course designed for English language learners working in the nuclear industry and in other fields of nuclear science and technology. The textbook is composed of 12 units, each covering a different aspect of the nuclear fuel cycle or a relevant topic such as non-proliferation, safety and the use of radioisotopes in medicine. Nuclear English offers a flexible approach, allowing learners to: Study the units in any order according to professional need or interest; Focus on listening, grammar and pronunciation tasks, which are clearly signposted; Work independently or with other students in a classroom. The other main features of the course are: A audio CD containing authentic interviews with industry specialists. The course covers various accents, including British, American, Australian, South African and Indian; Transcripts of the listening materials; A language orientation test, which learners can take at the start of the course to identify their grammar weaknesses; Teacher-led exercises for working in pairs or groups; A glossary of key terms; An answer key; a downloadable teacher's guide to help teachers maximize the learning potential of the materials (available at: www.world-nuclear-university.org)

  13. Nuclear English: Language skills for a globalizing industry

    Energy Technology Data Exchange (ETDEWEB)

    Gorlin, S

    2005-07-01

    Nuclear English is a new course designed for English language learners working in the nuclear industry and in other fields of nuclear science and technology. The textbook is composed of 12 units, each covering a different aspect of the nuclear fuel cycle or a relevant topic such as non-proliferation, safety and the use of radioisotopes in medicine. Nuclear English offers a flexible approach, allowing learners to: Study the units in any order according to professional need or interest; Focus on listening, grammar and pronunciation tasks, which are clearly signposted; Work independently or with other students in a classroom. The other main features of the course are: A audio CD containing authentic interviews with industry specialists. The course covers various accents, including British, American, Australian, South African and Indian; Transcripts of the listening materials; A language orientation test, which learners can take at the start of the course to identify their grammar weaknesses; Teacher-led exercises for working in pairs or groups; A glossary of key terms; An answer key; a downloadable teacher's guide to help teachers maximize the learning potential of the materials (available at: www.world-nuclear-university.org)

  14. Developing industrial infrastructures to support a programme of nuclear power

    International Nuclear Information System (INIS)

    1988-01-01

    This Guidebook is intended to offer assistance in the many considerations and decisions involved in preparing the national industry for participation in a nuclear power programme. The heavy financial investment, the setting up of certain infrastructures many years ahead of plant construction, plus the high level of technology involved require early and systematic planning. A further purpose of this Guidebook is to serve particularly those decision makers and planners in the various governmental authorities, the technological institutions and in the industries likely to be involved in a nuclear project. These industries include the services of the national engineering resources, the domestic design and manufacturing groups as well as the civil construction companies. These will be responsible for plant erection, testing and commissioning and most of all for the establishment of a framework for quality assurance. All of these are the components of an essential infrastructure necessary to raise the standards of the national industry and to displace increasingly foreign suppliers to the extent possible. In addition, this Guidebook should help to show some of the implications, consequences and options involved in a nuclear power programme. It does not consider the basic decisions for going nuclear, nor does it review the choice of the technology or nuclear process selected for the programme. Instead, it limits itself to a consideration of the nuclear power plant and its essential cycle activities. Figs and tabs

  15. Ion exchange in the nuclear power industry

    International Nuclear Information System (INIS)

    Lehto, J.

    1993-01-01

    Ion exchangers are used in many fields in the nuclear power industry. At nuclear power plants, organic ion exchange resins are mainly used for the removal of ionic and particulate contaminants from the primary circuit, condensate and fuel storage pond waters. Ion exchange resins are used for the solidification of low- and medium-active nuclear waste solutions. The number of applications of zeolites, and other inorganic ion exchangers, in the separation of radionuclides from nuclear waste solutions has been increasing since the 1980s. In nuclear fuel reprocessing plants, ion exchange is used for the solidification of low- and medium-active waste solutions, as well as for the partitioning of radioactive elements for further use. (Author)

  16. The impact of deregulation on the US nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Baratta, A.J. [Pennsylvania State Univ., Nuclear Safety Center, University Park, PA (United States)

    2001-07-01

    In the United States, the electric utility industry is undergoing a dramatic shift away from a tightly regulated monopoly to a free market system. The impact on the nuclear utility industry of deregulation coupled with recent changes in the nuclear regulatory environment has had a dramatic impact on the future of nuclear power in the United States. Utilities have been broken up into separate generation, transmission, and distribution companies and are now allowed to sell electricity outside of their former service areas. As economic deregulation has occurred, the U.S. Nuclear Regulatory Commission has also adopted a new approach to regulation -- risk informed regulation. The implementation of risk-informed regulation has resulted in the adoption of a new regulatory format that attempts to highlight those areas having greatest risk significance. This paper explores these and other changes that have resulted because of the changing economic and regulatory environment for nuclear energy and examines their impact on the future of nuclear energy in the United States. (author)

  17. The impact of deregulation on the US nuclear industry

    International Nuclear Information System (INIS)

    Baratta, A.J.

    2001-01-01

    In the United States, the electric utility industry is undergoing a dramatic shift away from a tightly regulated monopoly to a free market system. The impact on the nuclear utility industry of deregulation coupled with recent changes in the nuclear regulatory environment has had a dramatic impact on the future of nuclear power in the United States. Utilities have been broken up into separate generation, transmission, and distribution companies and are now allowed to sell electricity outside of their former service areas. As economic deregulation has occurred, the U.S. Nuclear Regulatory Commission has also adopted a new approach to regulation -- risk informed regulation. The implementation of risk-informed regulation has resulted in the adoption of a new regulatory format that attempts to highlight those areas having greatest risk significance. This paper explores these and other changes that have resulted because of the changing economic and regulatory environment for nuclear energy and examines their impact on the future of nuclear energy in the United States. (author)

  18. Status of the civilian nuclear industry in Asia

    International Nuclear Information System (INIS)

    Heim, Alexandre; Laconde, Thibault

    2011-01-01

    The main nuclear actors in Asia are China, South Korea, India and Japan. The authors indicate the share of nuclear energy in their energy mix, the number of operating reactors, the total installed power, and the number of projects. Then, for each of these four countries, and for Pakistan and Taiwan, they propose a brief history of the nuclear program and briefly present its current status. They also evoke the official reactions after the Fukushima accident. Finally, they briefly discuss some issues for the development of civilian nuclear industry in Asia: uranium supplies, nuclear waste processing, development of a national nuclear sector

  19. Interesting article: cancer in children of nuclear industry employees: report on children aged under 25 years from nuclear industry family study

    International Nuclear Information System (INIS)

    Lallemand, J.

    1999-01-01

    This important study turns on the following of 46 107 children, whom 39 557 children of male workers and 8 883 children of female workers. Among these ones, 2 333 children were born from both parents working in nuclear industry. 111 cases of cancer whom 28 of leukemia are reported. 97% of the whole have been strictly identified. The results suggest that the incidence of malignant diseases ( leukemia and cancers) among children of parents working in nuclear industry is not different of this one observed for the entire of population. (N.C.)

  20. Design of management information system for nuclear industry architectural project costs

    International Nuclear Information System (INIS)

    Zhang Xingzhi; Li Wei

    1996-01-01

    Management Information System (MIS) for nuclear industry architectural project is analysed and designed in detail base on quota management and engineering budget management of nuclear industry in respect of the practice of Qinshan Second Phase 2 x 600 MW Project

  1. The impact of computers on the nuclear utility industry

    International Nuclear Information System (INIS)

    Taylor, J.J.

    1984-01-01

    The applications of computer technology to the nuclear utility industry are discussed in light of recent phenomenal growth of computer hardware and software. Computer applications in existence in the power plants are presented, as well as potential future development for plant design, construction, operation, maintenance and retrofit. Utility concerns are addressed. The study concludes that the applications of computer technology to the nuclear utility industry are highly promising and evolutionary in nature

  2. The Importance of Enhancing Worldwide Industry Cooperation in Radiological Protection, Waste Management and Decommissioning - Views from the Global Nuclear Industry

    International Nuclear Information System (INIS)

    Saint-Pierre, S.

    2008-01-01

    The slow or stagnant rate of nuclear power generation development in many developed countries over the last two decades has resulted in a significant shortage in the population of mid-career nuclear industry professionals. This shortage is even more pronounced in some specific areas of expertise such as radiological protection, waste management and decommissioning. This situation has occurred at a time when the renaissance of nuclear power and the globalization of the nuclear industry are steadily gaining momentum and when the industry's involvement in international and national debates in these three fields of expertise (and the industry's impact on these debates) is of great relevance.This paper presents the World Nuclear Association (WNA) approach to building and enhancing worldwide industry cooperation in radiological protection, waste management and decommissioning, which is manifested through the activities of the two WNA working groups on radiological protection (RPWG) and on waste management and decommissioning (WM and DWG). This paper also briefly describes the WNA's participatory role, as of Summer 2005, in the International Atomic Energy Agency (IAEA) standard development committees on radiation safety (RASSC), waste safety (WASSC) and nuclear safety (NUSSC). This participation provides the worldwide nuclear industry with an opportunity to be part of IAEA's discussions on shaping changes to the control regime of IAEA safety standards. The review (and the prospect of a revision) of IAEA safety standards, which began in October 2005, makes this WNA participation and the industry's involvement at the national level timely and important. All of this excellent industry cooperation and team effort is done through 'collegial' exchanges between key industry experts, which help tackle important issues more effectively. The WNA is continuously looking to enhance its worldwide industry representation in these fields of expertise through the RPWG and WM and DWG

  3. Deliberations on nuclear safety regulatory system in a changing industrial environment

    International Nuclear Information System (INIS)

    Kim, H.J.

    2001-01-01

    Nuclear safety concern, which may accompany such external environmental factors as privatization and restructuring of the electric power industry, is emerging as an international issue. In order to cope with the concern about nuclear safety, it is important to feedback valuable experiences of advanced countries that restructured their electric power industries earlier and further to reflect the current safety issues, which are raised internationally, fully into the nuclear safety regulatory system. This paper is to review the safety issues that might take place in the process of increasing competition in the nuclear power industry, and further to present a basic direction and effective measures for ensuring nuclear safety in response thereto from the viewpoint of safety regulation. It includes a political direction for a regulatory body's efforts to rationalize and enforce efficiently its regulation. It proposes to ensure that regulatory specialty and regulatory cost are stably secured. Also, this paper proposes maintaining a sound nuclear safety regulatory system to monitor thoroughly the safety management activities of the industry, which might be neglected as a result of focusing on reduction of the cost for producing electric power. (author)

  4. The nuclear industry's communication efforts viewed from outside the industry

    International Nuclear Information System (INIS)

    Tuck, Moira

    1995-01-01

    This paper describes the attitude towards nuclear power of a company specialised in behavioural communication, not employed exclusively by the nuclear power industry. Only one of it's clients has a nuclear interest and that is Eskom, South Africa electricity utility which runs 21 active power stations of which 13 are fossil-fueled, 2 hydro, 2 pump storage stations, 3 gas turbine stations and 1 nuclear. This company is a firm believer in the nuclear energy option for some very practical reasons and one or two abstract reasons. The practical reasons are the ones well known, the world needs ever-increasing amounts of base load energy in order to increase the quality of life. The world also needs clean energy so that the planet can be preserved beyond the next generation. The abstract reasons are perhaps 'not so often' thought about by nuclear, communication practitioners: in harnessing nuclear energy for the service of mankind humans have captured a miracle. The harnessing of nuclear energy is a mark of man's ability to think conceptually, to walk in the realms of the unseen and bring back from those realms a tool of progress. In more prosaic terms, the loss of nuclear expertise would, very simply be a retrogression of the human race. As behavioural communication specialist it s our job to find ways for our clients to speak truthfully about their endeavours to the hearts of their audience. It is not our job to (nor will we) either lie or cover up for our clients. That which is wrong is wrong and cannot be painted rightly spoken words or clever videos or ingenious advertising. In all cases our advice to our clients has been to assume that people will not argue against the greater good of humanity. And there is much about nuclear power that contributes to the greater good: of humanity. 'That is the factor that, is common to all of us in this room today and all our colleagues in the industry. W have only to tell the truth with words that our target audiences can

  5. Nuclear safety and radiation protection report of the basic nuclear facilities of the Tricastin nuclear power plant - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Tricastin nuclear power plant (INB 87 and 88, Saint-Paul-Trois-Chateaux, Drome (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  6. Italian nuclear power industry after nuclear power moratorium: Current state and future prospects

    International Nuclear Information System (INIS)

    Adinolfi, R.; Previti, G.

    1992-01-01

    Following Italy's nuclear power referendum results and their interpretation, all construction and operation activities in the field of nuclear power were suspended by a political decision with consequent heavy impacts on Italian industry. Nevertheless, a 'nuclear presidium' has been maintained, thanks to the fundamental contribution of activities abroad, succeeding in retaining national know-how and developing the new technologies called for the new generation of nuclear power plants equipped with intrinsic and/or passive reactor safety systems

  7. Industrial application of nuclear techniques in Australia

    International Nuclear Information System (INIS)

    Easey, J.F.

    1981-01-01

    The applications of nuclear techniques in Australia was reviewed - the work has been to aid: mining and mineral sector, the manufacturing, chemical and petroleum industries, hydrology and sedimentology

  8. The technical and industrial evolutions in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rougeau, J.P.; Guais, J.C.

    1989-01-01

    The fuel cycle industry is a vital part of nuclear energy generation. Producers in every step of this industry, from uranium to reprocessing are working to adapt their products and services both to the more and more competitive conditions of the market and to the utilities evoluting specific needs. For the next decade, the main trend is uranium economy and reduction of industrial costs. For the longer term, the difficult prevision of nuclear energy developments, in particular with new types of reactors necessitates a true capacity of adaptation both from the utilities and from the fuel cycle industry. Cogema has already demonstrated the ability to adapt its industrial capabilities and therefore can prepare confidently for the future challenges [fr

  9. Radiation effects and hardness of semiconductor electronic devices for nuclear industry

    International Nuclear Information System (INIS)

    Payat, R.; Friant, A.

    1988-01-01

    After a brief review of industrial and nuclear specificity and radiation effects in electronics components (semiconductors) the need for a specific test methodology of semiconductor devices is emphasized. Some studies appropriate for nuclear industry at D. LETI/DEIN/CEN-SACLAY are related [fr

  10. Cyber security in nuclear power plants and its portability to other industrial infrastructures

    International Nuclear Information System (INIS)

    Champigny, Sebastien; Gupta, Deeksha; Watson, Venesa; Waedt, Karl

    2017-01-01

    Power generation increasingly relies on decentralised and interconnected computerised systems. Concepts like ''Industrial Internet of Things'' of the Industrial Internet Consortium (IIC), and ''Industry 4.0'' find their way in this strategic industry. Risk of targeted exploits of errors and vulnerabilities increases with complexity, interconnectivity and decentralization. Inherently stringent security requirements and features make nuclear computerised applications and systems a benchmark for industrial counterparts seeking to hedge against those risks. Consequently, this contribution presents usual cyber security regulations and practices for nuclear power plants. It shows how nuclear cyber security can be ported and used in an industrial context to protect critical infrastructures against cyber-attacks and industrial espionage.

  11. Risk management of knowledge loss in nuclear industry organizations

    International Nuclear Information System (INIS)

    2006-07-01

    Maintaining nuclear competencies in the nuclear industry and nuclear regulatory authorities will be one of the most critical challenges in the near future. As many nuclear experts around the world are retiring, they are taking with them a substantial amount of knowledge and corporate memory. The loss of such employees who hold knowledge critical to either operations or safety poses a clear internal threat to the safe and reliable operation of nuclear facilities. This publication is intended for senior and middle level managers of nuclear industry operating organizations and provides practical information on knowledge loss risk management. The information provided in this it is based upon the actual experiences of Member State operating organizations and is intended to increase awareness of the need to: develop a strategic approach and action plans to address the potential loss of critical knowledge and skills; provide processes and in conducting risk assessments to determine the potential for loss of critical knowledge caused by the loss of experienced workers; and enable nuclear organizations to utilize this knowledge to improve the skill and competence of new and existing workers In 2004, the IAEA published a report entitled The Nuclear Power Industry's Ageing Workforce: Transfer of Knowledge to the Next Generation (IAEA-TECDOC-1399). That report highlighted some of the knowledge management issues in Member States resulting from the large number of retiring nuclear power plant personnel who had been involved with the commissioning and initial operation of nuclear power plants. This publication complements that report by providing a practical methodology on knowledge loss risk management as one element of an overall strategic approach to workforce management which includes work force planning, recruitment, training, leadership development and knowledge retention

  12. The nuclear industry and public hearings

    International Nuclear Information System (INIS)

    Mansillon, Y.

    2007-01-01

    Major decisions about the French nuclear industry have been made, it is often said, without sufficiently informing and consulting the population. Laws in 1995 and 2002 provide for public hearings in order to inform the public and obtain its reactions to big projects of national interest. The responsibility for organizing a hearing is vested in an independent administrative authority, the National Commission of Public Debate (CNDP). Within 2 years, 5 issues related to the nuclear industry have been referred to it: 1) the ITER project at Cadarache in april 2003, 2) the George-Besse-II project to replace the present uranium enrichment plant at Tricastin in april 2004, 3) the research reactor Jules-Horowitz project at Cadarache in july 2004, 4) the EPR project at Flamanville in november 2004, and 5) the management of radioactive wastes in february 2005. The hearings already represent a fundamental innovation compared with earlier practices

  13. IEC ready for turnaround in nuclear industry

    International Nuclear Information System (INIS)

    Schomberg, R.; Corte, E.; Thompson, I.

    2005-01-01

    The activity of IEC Technical Committee (TC) 45 (Nuclear Instrumentation) in conditions of turnaround in nuclear industry is considered. TC 45's main task is to lay down a comprehensive strategy for itself and its two subcommittees as well as to improve the relevance of the nuclear safety standards. Subcommittee 45A develops standards that apply to the electronic and electrical functions and associated systems and equipment used in the instrumentation and control systems of nuclear energy generation facilities. Subcommittee 45B develops and issues standards covering all aspects of instrumentation associated with radiation protection including radiation detectors, radiation monitoring, dosimetry and radiology [ru

  14. Deliberated opinion of the Environment Authority on the ECRIN basic nuclear installation 'confined warehousing of residues produced by conversion' (11)

    International Nuclear Information System (INIS)

    2013-01-01

    This report proposes an environmental review of the creation authorization request for a basic nuclear installation (INB), the ECRIN INB in Malvesi, for the confined warehousing of residues produced by uranium conversion (transformation into uranium tetrafluoride). After having formulated the main recommendations regarding the style and content of this request, this report presents and comments the context, the project and its environmental stakes, indicates the concerned administrative procedures, discusses the project content and the projected works. It proposes an analysis and a discussion of the impact study and makes recommendations to improve it. This analysis addresses the site environmental initial condition, possible alternative solutions, the dismantling plan, various temporary or permanent impacts of the project, the risk management study, and follow-up measures

  15. Nuclear relations with administrations of industry services

    International Nuclear Information System (INIS)

    Bernardez Garcia, A.

    2011-01-01

    The object of the article is to try to answer to the following question that can arise to the holder of a nuclear power station: What Administration of Industry must I myself direct to be able to support my complementary facilities of Industrial Security inside the in force legality?. The raised discussion arise between if the competent administration for the legal steps, is the Central Administration across his delegates and sub delegates of government, or is of the Territorial Services of Industry of Autonomous communities. (Author)

  16. The nuclear industry and its European markets

    International Nuclear Information System (INIS)

    1998-01-01

    This study gives an overview of the worldwide nuclear energy demand and reviews the different markets which are classified as 'mature' (uranium extraction, enrichment, conversion and reactors building), 'developing' (reprocessing, MOX fuel fabrication, maintenance and services) and 'emerging' (waste treatment and dismantling). Then, the study analyzes the evolution of demand and the answers of companies and presents the strategies and performances of nuclear industry leaders. (J.S.)

  17. The Potential of NORM in Non-Nuclear Industry in Indonesia

    International Nuclear Information System (INIS)

    Kunto Wiharto; Syarbaini

    2003-01-01

    Industry with an activity of processing natural resources from crust of earth as raw materials could cause natural radioactivity in crust of earth to be accumulated in waste, by product and or main product of that industry. Natural radioactive elements which are mobilized and then accumulated in end industry process are known as NORM (Naturally Occurring Radioactive Materials). NORM have a potential radiological impact such as external and internal radiation exposure. Therefore, the existence of NORM in these non-nuclear industries should be studied in order to handle properly the radiological impact of those material to the industrial workers, member of the public and the surrounding environment. This paper describes the non nuclear industrial sectors in Indonesia that have potential NORM sources and radiation safety aspects in connecting with NORM. (author)

  18. French nuclear industry exportations: companies and organisations, achievements and projects

    International Nuclear Information System (INIS)

    Faudon, V.; Pailler, S.; Miniere, D.; Pouget-Abadie, X.; Journes, F.; Ouali, F.; Brochard, D.; Choho, T.; Lagarde, D.; Anglaret, P.; Kottman, G.; Mockly, D.; Ouzounian, G.; Cordier, P.Y.; Prenez, J.C.; Arpino, J.M.; Jaouen, C.; Jolly, B.

    2013-01-01

    This document gathers a series of short articles in which the following players: French Nuclear Safety Authority (ASN), Electricity of France (EdF), French Alternative Energies and Atomic Energy Commission (CEA), AREVA, ALSTOM, the Association of French Nuclear Industry Exporters (AIFEN), the National Radioactive Waste Management Agency (ANDRA) and the French Society of Nuclear Energy (SFEN) present their competencies in their respective fields and their strategies and commercial offers for exports. 2 articles are dedicated to the achievements of the French nuclear industry in China and another details the cooperation between SFEN and its foreign counterparts. Another article briefly presents the EPR and ATMEA reactors. (A.C.)

  19. Human performance improvement in organizations: Potential application for the nuclear industry

    International Nuclear Information System (INIS)

    2005-11-01

    This publication is primarily intended for managers and specialists in nuclear facility operating organizations working in the area of human performance improvement. It is intended to provide them with practical information they can use to improve human performance in their organizations. While some of the information provided in this publication is based upon the experience of nuclear facility operating organizations, most of it comes from human performance improvement initiatives in non-nuclear organizations and industries. The nuclear industry has a long tradition of sharing good management practices in order to foster continuous improvement. However, it is not always realized that many of the practices that are now well established initially came from non-nuclear industries and were subsequently adapted for application to nuclear power plant operating organizations. There is, therefore, good reason to periodically review non-nuclear industry practices for ideas that might have direct or indirect application to the nuclear industry in order to potentially gain benefits such as the following: new approaches to certain problem areas, insights into new or impending challenges, improvements in existing practices, benchmarking of opportunities, development of learning organizations and avoidance of collective blind spots. The preparation of this report was an activity of the project on Effective Training to Achieve Excellence in the Performance of NPP Personnel. The objective of this project is to enhance the capability of Member States to utilize proven practices developed and transferred by the IAEA for improving personnel performance. The expected outcome from this project is the increased use by organizations in Members States of proven engineering and management practices and methodologies developed and transferred by the IAEA to improve personnel performance

  20. World nuclear power generation market and prospects of industry reorganization

    International Nuclear Information System (INIS)

    Murakami, Tomoko

    2007-01-01

    In late years there are many trends placing nuclear energy with important energy in various countries in the world due to a remarkable rise to an energy price, importance of energy security and a surge of recognition to a global environment problem. Overseas nuclear industry's acquisition by a Japanese nuclear power plant maker and its capital or business tie-up with an overseas company, were announced in succession in 2006. A nuclear power plant maker has played an extremely important role supporting wide technology in all stages of a design, construction, operation and maintenance in a nuclear power generation business. After having surveyed the recent trend of world nuclear power generation situation, a background and the summary of these acquisition/tie-ups made were investigated and analyzed to consider the influence that movement of such an industry gives a world nuclear power generation market. (T. Tanaka)

  1. Evolution of stainless steels in nuclear industry

    International Nuclear Information System (INIS)

    Tavassoli, Farhad

    2010-01-01

    Starting with the stainless steels used in the conventional industry, their adoption and successive evolutions in the nuclear industry, from one generation of nuclear reactors to another, is presented. Specific examples for several steels are given, covering fabrication procedures, qualification methods, property databases and design allowable stresses, to show how the ever-increasing demands for better performance and reliability, in particular under neutron irradiation, have been met. Particular attention is paid to the austenitic stainless steels types 304L, 316L, 316L(N), 316L(N)-IG, titanium stabilized grade 321, precipitation strengthened alloy 800, conventional and low activation ferritic/martensitic steels and their oxygen dispersion strengthening (ODS) derivatives. For each material, the evolution of the associated filler metal and welding techniques are also presented. (author)

  2. Progress in the U.S. nuclear utility industry 1979-1989

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    March 28, 1979 changed the course of the commercial U.S. nuclear utility industry. An accident at Three Mile Island Nuclear Station Unit 2 in Middletown, Pennsylvania damaged the reactor's fuel core, as well as the industry's reputation and confidence. In the months after the event, the president of the United States, the nuclear industry, the public, government regulators and the media sought answers to many questions. Among the most important were, how and why did the accident happen? The President's Commission on the Accident at TMI, the Kemeny Commission, was formed to address these questions. Four major causes were identified by the commission: - inadequate or inappropriate operator training; - mechanical problems and faulty instrumentation; - poor control room design; - communication failures at the facility and in information exchange within the industry. Of even greater importance was another question: How could another such accident be prevented? A look at the industry's progress in the 10 years since the TMI accident shows this question has been vigorously addressed and that corrective actions have been taken.

  3. Progress in the U.S. nuclear utility industry 1979-1989

    International Nuclear Information System (INIS)

    1989-01-01

    March 28, 1979 changed the course of the commercial U.S. nuclear utility industry. An accident at Three Mile Island Nuclear Station Unit 2 in Middletown, Pennsylvania damaged the reactor's fuel core, as well as the industry's reputation and confidence. In the months after the event, the president of the United States, the nuclear industry, the public, government regulators and the media sought answers to many questions. Among the most important were, how and why did the accident happen? The President's Commission on the Accident at TMI, the Kemeny Commission, was formed to address these questions. Four major causes were identified by the commission: - inadequate or inappropriate operator training; - mechanical problems and faulty instrumentation; - poor control room design; - communication failures at the facility and in information exchange within the industry. Of even greater importance was another question: How could another such accident be prevented? A look at the industry's progress in the 10 years since the TMI accident shows this question has been vigorously addressed and that corrective actions have been taken

  4. Obsolescence in nuclear industry

    International Nuclear Information System (INIS)

    Mondal, U.

    2000-01-01

    Most nuclear plants around the world are roughly 15 to 30 years old. The design and procurement of CANDU plants took place from the late 60's to mid 80's (i.e., 20 to 30 years vintage). Most equipment originally installed in these plants is obsolete or the manufactures are out of business or their production has been discontinued due to technological evolution. In order to maintain operation of nuclear plants with safety integrity and commercial viability, certain spare parts must be available at the plant all the time. The objective of this paper is to identify an optimum, cost-effective approach that solves obsolescence problem efficiently and without duplicating efforts. The Nuclear Utility Obsolescence Group (NUOG) has embarked upon the following major tasks: Developing a Guideline for use by the utilities that addresses obsolescence; Collection of obsolescence data in a database (Web-based) to be shared by all members; Motivation of the suppliers to engage them in obsolescence solutions; Increase in awareness among the utility management to consider obsolescence as a priority issue and allocate funds to address them pro-actively; and Coordination with other industry groups (EPRI, INPO, NEI, BWROG etc.) to avoid duplication of effort in obsolescence resolution process. The NUOG strategy is based upon the principles of sharing. It advocates sharing of obsolescence solutions and concerns among the utilities. Candu Owners Group Inc. (COG) has initiated self-assessment of obsolescence in the members' plants. The purpose of self-assessment is to provide baseline information that would help identification of obsolescence and coordination of their solutions. The following areas are covered in the self-assessment initiative: Identification of obsolete components in selected systems in the plant. Assess effectiveness of the current obsolescence identification process and in resolution of obsolescence Issues in the plant. Identification of common Candu plant design

  5. Industrial applications of radioisotopes: techniques and procedures of (NTIS) Nuclear Techniques Industrial Service

    International Nuclear Information System (INIS)

    Smith, S.W.; Kruger, J.

    1985-06-01

    Radioisotope handling procedures followed by personnel of the Nuclear Techniques Industrial Service (NTIS) during the conduction of investigations in industry are described. Possible radiological implications as a result of the various measuring techniques and different types of plants are discussed. Conditions under which permanent authorization has been granted for the use of radioisotopes are mentioned

  6. Environmental impact on nuclear industry and lessons therefrom for conventional industry

    International Nuclear Information System (INIS)

    Gupta, V.K.; Ganguly, A.K.

    1978-01-01

    All human endeavours to-date have resulted in short term and/or long term and sometimes, in irreversible impact on the environment. The awareness to protect the environment became obvious only when the deleterious effects started getting manifest and recognised. Nuclear power industry has approached the problem of keeping the environmental impact due to its operation within the acceptable limits in a systematic manner. The unique features of this approach are defining Maximum Acceptable Site Burden (MASB) at a given site for normal operation of the plant and also defining acceptable risk to the population around installations due to very low probable accident conditions in the installation. The study of the characteristics of the environment during the preoperational phase is undertaken to assess the recipient capacity of the environment and specify acceptable discharge levels of toxins. The impact of the operation of installation is evaluated throughout its life time so that corrective actions could be initiated before perceptible deleterious effects could assume unmanageable dimensions. This is done through well organised laboratories operating at the site of major nuclear installations. Some of the areas where these practices could be usefully adopted in the non-nuclear industries are pointed out. (author)

  7. Cyber security in nuclear power plants and its portability to other industrial infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Champigny, Sebastien; Gupta, Deeksha; Watson, Venesa; Waedt, Karl [AREVA GmbH, Erlangen (Germany)

    2017-06-15

    Power generation increasingly relies on decentralised and interconnected computerised systems. Concepts like ''Industrial Internet of Things'' of the Industrial Internet Consortium (IIC), and ''Industry 4.0'' find their way in this strategic industry. Risk of targeted exploits of errors and vulnerabilities increases with complexity, interconnectivity and decentralization. Inherently stringent security requirements and features make nuclear computerised applications and systems a benchmark for industrial counterparts seeking to hedge against those risks. Consequently, this contribution presents usual cyber security regulations and practices for nuclear power plants. It shows how nuclear cyber security can be ported and used in an industrial context to protect critical infrastructures against cyber-attacks and industrial espionage.

  8. Nuclear safety and radiation protection report of the Tricastin operational hot base nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  9. Environmental impact of a nuclear industry at an early stage of development: peculiar aspects

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Baptista, G.B.

    1978-01-01

    The environmental impact of a nuclear industry at an early stage of development is examined vis-a-vis the experience accumulated in studies on the environmental impact of the nuclear fuel cycle in a developed country. Differences in the optics of the nuclear industry in a developed country and that of segments of the public opinion are briefly discussed. Some peculiar aspects of a nuclear industry being implanted in a developing nation, including adoption of new legislation and regulations, are presented, taking into account the unusual opportunity to attack potential problems in advance. The unique example of the pre-operational survey of a region surrounding a uranium mine in a developing nation is mentioned as an example of cooperation between the nuclear industry and the scientific community to minimize the environmental impact of uranium mining operations. The potential environmental impact of other stages of the nuclear fuel cycle is also examined. Further cooperation between the nuclear industry and the scientific community of Latin American countries is suggested to minimize the environmental impact of the nuclear fuel cycle in nations starting nuclear programs. (author)

  10. Situation and role of industrial fields in nuclear fusion reactor development

    International Nuclear Information System (INIS)

    Suzuki, Gen-ichi

    1983-01-01

    Japan Atomic Industrial Forum (JAIF) established the nuclear fusion technical committee in October, 1980, and has investigated the attitude of industrial fields in progressing nuclear fusion research and development and the measures to cooperate with national development plans. Corresponding to the new long term plan and the establishment of the basic policy for nuclear fusion research and development by Atomic Energy Commission of Japan in June, 1982, JAIF has settled the policy on the situation and role of industrial fields. In this report, first the necessity of firmly grasping the position of nuclear fusion research in atomic energy development is described, next, the present status of the research and development in Japan is reported, and it is mentioned that the role of manufacturers in reinforcing engineering has become more important in industrial fields. In the stage of the construction of a nuclear fusion reactor, the experiences in the engineering safety in fission reactors, environmental safety and system engineering will be utilized. Japanese industrial fields feature that they have made larger cooperation with national projects even in the research and development stage as compared to foreign countries. When the plan of next phase system will be promoted in the future, the cooperating methods in the past should be evaluated, investigated and improved, and the experiences in fast breeder reactors and advanced heavy water reactors should be referred to. Finally, the problems and the countermeasures in nuclear fusion development are described. (Wakatsuki, Y.)

  11. Towards the creation of an industrial sector dedicated to nuclear dismantling

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    In next decades the business of nuclear dismantling is expected to grow exponentially due to the decommissioning of nuclear facilities that will have reached the end of their operating life. Dismantling has 2 main features: dismantling operations on a same site can span decades and dismantling is a new activity in which innovations are likely to appear and may benefit other sectors. In France regional authorities have promoted public-private partnerships in order to make working together small enterprises very specialized in sectors like robotic, laser cutting, waste processing, remote operations... with public laboratories dedicated to nuclear research, and with graduate schools to include dismantling in curriculum and with major industrial operators of the nuclear industry. The aim is the creation of jobs and the building of an industrial sector able to win market shares in the worldwide business of nuclear dismantling. (A.C.)

  12. SOVT analysis of the nuclear industry in Mexico; Analisis FODA de la industria nuclear en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez R, E.; Hernandez B, M. C., E-mail: edelmiraf@yahoo.com [Instituto Tecnologico de Toluca, Division de Estudios de Posgrado, Av. Instituto Tecnologico s/n, Ex-rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico)

    2011-11-15

    In this work the analysis of strengths, opportunities, vulnerabilities and threats (SOVT) of the nuclear industry in Mexico is presented. This industry presents among its strengths that Mexico is a highly electrified country and has a good established normative mark of nuclear security. Although the Secretaria de Energia in Mexico, with base to the exposed in the Programa Sectorial de Energia 2007-2012, is analyzing the convenience of the generation starting from this source, considering the strong technological dependence of the exterior and the limited federal budget dedicated to this field. As a result of the analysis of the SOVT matrix, were found a great number of strengths that threats, although the vulnerabilities list is major to the strengths, the opportunities list is the bigger. Therefore, the nuclear industry can be a sustainable industry, taking the necessary decisions and taking advantage of the detected opportunities. (Author)

  13. Burgundy, the exemplary success of nuclear industry

    International Nuclear Information System (INIS)

    Hugue, Didier

    2013-01-01

    This article comments the successful activity of mechanical and metallurgical industries in the French region of Burgundy in relationship with the nuclear sector. This is notably due to equipment renewal and to the continuity of the French nuclear program. Consequences are also positive for subcontracting small and medium-sized companies of the region. Collaborative action for exports is also an opportunity for the concerned companies, whether big or small

  14. Domestic safeguards in the nuclear industry

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1979-01-01

    The Energy Reorganization Act of 1974 brought about markedly increased security requirements at nuclear power plants. NRC established a threat level against which the security forces were expected to defend. It is asserted that an inadequate legal basis exists for the NRC requirement that nuclear plants be defended by the use of deadly force, if necessary, and that complex issues such as apprehension, retention, and pursuit of intruders are left vague. Security measures patterned after the airline industry, resolution of the deadly force issue, and definition of a creditable threat level are proposed

  15. Coating technologies in the nuclear industry

    International Nuclear Information System (INIS)

    Kaae, J.L.

    1993-01-01

    Metallic, ceramic, and organic coatings are so commonly used in modern industry that virtually everyone can name several applications in which coatings are employed. Thus, it is no surprise that coating technologies are widely employed in the nuclear industry. Some of these technologies utilize processes that are mature and well developed, and others utilize processes that are new and state of the art. In this paper, five generic coating processes that include almost all vapor deposition processes are described, and then applications of each of these processes for deposition of specific materials in nuclear applications are described. These latter selections, of course, are very subjective, and others will be able to name other applications. Because of their wide range of application, coating technologies are considered to be national critical technologies. The generic coating processes that cover almost all vapor deposition technologies are as follows: (1) stationary substrate chemical vapor deposition; (2) fluidized bed chemical vapor deposition; (3) plasma-assisted chemical deposition; (4) sputtering; (5) evaporation

  16. Environmental issues and the nuclear industry

    International Nuclear Information System (INIS)

    Castle, P.

    1995-01-01

    Health safety and environmental liabilities of the 'nuclear industry' reflect those of industry in general and may broadly be divided into two areas: criminal liability for regulatory non-compliance; and civil liability for damage caused to persons and their property (for example, neighbours, employees etc). In addition, environmental liability may be incurred as a result of powers of the regulatory authorities to clean up contamination and to recoup the cost. These are in addition to the regime of strict liability imposed, where relevant, by the Nuclear Installations Act 1965. In the case of environmental liabilities, 'owners;, 'occupiers', 'persons responsible', 'persons in control' may all be held to be liable and for the most part these terms remain undefined both under English law and European Community (now European Union) law. This potentially has ramifications for current and former owners and operators, their boards and senior managers, other employees, parent companies, shareholders and their lenders and investors - of particular relevance in the context of privatization. (author)

  17. Best practice asset management in the nuclear industry

    International Nuclear Information System (INIS)

    Maxey, Terry M.

    2004-01-01

    Pursuit of operational excellence is the goal of every nuclear plant operator. Implementation of Enterprise Asset Management(EAM) solutions in the nuclear industry has significantly contributed to record performance over the last decade in the areas of reliability and production, nuclear and personnel safety, and production cost. This presentation will outline the scope of best practice EAM implementation and highlight performance results achieved from EAM deployment. It will also explore areas of future opportunity in which EAM solutions will support an era of new nuclear plant construction in the United States

  18. Executive brief to federal government 'the Canadian nuclear industry - a national asset'

    International Nuclear Information System (INIS)

    1985-03-01

    Over a period of 40 years Canada has developed a remarkable nuclear industry. In keeping with our mining heritage, we are the world's leading uranium producer, with the highest grade orebodies in existence still waiting to be tapped. In the realm of high technology development, our CANDU reactor is second to none. Year after year Canadian CANDUs dominate the 'top 10' performance records world-wide. The nuclear industry has created direct employment for over 30,000 Canadians. The 'high tech' sectors of the industry are now vigorously seeking export markets for their products and services. As the world recovers from the recent prolonged recession, electricity demand is rising. Once again electricity is the engine of growth. Already utilities are planning to add new generating capacity. Canadian nuclear resources, technology and skilled people are proven and available. By seizing the opportunities which are opening up for us, a properly recognized nuclear industry can make a vital contribution to Canada's economic renewal. This brief has been prepared by the Canadian Nuclear Association (CNA) in response to the challenge issued to Canadians in Finance Minister Michael Wilson's document 'A New Direction for Canada'. This brief responds in terms of the major policy issues and opportunities as seen by the Canadian nuclear industry

  19. Overview of environmental assessment for China nuclear power industry and coal-fired power industry

    International Nuclear Information System (INIS)

    Zhang Shaodong; Pan Ziqiang; Zhang Yongxing

    1994-01-01

    A quantitative environmental assessment method and the corresponding computer code are introduced. By the consideration of all fuel cycle steps, it given that the public health risk of China nuclear power industry is 5.2 x 10 -1 man/(GW·a) the public health risk is 2.5 man/(GW·a), and the total health risk is 3.0 man/(GW·a). After the health risk calculation for coal mining, transport, burning up and ash disposal, it gives that the public health risk of China coal-fired power industry is 3.6 man/(GW·a), the occupational health risk is 50 man/(GW·a), and the total is 54 man/(GW·). Accordingly, the conclusion that China nuclear power industry is one with high safety and cleanness is derived at the end

  20. Trends in risk management in nuclear industry

    International Nuclear Information System (INIS)

    Kim, Inn Seock

    1996-01-01

    Safety management may be classified into three dimensions: risk management, accident management, and emergency management. This paper addresses the recent trends of safety management in nuclear industry, focussing on risk management and accident management

  1. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Fessenheim nuclear power plant (INB 75, Haut-Rhin, 68 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  2. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  3. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Penly nuclear power plant (INB 136 and 140, Seine-Maritime, 76 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  4. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Fessenheim nuclear power plant (INB 75, Haut-Rhin, 68 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  5. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Blayais nuclear power plant (INB 86 and 110, Gironde (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  6. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  7. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  8. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Penly nuclear power plant (INB 136 and 140, Seine-Maritime, 76 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  9. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  10. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  11. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Civaux nuclear power plant (INB 158 and 159, Vienne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  12. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Blayais nuclear power plant (INB 86 and 110, Gironde (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  13. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Civaux nuclear power plant (INB 158 and 159, Vienne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  14. The UK nuclear power industry

    International Nuclear Information System (INIS)

    Collier, J. G.

    1995-01-01

    In the United Kingdom, nuclear power plants are operated by three companies: Nuclear Electric (NE), Scottish Nuclear (SN), and British Nuclear Fuels plc (BNFL). The state-operated power industry was privatized in 1989 with the exception of nuclear power generation activities, which were made part of the newly founded (state-owned) NE and SN. At the same time, a moratorium on the construction of new nuclear power plants was agreed. Only Sizewell B, the first plant in the UK to be equipped with a pressurized water reactor, was to be completed. That unit was first synchronized with the power grid on February 14, 1995. Another decision in 1989 provided for a review to be conducted in 1994 of the future of the peaceful uses of nuclear power in the country. The results of the review were presented by the government in a white paper on May 9, 1995. Accordingly, NE and SN will be merged and privatized in 1996; the headquarters of the new holding company will be in Scotland. The review does not foresee the construction of more nuclear power plants. However, NE hopes to gain a competitive edge over other sources of primary energy as a result of this privatization, and advocates construction of a dual-unit plant identical with Sizewell B so as to avoid recurrent design and development costs. Outside the UK, the company plans to act jointly with the reactor vendor, Westinghouse, especially in the Pacific region; a bid submitted by the consortium has been shortisted by the future operator of the Lungmen nuclear power plant project in Taiwan. In upgrading the safety of nuclear power plants in Eastern Europe, the new company will be able to work through existing contacts of SN. (orig.) [de

  15. Decree of the 27. July 2001

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The decree of the 27. July 2001 defines the organization of nuclear safety concerning nuclear military systems (SNM) and secret basic nuclear installations (INBS). The responsibility of nuclear safety is shared between 3 authorities: 1) the synthetic authority, this authority defines the organization required to reach and maintain the adequate level of safety set by the ministry of defence, the synthetic authority can change according to the state in which SNM or INBS is (designing, fabrication, operation and dismantling); 2) the authority that is responsible for the material and staff resources that are required to operate the SNM or INBS according to the rules and regulations of nuclear safety; and 3) the military territorial authority, this authority manages the actions made by the state services concerning the prevention of accidents, or the measures to take in case of accidents. (A.C.)

  16. Modelling human resource requirements for the nuclear industry in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, Ferry [Nuclear Research and Consultancy Group (NRG) (Netherlands); Flore, Massimo; Estorff, Ulrik von [Joint Research Center (JRC) (Netherlands)

    2017-11-15

    The European Human Resource Observatory for Nuclear (EHRO-N) provides the European Commission with essential data related to supply and demand for nuclear experts in the EU-28 and the enlargement and integration countries based on bottom-up information from the nuclear industry. The objective is to assess how the supply of experts for the nuclear industry responds to the needs for the same experts for present and future nuclear projects in the region. Complementary to the bottom-up approach taken by the EHRO-N team at JRC, a top-down modelling approach has been taken in a collaboration with NRG in the Netherlands. This top-down modelling approach focuses on the human resource requirements for operation, construction, decommissioning, and efforts for long term operation of nuclear power plants. This paper describes the top-down methodology, the model input, the main assumptions, and the results of the analyses.

  17. Modelling human resource requirements for the nuclear industry in Europe

    International Nuclear Information System (INIS)

    Roelofs, Ferry; Flore, Massimo; Estorff, Ulrik von

    2017-01-01

    The European Human Resource Observatory for Nuclear (EHRO-N) provides the European Commission with essential data related to supply and demand for nuclear experts in the EU-28 and the enlargement and integration countries based on bottom-up information from the nuclear industry. The objective is to assess how the supply of experts for the nuclear industry responds to the needs for the same experts for present and future nuclear projects in the region. Complementary to the bottom-up approach taken by the EHRO-N team at JRC, a top-down modelling approach has been taken in a collaboration with NRG in the Netherlands. This top-down modelling approach focuses on the human resource requirements for operation, construction, decommissioning, and efforts for long term operation of nuclear power plants. This paper describes the top-down methodology, the model input, the main assumptions, and the results of the analyses.

  18. Benchmarking the global nuclear industry 2012. Heading for a fast recovery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-15

    The study on the title subject is based on a series of 50 interviews in 13 countries, including vendor companies, utilities, manufacturers of nuclear and conventional island equipment, national regulatory authorities and international agencies as well as scientific experts. The report identifies challenges and the bargaining position of countries within the nuclear industry in the wake of the Japan Fukushima Daiichi nuclear power plant accident. One outcome that has been of paramount importance to all is nuclear safety. Decisions, changes and choices were to be made; Germany announced it would shut down all nuclear power plants by 2022. However, the big players in the nuclear industry Russia, France, China, United States of America, Canada, Japan and South Korea have seen little disruption in commitment to providing nuclear power since the disaster.

  19. Safety of Basic nuclear facilities (INB) other than electronuclear reactors. Lessons learned from declared significant events in 2011 and 2012

    International Nuclear Information System (INIS)

    2013-01-01

    The first part of this report presents the different types of basic nuclear facilities other than electronuclear reactors. These installations can be industrial installations dedicated or not to the nuclear fuel cycle, research and support installations, be definitively stopped or being dismantled, or radioactive waste storage installations. After a comment of the main trends noticed in 2011 and 2012, the report proposes a transverse analysis of events which occurred in these installations. These events are related to various risks: dissemination of radioactive materials, exposure to ionizing radiations, criticality, fire and explosion, handling operations, loss of electric supplies or fluids, external aggression. Other events are those significant for the environment with a radiological component, or related to periodic controls and tests. The causes of these events are analysed. Specific events are presented which occurred on different sites (in the MELOX plant, in Areva sites in La Hague, Pierrelatte, in CEA sites in Cadarache and Saclay, in a fuel factory in Romans). Other topics are finally addressed: safety measures after the Fukushima accident, safety and radiation protection management systems of Areva and CEA, dismantling of nuclear installations

  20. Perspective of nuclear power policy change and trend of nuclear industry activities from energy policy of European countries

    International Nuclear Information System (INIS)

    Murakami, Tomoko; Matsuo, Yuji; Nagatomi, Yu

    2009-01-01

    European countries of nuclear power phase-out have changed to commit to the future of nuclear energy due to the intended low-carbon power, the energy security concerns and the need of replacement reactors as current reactors approach the end of operating lives, as Italian government has passed legislation to build new nuclear power plants. This article described the perspective of nuclear power policy changes in UK, Italy an Sweden and the business trend and the SWOT analysis of related electric utilities (EDF, Enel and Vattenfall) and nuclear industries (Areva NP, Sheffield Forgemasters, ENSA and Studsvik). Policy implications obtained from this analysis were commented for Japanese nuclear industry activities. (T. Tanaka)

  1. Supply chain of steel industries for the nuclear power plant construction in Indonesia

    International Nuclear Information System (INIS)

    Dharu Dewi; Sahala M Lumbanraja

    2017-01-01

    Nuclear Power Plant (NPP) Construction needs steel materials for the manufacturing of heavy components and civil work construction. National industries is expected to supply steel components especially for non nuclear component needs. Supply chain of steel industries is required to know the potency of steel industries from upstream to downstream industries which can support the NPP construction sustainability. The type of steel needed in the NPP construction consist of structure steel, rebar, steel plate, etc. The aim of the study is to identify supply chain of steel industries from upstream industries to downstream industries so that they can supply steel needs in the NPP construction. The methodology used are literature review and industries survey by purposive sampling test which sent questionnaires and carrying out technical visits to the potential industries to supply steel components for NPP construction. From the analysis of the questionnaires and survey, it has been obtained that the Indonesian steel industries capable of supplying steel for construction materials of non-nuclear parts are PT. Krakatau Steel, PT. Gunung Steel Group (PT Gunung Garuda and PT. Gunung Raja Paksi), PT. Cilegon Fabricators and PT. Ometraco Arya Samanta. While steel materials for primary components with nuclear grade, such as steel materials for reactor vessels and pressure vessels, the Indonesian steel industry has not been able to supply them. Therefore, the Indonesian steel industries must improve its capability, both in raw material processing and fabrication capability in order to meet the requirements of specifications, codes and standards of nuclear grade. (author)

  2. Nuclear industry prepares fore shortage of engineers

    International Nuclear Information System (INIS)

    Gauker, Lynn.

    1991-01-01

    It is predicted that the Canadian nuclear industry will experience a shortage of qualified personnel within the next five to ten years. The reasons for this prediction are as follows: enrollment in engineering courses, particularly five courses in nuclear engineering has been declining; immigration can no longer be expected to fill the gap; the workforce is aging. Solutions may include promotional campaigns, student employment programs, and educating workers to a professional level

  3. Nuclear safety and radiation protection report of the nuclear facility of Brennilis - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Monts d'Arree (EL4-D or Brennilis) site (INB 162 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  4. Nuclear safety and radiation protection report of the nuclear facilities of Brennilis - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Monts d'Arree (EL4-D or Brennilis) site (INB 162 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  5. Industrial safety in a nuclear decommissioning environment observations and lessons learned

    International Nuclear Information System (INIS)

    Brevig, D.

    2008-01-01

    Decommissioning activities present unusual and unexpected workplace safety challenges that go far beyond the traditional experience of nuclear power plant managers. A blend of state-of-the-art safety program management tools along with new and practical applications are required to ensure high industrial safety performance. The demanding and rigorously applied nuclear safety engineering standards that are accepted as normal and routine in the operation of a nuclear power facility, should transform as an industrial safety standard during the non-operating period of decommissioning. In addition, historical measures of non-nuclear industrial safety injury rates would or should not be acceptable safety behaviors during a nuclear decommissioning project. When complex projects, such as the decommissioning of a nuclear generating facility are undertaken, the workforce brings experience, qualifications, and assumptions to the project. The overall multi-year general schedule is developed, with more schedule details, for example, for the nearest rolling 12-18 months. Methods are established for the selection of contractors to assist in areas that are not normal tasks for the facility workforce, whose normal activity is managing and operating a nuclear generating station. However, it is critical to manage those contractors to the agreed work scope to ensure success is maintained by both parties, e.g. the job gets done, on schedule, on budget, all parties are financially whole when the work is complete, and safely. The purpose of this paper is to provide a perspective of nuclear plant personal safety in the ever changing industrial environment created by the demolition of robust and often radiologically contaminated structures in a nuclear facility decommissioning project. (author)

  6. Industrial safety in a nuclear decommissioning environment observations and lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Brevig, D. [Independent Consultant, San Clemente (United States)

    2008-07-01

    Decommissioning activities present unusual and unexpected workplace safety challenges that go far beyond the traditional experience of nuclear power plant managers. A blend of state-of-the-art safety program management tools along with new and practical applications are required to ensure high industrial safety performance. The demanding and rigorously applied nuclear safety engineering standards that are accepted as normal and routine in the operation of a nuclear power facility, should transform as an industrial safety standard during the non-operating period of decommissioning. In addition, historical measures of non-nuclear industrial safety injury rates would or should not be acceptable safety behaviors during a nuclear decommissioning project. When complex projects, such as the decommissioning of a nuclear generating facility are undertaken, the workforce brings experience, qualifications, and assumptions to the project. The overall multi-year general schedule is developed, with more schedule details, for example, for the nearest rolling 12-18 months. Methods are established for the selection of contractors to assist in areas that are not normal tasks for the facility workforce, whose normal activity is managing and operating a nuclear generating station. However, it is critical to manage those contractors to the agreed work scope to ensure success is maintained by both parties, e.g. the job gets done, on schedule, on budget, all parties are financially whole when the work is complete, and safely. The purpose of this paper is to provide a perspective of nuclear plant personal safety in the ever changing industrial environment created by the demolition of robust and often radiologically contaminated structures in a nuclear facility decommissioning project. (author)

  7. On the future of nuclear power in Brazil

    International Nuclear Information System (INIS)

    Lameiras, Fernando Soares

    2002-01-01

    The recent optimism related to the resumption of nuclear energy for the generation of electricity in Brazil has been based on investments by the actual government to finish Angra II, the expansion of INB's facilities, the electricity supply crisis, and, on the external plan, the announcement of the Energy Plan of the George W. Bush government. However, for this resumption to take hold, it is necessary that the nuclear enterprises decrease their dependence on State resources and enter the nuclear power international market. With these measures, it was sought to demonstrate that the interest of the private capital could appear, making feasible the construction of new nuclear power plants. In fact, the major hurdle to the increase of the use of nuclear power is in the economic area. The State does not have resources available to afford the investments necessary to build new nuclear power plants. In contrast, the private sector prefers other alternatives which require less investment and afford faster capital return rates. (author)

  8. Policy for securing human resources in the nuclear industry of Japan

    International Nuclear Information System (INIS)

    Takeuchi, S.

    1993-01-01

    The shortage of human resources in the field of nuclear industry in Japan is due to: structural difficulty resulting from the prevailing labor shortage in Japan, difficulties from the ever-intensifying adverse wind against nuclear power, and difficulties specific to R and D organizations. A practical plan is proposed for securing qualified personnel: approach to be directly made on campuses; effective/advanced management of human resources; better treatment and fringe benefit; promoting the nuclear industry attractiveness; expanding the scope of basic and fundamental researches; regaining the public confidence; closer cooperation between the government and the nuclear power groups. 6 figs

  9. Radiation safety in industrial applications of nuclear techniques

    International Nuclear Information System (INIS)

    Lam, E.S.

    1981-01-01

    The hazards associated with the use of industrial equipment is one of the undesirable by-products of advanced technology. The use of nuclear techniques is a good example. Due to the usefulness of such techniques, one may accept the risks involved if they can be brought down to manageable levels. Most of the nuclear techniques in use in industries in Malaysia require only minimal safety precautions as they make use of only small amounts of radioactive material. However, some large sources are also being used and safety precautions have to be strictly enforced. The management plays a critical role in these industries. The requirements for radiation safety include the monitoring of workers and work areas, the medical surveillance of workers and the provision of barriers and other safety precautions. The management should also look to the training of the workers and be prepared for any emergencies that may arise. (author)

  10. Radiation safety in industrial applications of nuclear techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lam, E S [Ministry of Health, Kuala Lumpur (Malaysia)

    1981-01-01

    The hazards associated with the use of industrial equipment is one of the undesirable by-products of advanced technology. The use of nuclear techniques is a good example. Due to the usefulness of such techniques, one may accept the risks involved if they can be brought down to manageable levels. Most of the nuclear techniques in use in industries in Malaysia require only minimal safety precautions as they make use of only small amounts of radioactive material. However, some large sources are also being used and safety precautions have to be strictly enforced. The management plays a critical role in these industries. The requirements for radiation safety include the monitoring of workers and work areas, the medical surveillance of workers and the provision of barriers and other safety precautions. The management should also look to the training of the workers and be prepared for any emergencies that may arise.

  11. The British Nuclear Industry Forum's public affairs campaign

    International Nuclear Information System (INIS)

    Parker, Keith

    2000-01-01

    Full text: In March 1999, BNIF launched a public affairs Campaign with the objective of influencing the views of opinion formers - particularly in the political field - about the case for nuclear energy as a long-term, sustainable component of the UK's energy mix. The Campaign was launched to BNIF's 70 member companies under the slogan, Profiting through Partnership - By Changing the Climate of Opinion. That slogan was chosen to emphasise a key feature of the Campaign approach, which is the importance of an industry speaking collectively with one voice, but with each individual company actively playing its part by spreading the industry's messages to their own local and regional audiences - Members of Parliament, local politicians, local media - to build a groundswell of support for the eventual renewal of nuclear energy in the UK. Our aim was to place the prospect of a new nuclear power station firmly on the political agenda during the lifetime of the next Parliament - that is, in the period 2002-2007. The Campaign was launched at a time when a few encouraging signs were emerging of a growing recognition in Government, Parliament, and in academic and scientific circles that nuclear energy has an important role to play in meeting the energy and environmental challenges of the 21st century. The challenge, in particular, of climate change and the UK Government's commitment to reduce greenhouse gas emissions undertaken at Kyoto and in its election manifesto, gave the industry a strong, positive issue on which to campaign. However, we fully recognised that to make a convincing case for nuclear energy we would also have to address the issues of concern and doubt in the minds of the public and politicians - economic competitiveness, waste management, transport and decommissioning. During the year, BNIF produced a range of Campaign materials, made submissions to several Government and other inquiries and consultations, organised events, meetings and discussions, all with

  12. Digital transformation of nuclear industry, what improvement made in France and abroad?

    International Nuclear Information System (INIS)

    Roy, L.

    2017-01-01

    In Russia digital technologies have entered nuclear industry since long, they are not only an important tool for reducing costs but also a part of the cost itself as a digital twin of the plant is sold with the plant. This digital plant will be useful for operating the real plant in terms of maintenance and testing the procedures. In the United-States, nuclear energy faces the fierce competition of shale gas and some plant operators foresee to close nuclear stations in a near future but other plant operators think that digital technologies will be a major tool to cut by 30% their operating costs. A feature of the American nuclear industry is the important number of innovative start-ups, the NRC (Nuclear Regulatory Commission) has accepted to be involved as soon as the design phase of projects in order to ease the certification process and shorten schedules. Generally speaking the weight of engineering in the nuclear industry is more than twice as important as in other industries, so the use of digital tools has a more important positive impact in nuclear projects than in other sectors. In France the complete overhaul of nuclear reactors that is imposed by law every 10 years, is already largely based on digital technologies through the use of partial digital twins of the plant. (A.C.)

  13. Roadmap for human resources for expanded Indian nuclear industry

    International Nuclear Information System (INIS)

    Singh, R.K.; Srinivasan, G.R.; Goyal, O.P.

    2011-01-01

    This paper deals with detailed requirement of human resources for all phases of nuclear power plant, for the manufacturing sector and the probable roadmap for achieving India's target. The accident in Fukushima has brought out that only nuclear power that avoids being a threat to the health and safety of the population and the environmental will be acceptable to the society and for this to be achieved human resources could be a single major contributor. India has ambitious plan of achieving 20,000MW by 2020 and 63,000MW by 2050. It is felt out of the three resources men, material and money; the critical shortage would be human resources both in quality and quantity. As per IAEA report (Publication of 2008 edition of energy, electricity and nuclear power estimates for the period of 2030), nuclear capacity must grow to at least 1.8 times current capacity by 2030 if global temperature rises are to be kept at 2°C. Objective of recruiting and training human resources for Indian Industry can be as follows: a) For catering domestic market. b) For catering international market later on for nuclear industries outside India. As India will be an important future international player. The above would require a multiplication of human resources by nearly seven times. In addition it has to be wholesome covering all levels and all skills and all disciplines and stages covering the whole nuclear cycle including regulators. Human resources are required for design and engineering, construction, commissioning, operation, manufacturing and for support services. The manpower for these has to be trained to achieve high quality of nuclear standards. Presently Indian Department of Atomic Energy(DAE) runs several training schools giving one year Post Graduate, tailor made courses. This needs to be multiplied by Joint efforts. Training should be on 'SAT (Systematic Approach to Training)' methodology to ensure focussed, specific, needed to culminate in safe, reliable and viable operation of

  14. Roadmap for human resources for expanded Indian nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R.K. [Bhabha Atomic Research Centre, Mumbai (India); Indian Nuclear Society (India); Srinivasan, G.R.; Goyal, O.P. [Bhabha Atomic Research Centre, Mumbai (India)

    2011-07-01

    This paper deals with detailed requirement of human resources for all phases of nuclear power plant, for the manufacturing sector and the probable roadmap for achieving India's target. The accident in Fukushima has brought out that only nuclear power that avoids being a threat to the health and safety of the population and the environmental will be acceptable to the society and for this to be achieved human resources could be a single major contributor. India has ambitious plan of achieving 20,000MW by 2020 and 63,000MW by 2050. It is felt out of the three resources men, material and money; the critical shortage would be human resources both in quality and quantity. As per IAEA report (Publication of 2008 edition of energy, electricity and nuclear power estimates for the period of 2030), nuclear capacity must grow to at least 1.8 times current capacity by 2030 if global temperature rises are to be kept at 2°C. Objective of recruiting and training human resources for Indian Industry can be as follows: a) For catering domestic market. b) For catering international market later on for nuclear industries outside India. As India will be an important future international player. The above would require a multiplication of human resources by nearly seven times. In addition it has to be wholesome covering all levels and all skills and all disciplines and stages covering the whole nuclear cycle including regulators. Human resources are required for design and engineering, construction, commissioning, operation, manufacturing and for support services. The manpower for these has to be trained to achieve high quality of nuclear standards. Presently Indian Department of Atomic Energy(DAE) runs several training schools giving one year Post Graduate, tailor made courses. This needs to be multiplied by Joint efforts. Training should be on 'SAT (Systematic Approach to Training)' methodology to ensure focussed, specific, needed to culminate in safe, reliable and

  15. Future jobs in nuclear industry

    International Nuclear Information System (INIS)

    Asquier, S.

    2017-01-01

    CEA leads research on fast reactors in the framework of Generation-4 reactors, it also brings technical support to industrial partners like EDF or AREVA for today operating reactors. Computerized simulation is strongly developed in order to get reliable computers codes able to simulate mechanical behavior of new materials or neutron transport in new reactor cores. CEA is also in charge of the dismantling and remediation of its own nuclear facilities, today about 1000 people work on the dismantling of 35 facilities. CEA is also participating in fusion research programs. This broad range of activities makes CEA an important recruiter of competencies in a lot of domains from nuclear engineering to biological impact of radiations via computer sciences. (A.C.)

  16. A survey of doses to worker groups in the nuclear industry

    International Nuclear Information System (INIS)

    Khan, T.A.; Baum, J.W.

    1991-01-01

    The the US National Council on Radiation Protection and Measurements (NCRP) has suggested ''...as guidance for radiation programs that cumulative exposure not exceed the age of the individual in years x 10 mSv (years x 1 rem).'' The International Commission on Radiological Protection (ICRP) has recommended a dose limit of 10 rem averaged over 5 years. With these developments in mind, the US Nuclear Regulatory Commission (NRC) requested the ALARA Center of the Brookhaven National Laboratory to undertake two parallel studies. One study, which is still ongoing, is to examine the impact of the newly recommended dose limits on the nuclear industry as a whole; the other study was intended to assist in this larger project by looking more closely at the nuclear power industry. Preliminary data had indicated that the critical industry as far as the impact of new regulatory limits were concerned would be the nuclear power industry, because, it was conjectured, there existed a core of highly skilled workers in some groups which routinely get higher than average exposures. The objectives of the second study were to get a better understanding of the situation vis grave a vis the nuclear power industry, by identifying the high-dose worker groups, quantifying the annual and lifetime doses to these groups to see the extent of the problem if there was one, and finally to determine if there were any dose-reduction techniques which were particularly suited to reducing doses to these groups. In this presentation we describe some of the things learned during our work on the two projects. For more detailed information on the project on dose-reduction techniques for high-dose worker groups in the nuclear power industry, see NUREG/CR-5139. An industry/advisory committee has been set up which is in the process of evaluating the data from the larger project on the impact of new dose limits and will shortly produce its report. 7 refs., 5 figs., 6 tabs

  17. Nuclear safety and radiation protection report of the Tricastin nuclear facility (BCOT) - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, if some, are reported as well as the effluents discharge in the environment. Finally, the management of the radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  18. Nuclear safety and radiation protection report of EdF's Tricastin operational hot base nuclear facilities (BCOT) - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  19. Knowledge Management Impacts on Organizational Proficiency in a Changing Demographic Nuclear Industry

    International Nuclear Information System (INIS)

    Heler, D.; Marco, J. A.

    2016-01-01

    Full text: The US nuclear energy industry has focused on workforce development and planning efforts over the past decade in anticipation of a large number of retirements taking place. Efforts by the US nuclear industry to replace retiring workers with younger staff to close the knowledge gap and improve organizational proficiency have started. This is resulting in a bimodal workforce distribution, which means that the industry has two workforce peaks. The 2015 Nuclear Energy Institute (NEI) Workforce Pipeline Survey results illustrate a significant number of experienced and young professionals, with fewer employees in the mid-career age group. This workforce distribution can pose a challenge for US nuclear industry to ensure it has effectively implemented knowledge management elements (People, Process, and Technology) to improve organizational proficiency and maintain critical skill sets. This technical brief will examine how one US nuclear plant performance dropped, which in part was a result of a significant demographic shift in their organizations. In addition, the paper will explore the challenge organizations may have as they undergo demographic changes without proper knowledge management programmes in place. (author

  20. The nuclear industry within the Community

    International Nuclear Information System (INIS)

    1989-11-01

    As part of its 1989 working programme, the European Commission undertook to update the provisional nuclear programme in the view of the expected changes from the single European market. This document complies with that commitment and deals exclusively with the problems of the industry engaged in the design and construction of electro-nuclear power stations. Having analysed the context and prospects for the medium and long term development of nuclear investments, in particular in relation to the establishment of a ''common electricity market'', the practical possibility of opening up the equipment and services market is examined. Actions to be taken within the Community are indicated. Finally, the standard for power stations equipped with fast neutron breeder reactors, where European efforts are directed towards a single development project, is presented. (UK)

  1. The internationalization of the nuclear industry of France and F.R. Germany

    International Nuclear Information System (INIS)

    Massholder, K.

    1977-01-01

    After a survey of the development of nuclear industry up to now and the factors influencing the market, a state-of-the-art report of the French and German industry working in the field of light water reactors is given. Finally it is described how the activities of the nuclear industries in both countries form a part of the international share of work. (UA) 891 UA [de

  2. Role of high technology in the nuclear industry

    International Nuclear Information System (INIS)

    Cain, D.G.

    1986-01-01

    A discussion of high technology identifies the characteristics which distinguish it from conventional technologies, and the impact high technology will have in the nuclear power industry in the near future. The basic theme is that high technology is an ensemble of competing technological developments that shifts with time and technological innovation. The attributes which current distinguish high technology are compactness, plasticity, convergence, and intelligence. These high technology attributes are presented as a prelude to some examples of high technology developments which are just beginning to penetrate the nuclear industry. Concluding remarks address some of the challenges which must be faced in order to assure that high technology is successfully adapted and used

  3. Intelligent systems and soft computing for nuclear science and industry

    International Nuclear Information System (INIS)

    Ruan, D.; D'hondt, P.; Govaerts, P.; Kerre, E.E.

    1996-01-01

    The second international workshop on Fuzzy Logic and Intelligent Technologies in Nuclear Science (FLINS) addresses topics related to intelligent systems and soft computing for nuclear science and industry. The proceedings contain 52 papers in different fields such as radiation protection, nuclear safety (human factors and reliability), safeguards, nuclear reactor control, production processes in the fuel cycle, dismantling, waste and disposal, decision making, and nuclear reactor control. A clear link is made between theory and applications of fuzzy logic such as neural networks, expert systems, robotics, man-machine interfaces, and decision-support techniques by using modern and advanced technologies and tools. The papers are grouped in three sections. The first section (Soft computing techniques) deals with basic tools to treat fuzzy logic, neural networks, genetic algorithms, decision-making, and software used for general soft-computing aspects. The second section (Intelligent engineering systems) includes contributions on engineering problems such as knowledge-based engineering, expert systems, process control integration, diagnosis, measurements, and interpretation by soft computing. The third section (Nuclear applications) focusses on the application of soft computing and intelligent systems in nuclear science and industry

  4. Corrosion issues in nuclear industry today

    International Nuclear Information System (INIS)

    Cattant, F.; Crusset, D.; Feron, D.

    2008-01-01

    In the context of global warming, nuclear energy is a carbon-free source of power and so is a meaningful option for energy production without CO 2 emissions. Currently, there are more than 440 commercial nuclear reactors, accounting for about 15% of electric power generation in the world, and there has not been a major accident in over 20 years. The world's fleet of nuclear power plants is, on average, more than 20 years old. Even though the design life of a nuclear power plant is typically 30 or 40 years, it is quite feasible that many nuclear power plants will be able to operate for longer than this. The re-emergence of nuclear power today is founded on the present generation of nuclear reactors meeting the demands of extended service life, ensuring the cost competitiveness of nuclear power and matching enhanced safety requirements. Nuclear power plant engineers should be able to demonstrate such integrity and reliability of their system materials and components as to enable nuclear power plants to operate beyond their initial design life. Effective waste management is another challenge for sustainable nuclear energy today; more precisely, a solution is needed for the management of high-level and long-lived intermediate-level radioactive waste over the very long term. Most nuclear countries are currently gathering the data needed to assess the feasibility of a deep geological waste repository, including the prediction of the behaviour of materials over several thousands of years. The extended service life of nuclear power plants and the need for permanent disposal for nuclear waste are today's key issues in the nuclear industry. We focus here on the major role that corrosion plays in these two factors, and on the French approaches to these two issues. (authors)

  5. The Swiss contribution to American nuclear technology and industry

    International Nuclear Information System (INIS)

    Lueling, H.C.

    1981-01-01

    After a brief review of the industrial position in Switzerland (40 years of industrial peace, extensive development of nuclear energy to an installed capacity of 2000MW, supplying 33% of the national energy requirement) the article considers the following institutions that contribute substantially to the nuclear situation: the Federal Institute for Reactor Research (EIR), Brown Boveri and Cie AG, Gebrueder Sulzer AG, Georg Fischer AG. It lists the spheres of cooperation between the EIR and organisations in the USA. The industrial contributions include: Large welded turbo-generator rotors (up to 1300MW, 2640mm dia.) from BBC; single-tube forced-circulation steam generators, site welded pressure vessels (152mm wall thickness), spherical containment vessels envelopes (52mm dia.) from Gebr. Sulzer; very large (227 000HP, 5.4m dia.) Pelton wheels of cavitation-resistant stainless steel, high-pressure pumps for nuclear plants from G. Fischer. In conclusion it discusses the prospects for the high-temperature helium reactor in combination with the closed-circuit gas turbine. (C.J.O.G.)

  6. Psychological attitudes of nuclear industry workers

    International Nuclear Information System (INIS)

    Faes, M.; Stoppie, J.

    1976-01-01

    An investigation was carried out within the frame of occupational medicine on the psychological attitudes of workers in the nuclear industry towards ionizing radiations. Three aspects were considered: awareness of the danger; feeling of safety in the working environment; workers' feelings following incidents or accidents; satisfaction level felt by the workers in the plant [fr

  7. Knowledge preservation in the nuclear industry

    International Nuclear Information System (INIS)

    Yanev, Y.

    2004-01-01

    The paper presents examples of knowledge loss in different areas related to attrition, retirements or layoff as well as the consequences of the loss of knowledge. The nature of the so called tacit knowledge and its role as a barrier to knowledge preservation is discussed. Strategies for knowledge preservation in the nuclear industry are presented

  8. Potential industrial market for process heat from nuclear reactors

    International Nuclear Information System (INIS)

    Barnes, R.W.

    1976-07-01

    A specific segment of industrial process heat use has been examined in detail to identify individual plant locations throughout the United states where nuclear generated steam may be a viable alternative. Five major industries have been studied: paper, chemicals, petroleum, rubber, and primary metals. For these industries, representing 75 percent of the total industrial steam consumption, the individual plant locations within the U.S. using steam in large quantities have been located and characterized as to fuel requirements

  9. Overview of the Russian nuclear industry

    International Nuclear Information System (INIS)

    2008-02-01

    In 2004, President Poutine decided to replace the atomic energy ministry (Minatom) by the federal atomic energy agency (Rosatom). Several projects were launched during the next two years which aimed at bringing back Russia to the fore front of the world leaders of nuclear energy use and nuclear technology export. In 2007, Rosatom agency was changed to a public holding company and a new company, named Atomenergoprom, was created which gathers all civil nuclear companies (AtomEnergoMash for the exploitation of power plants, Technabsexport (Tenex) specialized in enrichment or Atomstryexport in charge of export activities). Thus, Rosatom is at the head of all civilian and military nuclear companies, of all research centers, and of all nuclear and radiological safety facilities. In 2006, Russian nuclear power plants supplied 15.8% of the whole power consumption. Russia wishes to develop its nuclear program with the construction of new reactors in order to reach a nuclear electricity share of 25% from now to 2020. This paper presents first the 2007 institutional reform of the Russian atomic sector, and the three sectorial federal programmes: 1 - development of the nuclear energy industrial complex for the 2007-2010 era and up to 2015 (future power plants, nuclear fuel centers and reactor prototypes), 2 - nuclear safety and radioprotection for the 2008-2015 era (waste management, remedial actions, radiation protection), 3 - military program (confidential). Then, the paper presents: the international actions (export of Russian technology, cooperation agreements, non-proliferation), the situation of the existing nuclear park (reactors in operation, stopped, under construction and in project), the fuel cycle activities (production of natural uranium, enrichment, fuel fabrication, spent fuel storage, reprocessing, waste management), the nuclear R and D in Russia, and the nuclear safety authority. (J.S.)

  10. The application of nuclear energy to the Canadian chemical process industry

    International Nuclear Information System (INIS)

    Robertson, R.F.S.

    1976-03-01

    A study has been made to determine what role nuclear energy, either electrical or thermal, could play in the Canadian chemical process industry. The study was restricted to current-scale CANDU type power reactors. It is concluded that the scale of operation of the chemical industry is rarely large enough to use blocks of electrical power (e) of 500 MW or thermal power (t) of 1500 MW. Thus, with a few predictable exceptions, the role of nuclear energy in the Canadian chemical industry will be as a general thermal/electrical utility supplier, serving a variety of customers in a particular geographic area. This picture would change if nuclear steam generators of 20 to 50 MW(t) become available and are economically competitive. (author)

  11. Preserving R and D: a crucial challenge for the nuclear fuel industry

    International Nuclear Information System (INIS)

    Vignon, D.

    1999-01-01

    Electricity of nuclear origin, accounts for about 30 % of the total consumption of the OECD countries. This percentage is considerably higher in several European countries (Sweden, Belgium, and France), which decided in the 1970's to put special emphasis on nuclear energy. At the heart of nuclear energy is the fuel. This is what is periodically replaced in the reactors, and therefore contributes a substantial share to the operating cost. This is also where the by-products of the nuclear chain reaction accumulate. It is the original source of the releases related to nuclear reactor operation, as well as the accidental releases. At the end of the fuel cycle in the reactor, the nuclear fuel still contains fissile materials (uranium and plutonium), but also neutron capture and fission products that must be stored. The spent fuel is the point of departure of the problem of radioactive wastes. Can a representative of the nuclear energy industry finally remind his audience that nuclear fuel is also a high-technology product - complex in its design, but that must remain simple to produce, and which customers want to have 'just in time'. Nuclear fuel is an industrial product behind which are found the factories, production facilities, and the men and women who must adapt it to the nuclear energy of tomorrow. It would be presumptuous of me to pretend to sketch out an exhaustive panorama of the problems related to nuclear fuel in my opening remarks to this conference. However, I would like to emphasize how the nuclear fuel industry has long anticipated and taken into account the requirements of the nuclear energy industry, amplified by the competitive pressures due to deregulation of the electricity markets: cost reduction and public acceptance of nuclear energy. Nuclear fuel plays an essential role to ensure the competitiveness of nuclear energy today and its acceptance by the public tomorrow. (authors)

  12. Commissioning of Mochovce 1 - Important achievement of the world's nuclear industry

    International Nuclear Information System (INIS)

    Holy, Robert; Petrech, Rastislav

    1999-01-01

    The nuclear power industry has been recently perceived by the general public as a specific industrial branch stretching its activities far beyond the conventional industrial standard. Similarly, the stage of testing and commissioning of a nuclear power plant is perceived as a specific stage in the plant life-cycle. This is a complicated process not only in technical terms, but in the context of nowadays, it is also one of the key periods in terms of public relations and public acceptance. The stage of commissioning unit 1 of Mochovce Nuclear Power Plant evoked a real communication media war between defenders and opponents of the nuclear industry started early in 1998 in Slovakia, as well as in other, mostly neighbouring countries. It should be noted, however, that the Mochovce plant has never been a technical problem as confirmed a number of international regulatory missions and audits, even though its construction was stopped in early 90's. The result of the war between the opponents and 'nuclear experts' was more or less clear to a thinking human being - a compromise could have been the only result. The compromise which is in fact a victory of the side of technical development, and loss of those lobbying for a nuclear-reactor-free central Europe. This article brings a review of events that accompanied commissioning activities of Mochovce NPP unit I which were important in terms of public relations

  13. Exporting nuclear engineering and the industry's viewpoint

    International Nuclear Information System (INIS)

    Barthelt, K.

    1986-01-01

    Nuclear energy offers all possibilities to reduce the energy problems in the world which arise with the world-wide increasing population and the energy demand connected with it. The Federal Republic of Germany lives on the exports of refined technical methods which also include nuclear engineering. The exports of nuclear engineering should lead to a technology transfer with guidance and training on an equal basis between the industrial and developing countries. The preconditions of exporting nuclear-technical systems are a well-functioning domestic market and a certain support by the government, especially with regard to giving guarantees for the special exports risks of these big projects. On the other hand, exports are also needed in order to be able to continue providing high-level technology for the domestic market. (UA) [de

  14. The control of base nuclear installations; Le controle des installations nucleaires de base (INB)

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2009-04-15

    The Authority of Nuclear Safety ( A.S.N). presents in this column the current events of the control of the nuclear base installations during november, december 2008 and january 2009, classified by nuclear site. This information is also available in real-time on the A.S.N. web site, www.asn.fr, in the column 'news'. We can consult all the notices of significant incident published as well as the following letters of inspection, the notices of information about the reactors shutdown, press releases and the A.S.N. information notes. (N.C.)

  15. Topics on Education Activities in Japanese Nuclear Industries

    International Nuclear Information System (INIS)

    Kuroiwa, Haruko

    2008-01-01

    The progression of an aging society with fewer children or a foreseeable decrease in population has caused the nuclear power plants under planning canceled or delayed. As a result, the number of students graduating with a nuclear degree began to decrease, while the development of the next generation light water reactor or of the practical use of the fast breeder reactor requires many skilled engineers. Atomic Energy Commission of Japan realized this potential impact of human resources. The Commission submitted the Framework for Nuclear Energy Policy including this issue to the government. The report says that without future talent development, Japan will lose its competitiveness against other industrialized countries, and that without replenishment after a large number of baby boomers retire, the shortage of specialists in the radiation field will occur. In conjunction with the Framework for Nuclear Energy Policy, the Ministry of Education, Culture, Sports, Science and Technology and the Ministry of Economy, Trade and Industry carried out the Nuclear Power Human Resources Development Program in 2007 fiscal year. The program focused on i) Support of educational activities, such as basic nuclear education and research, internship, and preparation of core curriculums and texts for nuclear power, ii) Implementation of research in the basic and infrastructure technology fields supporting the nuclear power (ex. structural strength, material strength, welding, erosion/corrosion, heat transfer, radiation safety). This program will continue till the end of 2009 fiscal year. Besides in order to promote nuclear power acceptance and to secure diversity, effective measures should be taken to support young, women, and foreign researchers and to promote their utilization. Mitsubishi accepts overseas students and researchers as an internship every year, and accelerates the safety architecture in the world. (author)

  16. Topics on Education Activities in Japanese Nuclear Industries

    Energy Technology Data Exchange (ETDEWEB)

    Kuroiwa, Haruko [Mitsubishi Heavy Industries, LTD - MHI, 2-16-5 Kona Minato-K 108-8215 Tokyo (Japan)

    2008-07-01

    The progression of an aging society with fewer children or a foreseeable decrease in population has caused the nuclear power plants under planning canceled or delayed. As a result, the number of students graduating with a nuclear degree began to decrease, while the development of the next generation light water reactor or of the practical use of the fast breeder reactor requires many skilled engineers. Atomic Energy Commission of Japan realized this potential impact of human resources. The Commission submitted the Framework for Nuclear Energy Policy including this issue to the government. The report says that without future talent development, Japan will lose its competitiveness against other industrialized countries, and that without replenishment after a large number of baby boomers retire, the shortage of specialists in the radiation field will occur. In conjunction with the Framework for Nuclear Energy Policy, the Ministry of Education, Culture, Sports, Science and Technology and the Ministry of Economy, Trade and Industry carried out the Nuclear Power Human Resources Development Program in 2007 fiscal year. The program focused on i) Support of educational activities, such as basic nuclear education and research, internship, and preparation of core curriculums and texts for nuclear power, ii) Implementation of research in the basic and infrastructure technology fields supporting the nuclear power (ex. structural strength, material strength, welding, erosion/corrosion, heat transfer, radiation safety). This program will continue till the end of 2009 fiscal year. Besides in order to promote nuclear power acceptance and to secure diversity, effective measures should be taken to support young, women, and foreign researchers and to promote their utilization. Mitsubishi accepts overseas students and researchers as an internship every year, and accelerates the safety architecture in the world. (author)

  17. The World Nuclear Industry Status Report 2014

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Ayukawa, Yurika; Burnie, Shaun; Piria, Raffaele; Thomas, Steve; Hazemann, Julie; Suzuki, Tatsujiro

    2014-07-01

    The World Nuclear Industry Status Report 2014 provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. A 20-page chapter on nuclear economics looks at the rapidly changing market conditions for nuclear power plants, whether operating, under construction, or in the planning stage. Reactor vendor strategies and the 'Hinkley Point C Deal' are analyzed in particular. The performance on financial markets of major utilities is documented. The WNISR2013 featured for the first time a Fukushima Status Report that triggered widespread media and analyst attention. The 2014 edition entirely updates that Fukushima chapter. The Nuclear Power vs. Renewable Energy chapter that provides comparative data on investment, capacity, and generation has been greatly extended by a section on system issues. How does nuclear power perform in systems with high renewable energy share? Is this the end of traditional baseload/ peak-load concepts? Finally, the 45-page Annex 1 provides a country-by-country overview of all 31 countries operating nuclear power plants, with extended Focus sections on China, Japan, and the United States

  18. Industrial development - consequences about the implantation of Brazilian Nuclear Program

    International Nuclear Information System (INIS)

    Syllus, C.

    1987-07-01

    The strategy to promote the growing industry participation in the Brazilian Nuclear Program, the difficulties, the measurements adopted for overcoming and the results obtained in terms of industrial development, are presented. (M.C.K.) [pt

  19. Nuclear fuel supply industry in the European Community belgatom

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Deals with the industrial activities involved in the Nuclear Fuel Cycle in European Economic Community countries and essentially with operations pertaining to commercial light water reactors (LWR's). Various aspects of needs, investments, plant capacities, costs and prices, markets, financing methods, industrial structures, and employment are considered in detail

  20. Standardization, diversity, and learning: A model for the nuclear power industry

    International Nuclear Information System (INIS)

    David, P.A.; Rothwell, G.S.

    1992-11-01

    The lack of standardization, frequently mentioned as a burden borne by the U.S. nuclear industry, is discussed. A simple model of learning and standardization is presented. It is shown that when the effects of learning through diversity are strong, the present value of long-run costs can be minimized with either complete standardization or with complete experimentation where no two reactors are similar in the early stages of the industry. The conclusion discusses the relevance of these and other analytical results to the present U.S. nuclear industry regarding standardization policies. 8 refs

  1. Corrosion management in nuclear industry

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.

    2012-01-01

    Corrosion is a major degradation mechanism of metals and alloys which significantly affects the global economy with an average loss of 3.5% of GDP of several countries in many important industrial sectors including chemical, petrochemical, power, oil, refinery, fertilizer etc. The demand for higher efficiency and achieving name plate capacity, in addition to ever increasing temperatures, pressures and complexities in equipment geometry of industrial processes, necessitate utmost care in adopting appropriate corrosion management strategies in selecting, designing, fabricating and utilising various materials and coatings for engineering applications in industries. Corrosion control and prevention is an important focus area as the savings achieved from practicing corrosion control and prevention would bring significant benefits to the industry. Towards this, advanced corrosion management strategies starting from design, manufacturing, operation, maintenance, in-service inspection and online monitoring are essential. At the Indira Gandhi Centre for Atomic Research (IGCAR) strategic corrosion management efforts have been pursued in order to provide solutions to practical problems emerging in the plants, in addition to innovative efforts to provide insight into mechanism and understanding of corrosion of various engineering materials and coatings. In this presentation the author highlights how the nuclear industry benefited from the practical approach to successful corrosion management, particularly with respect to fast breeder reactor programme involving both reactor and associated reprocessing plants. (author)

  2. The nuclear industry and the NPT: a Canadian view

    International Nuclear Information System (INIS)

    MacOwen, W.

    1987-01-01

    The effect of Canada's safeguards policy on Canadian industry and on the conduct of Canada's international nuclear trade is examined. When India exploded a nuclear device in 1974 Canada terminated all nuclear collaboration with India and also insisted that other countries renegotiated existing contracts to include more stringent safeguards. This damaged Canada's trading reputation and its position will have to be rebuilt. It is suggested that international agreement on some practicable and comprehensive rules for international trade in nuclear items should be pursued. (U.K.)

  3. The world nuclear industry status report 2007

    International Nuclear Information System (INIS)

    Schneider, M.; Froggatt, A.

    2007-11-01

    The status and perspectives of the nuclear industry in the world have been subject to a large number of publications and considerable media attention over the last few years. The present report attempts to provide solid elements of key information for intelligent analysis and informed decision-making. As of 1 November 2007 there are 439 nuclear reactors operating in the world. That is five less than five years ago. There are 32 units listed by the International Atomic Energy Agency (IAEA) as 'under construction'. That is about 20 less than in the late 1990's. In 1989 a total of 177 nuclear reactors had been operated in what are now the 27 EU Member States. That number shrank to 146 units as of 1 November 2007. In 1992 the Worldwatch Institute in Washington, WISE-Paris and Greenpeace International published the first World Nuclear Industry Status Report. As a first updated review in 2004 showed the 1992 analyses proved correct. In reality, the combined installed nuclear capacity of the 436 units operating in the world in the year 2000 was less than 352,000 megawatts - to be compared with the forecast of the International Atomic Energy Agency (IAEA) from the 1970's of up to 4,450,000 megawatts. Today the 439 worldwide operating reactors total 371,000 megawatts. Nuclear power plants provide 16% of the electricity, 6% of the commercial primary energy and 2-3% of the final energy in the world - the tendency is downwards - less than hydropower alone. Twenty-one of the 31 countries operating nuclear power plants decreased their share of nuclear power within the electricity mix if compared with 2003. The average age of the operating power plants is 23 years. Some nuclear utilities envisage reactor lifetimes of 40 years or more. Considering the fact that the average age of all 117 units that have already been closed is equally about 22 years, the doubling of the operational lifetime seems already rather optimistic. However, we have assumed an average lifetime of 40 years

  4. The world nuclear industry status report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.; Froggatt, A

    2007-11-15

    The status and perspectives of the nuclear industry in the world have been subject to a large number of publications and considerable media attention over the last few years. The present report attempts to provide solid elements of key information for intelligent analysis and informed decision-making. As of 1 November 2007 there are 439 nuclear reactors operating in the world. That is five less than five years ago. There are 32 units listed by the International Atomic Energy Agency (IAEA) as 'under construction'. That is about 20 less than in the late 1990's. In 1989 a total of 177 nuclear reactors had been operated in what are now the 27 EU Member States. That number shrank to 146 units as of 1 November 2007. In 1992 the Worldwatch Institute in Washington, WISE-Paris and Greenpeace International published the first World Nuclear Industry Status Report. As a first updated review in 2004 showed the 1992 analyses proved correct. In reality, the combined installed nuclear capacity of the 436 units operating in the world in the year 2000 was less than 352,000 megawatts - to be compared with the forecast of the International Atomic Energy Agency (IAEA) from the 1970's of up to 4,450,000 megawatts. Today the 439 worldwide operating reactors total 371,000 megawatts. Nuclear power plants provide 16% of the electricity, 6% of the commercial primary energy and 2-3% of the final energy in the world - the tendency is downwards - less than hydropower alone. Twenty-one of the 31 countries operating nuclear power plants decreased their share of nuclear power within the electricity mix if compared with 2003. The average age of the operating power plants is 23 years. Some nuclear utilities envisage reactor lifetimes of 40 years or more. Considering the fact that the average age of all 117 units that have already been closed is equally about 22 years, the doubling of the operational lifetime seems already rather optimistic. However, we have assumed an average

  5. Screening for aberrant behavior in the nuclear industry

    International Nuclear Information System (INIS)

    Borofsky, G.L.

    1987-01-01

    This paper attempts to promote a fuller understanding of how psychological assessment procedures can be used to reduce the threat from aberrant behavior in the nuclear industry. It begins with a discussion of the scientifically based methods that are used by psychologists in constructing, scoring, and interpreting these procedures. This discussion includes an emphasis on the concepts of validity and reliability and their central importance when one is choosing specific psychological screening tools. Criteria for selecting and using psychological assessment procedures when screening for aberrant behavior are also provided. Some commonly used assessment procedures that satisfy these criteria are discussed. A number a psychological assessment procedures specifically recommended for use in screening for aberrant behavior in the nuclear industry are described

  6. Student involvement and research for the nuclear industry

    International Nuclear Information System (INIS)

    Ginniff, M.E.

    1980-01-01

    Nuclear engineering is one of the modern and rapidly advancing technologies. Those already involved in it are continually updating their knowledge to keep abreast of the developments. Of course the sound basic principles of engineering still apply but the scene of application can be transformed in a few years. In fact, because of this, many engineers from more traditional industries often express the view that presently the total range of nuclear engineering is research and development. How can students be trained for such a rapidly advancing technology. Is not the answer early involvement. Effective early involvement for students can only come about by the close co-operation and involvement of the staff of universities and industry. The theme is developed. (author)

  7. The nuclear fuel cycle industry. World situation: the place of the French industry

    International Nuclear Information System (INIS)

    Sornein, J.

    1978-01-01

    The decision taken the day following the end of the second world war to create a French industry for the nuclear fuel cycle, the speed and dimension of its development from 1946 to 1966, the strengthening of its acquired knowledge during the following five years, lastly, the fact that, since 1972, it was able to make great strides, will have been in short the fruit of the remarkable continuity of an unfailing political will. Consequently it was possible beyond doubt, as soon as the ineluctable consequences of the oil crisis were evaluated, to give the French nuclear fuel cycle industry the new objectives which will succeed in granting it a foremost dimension on the international scale. In the three branches constituting the base of this industry (natural, enrichment, reprocessing), all these objectives will be reached by 1985. Their realization will permit our country to cover, in all security, not only its domestic needs but also to pursue a policy to sell materials and services for export at competitive prices [fr

  8. Biometrics and smart card based applications for nuclear industry

    International Nuclear Information System (INIS)

    Nishanth Reddy, J.; Dheeraj Reddy, J.; Narender Reddy, J.

    2004-01-01

    Biometrics has emerged as a convenient, foolproof and well-accepted technology for identification around the globe. Nucleonix has developed innovative solutions based on finger scan biometrics for various industries. This paper closely looks into the application areas for the nuclear industry and how it will benefit this industry, in terms of identification, access control, security of PCs and applications, attendance, machinery usage control and other custom applications. (author)

  9. Decommissioning Operations at the Cadarache Nuclear Research Center

    International Nuclear Information System (INIS)

    Gouhier, E.

    2008-01-01

    Among the different activities of the CEA research center of Cadarache, located in the south of France, one of the most important involves decommissioning. As old facilities close, decommissioning activity increases. This presentation will give an overview of the existing organization and the different ongoing decommissioning and cleanup operations on the site. We shall also present some of the new facilities under construction the purpose of which is to replace the decommissioned ones. Cadarache research center was created on October 14, 1959. Today, the activities of the research center are shared out among several technological R and D platforms, essentially devoted to nuclear energy (fission and fusion) Acting as a support to these R and D activities, the center of Cadarache has a platform of services which groups the auxiliary services required by the nuclear facilities and those necessary to the management of nuclear materials, waste, nuclear facility releases and decommissioning. Many old facilities have shut down in recent years (replaced by new facilities) and a whole decommissioning program is now underway involving the dismantling of nuclear reactors (Rapsodie, Harmonie), processing facilities (ATUE uranium treatment facility, LECA UO 2 facility) as well as waste treatment and storage facilities (INB37, INB 56. In conclusion: other dismantling and cleanup operations that are now underway in Cadarache include the following: - Waste treatment and storage facilities, - Historical VLLW and HLW storage facility, - Fissile material storage building, - Historical spent fuel storage facility. Thanks to the project organization: - Costs and risks on these projects can be reduced. - Engineers and technicians can easily move from one project to another. In some cases, when a new facility is under construction for the purpose of replacing a decommissioned one, some of the project team can integrate the new facility as members of the operation team. Today

  10. Outlook of the nuclear power industry and reinforcement of the foundation (a report of the ad hoc committee)

    International Nuclear Information System (INIS)

    1986-01-01

    The nuclear power industry now occupies an independent position in the field of nuclear power generation in Japan, with already 20 years; history of nuclear power. Looking into the 21st century, however, the environment around it is being severe; the growth of power demands is sluggish under low economic growth rate, and the economic advantage of nuclear power over other power sources is diminishing. Under the situation, the nuclear power industry must proceed positively with such as the industrialization of nuclear fuel cycle and the development of advanced reactors. Contents are the following: the position of nuclear power development in national economy and the nuclear power industry, the present situation of nuclear supply industry and problems, maintenance and reinforcement of the foundation in nuclear power industry. (Mori, K.)

  11. Extending Nuclear Technology Applications to Heavy Industry-Sharing BTI Years of Experience

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim

    2012-01-01

    In his speech, the presenter outlined several topics regarding the establishment of Industrial Technology Division since 1980 until 2012. The first topic was to relate the justification or reasonable of establishing this division with the national condition at 1980s. The need to explore nuclear technology on industrial application like nondestructive testing (NDT) and plant assessment were attract the Malaysian Nuclear Agency to do research in that fields. The establishment of division to do that research were responsible to Industrial Technology Division. Until now, this division succeed in doing research regarding industrial application and transferred it to industrial players along the nation and also international level. (author)

  12. Substitution of chlorinated and fluorinated solvents by biodegradable detergent solution in components cleaning of nuclear fuel elements

    International Nuclear Information System (INIS)

    Vieira, Andre Luiz Pinto da Silva

    2000-01-01

    As the auxiliary oils used in machining evolved from integral into aqueous emulsion, and later on into aqueous-solution synthetic oils, the components cleaning process with organic solvents, originally adopted at the Fuel Element Factory (FEC), Industrias Nucleares do Brasil S.A. (INB) began to present problems in removing oil residues from machined components, due to the incompatibility between aqueous and organic media. In order to eliminate such incompatibility and adapt the process to the environmental laws restricting production and use of chlorinated or fluorinated solvents as a measure for preserving the atmosphere's ozone layer, in 1995 INB initiated the development of a components cleaning process using biodegradable aqueous detergent. The effort was completed in 2000 with the construction of a machine in keeping with the specific geometry of the fuel-assembly components and the operating conditions required for working with the new process. (author)

  13. Nuclear energy industry in Russia promoting global strategy

    International Nuclear Information System (INIS)

    Kobayashi, Masaharu

    2001-01-01

    Since former USSR disintegrated to birth new Russia on December, 1991, it already passed ten years. As Russian economic hardship affected its nuclear energy development, No.1 reactor of the Rostov nuclear power station (VVER-1000) established its full power operation on September, 2001 after passing eight years of pausing period as a Russian nuclear power station, at dull development of nuclear energy in the world. When beginning of its commercial operation, scale of nuclear power generation under operation in Russia will reach to the fourth one in the world by getting over the one in Germany. Russia also begins international business on reprocessing of spent fuel and intermittent storage. And, Russia positively develops export business of concentrated uranium and nuclear fuel, too. Furthermore, Russia shows some positive initiatives on export of nuclear power station to China, Iran and India, and development on advanced nuclear reactor and nuclear fuel cycle forecast to future. Here was introduced on international developmental development of nuclear energy industry activated recently at delayed time for this ten years. (G.K.)

  14. The status of ISI in the UK nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Bann, T.; Rogerson, A. [AEA Technology, Risley (United Kingdom). Nuclear NDE Services

    1999-08-01

    This paper reviews the status of in-service inspection (ISI) in UK nuclear power generation industry through the experience of its nuclear utilities. The paper is intended to be a summary of some of the most recent and relevant ISI issues facing the utilities and the solutions devised to address those issues. (orig.)

  15. The future of the nuclear plant industry

    International Nuclear Information System (INIS)

    Franklin, N.L.

    Against the background of world-wide controversy, the future of nuclear power in the United Kingdom is discussed. The various forecasts of electricity demand are considered in relation to the need for long-term planning in the nuclear industry. It is considered that towards the end of the century uranium will be in short supply for technical or political reasons, and that the emphasis would then be on the use of fast reactors (assuming nuclear power to be politically acceptable at that time). A possible UK programme is outlined, and the question of cooperation with other countries is referred to. Thermal reactors for use in the middle term are discussed. The possibilities of export are considered briefly. The effects of world economic recession, public opposition on environmental and other grounds, and the possibility of misuse of nuclear materials are considered. (U.K.)

  16. Nuclear emergency planning and response in industrial areas. Results of a qualitative study in 9 industrial companies

    International Nuclear Information System (INIS)

    Pauwels, N.; Hardeman, F.; Soudan, K.

    1998-11-01

    Substantial economic losses and potential dangerous situations may result when industrial companies unexpectedly have to shut down their activities in an abrupt way. With respect to the industrial companies located in the Antwerp harbour region, the reason for such an unplanned shut-down could be the decision to (preventively) evacuate their workers, or to have them sheltered, in case of an alarm situation at a nearby nuclear power plant of Doel or in any other adjacent industrial factory. Between January and August 1998, the prevention advisors of nine industrial companies have been interviewed to gain insight in the scale and relative importance of several economic costs and practical difficulties that may arise. Moreover, the appropriateness of the existing nuclear emergency response decision structure and intervention philosophy was investigated. The main conclusions drawn from the interviews are reported. Recommendations are made to increase the efficiency of implementing countermeasures in industrial areas

  17. Nuclear emergency planning and response in industrial areas. Results of a qualitative study in 9 industrial companies

    Energy Technology Data Exchange (ETDEWEB)

    Pauwels, N.; Hardeman, F.; Soudan, K

    1998-11-01

    Substantial economic losses and potential dangerous situations may result when industrial companies unexpectedly have to shut down their activities in an abrupt way. With respect to the industrial companies located in the Antwerp harbour region, the reason for such an unplanned shut-down could be the decision to (preventively) evacuate their workers, or to have them sheltered, in case of an alarm situation at a nearby nuclear power plant of Doel or in any other adjacent industrial factory. Between January and August 1998, the prevention advisors of nine industrial companies have been interviewed to gain insight in the scale and relative importance of several economic costs and practical difficulties that may arise. Moreover, the appropriateness of the existing nuclear emergency response decision structure and intervention philosophy was investigated. The main conclusions drawn from the interviews are reported. Recommendations are made to increase the efficiency of implementing countermeasures in industrial areas.

  18. Nuclear safety and radiation protection report of the CNPE EDF nuclear facilities of Tricastin - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Tricastin nuclear power plant (INB 87 and 88, Saint-Paul-Trois-Chateaux, Drome (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  19. Nuclear safety and radiation protection report of the Saint-Alban-Saint-Maurice nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Alban-Saint-Maurice nuclear power plant (INB 119 and 120, Isere (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  20. Nuclear safety and radiation protection report of the Saint-Alban-Saint-Maurice nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Alban-Saint-Maurice nuclear power plant (INB 119 and 120, Isere (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  1. The nuclear industry is looking for its technicians; Le nucleaire cherche ses techniciens

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, A

    2010-03-15

    With massive retirements planned up to 2015, the French nuclear industry wishes to recruit technicians for the operation and maintenance of its power plants. The French nuclear park represents 19 power plants with 58 reactors. The nuclear industry personnel represents 19000 people at EdF and about 20000 people from about 600 different service provider companies. Technician's salary ranges from 1500 to 2800 euros for experienced people, bonus not included. Before being operational, the French nuclear technicians have to follow a long training period in one of the 20 specialized and certified training centres. However, the training demand is so important that the industry suffers from a lack of instructors as well. (J.S.)

  2. Decision making in the digital age: the nuclear industry response

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, G. [Energy Group, Kepner-Tregoe, Inc. (Canada)

    2002-07-01

    Ten years ago, the consequences of a prolonged outage - or of choosing a costly alternative - could usually be recovered from the ratepayers without major difficulty. But today, as in the rest of industrial America, poorly crafted decisions have very real economic consequences. This paper discusses the decision making process within the nuclear industry in the age of industry deregulation.

  3. Decision making in the digital age: the nuclear industry response

    International Nuclear Information System (INIS)

    Edelman, G.

    2002-01-01

    Ten years ago, the consequences of a prolonged outage - or of choosing a costly alternative - could usually be recovered from the ratepayers without major difficulty. But today, as in the rest of industrial America, poorly crafted decisions have very real economic consequences. This paper discusses the decision making process within the nuclear industry in the age of industry deregulation

  4. The chemical industry - a danger to nuclear power plants

    International Nuclear Information System (INIS)

    Voigtsberger, P.

    1976-01-01

    Nuclear power stations could contaminate large areas with radioactivity when destroyed by strong external influences. In Germany, authorities try to cope with this danger firstly by making certain demands on the strength of the reactor shell and secondly by imposing strict safety regulations on dangerous industrial plants in the surroundings of the reactor. In the case of chemical industry, this means: If a chemical plant and a nuclear reactor lie closely together, special stress is given to explosion pretection measures in the form of primary explosion protection, e.g. strong sealing of inflammable gases and liquids handled in the immediate neighbourhood of the reactor. (orig.) [de

  5. An Environmental Sector Plan for the nuclear industry in England and Wales

    International Nuclear Information System (INIS)

    Bennett, D.; Fawcett, P.; Hunt, C.; Long, J.

    2004-01-01

    The Environment Agency is the principal environmental regulator in England and Wales. As part of its longer term strategic planning, it is developing 'Sector Plans' for the major industry sectors it regulates. The intent of Sector Plans is to promote improvement of the Industry's performance in order to deliver environmental benefit. One of the pilot Sector Plans developed has been for the nuclear sector. The Nuclear Sector Plan has been produced jointly with the nuclear industry as a rolling framework of agreed national environmental objectives and priorities. Operators of nuclear sites have agreed to use this framework as a basis in England and Wales for setting environmental performance targets, monitoring performance against the targets and publicly reporting on their performance. The paper describes the development of the Sector Plan, its content and further development. (Author) 3 refs

  6. Current status and future prospects on nuclear industry in Korea

    International Nuclear Information System (INIS)

    Lee, Joongjae

    2006-01-01

    It is ny great pleasure to have this chance of speaking at twenty-first KAIF/KNS Annual Conference, with the subject of the current status and future prospects of nuclear industry in Korea. As you all know, since the start of operation in Obninsk, the former Soviet Union, on June 26th, 1954, nuclear generation in the world has expanded continuously for the past 50 years. In 1973, when the first oil crisis hit the world, there were 147 nuclear power plants in operation, supplying only 0.8% of the world energy demand. About 30 years later, by the end of last year, 443 plants were in operation in 32 countries, supplying about 16% of the world power demand. Nuclear power generation is greatly contributing to the energy security of many countries and preservation of global environments. Recently, countries all over the world are becoming aware of the values and importance of nuclear energy which can help respond to energy crises caused by a sharp rise in oil prices and protect the earth from global warming. Due to its high energy density and ability to secure fuel supply at a lower cost, in addition to its cleanliness resulting from almost no emission of greenhouse gases, nuclear power generation is the practical alternative for energy security and the prevention of global warming. However, in the rapidly changing 21st century, the nuclear industries of the world, as well as Korea, are facing more challenges than ever before. The political and social disputes on nuclear generation are continuing while we all are facing urgent challenges, including the concerns about the safety of nuclear generation, procuring site to build nuclear power plants, and the improvement of competitiveness. Please allow me to remind you that it is very important for the world's nuclear societies to cooperate together in order to overcome diverse difficulties along our path and to contribute to the development of mankind and preservation of natural environments with nuclear power as a

  7. Nuclear measurements, techniques and instrumentation, industrial applications, plasma physics and nuclear fusion 1986-1996. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1997-03-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques, and Instrumentation, Industrial Applications, Plasma Physics and Nuclear Fusion, issued during the period 1986-1996. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all of these papers have abstracts in English. Contents cover the three main areas of (i) Nuclear Measurements, Techniques and Instrumentation (Physics, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactor and Particle Accelerator Applications, and Nuclear Data), (ii) Industrial Applications (Radiation Processing, Radiometry, and Tracers), and (iii) Plasma Physics and Controlled Thermonuclear Fusion

  8. The nuclear industry and its markets in Europe. 1996, strategic and financial future prospects

    International Nuclear Information System (INIS)

    1996-01-01

    This work deals with the strategic and financial future prospects of the nuclear industry. It is divided into four parts. The first one gives the explanatory factors of the nuclear energy demand (economic and non-economic factors, energy policy..) and the future prospects of the nuclear energy demand increase in the world. It compares the nuclear power production with the electric power production due to other energy sources too. The second part details the different markets of the nuclear industry. The main markets are the extraction and concentration of natural uranium, its enrichment and conversion, the fuel production and the reactors designs. The growth markets are the spent fuels reprocessing and the nuclear energy services (maintenance, nuclear safety, radioactive materials transport..). The new markets are the nuclear wastes and the sites remedial action. The third part deals with the manufacturers responses as for the markets of the nuclear industry. The last part gives the reactors designers and the fuel cycle firms. (O.M.)

  9. JAERI FEL applications in nuclear energy industries

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2005-01-01

    The JAERI FEL has first discovered the new FEL lasing of 255fs ultra fast pulse, 6-9% high efficiency, 1GW high peak power, a few kilowatts average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing and energy-recovery linac technology, we could extend a more powerful and more efficient free-electron laser (FEL) than 10kW and 25%, respectively, for nuclear energy industries, and others. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the FEL will cover the application of non-thermal peeling, cutting, and drilling to prevent cold-worked stress-corrosion cracking failures in nuclear energy and other heavy industries. (author)

  10. Program for educating nuclear engineers in Japan. Partnership with industry, government and academe begins

    International Nuclear Information System (INIS)

    Meshii, Toshiyuki

    2007-01-01

    Since the beginning of the 21st century, educating the next generation of nuclear engineers has been of interest to groups who are concerned with the recent decline in the number of nuclear engineers in universities and industries. Discussions and proposals have been summarized in independent reports by industry (JAIF; Japan Atomic Industrial Forum), government (Science Council of Japan) and the academe (AESJ; Atomic Energy Society of Japan). In June 2005 a Committee on Education (CE) was established within AESJ with the intention of coordinating the groups interested in nuclear education in Japan. The birth of CE was timely, because the importance of nuclear education was emphasized in 'Framework for Nuclear Energy Policy (Oct., 2005)' which was adopted by the Atomic Energy Commission. The Nuclear Energy Subcommittee of the METI (Ministry of Economy, Trade and Industry) Advisory Committee deliberated concrete actions for achieving the basic goals of the Framework for Nuclear Energy Policy and their recommendations were drawn up as a 'Nuclear Energy National Plan'. This was the MEXT (Ministry of Education, Culture, Sports, Science and Technology) and METI action plan to create nuclear energy training programs for universities, etc. A task group, consisting of members from industry, government and academe was organized within JAIF to give advice to these training programs. The author of this paper (and chairman of CE) participated in and made proposals to the task group as a representative of the academe. In this paper, the proposal made by CE and the outline of the final program will be reported. Furthermore, the importance of the partnership between industry, government and academe will be emphasized. (author)

  11. Nuclear safety and radiation protection report of Blayais nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  12. Nuclear safety and radiation protection report of Civaux nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  13. Nuclear safety and radiation protection report of Golfech nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 135 and 142). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  14. Nuclear safety and radiation protection report of Tricastin nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the Tricastin NPPs (INBs no. 87 and 88). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  15. Nuclear safety and radiation protection report of Penly nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  16. Nuclear safety and radiation protection report of Cattenom nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  17. Nuclear safety and radiation protection report of Chooz nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  18. Nuclear safety and radiation protection report of Flamanville nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  19. Nuclear safety and radiation protection report of Fessenheim nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INB no. 75). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  20. Materials of All-Polish Symposium Nuclear Techniques in Industry, Medicine, Agriculture and Environment Protection

    International Nuclear Information System (INIS)

    1998-01-01

    The All-Polish Symposium Nuclear Techniques in Industry, Medicine, Agriculture and Environment Protection is cyclic (in 3 year period) conference being a broad review of state of art and development of all nuclear branches cooperated with industry and other branches of national economy and public life in Poland. The conference has been divided in one plenary session and 8 problem sessions as follow: Radiation technologies of flue gas purification; radiation technologies in food and cosmetic industry; application of nuclear techniques in environmental studies and earth science; radiometric methods in material engineering; isotope tracers in biological studies and medical diagnostics; radiometric industrial measuring systems; radiation detectors and device; nuclear methods in cultural objects examination. The poster section as well as small exhibition have been also organised

  1. Nuclear techniques in coal and chemical industries

    International Nuclear Information System (INIS)

    Elbern, A.W.; Leal, C.A.

    1980-01-01

    The use of nuclear techniques for the determination of important parameters in industrial installations is exemplified; advantages of these techniques over other methods conventionally used are pointed out. The use of radiotracers in the study of physical and chemical phenomena occurring in the chemical industry is discussed. It is also shown that, using certain radioisotopes, it is possible to construct devices which enable, for example, the determination of the ash content in coal samples. These devices are economical and easy to be installed for the on-line control during coal transportation. (C.L.B.) [pt

  2. Fitness for duty in the nuclear power industry: A review of technical issues

    International Nuclear Information System (INIS)

    Barnes, V.; Fleming, I.; Grant, T.

    1988-09-01

    This report presents information gathered and analyzed in support of the United States Nuclear Regulatory Commission's (NRC's) efforts to develop a rule that will ensure that workers with unescorted access to protected areas in nuclear power plants are fit for duty. The primary potential fitness-for-duty concern addressed in the report is impairment caused by substance abuse, although other sources of impairment on the job are discussed. The report examines the prevalence of fitness-for-duty problems and discusses the use and effects of illicit drugs, prescription drugs, over-the-counter preparations and alcohol. The ways in which fitness-for-duty concerns are being addressed in both public- and private-sector industries are reviewed, and a description is provided of fitness-for-duty practices in six organizations that, like the nuclear industry, are regulated and whose operations can affect public health and safety. Methods of ensuring fitness for duty in the nuclear industry are examined in detail. The report also addresses methods of evaluating the effectiveness of fitness-for-duty programs in the nuclear power industry

  3. Shift scheduling limits for the nuclear industry NRC policy and recommendations

    International Nuclear Information System (INIS)

    Koontz, J.; Morisseau, D.; Lewis, P.

    1985-01-01

    A study on shift scheduling and use of overtime and their effects on human performance in nuclear and non-nuclear industries was conducted. An analysis of the literature, current practices, and federal policy on shift scheduling resulted in human factors recommendations for limiting hours of work in the nuclear industry for nuclear power plant personnel conducting safety related functions. Recommended limits on total hours of work were developed by a panel of experts for both 8-hour and 12-hour daily shift schedules for weekly, biweekly, monthly, and annual work periods. The study results are particularly applicable to control room operators but should also be considered for other personnel where performance degradation due to fatigue could directly affect safe plant operations

  4. Tritium Accounting Stability of a ZrCo Bed with 'In-Bed' Gas Flowing Calorimetry

    International Nuclear Information System (INIS)

    Hayashi, Takumi; Suzuki, Takumi; Yamada, Masayuki; Nishi, Masataka

    2005-01-01

    Zirconium-Cobalt (ZrCo) tritium storage bed with 'in-bed' gas flowing calorimetry has been developed as a self-assaying system for the Tritium Storage and Delivery System of ITER. The basic tritium accounting characteristics have been investigated and practical data on the accounting stability has been accumulated under gram level tritium storage for more than 8 years. The initial sensitivity of tritium was about 0.05 g and the accuracy (standard deviation of repeat measurements: two sigma) was about 0.15 g at full tritium storage of 25 g. This initial accounting performance has been maintained after tritium storage for more than 8 years by keeping constant accounting conditions at each inventory measurement. Almost no aging effect of tritium was found except accumulation of 3 He in the primary ZrCo tritide vessel, which was easily evacuated to keep initial accounting condition before each inventory measurement

  5. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Paluel nuclear power plant (INB no. 103 - Paluel 1, no. 104 - Paluel 2, no. 114 - Paluel 3 and no. 115 - Paluel 4, Cany-Barville - Seine-Maritime (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document ends with a glossary and no recommendation from the Committees for health, safety and working conditions. (J.S.)

  6. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Paluel nuclear power plant (INB no. 103 - Paluel 1, no. 104 - Paluel 2, no. 114 - Paluel 3 and no. 115 - Paluel 4, Cany-Barville - Seine-Maritime (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  7. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Golfech nuclear power plant (INB 135 and 142, Tarn-et-Garonne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  8. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cattenom nuclear power plant (INB 124, 125, 126 and 137, Moselle (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  9. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cattenom nuclear power plant (INB 124, 125, 126 and 137, Moselle (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  10. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Golfech nuclear power plant (INB 135 and 142, Tarn-et-Garonne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  11. Nuclear measurements, techniques and instrumentation industrial applications plasma physics and nuclear fusion. 1980-1994. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1995-04-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques and Instrumentation, with Industrial Applications (of Nuclear Physics and Engineering), and with Plasma Physics and Nuclear Fusion, issued during the period 1980-1994. Most publications are in English. Proceedings of conferences, symposia, and panels of experts may contain some papers in other languages (French, Russian, or Spanish), but all papers have abstracts in English. Price quotes are in Austrian Schillings, do not include local taxes, and are subject to change without notice. Contents cover the three main categories of (i) Nuclear Measurements, Techniques and Instrumentation (Physics, Chemistry, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactors and Particle Accelerator Applications, Nuclear Data); (ii) Industrial Applications (Radiation Processing, Radiometry, Tracers); and (iii) Plasma Physics and Nuclear Fusion

  12. Nuclear measurements, techniques and instrumentation industrial applications plasma physics and nuclear fusion, 1980-1993. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1994-01-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques and Instrumentation, with Industrial Applications (of Nuclear Physics and Engineering), and with Plasma Physics and Nuclear Fusion, issued during the period 1980-1993. Most publications are in English. Proceedings of conferences, symposia, and panels of experts may contain some papers in other languages (French, Russian, or Spanish), but all papers have abstracts in English. Price quotes are in Austrian Schillings, do not include local taxes, and are subject to change without notice. Contents cover the three main categories of (I) Nuclear Measurements, Techniques and Instrumentation (Physics, Chemistry, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactors and Particle Accelerator Applications, Nuclear Data); (ii) Industrial Applications (Radiation Processing, Radiometry, Tracers); and (iii) Plasma Physics and Nuclear Fusion

  13. Industrial fans used in nuclear facilities

    International Nuclear Information System (INIS)

    Carlson, J.A.

    1987-01-01

    Industrial fans are widely used in nuclear facilities, and their most common use is in building ventilation. To control the spread of contamination, airflows are maintained at high levels. Therefore, the selection of the fan and fan control are important to the safety of people, equipment and the environment. As a result, 80% of all energy used in nuclear facilities is fan energy. Safety evolves from the durability, control and redundancy in the system. In new or retrofit installations, testing and qualification of fans and systems are completed prior to start-up. Less important but necessary is the energy conservation aspect of fan selection and installations. Fan efficiency, type of control and system installation are evaluated for energy use

  14. The radiological environment impact in China's nuclear industry over past 30 years

    International Nuclear Information System (INIS)

    Pan Ziqiang; Wang Zhipo; Chen Zhuzhou; Xie Jianlun

    1989-01-01

    This paper describes the methodology and main results of radiological environmental impacts of nuclear industry in China over the past 30 years. Generally speaking, the environmental impacts of Chinese nuclear industry are very small. The radiation doses to the critical group around the nuclear facilities are less than 5 mSv/a, of which 77.1 percent of the unit years are less than 0.25 mSv/a. The total annaul collective dose to the residents around nuclear facilities within 80 km is less than 1/10,000 of collective dose from natural radiation in the same areas. The collective dose from uranium mines and mills is much higher than that from other nuclear facilities, and is about 91.5% of the collective dose from the entire nuclear fuel cycle

  15. HRD System and Experience in the Korean Nuclear Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Byoungkook [KHNP Nuclear Power Education Institute, Busan (Korea, Republic of)

    2012-03-15

    Korea began to nurture its nuclear energy pioneers in the 1950s when the government dispatched personnel in research and policy-making areas to foreign institutions. Then in 1959, KAERI was established and now plays a leading role in nuclear technology R and D. In addition, Korea's first research reactor, TRIGA Mark-II, was built and put into operation in 1962. This paved the way for advancements in operation and technical development of nuclear reactors. In turn, these accomplishments led to the birth of Korea's first commercial reactor, Kori Unit 1, in the 1970s, and HRD in the nuclear industry was put on the right track. However, the Korean nuclear industry remained heavily dependent on nuclear exporting countries such as the US, Canada, and France. Already confident in construction, Korea took the lead in building Kori Units 3 and 4 and Ulchin Units 1 and 2 in the 1980s, but the country was still in need of technological self-reliance. In order to achieve this, Korea proactively launched systematic HRD programs and dispatched nuclear professionals to overseas nuclear facilities to secure individuals competent in the areas of NPP operations, plant design, and major equipment manufacturing. Thanks to its diligent endeavors, Korea's nuclear entities established independent nuclear training institutes in the 1990s and began producing a large number of competent personnel. This allowed the country to ensure not only the best operation and maintenance engineers but also the essential nuclear technology required for plant design and equipment manufacturing. Since the beginning of the 21{sup st} century, Korea has been producing its nuclear personnel on its own and exchanging nuclear training instructors and trainees with other organizations in fields where specialized knowledge is needed. Furthermore, Korea is taking comprehensive nuclear HRD measures in response to the rising demand for human resources that result from ongoing construction of NPPs in

  16. HRD System and Experience in the Korean Nuclear Industry

    International Nuclear Information System (INIS)

    Kang, Byoungkook

    2012-01-01

    Korea began to nurture its nuclear energy pioneers in the 1950s when the government dispatched personnel in research and policy-making areas to foreign institutions. Then in 1959, KAERI was established and now plays a leading role in nuclear technology R and D. In addition, Korea's first research reactor, TRIGA Mark-II, was built and put into operation in 1962. This paved the way for advancements in operation and technical development of nuclear reactors. In turn, these accomplishments led to the birth of Korea's first commercial reactor, Kori Unit 1, in the 1970s, and HRD in the nuclear industry was put on the right track. However, the Korean nuclear industry remained heavily dependent on nuclear exporting countries such as the US, Canada, and France. Already confident in construction, Korea took the lead in building Kori Units 3 and 4 and Ulchin Units 1 and 2 in the 1980s, but the country was still in need of technological self-reliance. In order to achieve this, Korea proactively launched systematic HRD programs and dispatched nuclear professionals to overseas nuclear facilities to secure individuals competent in the areas of NPP operations, plant design, and major equipment manufacturing. Thanks to its diligent endeavors, Korea's nuclear entities established independent nuclear training institutes in the 1990s and began producing a large number of competent personnel. This allowed the country to ensure not only the best operation and maintenance engineers but also the essential nuclear technology required for plant design and equipment manufacturing. Since the beginning of the 21 st century, Korea has been producing its nuclear personnel on its own and exchanging nuclear training instructors and trainees with other organizations in fields where specialized knowledge is needed. Furthermore, Korea is taking comprehensive nuclear HRD measures in response to the rising demand for human resources that result from ongoing construction of NPPs in Korea and the UAE

  17. Skoda JS's proposal for Slovak nuclear power industry

    International Nuclear Information System (INIS)

    Borovec, J.

    2004-01-01

    In this presentation author deals with the structure and revenues of the Skoda JS, a.s., as well as productions of the company for nuclear power industry in the Czech Republic, Ukraine and the Slovak Republic

  18. Working in the nuclear industry - Inquiry in the heart of a hazardous site

    International Nuclear Information System (INIS)

    Fournier, Pierre

    2012-01-01

    The author, who is today professor of sociology at the Aix-Marseille university (FR), has worked in the nuclear industry as a temp, as a trainee and as a subcontracting worker successively. In this book, he presents his vision from the inside of the daily work of nuclear workers. Inside teams, he has observed the behaviours, the relations between men, the ways to deal with an unsure knowledge, the conflicts which have occurred and the risks that the personnel has had to bear with. Beyond the ideological debate, and with no pro- or anti-position with respect to nuclear energy, the author presents a field report which allows to better comprehend the risk factors threatening the nuclear industry and the workers of this industry

  19. Specific features of occupational medicine in nuclear research and industry

    International Nuclear Information System (INIS)

    Giraud, J.M.; Quesne, B.

    2003-01-01

    Measures to prevent the exposure of personnel to ionising radiation were taken as soon as the first nuclear laboratories were set up. This branch of occupational preventive medicine has since kept pace with advances in research and in the industrial applications of nuclear energy. (authors)

  20. Applications of artificial intelligence in the U.S. nuclear industry

    International Nuclear Information System (INIS)

    Uhring, R.E.

    1987-01-01

    In the United States, the introduction of artificial intelligence (AI) into use in the nuclear power field is being carried out by a wide spectrum of organizations (i.e., nuclear equipment vendors, architect-engineer firms, universities, national laboratories, federal agencies, the electric utility industry, and small entrepreneurial groups). The most coherent of these efforts is an Electric Power Research Institute program to demonstrate the usefulness of AI in nuclear power plants (including augmenting plant automation) and an agreement with NASA to transfer the technology of their multi-year AI Core Technology in Systems Autonomy to the nuclear power industry. A few vendors are offering commercial AI products that reduce the burden on reactor operators during both normal and abnormal operation. Several AI programs at universities and national laboratories have automation as their primary focus, and individual AI projects have been initiated under the Small Business Innovative Research Program. The fundamental and synergistic relationship between training and expert systems supports the use of AI in the training of nuclear personnel

  1. A sign of change in industrial structure under stable growth: economic status of nuclear industry

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The real economical growth rate in fiscal year 1983 in Japan was 3.7 %, and the business trend showed the sign of restoration. The status of primary energy supply in Japan turned to 4.5 % increase as compared with the previous year. Petroleum increased by 3.5 %, coal by 1.6 %, and nuclear power by 11.1 %. As the result, the proportion of petroleum to total primary energy supply slightly decreased to 61 %. Electric power demand increased by 6.3 %, and the proportion of nuclear power to total generated power quantity increased to 20.4 %. As to the status of atomic energy industry in fiscal 1983, one nuclear power plant started the operation, and the construction of three nuclear power plants began. The investment for nuclear fuel cycle was enthusiastic, and the business progressed favorably. The total outlay related to atomic energy was 2.89 trillion yen, 14 % increase as compared with the previous year. The sales of mining and manufacturing industries was 1.367 trillion yen, 17 % increase. The number of workers related to atomic energy was 65,997, 2 % decrease. The mean capacity ratio of the production facilities for atomic energy products in fiscal 1983 was 66.5 %, far below the target 72 %. (Kako, I.)

  2. Opinions differ on whether nuclear energy industry is ready for cyber-challenges

    International Nuclear Information System (INIS)

    Dalton, David

    2017-01-01

    In October 2015 the UK's respected Chatham House think-tank published a report that drew some worrying conclusions about the civil nuclear industry. It said many in the sector do not fully understand the risks posed by hackers and the industry needs to be ''more robust'' on taking the initiative in cyberspace and funding effective responses to the challenge. The industry does not seem to be prepared for a large-scale cyber security emergency and needs to invest in counter-measures and response plans, the report said. It warned that developing countries are ''particularly vulnerable'' to cyber-attacks at nuclear facilities. The industry should develop guidelines to measure cyber security risk, including an integrated risk assessment that takes both security and safety measures into account. All countries with nuclear facilities should adopt an effective regulatory approach to cyber security e.g. on the basis of IAEA guidance.

  3. Nuclear process steam for industry: potential for the development of an Industrial Energy Park adjacent to the Bruce Nuclear Power Development

    Energy Technology Data Exchange (ETDEWEB)

    Seddon, W A

    1981-11-01

    This report summarizes the results of an industrial survey jointly funded by the Bruce County Council, the Ontario Energy Corporation, Atomic Energy of Canada Limited and conducted with the cooperation of Ontario Hydro and the Ontario Ministry of Industry and Tourism. The objective of the study was to identify and assess the future needs and interest of energy-intensive industries in the concept of an Industrial Energy Park adjacent tof the Bruce Nuclear Power Development. The proposed Energy Park would capitalize on the infrastructure of the existing CANDU reactors and Ontario Hydro's proven and unique capability to produce steam, as well as electricity, at a cost currently about half that from a comparable coal-fired station.

  4. Role of INPO in improving training in the US nuclear power industry

    International Nuclear Information System (INIS)

    Mangin, A.M.

    1982-01-01

    In response to their newly recognized degree of interdependence, the US nuclear utilities formed the Institute of Nuclear Power Operations (INPO) in late 1979 to enhance nuclear plant safety and reliability nationwide. Because this interdependence extends across national boundaries, in 1981 INPO began accepting participants from outside the United States. To promote excellence in nuclear power plant training, INPO's Training and Education Division has established three objectives: to establish standards of excellence for industry training; to evaluate the quality and effectiveness of industry training programs; and to assist member utilities in providing high quality performance-based training. A variety of activities and projects have been undertaken to accomplish these objectives

  5. A systematic approach to the training in the nuclear power industry: The need for standard

    International Nuclear Information System (INIS)

    Wilkinson, J.D.

    1995-01-01

    The five elements of a open-quotes Systematic Approach to Trainingclose quotes (SAT) are analysis, design, development, implementation and evaluation. These elements are also present in the effective application of basic process control. The fundamental negative feedback process control loop is therefore an excellent model for a successful, systematic approach to training in the nuclear power industry. Just as standards are required in today's manufacturing and service industries, eg ISO 9000, so too are control standards needed in the training industry and in particular in the training of nuclear power plant staff. The International Atomic Energy Agency (IAEA) produced its TECDOC 525 on open-quotes Training to Establish and Maintain the Qualification and Competence of Nuclear Power Plant Operations Personnelclose quotes in 1989 and the American Nuclear Society published its open-quotes Selection, Qualification, and Training of Personnel for Nuclear Power Plants, an American National Standardclose quotes in 1993. It is important that community colleges, training vendors and organizations such as the Instrument Society of America (ISA), who may be supplying basic or prerequisite training to the nuclear power industry, become aware of these and other standards relating to training in the nuclear power industry

  6. Risk management of knowledge loss in nuclear industry organizations (Russian edition)

    International Nuclear Information System (INIS)

    2012-08-01

    Maintaining nuclear competencies in the nuclear industry and nuclear regulatory authorities will be one of the most critical challenges in the near future. As many nuclear experts around the world are retiring, they are taking with them a substantial amount of knowledge and corporate memory. The loss of such employees who hold knowledge critical to either operations or safety poses a clear internal threat to the safe and reliable operation of nuclear facilities. This publication is intended for senior and middle level managers of nuclear industry operating organizations and provides practical information on knowledge loss risk management. The information provided in this it is based upon the actual experiences of Member State operating organizations and is intended to increase awareness of the need to: develop a strategic approach and action plans to address the potential loss of critical knowledge and skills; provide processes and in conducting risk assessments to determine the potential for loss of critical knowledge caused by the loss of experienced workers; and enable nuclear organizations to utilize this knowledge to improve the skill and competence of new and existing workers In 2004, the IAEA published a report entitled The Nuclear Power Industry's Ageing Workforce: Transfer of Knowledge to the Next Generation (IAEA-TECDOC-1399). That report highlighted some of the knowledge management issues in Member States resulting from the large number of retiring nuclear power plant personnel who had been involved with the commissioning and initial operation of nuclear power plants. This publication complements that report by providing a practical methodology on knowledge loss risk management as one element of an overall strategic approach to workforce management which includes work force planning, recruitment, training, leadership development and knowledge retention

  7. Impact of the Application of Exemption Regulation to the Non-nuclear Industry in Indonesia

    International Nuclear Information System (INIS)

    Eri-Hiswara

    2001-01-01

    Nuclear Energy Control Board (BAPETEN) as a nuclear regulatory authority in Indonesia has published the exemption regulation that establishes the value of activity, activity concentration, and dose rate for practices that their operations do not require a licence. From an assessment it was found that the value of activity concentration and dose rate have been exceeded by technologically enhanced naturally occurring radioactive materials (TENORM) present in the raw material and product/waste of some mining and mineral industries known so far as non-nuclear industry. The result has the impact that those industries should be categorized as nuclear industry, with the implication that they need to have licence from regulatory authority, and their activities need to be inspected regularly from the radiation safety point of view by the authority. (author)

  8. Human-machine interactions: The human element of expert systems for the nuclear industry

    International Nuclear Information System (INIS)

    Nelson, W.R.

    1989-01-01

    This paper will begin with a brief history of the development of expert systems in the nuclear industry. This discussion will serve to provide the reader with an understanding of how the field of artificial intelligence (AI) applications in the nuclear industry has developed. Next, this paper will discuss the general human factors issues relative to the development and implementation of expert systems for the nuclear industry. It will summarize the relevant research that addresses these issues and identify those areas that need the most effort for success. Since much of the prominent work for the application of expert systems has focused on computerized aids for decisionmaking in emergencies, this paper will draw from this area for its examples. This area tends to highlight the issues because of the safety-critical nature of the application. The same issues, however, are relevant to other applications of expert systems in the nuclear industry as well, even though the consequences of failure may not be as dramatic. (orig./GL)

  9. Corrosion engineering in nuclear power industry

    International Nuclear Information System (INIS)

    Prazak, M.; Tlamsa, J.; Jirousova, D.; Silber, K.

    1990-01-01

    Corrosion problems in nuclear power industry are discussed from the point of view of anticorrosion measures, whose aim is not only increasing the lifetime of the equipment but, first of all, securing ecological safety. A brief description is given of causes of corrosion damage that occurred at Czechoslovak nuclear power plants and which could have been prevented. These involve the corrosion of large-volume radioactive waste tanks made of the CSN 17247 steel and of waste piping of an ion exchange station made of the same material, a crack in a steam generator collector, contamination of primary circuit water with iron, and corrosion of CrNi corrosion-resistant steel in a spent fuel store. It is concluded that if a sufficient insight into the corrosion relationships exists and a reasonable volume of data is available concerning the corrosion state during the nuclear facility performance, the required safety can be achieved without adopting extremely costly anticorrosion measures. (Z.M.)

  10. Protection of confidential information and countermeasures against insider threat in nuclear industry. Some practices in U.S. nuclear industry and their implication for Japan

    International Nuclear Information System (INIS)

    Tanabe, Tomoyuki

    2008-01-01

    In Japan, after law amendment of the Law for the Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors was implemented aiming for reinforcement of physical protection in 2005, there still remain a number of practical issues of how the nuclear administration applies the regulations in detail and how nuclear undertakers cope with the regulations. This report looks at how protection of confidential information and countermeasures against insider threat are regulated and handled in the United States civil nuclear energy industry, and extracts its implications for Japanese regulations and practical business affairs. This report points our four characteristics of protection of confidential information and countermeasures against insider threat in the United States commercial power industry: (1) regulatory contents are prescribed in detail within a specific scope, (2) private bureaucracy such as NEI provides support of compliance programs of nuclear undertakers, (3) strict protection and management system about Safeguards Information (SGI) has been developed in both sides of regulations and compliance programs, and (4) employee private information of a broad content including sensitive data such as financial status or the criminal record is acquired and used at the aim of security clearance by nuclear undertakers. These characteristics, especially point (2) serve as a reference in regulation enforcement in Japan while careful attentions should be paid in harmonizing with existing legislation. (author)

  11. Time for nuclear to hold its nerve at this pivotal time for the industry

    International Nuclear Information System (INIS)

    Shepherd, John

    2017-01-01

    Recent weeks have been tough for the world's nuclear energy industry. The nuclear industry has seen setbacks before. And it is the nature of this inter-connected global industry to find itself in the international media spotlight when ''bad news'' strikes. The task for the industry now is to pick itself up and face the economic challenges head-on. As one English proverb notes, ''fortune favours the brave''.

  12. Quality management in the nuclear industry: the human factor

    International Nuclear Information System (INIS)

    1990-01-01

    In the nuclear industry it is vital to understand the 'human factor' with regard to plant performance and plant safety. A proper management system ensures that personnel perform their duties correctly. 'Quality Management in the Nuclear Industry: the Human Factor', was a conference organized by the Institution of Mechanical Engineers in October 1990. The conference covered a wide range of topics on an international level including: standards, licensing and regulatory procedures; selection assessment and training of personnel; feedback from experience of good practice and of deviations; management and support of personnel performance; modelling and evaluation of human factors. The papers presented at the conference are contained in this volume. All twenty papers are indexed separately. (author)

  13. Assesment of safe discharge limits in the nuclear industry

    International Nuclear Information System (INIS)

    Van As, D.

    1984-01-01

    Routine releases from the nuclear industry to the environment are controlled by three principles, viz. that the practice creating the effluents should be kept as low as reasonably achievable, and radiation dose limits should not be exceeded. In the nuclear industry, the discharge of radioactive effluent is controlled by a system of dose limitation. The application of this system to conventional effluents require: i) a quantitative relationship between intake and effect so as to establish intake limits; ii) environmental models that will allow calculation of the relationship between discharge and intake; iii) a measure of the total detriment due to the discharge. For such a system discharge limits can be established for the desired level of risk (safety)

  14. Problems and prospects of nuclear power industry

    International Nuclear Information System (INIS)

    Karelin, A.I.

    2001-01-01

    A consideration is given to problems associated with operating nuclear power plants in many countries and building new NPPs. A special attention is given to safety operation of nuclear plants, to reprocessing and transportation of spent nuclear fuel as well as to radioactive waste disposal. In connection with difficulties in solving the above-mentioned problems a proposition is made to resume work on designing NPPs with the use of nuclear liquid salt reactors based on molten fuel fluoride salts. Advantages and disadvantages of fuel compositions of LiF-BeF 2 -UF 4 -(ThF 4 ) are listed. It is recommended that fundamental studies be carried out into such compositions as KF + CsF; BaF 2 + KF + NaF; AlF 3 + Na 3 AlF 6 , eutectics on the basis of tin and zinc fluorides and their complex salts of M x Sn(Zn)F y . An international program is suggested to be developed to find some way out of crisis of nuclear power industry using research efforts in homogeneous liquid salt nuclear underground reactors with a U(233)-Th fuel cycle [ru

  15. Fallout: the defence, industrial and technological benefits of nuclear deterrence

    International Nuclear Information System (INIS)

    Tertrais, Bruno

    2015-01-01

    In the current climate of budgetary restrictions, it is fair to question the weight of military nuclear defence spending. Upon examination, however, nuclear deterrence has numerous military, industrial, and technological benefits. It is, in fact, totally intertwined with the other elements of our defence system. (author)

  16. Nuclear industry powering up to tackle potential threats from cyberspace

    International Nuclear Information System (INIS)

    Shepherd, John

    2015-01-01

    In June 2015, the International Atomic Energy Agency (IAEA), in cooperation with international agencies including the crime-fighting organisation Interpol, will host a major conference on the protection of computer systems and networks that support operations at the world's nuclear facilities. According to the IAEA, the use of computers and other digital electronic equipment in physical protection systems at nuclear facilities, as well as in facility safety systems, instrumentation, information processing and communication, ''continues to grow and presents an ever more likely target for cyber-attack''. The international nuclear industry is right to take heed of ever-evolving security threats, deal with them accordingly, and be as open and transparent as security allows about what is being done, which will reassure the general public. However, the potential menace of cyberspace should not be allowed to become such a distraction that it gives those who are ideologically opposed to nuclear another stick with which to beat the industry.

  17. Nuclear industry powering up to tackle potential threats from cyberspace

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, John [nuclear 24, Brighton (United Kingdom)

    2015-06-15

    In June 2015, the International Atomic Energy Agency (IAEA), in cooperation with international agencies including the crime-fighting organisation Interpol, will host a major conference on the protection of computer systems and networks that support operations at the world's nuclear facilities. According to the IAEA, the use of computers and other digital electronic equipment in physical protection systems at nuclear facilities, as well as in facility safety systems, instrumentation, information processing and communication, ''continues to grow and presents an ever more likely target for cyber-attack''. The international nuclear industry is right to take heed of ever-evolving security threats, deal with them accordingly, and be as open and transparent as security allows about what is being done, which will reassure the general public. However, the potential menace of cyberspace should not be allowed to become such a distraction that it gives those who are ideologically opposed to nuclear another stick with which to beat the industry.

  18. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 103, 104, 114 and 115). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  19. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  20. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 103, 104, 114 and 115). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix