WorldWideScience

Sample records for nuclear industry applications

  1. Industrial Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    2017-01-01

    This publication provides a detailed overview of the potential use of nuclear energy for industrial systems and/or processes which have a strong demand for process heat/steam and power, and on the mapping of nuclear power reactors proposed for various industrial applications. It describes the technical concepts for combined nuclear-industrial complexes that are being pursued in various Member States, and presents the concepts that were developed in the past to be applied in connection with some major industries. It also provides an analysis of the energy demand in various industries and outlines the potential that nuclear energy may have in major industrial applications such as process steam for oil recovery and refineries, hydrogen generation, and steel and aluminium production. The audience for this publication includes academia, industry, and government agencies.

  2. Industrial applications of nuclear technology

    International Nuclear Information System (INIS)

    Vargas, Celso

    2010-01-01

    Industrial applications of nuclear technology have been very diverse worldwide. This type of technology has begun to introduce in Costa Rica to evaluate and improve different industrial processes. These applications have been classified into two or three categories, according to the criteria used. Nucleonic control systems, the gamma logging and radiotracers are determined. (author) [es

  3. Industrial application of nuclear techniques in Australia

    International Nuclear Information System (INIS)

    Easey, J.F.

    1981-01-01

    The applications of nuclear techniques in Australia was reviewed - the work has been to aid: mining and mineral sector, the manufacturing, chemical and petroleum industries, hydrology and sedimentology

  4. Microprocessors applications in the nuclear industry

    International Nuclear Information System (INIS)

    Ethridge, C.D.

    1980-01-01

    Microprocessors in the nuclear industry, particularly at the Los Alamos Scientific Laboratory, have been and are being utilized in a wide variety of applications ranging from data acquisition and control for basic physics research to monitoring special nuclear material in long-term storage. Microprocessor systems have been developed to support weapons diagnostics measurements during underground weapons testing at the Nevada Test Site. Multiple single-component microcomputers are now controlling the measurement and recording of nuclear reactor operating power levels. The CMOS microprocessor data-acquisition instrumentation has operated on balloon flights to monitor power plant emissions. Target chamber mirror-positioning equipment for laser fusion facilities employs microprocessors

  5. Economics on nuclear techniques application in industry

    International Nuclear Information System (INIS)

    Kato, Masao

    1979-01-01

    The economics of the application of nuclear techniques to industry is discussed. Nuclear techniques were applied to gauging (physical measurement), analysis, a radioactive tracer method, electrolytic dissociation, and radiography and were found to be very economical. They can be applied to manufacturing, mining, oceano-engineering, environmental engineering, and construction, all of which have a great influence on economics. However, because the application of a radioactive tracer technique does not have a direct influence on economics, it is difficult to estimate how beneficial it is. The cost-benefit ratio method recommended by IAEA was used for economical calculations. Examples of calculations made in gauging and analysis are given. (Ueda, J.)

  6. Mobile robotics application in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.L.; White, J.R. [REMOTEC, Inc., Oak Ridge, TN (United States)

    1995-03-01

    Mobile robots have been developed to perform hazardous operations in place of human workers. Applications include nuclear plant inspection/maintenance, decontamination and decommissioning police/military explosive ordinance disposal (EOD), hostage/terrorist negotiations and fire fighting. Nuclear facilities have proven that robotic applications can be cost-effective solutions to reducing personnel exposure and plant downtime. The first applications of mobile robots in the nuclear industry began in the early 1980`s, with the first vehicles being one of a kind machines or adaptations of commercial EOD robots. These activities included efforts by numerous commercial companies, the U.S. Nuclear Regulatory Commission, EPRI, and several national laboratories. Some of these efforts were driven by the recovery and cleanup activities at TMI which demonstrated the potential and need for a remote means of performing surveillance and maintenance tasks in nuclear plants. The use of these machines is now becoming commonplace in nuclear facilities throughout the world. The hardware maturity and the confidence of the users has progressed to the point where the applications of mobile robots is not longer considered a novelty. These machines are being used in applications where the result is to help achieve more aggressive goals for personnel radiation exposure and plant availability, perform tasks more efficiently, and allow plant operators to retrieve information from areas previously considered inaccessible. Typical examples include surveillance in high radiation areas (during operation and outage activities), radiation surveys, waste handling, and decontamination evolutions. This paper will discuss this evolution including specific applications experiences, examples of currently available technology, and the benefits derived from the use of mobile robotic vehicles in commercial nuclear power facilities.

  7. Mobile robotics application in the nuclear industry

    International Nuclear Information System (INIS)

    Jones, S.L.; White, J.R.

    1995-01-01

    Mobile robots have been developed to perform hazardous operations in place of human workers. Applications include nuclear plant inspection/maintenance, decontamination and decommissioning police/military explosive ordinance disposal (EOD), hostage/terrorist negotiations and fire fighting. Nuclear facilities have proven that robotic applications can be cost-effective solutions to reducing personnel exposure and plant downtime. The first applications of mobile robots in the nuclear industry began in the early 1980's, with the first vehicles being one of a kind machines or adaptations of commercial EOD robots. These activities included efforts by numerous commercial companies, the U.S. Nuclear Regulatory Commission, EPRI, and several national laboratories. Some of these efforts were driven by the recovery and cleanup activities at TMI which demonstrated the potential and need for a remote means of performing surveillance and maintenance tasks in nuclear plants. The use of these machines is now becoming commonplace in nuclear facilities throughout the world. The hardware maturity and the confidence of the users has progressed to the point where the applications of mobile robots is not longer considered a novelty. These machines are being used in applications where the result is to help achieve more aggressive goals for personnel radiation exposure and plant availability, perform tasks more efficiently, and allow plant operators to retrieve information from areas previously considered inaccessible. Typical examples include surveillance in high radiation areas (during operation and outage activities), radiation surveys, waste handling, and decontamination evolutions. This paper will discuss this evolution including specific applications experiences, examples of currently available technology, and the benefits derived from the use of mobile robotic vehicles in commercial nuclear power facilities

  8. JAERI FEL applications in nuclear energy industries

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2005-01-01

    The JAERI FEL has first discovered the new FEL lasing of 255fs ultra fast pulse, 6-9% high efficiency, 1GW high peak power, a few kilowatts average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing and energy-recovery linac technology, we could extend a more powerful and more efficient free-electron laser (FEL) than 10kW and 25%, respectively, for nuclear energy industries, and others. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the FEL will cover the application of non-thermal peeling, cutting, and drilling to prevent cold-worked stress-corrosion cracking failures in nuclear energy and other heavy industries. (author)

  9. Industrial applications of nuclear techniques in Poland

    International Nuclear Information System (INIS)

    Michalik, J.St.

    1981-01-01

    Application of radioisotope techniques in a number of Polish industries was reviewed. Studies on the usage of radiotracer as an evaluation method for technological processes were carried out and the advantages of such application were discussed

  10. Biometrics and smart card based applications for nuclear industry

    International Nuclear Information System (INIS)

    Nishanth Reddy, J.; Dheeraj Reddy, J.; Narender Reddy, J.

    2004-01-01

    Biometrics has emerged as a convenient, foolproof and well-accepted technology for identification around the globe. Nucleonix has developed innovative solutions based on finger scan biometrics for various industries. This paper closely looks into the application areas for the nuclear industry and how it will benefit this industry, in terms of identification, access control, security of PCs and applications, attendance, machinery usage control and other custom applications. (author)

  11. Nuclear gauge application in road industry

    Science.gov (United States)

    Azmi Ismail, Mohd

    2017-11-01

    Soil compaction is essential in road construction. The evaluation of the degree of compaction relies on the knowledge of density and moisture of the compacted layers is very important to the performance of the pavement structure. Among the various tests used for making these determinations, the sand replacement density test and the moisture content determination by oven drying are perhaps the most widely used. However, these methods are not only time consuming and need wearisome procedures to obtain the results but also destructive and the number of measurements that can be taken at any time is limited. The test can on be fed back to the construction site the next day. To solve these problems, a nuclear technique has been introduced as a quicker and easier way of measuring the density and moisture of construction materials. Nuclear moisture density gauges have been used for many years in pavement construction as a method of non-destructive density testing The technique which can determine both wet density and moisture content offers an in situ method for construction control at the work site. The simplicity, the speed, and non-destructive nature offer a great advantage for quality control. This paper provides an overview of nuclear gauge application in road construction and presents a case study of monitoring compaction status of in Sedenak - Skudai, Johor rehabilitation projects.

  12. Applications of neutron radiography for the nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    Craft, Aaron E.; Barton, John P.

    2016-11-01

    The World Conference on Neutron Radiography (WCNR) and International Topical Meeting on Neutron Radiography (ITMNR) series have been running over 35 years. The most recent event, ITMNR-8, focused on industrial applications and was the first time this series was hosted in China. In China, more than twenty new nuclear power plants are in construction and plans have been announced to increase the nuclear capacity further by a factor of three within fifteen years. There are additional prospects in many other nations. Neutron tests were vital during previous developments of materials and components for nuclear power applications, as reported in this conference series. For example a majority of the 140 papers in the Proceedings of the First WCNR are for the benefit of the nuclear power industry. Included are reviews of the diverse techniques being applied in Europe, Japan, the United States, and at many other centers. Many of those techniques are being utilized and advanced to the present time. Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Applications include examination of nuclear waste, nuclear fuels, cladding, control elements, and other critical components. In this paper, the techniques developed and applied internationally for the nuclear power industry since the earliest years are reviewed, and the question is asked whether neutron test techniques can be of value in development of the present and future generations of nuclear power plants world-wide.

  13. Research on optical applications in nuclear industry

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Shin, Jang Soo; Lee, Sang Mock; Baik, Sung Hoon; Kwon, Seong Ouk; Hong, Suc Kyoung; Kim, Duk Hyeon

    1988-12-01

    The laser fluorometer developed in 1987 has been modified to compensate the inner filter and quenching effects. The signal processing electronic circuit was redesigned and a computer interface was introduced for data processing. It has been already used in routine chemical analysis in the chemical analysis division. Its application to uranium monitoring in conversion plant is being investigated. Also, we found that it can be used in trace analysis of samarium and europium with detection limit of 1 ppb and 0.1 ppb, respectively. The IRMPA/D process of CDF 3 and CHF 3 have been studied. The pressure effects of CDF 3 ,CHF 3 and added buffer gas were investigated. Mainly, the change in reaction rate was examined while varying the pressure of CDF 3 , CHF 3 and buffer gas. The IRMPD reaction ratio of CDF 3 and CHF 3 from below 0.1 torr up to a few torr was studied and the buffer gas pressure effect was investigated at constant pressure of CDF 3 or CHF 3 of 1 torr. Several kinds of buffer gas, Ar, N 2 , and SF 6 , were used to investigate the buffer gas pressure effect. We applied double exposure holographic interferometry, and analyzed qualitatively the distortion due to thermal heat and vibration. The research on holographic remote inspection will be achieved to apply this technique to the nuclear fuel cycle facilities. (Author)

  14. EBSD applications in the steel and nuclear industries

    International Nuclear Information System (INIS)

    Nave, M.D.

    2005-01-01

    EBSD has established itself as an invaluable tool for materials science problem-solving in the steel and nuclear industries. In the steel industry, it increases our understanding of the deformation and recrystallization processes that influence the formability of steel sheets. It is also used to improve welding procedures and identify phases that accelerate corrosion. In the nuclear industry, EBSD plays a central role in extending the life of fuel cladding materials by shedding new light on the mechanisms of hydride formation. It is also used in efforts to improve the processing of material used for the storage of nuclear waste. This presentation provides an overview of EBSD applications within these two industries, emphasizing the broad applicability and practical usefulness of the technique. (author)

  15. EPRI expert system activities for nuclear utility industry application

    International Nuclear Information System (INIS)

    Naser, J.A.

    1990-01-01

    This paper reports on expert systems which have reached a level of maturity where they offer considerable benefits for the nuclear utility industry. The ability of expert systems to enhance expertise makes them an important tool for the nuclear utility industry in the areas of engineering, operations and maintenance. Benefits of expert system applications include comprehensive and consistent reasoning, reduction of time required for activities, retention of human expertise and ability to utilize multiple experts knowledge for an activity. The Electric Power Research Institute (EPRI) has been performing four basic activities to help the nuclear industry take advantage of this expert system technology. The first is the development of expert system building tools which are tailored to nuclear utility industry applications. The second is the development of expert system applications. The third is work in developing a methodology for verification and validation of expert systems. The last is technology transfer activities to help the nuclear utility industry benefit from expert systems. The purpose of this paper is to describe the EPRI activities

  16. Applications of polyolefins in the nuclear industry

    International Nuclear Information System (INIS)

    Erambert, M.; Goavec, P.

    1984-01-01

    The environment of a nuclear power plant often imposes impossible conditions on wires and cables. Cable manufacturers make great use of polymers, and the properties of the latter are limited in all the fields imposed: radiation, ageing, fire, corrosion. ACOME presents a cross-linked fireproof polyolefin, the properties of which have been verified in long-term tests: with very different ageing temperatures and times, very variable dose rates and very long simultaneous cycles. After all the tests proposed, the mechanical characteristics still made winding on cores possible. The electrical characteristics were very good, and fireproofing was unaffected [fr

  17. Computer applications in the nuclear reprocessing industry

    International Nuclear Information System (INIS)

    McKenzie, H.G.; Swartfigure, G.T.

    1985-01-01

    The subject is discussed under the headings: introduction; benefits of computer application; factors affecting productivity; implementation of engineering design systems; the conceptual model; system design database; plant design system; pipe detailing system; overall assessment of benefits; conclusions. (U.K.)

  18. Applications of nuclear microprobes in the semiconductor industry

    International Nuclear Information System (INIS)

    Takai, M.

    1996-01-01

    Possible nuclear microprobe applications in semiconductor industries are discussed. A unique technique using soft-error mapping and ion beam induced current measurements for reliability testing of dynamic random access memories such as soft-error immunity and noise carrier suppression has been developed for obtaining design parameters of future memory devices. Nano-probes and small installation areas are required for the use of microprobes in the semiconductor industry. Issues arising from microprobe applications such as damage induced by the probe beam are clarified. (orig.)

  19. Application of system-level FMEA in the nuclear industry

    International Nuclear Information System (INIS)

    Crocker, W.; Parmar, R.; Salvador, M.; Forystek, A.; Xu, C.

    2012-01-01

    Failure Modes and Effects Analysis (FMEA) is an analytical technique used to assess risk that is applied in various industries such as aerospace, automotive and health care. A recent application in the nuclear industry of FMEA methodology to support the design modification process at a major electrical utility in Ontario is examined. This application of FMEA involves assessing proposed design changes by systematically identifying various component failure modes and their effect on the parent system with respect to the related employee, environmental, production and nuclear safety impact. In doing so, any design weaknesses are identified along with potential corrective actions such as adding redundant components. FMEA is being applied early in the design process with the focus on finding the problems before equipment is installed where failures may manifest into serious safety and economic consequences. To illustrate the application of FMEA in the nuclear industry, the results of a recent study will be presented with a walk through of the analysis process along with overall study findings. The study involved application of FMEA to support a design modification to replace the existing Condenser Steam Dump Valve (CSDV) actuator and top works (associated instrumentation, e.g., solenoid valves) on an operating reactor. (author)

  20. Application of system-level FMEA in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, W.; Parmar, R.; Salvador, M. [AMEC NSS Ltd., Toronto, Ontario (Canada); Forystek, A.; Xu, C. [Bruce Power, Tiverton, Ontario (Canada)

    2012-07-01

    Failure Modes and Effects Analysis (FMEA) is an analytical technique used to assess risk that is applied in various industries such as aerospace, automotive and health care. A recent application in the nuclear industry of FMEA methodology to support the design modification process at a major electrical utility in Ontario is examined. This application of FMEA involves assessing proposed design changes by systematically identifying various component failure modes and their effect on the parent system with respect to the related employee, environmental, production and nuclear safety impact. In doing so, any design weaknesses are identified along with potential corrective actions such as adding redundant components. FMEA is being applied early in the design process with the focus on finding the problems before equipment is installed where failures may manifest into serious safety and economic consequences. To illustrate the application of FMEA in the nuclear industry, the results of a recent study will be presented with a walk through of the analysis process along with overall study findings. The study involved application of FMEA to support a design modification to replace the existing Condenser Steam Dump Valve (CSDV) actuator and top works (associated instrumentation, e.g., solenoid valves) on an operating reactor. (author)

  1. The application of infrared thermometric technology in the nuclear industry

    International Nuclear Information System (INIS)

    Wang Wenjin

    1992-04-01

    In the process of bituminization of low level waste liquid, to measure the surface temperature of a moving barrel filled with waste liquid and bitumen is essential. Thus, a special infrared thermometer is developed. The property of radiation resistance for the lithium tantalate prober which is a main part of the thermometer was carefully tested. The test results show that in the nuclear industry the infrared thermometric technology is applicable

  2. Artificial intelligence applications in the nuclear industry: An international view

    International Nuclear Information System (INIS)

    Majumdar, D.

    1989-01-01

    For AI work in particular, proprietary needs have sometimes kept people from reporting on the progress of AI applications in the nuclear industry. Consequently, some duplicate work is being performed by several groups in different countries. Nevertheless, sharing the knowledge gained from the experiences in several countries is still fruitful; success in one country may benefit another. With this view in mind, we have gathered here, to the best of our knowledge, what is going on in different countries in the world. (orig./GL)

  3. Nuclear reactor application for high temperature power industrial processes

    International Nuclear Information System (INIS)

    Dollezhal', N.A.; Zaicho, N.D.; Alexeev, A.M.; Baturov, B.B.; Karyakin, Yu.I.; Nazarov, E.K.; Ponomarev-Stepnoj, N.N.; Protzenko, A.M.; Chernyaev, V.A.

    1977-01-01

    This report gives the results of considerations on industrial heat and technology processes (in chemistry, steelmaking, etc.) from the point of view of possible ways, technical conditions and nuclear safety requirements for the use of high temperature reactors in these processes. Possible variants of energy-technological diagrams of nuclear-steelmaking, methane steam-reforming reaction and other processes, taking into account the specific character of nuclear fuel are also given. Technical possibilities and economic conditions of the usage of different types of high temperature reactors (gas cooled reactors and reactors which have other means of transport of nuclear heat) in heat processes are examined. The report has an analysis of the problem, that arises with the application of nuclear reactors in energy-technological plants and an evaluation of solutions of this problem. There is a reason to suppose that we will benefit from the use of high temperature reactors in comparison with the production based on high quality fossil fuel [ru

  4. Present status of application of AI in nuclear industry

    International Nuclear Information System (INIS)

    Kitamura, Masaharu

    1989-01-01

    Artificial intelligence (AL) techniques have been introduced actively in the nuclear industry in pursuit of increased safety and efficiency. The present report outlines some AI techniques currently used in nuclear facilities. This type of techniques have increasingly been introduced to such areas as design, construction, operation, maintenance, quality control and analysis. Most of them use knowledge engineering techniques including expert systems. Positive efforts at research and application of various more advance AI techniaues have started recently. For application of AI techniques, activities in nuclear power plants can be divided into two groups. One includes 'analytical' activities such as operation, maintenance and analysis, while the other includes 'synthetic' activities such as design, construction and fuel control. The most important AI technology for the analytical activities is diagnosis. Thus the report outlines major processes to which diagnostic techniques are applicable, and knowledge description and inference methods used for diagnosis. For AI techniques for synthetic activities, some problems and possible solutions are addressed. Development efforts in and outside Japan are also outlined. (Nogami, K.)

  5. The development of VR technology for nuclear industry applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Cho, Jai Wan; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong

    1998-01-01

    By searching the present condition of virtual reality technology of which researches were carried out not only abroad but also the country in nuclear power industry, we confirm the possibility of practical usage of VR in it. And as a fundamental research for applications of VR in nuclear power industry, gesture recognition for remote working and VR training system for severe working were performed. 1. A study on gesture recognition for remote working : The hand gesture recognition technology using visual signal and tactile magnetic sensor as a basic study for the introduction of task command and communication were performed. 2. A study on an construction of the virtual environment training system for the task in a severe condition: A construction of virtual reality training system for the tasks in a severe working condition was implemented. This system was intended to enhance the efficiency of actual tasks through advanced practicing the motion procedures those should be performed in a severe working condition where it is difficult to access for personnel. The motion information which is came from the sensors attached on trainers body was used for construction of the virtual environment through the computer graphic procedures. The VR training system has many merits relative to the conservative training method that was performed with mock-up which was made as the same size and shape as real component in nuclear power plant. (author). 27 refs., 21 tabs., 51 figs

  6. Expert system verification and validation for nuclear power industry applications

    International Nuclear Information System (INIS)

    Naser, J.A.

    1990-01-01

    The potential for the use of expert systems in the nuclear power industry is widely recognized. The benefits of such systems include consistency of reasoning during off-normal situations when humans are under great stress, the reduction of times required to perform certain functions, the prevention of equipment failures through predictive diagnostics, and the retention of human expertise in performing specialized functions. The increased use of expert systems brings with it concerns about their reliability. Difficulties arising from software problems can affect plant safety, reliability, and availability. A joint project between EPRI and the US Nuclear Regulatory Commission is being initiated to develop a methodology for verification and validation of expert systems for nuclear power applications. This methodology will be tested on existing and developing expert systems. This effort will explore the applicability of conventional verification and validation methodologies to expert systems. The major area of concern will be certification of the knowledge base. This is expected to require new types of verification and validation techniques. A methodology for developing validation scenarios will also be studied

  7. Nuclear and radiation applications in industry: Tools for innovation

    International Nuclear Information System (INIS)

    Machi, S.; Iyer, R.

    1994-01-01

    Applications of nuclear and radiation technologies have been contributing to industrial efficiency, energy conservation, and environmental protection for many years. Some of these are: Manufacturing industries: Radiation processing technologies are playing increasing roles during manufacturing of such everyday products as wire and cable, automobile tires, plastic films and sheets, and surface materials. Production processes: Other techniques employing radioisotope gauges are indispensable for on-line thickness measurements during paper, plastic, and steel plate production. Processing and quality checks are made using nucleonic control systems that are common features of industrial production lines. Sterilization of medical products using electron beam accelerators or cobalt-60 radiation is better than the conventional methods. Industrial safety and product quality: Non-destructive examination or testing using gamma- or X-ray radiography is widely used for checking welds, casting, machinery, and ceramics to ensure quality and safety. Additionally, radiotracer techniques are unique tools for the optimization of chemical processes in reactors, leakage detection, and wear and corrosion studies, for example. Environmental protection: An innovative technology using electron beams to simultaneously remove sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) has been under development. The electron beam technology is very cost competitive and its byproduct can be used as agricultural fertilizer

  8. Applications of Nuclear Reaction Analysis for Semiconductor Industry

    International Nuclear Information System (INIS)

    Wei Luncun

    2003-01-01

    Many thin film samples used in the semiconductor industry contain C, N and O. The detection limits and accuracy obtained by Rutherford Backscattering Spectroscopy (RBS) measurement are limited due to the small cross section values. High energy non-Rutherford backscattering is often used to enhance the sensitivities. But non-Rutherford cross section values are irregular and can not be calculated as normal Rutherford backscattering values. It is also difficult to find an appropriate energy window that for all these elements, and high-energy ions are needed. In this paper, the Nuclear Reaction Analysis (NRA) method is used to simultaneously measure C, N and O. several applications in the semiconductor research, development, and manufacturing areas are presented

  9. Applications of nuclear methods in the automotive industry

    International Nuclear Information System (INIS)

    Schneider, E.W.; Yusuf, S.O.

    1996-01-01

    Over the years nuclear methods have proved to be a valuable asset to industry in general and to the automotive industry in particular. This paper summarizes some of the most important recent contributions of nuclear technology to the development of vehicles having high quality and long-term durability. Radiotracer methods are used to measure engine oil consumption and the wear rates of inaccessible components. Radiographic and tomographic methods are used to image fluids and structures in engines and accessory components. Tracers are used to understand combustion chemistry and quantify fluid flow. Gauging methods are used for inspection and process control. Nuclear analytical methods are used routinely for materials characterization and problem solving. Although nuclear methods are usually considered as the means of last resort, they can often be applied more easily and quickly than conventional methods when those in industrial engineering and R and D are aware of their unique capabilities. (author). 51 refs., 5 figs

  10. A review of calixarene applications in nuclear industries

    International Nuclear Information System (INIS)

    Bahram Mokhtari; Iranian Offshore Oil Company, Lavan Island; Kobra Pourabdollah; Naser Dallali

    2011-01-01

    Calixarenes has been subject to extensive research in development of many extractants, transporters, stationary phases, electrode ionophores and optical and electrochemical sensors over the past four decades. In this paper, the nuclear applications of calixarenes are summarized in six fields including complexation studies, solvent extraction, membrane transport, chromatography, luminescent and colorimetric applications, and electroanalytical applications. In the first to fourth sections, the extractability, extraction equilibria and extraction constants of lanthanide, actinide and other nuclear waste cations ions, which were subjected to solvent extraction by the macrocyclic ligands, are reviewed. In two last sections, the analytical applications of calixarene complexes towards nuclear waste cations, including spectroscopic and electroanalytic sensors, are discussed. The examples described in this review illustrate the potential of calixarene derivatives in the rapidly growing field of cations recognition in nuclear wastes. (author)

  11. Radiation safety in industrial applications of nuclear techniques

    International Nuclear Information System (INIS)

    Lam, E.S.

    1981-01-01

    The hazards associated with the use of industrial equipment is one of the undesirable by-products of advanced technology. The use of nuclear techniques is a good example. Due to the usefulness of such techniques, one may accept the risks involved if they can be brought down to manageable levels. Most of the nuclear techniques in use in industries in Malaysia require only minimal safety precautions as they make use of only small amounts of radioactive material. However, some large sources are also being used and safety precautions have to be strictly enforced. The management plays a critical role in these industries. The requirements for radiation safety include the monitoring of workers and work areas, the medical surveillance of workers and the provision of barriers and other safety precautions. The management should also look to the training of the workers and be prepared for any emergencies that may arise. (author)

  12. Radiation safety in industrial applications of nuclear techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lam, E S [Ministry of Health, Kuala Lumpur (Malaysia)

    1981-01-01

    The hazards associated with the use of industrial equipment is one of the undesirable by-products of advanced technology. The use of nuclear techniques is a good example. Due to the usefulness of such techniques, one may accept the risks involved if they can be brought down to manageable levels. Most of the nuclear techniques in use in industries in Malaysia require only minimal safety precautions as they make use of only small amounts of radioactive material. However, some large sources are also being used and safety precautions have to be strictly enforced. The management plays a critical role in these industries. The requirements for radiation safety include the monitoring of workers and work areas, the medical surveillance of workers and the provision of barriers and other safety precautions. The management should also look to the training of the workers and be prepared for any emergencies that may arise.

  13. Nuclear measurements, techniques and instrumentation, industrial applications, plasma physics and nuclear fusion 1986-1996. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1997-03-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques, and Instrumentation, Industrial Applications, Plasma Physics and Nuclear Fusion, issued during the period 1986-1996. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all of these papers have abstracts in English. Contents cover the three main areas of (i) Nuclear Measurements, Techniques and Instrumentation (Physics, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactor and Particle Accelerator Applications, and Nuclear Data), (ii) Industrial Applications (Radiation Processing, Radiometry, and Tracers), and (iii) Plasma Physics and Controlled Thermonuclear Fusion

  14. Extending Nuclear Technology Applications to Heavy Industry-Sharing BTI Years of Experience

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim

    2012-01-01

    In his speech, the presenter outlined several topics regarding the establishment of Industrial Technology Division since 1980 until 2012. The first topic was to relate the justification or reasonable of establishing this division with the national condition at 1980s. The need to explore nuclear technology on industrial application like nondestructive testing (NDT) and plant assessment were attract the Malaysian Nuclear Agency to do research in that fields. The establishment of division to do that research were responsible to Industrial Technology Division. Until now, this division succeed in doing research regarding industrial application and transferred it to industrial players along the nation and also international level. (author)

  15. Applications of nuclear technology in industry, environment and medicine

    International Nuclear Information System (INIS)

    Vera Ruiz, H.

    1998-01-01

    This article contains information on different applications of nuclear technology, such as: sterilization of single use medical products, radiation serialization of pharmaceutical products,radiation treatment of disposable products, in Europe, radiation treatment of micro-titer plates, several crosslinking processes, radiation vulcanization of natural rubber latex, irradiation of polymers to obtain dressings for burns, ulcers bedsores and skin grafts, production of ground water with accelerated electrons in combination with accelerated electrons in combination with ozone, radiation treatment of hospital wastes. (S. Grainger)

  16. Applications of Nuclear Analytical Methods for High Tech Industry

    International Nuclear Information System (INIS)

    Hossain, T.

    2013-01-01

    Silicon based semiconductor chip manufacturing is a worldwide high technology industry with numerous measurement issues. One of the major concerns in the semiconductor manufacturing is contamination such as the trace metal impurities. This concern is vividly illustrated by the fact that the manufacturing in this industry is done in ultra clean environment where the entire manufacturing facility or “Fab” is a clean room facility or each and every manufacturing tool is enclosed in a mini-environment Although semiconductor devices are fabricated on the surface of the Si wafers contamination in the bulk material is a major concern. Nuclear methods of analysis are uniquely suited for the contamination analysis in such a matrix. Many opportunities in the semiconductor manufacturing field exist for the nuclear methods to provide support services. Contamination analysis by NAA, depth profiles by NDP and prompt gamma analysis of H in thin films are a few examples. These needs are on-going and require commitment from the lab so that a manufacturing operation can rely on the delivery of these services when required

  17. Artificial intelligence and other innovative computer applications in the nuclear industry

    International Nuclear Information System (INIS)

    Majumdar, M.C.; Majumdar, D.; Sackett, J.I.

    1987-01-01

    This book reviews the applications of artificial intelligence and computers in the nuclear industry and chemical plants. The topics discussed are: Robots applications and reliability in maintenance of nuclear power plants; Advanced information technology and expert systems; Knowledge base alarm systems; Emergency planning and response of accidents; and reactor safety assessment

  18. The applicability of micro-filters produced by nuclear methods in the food industry

    International Nuclear Information System (INIS)

    Szabo, S.A.; Ember, G.

    1982-01-01

    Problems of the applicability in the food industry of micro-filters produced by nuclear methods are dealt with. Production methods of the polymeric micro-filters, their main characteristics as well as their most important application fields (breweries, dairies, alcoholic- and soft-drink plants, wine industry) are briefly reviewed. (author)

  19. Industrial applications of radioisotopes: techniques and procedures of (NTIS) Nuclear Techniques Industrial Service

    International Nuclear Information System (INIS)

    Smith, S.W.; Kruger, J.

    1985-06-01

    Radioisotope handling procedures followed by personnel of the Nuclear Techniques Industrial Service (NTIS) during the conduction of investigations in industry are described. Possible radiological implications as a result of the various measuring techniques and different types of plants are discussed. Conditions under which permanent authorization has been granted for the use of radioisotopes are mentioned

  20. Nuclear measurements, techniques and instrumentation industrial applications plasma physics and nuclear fusion. 1980-1994. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1995-04-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques and Instrumentation, with Industrial Applications (of Nuclear Physics and Engineering), and with Plasma Physics and Nuclear Fusion, issued during the period 1980-1994. Most publications are in English. Proceedings of conferences, symposia, and panels of experts may contain some papers in other languages (French, Russian, or Spanish), but all papers have abstracts in English. Price quotes are in Austrian Schillings, do not include local taxes, and are subject to change without notice. Contents cover the three main categories of (i) Nuclear Measurements, Techniques and Instrumentation (Physics, Chemistry, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactors and Particle Accelerator Applications, Nuclear Data); (ii) Industrial Applications (Radiation Processing, Radiometry, Tracers); and (iii) Plasma Physics and Nuclear Fusion

  1. Nuclear measurements, techniques and instrumentation industrial applications plasma physics and nuclear fusion, 1980-1993. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1994-01-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques and Instrumentation, with Industrial Applications (of Nuclear Physics and Engineering), and with Plasma Physics and Nuclear Fusion, issued during the period 1980-1993. Most publications are in English. Proceedings of conferences, symposia, and panels of experts may contain some papers in other languages (French, Russian, or Spanish), but all papers have abstracts in English. Price quotes are in Austrian Schillings, do not include local taxes, and are subject to change without notice. Contents cover the three main categories of (I) Nuclear Measurements, Techniques and Instrumentation (Physics, Chemistry, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactors and Particle Accelerator Applications, Nuclear Data); (ii) Industrial Applications (Radiation Processing, Radiometry, Tracers); and (iii) Plasma Physics and Nuclear Fusion

  2. Latest expertise investigations in nuclear dismantling and industrial applications

    International Nuclear Information System (INIS)

    Gallozzi Ulmann, Adrien; Chazalet, Julien; Couturier, Pierre; Touzain, Etienne; Amgarou, Khalil; Menaa, Nabil

    2013-06-01

    During the last decades, CANBERRA has developed know-how, expertise and intervention strategies based on its feedback experiences in many countries. This document covers a wide range of applications involving nuclear characterization, for which CANBERRA is able to provide measurement set-up and results, activity characterization and radioactive source localization, as well as to guarantee safety or process thresholds corresponding to the customer's needs. To improve processes best-in-class methodology, know-how and tools have been used in complex examples described in this paper. CANBERRA has demonstrated its ability to better and efficiently prepare for and execute decontamination and dismantling activities. (authors)

  3. Laser induced breakdown spectroscopy for applications in nuclear industry

    International Nuclear Information System (INIS)

    Suri, B.M.

    2010-01-01

    There are several analytical techniques employing laser spectroscopy - each with its own distinctive potential. Laser Induced Breakdown Spectroscopy (LIBS) is one such technique which is attractive in view of its relative compactness and simplicity (in configuration), remote and online analysis (with no sample handling requirement) and high spatial resolution allowing compositional map or homogeneity analysis. In this technique, a high power pulsed (mostly nanosecond) laser is employed to irradiate the sample causing spark emission, characteristics of the sample composition, which is collected using suitable optics and analysed spectroscopically. Remote and online capability is derived from long distance delivery of laser beams and collection of emitted light by fibres or conventional optics. Since laser can be focused sharply on the target, it can facilitate compositional mapping. Beam Technology Development Group at BARC had initiated work on LIBS of nuclear materials several years ago. Recently the challenge of online monitoring of radioactive waste vitrification plant in a hot cell has been taken up. The theoretical and experimental work done by the group related to instrument development, plasma characterization, quantitative compositional analysis of ternary alloys and uranium vitrified glass samples (comprising more than dozen elements) are described. The future plans for setting up online glass homogeneity monitoring facility are also described. This should fulfill an important demand for optimization of vitrification process. Various other demands of nuclear industry are also reviewed

  4. Application of Nuclear Techniques in Industry and the Environment

    International Nuclear Information System (INIS)

    Masinza, A.S.

    2015-01-01

    Major radiotracer techniques are now in routine service industry to optimize processes, solve problems improve product quality, save energy and reduction pollution. The benefit to cost ratios of radiotracers, sealed sources and nucleonic gauges applications are considerably high; between 10:1 and 4000:1. The number of services for troubleshooting carried out worldwide per year is in excess of tens of thousands (out of them greater than 5000 are gamma scans). The number of nucleonic gauges worldwide could be estimated to be greater that 250,000 (Author)

  5. Nuclear measurements in industry

    International Nuclear Information System (INIS)

    Rozsa, S.

    1989-01-01

    In this book the author provides a description of nuclear measurements in industry, covering the physical principles, methods, instruments and equipment, and industrial applications. One of the great advantages of industrial nuclear measurements is that their use ensures the optimum use of raw material. The increasing cost of raw materials makes it essential to adhere strictly to the standards and prescriptions related to the product and this is possible only by the application of continuous and accurate measurements. As a result, the importance of nuclear instruments is rapidly growing particularly in fields where the application of alternative methods is not possible. This is illustrated by several practical examples described in the book. Similarly important are nuclear measuring the process control equipment which serve to optimize the use of energy in industrial processes

  6. Study on the Application of PSA Method on Non-Nuclear Industry Facilities

    International Nuclear Information System (INIS)

    Andi Sofrany E; Anhar R Antariksawan; Sony T, D.T.; Puradwi IW; Sugiyanto; Giarno

    2003-01-01

    A preliminary study related to utilization of probabilistic method in non-nuclear industry facilities has been conducted The study has been performed by examining literature studies and results of research paper related to the topic. The objective of this study is to know how far the method, which is a standard in the nuclear industry, is applied in the non-nuclear fields. The PSA application in the non-nuclear process industry is mainly performed as risk management. The concept of risk management enables a systematic and realistic framework to be established for accident prevention as a whole process of hazard identification, risk estimation, risk evaluation, control measures establishment, its implementation. The most important part of this study is indeed the hazard identification and risk estimation in order to assess the consequences and to estimate event probability. The risk assessment methodology, which is also used in the probabilistic assessment of nuclear and non-nuclear industry, is performed both quantitatively and qualitatively approached by several technique analysis. Based on literature and research paper study, there are 3 main technique analysis, which can be applied in the risk management of non-nuclear industry, which are fault tree analysis (FTA), event tree analysis (ETA), and Hazard and Operability Studies (HAZOPS). The potential hazard arise in the non-nuclear process industry are flammability hazard; toxicity hazard; reactivity hazard; and elevated pressure hazard The fault tree analysis has been practically applied in the petroleum industry, chemical industry, and also other industry for improvement of safety installation by modification in the installation design or operation procedures. The event tree analysis has been applied only limited in the chemical process industry or other process industry. On the other application, HAZOPS technique can be combined with the event tree analysis with approach of accident scenario identification

  7. Experience in the application of nuclear energy for desalination and industrial use in Kazakhstan

    International Nuclear Information System (INIS)

    Muralev, E.D.

    1998-01-01

    Key design features of the Aktau complex in Kazakhstan with a 1000 MWth fast breeder nuclear reactor are outlined. The experience gained over 20 years of operation and maintenance is briefed. The water costs, the impact on the environment and the water and steam quality have confirmed the efficiency and the reliability of nuclear energy application for seawater desalination and industrial use. (author)

  8. Development of laser application technologies for nuclear industry

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Rhee, Y.; Cha, B. H.

    2004-03-01

    The stable laser isotope facility will supply raw stable isotope material to produce radioisotope elements for medical and industrial applications. The medical stable isotope, Tl-203 was separated by the isotope selective optical pumping (ISOP) method native to the laboratory for quantum optics, KAERI. The extraction rate of 10 mg/hr was achieved from the separation chamber of 80cm x 80cm x 100cm dimension. The Yb-168 separation facility was improved in stability, durability, and efficiency. The old copper vapor pumping laser system was replaced with two 40W green DPSSL's. The tunable dye laser system was also improved in stability. The extraction rate was measured as 1.5 mg/hr in the improved system. The 200W infrared DPSSL system was also developed and used for photoionization of thallium isotopes. The adaptive optics and beam path control system was applied to the isotope separation facilities. Also the beam quality of the lasers was monitored and improved. To maintain constant isotope composition during reaction process, the wavelengths of tunable lasers are locked by being the mass composition information fed back into the oscillator control unit of the lasers. To optimize isotope separation process timely, the extractor surface is directly analyzed by laser irradiation and TOF mass spectrometer. And the final products in high purity is recovered in maximum by solution chemistry

  9. Some applications of nuclear techniques in the petroleum industry

    International Nuclear Information System (INIS)

    Moreira, Rubens Martins; Castro, Jose Olympio Nardelli Monteiro de; Nadvorny, Jerson; Melo, Maria Aparecida de; Lemos, Walter Petroni

    1995-01-01

    This paper presents some studies carried out jointly by Petroleo Brasileiro S.A. - PETROBRAS and Centro de Desenvolvimento da Tecnologia Nuclear - CDTN, of the Comissao Nacional de Energia Nuclear - CNEN, using radioactive tracers in secondary oil recovery operations as well as in process studies of fluidized catalyst cracking units. Some features of tracer selection and radiological safety are discussed. Preliminary results of laboratory and field work are presented. (author). 5 refs., 4 figs., 1 tab

  10. Artificial intelligence and applications relevant to nuclear industries

    International Nuclear Information System (INIS)

    Haridasan, G.; Das, Debashis

    1987-01-01

    Possible areas of application of artificial intelligence systems such as machine vision systems and expert systems are indicated. The work underway in this field at the Bhabha Atomic Research Centre, Bombay is briefly mentioned. (M.G.B.)

  11. The application of nuclear equipment to measurement and control in the steel industry

    International Nuclear Information System (INIS)

    Van Schalkwyk, J.

    1976-01-01

    In this paper, some of the reasons for utilising equipment which makes use of nuclear radiation for the control of processes in the steel industry will be discussed. Two applications will be analysed to demonstrate the reasoning and to highlight some of the factors and principles [af

  12. Human performance improvement in organizations: Potential application for the nuclear industry

    International Nuclear Information System (INIS)

    2005-11-01

    This publication is primarily intended for managers and specialists in nuclear facility operating organizations working in the area of human performance improvement. It is intended to provide them with practical information they can use to improve human performance in their organizations. While some of the information provided in this publication is based upon the experience of nuclear facility operating organizations, most of it comes from human performance improvement initiatives in non-nuclear organizations and industries. The nuclear industry has a long tradition of sharing good management practices in order to foster continuous improvement. However, it is not always realized that many of the practices that are now well established initially came from non-nuclear industries and were subsequently adapted for application to nuclear power plant operating organizations. There is, therefore, good reason to periodically review non-nuclear industry practices for ideas that might have direct or indirect application to the nuclear industry in order to potentially gain benefits such as the following: new approaches to certain problem areas, insights into new or impending challenges, improvements in existing practices, benchmarking of opportunities, development of learning organizations and avoidance of collective blind spots. The preparation of this report was an activity of the project on Effective Training to Achieve Excellence in the Performance of NPP Personnel. The objective of this project is to enhance the capability of Member States to utilize proven practices developed and transferred by the IAEA for improving personnel performance. The expected outcome from this project is the increased use by organizations in Members States of proven engineering and management practices and methodologies developed and transferred by the IAEA to improve personnel performance

  13. Industrial applications and metallurgy

    International Nuclear Information System (INIS)

    Torres M, N.; Melendrez C, G.; Morales, F.L.

    1989-01-01

    From 1961 the use of nuclear energy in the industrial field in Colombia has a big advance. Today nuclear isotopes are used by private companies in this kind of application the Area of Industrial Applications and Metallurgy was the institution section that has trained and has transferred the technology needed for this purpose

  14. Handbook of software quality assurance techniques applicable to the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, J.L.; Wilburn, N.P.

    1987-08-01

    Pacific Northwest Laboratory is conducting a research project to recommend good engineering practices in the application of 10 CFR 50, Appendix B requirements to assure quality in the development and use of computer software for the design and operation of nuclear power plants for NRC and industry. This handbook defines the content of a software quality assurance program by enumerating the techniques applicable. Definitions, descriptions, and references where further information may be obtained are provided for each topic.

  15. Handbook of software quality assurance techniques applicable to the nuclear industry

    International Nuclear Information System (INIS)

    Bryant, J.L.; Wilburn, N.P.

    1987-08-01

    Pacific Northwest Laboratory is conducting a research project to recommend good engineering practices in the application of 10 CFR 50, Appendix B requirements to assure quality in the development and use of computer software for the design and operation of nuclear power plants for NRC and industry. This handbook defines the content of a software quality assurance program by enumerating the techniques applicable. Definitions, descriptions, and references where further information may be obtained are provided for each topic

  16. Industrial and environmental applications of nuclear analytical techniques. Report of a workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    The IAEA has programme the utilisation of nuclear analytical techniques (NATs), in particular for industrial and environmental applications. A major purpose is to help the developing Member States apply their analytical capabilities optimally for socio-economic progress and development. A large number of institutions in Europe, Africa, Latin America and Asia have established X ray fluorescence (XRF) and gamma ray measurement techniques and facilities for neutron activation analysis (NAA) have been initiated in institutions in these regions. Moreover, there is a growing interest among many institutes in applying more advanced analytical techniques, such as particle induced X ray emission (PIXE) and microanalytical techniques based on X ray emission induced by conventional sources or synchrotron radiation to the analysis of environmental and biological materials and industrial products. In order to define new areas of application of NATs and to extend the range of these techniques, a number of initiatives have recently been taken. It includes a workshop on industrial and environmental applications of nuclear analytical techniques, organized by the IAEA in Vienna, 7-11 September 1998. The main objectives of the workshop were as follows: (1) to review recent applications of NATs in industrial and environmental studies; (2) to identify emerging trends in methodologies and applications of NATs; (3) to demonstrate analytical capabilities of selected NATs. The following topics were reviewed during the workshop: (1) XRF and accelerator based analytical techniques; (2) portable XRF systems and their applications in industry, mineral prospecting and processing, (3) portable gamma ray spectrometers; and (4) NAA and its applications in industry and environmental studies. Micro-XRF and micro-PIXE methods and their applications in the above fields were also discussed, including aspects of synchrotron radiation induced X ray emission.

  17. Industrial and environmental applications of nuclear analytical techniques. Report of a workshop

    International Nuclear Information System (INIS)

    1999-11-01

    The IAEA has programme the utilisation of nuclear analytical techniques (NATs), in particular for industrial and environmental applications. A major purpose is to help the developing Member States apply their analytical capabilities optimally for socio-economic progress and development. A large number of institutions in Europe, Africa, Latin America and Asia have established X ray fluorescence (XRF) and gamma ray measurement techniques and facilities for neutron activation analysis (NAA) have been initiated in institutions in these regions. Moreover, there is a growing interest among many institutes in applying more advanced analytical techniques, such as particle induced X ray emission (PIXE) and microanalytical techniques based on X ray emission induced by conventional sources or synchrotron radiation to the analysis of environmental and biological materials and industrial products. In order to define new areas of application of NATs and to extend the range of these techniques, a number of initiatives have recently been taken. It includes a workshop on industrial and environmental applications of nuclear analytical techniques, organized by the IAEA in Vienna, 7-11 September 1998. The main objectives of the workshop were as follows: (1) to review recent applications of NATs in industrial and environmental studies; (2) to identify emerging trends in methodologies and applications of NATs; (3) to demonstrate analytical capabilities of selected NATs. The following topics were reviewed during the workshop: (1) XRF and accelerator based analytical techniques; (2) portable XRF systems and their applications in industry, mineral prospecting and processing, (3) portable gamma ray spectrometers; and (4) NAA and its applications in industry and environmental studies. Micro-XRF and micro-PIXE methods and their applications in the above fields were also discussed, including aspects of synchrotron radiation induced X ray emission

  18. Proceedings of the workshop cum symposium on applications of neural networks in nuclear science and industry

    International Nuclear Information System (INIS)

    1993-01-01

    The Workshop cum Symposium on Application of Neural Networks in Nuclear Science and Industry was held at Bombay during November 24-26. 1993. The past decade has seen many important advances in the design and technology of artificial neural networks in research and industry. Neural networks is an interdisciplinary field covering a broad spectrum of applications in surveillance, diagnosis of nuclear power plants, nuclear spectroscopy, speech and written text recognition, robotic control, signal processing etc. The objective of the symposium was to promote awareness of advances in neural network research and applications. It was also aimed at conducting the review of the present status and giving direction for future technological developments. Contributed papers have been organized into the following groups: a) neural network architectures, learning algorithms and modelling, b) computer vision and image processing, c) signal processing, d) neural networks and fuzzy systems, e) nuclear applications and f) neural networks and allied applications. Papers relevant to INIS are indexed separately. (M.K.V.)

  19. Environmental influence on the usage of adhesive single lap joints in nuclear industry applications

    International Nuclear Information System (INIS)

    Amorim, Felipe do C.; Reis, João M.L. dos; Souza, João F.B. de; Costa, Gilberto T. de P.; Moura, Jorge C. de; Universidade Federal Fluminense; Comissao Nacional de Energia Nuclear

    2017-01-01

    Despite of some polymeric compounds vulnerability to different types of radiation, high polymer, as epoxy adhesives, had prospered in the nuclear industry because their mechanical properties to high doses of ionizing radiation is maintained. Because of this, epoxy adhesives are widely used in nuclear applications: nuclear power plants, aerospace components, radioactive sealed sources to medicine, radioactive waste immobilization. In the present work, the performance of a diglycidyl ether of bisphenol ether A (DGEBA) was analyzed. Tensile tests of adhesive single lap joints bonded with epoxy were performed. The environmental effect of ultraviolet (UV) exposure was observed in the mechanical reaction of PolyAnchor 4100 HT. In particular, maximum load decreases slightly in aggressive environment. It is possible to conclude the material is proper to use in internal and external areas, mainly due to the easy application when compared to welded joints with similar strength. The easy application reduces the workers exposure time to ionizing radiation. (author)

  20. Environmental influence on the usage of adhesive single lap joints in nuclear industry applications

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Felipe do C.; Reis, João M.L. dos; Souza, João F.B. de; Costa, Gilberto T. de P.; Moura, Jorge C. de, E-mail: felipe.amorim@cefet-rj.br, E-mail: jreis@id.uff.br, E-mail: joaofellipe@id.uff.br, E-mail: gilberto.costa@cnen.gov.br, E-mail: jcmoura@cnen.gov.br [Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET-RJ), Itaguai, RJ (Brazil). Departamento de Engenharia Mecanica; Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Laboratorio de Mecania Teorica e Aplicada; Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Divisão de Controle de Rejeitos e Transporte de Materiais Radioativos

    2017-07-01

    Despite of some polymeric compounds vulnerability to different types of radiation, high polymer, as epoxy adhesives, had prospered in the nuclear industry because their mechanical properties to high doses of ionizing radiation is maintained. Because of this, epoxy adhesives are widely used in nuclear applications: nuclear power plants, aerospace components, radioactive sealed sources to medicine, radioactive waste immobilization. In the present work, the performance of a diglycidyl ether of bisphenol ether A (DGEBA) was analyzed. Tensile tests of adhesive single lap joints bonded with epoxy were performed. The environmental effect of ultraviolet (UV) exposure was observed in the mechanical reaction of PolyAnchor 4100 HT. In particular, maximum load decreases slightly in aggressive environment. It is possible to conclude the material is proper to use in internal and external areas, mainly due to the easy application when compared to welded joints with similar strength. The easy application reduces the workers exposure time to ionizing radiation. (author)

  1. Application and development of peer review in China's nuclear power industry

    International Nuclear Information System (INIS)

    Huang Ping

    2014-01-01

    Peer review is one of the scientific methods and tools in management, which plays an active role in promoting and improving the performance of safe operation and management level of nuclear power plants. Peer review of nuclear power is not only comprehensively popularized and applied in China, but it is also innovated and developed in industry at all levels in recent years. In this paper, with the CNNC's relevant practice as main line, a variety of accepted peer review methods both at home and abroad were compared and analyzed, and the current application and development of peer review in China's nuclear power industry were described, as well as some suggestions for improvement were put forward to share with our craft brothers. (author)

  2. Process industry properties in nuclear industry

    International Nuclear Information System (INIS)

    Zheng Hualing

    2005-01-01

    In this article the writer has described the definition of process industry, expounded the fact classifying nuclear industry as process industry, compared the differences between process industry and discrete industry, analysed process industry properties in nuclear industry and their important impact, and proposed enhancing research work on regularity of process industry in nuclear industry. (authors)

  3. Solid state nuclear track detectors and their application in industrial health, radiological and environmental protection

    International Nuclear Information System (INIS)

    Urban, M.

    1993-09-01

    Passive Solid State Nuclear Track Detectors are electrically non conductive solids, mainly used for the registration of α-particles and neutron induced recoils. The stability of the particle tracks in the solid allow longer integration periods, what is essential for the measurement of small, time variant radiation exposures. This report gives an overview on non-photographic track detectors, their processing, dosimetric properties and examples for their application in industrial health, radiological and environmental protection. (orig.) [de

  4. High power CO2 lasers and their applications in nuclear industry

    International Nuclear Information System (INIS)

    Nath, A.K.

    2002-01-01

    Carbon dioxide laser is one of the most popular lasers in industry for material processing applications. It has very high power capability and high efficiency, can be operated in continuous wave (CW), modulated and pulsed modes, and has relatively low cost. Due to these characteristics high power CO 2 lasers are being used worldwide in different industries for a wide variety of materials processing operations. In nuclear industry, CO 2 laser has made its way in many applications. Some of the tasks performed by multikilowatt CO 2 laser are cutting operations necessary to remove unprocessible hardware from reactor fuel assemblies, sealing/fixing/removing radioactive contaminations onto/from concrete surfaces and surface modification of engineering components for improved surface mechanical and metallurgical characteristics. We have developed various models of CW CO 2 lasers of power up to 12 kW and a high repetitive rate TEA (Transversely Excited Atmospheric pressure) CO 2 laser of 500 W average power operating at 500 Hz repetition rates. We have carried many materials processing applications of direct relevance to DAE. Recent work includes laser welding of end plug PFBR fuel tubes, martensitic stainless steel and titanium alloy, surface cladding of turbine blades made of Ni-super alloy with stellite 694, fabrication on graded material of stainless steel and stellite, and laser scabbling, drilling and cutting of concrete which have potential application in decontamination and decommissioning of nuclear facilities. A brief overview of these indigenous developments will be presented. (author)

  5. Non-electric applications of nuclear power: Seawater desalination, hydrogen production and other industrial applications. Proceedings of an international conference

    International Nuclear Information System (INIS)

    2009-01-01

    Today, nuclear power plants contribute about 16% to the world's electricity generation. Because electricity represents less than one third of the primary energy uses, nuclear energy provides only about 6% of total energy consumption in the world. If nuclear energy were used for purposes other than electricity generation, it could play a more significant role in global energy supply. This could have also a significant impact on global goals for reduced greenhouse gas emissions for a cleaner environment. Nuclear power is the only large-scale carbon-free energy source that, in the near and medium term, has the potential to significantly displace limited and uncertain fossil fuels. To do this, however, nuclear power must move beyond its historical role as solely a producer of electricity to other non-electric applications. These applications include seawater desalination, district heating, heat for industrial processes, and electricity and heat for hydrogen production among others. These applications have tremendous potential in ensuring future worldwide energy and water security for sustainable development. In recent years, various agencies involved in nuclear energy development programmes have carried out studies on non-electric applications of nuclear power and useful reports have been published. The IAEA launched a programme on co-generation applications in the 1990's in which a number of Member States have been and continue to be actively involved. This programme, however is primarily concerned with seawater desalination, and district and process heating, utilizing the existing reactors as a source of heat and electricity. In recent years the scope of the Agency's programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. OECD/NEA (OECD Nuclear Energy Agency), EURATOM (European Atomic Energy Community) and GIF (Generation IV International Forum) have also evinced

  6. State-of-the-art of applications of neural networks in the nuclear industry

    International Nuclear Information System (INIS)

    Zwingelstein, G.; Masson, M.H.

    1990-01-01

    Artificial neural net models have been extensively studied for many years in various laboratories to try to simulate with computer programs the human brain performances. The first applications were developed in the fields of speech and image recognition. The aims of these studies were mainly to classify rapidly patterns corrupted by noises or partly missing. Neural networks with the development of new net topologies and algorithms and parallel computing hardwares and softwares are to-day very promising for applications in many industries. In the introduction, this paper presents the anticipated benefits of the uses of neural networks for industrial applications. Then a brief overview of the main neural networks is provided. Finally a short review of neural networks applications in the nuclear industry is given. It covers domains such as: predictive maintenance for vibratory surveillance of rotating machinery, signal processing, operator guidance and eddy current inspection. In conclusion recommendations are made to use with efficiency neural networks for practical applications. In particular the need for supercomputing will be pinpointed. (author)

  7. Radiological surveillance employed at industrial application in a nuclear research centre

    International Nuclear Information System (INIS)

    Sanches, M.P.; Sordi, G.M.; Sahyun, A.; Rodrigues, D.L.

    1996-01-01

    The monitoring and dosimetry systems used at Industrial Application and Engineering Service Department of the Instituto de Pesquisas Energeticas e Nucleares of the Brazilian Nuclear Energy Commission (GE-IPEN-CNEN/SP) are analyzed,in order to verify the compliance with the condition established by the dose system limitation and the basic radiation protection standards. The criteria about the use of individual dosimetry for persons that work in these facilities are established. In case of an external radiation dosimetry, by using film badge method, a level of 200μGy has been assigned, considering the detection significant threshold. For dose in air due to electromagnetic radiation, using TLD dosimetry of CaSO 4 :Dy a quarter year significant threshold is 101μGy. A symbiosis between the workplace monitoring and the individual monitoring became necessary for optimization purpose. (authors). 5 refs., 2 tabs., 1 fig

  8. Responsability of nuclear industry

    International Nuclear Information System (INIS)

    Cadiz Deleito, J.C.

    1985-01-01

    Since the beginning of nuclear industry, civil responsibility with damages to the public health and properties was a critical problem, because the special conditions of this industry (nuclear accident, damages could be very high but probability of these events is very low). Legal precepts, universally accepted, in the first 60 years for all countries interested in nuclear energy are being revised, then 20 years of experience. The civil responsibility limited is being questioned and indemnities updated. (author)

  9. Spanish nuclear industry

    International Nuclear Information System (INIS)

    1994-01-01

    In this book published to commemorate the twentieth anniversary of the Spanish Nuclear Society, it is included a report on the Spanish Nuclear Industry. The Spanish Companies and Organizations in nuclear world are: CIEMAT, Empresarios Agrupados, ENRESA, ENUSA, ENDESA, Grupo Iberdrola, LAINSA, INITEC AND TECNATOM. Activities, history and research programs of each of them are included

  10. Spain's nuclear components industry

    International Nuclear Information System (INIS)

    Kaibel, E.

    1985-01-01

    Spanish industrial participation in supply of components for nuclear power plants has grown steadily over the last fifteen years. The share of Spanish companies in work for the five second generation nuclear power plants increased to 50% of total capital investments. The necessity to maintain Spanish technology and production in the nuclear field is emphasized

  11. Nuclear industry technology boomerang

    International Nuclear Information System (INIS)

    Scholler, R.W.

    1987-01-01

    The benefits to the medical, pharmaceutical, semiconductor, computer, video, bioscience, laser, defense, and numerous high-tech industries from nuclear technology development fallout are indeed numerous and increase every day. Now those industries have made further progress and improvements that, in return, benefit the nuclear industry. The clean-air and particle-free devices and enclosures needed for protection and decontamination are excellent examples

  12. Nuclear Technology applications

    International Nuclear Information System (INIS)

    Cibils Machado, W. E- mail: wrcibils@adinet.com.uy

    2002-01-01

    The present work tries on the applications of the nuclear technology in the life daily, such as agriculture and feeding, human health, industry, non destructive essays, isotopic hydrology, and the nuclear power stations for electricity production and radioisotopes production

  13. Nuclear power industry

    International Nuclear Information System (INIS)

    1999-01-01

    This press dossier presented in Shanghai (China) in April 1999, describes first the activities of the Framatome group in the people's republic of China with a short presentation of the Daya Bay power plant and of the future Ling Ao project, and with a description of the technological cooperation with China in the nuclear domain (technology transfers, nuclear fuels) and in other industrial domains (mechanics, oil and gas, connectors, food and agriculture, paper industry etc..). The general activities of the Framatome group in the domain of energy (nuclear realizations in France, EPR project, export activities, nuclear services, nuclear fuels, nuclear equipments, industrial equipments) and of connectors engineering are presented in a second and third part with the 1998 performances. (J.S.)

  14. Impact of the Application of Exemption Regulation to the Non-nuclear Industry in Indonesia

    International Nuclear Information System (INIS)

    Eri-Hiswara

    2001-01-01

    Nuclear Energy Control Board (BAPETEN) as a nuclear regulatory authority in Indonesia has published the exemption regulation that establishes the value of activity, activity concentration, and dose rate for practices that their operations do not require a licence. From an assessment it was found that the value of activity concentration and dose rate have been exceeded by technologically enhanced naturally occurring radioactive materials (TENORM) present in the raw material and product/waste of some mining and mineral industries known so far as non-nuclear industry. The result has the impact that those industries should be categorized as nuclear industry, with the implication that they need to have licence from regulatory authority, and their activities need to be inspected regularly from the radiation safety point of view by the authority. (author)

  15. Nuclear techniques in industry

    International Nuclear Information System (INIS)

    Hammad, F.H.

    1994-01-01

    Nuclear techniques are utilized in almost every industry. The discussion in this paper includes discussions on tracer methods and uses nucleonic control systems technology; non-destructive testing techniques and radiation technology. 1 fig., 2 tabs

  16. MHD pilot industrial applications

    International Nuclear Information System (INIS)

    Freeman, M.; Riviere-Wekstein, G.

    1994-01-01

    MHD industrial applications (and their historical developments) are sketched in the fields of nuclear fission, nuclear fusion and marine vehicles propelling. Nuclear fission projects resulted in promising prototypes between 1972 and 1980, especially for liquid-metal MHD generators. All of them have been stopped by the scientific policies of the governments. Nuclear fusion projects used mainly the equilibrium plasma of tokamak type reactors; some military projects used pulsed plasma to perform pulsed MHD generators. Marine vehicle propelling is the most advanced field. By june 1992, the japanese sea-going boat 'Yamato 1' was sailing with two MHD propellers. A few months later, the building of 'Yamato 2' has begun

  17. Nuclear industry chart

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    As part of a survey on Switzerland a pull-out organisation chart is presented of the nuclear industry showing Swiss government bodies and industrial concerns. Their interests, connections with each other and their associations with international and other national organizations and firms are indicated. (U.K.)

  18. Survey of past base isolation applications in nuclear power plants and challenges to industry/regulatory acceptance

    International Nuclear Information System (INIS)

    Malushte, S.R.; Whittaker, A.S.

    2005-01-01

    Seismic base isolation provides many benefits that can facilitate the standardization of future nuclear power plant structures and equipment while reducing the initial/life-cycle cost and construction schedule. This paper presents a survey of past seismic base isolation applications and studies related to nuclear applications and provides a discussion of the challenges that need to be overcome to gain industry and regulatory acceptance for deployment in future US nuclear power plants. Issues related to design, codes/standards/regulations, procurement, and construction, have been identified. (authors)

  19. Nuclear industry and territories

    International Nuclear Information System (INIS)

    Le Ngoc, B.

    2016-01-01

    Nuclear industry being composed of plants, laboratories, nuclear power stations, uranium mines, power lines and fluxes of materials from one facility to another is a strong shaper of the national territory. Contrary to other European countries, French nuclear industry is present all over the national territory. In 64 departments out of 101 there is at least one enterprise whose half of the revenues depends on nuclear activities. The advantage of such a geographical dispersion is when a nuclear activity is given up the social impact is less important: people tend to find a new job in the same region. French Nuclear power plants are generally set in remote places where population density is low and being the first employer by far of the area and being a major contributor to the city revenues, they are perceived as a key element the local population is proud of. In Germany, nuclear power plants are set inside dense industrial regions and appear as an industry just like any other.(A.C.)

  20. Environmental management in nuclear industry

    International Nuclear Information System (INIS)

    Pillai, K.C.; Bhat, I.S.

    1988-01-01

    Safety of the environment is given due attention right at the design state of nuclear energy installations. Besides this engineered safety environmental protection measures are taken on (a) site selection criteria (b) waste management practices (c) prescribing dose limits for the public (d) having intensive environmental surveillance programme and (e) emergency preparedness. The paper enumerates the application of these protection measures in the environmental management to make the nuclear industry as an example to follow in the goal of environmental safety. (author)

  1. The application of nuclear energy to the Canadian chemical process industry

    International Nuclear Information System (INIS)

    Robertson, R.F.S.

    1976-03-01

    A study has been made to determine what role nuclear energy, either electrical or thermal, could play in the Canadian chemical process industry. The study was restricted to current-scale CANDU type power reactors. It is concluded that the scale of operation of the chemical industry is rarely large enough to use blocks of electrical power (e) of 500 MW or thermal power (t) of 1500 MW. Thus, with a few predictable exceptions, the role of nuclear energy in the Canadian chemical industry will be as a general thermal/electrical utility supplier, serving a variety of customers in a particular geographic area. This picture would change if nuclear steam generators of 20 to 50 MW(t) become available and are economically competitive. (author)

  2. Nuclear power industry, 1981

    International Nuclear Information System (INIS)

    1981-12-01

    The intent of this publication is to provide a single volume of resource material that offers a timely, comprehensive view of the nuclear option. Chapter 1 discusses the development of commercial nuclear power from a historical perspective, reviewing the factors and events that have and will influence its progress. Chapters 2 through 5 discuss in detail the nuclear powerplant and its supporting fuel cycle, including various aspects of each element from fuel supply to waste management. Additional dimension is brought to the discussion by Chapters 6 and 7, which cover the Federal regulation of nuclear power and the nuclear export industry. This vast body of thoroughly documented information offers the reader a useful tool in evaluating the record and potential of nuclear energy in the United States

  3. Applications of nuclear physics

    Science.gov (United States)

    Hayes, A. C.

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  4. Applications of nuclear physics

    International Nuclear Information System (INIS)

    Hayes-Sterbenz, Anna Catherine

    2017-01-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  5. Industrial nuclear property

    International Nuclear Information System (INIS)

    Lepetre, M.

    1976-01-01

    The first requests for patents for the use of nuclear power filed in France in 1939. This paper reviews the regulations on industrial nuclear property in various countries. The patenting system in several socialist countries is characterized by the fact that inventions on the production and use of radioactive materials may not be patented. This equally applies in India. In the United States, this type of invention may be patented except for those involving military uses and which must be notified to the federal authorities. In France, all industrial nuclear property is grouped under the same body, Brevatome, created in 1958, which enables the allocation of rights to be negotiated between the different interested parties, the Atomic Energy Commission (CEA), Electricite de France (EDF) and private industry. Under the Euratom Treaty, all inventions, even those governed by secrecy in Member countries, must be communicated to the Commission of the European Communities. (NEA) [fr

  6. The development of computer industry and applications of its relevant techniques in nuclear research laboratories

    International Nuclear Information System (INIS)

    Dai Guiliang

    1988-01-01

    The increasing needs for computers in the area of nuclear science and technology are described. The current status of commerical availabe computer products of different scale in world market are briefly reviewed. A survey of some noticeable techniques is given from the view point of computer applications in nuclear science research laboratories

  7. Porous Metal Filters for Gas and Liquid Applications in the Nuclear Industry

    International Nuclear Information System (INIS)

    Kenneth, Rubow

    2009-01-01

    Sintered metal media are ideally suited for use in the most demanding industrial applications where long life is required and often other media are not cost-effective solution. As examples, filtration technology utilizing sintered metal media provides excellent performance in numerous liquid/solids and gas/solid separation applications found in the handling and processing of fluids containing radioactive materials. Many types of filter media, ranging from single use (disposable) to semi-permanent, are utilized today for separation of particulate matter. However, semi-permanent media are usually cleanable, either on or off-line, and are intended for sustainable, often multi-year, operating life in harsh environments. These harsh environments, which may involve corrosive fluids, high temperatures, high pressures or pressure spikes, often requiring continuous filtration service, are ideally suited for all-metal filtration systems employing semi-permanent sintered metal media. Sintered metal media, usually fabricated into tubular metal elements, have proven high particle removal efficiency and demonstrated reliability that uniquely afford excellent performance for demanding liquid/solids and gas/solids separation processes. The filter element and, in certain cases, the entire filter are weldable; therefore, the inherent sealing eliminates the need for potentially problematic seals. These media provide a positive barrier to ensure particulate removal to protect downstream equipment, for product separation, and/or to meet health, safety and environmental regulations. Typical applications for sintered metal media include: 1) gas and liquid filter systems used in various nuclear and radioactive waste processing applications, 2) an all-metal High Efficiency Particulate Air (HEPA) filter developed under Department of Energy (DOE) funding as an alternative to traditional HEPA filters fabricated with conventional glass fibers used on High Level Waste (HLW) tank ventilation

  8. Nuclear Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Cong, W., E-mail: eweike@263.net.cn [Bureau of Geology, China National Nuclear Corporation, Beijing (China)

    2014-05-15

    The paper presents an overview of the present situation and future plans for the development of nuclear power in China. In particular it looks at the present electricity generation system, future demand and plans for nuclear power plants to meet the increasing demands for electrical power in the country. It summarizes the state of uranium exploration activities and planned production of uranium resources, both nationally and internationally. In addition, it provides a brief overview of the existing administrative situation in the nuclear power industry in China and sets out the main challenges to future development. (author)

  9. Nuclear weapons industry

    International Nuclear Information System (INIS)

    Bertsch, K.A.; Shaw, L.S.

    1984-01-01

    This unique study was written specifically as a reference source for institutional investors concerned about the threat posed to their stock portfolios by the debate over nuclear arms production. The authors focus their analysis on the 26 leading companies in the field. The perspective is neutral and refreshing. Background information on strategic policy, arms control and disarmament, and the influence of the industry on defense policy and the economy is presented rationally. The study also discusses the economic significance of both the conversion from military to civilian production and nuclear freeze initiatives. An appendix contains a fact-filled guide to nuclear weapon systems

  10. Some developments and applications of LES of single phase turbulent flows for nuclear industry

    International Nuclear Information System (INIS)

    Frederic Ducros; Valerie Barthel; Ulrich Bieder; Alexandre Chatelain; Younes Benarafa; Olivier Cioni; Gauthier Fauchet; Philippe Emonot; Patrick Quemere; Bernard Menant; Nicolas Tauveron; Simone Vandroux; Christophe Calvin

    2005-01-01

    Full text of publication follows: The turbulence modelling is an important issue concerning the predictive capability of the CFD codes applied to nuclear reactor safety (NRS), in particular for single-phase flows. Common features of these unsteady high Reynolds number turbulent flows are various regimes (laminar, transitional, fully turbulent) developing in arbitrary complex geometries involving a large extend of standard flow configurations (attached and detached boundary layers, mixing layers, jets in cavity, in cross flows, jet impingement) eventually submitted to buoyancy forces, to dilatation effects and leading to mixing of constituents and temperatures. NRS issues are most of the time related to the eventual knowledge of parietal quantities such as temperature (mean and fluctuating), leading to consider the wall region as a crucial one and to deal with coupled problems. All these features can lead to consider different approaches for turbulence modelling: more or less standard 'Reynolds Average Navier-Stokes equations' closures, Large Eddy Simulations, both of them considered with or without wall functions, with or without large implicit time stepping etc. The development and industrialization of LES as a target of providing 'reference simulations' for NRS are parts of the Trio-U project, developed at CEA for several years [1]. First, the paper presents the current status of LES implementation and some insights on the R and D effort concerning the turbulence modelling. The R and D strategy will be introduced as a result of both the extra-nuclear community know-how on LES and several years of applications of LES for nuclear issues at CEA. It will be shown that LES can be considered as a good candidate to deal with the previous mentioned issues. A large emphasis will be devoted to the R and D on approximate wall conditions, including first the checking of the consistency of standard and advanced wall conditions with LES approach, second specific works dealing

  11. Industrial nuclear gauges

    International Nuclear Information System (INIS)

    Bennerstedt, T.

    1986-01-01

    A great number of industrial nuclear gauges are used in Sweden. The administrative routines for testing, approval and licensing are briefly described. Safety standards, including basic ICRP criteria, are summarized and a theoretical background to the various measuring techniques is given. Numerous practical examples are given. (author)

  12. Industry plots nuclear revival

    International Nuclear Information System (INIS)

    Nogee, A.

    1984-01-01

    A successful revival of the nuclear power industry will require standardization and a reduction in the number of companies managing construction, according to Atomic Industrial Forum spokesmen. In describing the concept of a few superutilities to build nuclear plants, they emphasize the need for a nuclear culture among construction management. Future plant designs emphasize small scale, with design, engineering, licensing, financing, operator training, and paperwork completed before the sale. Utilities continue to pursue economy-of-scale despite the evidence that small-scale reactors can be economical and are more appropriate for fluctuating demand growth. Financiers want more say in construction plans in the future, while utilities want to establish generating subsidiaries for wholesale power sales

  13. Industrial applications at GANIL

    International Nuclear Information System (INIS)

    Delagrange, H.

    1993-01-01

    After a first round of industrial applications using heavy ion beams, GANIL has refocused these activities along the lines defined by a strategy and market study. Heavy ion industrial applications take their roots in the physical effects of the interactions occurring between heavy ion projectiles and matter. Specific equipments operated by GANIL or CIRIL allow users to take benefit from these effects. By heavy ion irradiation, industrial companies qualify radiation hardened electronic components and sensitize plastic films to produce 'nuclear track' membranes. Research and development programs with laboratories of the public sector, focus on heavy ion lithography dedicated to large area luminescent flat screens with field emitter microtips and on tribology with radioactive implanted ions. Even sometimes facing difficulties to fill the gap between industry and research, GANIL is eager to promote heavy ion beam technologies. (author) 36 refs., 6 figs., 5 tabs

  14. Applications of artificial intelligence in the U.S. nuclear industry

    International Nuclear Information System (INIS)

    Uhring, R.E.

    1987-01-01

    In the United States, the introduction of artificial intelligence (AI) into use in the nuclear power field is being carried out by a wide spectrum of organizations (i.e., nuclear equipment vendors, architect-engineer firms, universities, national laboratories, federal agencies, the electric utility industry, and small entrepreneurial groups). The most coherent of these efforts is an Electric Power Research Institute program to demonstrate the usefulness of AI in nuclear power plants (including augmenting plant automation) and an agreement with NASA to transfer the technology of their multi-year AI Core Technology in Systems Autonomy to the nuclear power industry. A few vendors are offering commercial AI products that reduce the burden on reactor operators during both normal and abnormal operation. Several AI programs at universities and national laboratories have automation as their primary focus, and individual AI projects have been initiated under the Small Business Innovative Research Program. The fundamental and synergistic relationship between training and expert systems supports the use of AI in the training of nuclear personnel

  15. Application of radioactive methods for the measurement of physical parameters used in industrial nuclear plants

    International Nuclear Information System (INIS)

    Bignan, G.

    1989-01-01

    The thesis presents the development of non-destructive and non-intrusive assay using source of rays (neutrons or gammas) which is external to the system to characterize (activation methods). They are intended to measure physical values used in industrial nuclear plants (Fissile matter concentration, neutronic multiplicity, presence of heavy nuclei...). The presentation is as follows: - Theoretical study of the suggested methods and development of signal processing to ensure the representativeness of the measurement. - Experimental qualification. - Implantation of these techniques in an industrial context [fr

  16. Application of accelerators in industry, medicine and for environmental research in Almaty Institute of Nuclear Physics

    International Nuclear Information System (INIS)

    Lyssukhin, S.N.; Arzumanov, A.A.

    2001-01-01

    Full text: The Institute of Nuclear Physics in Almaty is the only Kazakhstan institution with a significant activity at the national level in the field of physics of accelerators, their application and associated technology. Three accelerators of different type are being used in the Institute: high power electron beam accelerator, isochronous cyclotron and heavy ion electrostatic tandem. Electron beam accelerator ELV-4 - This high power machine is only electron beam irradiation facility of industrial scale in the Republic. It was produced by Budker Institute of Nuclear Physics, Novosibirsk, Russia and installed in Almaty in 1991 for development of radiation technology in Kazakhstan. The accelerator generates electron beams of following parameters: Energy range (MeV) 1.0-1.5; Max. beam power (kW) 40; Max. beam current (mA) 40. The machine is equipped with beam scanning system, extraction device with output window 980x75 mm 2 and chain conveyer for irradiated material supply. Tn the time being the accelerator is regularly used for radiation cross-linking technology and for sterilization. Cross-linking technology is the base of high quality roof material production for building industry. Raw ethylene-propylene rubber mixture is rolled as strip of 50 m length, 1 m width, 1 mm thickness and then irradiated by dose of about 120 kGy. The final product is waterproof flexible material, very stable in hard atmospheric conditions and non sensitive to sun UV radiation. Sterilization of medical materials and items is not traditional application of such low energy installations but due to uniqueness of this accelerator in Kazakhstan and high actuality of the task for the Republic this technology was developed in INP. Hermetically packed items (medical cotton , bandages, syringes, surgical gloves, small plastic bottles) with thickness less than penetration range of 1.5 MeV electrons are put at the conveyer as mono-layer and irradiated by sterilizing dose of 25 kGy. Isochronous

  17. Nuclear Industry Family Study

    International Nuclear Information System (INIS)

    1993-01-01

    This is a copy of the U.K.A.E.A. Question and Answer brief concerning an epidemiological study entitled the Nuclear Industry Family Study, to investigate the health of children of AEA, AWE, and BNFL Workers. The study is being carried out by an independent team of medical research workers from the London School of Hygiene and Tropical Medicine, and the Imperial Cancer Research Fund. (UK)

  18. News from nuclear industry

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    A cooperation agreement has been signed between Indian and French governments concerning energy and research. This agreement opens the Indian market to Areva for the supply of power reactors. Areva will face Russian and American competitors. Areva is already present in India in the sectors of power transmission and distribution, it employs 3500 people and operates 8 industrial plants. Areva and Northrop Grumman have signed an agreement to build the biggest site on American soil dedicated to the manufacturing of big nuclear components like reactor vessels, steam generators and pressurizers. An opinion poll shows that 78% Americans favor the use of nuclear energy for producing electricity, while 24% are opposed to it and that nuclear power plants are considered safe by 78% of the population. The Areva-Bechtel corporation has signed an agreement with Unistar Nuclear Energy for doing the preliminary studies for the construction of an EPR near the Calvert Cliffs site. More than 500 engineers are working on the project that benefit from the feedback experience of 4 EPR that are presently being built in Finland, France and China. The European Commission wants the European Union to play a major role in nuclear safety, a task group has been created whose purpose is to define new regulations illustrating common priorities and approaches for unifying national nuclear safety standards among the member states. (A.C.)

  19. Nuclear industry almanac v.1

    International Nuclear Information System (INIS)

    Greenhalgh, G.; Jeffs, E.

    1982-01-01

    Nuclear Industry Almanac. National energy profiles of 17 Western European countries are given, concentrating on electricity supply and the role nuclear power plays in meeting the demand for electric power. The nuclear industries of Austria, Belgium, Finland, France, Germany, Italy, the Netherlands, Spain, Sweden, Switzerland and the United Kingdom are described and addresses of establishments and industries are listed. (U.K.)

  20. Nuclear industry and radioecological safety

    International Nuclear Information System (INIS)

    Semenov, V. G.

    2006-01-01

    The beginning of XXI century is marked with increasing public concern over impact of man-made activity, including nuclear technologies, on the environment. Currently, the anthropocentric principle is applied in the course of the radioecological safety guaranteeing for the environment, which postulates that human protectability serves as guarantee of the environmental one. However, this principle correctness is called in question recently. The ecocentric principle is proposed as an alternative doctrine, defining balance between human importance and that of any other elements of biota. The system recommended isn't intended for the regulatory standards development yet, because of substantial gaps in scientific knowledge. Nevertheless, renunciation of the anthropocentric principle can result in unwarranted tightened regulatory basis, decreasing of nuclear industry evolution rates, and, consequently, breaching of societal and economical priorities. It is obvious that for the safety guaranteeing, nuclear industry shouldn't stand out against a background of other fields of human activity involved hazard factors. Therefore, new conceptions applying within the regulatory system is to be weighted and exclude formal using of discussion theses. More than semi-centennial experience of the anthropocentric approach applying serves as an evidence of safe protection of ecosystems against radiation exposure that ensures safe ecological development of nuclear power industry and other fields of nuclear technologies application. (author)

  1. Applications of EPRI database on environmentally assisted cracking in the nuclear industry

    International Nuclear Information System (INIS)

    Rungta, R.; Mindlin, H.; Gilman, J.D.

    1986-01-01

    A computerized database, EPRI Database on Environmentally Assisted Cracking (EDEAC), has been established to assemble stress corrosion cracking (SCC) and corrosion fatigue crack growth data on nuclear power generation industry materials. The database is currently used to review the basis for the existing ASME reference fatigue crack growth curves for low alloy ferritic steels used for reactor pressure vessels. Also, correlations between fatigue crack growth rate and stress intensity factor range with corrections for frequency, stress ratio, and temperature for austenitic stainless steels in air are being developed using the EDEAC

  2. Pumps for nuclear industry

    International Nuclear Information System (INIS)

    Tanguy, L.

    1978-01-01

    In order to meet the requirements of nuclear industry for the transfer of corrosive, toxic, humidity sensitive or very pure gases, different types of pumps were developped and commercialized. Their main characteristics are to prevent pollution of the transfered fluid by avoiding any contact between this fluid and the lubricated parts of the machine, and to prevent a contamination of the atmosphere or of the fluid by a total tightness. Patellar pumps have been particularly developped because the metallic bellows are quite reliable and resistant in this configuration. Two types are described: patellar pumps without friction and barrel pumps whose pistons are provided with rings sliding in the cylinders without lubrication [fr

  3. Nuclear industry will soon surface

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The Japan Atomic Industrial Forum has carried out the annual survey of nuclear industry from the very inception of the development of nuclear power in Japan. The aim is to research and analyze nuclear-related expenditures, sales and manpower, as well as the future prospect of mining and manufacturing industries, electric utilities, trading companies and other related industries. The 19th fact-finding survey investigated into the actual conditions of the nuclear industry from April, 1977, to March, 1978. The number of companies surveyed increased by 75 from the previous year to 1,244, of which 883 or 71% responded to the questions. 501 companies did the business in the field of nuclear power. The first thing to be pointed out about the economic conditions of the nuclear industry is that the nuclear related expenditures increased in electric utilities, mining and manufacturing industries and trading companies, and exceeded 1 trillion yen mark for the first time in the private sector. It is likely that the current nuclear-related activities of mining and manufacturing industries will soon increase, but it will not be easy to wipe off the cumulative deficit of the industries. The employees increased by more than 7% in the nuclear-related sectors of electric utilities and mining and manufacturing industries. The facilities of nuclear supply industry were operated at the average rate of 50%. (Kako, I.)

  4. Application of the nuclear technology in the oil industry in Venezuela

    International Nuclear Information System (INIS)

    Cano, P.M.; Parra, R.E.

    1997-01-01

    Since 1987 the Physics laboratory of the Condensed Matter of the Centre of Physics Venezuelan Institute of Scientific Research, IVIC several diagnostic techniques that, make use of neutrons, gamma rays and radioactive tracers have been developed, they have been oriented mainly towards, the oil industry of Venezuela bout 100 applications have been carried out in the principal enterprises oil refineries and companies crude producing petrochemical in the country. In this presentation are exposed three applications of these techniques. Utilization of neutrons (sources Am241-Be). Utilization of gamma rays and study of radiotracers

  5. Obsolescence in nuclear industry

    International Nuclear Information System (INIS)

    Mondal, U.

    2000-01-01

    Most nuclear plants around the world are roughly 15 to 30 years old. The design and procurement of CANDU plants took place from the late 60's to mid 80's (i.e., 20 to 30 years vintage). Most equipment originally installed in these plants is obsolete or the manufactures are out of business or their production has been discontinued due to technological evolution. In order to maintain operation of nuclear plants with safety integrity and commercial viability, certain spare parts must be available at the plant all the time. The objective of this paper is to identify an optimum, cost-effective approach that solves obsolescence problem efficiently and without duplicating efforts. The Nuclear Utility Obsolescence Group (NUOG) has embarked upon the following major tasks: Developing a Guideline for use by the utilities that addresses obsolescence; Collection of obsolescence data in a database (Web-based) to be shared by all members; Motivation of the suppliers to engage them in obsolescence solutions; Increase in awareness among the utility management to consider obsolescence as a priority issue and allocate funds to address them pro-actively; and Coordination with other industry groups (EPRI, INPO, NEI, BWROG etc.) to avoid duplication of effort in obsolescence resolution process. The NUOG strategy is based upon the principles of sharing. It advocates sharing of obsolescence solutions and concerns among the utilities. Candu Owners Group Inc. (COG) has initiated self-assessment of obsolescence in the members' plants. The purpose of self-assessment is to provide baseline information that would help identification of obsolescence and coordination of their solutions. The following areas are covered in the self-assessment initiative: Identification of obsolete components in selected systems in the plant. Assess effectiveness of the current obsolescence identification process and in resolution of obsolescence Issues in the plant. Identification of common Candu plant design

  6. JAERI 10kW High Power ERL-FEL and Its Applications in Nuclear Energy Industries

    CERN Document Server

    Minehara, E J; Iijima, H; Kikuzawa, N; Nagai, R; Nishimori, N; Nishitani, T; Sawamura, M; Yamauchi, T

    2005-01-01

    The JAERI high power ERL-FEL has been extended to the more powerful and efficient free-electron laser (FEL) than 10kW for nuclear energy industries, and other heavy industries like defense, shipbuilding, chemical industries, environmental sciences, space-debris, and power beaming and so on. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand-alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the ERL-FEL will cover the current status of the 10kW upgrading and its applications of non-thermal peeling, cutting, and drilling to decommission the nuclear power plants, and to demonstrate successfully the proof of principle prevention of cold-worked stress-corrosion cracking failures in nuclear power reactors under routine operation using small cubic low-Carbon stainless steel samples.

  7. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    Science.gov (United States)

    Blink, J.; Farmer, J.; Choi, J.; Saw, C.

    2009-06-01

    Amorphous metal and ceramic thermal spray coatings have been developed with excellent corrosion resistance and neutron absorption. These coatings, with further development, could be cost-effective options to enhance the corrosion resistance of drip shields and waste packages, and limit nuclear criticality in canisters for the transportation, aging, and disposal of spent nuclear fuel. Iron-based amorphous metal formulations with chromium, molybdenum, and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials and their stability at high neutron doses enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for waste package and drip shield applications, although the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas-atomized powders and applied as near full density, nonporous coatings with the high-velocity oxy-fuel process. This article summarizes the performance of these coatings as corrosion-resistant barriers and as neutron absorbers. This article also presents a simple cost model to quantify the economic benefits possible with these new materials.

  8. Atomic nanoscale technology in the nuclear industry

    CERN Document Server

    Woo, Taeho

    2011-01-01

    Developments at the nanoscale are leading to new possibilities and challenges for nuclear applications in areas ranging from medicine to international commerce to atomic power production/waste treatment. Progress in nanotech is helping the nuclear industry slash the cost of energy production. It also continues to improve application reliability and safety measures, which remain a critical concern, especially since the reactor disasters in Japan. Exploring the new wide-ranging landscape of nuclear function, Atomic Nanoscale Technology in the Nuclear Industry details the breakthroughs in nanosca

  9. An industrial application virtual reality. An aid for designing maintenance in nuclear plants

    International Nuclear Information System (INIS)

    Fertey, G.; Thibault, G.; Delpy, T.; Lapierre, M.

    1995-09-01

    This paper shows a use of virtual reality in the industrial context of nuclear plant maintenance. The objective is to build a realistic simulation fool by means of virtual reality techniques. With such a tool, the designer of a maintenance operation can validate tools and sequencing of operations, reduce the time of intervention and minimize the radiation doses received by the operator on site. Several major functionalities have been studied: a navigation in 3D geometries faithfully reproducing terrain, geometries obtained by 3D digitization of installations; an optimized navigation to the intervention sites with both management of obstacles present along the way and room walls and guiding of navigator from one room to another by means of visual indicators (arrows) which he can capture and which virtually carry him; a programming of the environment in keeping with and translating faithfully the breakdown and sequencing of intervention operations; real time information on the surrounding radiation. (author)

  10. Laser-induced time-resolved spectrofluorometry and thermal lensing: applications in the nuclear industry

    International Nuclear Information System (INIS)

    Decambox, P.; Delorme, N.; Mauchien, P.; Moulin, C.

    1989-01-01

    Sensitive spectroscopic methods for the determination of actinides and lanthanides in various media are required in the nuclear industry. Laser-Induced Time-Resolved Spectrofluorometry (LITRS) for several actinides and lanthanides at very low levels and thermal lensing (TL) for oxidation state characterization allow these determinations. The set-up of LITRS is presented. Spectra, limit of detections and lifetimes obtained for U, Cm, Am, Eu, Gd, Tb, Dy, Ce, Sm, Tm are shown. Detection limit as low as 5.10 -12 M can be achieved. Examples of matrices encountered for the determination of uranium are given as well as comparison with mass spectrometry and alpha counting. The set-up of TL and performances obtained on plutonium as well as future developments are presented

  11. Preliminary cost estimating for the nuclear industry

    International Nuclear Information System (INIS)

    Klumpar, I.V.; Soltz, K.M.

    1985-01-01

    The nuclear industry has higher costs for personnel, equipment, construction, and engineering than conventional industry, which means that cost estimation procedures may need adjustment. The authors account for the special technical and labor requirements of the nuclear industry in making adjustments to equipment and installation cost estimations. Using illustrative examples, they show that conventional methods of preliminary cost estimation are flexible enough for application to emerging industries if their cost structure is similar to that of the process industries. If not, modifications can provide enough engineering and cost data for a statistical analysis. 9 references, 14 figures, 4 tables

  12. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    1979-01-01

    These notes have been prepared by the Department of Energy to provide information and to answer questions often raised about nuclear energy and the nuclear industry and in the hope that they will contribute to the public debate about the future of nuclear energy in the UK. The subject is dealt with under the headings; contribution of nuclear power, energy forecasts, nuclear fuels and reactor types, cost, thermal reactor strategy, planning margin, safety, nuclear licensing, unlike an atomic bomb, radiation, waste disposal, transport of nuclear materials, emergency arrangements at nuclear sites, siting of nuclear stations, security of nuclear installations, world nuclear programmes, international regulation and non-proliferation, IAEA safeguards arrangements in the UK, INFCE, and uranium supplies. (U.K.)

  13. Corrosion management in nuclear industry

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.

    2012-01-01

    Corrosion is a major degradation mechanism of metals and alloys which significantly affects the global economy with an average loss of 3.5% of GDP of several countries in many important industrial sectors including chemical, petrochemical, power, oil, refinery, fertilizer etc. The demand for higher efficiency and achieving name plate capacity, in addition to ever increasing temperatures, pressures and complexities in equipment geometry of industrial processes, necessitate utmost care in adopting appropriate corrosion management strategies in selecting, designing, fabricating and utilising various materials and coatings for engineering applications in industries. Corrosion control and prevention is an important focus area as the savings achieved from practicing corrosion control and prevention would bring significant benefits to the industry. Towards this, advanced corrosion management strategies starting from design, manufacturing, operation, maintenance, in-service inspection and online monitoring are essential. At the Indira Gandhi Centre for Atomic Research (IGCAR) strategic corrosion management efforts have been pursued in order to provide solutions to practical problems emerging in the plants, in addition to innovative efforts to provide insight into mechanism and understanding of corrosion of various engineering materials and coatings. In this presentation the author highlights how the nuclear industry benefited from the practical approach to successful corrosion management, particularly with respect to fast breeder reactor programme involving both reactor and associated reprocessing plants. (author)

  14. Applications in the Nuclear Industry for Corrosion-Resistant Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J; Choi, J

    2007-01-01

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Fe-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials

  15. Design and application of the HTR-100 industrial nuclear power plant

    International Nuclear Information System (INIS)

    Brandes, S.; Kohl, W.

    1988-01-01

    The small HTR-100 high temperature reactor combines the reactor concept of the AVR reactor, which has been proven for 20 years, with the latest component technology of the THTR power plant which has been in operation since 1985. The nuclear heat supply system is conceived so as to be applicable for the generation of electric power, district heat and process steam according to the customer's demand. The HTR-100 reactor has a thermal power of 258 MW and offers steam parameters of 190 bar/530 0 C. To cover a higher power demand HTR-100 reactors can be combined forming a larger power plant. Economic analyses have shown competitiveness with fossil power plants. (orig.)

  16. The nuclear industry in Canada

    International Nuclear Information System (INIS)

    Anderson, D.; Broughton, W.

    1992-01-01

    The nuclear industry in Canada comprises three identifiable groups: (1) Atomic Energy of Canada Limited (AECL), (2) electrical utilities that use nuclear power plants, (3) private engineering and manufacturing companies. At the end of World War II, AECL was charged with investigating and developing peaceful uses of atomic power. Included in the results is the Canada deuterium uranium (CANDU) reactor, a peculiarly Canadian design. The AECL maintains research capability and operates as the prime nuclear steam supply system supplier. Utilities in three Canadian provinces operate nuclear power plants, New Brunswick, Quebec, and Ontario, with the majority in Ontario. From the beginning of the nuclear program in Canada, private industry has been an important partner to AECL and the utilities, filling roles as manufacturing subcontractors and as component designers. The prime objective of this paper is to illuminate the role of private industry in developing and maintaining a competitive world-class nuclear industry

  17. Personal radiation protection in nuclear industry

    International Nuclear Information System (INIS)

    Gol'dshtejn, D.S.; Koshcheev, V.S.

    1983-01-01

    Specific peculiarities of organization of personal radiation protection at various nuclear industry enterprises when dealing with radioactive and other toxic substances are illuminated. Effect of heatin.g and cooling microclimate is discussed. Medical and technical requirements for personal protection means and tasks of personal protection in the field of nuclear industry are considered in short along with some peculiarities of application of different kinds of personal protection means and psychological aspects of personnel protection

  18. The nuclear industry in France

    International Nuclear Information System (INIS)

    Degot, D.

    1981-02-01

    The French nuclear industry is organized around the following main participants: - The E.D.F., owners, industrial architects and operators of the power stations, - The C.E.A. for research and development, with its subsidiary the COGEMA, who deal with all problems involving the fuel cycle, - The Industry with FRAMATOME in charge of the manufacture of nuclear boilers, and ALSTHOM-ATLANTIQUE in charge of turbo-generator units. This paper deals with the activities covered by FRAMATOME and its industrial environment. The standardization of PWR power stations built by French industry and the possibilities of exporting PWR power stations are given a brief mention [fr

  19. Review on present state of human model researches in nuclear engineering and the prospect for their industrial applications

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Furuta, Kazuo; Nakagawa, Tsuneo; Yoshimura, Seiichi; Yoshida, Kazuo; Naito, Norio

    1999-01-01

    Reviews have been made on the researches and developments for human models in the field of nuclear engineering. Until now, the related works have been made mainly for the modeling of plant operator and operator crew in the control room, but also there arise new tendencies of extending the modeling works for maintenance field as well as for personnel training purposes. The whole range of human model research is divided into the five areas of (a) modeling for machine system, (b) measurement and analysis of human information behavior, (c) modeling of human internal information process, (d) modeling of human interaction with machine system, and (e) that of between human themselves. The real examples of the human model developments as well as their methods, applications, and the model validations are described, and then, the further subjects and efforts are pointed out which would be needed for the broader industrial application of the human modeling. (author)

  20. Assessment of United States industry structural codes and standards for application to advanced nuclear power reactors: Appendices. Volume 2

    International Nuclear Information System (INIS)

    Adams, T.M.; Stevenson, J.D.

    1995-10-01

    Throughout its history, the USNRC has remained committed to the use of industry consensus standards for the design, construction, and licensing of commercial nuclear power facilities. The existing industry standards are based on the current class of light water reactors and as such may not adequately address design and construction features of the next generation of Advanced Light Water Reactors and other types of Advanced Reactors. As part of their on-going commitment to industry standards, the USNRC commissioned this study to evaluate US industry structural standards for application to Advanced Light Water Reactors and Advanced Reactors. The initial review effort included (1) the review and study of the relevant reactor design basis documentation for eight Advanced Light Water Reactors and Advanced Reactor Designs, (2) the review of the USNRCs design requirements for advanced reactors, (3) the review of the latest revisions of the relevant industry consensus structural standards, and (4) the identification of the need for changes to these standards. The results of these studies were used to develop recommended changes to industry consensus structural standards which will be used in the construction of Advanced Light Water Reactors and Advanced Reactors. Over seventy sets of proposed standard changes were recommended and the need for the development of four new structural standards was identified. In addition to the recommended standard changes, several other sets of information and data were extracted for use by USNRC in other on-going programs. This information included (1) detailed observations on the response of structures and distribution system supports to the recent Northridge, California (1994) and Kobe, Japan (1995) earthquakes, (2) comparison of versions of certain standards cited in the standard review plan to the most current versions, and (3) comparison of the seismic and wind design basis for all the subject reactor designs

  1. Future trends for electrolysers in nuclear industry

    International Nuclear Information System (INIS)

    Manifar, T.; Robinson, J.; Ozemoyah, P.; Robinson, V.; Suppiah, S.; Boniface, H.

    2011-01-01

    The nuclear industry, through the application of electrolysers, can provide a solution to energy shortage with its competitive cost and can be one of the major future sources of hydrogen production with zero carbon emission. In addition, development of complementary, yet critical processes for upgrading or detritiation of the heavy water in the nuclear industry can be advanced with the application of electrolysers. Regardless of the technology, the electrolyser's development and application are facing many technical challenges including radiation and catalysis. In this paper, three main types of electrolysers are discussed along with their advantages and disadvantages. Proton Exchange Membrane (PEM) electrolysers look promising for hydrogen (or its isotopes) production. For this reason, Atomic Energy of Canada Limited (AECL) in collaboration with Tyne Engineering has started design and fabrication of PEM electrolysers with more than 60 Nm 3 /hr hydrogen production capacity for the application in nuclear industry. This electrolyser is being designed to withstand high concentrations of tritium. (author)

  2. Promoting Implementation of Safety Culture in Nuclear Application for Industrial Facilities; an Important Role of Nuclear Energy Regulatory Agency in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Setianingsih, Lilis Susanti [KINS-KAIST Master Degree Program, Daejeon (Korea, Republic of)

    2012-03-15

    Implementation of nuclear energy for industrial purposes has reached its highest peak. BAPETEN, as Nuclear Energy Regulatory Agency of Indonesia has published regulations regarding nuclear energy utilization. As high risk associating such utilization requires direct and thoroughly supervision in order to assure its compliance to safety and security aspect, procedures related to operational activities must by fully applied. Radiation Protection Program as one type of procedures that must be available in nuclear energy utilization operation is intended to provide operators specifically technical guidance to avoid undesired negative effects of incidents or accidents. It is the responsibility of managerial level in a company to provide the procedures and to further supervise their application in the field. Radiation workers, those are all employees working in or within radiation area must understand how to execute the procedures properly. The radiation protection program is intended to protect workers, member of community and property as well as the environment from the negative impacts of nuclear utilization operational due to its radiation exposure. Safety culture, a compound of nature derived from behavior of organization and people within the organization to pay a full attention and give main priority in radiation safety matters, is expected to be achieved by implementing the radiation protection program as safety habits at the work place. It requires a management commitment to ensure that all aspect in safety and, whenever necessary, security are accomplished within the radiation protection program in order to build a safety culture in a radiation work place. Government Regulation No. 33 2007 about Safety for Ionizing Radiation and Security for Radioactive Source and Government Regulation No. 29 2008 regarding Licensing for Utilization of Ionizing Radiation and Nuclear Material present regulation and arrangement related to radiation protection program as a basic

  3. Promoting Implementation of Safety Culture in Nuclear Application for Industrial Facilities; an Important Role of Nuclear Energy Regulatory Agency in Indonesia

    International Nuclear Information System (INIS)

    Setianingsih, Lilis Susanti

    2012-01-01

    Implementation of nuclear energy for industrial purposes has reached its highest peak. BAPETEN, as Nuclear Energy Regulatory Agency of Indonesia has published regulations regarding nuclear energy utilization. As high risk associating such utilization requires direct and thoroughly supervision in order to assure its compliance to safety and security aspect, procedures related to operational activities must by fully applied. Radiation Protection Program as one type of procedures that must be available in nuclear energy utilization operation is intended to provide operators specifically technical guidance to avoid undesired negative effects of incidents or accidents. It is the responsibility of managerial level in a company to provide the procedures and to further supervise their application in the field. Radiation workers, those are all employees working in or within radiation area must understand how to execute the procedures properly. The radiation protection program is intended to protect workers, member of community and property as well as the environment from the negative impacts of nuclear utilization operational due to its radiation exposure. Safety culture, a compound of nature derived from behavior of organization and people within the organization to pay a full attention and give main priority in radiation safety matters, is expected to be achieved by implementing the radiation protection program as safety habits at the work place. It requires a management commitment to ensure that all aspect in safety and, whenever necessary, security are accomplished within the radiation protection program in order to build a safety culture in a radiation work place. Government Regulation No. 33 2007 about Safety for Ionizing Radiation and Security for Radioactive Source and Government Regulation No. 29 2008 regarding Licensing for Utilization of Ionizing Radiation and Nuclear Material present regulation and arrangement related to radiation protection program as a basic

  4. The financing of nuclear industry

    International Nuclear Information System (INIS)

    Cazauran, B.

    1978-01-01

    Having first recalled the usual financing rules related to the economic activities, the author analyses the applying of those rules in the nuclear field, taking into account the specific characteristics of this industrial branch [fr

  5. Chemical sensors for nuclear industry

    International Nuclear Information System (INIS)

    Gnanasekaran, K.I.

    2012-01-01

    Development of chemical sensors for detection of gases at trace levels for applications in nuclear industry will be highlighted. The sensors have to be highly sensitive, reliable and rugged with long term stability to operate in harsh industrial environment. Semiconductor and solid electrolyte based electrochemical sensors satisfy the requirements. Physico-chemical aspects underlying the development of H 2 sensors in sodium and in cover gas circuit of the Fast breeder reactors for its smooth functioning, NH 3 and H 2 S sensors for use in Heavy water production industries and NO x sensors for spent fuel reprocessing plants will be presented. Development of oxygen sensors to monitor the oxygen level in the reactor containments and sodium sensors for detection of sodium leakages will also be discussed. The talk will focus the general aspects of identification of the sensing material for the respective analyte species, development of suitable chemical route for preparing them as fine powders, the need for configuring them in thick film or thin film geometries and their performance. Pulsed laser deposition method, an elegant technique to prepare the high quality thin films of multicomponent oxides is demonstrated for preparation of nanostructured thin films of complex oxides and its use in tailoring the morphology of the complex sensing material in the desired form by optimizing the in-situ growth conditions. (author)

  6. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Reilkoff, T. E.; Hetland, M. D.; O' Leary, E. M.

    2002-02-25

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  7. Nuclear industry takes off

    International Nuclear Information System (INIS)

    Du Plessis, A.; Stevens, R.C.B.

    1982-01-01

    For more than a decade irradiation sterilisation of medical and pharmaceutical products proved a highly successful semi-commercial operation at Pelindaba, until it made way recently for the first full-scale radiation processing industry in SA - a classic case of science transferring technology to industry

  8. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    OpenAIRE

    Blink, J.; Farmer, J.; Choi, J.; Saw, C.

    2009-01-01

    Amorphous metal and ceramic thermal spray coatings have been developed with excellent corrosion resistance and neutron absorption. These coatings, with further development, could be cost-effective options to enhance the corrosion resistance of drip shields and waste packages, and limit nuclear criticality in canisters for the transportation, aging, and disposal of spent nuclear fuel. Iron-based amorphous metal formulations with chromium, molybdenum, and tungsten have shown the corrosion resis...

  9. Application of computer mathematical modeling in nuclear well-logging industry

    International Nuclear Information System (INIS)

    Cai Shaohui

    1994-01-01

    Nuclear well logging techniques have made rapid progress since the first well log calibration facility (the API pits) was dedicated in 1959. Then came the first computer mathematical model in the late 70's. Mathematical modeling can now minimize design and experiment time, as well as provide new information and idea on tool design, environmental effects and result interpretation. The author gives a brief review on the achievements of mathematical modeling on nuclear logging problems

  10. U.S. nuclear industry

    International Nuclear Information System (INIS)

    Sherman, R.

    1979-01-01

    At present, 72 power reactors are in the condition of being able to operate in U.S., and the total installation capacity has reached 55 million kW, which is equivalent to about 9.5% of the total power generation capacity in U.S. The nuclear power stations produced 12.5% of the total electricity consumption in 1978. Especially in the north eastern part of the U.S., the nuclear power generation occupied 42% of the total power generation at the time of recent peak load, and 47 million barrels of crude oil and 517 million dollars of foreign currency were able to be saved. Moreover, 96 plants amounting to 105 million kW are under construction, and 30 plants of 35 million kW were ordered. Electric power companies, nuclear reactor makers, nuclear fuel and other related industries believe the merits of nuclear power generation and expect that it will flourish if a certain problem is solved. Especially serious problem to which the U.S. nuclear industry is facing now is the problem of uncertainty. Many orders of nuclear power plants have been canceled, and the constructions have been postponed. The capability of the U.S. nuclear industry to construct more than the required facilities, and its extent and the necessary conditions have been investigated by the Atomic Industrial Forum. The important national and international problems of atomic energy are discussed. (Kako, I.)

  11. Report of the project ARCAL XLIII: Paraguay: industrial application of tracer techniques and nuclear control systems

    International Nuclear Information System (INIS)

    Acosta Cabello, Rodolfo

    2000-12-01

    Paraguay needs to improve the productivity in several service industries. Main interest has been devoted to introducing new alternative techniques for the evaluation of the processes of water treatment plants for human consumption and waste waters [es

  12. Nuclear measurements, techniques and instrumentation. Industrial applications. Plasma physics and nuclear fusion. 1990-2002. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2002-08-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Power and Nuclear Fuel Cycle and Waste Management, and issued during the period 1 January 1990 and 31 July 2002. Some earlier titles which form part of an established series or are still considered of importance have been included. Most publications are in English, though some are also available in other languages than English

  13. Nuclear measurements, techniques and instrumentation, industrial applications, plasma physics and nuclear fusion, 1986-1997. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1998-06-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with nuclear power, nuclear fuel cycle and waste management and issued during the period of 1986-1997. Some earlier titles which form part of an established series or are still considered of importance have been included. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain papers in languages other than English, but all of these papers have abstracts in English

  14. Radioactive wastes of Nuclear Industry

    International Nuclear Information System (INIS)

    1995-01-01

    This conference studies the radioactive waste of nuclear industry. Nine articles and presentations are exposed here; the action of the direction of nuclear installations safety, the improvement of industrial proceedings to reduce the waste volume, the packaging of radioactive waste, the safety of radioactive waste disposal and environmental impact studies, a presentation of waste coming from nuclear power plants, the new waste management policy, the international panorama of radioactive waste management, the international transport of radioactive waste, finally an economic analysis of the treatment and ultimate storage of radioactive waste. (N.C.)

  15. Russian nuclear industry exports

    International Nuclear Information System (INIS)

    Gorbatchev, A.

    2016-01-01

    Rosatom is the world leader for the export of nuclear technologies. 34 reactors of Russian technology are being built or planned worldwide. Most reactors proposed by Rosatom are third generation VVER-1200 units with an electric power output of 1200 MWe. Although the nuclear island is always built by Rosatom, the remain of the plant can be subcontracted to other enterprises and European companies are sought because they would bring a european quality touch to Russian works. One of the main assets of Rosatom is to propose an integrated offer from supplying nuclear fuel to managing nuclear waste via the turnkey building of nuclear power plants. Another important asset is the financial assistance of the Russian state through state credit or the support from Russian national banks that appears to be a decisive advantage in the international competition to win markets. We have to temper the Russian export perspectives by noting that most projects are set in countries that are prone to instabilities and that the economic crisis affecting Russia has a negative impact on its financial means. (A.C.)

  16. Special issue: the nuclear industry in Europe

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    This special issue contains papers on the following topics: French nuclear policy; nuclear energy development in Europe; nuclear diversification; Alsthom-Atlantique in the nuclear field; 1981 nuclear electricity generation; EDF siting policy; the N4 model of the 1300 MW series; Creys-Malville; the nuclear industry in Europe; pumps in the nuclear industry [fr

  17. Human capital in nuclear industry

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    On June 7, 2010, as part of the Atomexpo 2010 exhibition, a round-table discussion took place on the topic Human capital in the nuclear industry: challenges and solutions. The article summarizes reports made during the meeting. Tatiana Kozhevnikova, deputy director general of the Rosatom Corporation, made a report about the strategy and best human resource management practices in member companies of the Corporation. She briefly described the state of the human capital in the Russian nuclear industry and outlined the key provisions of the human resource management strategy. Attendees to the round-table discussion elaborated further on the key statements of the report. The discussion has given an evidence that the Russian nuclear industry is giving an enormous importance to human resource management and is firmly intended on successfully tacking the issues associated with the provision of sufficient staff for the industry's safe and efficient development [ru

  18. Nuclear industry review

    International Nuclear Information System (INIS)

    1982-01-01

    This review examines the consequences of projected excess electrical generating capacity for the maintenance of an independent nuclear power capability in Canada. Although consumption of electricity will continue to grow at rages well below historical averages, significant additions to capacity will be required in all parts of Canada in the 1990s. CANDU reactors are an attractive option for meeting load growth, particularly east of Manitoba. However, the absence of domestic orders in the 1980s may threaten the maintenance of this option. Even the most optimistic projections indicate that only one supplier of each component will remain in the nuclear business in the 1990s

  19. Laser robot in the nuclear industry

    International Nuclear Information System (INIS)

    Contre, M.

    1987-05-01

    Possibilities of power lasers for welding, cutting, drilling, plugging surface treatment and hard-facing are reviewed. CO 2 and Nd:YAG lasers only have adequate power for nuclear applications. Radiation effects on lasers and contamination problems are examined. Then examples of applications to nuclear industry are given: PWR fuel fabrication, oxide thickness measurement in Magnox reactors, laser cutting of a cylindrical piece of steel on the bottom of a fuel channel in a gas graphite reactor, nuclear plant dismantling and fuel reprocessing. 51 refs [fr

  20. South Korea's nuclear fuel industry

    International Nuclear Information System (INIS)

    Clark, R.G.

    1990-01-01

    March 1990 marked a major milestone for South Korea's nuclear power program, as the country became self-sufficient in nuclear fuel fabrication. The reconversion line (UF 6 to UO 2 ) came into full operation at the Korea Nuclear Fuel Company's fabrication plant, as the last step in South Korea's program, initiated in the mid-1970s, to localize fuel fabrication. Thus, South Korea now has the capability to produce both CANDU and pressurized water reactor (PWR) fuel assemblies. This article covers the nuclear fuel industry in South Korea-how it is structures, its current capabilities, and its outlook for the future

  1. Transition in the nuclear industry

    International Nuclear Information System (INIS)

    Olyniec, J.H.

    1985-01-01

    Not long ago, nuclear energy was forecast to be the dominant force in the utility industry. An environmentally safe clean and inexpensive way to produce electricity would be welcomed by all. Civil engineering challenges on the leading edge of technology awaited the designer and constructor. As we now know, changes within the past 10 years have taken place that radically alter this outlook. Energy demand, thought to be ever increasing, was shocked by the rising costs. Plant construction delays, coupled with ever increasing regulatory requirements and higher interest rates, fueled the spiral or more cost. Economy of operation became overwhelmed by utility debt burden. Where is the nuclear utility industry now and what direction can we foresee. this symposium addresses the nuclear industry past, present, and future. The first session highlights some lessons learned from past experiences that must be applied in the future to be beneficial. Existing and future challenges are presented in the sessions on plant modifications and nuclear waste and decommissioning. The final session looks at the nuclear industry in transition from the perspectives of the different segments that make up the industry

  2. Applications of EPRI database on environmentally assisted cracking in the nuclear industry

    International Nuclear Information System (INIS)

    Rungta, R.; Mindlin, H.; Gilman, J.D.

    1986-01-01

    A computerized database, EPRI Database on Environmentally Assisted Cracking (EDEAC), has been established to assemble stress-corrosion cracking and corrosion fatigue crack growth data on materials of interest to nuclear power generation. The database is being used to review the basis for the existing ASME reference fatigue crack growth curves for low alloy ferritic steels used for reactor pressure vessels. Correlations between fatigue crack growth rate and stress intensity factor range with corrections for frequency, stress ratio, and temperature for austenitic stainless steels in air are also being developed

  3. Applications of nuclear energy in future

    International Nuclear Information System (INIS)

    Sitek, J.; Necas, V.

    2012-01-01

    Concepts and international frames of generation IV nuclear reactors. A review of use of nuclear energy for non electric applications especially in areas such as seawater desalination, hydrogen production, district heating and other industrial applications. (Author)

  4. Nuclear energy and the nuclear energy industry

    International Nuclear Information System (INIS)

    Bromova, E.; Vargoncik, D.; Sovadina, M.

    2013-01-01

    A popular interactive multimedia publication on nuclear energy in Slovak. 'Nuclear energy and energy' is a modern electronic publication that through engaging interpretation, combined with a number of interactive elements, explains the basic principles and facts of the peaceful uses of nuclear energy. Operation of nuclear power plants, an important part of the energy resources of developed countries, is frequently discussed topic in different social groups. Especially important is truthful knowledgeability of the general public about the benefits of technical solutions, but also on the risks and safety measures throughout the nuclear industry. According to an online survey 'Nuclear energy and energy' is the most comprehensive electronic multimedia publication worldwide, dedicated to the popularization of nuclear energy. With easy to understand texts, interactive and rich collection of accessories stock it belongs to modern educational and informational titles of the present time. The basic explanatory text of the publication is accompanied by history and the present time of all Slovak nuclear installations, including stock photos. For readers are presented the various attractions legible for the interpretation, which help them in a visual way to make a more complete picture of the concerned issue. Each chapter ends with a test pad where the readers can test their knowledge. Whole explanatory text (72 multimedia pages, 81,000 words) is accompanied by a lot of stock of graphic materials. The publication also includes 336 photos in 60 thematic photo galleries, 45 stock charts and drawings, diagrams and interactive 31 videos and 3D models.

  5. High performance structural ceramics for nuclear industry

    International Nuclear Information System (INIS)

    Pujari, Vimal K.; Faker, Paul

    2006-01-01

    A family of Saint-Gobain structural ceramic materials and products produced by its High performance Refractory Division is described. Over the last fifty years or so, Saint-Gobain has been a leader in developing non oxide ceramic based novel materials, processes and products for application in Nuclear, Chemical, Automotive, Defense and Mining industries

  6. Development in the application of knowledge base systems in the Canadian nuclear industry

    International Nuclear Information System (INIS)

    Anderson, J.W.D.; Natalizio, A.; Stevens, J.E.S.

    1987-01-01

    Atomic Energy of Canada Limited (AECL) is a leader in the area of computer monitoring and control of nuclear power plants. The high level of plant computerization in CANDU stations has not only provided benefits in terms of more reliable plant operation but also in terms of improved man-machine interface. Today, new opportunities for improvements in safety and performance include distributed control systems, data highways and improved operator aids. The most exciting innovation is the development of expert systems aimed at assisting the operator in areas such as: fault management and diagnosis, identification of limiting conditions of operation, assessment of heat sink availability, optimization of on-power fuelling schemes, and computerization of procedures and communication

  7. Uranium oxide catalysts: environmental applications for treatment of chlorinated organic waste from nuclear industry.

    Science.gov (United States)

    Lazareva, Svetlana; Ismagilov, Zinfer; Kuznetsov, Vadim; Shikina, Nadezhda; Kerzhentsev, Mikhail

    2018-02-05

    Huge amounts of nuclear waste, including depleted uranium, significantly contribute to the adverse environmental situation throughout the world. An approach to the effective use of uranium oxides in catalysts for the deep oxidation of chlorine-containing hydrocarbons is suggested. Investigation of the catalytic activity of the synthesized supported uranium oxide catalysts doped with Cr, Mn and Co transition metals in the chlorobenzene oxidation showed that these catalysts are comparable with conventional commercial ones. Physicochemical properties of the catalysts were studied by X-ray diffraction, temperature-programmed reduction with hydrogen (H 2 -TPR), and Fourier transform infrared spectroscopy. The higher activity of Mn- and Co-containing uranium oxide catalysts in the H 2 -TPR and oxidation of chlorobenzene in comparison with non-uranium catalysts may be related to the formation of a new disperse phase represented by uranates. The study of chlorobenzene adsorption revealed that the surface oxygen is involved in the catalytic process.

  8. OCT for industrial applications

    Science.gov (United States)

    Song, Guiju; Harding, Kevin

    2012-11-01

    Optical coherence tomography (OCT), as an interferometric method, has been studied as a distance ranger. As a technology capable of producing high-resolution, depth-resolved images of biological tissue, OCT had been widely used for the application of ophthalmology and has been commercialized in the market today. Enlightened by the emerging research interest in biomedical domain, the applications of OCT in industrial inspection were rejuvenated by a few groups to explore its potential for characterizing new materials, imaging or inspecting industrial parts as a service solution[3]. Benefiting from novel photonics components and devices, the industrial application of the older concepts in OCT can be re-visited with respect to the unique performance and availability. Commercial OCT developers such as Michelson Diagnostics (MDL; Orpington, U.K.) and Thorlabs (Newton, NJ) are actively exploring the application of OCT to industrial applications and they have outlined meaningful path toward the metrology application in emerging industry[3]. In this chapter, we will introduce the fundamental concepts of OCT and discuss its current and potential industrial applications.

  9. A practicable signal processing algorithm for industrial nuclear instrument

    International Nuclear Information System (INIS)

    Tang Yaogeng; Gao Song; Yang Wujiao

    2006-01-01

    In order to reduce the statistical error and to improve dynamic performances of the industrial nuclear instrument, a practicable method of nuclear measurement signal processing is developed according to industrial nuclear measurement features. The algorithm designed is implemented with a single-chip microcomputer. The results of application in (radiation level gauge has proved the effectiveness of this method). (authors)

  10. Some applications of the Helium Leak Detectors in the nuclear industry

    International Nuclear Information System (INIS)

    Psacharopulo, A.

    1985-01-01

    The improved reliability and ease of operation of Helium Mass Spectrometer leak Detectors currently manufactured has dramatically widened the field of applications for these instruments. The authors describe here some applications: 1. Testing power plants steam condensers in operation; 2. Leak checking of underground pressurized cables or pipes. The field of applications of the Helium Leak Detectors is nowadays much larger due to the increased reliability and ease of operation of current instruments. This has allowed their use in several applications where the techniques used in the past were totally insufficient. The major benefits of the helium method are the very high sensitivity (up to 10 -1 std cc/sec, equivalent to 1 cm 3 every 300 years), fast response times, no operator judgement, possibility to adjust the sensitivity of the instrument to the requirements of the parts under test, and absolute selectivity for helium (no response to any other gas). To these benefits there has been recently the addition of better reliability, ease of operation, allowing unskilled operators to perform tests, no need for liquid nitrogen and finally the physical size of some instruments available today means that they can be easily carried around for on-site tests

  11. Nuclear techniques in industry

    International Nuclear Information System (INIS)

    Barnette, P.

    The long term development and successful utilization of the Tongonan geothermal field for electric power generation is ultimately a function of the response of the reservoir to extensive exploitation. A field drawdown test of several years duration has been planned to test this response. A number of nuclear chemical techniques have been incorporated into this to assist in quantitatively tracing the subsurface movements of both reservoir and reinjected fluids; and to provide an early warning of changes in the physical and chemical properties of the reservoir fluids with respect to natural recharge. The programme will be implemented by Philippine Atomic Energy Commission (PAEC) under contract to Philippine National Oil Company - Energy Development Corporation (PNOC-EDC). (author)

  12. Nuclear industry (Finance) Act 1981

    International Nuclear Information System (INIS)

    1981-01-01

    The purpose of the Act is to enable British Nuclear Fuels Limited to make borrowings backed by Government guarantees in order to finance its ten year investment programme. More specifically, the Act raises the financial limit applicable to British Nuclear Fuels Limited from pound 500 million to pound 1,000 million. (NEA) [fr

  13. Radiation-tolerant cable management systems for remote handling applications in the nuclear industry

    International Nuclear Information System (INIS)

    Cullen, S.; Thom, M.

    1993-01-01

    Experience has shown that one of the most vulnerable areas within remote handling equipment is the umbilical cable and termination system. Repairs of a damaged system can be very long due to poorly designed termination techniques. Over the past five years W.L. Gore has gained considerable experience in the design and manufacture of cable systems, utilising unique radiation tolerant materials and manufacturing processes. The cable systems manufactured at the W.L. Gore, Dunfermline, Scotland facility have proven to give excellent performance in the most demanding of remote handling applications. (author)

  14. Computer aided design for the nuclear industry

    International Nuclear Information System (INIS)

    Basson, Keith

    1986-01-01

    The paper concerns the new computer aided design (CAD) centre for the United Kingdom nuclear industry, and its applications. A description of the CAD system is given, including the current projects at the CAD centre. Typical applications of the 3D CAD plant based models, stress analysis studies, and the extraction of data from CAD drawings to produce associated documentation, are all described. Future developments using computer aided design systems are also considered. (U.K.)

  15. Applications of Nuclear Physics

    OpenAIRE

    Hayes, Anna C.

    2017-01-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that und...

  16. Ion exchange in the nuclear power industry

    International Nuclear Information System (INIS)

    Lehto, J.

    1993-01-01

    Ion exchangers are used in many fields in the nuclear power industry. At nuclear power plants, organic ion exchange resins are mainly used for the removal of ionic and particulate contaminants from the primary circuit, condensate and fuel storage pond waters. Ion exchange resins are used for the solidification of low- and medium-active nuclear waste solutions. The number of applications of zeolites, and other inorganic ion exchangers, in the separation of radionuclides from nuclear waste solutions has been increasing since the 1980s. In nuclear fuel reprocessing plants, ion exchange is used for the solidification of low- and medium-active waste solutions, as well as for the partitioning of radioactive elements for further use. (Author)

  17. The UK nuclear power industry

    International Nuclear Information System (INIS)

    Collier, J. G.

    1995-01-01

    In the United Kingdom, nuclear power plants are operated by three companies: Nuclear Electric (NE), Scottish Nuclear (SN), and British Nuclear Fuels plc (BNFL). The state-operated power industry was privatized in 1989 with the exception of nuclear power generation activities, which were made part of the newly founded (state-owned) NE and SN. At the same time, a moratorium on the construction of new nuclear power plants was agreed. Only Sizewell B, the first plant in the UK to be equipped with a pressurized water reactor, was to be completed. That unit was first synchronized with the power grid on February 14, 1995. Another decision in 1989 provided for a review to be conducted in 1994 of the future of the peaceful uses of nuclear power in the country. The results of the review were presented by the government in a white paper on May 9, 1995. Accordingly, NE and SN will be merged and privatized in 1996; the headquarters of the new holding company will be in Scotland. The review does not foresee the construction of more nuclear power plants. However, NE hopes to gain a competitive edge over other sources of primary energy as a result of this privatization, and advocates construction of a dual-unit plant identical with Sizewell B so as to avoid recurrent design and development costs. Outside the UK, the company plans to act jointly with the reactor vendor, Westinghouse, especially in the Pacific region; a bid submitted by the consortium has been shortisted by the future operator of the Lungmen nuclear power plant project in Taiwan. In upgrading the safety of nuclear power plants in Eastern Europe, the new company will be able to work through existing contacts of SN. (orig.) [de

  18. Knowledge management for nuclear industry operating organizations

    International Nuclear Information System (INIS)

    2006-10-01

    research facilities to reduce operating costs and a decline in support to the universities to reduce overheads. The above factors have led to a reduction in technical innovation and a potential loss of technical competences that have drawn the attention of many concerned parties to the need for effective strategies and policies for nuclear knowledge management. The Director General of the IAEA, Mohamed ElBaradei, in his statement to the forty-seventh regular session of the IAEA General Conference 2003, said: 'Whether or not nuclear power witnesses an expansion in the coming decades, it is essential that we preserve nuclear scientific and technical competence for the safe operation of existing facilities and applications. Effective management of nuclear knowledge should include succession planning for the nuclear work force, the maintenance of the 'nuclear safety case' for operational reactors, and retention of the nuclear knowledge accumulated over the past six decades'. This report is intended for senior and middle level managers of nuclear industry operating organizations and provides practical information that can be used to improve knowledge management (KM) in such organizations. The information provided in this report is based upon actual experiences of Member State operating organizations as well as other related industries. The Nuclear Power Industry's Ageing Workforce: Transfer of Knowledge to the Next Generation, IAEA-TECDOC-1399, highlighted some of the knowledge management issues in Member States resulting from the large number of retiring NPP personnel who had been involved with the commissioning and initial operation of NPPs. This report complements that publication by broadening the scope of KM strategic issues, methods and techniques for nuclear industry operating organizations

  19. Computer systems and nuclear industry

    International Nuclear Information System (INIS)

    Nkaoua, Th.; Poizat, F.; Augueres, M.J.

    1999-01-01

    This article deals with computer systems in nuclear industry. In most nuclear facilities it is necessary to handle a great deal of data and of actions in order to help plant operator to drive, to control physical processes and to assure the safety. The designing of reactors requires reliable computer codes able to simulate neutronic or mechanical or thermo-hydraulic behaviours. Calculations and simulations play an important role in safety analysis. In each of these domains, computer systems have progressively appeared as efficient tools to challenge and master complexity. (A.C.)

  20. Nuclear process steam for industry

    International Nuclear Information System (INIS)

    Seddon, W.A.

    1981-11-01

    A joint industrial survey funded by the Bruce County Council, the Ontario Energy Corporation and Atomic Energy of Canada Limited was carried out with the cooperation of Ontario Hydro and the Ontario Ministry of Industry and Tourism. Its objective was to identify and assess the future needs and interest of energy-intensive industries in an Industrial Energy Park adjacent to the Bruce Nuclear Power Development. The Energy Park would capitalize on the infrastructure of the existing CANDU reactors and Ontario Hydro's proven and unique capability to produce steam, as well as electricity, at a cost currently about half that from a comparable coal-fired station. Four industries with an integrated steam demand of some 1 x 10 6 lb/h were found to be prepared to consider seriously the use of nuclear steam. Their combined plants would involve a capital investment of over $200 million and provide jobs for 350-400 people. The high costs of transportation and the lack of docking facilities were considered to be the major drawbacks of the Bruce location. An indication of steam prices would be required for an over-all economic assessment

  1. Industrial applications of radioisotope techniques in Poland

    International Nuclear Information System (INIS)

    Michalik, J.St.

    1985-01-01

    A general review of applications of radioisotope techniques in the Polish industry for about 25 years is given. The radiotracer methods used in metallurgy, hydrometallurgy, glass industry, oil and petroleum industries, in material testing and in other industries are described. Neutron activation analysis methods as well as nuclear gauges for industry (thickness meters, density meters, conveyer belt weigher, acid concentration meters and others) are also presented. The economic advantages of industrial applications of radioisotope techniques are described too. 42 refs., 43 figs., 11 tabs. (author)

  2. Survey on industrial applications of radioactive tracers

    International Nuclear Information System (INIS)

    Kim, Jae Rok; Yoo, Young Soo; Lee, Jong Doo; Awh, Ok Doo; Kim, Jun Hyung

    1986-12-01

    Current status and future feasibilities of industrial tracer applications in the Republic of Korea have been surveyed. Microleak detection using Krypton-85 in eight electronics industrial companies, and efficiency tests of steam generators in four nuclear power plants using Sodium-24 are the principal applications in Korea. Future applications are expected for mercury inventory in one soda industrial company, and alkali movement studies in two cement industrial companies. Korean industries expressed deep interest in leak detection in underground pipelines, abrasion/corrosion studies, mixing rate and residence time measurements. (Author)

  3. Application of robotics in nuclear facilities

    International Nuclear Information System (INIS)

    Byrd, J.S.; Fisher, J.J.

    1986-01-01

    Industrial robots and other robotic systems have been successfully applied at the Savannah River nuclear site. These applications, new robotic systems presently under development, general techniques for the employment of robots in nuclear facilities, and future systems are discussed

  4. The political economy of the nuclear industry

    International Nuclear Information System (INIS)

    Falk, J.

    1981-01-01

    The changing international context, in particular declining estimates of nuclear capacity and a depression in the nuclear reactor market will influence prospects for a nuclear industry in Australia. Effects of the opposition by trade unions and community groups to uranium mining are discussed. The relationship between political decisions and the economics of the nuclear power industry is stressed

  5. Preservation of knowledge: general principals, methodology and application in nuclear industry. Working material. Report prepared within the framework of the Programmes: C.3. Nuclear Knowledge Management and A.2. Improving Quality Assurance, Technical Infrastructure and Human Performance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    There is an immediate need to preserve existing knowledge in nuclear science and technology for peaceful applications for future generations, as it represents a valuable human capital asset. The development of an exciting vision for nuclear technology is prerequisite for attracting young scientists and professionals to seek careers in nuclear science and technology. Irrespective of current national energy policies, the need to maintain or even enhance the nuclear knowledge base and national capability will persist. In this way, the knowledge base will be available to meet requirements for evolving policy development. A number of IAEA advisory committees and technical meetings stressed the importance of preserving and further enhancing nuclear science and technology for socio-economic development. For nuclear science and technology to contribute to sustainable development requires knowledge and capacity on three levels: (a) basic nuclear science, (b) technology, (c) engineering and operation. There was unanimous consensus that IAEA has an obligation to lead activities towards preservation and enhancement of nuclear knowledge by complementing, and as appropriate supplementing, activities by governments, industry, academia and international organizations. International co-operation is of vital importance. Unless action is taken now, invaluable assets in critical nuclear knowledge and capacity will soon be lost. The IAEA is developing guidance documents on nuclear knowledge management including knowledge preservation and knowledge transfer in nuclear sector. This activity would assist nuclear organizations in MS to effectively apply this guidance, and to assist them in benchmarking their practices against those of other industry organizations. The present Working Material provides general principals for knowledge preservation in nuclear sector, which could be applied in different nuclear organization and in particular in Nuclear Power Plants.

  6. Preservation of knowledge: general principals, methodology and application in nuclear industry. Working material. Report prepared within the framework of the Programmes: C.3. Nuclear Knowledge Management and A.2. Improving Quality Assurance, Technical Infrastructure and Human Performance

    International Nuclear Information System (INIS)

    2005-01-01

    There is an immediate need to preserve existing knowledge in nuclear science and technology for peaceful applications for future generations, as it represents a valuable human capital asset. The development of an exciting vision for nuclear technology is prerequisite for attracting young scientists and professionals to seek careers in nuclear science and technology. Irrespective of current national energy policies, the need to maintain or even enhance the nuclear knowledge base and national capability will persist. In this way, the knowledge base will be available to meet requirements for evolving policy development. A number of IAEA advisory committees and technical meetings stressed the importance of preserving and further enhancing nuclear science and technology for socio-economic development. For nuclear science and technology to contribute to sustainable development requires knowledge and capacity on three levels: (a) basic nuclear science, (b) technology, (c) engineering and operation. There was unanimous consensus that IAEA has an obligation to lead activities towards preservation and enhancement of nuclear knowledge by complementing, and as appropriate supplementing, activities by governments, industry, academia and international organizations. International co-operation is of vital importance. Unless action is taken now, invaluable assets in critical nuclear knowledge and capacity will soon be lost. The IAEA is developing guidance documents on nuclear knowledge management including knowledge preservation and knowledge transfer in nuclear sector. This activity would assist nuclear organizations in MS to effectively apply this guidance, and to assist them in benchmarking their practices against those of other industry organizations. The present Working Material provides general principals for knowledge preservation in nuclear sector, which could be applied in different nuclear organization and in particular in Nuclear Power Plants

  7. Industrial applications of radiations

    International Nuclear Information System (INIS)

    Gallien, C.L.

    1988-01-01

    Radiation processing refers to the use of ionizing radiation to initiate chemical or biological changes in various materials as a substitute for conventional thermal or chemical processes. The method was inroduced in the industrial field 30 years ago and is now being widely used for numerous applications, among which industrial radiography, polymer modification, sterilization or decontamination, and food preservation. Both electron beam accelerators and gamma sources can be used, depending mainly of the amount of radiation and the penetration required. Radiation processing presents an increasing economical importance; in 1986 the market volume of ionized products ranged 3 billion $ [fr

  8. Capitalizing the contribution of the nuclear industry

    International Nuclear Information System (INIS)

    Donnadieu, G.

    1984-01-01

    The main contributions of the French nuclear industry to the country, and ways to make the most of them are presented. The advantages acquired include the nuclear power stations built; mastering of the combustion cycle; a powerful, well structured nuclear construction industry; and a nuclear-industrial complex giving France an important industrial potential. It is recommended that the industrial and research effort be maintained. The proposed strategy consists of defining an electronuclear program and associated economic development program and sticking to them; promoting exports; possibly merging certain industrial capacities; and strengthening the national position and independence concerning the fuel cycle [fr

  9. The impact of computers on the nuclear utility industry

    International Nuclear Information System (INIS)

    Taylor, J.J.

    1984-01-01

    The applications of computer technology to the nuclear utility industry are discussed in light of recent phenomenal growth of computer hardware and software. Computer applications in existence in the power plants are presented, as well as potential future development for plant design, construction, operation, maintenance and retrofit. Utility concerns are addressed. The study concludes that the applications of computer technology to the nuclear utility industry are highly promising and evolutionary in nature

  10. Europairs project: creating an alliance of nuclear and non-nuclear industries for developing nuclear cogeneration

    International Nuclear Information System (INIS)

    Hittner, Dominique; Bogusch, Edgar; Viala, Celine; Angulo, Carmen; Chauvet, Vincent; Fuetterer, Michael A.; De Groot, Sander; Von Lensa, Werner; Ruer, Jacques; Griffay, Gerard; Baaten, Anton

    2010-01-01

    Developers of High Temperature Reactors (HTR) worldwide acknowledge that the main asset for market breakthrough is its unique ability to address growing needs for industrial cogeneration of heat and power (CHP) owing to its high operating temperature and flexibility, adapted power level, modularity and robust safety features. HTR are thus well suited to most of the non-electric applications of nuclear energy, which represent about 80% of total energy consumption. This opens opportunities for reducing CO 2 emissions and securing energy supply which are complementary to those provided by systems dedicated to electricity generation. A strong alliance between nuclear and process heat user industries is a necessity for developing a nuclear system for the conventional process heat market, much in the same way as the electronuclear development required a close partnership with utilities. Initiating such an alliance is one of the objectives of the EUROPAIRS project just started in the frame of the EURATOM 7. Framework Programme (FP7) under AREVA coordination. Within EUROPAIRS, process heat user industries express their requirements whereas nuclear industry will provide the performance window of HTR. Starting from this shared information, an alliance will be forged by assessing the feasibility and impact of nuclear CHP from technical, industrial, economical, licensing and sustainability perspectives. This assessment work will allow pointing out the main issues and challenges for coupling an HTR with industrial process heat applications. On this basis, a Road-map will be elaborated for achieving an industrially relevant demonstration of such a coupling. This Road-map will not only take into consideration the necessary nuclear developments, but also the required adaptations of industrial application processes and the possible development of heat transport technologies from the nuclear heat source to application processes. Although only a small and short project (21 months

  11. Future jobs in nuclear industry

    International Nuclear Information System (INIS)

    Asquier, S.

    2017-01-01

    CEA leads research on fast reactors in the framework of Generation-4 reactors, it also brings technical support to industrial partners like EDF or AREVA for today operating reactors. Computerized simulation is strongly developed in order to get reliable computers codes able to simulate mechanical behavior of new materials or neutron transport in new reactor cores. CEA is also in charge of the dismantling and remediation of its own nuclear facilities, today about 1000 people work on the dismantling of 35 facilities. CEA is also participating in fusion research programs. This broad range of activities makes CEA an important recruiter of competencies in a lot of domains from nuclear engineering to biological impact of radiations via computer sciences. (A.C.)

  12. The nuclear industries in the European community

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The paper discusses the nuclear industries within the European Community. The strategic importance of nuclear energy is outlined, along with the economic benefits of nuclear power. The objectives of the Community's nuclear programme are described, and include nuclear requirements in Europe, uranium supplies and management of radioactive waste. (UK)

  13. The structure of the nuclear industry

    International Nuclear Information System (INIS)

    Leaist, G.T.; Morisette, E.F.

    1981-01-01

    Since 1952, when Canadians began to study the application of reactors to power generation, the CANDU reactor design and the manufacturing and and engineering capability supporting it have evolved into a world-class technology. At present, Atomic Energy of Canada Ltd. works directly with provincial electrical utilities in developing their power reactor requirements. It assumes responsibility for the detailed design of the nuclear steam supply system of stations, undertakes some procurement activities, and may represent the utilities in licensing applications. The detailed design and supply of components for the remainder of the nuclear steam plant, as well as for the secondary plant, are provided in Ontario by Ontario Hydro together with manufacturers, and in Quebec and New Brunswick by private firms. Canadian utilities have always assumed the project managment function themselves, but with export sales AECL has taken turnkey responsiblity for either the nuclear steam plant or the complete power station. AECL owns design specifications and other documentation, the use of which it can license, but manufacturing technology resides with Canadian industry. Canadian manufacturers have supported AECL design licensing initiatives overseas. The Canadian nuclear industry's major problem is the current lack of a vigorous domestic market combined with an uncertain international one

  14. Nuclear analytical techniques in Cuban Sugar Industry

    International Nuclear Information System (INIS)

    Diaz Riso, O.; Griffith Martinez, J.

    1996-01-01

    This paper is a review concerning the applications of Nuclear Analytical Techniques in the Cuban sugar industry. The most complete elemental composition of final molasses (34 elements ) and natural zeolites (38) this last one employed as an auxiliary agent in sugar technological processes has been performed by means of Instrumental Neutron Activation Analysis (INAA) and X-Ray Fluorescence Analysis (XRFA). The trace elements sugar cane soil plant relationship and elemental composition of different types of Cuban sugar (rawr, blanco directo and refine) were also studied. As a result, valuable information referred to the possibilities of using these products in animal and human foodstuff so as in other applications are given

  15. Fibre optic cable in the nuclear industry

    International Nuclear Information System (INIS)

    Roberts, Berwyn

    1987-01-01

    The uses of optical fibre cables to transmit light signals include medical applications and telecommunications. In the nuclear industry the applications include process control and monitoring, conventional datacoms, security fencing and sensors. Time division multiplexing is described and currently available fibre optic multipexers are listed and explained. Single and multimode fibres are mentioned. Fibre optics are also used in cryogenics, to monitor the integrity of the storage vessels for cryogenic liquids. The uses of fibre optics at Hartlepool, Heysham I and Torness are mentioned in particular. (UK)

  16. Risk-informed decision making in the nuclear industry: Application and effectiveness comparison of different genetic algorithm techniques

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Kančev, Duško; Čepin, Marko

    2012-01-01

    Highlights: ► Multi-objective optimization of STI based on risk-informed decision making. ► Four different genetic algorithms (GAs) techniques are used as optimization tool. ► Advantages/disadvantages among the four different GAs applied are emphasized. - Abstract: The risk-informed decision making (RIDM) process, where insights gained from the probabilistic safety assessment are contemplated together with other engineering insights, is gaining an ever-increasing attention in the process industries. Increasing safety systems availability by applying RIDM is one of the prime goals for the authorities operating with nuclear power plants. Additionally, equipment ageing is gradually becoming a major concern in the process industries and especially in the nuclear industry, since more and more safety-related components are approaching or are already in their wear-out phase. A significant difficulty regarding the consideration of ageing effects on equipment (un)availability is the immense uncertainty the available equipment ageing data are associated to. This paper presents an approach for safety system unavailability reduction by optimizing the related test and maintenance schedule suggested by the technical specifications in the nuclear industry. Given the RIDM philosophy, two additional insights, i.e. ageing data uncertainty and test and maintenance costs, are considered along with unavailability insights gained from the probabilistic safety assessment for a selected standard safety system. In that sense, an approach for multi-objective optimization of the equipment surveillance test interval is proposed herein. Three different objective functions related to each one of the three different insights discussed above comprise the multi-objective nature of the optimization process. Genetic algorithm technique is utilized as an optimization tool. Four different types of genetic algorithms are utilized and consequently comparative analysis is conducted given the

  17. UK strategy for nuclear industry LLW - 16393

    International Nuclear Information System (INIS)

    Clark, Matthew; Fisher, Joanne

    2009-01-01

    In March 2007 the UK Government and devolved administrations (for Scotland, Wales and Northern Ireland, from here on referred to as 'Government') published their policy for the management of solid low level waste ('the Policy'). The Policy sets out a number of core principles for the management of low level waste (LLW) and charges the Nuclear Decommissioning Authority with developing a UK-wide strategy in the case of LLW from nuclear sites. The UK Nuclear Industry LLW Strategy has been developed within the framework of the principles set out in the policy. A key factor in the development of this strategy has been the strategic partnership the NDA shares with the Low Level Waste Repository near Drigg (LLWR), who now have a role in developing strategy as well as delivering an optimised waste management service at the LLWR. The strategy aims to support continued hazard reduction and decommissioning by ensuring uninterrupted capability and capacity for the management and disposal of LLW in the UK. The continued availability of a disposal route for LLW is considered vital by both the nuclear industry and non-nuclear industry low level waste producers. Given that the UK will generate significantly more low level waste (∼ 3.1 million m 3 ) than there is capacity at the LLWR (∼0.75 million m 3 ), developing alternative effective ways to manage LLW is critical. The waste management hierarchy is central to the strategy, which includes strategic goals at all levels of the hierarchy to improve its application across the industry. (authors)

  18. Enhanced security in the nuclear industry

    International Nuclear Information System (INIS)

    Frappier, G.

    2007-01-01

    This article describes the security in the nuclear industry. After 9/11, Canada's nuclear regulator - the Canadian Nuclear Safety Commission (CNSC) - determined that the entire industry (including its own organization) faced a need for significant enhancements in their approach to security.

  19. Directory of the French nuclear industry

    International Nuclear Information System (INIS)

    2002-10-01

    This directory includes data sheets on the French companies operating in the nuclear industry. It begins with an introduction containing information on the French nuclear industry: 1 - nuclear power development in France (national energy plan, history, organization, economic advantages, reactors); 2 - French operator: Electricite de France (EdF); 3 - the industry (Areva, Cogema, mining activities, uranium chemistry and enrichment, processing, recycling, engineering, services, Framatome ANP); 4 - R and D and knowledge dissemination: French atomic energy commission (CEA); 5 - nuclear safety, security, control and regulation: nuclear safety authority (ASN), general direction of nuclear safety and radioprotection (DGSNR), institute of radioprotection and nuclear safety (IRSN), radioactive wastes, ANDRA's role; 6 - associations: French atomic forum (FAF), French nuclear industry trade association (GIIN), French nuclear energy society (SFEN), French radiation protection society (SFRP). Then, the data sheets of the directory follows. (J.S.)

  20. Nuclear power industry and environment

    International Nuclear Information System (INIS)

    Sivintsev, Yu.V.

    1979-01-01

    Estimated is the environmental impact of the developing nuclear power in the UK. The radiation levels of the population due to natural and artificial sources are considered. Among the natural sources singled out are the following ones: 238 U occuring in the surface layer of the earth-crust, 40 K which is the component of man muscles and which is the most important source of internal irradiation, and the cosmic radiation as well. Among the man-made radiation sources the dominant ones are X-ray diagnostics, nuclear tests and radioactive fall-out resulted from them. It is stated that nowdays the dose, caused by nuclear power industry in the UK, constitutes approximately 0.5 mrem/yr, which is considerably less than the dose variations due to residence change within the country or frequency of X-ray diagnostical examinations. The high level of the risk for the population in the NPS vicinity and for the personnel is estimated with the help of linear extrapolation of ''dose-response'' curve regarding the natural variations caused by residence variations and occupational hazard. According to the ICRP data, the risk of late effects is 10 -4 for man-rem. Considered are the existing and perspective management methods for NPS the high-level radioactive wastes in the UK as well as the equipment

  1. Nuclear power industry and environment

    Energy Technology Data Exchange (ETDEWEB)

    Sivintsev, Yu V

    1979-01-01

    Estimated is the environmental impact of the developing nuclear power in the UK. The radiation levels of the population due to natural and artificial sources are considered. Among the natural sources singled out are the following ones: /sup 238/U occuring in the surface layer of the earth-crust, /sup 40/K which is the component of man muscles and which is the most important source of internal irradiation, and the cosmic radiation as well. Among the man-made radiation sources the dominant ones are X-ray diagnostics, nuclear tests and radioactive fall-out resulted from them. It is stated that nowdays the dose, caused by nuclear power industry in the UK, constitutes approximately 0.5 mrem/y, which is considerably less than the dose variations due to residence change within the country or frequency of X-ray diagnostical examinations. The high level of the risk for the population in the NPS vicinity and for the personnel is estimated with the help of linear extrapolation of ''dose-response'' curve regarding the natural variations caused by residence variations and occupational hazard. According to the ICRP data, the risk of late effects is 10/sup -4/ for man-rem. Considered are the existing and perspective management methods for NPS the high-level radioactive wastes in the UK as well as the equipment.

  2. Coating technologies in the nuclear industry

    International Nuclear Information System (INIS)

    Kaae, J.L.

    1993-01-01

    Metallic, ceramic, and organic coatings are so commonly used in modern industry that virtually everyone can name several applications in which coatings are employed. Thus, it is no surprise that coating technologies are widely employed in the nuclear industry. Some of these technologies utilize processes that are mature and well developed, and others utilize processes that are new and state of the art. In this paper, five generic coating processes that include almost all vapor deposition processes are described, and then applications of each of these processes for deposition of specific materials in nuclear applications are described. These latter selections, of course, are very subjective, and others will be able to name other applications. Because of their wide range of application, coating technologies are considered to be national critical technologies. The generic coating processes that cover almost all vapor deposition technologies are as follows: (1) stationary substrate chemical vapor deposition; (2) fluidized bed chemical vapor deposition; (3) plasma-assisted chemical deposition; (4) sputtering; (5) evaporation

  3. Consideration of nuclear technology development on agricultural industrialization in Xinjiang

    International Nuclear Information System (INIS)

    Xu Fang; Xie Yinghua; Lei Bin

    2010-01-01

    This review describes the application of nuclear technology in Xinjiang agriculture along with industrialization and economic benefit since 1970s. Current problems in this field were analyzed and corresponding advices were presented. (authors)

  4. Development and issues of nuclear industry in Taiwan

    International Nuclear Information System (INIS)

    Kuangchi Liu

    1994-01-01

    Industrial and economic developments in Taiwan have achieved a so-called 'miracle' in the last decades. Endeavors by the private enterprise, prudent planning by the government, and the devoted efforts by the diligent and creative labor forces have been credited jointly with the result. To develop a sustainable nuclear industry in support of an efficient and safe power generation and other applications of nuclear energy in Taiwan, continuing efforts from the private industry, government and each individual of the nuclear industry will be required. In this paper, milestones of the past and major issues for future developments will be discussed

  5. Implications of nuclear industry globalization for chinese nuclear industry: opportunities and challenges

    International Nuclear Information System (INIS)

    Guo Zhifeng; Ding Qihua; Wang Zheng

    2014-01-01

    In recent years, globalization of the world nuclear industry has developed into a new phase. Chinese nuclear industry will be inevitably integrated into this trend. Globalization will bring both positive and adverse effects on Chinese nuclear industry. Facing the fierce competition, Chinese companies must rise to many challenges to enter the global nuclear market. And China need to make scientific decisions and take effective measures in various fields of nuclear industry to realized the goal of global development. (authors)

  6. Considerations about the licensing process of special nuclear industrial facilities

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, M.A., E-mail: talaricomarco@hotmail.com [Marinha do Brasil, Rio de Janeiro, RJ (Brazil). Coordenacao do Porgrama de Submarino com Propulsao Nuclear; Melo, P.F. Frutuoso e [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  7. Considerations about the licensing process of special nuclear industrial facilities

    International Nuclear Information System (INIS)

    Talarico, M.A.; Melo, P.F. Frutuoso e

    2015-01-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  8. Manipulating meanings. [Advertising by the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, J. (University College, London (United Kingdom). Dept. of Geography)

    Nuclear industry advertising in the United Kingdom is becoming more and more frequent, and is often controversial. The content and impact of recent campaigns are considered, especially the advertisement which portrays nuclear power as beneficial to the greenhouse effect. (author).

  9. Nuclear industry - challenges in chemical engineering

    International Nuclear Information System (INIS)

    Sen, S.; Sunder Rajan, N.S.; Balu, K.; Garg, R.K.; Murthy, L.G.K.; Ramani, M.P.S.; Rao, M.K.; Sadhukhan, H.K.; Venkat Raj, V.

    1978-01-01

    Chemical engineering processes and operations are closely involved in every step of the nuclear fuel cycle. Starting from mining and milling of the ore through the production of fuel and other materials and their use in nuclear reactors, fuel reprocessing, fissile material recycle and treatment and disposal of fission product wastes, each step presents a challenge to the chemical engineer to evolve and innovate processes and techniques for more efficient utilization of the energy in the atom. The requirement of high recovery of the desired components at high purity levels is in itself a challenge. ''Nuclear Grade'' specifications for materials put a requirement which very few industries can satisfy. Recovery of uranium and thorium from low grade ores, of heavy water from raw water, etc. are examples. Economical and large scale separation of isotopes particularly those of heavy elements is a task for which processess are under various stages of development. Further design of chemical plants such as fuel reprocessing plants and high level waste treatment plants, which are to be operated and maintained remotely due to the high levels of radio-activity call for engineering skills which are being continually evolved. In the reactor, analysis of the fluid mechanics and optimum design of heat removal system are other examples where a chemical engineer can play a useful role. In addition to the above, the activities in the nuclear industry cover a very wide range of chemical engineering applications, such as desalination and other energy intensive processes, radioisotope and radiation applications in industry, medicine and agriculture. (auth.)

  10. Market competition in the nuclear industry

    International Nuclear Information System (INIS)

    Taylor, M.

    2008-01-01

    The nuclear industry provides a wide variety of specialized equipment and services to support the construction and operation of nuclear power plants (NPPs). This includes the supply of NPPs themselves, the range of materials and services required in the nuclear fuel cycle, and the services and equipment needed for maintenance and upgrading. The markets to provide these have changed substantially as they have evolved from the government-led early stages of the nuclear industry to predominantly competitive, commercial markets today. (author)

  11. NDE performance demonstration in the US nuclear power industry - applications, costs, lessons learned, and connection to NDE reliability

    International Nuclear Information System (INIS)

    Ammirato, F.

    1997-01-01

    Periodic inservice inspection (ISI) of nuclear power plant components is performed in the United States to satisfy legal commitments and to provide plant owners with reliable information for managing degradation. Performance demonstration provides credible evidence that ISI will fulfill its objectives. This paper examines the technical requirements for inspection and discusses how these technical needs are used to develop effective performance demonstration applications. NDE reliability is discussed with particular reference to its role in structural integrity assessments and its connection with performance demonstration. It is shown that the role of NDE reliability can range from very small to critical depending on the particular application and must be considered carefully in design of inspection techniques and performance demonstration programs used to qualify the inspection. Finally, the costs, benefits, and problems associated with performance demonstration are reviewed along with lessons learned from more than 15 years of performance demonstration experience in the US. (orig.)

  12. Design of nuclear instruments for industrial use

    International Nuclear Information System (INIS)

    Maggio, G.E.

    1988-01-01

    Following an introduction to the atomic structure and the radioactive desintegration, the applications of radioisotopic sealed sources are described. The laws that govern the interaction of radiation with matter and the statistics applied to the radioactive measurements are presented. Different measurement techniques, basic equations of design, the way to provide the activity calculation of a source and the detector's characteristics are given, according to the parameters to be measured and the conditions imposed. Finally, the principles of operation and the most important characteristics of different nuclear instruments to be used in industrial measurements are described. (Author) [es

  13. The World Nuclear Industry Status Report 2013

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hosokawa, Komei; Thomas, Steve; Yamaguchi, Yukio; Hazemann, Julie; Bradford, Peter A.

    2013-07-01

    Two years after the Fukushima disaster started unfolding on 11 March 2011, its impact on the global nuclear industry has become increasingly visible. Global electricity generation from nuclear plants dropped by a historic 7 percent in 2012, adding to the record drop of 4 percent in 2011. This World Nuclear Industry Status Report 2013 (WNISR) provides a global overview of the history, the current status and the trends of nuclear power programs worldwide. It looks at nuclear reactor units in operation and under construction. Annex 1 provides 40 pages of detailed country-by-country information. A specific chapter assesses the situation in potential newcomer countries. For the second time, the report looks at the credit-rating performance of some of the major nuclear companies and utilities. A more detailed chapter on the development patterns of renewable energies versus nuclear power is also included. Annex 6 provides an overview table with key data on the world nuclear industry by country. The 2013 edition of the World Nuclear Industry Status Report also includes an update on nuclear economics as well as an overview of the status, on-site and off-site, of the challenges triggered by the Fukushima disaster. However, this report's emphasis on recent post-Fukushima developments should not obscure an important fact: as previous editions (see www.WorldNuclearReport.org) detail, the world nuclear industry already faced daunting challenges long before Fukushima, just as the U.S. nuclear power industry had largely collapsed before the 1979 Three Mile Island accident. The nuclear promoters' invention that a global nuclear renaissance was flourishing until 3/11 is equally false: Fukushima only added to already grave problems, starting with poor economics. The performance of the nuclear industry over the year from July 2012 to July 2013 is summed up in this report

  14. Nuclear cratering applications

    International Nuclear Information System (INIS)

    Williamson, M.M.

    1969-01-01

    The development of nuclear excavation technology is based on the promise that the relatively inexpensive energy available from thermonuclear explosives can be used to simultaneously break and move age quantities of rock and earth economically and safety. This paper discusses the economic and other advantages of using nuclear excavation for large engineering projects. A brief description of the phenomenology of nuclear excavation is given. Each of the several proposed general applications of nuclear excavation is discussed to include a few specific example of possible nuclear excavation projects. The discussion includes nuclear excavation for harbors, canals, terrain transits, aggregate production, mining and water resource development and conservation. (author)

  15. Nuclear cratering applications

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, M M [U.S. Atomic Energy Commission, Germantown, MD (United States)

    1969-07-01

    The development of nuclear excavation technology is based on the promise that the relatively inexpensive energy available from thermonuclear explosives can be used to simultaneously break and move age quantities of rock and earth economically and safety. This paper discusses the economic and other advantages of using nuclear excavation for large engineering projects. A brief description of the phenomenology of nuclear excavation is given. Each of the several proposed general applications of nuclear excavation is discussed to include a few specific example of possible nuclear excavation projects. The discussion includes nuclear excavation for harbors, canals, terrain transits, aggregate production, mining and water resource development and conservation. (author)

  16. High nitrogen stainless steels for nuclear industry

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.

    2016-01-01

    Nitrogen alloying in stainless steels (SS) has myriad beneficial effects, including solid solution strengthening, precipitation effects, phase control and corrosion resistance. Recent years have seen a rapid development of these alloys with improved properties owing to advances in processing technologies. Furthermore, unlimited demands for high-performance advanced steels for special use in advanced applications renewed the interest in high nitrogen steels (HNS). The combination of numbers of attractive properties such as strength, fracture toughness, wear resistance, workability, magnetic properties and corrosion resistance of HNS has given a unique advantage and offers a number of prospective applications in different industries. Based on extensive studies carried out at IGCAR, nitrogen alloyed type 304LN SS and 316LN SS have been chosen as materials of construction for many engineering components of fast breeder reactor (FBR) and associated reprocessing plants. HNS austenitic SS alloys are used as structural/reactor components, i.e., main vessel, inner vessel, control plug, intermediate heat exchanger and main sodium piping for fast breeder reactor. HNS type 304LN SS is a candidate material for continuous dissolver, nuclear waste storage tanks, pipings, etc. for nitric acid service under highly corrosive conditions. Recent developments towards the manufacturing and properties of HNS alloys for application in nuclear industry are highlighted in the presentation. (author)

  17. Nuclear instrumentation for the industrial measuring systems

    International Nuclear Information System (INIS)

    Normand, S.

    2010-01-01

    This work deals with nuclear instrumentation and its application to industry, power plant fuel reprocessing plant and finally with homeland security. The first part concerns the reactor instrumentation, in-core and ex-core measurement system. Ionization Uranium fission chamber will be introduced with their acquisition system especially Campbell mode system. Some progress have been done on regarding sensors failure foresee. The second part of this work deals with reprocessing plant and associated instrumentation for nuclear waste management. Proportional counters techniques will be discussed, especially Helium-3 counter, and new development on electronic concept for reprocessing nuclear waste plant (one electronic for multipurpose acquisition system). For nuclear safety and security for human and homeland will be introduce. First we will explain a new particular approach on operational dosimetric measurement and secondly, we will show new kind of organic scintillator material and associated electronics. Signal treatment with real time treatment is embedded, in order to make neutron gamma discrimination possible even in solid organic scintillator. Finally, the conclusion will point out future, with most trends in research and development on nuclear instrumentation for next years. (author) [fr

  18. Nuclear data applications in developing countries

    International Nuclear Information System (INIS)

    Mehta, M.K.; Schmidt, J.J.

    1985-01-01

    The peaceful applications of nuclear science and technology currently receive an increasing attention in many developing countries. More than 15 developing countries operate, construct or plan nuclear power reactors, 70 developing countries are using or planning to use nuclear techniques in medicine, agriculture, industry, and for other vital purposes. The generation, application and computer processing of nuclear data constitute important elements of the nuclear infrastructure needed for the successful implementation of nuclear science and technology. Developing countries become increasingly aware of this need, and, with the help and cooperation of the IAEA Nuclear Data Section, are steadily gaining in experience in this field. The paper illustrates this development in typical examples. (orig.)

  19. Economical scale of nuclear energy application

    International Nuclear Information System (INIS)

    2001-01-01

    The nuclear energy industry is supported by two wheels of radiation and energy applications. When comparing both, they have some different sides, such as numbers of employees and researchers, numbers and scales of works, effect on society, affecting effects and regions of industrial actions, problems on safety, viewpoint on nuclear proliferation protection and safety guarantee, energy security, relationship to environmental problem, efforts on wastes disposal, and so on. Here described on economical scale of radiation application in fields of industry, agriculture, and medicine and medical treatment, and on economical scale of energy application in nuclear power generation and its instruments and apparatus. (G.K.)

  20. Union innovation in Ontario's nuclear industry

    International Nuclear Information System (INIS)

    MacKinnon, D.

    2003-01-01

    Over the last decade the Power Worker's Union (PWU) has embarked on a number of innovative approaches that have provided significant benefit to the nuclear industry. These include advanced labour relations approaches, equity participation and groundbreaking skills training initiatives. This presentation outlines these and other initiatives in the context of the union's view of the nuclear generation industry's future. (author)

  1. Specific features of occupational medicine in nuclear research and industry

    International Nuclear Information System (INIS)

    Giraud, J.M.; Quesne, B.

    2003-01-01

    Measures to prevent the exposure of personnel to ionising radiation were taken as soon as the first nuclear laboratories were set up. This branch of occupational preventive medicine has since kept pace with advances in research and in the industrial applications of nuclear energy. (authors)

  2. Industrial applications of computer tomography

    International Nuclear Information System (INIS)

    Sheng Kanglong; Qiang Yujun; Yang Fujia

    1992-01-01

    Industrial computer tomography (CT) and its application is a rapidly developing field of high technology. CT systems have been playing important roles in nondestructive testing (NDT) of products and equipment for a number of industries. Recently, the technique has advanced into the area of industrial process control, bringing even greater benefit to mankind. The basic principles and typical structure of an industrial CT system Descriptions are given of some successful CT systems for either NDT application or process control purposes

  3. The Canadian nuclear industry - a national asset

    International Nuclear Information System (INIS)

    1985-03-01

    The economic importance of the Canadian nuclear industry in saving costs and creating jobs is expounded. The medical work of Atomic Energy of Canada Limited is also extolled. The Canadian Nuclear Association urges the federal government to continue to support the industry at home, and to continue to promote nuclear exports. This report was prepared in response to the Federal Finance Minister's 'A New Direction for Canada'

  4. Status of nuclear power industry in Ukraine

    International Nuclear Information System (INIS)

    Kadenko, I.M.; Vlasenko, M.I.

    2007-01-01

    There are five nuclear power plants and sites (NPPs) with 15 units in operation, 3 units under decommissioning and 1 drastically known as the 'Shelter' object in Ukraine. Ukraine has ambitions plans to develop nuclear industry based on own mineral, human financial resources as well as world wide international cooperation with nuclear countries

  5. The Canadian nuclear power industry. Background paper

    International Nuclear Information System (INIS)

    Nixon, A.

    1993-12-01

    Nuclear power, the production of electricity from uranium through nuclear fission, is by far the most prominent segment of the nuclear industry. The value of the electricity produced, $3.7 billion in Canada in 1992, far exceeds the value of any other product of the civilian nuclear industry. Power production employs many more people than any other sector, the capital investment is much greater, and nuclear power plants are much larger and more visible than uranium mining and processing facilities. They are also often located close to large population centres. This paper provides an overview of some of the enormously complex issues surrounding nuclear power. It describes the Canadian nuclear power industry, addressing i particular its performance so far and future prospects. (author). 1 tab

  6. The Canadian nuclear power industry. Background paper

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, A [Library of Parliament, Ottawa, ON (Canada). Science and Technology Div.

    1993-12-01

    Nuclear power, the production of electricity from uranium through nuclear fission, is by far the most prominent segment of the nuclear industry. The value of the electricity produced, $3.7 billion in Canada in 1992, far exceeds the value of any other product of the civilian nuclear industry. Power production employs many more people than any other sector, the capital investment is much greater, and nuclear power plants are much larger and more visible than uranium mining and processing facilities. They are also often located close to large population centres. This paper provides an overview of some of the enormously complex issues surrounding nuclear power. It describes the Canadian nuclear power industry, addressing i particular its performance so far and future prospects. (author). 1 tab.

  7. The World Nuclear Industry Status Report 2004

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony

    2004-12-01

    Fifty years ago, in September 1954, the head of the US Atomic Energy Commission stated that nuclear energy would become 'too cheap to meter': The cost to produce energy by nuclear power plants would be so low that the investment into electricity meters would not be justified. By coincidence the US prophecy came within three months of the announcement of the world's first nuclear power plant being connected to the grid in.. the then Soviet Union. In June 2004, the international nuclear industry celebrated the anniversary of the grid connection at the site of the world's first power reactor in Obninsk, Russia, under the original slogan '50 Years of Nuclear Power - The Next 50 Years'. This report aims to provide a solid basis for analysis into the prospects for the nuclear power industry. Twelve years ago, the Worldwatch Institute in Washington, WISE-Paris and Greenpeace International published the World Nuclear Industry Status Report 1992. In the current international atmosphere of revival of the nuclear revival debate - it has been a periodically recurring phenomenon for the past twenty years - two of the authors of the 1992 report, now independent consultants, have carried out an updated review of the status of the world nuclear industry. The performance of the nuclear industry over the past year is summed up in this report

  8. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    Chester, K.

    1982-01-01

    In order to make a real contribution to the nuclear energy debate (is nuclear energy the limitless solution to man's energy problems or the path to man's destruction) people must be aware of the facts. The Science Reference Library (SRL) has a collection of the primary sources of information on nuclear energy - especially journals. This guideline aims to draw attention to the up-to-date literature on nuclear energy and its technology, freely available for consultation in the main Holborn reading room. After explanations of where to look for particular types of information and the SRL classification, the booklet gives lists and brief notes on the sources held. These are abstracting and indexing periodicals and periodicals. Reports, conference proceedings, patents, bibliographies, directories, year-books and buyer's guides are covered very briefly but not listed. Nuclear reactor data and organisations are also listed with brief details of each. (U.K.)

  9. Nuclear analytical techniques in Cuban sugar industry

    International Nuclear Information System (INIS)

    Diaz R, O.; Griffith M, J.

    1997-01-01

    This paper is a review concerning the application of Nuclear Analytical Techniques in the Cuban sugar industry. The most complete elemental composition of final molasses (34 elements) and natural zeolites (38) this last one employed as an auxiliary agent in sugar technological processe4s has been performed by means of instrumental Neutron Activation Analysis (INAA) and X-Ray Fluorescence Analysis (XRFA). The trace elemental sugar cane soill-plant relationship and elemental composition of different types of Cuban sugar (raw, blanco-directo and refine) were also studied. As a result, valuable information referred to the possibilities of using these products in animal and human foodstuff so as in the other applications are given. (author). 34 refs., 6 figs., 1 tab

  10. The worldwide nuclear industry and its markets

    International Nuclear Information System (INIS)

    Mons, L.

    2000-06-01

    The world nuclear industry has entered a phase of low activity since the beginning of the 90's. The opening of electricity markets to competition, the reserve of part of the public opinion with respect to nuclear energy and the competition of other power production sources explain the lack of dynamism of nuclear markets. In this context of uncertainties, the nuclear sector has started a re-structuration in depth with new strategic trends which will be decisive for the perenniality of the nuclear industry. The front-end of the fuel cycle is disturbed by production over-capacities which lead to strong tensions on prices. The veering of the German and Belgian policies has had strong impacts on the spent fuels reprocessing activity and the reactor construction activity is in decline in Europe and in the US. On the other hand, services are developing with the extension of the service life of nuclear plants and the waste management and dismantling markets are emerging. The main stakes that the occidental nuclear actors have to face today are: improving the competitiveness of nuclear industry, mastering the management of long-living radioactive wastes, proving the safeness of nuclear power, countering the arrival of Asian competitors. In front of these stakes, the nuclear actors have to take initiatives such as: concentration, vertical integration, technological innovation, communication, diversification etc.. This study examines the overall segments of the world nuclear industry. It comprises also a behaviour and strategy analysis of 13 major actors of this sector. (J.S.)

  11. NIASA: Nuclear Industry Association of South Africa

    International Nuclear Information System (INIS)

    Mollard, P.; Louf, P.H.; Gentet, G.; Doix, G.

    2015-01-01

    NIASA (Nuclear Industry Association of South Africa) aims at promoting the highest standards in the development and use of nuclear technologies. NIASA was founded in 2007. South-Africa has a long history in nuclear activity since the construction of the first nuclear power plant ever built on African soil was commissioned in 1984 in South-Africa (Koeberg plant equipped with two 900 MW reactors). There is also an important center for nuclear research near Pretoria that was founded in 1948 to regulate the prospecting for uranium. NECSA (South African Nuclear Energy Corporation is a state-owned public company) that manages nuclear research, operates the Safari-1 (2 MWe - commissioned in 1965) research reactor and manages the national radioactive waste center located at Vaalputs. The South African nuclear industry employs about 4000 people. (A.C.)

  12. US nuclear policy and business trend of Japan's nuclear industries

    International Nuclear Information System (INIS)

    Matsuo, Yuji

    2010-01-01

    As several countries in the east-Asia and middle-east area have been taking an increasing interest in the deployment of nuclear power generation, Japan's nuclear industries have promoted international business activities including the success in the bid of second nuclear power plants in Vietnam. While there are plans for more than thirty of new reactors in the US, the lifetime extension of existing aged reactors, development of non-existing natural gas and trend of greenhouse gases reduction measures have dampened these plans and probably most of new units will not start construction by 2030. This article reviewed the details of US's new nuclear power introduction, trend of recent government's policies, future perspective of nuclear power construction and business trend of Japan's nuclear industries. Japan's industries should be flexible regarding nuclear power as one option to realize low-carbon society. (T. Tanaka)

  13. Working in nuclear industry? why not?

    International Nuclear Information System (INIS)

    Brechet, Y.

    2017-01-01

    Today 200 nuclear reactors are being built or scheduled in the world and despite this, nuclear energy in western countries seems to collapse under the weights of prejudices and false ideas. No matter what the opponents say, nuclear energy is safe and clean and is a bringer of jobs. In France nuclear industry is one of a few industrial sectors that have been spared by massive de-industrialization. Nuclear energy as a carbon-free energy, has an important role to play to mitigate climate warming by working with renewable energies to provide a reliable electric power. This future is a new future for nuclear energy as new challenges have to be overcome, for instance nuclear energy has to adapt itself to the intermittency of wind and solar energies, nuclear industry has to be innovative and has to fully appropriate numerical technologies. Nuclear industry is a promising sector that proposes interesting scientific and technical jobs and is also a vital interest for the country. (A.C.)

  14. Non-nuclear power application of nuclear technology in Nigeria

    International Nuclear Information System (INIS)

    Funtua, I.I.

    2008-01-01

    Nuclear Technology applications are found in Food and Agriculture, Human Health, Water Resources, Industry, Environment, Education and Research.There are more potentials for the deployment of nuclear technology in more aspects of our life with needed economic development in Nigeria.Nuclear Technology plays and would continue to play vital role in Agriculture, Human health, Water resources and industry in Nigeria.Nuclear technologies have been useful in developmental efforts worldwide and for these to take hold, capacity building programmes must be expanded and the general public must have informed opinions about the benefits and risk associated with the technologies.This presentation gives an overview of nuclear technology applications in Nigeria in the following areas: Food and Agriculture, Human Health, Water Resources, Industry, Education and Research

  15. Radioisotope applications in GDR industries

    International Nuclear Information System (INIS)

    Leonhardt, J.W.

    1984-01-01

    Contributions of the Central Institute for Isotope and Radiation Research in the field of isotope techniques in the industries are reviewed. Results of basic research in radiation application and tracer techniques are presented. Progress and trends of radionuclide techniques in important fields of application like chemical engineering, power industries, and microelectronics are analysed. (author)

  16. Nuclear industry: a young sector of excellence

    International Nuclear Information System (INIS)

    Varin, P.

    2017-01-01

    Nuclear industry is the 3. industrial sector in France and is the good reason why the French energy mix is largely carbon-free. The medium term challenges that faces nuclear industry in this country is first to succeed the extensive refit of nuclear power plants with a view on getting the extension of their operating life and secondly to recruit the skilled staff nuclear industry needs. About 8000 jobs dispatched in the 2500 enterprises that forms the nuclear sector will be available each year up to 2020. The age pyramid shows that numerous retirements are expected in the years to come so the issue of skill and knowledge transfer is looming. 25% of recruitment will be made on the basis of work-study contracts particularly for technical jobs. Concerning recruitment, the nuclear sector is competing with other high-tech sectors like aeronautics or the automobile sector, which make things harder. The image that nuclear industry wants to promote of itself is the image of a young, modern, high-tech industry that appeared less than 50 years ago and whose main purpose is to provide a carbon-free electricity to an avid world. (A.C.)

  17. The multiple applications of the nuclear techniques in Argentina

    International Nuclear Information System (INIS)

    Manzini, Alberto C.

    2001-01-01

    A review is given of the use of nuclear technology in Argentina, especially in the field of the production of radioisotopes and radiopharmaceuticals, nuclear medicine, and industrial applications. The applications of ionizing radiation are also reviewed

  18. Nuclear industry chart no. 21 - France

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    A fold-out chart shows the relationship between the government bodies and industrial concerns. Nuclear power plant orders under the 1970-84 programme are tabulated. A directory is included of national bodies, firms and establishments. (U.K.)

  19. Trends in risk management in nuclear industry

    International Nuclear Information System (INIS)

    Kim, Inn Seock

    1996-01-01

    Safety management may be classified into three dimensions: risk management, accident management, and emergency management. This paper addresses the recent trends of safety management in nuclear industry, focussing on risk management and accident management

  20. Hazard and safety in the nuclear industry

    International Nuclear Information System (INIS)

    Tadmor, J.

    1978-01-01

    Although the number of victims in the nuclear industry has been extremely low as compared with the number of victims in other spheres of human activity society has been willing to put up with a high number of accidents resulting in few victims per accident but refuses to accept an extremely rare accident resulting in a high number of victims. The U.S. nuclear industry is spending almost 2000 dollars for each reduction of a man x rem unit and this investment raises the ''man-life value'' in the nuclear industry to 10 million dollars as compared with 10,000 to 20,000 dollars spent in other activities (roentgen, early cancer detection, etc.). To reduce the exaggerated burden placed on the nuclear industry the safety expenditures should be spread over a maximum possible range of human activities. (B.G.)

  1. US nuclear power industry overview

    International Nuclear Information System (INIS)

    Wood, C.J.

    1995-01-01

    The electric utilities in the United States are facing a number of challenges as deregulation proceeds. Cost control is one of these challenges that impacts directly the operators of nuclear power plants. This presentation reviews recent data on the performance of nuclear power plants and discusses technical developments to reduce operating costs, with particular reference to low-level radioactive waste issues

  2. Nuclear industry project audit and countermeasures

    International Nuclear Information System (INIS)

    Li Yongxin; Zhang Jian

    2012-01-01

    With China's increasing use of nuclear energy, nuclear power related construction projects related to the deepening of the audit, some of the nuclear industry in construction field of the dominant issues have been more effective containment, such as inflated workload, high-set fixed standards, to improve billing unit price, which overestimate the risk calculation tools and behavior completed audit of the accounts have been able to escape his stuff. However, some nuclear industry construction field with a hidden problem because of its hidden nature, not easily found, and some even have intensified the trend. Construction funds to the country such problems caused by the loss of waste is enormous, to the breeding of corruption provided the soil is fertile, if not promptly and effectively to stop the breeding will spread. This paper on the current construction of the nuclear industry in several major areas of the hidden problems are discussed, and the angle from the audit of appropriate countermeasures. (authors)

  3. The World Nuclear Industry Status Report 2012

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie

    2012-07-01

    Twenty years after its first edition, World Nuclear Industry Status Report 2012 portrays an industry suffering from the cumulative impacts of the world economic crisis, the Fukushima disaster, ferocious competitors and its own planning and management difficulties. The report provides a global overview of the history, the current status and trends of nuclear power programs in the world. It looks at units in operation and under construction. Annex 1 also provides detailed country-by-country information. A specific chapter assesses the situation in potential newcomer countries. For the first time, the report looks at the credit-rating performance of some of the major nuclear companies and utilities. A more detailed chapter on the development patterns of renewable energies versus nuclear power is also included. The performance of the nuclear industry over the 18 months since the beginning of 2011 is summed up in this report

  4. Comprehensive study on estimation of gamma-ray exposure buildup factors for smart polymers as a potent application in nuclear industries

    Science.gov (United States)

    Sayyed, M. I.; AlZaatreh, M. Y.; Matori, K. A.; Sidek, H. A. A.; Zaid, M. H. M.

    2018-06-01

    In the present study, the exposure buildup factors (EBF) have been investigated using geometric progression (G-P) fitting method for different types of smart polymers (DMSO, PDMS, PES, PMA, PVDC, and PVDF) in the energy range of 0.015-15 MeV. From the calculations, the values of the EBF were depended on the incident photon energy, penetration depth as well as chemical composition of the polymers. In the intermediate energy region, the EBF values were reached at maximum point while in low and high energy regions, the EBF values were decreased at minimum point. The obtained results of the selected polymers have been compared in terms of EBF with Al2O3 and other common polymers such as PAN, Teflon and SR. The shielding effectiveness of the selected polymers is found to be comparable to the common polymers. The results of this work should be useful in radiation shielding applications such as in industry, medical and nuclear engineering.

  5. Options contracts in the nuclear fuel industry

    International Nuclear Information System (INIS)

    Fuller, D.M.

    1995-01-01

    This article discusses options trading in the nuclear fuels industry. Although there now exists no formal options market in the nuclear industry, flexibilities, or embedded options, are actually quite common in the long-term supply contracts. The value of these flexibilities can be estimated by applying the methods used to evaluate options. The method used is the Black-Scholes Model, and it is applied to a number of examples

  6. Continuous improvement methods in the nuclear industry

    International Nuclear Information System (INIS)

    Heising, Carolyn D.

    1995-01-01

    The purpose of this paper is to investigate management methods for improved safety in the nuclear power industry. Process improvement management, methods of business process reengineering, total quality management, and continued process improvement (KAIZEN) are explored. The anticipated advantages of extensive use of improved process oriented management methods in the nuclear industry are increased effectiveness and efficiency in virtually all tasks of plant operation and maintenance. Important spin off include increased plant safety and economy. (author). 6 refs., 1 fig

  7. Annual report 1999 - Brazil Nuclear Industry (INB)

    International Nuclear Information System (INIS)

    2000-01-01

    This document presents the 1999 annual report covering the following activities: nuclear fuel, resources and application, ISO 9001, environment social activities, personnel, financial indicators, and countability

  8. Quantification practices in the nuclear industry

    International Nuclear Information System (INIS)

    1986-01-01

    In this chapter the quantification of risk practices adopted by the nuclear industries in Germany, Britain and France are examined as representative of the practices adopted throughout Europe. From this examination a number of conclusions are drawn about the common features of the practices adopted. In making this survey, the views expressed in the report of the Task Force on Safety Goals/Objectives appointed by the Commission of the European Communities, are taken into account. For each country considered, the legal requirements for presentation of quantified risk assessment as part of the licensing procedure are examined, and the way in which the requirements have been developed for practical application are then examined. (author)

  9. Human resources in the Japanese nuclear industry

    International Nuclear Information System (INIS)

    Katayama, M.

    1995-01-01

    Japan is becoming rapidly a nation with an elderly population. Japanese students are turning away from the manufacturing industries, including the nuclear industry, and turning towards more service oriented industries that are considered to be cleaner and to pay better. Studies have been performed to devise ways to attract young workers to the nuclear industry, which is projected to continue to grown under the current long range energy plants. The paper summarizes the findings and recommendations of the recent studies conducted by the nuclear industry and academic circles. All studies point out that insufficient emphasis is placed on science in the present Japanese educational programme and that implementation of effective programmes to revitalize education in science is most urgently needed to keep Japan in the forefront of high technology. Utilization of advanced computer technology and automation is promoted to improve working conditions and efficiency in the nuclear industry. In addition, the establishment of a professional status of engineers and technicians will be vital for an effective utilization of qualified workers in the nuclear industry. (author). 3 refs, 1 tab

  10. Privatisation of the UK's nuclear power industry: nuclear's triple challenge

    International Nuclear Information System (INIS)

    Fraser, W.R.I.

    1997-01-01

    At the British Nuclear Congress in December 1996, Lord Fraser of Caryllie, then UK energy minister, set out the three key issues the nuclear industry must tackle for a successful future: (1) increased competition from other energy sources, (2) a growing world market for its skills and (3) a continuing tough regulatory regime. Nuclear power, with electricity generated in the UK rising to 25%, has responded well to competition from other energy sources, and also to the further competition generated by privatisation which has already generated benefits for the public. As other countries with nuclear programmes diversify and upgrade their technology this will create new export opportunities for Britain over and above those already in existence, notably by BNFL in Japan. Other areas that Britain has to offer relate to safety improvements, notably in eastern Europe, and decommissioning, in which Magnox Electric is one of the few operators in the world with experience in decommissioning a full scale commercial reactor. The regulatory framework for the nuclear industry will continue to be as rigorous as ever, but, however the industry is structured, it should be noted that commercial success and continued safe operations are inextricably linked. The industry must operate within the framework of the development of international treaties and agreements in the nuclear field. The Government will continue to take a close interest in the safety, security and prosperity of the nuclear industry, and help Britain as a whole to be a successful and influential player in the international nuclear community. (UK)

  11. Long-Term Nuclear Industry Outlook - 2004

    Energy Technology Data Exchange (ETDEWEB)

    Reichmuth, Barbara A.; Wood, Thomas W.; Johnson, Wayne L.

    2004-09-30

    The nuclear industry has become increasingly efficient and global in nature, but may now be poised at a crossroads between graceful decline and profound growth as a viable provider of electrical energy. Predicted population and energy-demand growth, an increased interest in global climate change, the desire to reduce the international dependence on oil as an energy source, the potential for hydrogen co-generation using nuclear power reactors, and the improved performance in the nuclear power industry have raised the prospect of a “nuclear renaissance” in which nuclear power would play an increasingly more important role in both domestic and international energy market. This report provides an assessment of the role nuclear-generated power will plan in the global energy future and explores the impact of that role on export controls.

  12. Dikkers Valves for nuclear industry

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Most countries have adopted the ASME Boiler and Pressure Vessel Code Section III, as the basis of their national requirements for licensing nuclear components. This Code gives clear directives for defining design requirements coupled with a controlled manufacturing system. It has always been and still is the policy of Dikkers to manufacture high-quality products. Dikkers manufacture nuclear products in accordance with this Code, Section III; indeed many features exceed these minimum requirements. At the Nuclex Exhibition in Basel, Dikkers Valves BV will exhibit its main products for use in nuclear power plants. (Auth.)

  13. Proceedings of the first nuclear science and technology conference no. 1. Nuclear science and its application

    International Nuclear Information System (INIS)

    1986-01-01

    This conference contains papers on non-power applications of nuclear technology in agriculture and industry. These applications include irradiation of food for disinfestation and radiopreservation, radiation monitoring, and radiation chemistry important to industrial processes

  14. Fiber optic applications in nuclear power plants

    International Nuclear Information System (INIS)

    Collette, P.; Kwapien, D.

    1984-01-01

    Fiber optic technology possesses many desirable attributes for applications in commercial nuclear power plants. The non-electrical nature of fiber optics is an important factor in an industry governed by federal safety regulations such as Class 1E isolation and separation criteria. Immunity from Electromagnetic Interference (EMI), an increasing industry problem area, is another significant characteristic. Because of the extremely wide bandwidth offered, fiber optics better addresses the data acquistion and communication requirements of the complex processes of a nuclear power plant. Potential for fiber optic sensor applications exists within the nuclear industry because their small size and physical flexibility allows access into normally inaccessible areas. They possess high accuracy and allow environmentally sensitive electronics to be remotely located. The purpose of this paper is to explore current applications for fiber optic technology in modern nuclear plants, document examples of present day usage in C-E plants and suggest possible future application areas

  15. Nuclear industry chart no. 20 - Sweden

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    A folding chart is presented of the Swedish nuclear industry, which shows the government bodies, companies, utilities and other groups who participate in the nuclear field. Their special interests and activities and affiliations with each other and with international organisations are indicated. (U.K.)

  16. Organization of the German nuclear industry

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Corporate ownership within the German nuclear industry has evolved constantly during the last decade, and recent acquisitions and mergers, reunification of the country, as well as preparation for a unified European power market, have led to many significant changes during the past two years. The country's nuclear industry continues to struggle under an increasingly anti-nuclear political environment, yet nuclear power provided more than one-third of Germany's total electricity generation in 1991. As in many countries, particularly in western Europe, many German companies involved in different facets of the nuclear industry are interrelated. Usually as a means of horizontal or vertical integration, the country's nuclear utilities own, directly or indirectly, shares in uranium mining projects; conversion, enrichment, and fabrication companies; or other utilities' nuclear power plants. The utilities own partial interests in companies in supporting industries as well, including transportation firms, waste management companies, uranium broker/traders, and nuclear equipment manufacturers. While the majority of the companies owned are German, numerous investments are made in non-German firms also

  17. Application of radiation and isotopes in industry

    International Nuclear Information System (INIS)

    Andrzej, G. Chmielewski

    2006-01-01

    Full text: A vast variety of nuclear techniques is available for industrial, environmental, medical and research applications. Sealed or open radioisotope sources are applied as radiotracer in the system, in nucleonic gauges, in non destructive testing and in nuclear analytical techniques. Beside of isotopes X-ray tubes and accelerators operated in e-/X mode as a source of radiation are applied as well. These methods are used for process and material control, non-destructive evaluation of wells, castings and assembled machinery help to make industrial processes safer and more cost effective. For natural resource exploration radiotracers (RTT), sealed sources and nucleonic gauges (NCS) are used in the oil industry, in mineral processing and waste water treatment plants. Radioisotopes make important contributions in several sectors of economic significance including medicine industry, agriculture, structural safety and research. They are generally produced in research reactors or cyclotrons. More than 150 different radioisotopes in different forms are in use for various applications. Non-destructive testing (NDT) is essential for quality assurance of various products in diverse industries and construction projects apart from well established NDT protocols for industrial components, machinery and chemical pipelines, new techniques and applications, such as digital radiography for ecological safety, online inspection of concrete structures and pipe corrosion, are being developed. The new applications concern cargo inspection where Co 60 or e-/X sources are used. Radioisotopes are applied as radiotracers in industry and environment. Oil fields and refineries, chemical and metallurgical industries and wastewater purification installations are the end users benefiting from radioisotope techniques. Radioisotope techniques (radiotracers, gamma scanning, tomography and single particle tracking) are extensively used to identify and quantify multiphase reactors (phase hold

  18. Westinghouse support for Spanish nuclear industry

    International Nuclear Information System (INIS)

    Rebollo, R.

    1999-01-01

    One of the major commitments Westinghouse has with the nuclear industry is to provide to the utilities the support necessary to have their nuclear units operating at optimum levels of availability and safety. This article outlines the organization the Energy Systems Business Unit of Westinghouse has in place to fulfill this commitment and describes the evolution of the support Westinghouse is providing to the operation o f the Spanish Nuclear Power plants. (Author)

  19. The World Nuclear Industry Status Report: 1992

    International Nuclear Information System (INIS)

    Flavin, Christopher; Lenssen, Nicholas; Froggatt, Antony; Willis, John; Kondakji, Assad; Schneider, Mycle

    1992-05-01

    The World Nuclear Industry Status Report provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. This first WNISR Report was issued in 1992 in a joint publication with WISE-Paris, Greenpeace International and the World Watch Institute, Washington

  20. Nuclear dual-purpose plants for industrial energy

    International Nuclear Information System (INIS)

    Klepper, O.H.

    1976-01-01

    One of the major obstacles to extensive application of nuclear power to industrial heat is the difference between the relatively small energy requirements of individual industrial plants and the large thermal capacity of current power reactors. A practical way of overcoming this obstacle would be to operate a centrally located dual-purpose power plant that would furnish process steam to a cluster of industrial plants, in addition to generating electrical power. The present study indicates that even relatively remote industrial plants could be served by the power plant, since it might be possible to convey steam economically as much as ten miles or more. A survey of five major industries indicates a major potential market for industrial steam from large nuclear power stations

  1. Guidelines for planning interventions against external exposure in industrial area after a nuclear accident. Pt. 1. A holistic approach of countermeasure application

    International Nuclear Information System (INIS)

    Eged, K.; Kis, Z.; Andersson, K.G.; Roed, J.; Varga, K.

    2003-01-01

    Following a large-scale release of radioactivity into the environment, different urban, industrial and rural environments may be contaminated for many years. Currently, there is limited systematic consideration of long-term management to ensure sustainability of areas contaminated by long-lived radionuclides. To sustain acceptable living and working conditions in such areas it is important to be able to construct robust, effective restoration strategies which address the many different types of environment, land use and ways of life. The overall objective of the STRATEGY project (directly addressing Key Action 2: Nuclear Fission - Off-site emergency management in the Fifth Framework Programme) is to establish a decision framework to enable the selection of robust and practicable remediation strategies for Member States, which enable the long-term sustainable management of contaminated areas. The special objectives of the work carried out by GSF - Radiation Protection Institute and presented in this report was to contribute to the different urban/industrial parts of the STRATEGY project. Countermeasures being different from the usual urban ones and largely applicable in industrial area are collected and evaluated. The industrial area is defined here as such an area where productive and/or commercial activity is carried out. A good example is a supermarket or a factory. In designing restoration strategies to ensure the long-term sustainability of large and varied contaminated areas, there is a requirement to adopt a more holistic approach rather than simply selecting cost-effective countermeasures. The potentially negative consequences of restoration must be fully considered. The implementation of a remediation strategy may lead to a reduced collective dose, but increased dose to those implementing the strategies. Countermeasures may themselves generate waste and the practical consideration of disposal options has to be addressed. There is also a requirement that the

  2. The American nuclear power industry. A handbook

    International Nuclear Information System (INIS)

    Pearman, W.A.; Starr, P.

    1984-01-01

    This book presents an overview of the history and current organization of the American nuclear power industry. Part I focuses on development of the industry, including the number, capacity, and type of plants in commercial operation as well as those under construction. Part II examines the safety, environmental, antitrust, and licensing issues involved in the use of nuclear power. Part III presents case studies of selected plants, such as Three Mile Island and Seabrook, to illustrate some of the issues discussed. The book also contains a listing of the Nuclear Regulatory Commission libraries and a subject index

  3. Prospects of nuclear industry in Latin American

    International Nuclear Information System (INIS)

    Brito, S.; Consentino, J.; Eibenschuts, J.; Gasparian, A.E.; Lepecki, W.; Mueller, A.E.F.; Spitalnik, J.

    1984-01-01

    The prospects of nuclear generation in Latin America are presented. It is mentioned that prior to the implementation of a nuclear power programme a legal, organizational and industrial infrastructure has to be developed as a condition for an effetive technology transfer. It is also mentioned that by the expansion of regional cooperation, existing experience and know-how in Latin America nuclear industry, specially regarding small and medium power reactors, could become an important development factor for the whole region. (R.S.) [pt

  4. Application of laboratory data from small-scale simulators to human performance issues in the nuclear industry

    International Nuclear Information System (INIS)

    Spettell, C.M.

    1986-01-01

    Laboratory analogs of nuclear power plant tasks were simulated on personal computers in two experimental studies. Human performance data were collected during each experimental study. The goal of the first experiment was to validate a quantitative model of dependence among human errors during testing, calibration, and maintenance activities. This model, the Multiple Sequential Failure (MSF) model (NUREG/CR-2211) has been used to quantify dependent human error failure probabilities for human reliability analyses in Probabilistic Risk Assessments (PRAs). The goal of the second experiment was to examine the relationship among psychological and behavioral characteristics of individuals and their performance at controlling a simulated nuclear power plant. These studies demonstrated the usefulness of the experimental psychology approach for validating models of human performance at nuclear power plant tasks

  5. Industrial Application of Accelerators

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Univer...

  6. Industrial Application of Accelerators

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Uni...

  7. Nuclear industry is ready for digitalization

    International Nuclear Information System (INIS)

    Le Ngoc, B.

    2017-01-01

    Nuclear industry is now embracing the digital revolution by adapting existing digital technologies concerning big data, additive manufacturing, connected objects or enhanced reality to the constraints of nuclear industry. The expected benefits will be manifold: to assure and improve the competitiveness of new reactors, to accelerate the implementation of innovations, to develop preventive maintenance, and to allow a better communication between teams working on the same project. In some big enterprises a chief digital officer has been commissioned to prioritize the introduction of digital technologies in industrial projects. (A.C.)

  8. A view from the nuclear industry

    International Nuclear Information System (INIS)

    Berry, R.J.

    1989-01-01

    The Conference is reminded that the nuclear industry regards occupational radiation-induced cancer as a putative rather than a demonstrated hazard at current dose levels. Although epidemiological studies have shown possible dose-response correlation, all such studies of nuclear industry personnel show an overall risk of malignant disease lower than that for the general public. Doses to workers in the nuclear industry have been reducing since the 1970s, largely in consequence of the optimisation of radiation protection and the injunction ''to keep doses as low as reasonably achievable'' without reduction in occupational dose limits over this period. It is argued that further reduction in individual dose limits will act to increase collective dose. The nuclear industry no longer has either the highest individual average or collective radiation doses to its workforce within British industry; higher average individual doses occur in the non-coal mining industry and the collective dose to coal miners is greater than that of nuclear fuel cycle workers and comparable to the sum of collective doses to fuel cycle and power generation workers. (author)

  9. The nuclear industry and the young generation

    International Nuclear Information System (INIS)

    Hanti, A.

    2000-01-01

    The European Nuclear Society was founded in 1975. It is a federation of 25 nuclear societies from 24 countries-stretching from the Atlantic to the Urals and on across Russia to the Pacific. Through Russia's membership in the Pacific Nuclear Council. ENS is directly linked to that area, too. ENS comprises more than 20 000 professionals from industry, power stations, research centers and authorities, working to advance nuclear energy. ENS has three Member Societies in Australia, Israel and Morocco. Also it has collaboration agreements with the American Nuclear Society, the Argentinean Nuclear Energy Association, the Canadian and the Chinese Nuclear Societies. ENS is doing pioneering work with its Young Generation Network, standing for positive measures to recruit and educate young people as engineers, technicians and skilled staff ion the nuclear field: from school to university and in industry. The goals of the YGN are: to promote the establishment of national Young Generation networks; to promote the exchange of knowledge between older and younger generation cross-linked all over Europe; to encourage young people in nuclear technology to provide a resource for the future; to communicate nuclear issues to the public (general public, media, politicians). (N.C.)

  10. Situation of nuclear industry in Japan

    International Nuclear Information System (INIS)

    2002-08-01

    This document is a reprint of a note published by the nuclear service of the French embassy in Japan. It evokes the present day situation of nuclear facilities in Japan, the public acceptance and its attitude in front of accidents, the national energy program, the deregulation and competitiveness of nuclear power, the carrying out of the nuclear program, the future reactors, the fast neutron reactors, the dismantling activities, the fuel enrichment and reprocessing of spent fuels, the use of MOX fuel, the off-site storage, the vitrified and radiological wastes, the geological disposal of wastes, the prospects of the nuclear program, the companies involved in the Japan nuclear industry, the French-Japanese bilateral cooperation, and the ITER project in the domain of nuclear fusion. (J.S.)

  11. Some applications of industrial neutrongraphy

    International Nuclear Information System (INIS)

    Joode, A.S.; Mury, A.G.O.S.

    1987-01-01

    The techniques used and main applications of neutrongraphy as non destructive inspection are presented. The advantages of this technique in relation to radiography and gamagraphy for using in industries are shown. (E.G.) [pt

  12. Nuclear industry - challenges in chemical engineering

    International Nuclear Information System (INIS)

    Sen, S.; Sunder Rajan, N.S.; Balu, K.; Garg, R.K.; Murthy, L.G.K.; Ramani, M.P.S.; Rao, M.K.; Sadhukhan, H.K.; Venkat Raj, V.

    1978-01-01

    As chemical engineering processes and operations are closely involved in many areas of nuclear industry, the chemical engineer has a vital role to play in its growth and development. An account of the major achievements of the Indian chemical engineers in this field is given with view of impressing upon the faculty members of the Indian universities the need for taking appropriate steps to prepare chemical engineers suitable for nuclear industry. Some of the major achievements of the Indian chemical engineers in this field are : (1) separation of useful minerals from beach sand, (2) preparation of thorium nitrate of nuclear purity from monazite, (3) processing of zircon sand to obtain nuclear grade zirconium and its separation from hafnium to obtain zirconium metal sponge, (4) recovery of uranium from copper tailings, (5) economic recovery of nuclear grade uranium from low grade uranium ores found in India, (6) fuel reprocessing, (7) chemical processing of both low and high level radioactive wastes. (M.G.B.)

  13. Nuclear astrophysics: An application of nuclear physics

    International Nuclear Information System (INIS)

    Fueloep, Z.

    2005-01-01

    Nuclear astrophysics, a fruitful combination of nuclear physics and astrophysics can be viewed as a special application of nuclear physics where the study of nuclei and their reactions are motivated by astrophysical problems. Nuclear astrophysics is also a good example for the state of the art interdisciplinary research. The origin of elements studied by geologists is explored by astrophysicists using nuclear reaction rates provided by the nuclear physics community. Due to the high interest in the field two recent Nuclear Physics Divisional Conferences of the European Physical Society were devoted to nuclear astrophysics and a new conference series entitled 'Nuclear Physics in Astrophysics' has been established. Selected problems of nuclear astrophysics will be presented emphasizing the interplay between nuclear physics and astrophysics. As an example the role of 14 N(p,r) 15 O reaction rate in the determination of the age of globular clusters will be discussed in details

  14. Assurance of durable nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Fortescue, P [General Atomic Co.

    1976-10-01

    The problem of conservation of fuel resources resulting in a need for reactor systems with more economical fuel cycles, is discussed. Breeders and advanced converters are first considered. An examination is then made of symbiotic arrangements to form a self-sufficient power-producing complex. An illustration is given of a gas breeder-HTGR combination. The ratio of HTGR to breeder thermal power is calculated for a self-sufficient combination without provision of industry expansion, and also when allowing for industry expansion. It is shown that fuel resources can be extended and become most rapidly useful by proper portions of LWRs, fast breeders, and HTGRs.

  15. IEC ready for turnaround in nuclear industry

    International Nuclear Information System (INIS)

    Schomberg, R.; Corte, E.; Thompson, I.

    2005-01-01

    The activity of IEC Technical Committee (TC) 45 (Nuclear Instrumentation) in conditions of turnaround in nuclear industry is considered. TC 45's main task is to lay down a comprehensive strategy for itself and its two subcommittees as well as to improve the relevance of the nuclear safety standards. Subcommittee 45A develops standards that apply to the electronic and electrical functions and associated systems and equipment used in the instrumentation and control systems of nuclear energy generation facilities. Subcommittee 45B develops and issues standards covering all aspects of instrumentation associated with radiation protection including radiation detectors, radiation monitoring, dosimetry and radiology [ru

  16. The roles of industry for internationalization of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Choi, Jor-Shan; Oda, Takuji; Tanaka, Satoru; Kuno, Yusuke

    2011-01-01

    To meet increasing energy demand and counter climate change, nuclear energy is expected to expand during the next decades in both developed and developing countries. The Fukushima accident in Japan in March 2011 may dampen the expansion, but it would proceed and continue when the Fukushima lessons are learned. This expansion, most visibly in Asian would be accompanied with complex and intractable challenges to global stability and nuclear security, notably, on 'how to reduce security and proliferation concerns if nuclear power is introduce and when used fuel is generated in less stable regions of the world?' The answers to the question may lie in the possibility of multilateral control of nuclear materials and technologies in the nuclear fuel cycle, including the provision of a 'cradle-to-grave' fuel cycle service, presumably by the nuclear industries and their respective governments. This paper evaluates the importance of such industry-government cooperative initiative and explores into the roles which the nuclear industry should play to ensure that the world would not be 'creating proliferation when expanding the application of nuclear power to emerging nuclear countries'. (author)

  17. Industrial Applications of Image Processing

    Science.gov (United States)

    Ciora, Radu Adrian; Simion, Carmen Mihaela

    2014-11-01

    The recent advances in sensors quality and processing power provide us with excellent tools for designing more complex image processing and pattern recognition tasks. In this paper we review the existing applications of image processing and pattern recognition in industrial engineering. First we define the role of vision in an industrial. Then a dissemination of some image processing techniques, feature extraction, object recognition and industrial robotic guidance is presented. Moreover, examples of implementations of such techniques in industry are presented. Such implementations include automated visual inspection, process control, part identification, robots control. Finally, we present some conclusions regarding the investigated topics and directions for future investigation

  18. Industrial accelerators and their applications

    CERN Document Server

    Hamm, Marianne E

    2012-01-01

    This unique new book is a comprehensive review of the many current industrial applications of particle accelerators, written by experts in each of these fields. Readers will gain a broad understanding of the principles of these applications, the extent to which they are employed, and the accelerator technology utilized. The book also serves as a thorough introduction to these fields for non-experts and laymen. Due to the increased interest in industrial applications, there is a growing interest among accelerator physicists and many other scientists worldwide in understanding how accelerators are used in various applications. The government agencies that fund scientific research with accelerators are also seeking more information on the many commercial applications that have been or can be developed with the technology developments they are funding. Many industries are also doing more research on how they can improve their products or processes using particle beams.

  19. Applications of noise analysis to nuclear safety

    International Nuclear Information System (INIS)

    Aguilar Martinez, Omar

    2000-01-01

    Noise Analysis techniques (analysis of the fluctuation of physical parameters) have been successfully applied to the operational vigilance of the technical equipment that plays a decisive role in the production cycle of a very complex industry. Although fluctuation measurements in nuclear installations started almost at the start of the nuclear era (see works by Feynman and Rossi on the development of neutron methodology), only recently have neutron noise diagnostic applications begun to be a part of the standard procedures for the performance of some modern nuclear installations. Following the relevant technical advances made in information sciences and analogical electronics, measuring the fluctuation of physical parameters has become a very effective tool for detecting, guarding and following up possible defects in a nuclear system. As the processing techniques for the fluctuation of a nuclear reactor's physical-neutron parameters have evolved (temporal and frequency analysis, multi-parameter self -regression analysis, etc.), the applications of the theory of non-lineal dynamics and chaos theory have progressed by focusing on the problem from another perspective. This work reports on those nuclear applications of noise analysis that increase nuclear safety in all types of nuclear facilities and that have been carried out by the author over the last decade, such as: -Void Force Critical Set Applications (Zero Power Reactor Applications, Central Institute of Physical Research, Budapest, Hungary); -Research Reactor Applications (Triga Mark III Reactor, National Institute of Nuclear Research, ININ, Mexico); -Power Reactor Applications in a Nuclear Power Plant (First Circuit of Block II, Paks Nuclear Center, Hungary); -Second Loop applications in a Nuclear Power Plant (Block I Paks Nuclear Center, Hungary; Block II Kalinin Nuclear Center, Russia); -Shield System Applications for the Transport of Radioisotopes (Nuclear Technology Center, Havana, Cuba) New trends in

  20. Radioisotope applications in industry

    International Nuclear Information System (INIS)

    Frevert, E.

    1983-03-01

    The practical applications of the isotope technique are reported and illustrated by examples of works of the Department of Isotope Application of the Austrian Research Centre Seibersdorf. First the field of process controlling device and controll is described, including thickness, density and moisture gauging, the estimation of coatings and material compounds, the location of material defects and the level control. After this a detailed description of all kinds of tracer investigations is given like measurements of flow rate, intermixture, distribution and volume, investigations of corrosion, wear and lubrication and locations of all kind. A short description of gas ionisation, sources of light and isotope batteries is mentioned. Finally a general view of the applications in the fields of chemistry, biology, agriculture and medicine and the most important of the Austrian law of protective screen and its enactment are given. (Author) [de

  1. What nuclear industry after Fukushima?

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2011-01-01

    Nuclear power experienced a fast growth during the 70's and 80's, but a quasi-stagnation during the 90's. Since the beginning of the 21. century, a so-called renaissance could be witnessed, fuelled by concerns about energy security of supply, volatility of oil and gas prices, fear of an incoming 'peak oil', and, last but not least, the threat of global climate change due to the anthropogenic emissions of greenhouse effect gases. Then, on March 11 2011, a monster earthquake followed by a violent tsunami triggered an accident which all but destroyed four nuclear reactors on the Fukushima-Daiichi site, on the east coast of Honshu, the main Japanese island. There was meltdown in three reactor cores, hydrogen explosions which blew off the upper structures of four reactor buildings, and massive radioactive contamination of a spread of land north-west of the site as well as radioactive releases to the ocean. This accident triggered reactions of various intensities throughout the world, awakening the fears, and questions raised 25 years before by the Chernobyl accident. But the tsunami did not make the fundamentals of the renaissance disappear. After a pause, to fully learn lessons from the accident, the renaissance is likely to start again, all the much since the 'third generation' nuclear plants would have survived unscathed the Fukushima earthquake and tsunami. (author)

  2. Nuclear heat for industrial purposes and district heating

    International Nuclear Information System (INIS)

    1974-01-01

    Studies on the various possibilities for the application of heat from nuclear reactors in the form of district heat or process steam for industrial purposes had been made long before the present energy crisis. Although these studies have indicated technical feasibility and economical justification of such utilization, the availability of relatively cheap oil and difficulties in locating a nuclear heat source inside industrial areas did not stimulate much further development. Since the increase of oil prices, the interest in nuclear heat application is reawakened, and a number of new potential areas have been identified. It now seems generally recognized that the heat from nuclear reactors should play an important role in primary energy supply, not only for electricity production but also as direct heat. At present three broad areas of nuclear heat application are identified: Direct heat utilization in industrial processing requiring a temperature above 800 deg. C; Process steam utilization in various industries, requiring a temperature mainly in the range of 200-300 deg. C; Low temperature and waste heat utilization from nuclear power plants for desalination of sea water and district heating. Such classification is mainly related to the type and characteristics of the heat source or nuclear reactor which could be used for a particular application. Modified high temperature reactor types (HTR) are the candidates for direct heat application, while the LWR reactors can satisfy most of the demands for process steam. Production of waste heat is a characteristic of all thermal power plants, and its utilization is a major challenge in the field of power production

  3. Corrosion issues in nuclear industry today

    International Nuclear Information System (INIS)

    Cattant, F.; Crusset, D.; Feron, D.

    2008-01-01

    In the context of global warming, nuclear energy is a carbon-free source of power and so is a meaningful option for energy production without CO 2 emissions. Currently, there are more than 440 commercial nuclear reactors, accounting for about 15% of electric power generation in the world, and there has not been a major accident in over 20 years. The world's fleet of nuclear power plants is, on average, more than 20 years old. Even though the design life of a nuclear power plant is typically 30 or 40 years, it is quite feasible that many nuclear power plants will be able to operate for longer than this. The re-emergence of nuclear power today is founded on the present generation of nuclear reactors meeting the demands of extended service life, ensuring the cost competitiveness of nuclear power and matching enhanced safety requirements. Nuclear power plant engineers should be able to demonstrate such integrity and reliability of their system materials and components as to enable nuclear power plants to operate beyond their initial design life. Effective waste management is another challenge for sustainable nuclear energy today; more precisely, a solution is needed for the management of high-level and long-lived intermediate-level radioactive waste over the very long term. Most nuclear countries are currently gathering the data needed to assess the feasibility of a deep geological waste repository, including the prediction of the behaviour of materials over several thousands of years. The extended service life of nuclear power plants and the need for permanent disposal for nuclear waste are today's key issues in the nuclear industry. We focus here on the major role that corrosion plays in these two factors, and on the French approaches to these two issues. (authors)

  4. Activities of nuclear human resource development in nuclear industry

    International Nuclear Information System (INIS)

    Tsujikura, Yonezo

    2010-01-01

    Since 2007, the JAIF (Japan Atomic Industrial Forum) had established the nuclear energy human resource development council to make analysis of the issue on nuclear human resource development. The author mainly contributed to develop its road map as a chairman of working group. Questionnaire survey to relevant parties on issues of nuclear human resource development had been conducted and the council identified the six relevant issues and ten recommendations. Both aspects for career design and skill-up program are necessary to develop nuclear human resource at each developing step and four respective central coordinating hubs should be linked to each sector participating in human resource development. (T. Tanaka)

  5. Diffusion of information about the nuclear industry

    International Nuclear Information System (INIS)

    Galvan, C.G.

    1983-01-01

    The diffusion of nuclear technology means a development of a large network of activities (e.g. capital goods, construction, metallurgical and chemical industries) than a path for solving energy problems. Its ties with the arms race cause specific non-proliferation problems. A close state-capital articulation emerges, which strengthens the subsumption of labour and introduces new processes of social control. Already fulfilled investments give impulse to this tendency. The Tlatelolco regime, banishing nuclear weapons from Latin America, seems to establish a pre-condition for a regional solution to the problems thus arising. But, besides the imperfect adhesion to the Treaty, technical and political reasons obstruct a regional integration of the nuclear fuel cycle. Among other things, a lack of regional integration in other industries makes nuclear expansion more dependent on extra-regional technological ties. (Author) [pt

  6. Industrial applications of electron accelerators

    CERN Document Server

    Cleland, M R

    2006-01-01

    This paper addresses the industrial applications of electron accelerators for modifying the physical, chemical or biological properties of materials and commercial products by treatment with ionizing radiation. Many beneficial effects can be obtained with these methods, which are known as radiation processing. The earliest practical applications occurred during the 1950s, and the business of radiation processing has been expanding since that time. The most prevalent applications are the modification of many different plastic and rubber products and the sterilization of single-use medical devices. Emerging applications are the pasteurization and preservation of foods and the treatment of toxic industrial wastes. Industrial accelerators can now provide electron energies greater than 10 MeV and average beam powers as high as 700 kW. The availability of high-energy, high-power electron beams is stimulating interest in the use of X-rays (bremsstrahlung) as an alternative to gamma rays from radioactive nuclides.

  7. Application of neutron absorption method of the analysis on thermal neutrons for the control of substances and products containing boron in a nuclear power engineering and industry

    International Nuclear Information System (INIS)

    Chuev, A.G.; Kiryanov, G.I.; Shagov, S.V.; Shtan, A.S.; Titov, V.V.

    2002-01-01

    Nuclear physical methods of analysis using the absorption effect of ionising radiation should satisfy the following requirements for industrial practice. First, the ionising radiation should have a high penetrating ability in the environment examined to ensure a representative nature of the data and reliability of the analysis. Secondly, the absorption degree of radiation should be sufficient to maintain the sensitivity and accuracy of the measurements. In addition, to keep the necessary selectivity, the neutron absorption analysis on thermal neutrons is applied on chemical elements and their isotopes with an anomalously high absorption cross section about 10 2 - 10 4 barn. To such elements belong Gd, Sm, B, Cd, Hg and others. Based on the exponential law of absorption for thermal neutrons, an analytical expression was obtained for the concentration of the element analyzed in dependence on the flow of the elapsed neutrons. A number of interfering factors such as the matrix effect of the filling agent, scattering of neutrons, dispersion of the density and of the temperature of the environment, and background radiation have to be taken into account. Owing to the difference between the experimental calibration dependence and the exponential one, the methods of its mathematical approximation, for example, polynomial function and partially hyperbolic one are considered. The scheme realisation of the method is feasible in geometry 'on passage' and 'on reflection' of the neutron flow. Radionuclide Pu-Be sources are preferred as the neutron sources based on nuclear reactions of the (α,n) type. Detectors used for registration of slow neutrons are gas discharge corona 3 He-filled counters. Hydrogen-containing substances with good scattering properties are utilised as the fast neutron moderators. The neutron absorption method has found wide application in the nuclear power engineering and atomic industry. This method is intended for continuous automatic monitoring of

  8. Big problems for Swedish nuclear industry

    International Nuclear Information System (INIS)

    Holmstroem, Anton; Runesson, Linda

    2006-01-01

    A report of the problems for Swedish nuclear industry the summer of 2006. A detailed description of the 25th of July incident at Forsmark 1 is provided. The incident was classified as level two on the INIS scale. The other Swedish nuclear plants were subject to security evaluations in the aftermath, and at Forsmark 2 similar weaknesses were found in the security system (ml)

  9. Burgundy, the exemplary success of nuclear industry

    International Nuclear Information System (INIS)

    Hugue, Didier

    2013-01-01

    This article comments the successful activity of mechanical and metallurgical industries in the French region of Burgundy in relationship with the nuclear sector. This is notably due to equipment renewal and to the continuity of the French nuclear program. Consequences are also positive for subcontracting small and medium-sized companies of the region. Collaborative action for exports is also an opportunity for the concerned companies, whether big or small

  10. Nuclear industry prepares fore shortage of engineers

    International Nuclear Information System (INIS)

    Gauker, Lynn.

    1991-01-01

    It is predicted that the Canadian nuclear industry will experience a shortage of qualified personnel within the next five to ten years. The reasons for this prediction are as follows: enrollment in engineering courses, particularly five courses in nuclear engineering has been declining; immigration can no longer be expected to fill the gap; the workforce is aging. Solutions may include promotional campaigns, student employment programs, and educating workers to a professional level

  11. The nuclear industry and its European markets

    International Nuclear Information System (INIS)

    1998-01-01

    This study gives an overview of the worldwide nuclear energy demand and reviews the different markets which are classified as 'mature' (uranium extraction, enrichment, conversion and reactors building), 'developing' (reprocessing, MOX fuel fabrication, maintenance and services) and 'emerging' (waste treatment and dismantling). Then, the study analyzes the evolution of demand and the answers of companies and presents the strategies and performances of nuclear industry leaders. (J.S.)

  12. The rebirth of the US nuclear industry

    International Nuclear Information System (INIS)

    Pitron, G.

    2008-01-01

    Fought during a long time by ecologists but recently rehabilitated by politicians, the US civil nuclear industry has started its comeback in the first power-consuming country of the world. Utilities and industrialists are already in action, and the first cooperation agreements with foreign groups, like EdF or Areva, have been signed. After three decades of stagnation, the US nuclear industry has to re-launch its fuel cycle activities, from the fuel enrichment to the waste management, and the recruitment of a new competent manpower is one of the main concerns. (J.S.)

  13. The nuclear industry - pollution and risks

    International Nuclear Information System (INIS)

    Fremlin, J.H.

    1985-01-01

    Unlike other power sources, the only pollution from the nuclear industry is radioactive pollution, which on average in Britain represents 0.2% of the annual dose due to natural background radiation. This 0.2% is not spread uniformly over the population and there is genuine concern about its effects where it is most concentrated. The only significant doses of radiation to the general public due to the nuclear industry are derived from the spent-fuel reprocessing plant at Sellafield, and in particular from the concentration of Caesium-134 and Caesium-137 in fish, Ruthenium-106 in edible seaweeds and plutonium in shellfish and in silt. The concern about the possible escape of high-level wastes stored at the Sellafield site is discussed, and the hazard compared with that dangerous chemicals stored at other industrial sites. The effects of pollution by the nuclear industry, based on the conventional and generally accepted view of radiation risks, add up to a few deaths per year in the 50 million population of England and Wales from an industry producing 15% of the electricity needs of those countries. When this is compared with the risk associated with other methods of electricity production, the author concludes that replacement by nuclear power of any major source of power using fossil fuel, with the possible exception of natural gas, would save lives

  14. C. The nuclear industry in Europe

    International Nuclear Information System (INIS)

    1976-01-01

    Most of the European states have made a large commitment to nuclear power. In some aspects, such as fast breeder technology and oxide fuel reprocessing, they clearly lead the rest of the world. The industry is highly competitive, and is able to win contracts over US firms, even though the products offered are basically of US designs. It is also characterised by a large degree of co-operation and dependency amongst member countries. Many developments and services are of a joint nature. To ensure growth in the industry, and reduce foreign involvement, many of the governments have bought large segments of domestic companies, often from US firms. Government agencies themselves have transformed their service departments (such as those involved in the fuel cycle business) so that they now operate under the guise of commercial enterprises. These steps have arisen principally because of the large financial commitments normally associated with nuclear power. As a result of this, and despite the recent economic depression, the nuclear industry in Europe generally appears healthy. It does not seem to be suffering to the same extent from the problems that the industry in the USA is currently facing. Even though some states are experiencing a decrease in the projected rate of growth of energy demand, expectations are that an increasing proportion of energy requirements in most European countries will be met from nuclear power. The industry, both for the construction of generating capacity and fuel cycle services, is anticipating growth and financial profit

  15. The European nuclear industry - an overview

    International Nuclear Information System (INIS)

    Berke, Claus

    1994-01-01

    In his talk, the President of Foratom, Dr. Claus Berke, reviews the present state of the nuclear industry in Europe. The European nuclear park is still the largest of any region in the world. In some countries, there has been a moratorium on new construction in recent years. This has made life for the supplying industry very difficult. One positive side-effect o at has been a significant rationalisation of the industry. In the course of this the previous vertical integration within European states has given place to the creation of important new transnational structures. In his talk, Dr. Berke describes some of the most important facets of the 'Europeanisation' of the industry, both in the area of power-plants and of the nuclear fuel-cycle. He also describes the increasing cooperation between utilities and suppliers in Western Europe and the operators of nuclear power plant in Eastern Europe, which is aimed at introducing a safety culture and an institutional framework in the East as close as possible to that which exists in Western Europe. Dr. Berke concludes that, over the coming years, both economic and environmental arguments will start to reverse the present political opposition, in many European countries, to new building programmes, and that the industry is likely be in a healthier state by the end of the decade

  16. Overview of the Russian nuclear industry

    International Nuclear Information System (INIS)

    2008-02-01

    In 2004, President Poutine decided to replace the atomic energy ministry (Minatom) by the federal atomic energy agency (Rosatom). Several projects were launched during the next two years which aimed at bringing back Russia to the fore front of the world leaders of nuclear energy use and nuclear technology export. In 2007, Rosatom agency was changed to a public holding company and a new company, named Atomenergoprom, was created which gathers all civil nuclear companies (AtomEnergoMash for the exploitation of power plants, Technabsexport (Tenex) specialized in enrichment or Atomstryexport in charge of export activities). Thus, Rosatom is at the head of all civilian and military nuclear companies, of all research centers, and of all nuclear and radiological safety facilities. In 2006, Russian nuclear power plants supplied 15.8% of the whole power consumption. Russia wishes to develop its nuclear program with the construction of new reactors in order to reach a nuclear electricity share of 25% from now to 2020. This paper presents first the 2007 institutional reform of the Russian atomic sector, and the three sectorial federal programmes: 1 - development of the nuclear energy industrial complex for the 2007-2010 era and up to 2015 (future power plants, nuclear fuel centers and reactor prototypes), 2 - nuclear safety and radioprotection for the 2008-2015 era (waste management, remedial actions, radiation protection), 3 - military program (confidential). Then, the paper presents: the international actions (export of Russian technology, cooperation agreements, non-proliferation), the situation of the existing nuclear park (reactors in operation, stopped, under construction and in project), the fuel cycle activities (production of natural uranium, enrichment, fuel fabrication, spent fuel storage, reprocessing, waste management), the nuclear R and D in Russia, and the nuclear safety authority. (J.S.)

  17. The nuclear industry in the European Community

    International Nuclear Information System (INIS)

    Gasterstaedt, N.

    1990-01-01

    In its reference program of 1984, the Commission presented the guidelines for the objectives in the field of nuclear electricity production within the Community. In addition, the effects have been investigated which concern the realization of these objectives for all persons involved in nuclear energy: local government, utility companies and industry. The question of nuclear energy is part of the general energy policy. Therefore, the reference program of 1984 was one of the elements which has been considered up to 1995 by the Council when defining the objectives for energy economy. The guidelines of the Commission in the reference program of 1984 are still valid today. It is important, however, to check the effects of the completion of the internal market on nuclear industry. Therefore, the Commission announced in its working program of 1989 that it will revise the reference nuclear program with regard to the prospects of the European internal market. The present document fulfills this obligation. The problems of the industry for the design and construction of nuclear power plants are treated intentionally. After the Commission for Economic and Social Affairs has given its statement, the commission will publish the document officially. (orig./UA) [de

  18. Ranking French nuclear industry on international market

    International Nuclear Information System (INIS)

    Labbe, B.

    1987-01-01

    Based on the success of its own ambitious nuclear power station program, France has been able to export its technology to many parts of the world, providing everything from individual components to complete power stations on a turnkey basis. Industrial partners who regurarly work together have set up the necessary structures to ensure the dovetailing of their activities during joint operations on the foreign market. These structures are matched to the needs of individual clients, and can be dispensed with completely in cases where a sole supplier is involved. Not one single unit under construction has been halted and no contract cancelled after the Chernobyl accident. France, like Japan and the USSR, is pressing on with its nuclear power program. China has ordered two PWR units for Daya Bay, while Britain has decided to construct its first PWR at Sizewell. Although a number of countries have deferred decisions in this field, this has been mainly on financial grounds. The French nuclear power industry has demonstrated its mastery of the technology, which can now be placed at the disposal of countries wishing to build nuclear power units, to improve their existing nuclear capacity, to develop parts of this future-oriented industry, or to supply their power stations with advanced nuclear fuel

  19. Intelligent systems and soft computing for nuclear science and industry

    International Nuclear Information System (INIS)

    Ruan, D.; D'hondt, P.; Govaerts, P.; Kerre, E.E.

    1996-01-01

    The second international workshop on Fuzzy Logic and Intelligent Technologies in Nuclear Science (FLINS) addresses topics related to intelligent systems and soft computing for nuclear science and industry. The proceedings contain 52 papers in different fields such as radiation protection, nuclear safety (human factors and reliability), safeguards, nuclear reactor control, production processes in the fuel cycle, dismantling, waste and disposal, decision making, and nuclear reactor control. A clear link is made between theory and applications of fuzzy logic such as neural networks, expert systems, robotics, man-machine interfaces, and decision-support techniques by using modern and advanced technologies and tools. The papers are grouped in three sections. The first section (Soft computing techniques) deals with basic tools to treat fuzzy logic, neural networks, genetic algorithms, decision-making, and software used for general soft-computing aspects. The second section (Intelligent engineering systems) includes contributions on engineering problems such as knowledge-based engineering, expert systems, process control integration, diagnosis, measurements, and interpretation by soft computing. The third section (Nuclear applications) focusses on the application of soft computing and intelligent systems in nuclear science and industry

  20. Competitiveness in Canada's nuclear industry

    International Nuclear Information System (INIS)

    Mirwald, R.

    1997-01-01

    Cameco, now a publicly traded company, mines and processes uranium. The mines are mostly in northern Saskatchewan. In 1996, Cameco increased its market share to about 15% of the western world's U 3 O 8 , and more than 20% of conversion to UF 6 . Cameco is the only commercial converter of uranium for Candu reactors. In 1996, sales were C$591 million. Net earnings last year were C$137.5 million - a fourfold increase over six years earlier - and long-term debt had been reduced to C$200 million. Cameco's position is secured by its substantial ownership position in Cigar Lake and McArthur River, the richest uranium deposits in the world. To answer questions by investors, Cameco has had to provide good public information about uranium and nuclear power

  1. Industrial applications of electron beam

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1997-01-01

    The review of industrial applications with use of electron beams has been done. Especially the radiation technologies being developed in Poland have been shown. Industrial installations with electron accelerators as radiation source have been applied for: modification of polymers; modification of thyristors; sterilization of health care materials; radiopreservation of food and other consumer products; purification of combustion flue gases in heat and power plants. 14 refs, 6 tabs, 7 figs

  2. Industrial applications of radiation chemistry

    International Nuclear Information System (INIS)

    Puig, Jean Rene

    1959-01-01

    The status of industrial applications of radiation chemistry as it stands 6 months after the second Geneva international conference is described. The main features of the interaction of ionizing radiations with matter are briefly stated and a review is made of the best studied and the more promising systems of radiation chemistry. The fields of organics, plastics, heterogeneous catalysis are emphasized. Economies of radiation production and utilization are discussed. Reprint of a paper published in Industries atomiques - no. 5-6, 1959

  3. National standards for the nuclear industry

    International Nuclear Information System (INIS)

    Laing, W.R.; Corbin, L.T.

    1981-01-01

    Standards needs for the nuclear industry are being met by a number of voluntary organizations, such as ANS, ASTM, AWS, ASME, and IEEE. The American National Standards Institute (ANSI) coordinates these activities and approves completed standards as American National Standards. ASTM has two all-nuclear committees, E-10 and C-26. A C-26 subcommittee, Test Methods, has been active in writing analytical chemistry standards for twelve years. Thirteen have been approved as ANSI standards and others are ready for ballot. Work is continuing in all areas of the nuclear fuel cycle

  4. Crisis in the French nuclear industry

    International Nuclear Information System (INIS)

    Nectoux, F.

    1991-02-01

    This report discusses the economics of the French nuclear power industry. It considers the dominant position of nuclear power in the French energy system, stresses the scale and causes of the current (1990) economic crisis and dispels the popular misconceptions on the cost efficiency of the French programme. The evidence is based on widely available French documents and articles. The report begins by looking at the background of nuclear power in France then discusses the problem of overcapacity, the technical problems and fall in load factors, generating costs and electricity prices and finally, strategic issues are considered. (UK)

  5. Helium leak testing methods in nuclear applications

    International Nuclear Information System (INIS)

    Ahmad, Anis

    2004-01-01

    Helium mass-spectrometer leak test is the most sensitive leak test method. It gives very reliable and sensitive test results. In last few years application of helium leak testing has gained more importance due to increased public awareness of safety and environment pollution caused by number of growing chemical and other such industries. Helium leak testing is carried out and specified in most of the critical area applications like nuclear, space, chemical and petrochemical industries

  6. Nuclear applications for development

    International Nuclear Information System (INIS)

    2007-01-01

    Building capacity for the safe application of nuclear technologies produces tangible socioeconomic benefits to developing countries. Identifying killer infections such as extrapulmonary tuberculosis and drug resistant strains of HIV/AIDS in sub-Saharan Africa; Monitoring malaria drug resistance in Myanmar; - Teaching Jordanian farmers how to produce viable crops on salty soils; - Investigating water resources deep beneath the Nubian Desert; - Fighting acid rain in Poland; - Creating an energy strategy for Latin America; - Strengthening the security of nuclear sources in Kazakhstan. These are just some of examples of the practical ways in which the International Atomic Energy Agency (IAEA) fulfils its mandate to 'accelerate and enlarge the contribution of atomic energy to peace, health, and prosperity throughout the world'. And some of the reasons the IAEA's long history of global action was recognized through the Nobel Peace Prize in 2005. This list of activities reflects the diverse needs of Member States. It also demonstrates the enormous potential of nuclear technology and the breadth of expertise that lie within three IAEA technical programmes: Nuclear Sciences and Applications, Nuclear Energy, and Nuclear Safety and Security. More importantly, it speaks to the success of a determined effort to facilitate knowledge sharing and technology transfer through a cross-cutting mechanism known as the technical cooperation programme. Each year, the technical cooperation programme disburses approximately US $90 million, all of which is acquired through voluntary contributions from Member States. The programme concentrates on building capacity through training and education, expert advice, and equipment delivery. It is currently active in more than 110 countries across four geographic regions: Africa, Asia and the Pacific, Europe and Latin America

  7. Cyber security in nuclear power plants and its portability to other industrial infrastructures

    International Nuclear Information System (INIS)

    Champigny, Sebastien; Gupta, Deeksha; Watson, Venesa; Waedt, Karl

    2017-01-01

    Power generation increasingly relies on decentralised and interconnected computerised systems. Concepts like ''Industrial Internet of Things'' of the Industrial Internet Consortium (IIC), and ''Industry 4.0'' find their way in this strategic industry. Risk of targeted exploits of errors and vulnerabilities increases with complexity, interconnectivity and decentralization. Inherently stringent security requirements and features make nuclear computerised applications and systems a benchmark for industrial counterparts seeking to hedge against those risks. Consequently, this contribution presents usual cyber security regulations and practices for nuclear power plants. It shows how nuclear cyber security can be ported and used in an industrial context to protect critical infrastructures against cyber-attacks and industrial espionage.

  8. The World Nuclear Industry Status Report 2017

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie; Katsuta, Tadahiro; Ramana, M.V.; Rodriguez, Juan C.; Ruedinger, Andreas; Stienne, Agnes

    2017-09-01

    The World Nuclear Industry Status Report 2017 (WNISR2017) provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. The WNISR2017 edition includes a new assessment from an equity analyst view of the financial crisis of the nuclear sector and some of its biggest industrial players. The Fukushima Status Report provides not only an update on onsite and offsite issues six years after the beginning of the catastrophe, but also the latest official and new independent cost evaluations of the disaster. Focus chapters provide in-depth analysis of France, Japan, South Korea, the United Kingdom and the United States. The Nuclear Power vs. Renewable Energy chapter provides global comparative data on investment, capacity, and generation from nuclear, wind and solar energy. Finally, Annex 1 presents a country-by-country overview of all other countries operating nuclear power plants

  9. Nuclear relations with administrations of industry services

    International Nuclear Information System (INIS)

    Bernardez Garcia, A.

    2011-01-01

    The object of the article is to try to answer to the following question that can arise to the holder of a nuclear power station: What Administration of Industry must I myself direct to be able to support my complementary facilities of Industrial Security inside the in force legality?. The raised discussion arise between if the competent administration for the legal steps, is the Central Administration across his delegates and sub delegates of government, or is of the Territorial Services of Industry of Autonomous communities. (Author)

  10. Nuclear applications for health

    International Nuclear Information System (INIS)

    Cuaron, A.

    1995-01-01

    Just before the turn of the 20th century, the discoveries of X-rays, in 1895, and of radioactivity, in 1896, opened up whole new worlds of science. For the medical community, the world has been changing ever since, in some countries far more rapidly than in others. Over the past 100 years, the X-ray has become as familiar to most people as the dentist's chair. As we move into the next century, greater attention is being placed upon less known but more far-reaching radiation technologies and nuclear applications that today's physicians are able to use for earlier diagnosis and treatment of serious illness. This article, in question-and-answer format, explains the differences between the various types of nuclear applications for human health and looks at the evolution of the IAEA's related activities. (author)

  11. Wireless Technology Application to Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Jeong Kweon; Jeong, See Chae; Jeong, Ki Hoon; Oh, Do Young; Kim, Jae Hack

    2009-01-01

    Wireless technologies are getting widely used in various industrial processes for equipment condition monitoring, process measurement and other applications. In case of Nuclear Power Plant (NPP), it is required to review applicability of the wireless technologies for maintaining plant reliability, preventing equipment failure, and reducing operation and maintenance costs. Remote sensors, mobile technology and two-way radio communication may satisfy these needs. The application of the state of the art wireless technologies in NPPs has been restricted because of the vulnerability for the Electromagnetic Interference and Radio Frequency Interference (EMI/RFI) and cyber security. It is expected that the wireless technologies can be applied to the nuclear industry after resolving these issues which most of the developers and vendors are aware of. This paper presents an overview and information on general wireless deployment in nuclear facilities for future application. It also introduces typical wireless plant monitoring system application in the existing NPPs

  12. Reviewing industrial safety in nuclear power plants

    International Nuclear Information System (INIS)

    1990-02-01

    This document contains guidance and reference materials for Operational Safety Review Team (OSART) experts, in addition to the OSART Guidelines (TECDOC-449), for use in the review of industrial safety activities at nuclear power plants. It sets out objectives for an excellent industrial safety programme, and suggests investigations which should be made in evaluating industrial safety programmes. The attributes of an excellent industrial safety programme are listed as examples for comparison. Practical hints for reviewing industrial safety are discussed, so that the necessary information can be obtained effectively through a review of documents and records, discussions with counterparts, and field observations. There are several annexes. These deal with major features of industrial safety programmes such as safety committees, reporting and investigation systems and first aid and medical facilities. They include some examples which are considered commendable. The document should be taken into account not only when reviewing management, organization and administration but also in the review of related areas, such as maintenance and operations, so that all aspects of industrial safety in an operating nuclear power plant are covered

  13. Psychological attitudes of nuclear industry workers

    International Nuclear Information System (INIS)

    Faes, M.; Stoppie, J.

    1976-01-01

    An investigation was carried out within the frame of occupational medicine on the psychological attitudes of workers in the nuclear industry towards ionizing radiations. Three aspects were considered: awareness of the danger; feeling of safety in the working environment; workers' feelings following incidents or accidents; satisfaction level felt by the workers in the plant [fr

  14. Knowledge preservation in the nuclear industry

    International Nuclear Information System (INIS)

    Yanev, Y.

    2004-01-01

    The paper presents examples of knowledge loss in different areas related to attrition, retirements or layoff as well as the consequences of the loss of knowledge. The nature of the so called tacit knowledge and its role as a barrier to knowledge preservation is discussed. Strategies for knowledge preservation in the nuclear industry are presented

  15. The human factor in the nuclear industry

    International Nuclear Information System (INIS)

    Colas, Armand

    1998-01-01

    After having evoked the progressive reduction and stabilization of significant incidents occurring every year in French nuclear power plants, and the challenges faced by nuclear energy (loss of public confidence, loss of competitiveness), and then outlined the importance of safety to overcome these challenges, the author comments EDF's approach to the human factor. He first highlights the importance of information and communication towards the population. He briefly discusses the meaning of human factors for the nuclear industry, sometimes perceived as the contribution people to the company's safety and performance. He comments the evolution observed in the perception of human error in different industrial or technical environments and situations, and outlines what is at stake to reduce the production of faults and organize a 'hunt for latent defects'

  16. High technology supporting nuclear power industry in CRIEPI

    International Nuclear Information System (INIS)

    Ueda, Nobuyuki

    2009-01-01

    As a central research institute of electric power industry, Central Research Institute of Electric Power Industry (CRIEPI) has carried out R and D on broad range of topics such as power generation, power transmission, power distribution, power application and energy economics and society, aiming to develop prospective and advanced technologies, fundamental reinforce technologies and next-generation core technologies. To realize low-carbon society to cope with enhancement of global environmental issues, nuclear power is highly recommended as large-scale power with low-carbon emission. At the new start of serial explanation on advanced technologies, R and D on electric power industry was outlined. (T. Tanaka)

  17. The nuclear industry's communication efforts viewed from outside the industry

    International Nuclear Information System (INIS)

    Tuck, Moira

    1995-01-01

    This paper describes the attitude towards nuclear power of a company specialised in behavioural communication, not employed exclusively by the nuclear power industry. Only one of it's clients has a nuclear interest and that is Eskom, South Africa electricity utility which runs 21 active power stations of which 13 are fossil-fueled, 2 hydro, 2 pump storage stations, 3 gas turbine stations and 1 nuclear. This company is a firm believer in the nuclear energy option for some very practical reasons and one or two abstract reasons. The practical reasons are the ones well known, the world needs ever-increasing amounts of base load energy in order to increase the quality of life. The world also needs clean energy so that the planet can be preserved beyond the next generation. The abstract reasons are perhaps 'not so often' thought about by nuclear, communication practitioners: in harnessing nuclear energy for the service of mankind humans have captured a miracle. The harnessing of nuclear energy is a mark of man's ability to think conceptually, to walk in the realms of the unseen and bring back from those realms a tool of progress. In more prosaic terms, the loss of nuclear expertise would, very simply be a retrogression of the human race. As behavioural communication specialist it s our job to find ways for our clients to speak truthfully about their endeavours to the hearts of their audience. It is not our job to (nor will we) either lie or cover up for our clients. That which is wrong is wrong and cannot be painted rightly spoken words or clever videos or ingenious advertising. In all cases our advice to our clients has been to assume that people will not argue against the greater good of humanity. And there is much about nuclear power that contributes to the greater good: of humanity. 'That is the factor that, is common to all of us in this room today and all our colleagues in the industry. W have only to tell the truth with words that our target audiences can

  18. A telerobot for the nuclear industry

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Industrial robots are not widely used in the nuclear industry. More use is made of telemanipulators, in which tasks are performed under total human control via a master-slave actuation system. AEA Technology have developed a Nuclear Engineered Advanced TEle Robot (NEATER), a telerobot which combines industrial robot technology with the skills of a human operator. It has been designed for use in radioactive decommissioning work and has a number of radiation tolerant properties. NEATER can be operated in a pure robotic mode using a standard computer controller and software. Or it can operate as a telerobot in a remote control mode via a television input. In this mode the operator controls the robot's movement by using a joystick or a simple six degrees of freedom input device. (UK)

  19. Industrial applications of radiation technology

    International Nuclear Information System (INIS)

    Sarma, K.S.S.

    2012-01-01

    During the past one decade, Radiation Technology applications utilizing gamma radiation and high energy electrons have made a big way into the Indian industry bringing quality and value-added products in a more environment-friendly way. While radiation sterilization of health care products, hygienization of food materials, modification of polymer materials etc. are established as successful processes world wide including India, new applications are emerging especially in the field of environmental remediation. Two types of installations viz. gamma irradiators and high energy electron accelerators are in use right now to carry out such applications. The aim of the talk is to put forward before the audience about the potential applications developed in India and abroad, role of Department of Atomic Energy and current status of radiation processing for industrial utilization

  20. The World Nuclear Industry Status Report 2014

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Ayukawa, Yurika; Burnie, Shaun; Piria, Raffaele; Thomas, Steve; Hazemann, Julie; Suzuki, Tatsujiro

    2014-07-01

    The World Nuclear Industry Status Report 2014 provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. A 20-page chapter on nuclear economics looks at the rapidly changing market conditions for nuclear power plants, whether operating, under construction, or in the planning stage. Reactor vendor strategies and the 'Hinkley Point C Deal' are analyzed in particular. The performance on financial markets of major utilities is documented. The WNISR2013 featured for the first time a Fukushima Status Report that triggered widespread media and analyst attention. The 2014 edition entirely updates that Fukushima chapter. The Nuclear Power vs. Renewable Energy chapter that provides comparative data on investment, capacity, and generation has been greatly extended by a section on system issues. How does nuclear power perform in systems with high renewable energy share? Is this the end of traditional baseload/ peak-load concepts? Finally, the 45-page Annex 1 provides a country-by-country overview of all 31 countries operating nuclear power plants, with extended Focus sections on China, Japan, and the United States

  1. Applications of nuclear data science

    International Nuclear Information System (INIS)

    Jyrwa, B.

    2015-01-01

    The field of nuclear data has always been at the cutting edge technology since the beginning of nuclear era. Therefore it is a thrust area in the department of atomic energy in our country. It had been observed that even after 60 years of nuclear energy, nuclear data have not been well defined. The reason is not far to seek, it is mainly because nuclear energy has been introduced to mankind without adequate knowledge of nuclear data. Historically, reactor physics designer never used uncertainty information in basic data directly in algorithms in the calculations. Therefore nuclear data covariances is one of the challenges in Basic Nuclear Data Physics, reactor design and plant optimization for Indian Nuclear Industry. The importance of nuclear data for sustainable nuclear energy should be given the top priority

  2. Industrial applications of computed tomography

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Carmignato, S.; Kruth, J. -P.

    2014-01-01

    The number of industrial applications of Computed Tomography(CT) is large and rapidly increasing. After a brief market overview, the paper gives a survey of state of the art and upcoming CT technologies, covering types of CT systems, scanning capabilities, and technological advances. The paper...

  3. Usage of industrial robots in nuclear power industry

    International Nuclear Information System (INIS)

    Matsuo, Yoshio; Hamada, Kenjiro

    1982-01-01

    Japan is now at the top level in the world in robot technology.Its application to nuclear power field is one of the most expected. However, their usage spreads over various types of nuclear power plants, their manufacture and operation, and other areas such as fuel reprocessing plants and reactor plant decommissioning. The robots as used for the operation of BWR nuclear power plants, already developed and under development, are described: features in the nuclear-power usage of robots, the robots used currently for automatic fuel exchange, the replacement of control rod drives and in-service inspection; the robots under development for travelling inspection device and the inspection of main steam-relief safety valves, future development of robots. By robot usage, necessary personnel, work period and radiation exposure can be greatly reduced, and safety and reliability are also raised. (Mori, K.)

  4. The future of the nuclear plant industry

    International Nuclear Information System (INIS)

    Franklin, N.L.

    Against the background of world-wide controversy, the future of nuclear power in the United Kingdom is discussed. The various forecasts of electricity demand are considered in relation to the need for long-term planning in the nuclear industry. It is considered that towards the end of the century uranium will be in short supply for technical or political reasons, and that the emphasis would then be on the use of fast reactors (assuming nuclear power to be politically acceptable at that time). A possible UK programme is outlined, and the question of cooperation with other countries is referred to. Thermal reactors for use in the middle term are discussed. The possibilities of export are considered briefly. The effects of world economic recession, public opposition on environmental and other grounds, and the possibility of misuse of nuclear materials are considered. (U.K.)

  5. Exporting nuclear engineering and the industry's viewpoint

    International Nuclear Information System (INIS)

    Barthelt, K.

    1986-01-01

    Nuclear energy offers all possibilities to reduce the energy problems in the world which arise with the world-wide increasing population and the energy demand connected with it. The Federal Republic of Germany lives on the exports of refined technical methods which also include nuclear engineering. The exports of nuclear engineering should lead to a technology transfer with guidance and training on an equal basis between the industrial and developing countries. The preconditions of exporting nuclear-technical systems are a well-functioning domestic market and a certain support by the government, especially with regard to giving guarantees for the special exports risks of these big projects. On the other hand, exports are also needed in order to be able to continue providing high-level technology for the domestic market. (UA) [de

  6. Human factors considerations for expert systems in the nuclear industry

    International Nuclear Information System (INIS)

    Nelson, W.R.

    1988-01-01

    This paper discusses the general human factors issues relative to the development and implementation of expert systems for the nuclear industry. It summarizes the relevant research that addresses these issues, and identifies those areas that need the most effort for success. Since much of the prominent work for the application of expert systems has focused on computerized aids for decision making in emergencies, this paper draws from this area for its examples. This area tends to highlight the issues because of the safety-critical nature of the application. The same issues, however, are relevant to other applications of expert systems in the nuclear industry as well, even though the consequences of failure may not be as dramatic

  7. CVD diamond for nuclear detection applications

    International Nuclear Information System (INIS)

    Bergonzo, P.; Brambilla, A.; Tromson, D.; Mer, C.; Guizard, B.; Marshall, R.D.; Foulon, F.

    2002-01-01

    Chemically vapour deposited (CVD) diamond is a remarkable material for the fabrication of radiation detectors. In fact, there exist several applications where other standard semiconductor detectors do not fulfil the specific requirements imposed by corrosive, hot and/or high radiation dose environments. The improvement of the electronic properties of CVD diamond has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. Here, we report on CVD diamond-based detector developments and we describe how this material, even though of a polycrystalline nature, is readily of great interest for applications in the nuclear industry as well as for physics experiments. Improvements in the material synthesis as well as on device fabrication especially concern the synthesis of films that do not exhibit space charge build up effects which are often encountered in CVD diamond materials and that are highly detrimental for detection devices. On a pre-industrial basis, CVD diamond detectors have been fabricated for nuclear industry applications in hostile environments. Such devices can operate in harsh environments and overcome limitations encountered with the standard semiconductor materials. Of these, this paper presents devices for the monitoring of the alpha activity in corrosive nuclear waste solutions, such as those encountered in nuclear fuel assembly reprocessing facilities, as well as diamond-based thermal neutron detectors exhibiting a high neutron to gamma selectivity. All these demonstrate the effectiveness of a demanding industrial need that relies on the remarkable resilience of CVD diamond

  8. Nuclear industry after the Fukushima accident

    International Nuclear Information System (INIS)

    Branche, Thomas; Billes-Garabedian, Laurent; Salha, Bernard; Behar, Christophe; Dupuis, Marie-Claude; Labalette, Thibaud; Lagarde, Dominique; Planchais, Bernard; West, Jean-Pierre; Stubler, Jerome; Lancia, Bruno; Machenaud, Herve; Einaudi, Andre; Anglaret, Philippe; Brachet, Yves; Bonnave, Philippe; Knoche, Philippe; Gasquet, Denis

    2013-01-01

    This special dossier about the situation of nuclear industry two years after the Fukushima accident comprises 15 contributions dealing with: the nuclear industry two years after the Fukushima accident (Bernard Salha); a low-carbon electricity at a reasonable cost (Christophe Behar); nuclear engineering has to gain even more efficiency (Thomas Branche); how to dispose off the most radioactive wastes (Marie-Claude Dupuis, Thibaud Labalette); ensuring the continuation for more than 40 years onward (Denis Gasquet); developing and investing in the future (Philippe Knoche); more than just signing contracts (Dominique Lagarde); immersed power plants, an innovative concept (Bernard Planchais); R and D as a source of innovation for safety and performances (Jean-Pierre West); dismantlement, a very long term market (Jerome Stubler, Bruno Lancia); a reference industrial model (Herve Machenaud); recruiting and training (Andre Einaudi); a diversity of modern reactors and a world market in rebirth (Philippe Anglaret); an industrial revolution is necessary (Yves Brachet); contracts adapted to sensible works (Philippe Bonnave)

  9. Applications of radioisotopes in industry and healthcare in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Dien, N.N.; Quang, N.H. [Nucealr Research Institute, Dalat, (Viet Nam)

    1997-10-01

    Nowadays, in Vietnam radioisotopes have been used very widely in various socio-economic branches, especially in industry and healthcare. Applications of radioisotopes have significant meaning in economic development, people health protection, as well as in scientific research. In this paper, the present status and main applications of radiation and radioactive isotopes in industry and healthcare in Vietnam are reported. In order to control and monitor industrial processes, nucleonic control systems and radioactive tracer techniques have been utilized. Actually, sealed source applications are popular in Vietnam industry. A number of nuclear control devices and gauges have been used in the various industrial factories, such as liquid level gauges in steel industry, cement and beverage factories; density and moisture gauges in paper industry, etc. Tracer technique and sealed source applications have also been utilized in industrial production plants and in trouble-shooting in the petroleum industry. For medicine purposes, two departments of nuclear medicine were primarily established at the beginning of the 1970s. At the present time, a number of nuclear medicine departments have been set up and they have been equipped with advanced equipment. Main activities are focused on thyroid function studies, nuclear cardiology, brain scans, gastrointestinal studies, bone scans, etc. Since march 1984 Dalat nuclear research reactor of nominal power of 500 kW has been reconstructed and put into operation. This reactor is unique in Vietnam and has become an important scientific tool for development of nuclear techniques and radioisotope applications for socio-economic progress. Thanks to this important scientific tool, a variety of radioisotopes for medicine and industry applications as well as for scientific research has been produced. Utilization of the Dalat research reactor for radioisotope production is also summarized in this paper

  10. Applications of radioisotopes in industry and healthcare in Vietnam

    International Nuclear Information System (INIS)

    Dien, N.N.; Quang, N.H.

    1997-01-01

    Nowadays, in Vietnam radioisotopes have been used very widely in various socio-economic branches, especially in industry and healthcare. Applications of radioisotopes have significant meaning in economic development, people health protection, as well as in scientific research. In this paper, the present status and main applications of radiation and radioactive isotopes in industry and healthcare in Vietnam are reported. In order to control and monitor industrial processes, nucleonic control systems and radioactive tracer techniques have been utilized. Actually, sealed source applications are popular in Vietnam industry. A number of nuclear control devices and gauges have been used in the various industrial factories, such as liquid level gauges in steel industry, cement and beverage factories; density and moisture gauges in paper industry, etc. Tracer technique and sealed source applications have also been utilized in industrial production plants and in trouble-shooting in the petroleum industry. For medicine purposes, two departments of nuclear medicine were primarily established at the beginning of the 1970s. At the present time, a number of nuclear medicine departments have been set up and they have been equipped with advanced equipment. Main activities are focused on thyroid function studies, nuclear cardiology, brain scans, gastrointestinal studies, bone scans, etc. Since march 1984 Dalat nuclear research reactor of nominal power of 500 kW has been reconstructed and put into operation. This reactor is unique in Vietnam and has become an important scientific tool for development of nuclear techniques and radioisotope applications for socio-economic progress. Thanks to this important scientific tool, a variety of radioisotopes for medicine and industry applications as well as for scientific research has been produced. Utilization of the Dalat research reactor for radioisotope production is also summarized in this paper

  11. Nuclear physics and optoelectronics presence in industry, medicine and environment

    International Nuclear Information System (INIS)

    Robu, Maria; Peteu, Gh.

    2000-01-01

    This paper reveals applications of Nuclear Physics and Optoelectronics in numerous fields of interest in industry, medicine, environment. In the first part of the work basic elements are analyzed, among which: - the large possibilities offered by the investigation, analysis and testing techniques based on nuclear physics and optoelectronics; - the superior qualitative and quantitative characteristics of these techniques, with varied applicability in fields from industry, medicine and environment. These applications refers to: - elemental analyses of content and impurities; - non-destructive testing with X and gamma radiations; - investigations with radioactive and activable tracers in trophic chains as for instance, ground-vegetation-products-consumers-environment, including also the systemic pollution factors; - complex investigations in the interface tritium-vegetation-environment-humans; - techniques and radiopharmaceutical products for medical investigations; - determinations and automatic control for levels, density, thickness, humidity, surfaces covering; - monitoring by means of remote sensing for the evaluation of the environment, vegetation and pollution factors; - applications and production of laser and UV installations; - connections through optical fibres resistant to radiations; - imaging and medical bioengineering; - advances in X ray, laser and ultrasonic radiology; - monitoring with radiations beams. In the final part, there are presented examples of optoelectronics and nuclear physics applications in fields in industry, medicine and environment, with special stress on their basic characteristics and efficiency. (authors)

  12. The World Nuclear Industry Status Report 2015

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie; Katsuta, Tadahiro; Ramana, M.V.; Thomas, Steve; Porritt, Jonathon

    2015-07-01

    The World Nuclear Industry Status Report 2015 provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. Japan without nuclear power for a full calendar year for the first time since the first commercial nuclear power plant started up in the country 50 years ago. Nuclear plant construction starts plunge from fifteen in 2010 to three in 2014. 62 reactors under construction - five fewer than a year ago - of which at least three-quarters delayed. In 10 of the 14 building countries all projects are delayed, often by years. Five units have been listed as 'under construction' for over 30 years. Share of nuclear power in global electricity mix stable at less than 11% for a third year in a row. AREVA, technically bankrupt, downgraded to 'junk' by Standard and Poor's, sees its share value plunge to a new historic low on 9 July 2015-a value loss of 90 percent since 2007 China, Germany, Japan-three of the world's four largest economies-plus Brazil, India, Mexico, the Netherlands, and Spain, now all generate more electricity from non-hydro renewables than from nuclear power. These eight countries represent more than three billion people or 45 percent of the world's population. In the UK, electricity output from renewable sources, including hydropower, overtook the output from nuclear. Compared to 1997, when the Kyoto Protocol on climate change was signed, in 2014 there was an additional 694 TWh per year of wind power and 185 TWh of solar photovoltaics- each exceeding nuclear's additional 147 TWh

  13. Political crisis poses problems for nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Lubomir [NucNet, Brussels (Belgium)

    2014-11-15

    The political crisis in Ukraine has given rise to several problematic issues for the nuclear industry, including the country's obvious dependence on Russia for nuclear fuel supplies and the transport of nuclear material. A 2013 report by the Polish Institute of International Affairs (PIIA) concluded that Ukraine will lean towards the development of ''intensive cooperation'' with Western nuclear regulators and companies as it seeks to increase its control over the sector and reduce its dependency on Russia. The PIIA report said the gas crises of 2006 and 2009, and especially the current destabilisation of the country, have highlighted Ukraine's ''excessive and problematic dependence'' on energy supply from Russia. The 'Energy Strategy of Ukraine Until 2030' assumes that the share of nuclear energy will remain the same in 2030 as it was in 2005 - about 50 % of the energy mix. To achieve its goals, Ukraine's strategy envisages several priority actions. Firstly, work should begin on identification of three or four sites for new nuclear stations. Secondly, the plan says that Khmelnistki-3 and -4 should be completed by 2016. Thirdly, the plan envisages six gigawatts of new nuclear capacity becoming operational between 2019 and 2021. Finally, lifetime extensions are planned for South Ukraine units 1 to 3, Zaporozhye units 1 to 6, Rovno units 2 and 3 and Khmelnitski-1.

  14. Review of national and international demands on fire protection in nuclear power plants and their application in the Swedish nuclear industry

    International Nuclear Information System (INIS)

    Fredholm, Lotta

    2010-02-01

    The aim of this report has been to detect and describe differences between rules regarding fire safety and the interpretation of the rules and make suggestions on how all parties involved are able to develop a harmonized approach to the fire conditions and how fire requirements aspects can be optimized and modernized. International and national laws and requirements for fire protection are compared and analyzed with the content and structure of the USNRCs RG.1189, which is considered the document that has the most complete accounts of the fire requirements both in terms of structure and content. The national laws, rules and guidelines that have been studied are general fire protection rules as well as nuclear specific rules. The studied national rules also includes Safety Analysis Reports (SAR) and Technical Specifications (TS). This study shows that the Swedish SAR and TS are markedly different from each other in how the fire requirements are presented as well as the methodology and level of detail of how they are fulfilled. These differences make it difficult to compare the quality of the fire protection between different sites and it also makes it different to learn from each other. The main reason to the differences are the lack of national guidance of how to fulfil the general requirements. The main conclusion of the screening of national requirements, is that many of the references used in the SAR are not suited for operation at a nuclear plant. The differences are often the purpose, examples of purposes that are not necessarily met by complying with national laws, rules, advices are: - Prevent fire to influence redundant safety equipment in different fire cells. - Prevent fire to influence redundant safety equipment in the same fire cell. - Prevent extensive consequences of fire in cable rooms. - Prevent extensive consequences of fires in oil that are not included in the Swedish regulation for handling highly flammable liquids. The international regulations

  15. Nuclear engineering. Stable industry for bright minds

    International Nuclear Information System (INIS)

    Geisler, Maja

    2009-01-01

    The Deutsches Atomforum (DAtF) invited 35 students and graduate students for 'colloquies for professional orientation' to Luenen on March 8-11, 2009. Another 39 students were guests in Speyer between March 15 and 18 this year. Participants included graduates in physics, chemistry, radiation protection, and mechanical engineering as well as students of process engineering, electrical engineering and environmental technology. The colloquies for professional orientation are a service provided by the Informationskreis Kernenergie (IK) to member firms of DAtF. At the same time, the IK in this way fulfils its duty to promote young scientists and engineers within the framework of the DAtF's basic public relations activities. After all, nuclear technology in Germany is not about to end its life. Firms with international activities are in urgent need of highly qualified young staff members. Personnel is needed for a variety of activities ranging from nuclear power plant construction to fuel fabrication to waste management and the demolition and disposal of nuclear power plants. All these areas are in need of new qualified staff. Some 750 students so far have attended the DAtF colloquies for professional orientation since 2002. Many participants were hired by industries straight away or were given opportunities as trainees or students preparing their diploma theses in the nuclear industry. These contacts with the nuclear industry should not remain a one-off experience for the students. For this reason, the IK invites the participants in colloquies again this year to attend the Annual Meeting on Nuclear Technology in Dresden on May 12-14, 2009. (orig.)

  16. Nuclear industry prospects: A Canadian perspective

    International Nuclear Information System (INIS)

    Morden, Reid

    1995-01-01

    Canada, with its proven, safe and versatile CANDU reactor is well poised for the second half-century of nuclear fission. Canada's nuclear pedigree goes back to the turn-of-the-century work of Ernest Rutherford in Montreal. This year, Canada's nuclear industry celebrates the 50th anniversary of the start-up of its first research reactor at Chalk River. Last year, the pioneering work of Bert ram Blockhouse in Physics was honoured with a Nobel Prize. Future international success for the nuclear industry, such as has been achieved here in Korea, depends on continued cooperative and collaborative team work between the public and private sectors, continued strong research and development backing by the government, and new strategic partnerships. The biggest challenge is financing for the emerging markets. The brightness or dimness of future prospects are relative to the intensity of the lessons learned from history. In Canada we have a fairly long nuclear pedigree, It goes back almost a century to 1898, when Ernest Rutherford set up a world centre at McGill University in Montreal for research into the structure of the atom and into radioactivity

  17. Quality management certification for the nuclear industry

    International Nuclear Information System (INIS)

    Wilmer, T.J.

    1993-01-01

    Historically for safety critical items, the United Kingdom nuclear companies either conducted their own inspection and audit of suppliers or sub-contracted staff to do so on their behalf. However, it is becoming unrealistic for these services to be undertaken in-house for economic reasons. The power industry is looking outside its own immediate expertise to that of 3rd Party Certification Bodies. There is a danger of introducing an element of risk unless the Certification Body really does understand the industry and its requirements. The Nuclear Installations Inspectorate (NII) makes it mandatory for nuclear installations to have in place Quality management systems that meet the requirements of BS 5882. This standard requires the use of quality assurance programmes and a greater degree of understanding of nuclear regulations and codes of practice than is required by BS 5750. This is a very significant factor, recognising as it does the need to harmonise the management interface between an operator of a nuclear installation and suppliers to that same installation. (author)

  18. Industrial applications of radiation technology

    International Nuclear Information System (INIS)

    Sabharwal, Sunil

    2005-01-01

    In recent years, radiation processing has emerged as an alternative to conventional technologies such as thermal and chemical processing for many industrial applications. The industry is expanding at a fast rate all over the world. The actual industrial benefits on commercial basis, however, depends on the need of the individual society and may vary from country to country. In India, the applications of radiation technology have been found in areas of health care, agriculture, food preservation, industry and environment. Both gamma radiation and electron beam accelerators are being utilized for this purpose. Presently, 6 commercial gamma irradiators housing about 1.5 million curie 60 Co and an annual turnover of over US$ 2 million and 3 commercial electron beam (EB) accelerators with installed capacity of 185 kW are commercially operating in India. The new areas being explored include use of electron beam irradiation for surface treatment, radiation processed membranes for a variety of applications and radiation processing of natural polymers. In the present paper, the current status of this program, especially the recent developments and future direction of radiation processing technology is reviewed. (author)

  19. An HTR cogeneration system for industrial application

    International Nuclear Information System (INIS)

    Haverkate, B.R.W.; Van Heek, A.I.; Kikstra, J.F.

    1999-01-01

    Because of its favourable characteristics of safety and simplicity the high-temperature reactor (HTR) could become a competitive heat source for a cogeneration unit. The Netherlands is a world leading country in the field of cogeneration. As nuclear energy remains an option for the medium and long term in this country, systems for nuclear cogeneration should be explored and developed. Hence, ECN Nuclear Research is developing a conceptual design of an HTR for Combined generation of Heat and Power (CHP) for the industry in and outside the Netherlands. The design of this small CHP-unit for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. The concept that was subject of that study, INCOGEN, used a 40 MW thermal pebble bed HTR and produced a maximum amount of electricity plus low temperature heat. The system has been improved to produce industrial quality heat, and has been renamed ACACIA. The output of this installation is 14 MW electricity and 17 tonnes of steam per hour, with a pressure of 10 bar and a temperature of 220C. The economic characteristics of this installation turned out to be much more favourable using modern cost data. 15 refs

  20. Domestic safeguards in the nuclear industry

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1979-01-01

    The Energy Reorganization Act of 1974 brought about markedly increased security requirements at nuclear power plants. NRC established a threat level against which the security forces were expected to defend. It is asserted that an inadequate legal basis exists for the NRC requirement that nuclear plants be defended by the use of deadly force, if necessary, and that complex issues such as apprehension, retention, and pursuit of intruders are left vague. Security measures patterned after the airline industry, resolution of the deadly force issue, and definition of a creditable threat level are proposed

  1. Nuclear techniques in coal and chemical industries

    International Nuclear Information System (INIS)

    Elbern, A.W.; Leal, C.A.

    1980-01-01

    The use of nuclear techniques for the determination of important parameters in industrial installations is exemplified; advantages of these techniques over other methods conventionally used are pointed out. The use of radiotracers in the study of physical and chemical phenomena occurring in the chemical industry is discussed. It is also shown that, using certain radioisotopes, it is possible to construct devices which enable, for example, the determination of the ash content in coal samples. These devices are economical and easy to be installed for the on-line control during coal transportation. (C.L.B.) [pt

  2. The nuclear industry and public hearings

    International Nuclear Information System (INIS)

    Mansillon, Y.

    2007-01-01

    Major decisions about the French nuclear industry have been made, it is often said, without sufficiently informing and consulting the population. Laws in 1995 and 2002 provide for public hearings in order to inform the public and obtain its reactions to big projects of national interest. The responsibility for organizing a hearing is vested in an independent administrative authority, the National Commission of Public Debate (CNDP). Within 2 years, 5 issues related to the nuclear industry have been referred to it: 1) the ITER project at Cadarache in april 2003, 2) the George-Besse-II project to replace the present uranium enrichment plant at Tricastin in april 2004, 3) the research reactor Jules-Horowitz project at Cadarache in july 2004, 4) the EPR project at Flamanville in november 2004, and 5) the management of radioactive wastes in february 2005. The hearings already represent a fundamental innovation compared with earlier practices

  3. Evolution of stainless steels in nuclear industry

    International Nuclear Information System (INIS)

    Tavassoli, Farhad

    2010-01-01

    Starting with the stainless steels used in the conventional industry, their adoption and successive evolutions in the nuclear industry, from one generation of nuclear reactors to another, is presented. Specific examples for several steels are given, covering fabrication procedures, qualification methods, property databases and design allowable stresses, to show how the ever-increasing demands for better performance and reliability, in particular under neutron irradiation, have been met. Particular attention is paid to the austenitic stainless steels types 304L, 316L, 316L(N), 316L(N)-IG, titanium stabilized grade 321, precipitation strengthened alloy 800, conventional and low activation ferritic/martensitic steels and their oxygen dispersion strengthening (ODS) derivatives. For each material, the evolution of the associated filler metal and welding techniques are also presented. (author)

  4. Industrial applications or electron beams

    International Nuclear Information System (INIS)

    Martin, J. I.

    2001-01-01

    Industrial use of electron beams began in the 1950's with the crosslinking of polyethylene film and wire insulation. Today the number of electron beam Processing Systems installed for industrial applications throughout the world has grown to more than six hundred stations in over 35 countries. Total installed power is now approaching 40 megawatts (over 8 million tons of products per year). Electron beam is now utilized by many major industries including plastics, automotive, rubber goods, wire and cable, electrical insulation, semiconductor, medical, packaging, or pollution control. The principal effect of high-energy electrons is to produce ions in the materials treated, resulting in the liberation of orbital electrons. As a result, the original molecule is modified and the ree radicals combine to form new molecules with new chemical reactions or dis organisation od the DNA chains of living organisms (insects, fungus, microorganisms, etc.). (Author) 8 refs

  5. Fields of nuclear power application

    International Nuclear Information System (INIS)

    Laue, H.J.

    1975-01-01

    The paper deals with nuclear power application in fields different from electricity generation, i.e. district heating, sea water desalination, coal gasification and nuclear splitting of water. (RW) [de

  6. Problems and prospects of nuclear power industry

    International Nuclear Information System (INIS)

    Karelin, A.I.

    2001-01-01

    A consideration is given to problems associated with operating nuclear power plants in many countries and building new NPPs. A special attention is given to safety operation of nuclear plants, to reprocessing and transportation of spent nuclear fuel as well as to radioactive waste disposal. In connection with difficulties in solving the above-mentioned problems a proposition is made to resume work on designing NPPs with the use of nuclear liquid salt reactors based on molten fuel fluoride salts. Advantages and disadvantages of fuel compositions of LiF-BeF 2 -UF 4 -(ThF 4 ) are listed. It is recommended that fundamental studies be carried out into such compositions as KF + CsF; BaF 2 + KF + NaF; AlF 3 + Na 3 AlF 6 , eutectics on the basis of tin and zinc fluorides and their complex salts of M x Sn(Zn)F y . An international program is suggested to be developed to find some way out of crisis of nuclear power industry using research efforts in homogeneous liquid salt nuclear underground reactors with a U(233)-Th fuel cycle [ru

  7. Industrial applications of electron accelerators

    International Nuclear Information System (INIS)

    Singh, A.

    1994-01-01

    The interaction of high-energy radiation with organic systems produces very reactive, short-lived, ionic and free-radical species. The chemical changes brought about by these species are very useful in several systems, and are the basis of the growth of the electron processing industry. Some typical areas of the industrial use of electron accelerators are crosslinking wire and cable insulation, manufacturing heat shrink plastic items, curing coatings, and partially curing rubber products. Electron accelerators are also being considered in other areas such as sewage treatment, sterilizing medical disposables, and food irradiation. An emerging application of industrial electron accelerators is the production of advanced composites for the aerospace and other industries. Traditionally, the carbon-, aramid- and glass-fibre-reinforced composites with epoxy matrices are produced by thermal curing. However, equivalent composites with acrylated-epoxy matrices can be made by electron curing. Cost estimates suggest that electron curing could be more economical than thermal curing. Food irradiation has traditionally been an application for 60 Co γ-radiation. With the increasing demand for food irradiation in various countries, it may become necessary to use electron accelerators for this purpose. Since the dose rate during gamma and electron irradiation are generally very different, a review of the relevant work on the effect of dose rates has been done. This paper presents an overview of the industrial applications of electron accelerator for radiation processing, emphasises the electron curing of advanced composites and, briefly reviews the dose-rate effects in radiation processing of advanced composites and food irradiation. (author). 84 refs., 8 tabs

  8. Nuclear energy and the steel industry

    International Nuclear Information System (INIS)

    Barnes, R.S.

    1977-01-01

    Fossil fuels represent a large part of the cost of iron and steel making and their increasing cost has stimulated investigation of methods to reduce the use of fossil fuels in the steel industry. Various iron and steel making routes have been studied by the European Nuclear Steelmaking Club (ENSEC) and others to determine to what extent they could use energy derived from a nuclear reactor to reduce the amount of fossil fuel consumed. The most promising concept is a High-Temperature Gas-Cooled Nuclear Reactor heating helium to a temperature sufficient to steam reform hydrocarbons into reducing gases for the direct reduction of iron ores. It is proposed that the reactor/reformer complex should be separate from the direct-reduction plant/steelworks and should provide reducing gas by pipeline, not only to a number of steel works but to other industrial users. The composition of suitable reducing gases and the methods of producing them from various feedstocks are discussed. Highly industrialised countries with large steel and chemical industries have shown greatest interest in the concept, but those countries with large iron-ore reserves and growing direct capacity should consider the future value of the High-Temperature Gas-Cooled Reactor as a means of extending the life of their gas reserves. (author)

  9. Cutinases: properties and industrial applications.

    Science.gov (United States)

    Pio, Tatiana Fontes; Macedo, Gabriela Alves

    2009-01-01

    Cutinases, also known as cutin hydrolases (EC 3.1.1.74) are enzymes first discovered from phytopathogenic fungi that grow on cutin as the sole carbon source. Cutin is a complex biopolymer composed of epoxy and hydroxy fatty acids, and forms the structural component of higher plants cuticle. These enzymes share catalytic properties of lipases and esterases, presenting a unique feature of being active regardless the presence of an oil-water interface, making them interesting as biocatalysts in several industrial processes involving hydrolysis, esterification, and trans-esterification reactions. Cutinases present high stability in organic solvents and ionic liquids, both free and microencapsulated in reverse micelles. These characteristics allow the enzyme application in different areas such as food industry, cosmetics, fine chemicals, pesticide and insecticide degradation, treatment and laundry of fiber textiles, and polymer chemistry. The present chapter describes the characteristics, potential applications, and new perspectives for these enzymes.

  10. Competency assessments for nuclear industry personnel

    International Nuclear Information System (INIS)

    2004-04-01

    In 1996, the IAEA published Technical Reports Series No. 380, Nuclear Power Plant Personnel Training and its Evaluation: A Guidebook. This publication provides guidance for the development, implementation and evaluation of training programmes for all nuclear power plant personnel using the systematic approach to training (SAT) methodology. The SAT methodology has since been adopted and used for the development and implementation of training programmes for all types of nuclear facility and activities in the nuclear industry. The IAEA Technical Working Group on Training and Qualification of Nuclear Power Plant Personnel recommended that an additional publication be prepared to provide further guidance concerning competency assessments used for measuring the knowledge, skills and attitudes of personnel as the result of training. This publication has been prepared in response to that recommendation. A critical component of SAT (as part of the implementation phase) is the assessment of whether personnel have achieved the standards identified in the training objectives. The nuclear industry spends a significant amount of resources conducting competency assessments. Competency assessments are used for employee selection, trainee assessment, qualification, requalification and authorization (in some Member States the terminology may be 'certification' or 'licensing'), and job advancement and promotion. Ineffective testing methods and procedures, or inappropriate interpretation of test results, can have significant effects on both human performance and nuclear safety. Test development requires unique skills and, as with any skill, training and experience are needed to develop and improve them. Test item and examination development, use, interpretation of results and examination refinement, like all other aspects of SAT, should be part of an ongoing, systematic process. This publication is primarily intended for use by personnel responsible for developing and administering

  11. Corrosion engineering in nuclear power industry

    International Nuclear Information System (INIS)

    Prazak, M.; Tlamsa, J.; Jirousova, D.; Silber, K.

    1990-01-01

    Corrosion problems in nuclear power industry are discussed from the point of view of anticorrosion measures, whose aim is not only increasing the lifetime of the equipment but, first of all, securing ecological safety. A brief description is given of causes of corrosion damage that occurred at Czechoslovak nuclear power plants and which could have been prevented. These involve the corrosion of large-volume radioactive waste tanks made of the CSN 17247 steel and of waste piping of an ion exchange station made of the same material, a crack in a steam generator collector, contamination of primary circuit water with iron, and corrosion of CrNi corrosion-resistant steel in a spent fuel store. It is concluded that if a sufficient insight into the corrosion relationships exists and a reasonable volume of data is available concerning the corrosion state during the nuclear facility performance, the required safety can be achieved without adopting extremely costly anticorrosion measures. (Z.M.)

  12. The nuclear industry within the Community

    International Nuclear Information System (INIS)

    1989-11-01

    As part of its 1989 working programme, the European Commission undertook to update the provisional nuclear programme in the view of the expected changes from the single European market. This document complies with that commitment and deals exclusively with the problems of the industry engaged in the design and construction of electro-nuclear power stations. Having analysed the context and prospects for the medium and long term development of nuclear investments, in particular in relation to the establishment of a ''common electricity market'', the practical possibility of opening up the equipment and services market is examined. Actions to be taken within the Community are indicated. Finally, the standard for power stations equipped with fast neutron breeder reactors, where European efforts are directed towards a single development project, is presented. (UK)

  13. Localization and indigenization of China nuclear power industry

    International Nuclear Information System (INIS)

    Zhang Xingfa

    2009-01-01

    It points out that China needs to develop nuclear power to solve the shortage of energy source. Localization and independence is the key for the development of nuclear power industry. Localized and independent nuclear power possesses economical competitiveness. China has the condition and capability to realize localization and independence of nuclear power industry. Technology introduction, adaptation and assimilation can enhance the R and D capability of China's nuclear power industry, and speed up the process of localization and independence. (authors)

  14. Women in the new era of nuclear power industry

    International Nuclear Information System (INIS)

    Junko Ogawa

    2009-01-01

    In modern society, it is important that men and women share and equally participate in every aspect of society. Nevertheless the field of nuclear energy and radiation technology is traditionally a man-centric?industry, so women make up very small minority. However, recently even in this nuclear industry, we can sometimes see the phenomena that women are playing an active part.The nuclear industry has a big impact on society. It is necessary that we are accountable for all information given out to the public and we listen and respond to the public's concern. We do this so that nuclear technology will be able to grow and develop smoothly. In such area as better understanding, women working as nuclear engineers, scientists or communicators will be able to act in a significant role because women in general have excellent ability in communication and networking. Women in Nuclear, WiN is a worldwide association for the professional women working in the nuclear energy and radiation applications. WiN was founded in 1993, by European women involved in nuclear industry among the mood of anti-nuclear movement after the Chernobyl accident. The goals of WIN are to improve proper understanding of nuclear energy among the general public by presenting the factual information and to empower members' ability by world-wide exchange of lessons and human relationship. According to the recent data, there are 74 countries with at least one WiN member. and 38 chapters (countries/regions/organizations) that have WiN formal chapter like WIN-Japan, WIN-Korea, WIN-US, for examples. The registered members of WiN Global is about 2500. My presentation will introduce recent activities and topics of WiN Global and WiN Japan. I hope this will be able to convey that women working in nuclear field are indeed gaining in their brilliance and carrying out their mission steadily in our industry now and in the future. (Author)

  15. Subcontracting in nuclear industry - legal aspects

    International Nuclear Information System (INIS)

    Leger, M.

    2012-01-01

    This article describes the legal framework of subcontracting in France. Subcontracting is considered as a normal mode of functioning for an enterprise: an enterprise contracts another enterprise to do what it can not do itself or does not want to do. According to the 1975 law, cascade subcontracting is allowed but subcontractors have to be accepted by the payer. In some cases the payer can share responsibility when the subcontracting enterprises do not comply to obligations like the payment of some taxes. The main subcontractor who is the one who contracted with the payer is the only one responsible for the right execution of the whole contract. In nuclear industry there are 2 exceptions to the freedom of subcontracting. The first one concerns radiation protection: in a nuclear facility the person in charge of radioprotection must be chosen among the staff. The second concerns the operations and activities that are considered important for radiation protection, it is forbidden to subcontract them. In some cases like maintenance in nuclear sector the law imposes some qualification certification for subcontracting enterprises. The end of the article challenges the common belief about subcontracting in nuclear industry. (A.C.)

  16. Situation of nuclear industry in Japan

    International Nuclear Information System (INIS)

    2004-03-01

    This document presents the situation of nuclear industry in Japan: cooperation with France in the domain of the fuel cycle (in particular the back-end) and of for the industrial R and D about fast reactors and nuclear safety; present day situation characterized by a series of incidents in the domain of nuclear safety and by an administrative reorganization of the research and safety organizations; power of local representatives, results of April 2003 elections, liberalization of the electric power sector, impact of the TEPCO affair (falsification of safety reports) on the nuclear credibility, re-start up of the Monju reactor delayed by judicial procedures, stopping of the program of MOX fuel loading in Tepco's reactors, discovery of weld defects in the newly built Rokkasho-mura reprocessing plant, an ambitious program of reactors construction, the opportunity of Russian weapons dismantling for the re-launching of sodium-cooled fast reactors; the competition between France and Japan for the setting up of ITER reactor and its impact of the French/Japanese partnership. (J.S.)

  17. Industrial aspects of nuclear energy: French experience

    International Nuclear Information System (INIS)

    Lebreton, G.

    1986-11-01

    France decides to develop nuclear energy on a wide scale about 12 years ago. To cope with this ambitious program, the roles have been distributed within a very cohesive organization, as follows: EDF, the french national electricity utility is owner, prime contractor, and plant operator. The Atomic Energy Commission, CEA performs part of the research and development work, and supplies the necessary technical support to the safety authorities. A few leading industrial firms design and build the major parts of the nuclear power plants. Among them is Framatome, which is responsible for the design, manufacture, erection, and startup of nuclear steam supply systems (the NSSSs), and related auxiliaries. Alsthom is responsible for the supply of the turbine and its auxiliaries. It would not be proper to describe the French nuclear industry without focussing our attention on the care given to transfer of technology. Technology transfer agreements can take several forms, but local factors have to be taken into account. These forms are discussed in this paper. A typical and highly significant example (KNU 9-10 project) is given

  18. Environmental effects from the nuclear industry

    International Nuclear Information System (INIS)

    1975-01-01

    Since 1969 several meetings have been convened to study the possibility of using high-level radiation in waste treatment. It was agreed that ionizing radiation offered some compromise as a feasible technology for a certain unique purpose, but economic considerations mitigated any overwhelming enthusiasm for early industrial realization. Recently a significant change has taken place in the world energy supply picture, and the expanded projection of nuclear power generation affects the analysis of comparative economic feasibility of ionizing radiation treatment of wastes. In addition, increased consideration of environmental quality not only calls for the re-evaluation of conventional waste treatment technologies, but also the development of more effective means where conventional methods might be unsatisfactory. As a result of several allied considerations, it was thought necessary and timely to review the status of research and development in the application of ionizing radiation to waste treatment and to consider the environmental implication of the proposed technology. Accordingly, the Symposium on the Use of High-Level Radiation in Waste Treatment - Status and Prospects was convened by the IAEA, in co-operation with the Government of the Federal Republic of Germany and the Bayerische Landesanstalt fur Bodenkultur und Pflanzenbau. Forty-eight papers were presented in eight sessions covering the current technology of waste-water treatment and re-use, radiosensitivity of micro-organisms, disinfection and microbiological control, physical and chemical modification of aqueous pollutants, technological and economic considerations, pilot-plant design and operating experiences, and radiation treatment of gaseous and solid wastes

  19. Industrial applications of affective engineering

    CERN Document Server

    Shiizuka, Hisao; Lee, Kun-Pyo; Otani, Tsuyoshi; Lim, Chee-Peng

    2014-01-01

    This book examines the industrial applications of affective engineering. The contributors cover new analytical methods such as fluctuation, fuzzy logic, fractals, and complex systems. These chapters also include interdisciplinary research that traverses a wide range of fields, including information engineering, human engineering, cognitive science, psychology, and design studies. The text is split into two parts: theory and applications. This work is a collection of the best papers from ISAE2013 (International Symposium of Affective Engineering) held at Kitakyushu, Japan and Japan Kansei Engineering Meeting on March 6-8, 2013.

  20. Radiation technology in emerging industrial applications. Proceedings

    International Nuclear Information System (INIS)

    2003-01-01

    In many industrial applications radiation processing has proven to be a technology of choice either because of its economic competitiveness or its technical superiority. Although the chemical effects of ionizing radiation have been known for more than a century, its industrial applications became possible only after the availability of reliable gamma sources and powerful electron accelerators during the last couple of decades.The programmes of the International Atomic Energy Agency (IAEA) in radiation processing are implemented through the Department of Nuclear Sciences and Applications and the Department of Technical Co-operation. The IAEA has been active in this field for many years, contributing to new developments, training, promotion and transfer of technology. In September 1997, the IAEA held an international symposium in Zakopane, Poland on the 'Use of radiation technology for the conservation of environment' where the status of current developments and of applications of radiation processing in the control of environmental pollution was reviewed (IAEA-TECDOC-1023, 1998). Recent developments and achievements in various aspects of radiation processing have been assessed continuously through the organization of consultants meetings, advisory group meetings and research co-ordination meetings. Worldwide growing interest in the use of radiation technology in various new industrial applications, as exemplified by the reports and presentations made at these meetings, has led the IAEA to organize a symposium to cover every aspect of radiation processing and, exclusively, the emerging industrial applications of radiation technology. The International Symposium on Radiation Technology in Emerging Industrial Applications was convened in November 2000 in Beijing, China. Its main purpose was to bring scientists,technologists, industrialists and regulatory authorities together with a view of exchanging information and reviewing the status of current developments and

  1. Radiation technology in emerging industrial applications. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-01

    In many industrial applications radiation processing has proven to be a technology of choice either because of its economic competitiveness or its technical superiority. Although the chemical effects of ionizing radiation have been known for more than a century, its industrial applications became possible only after the availability of reliable gamma sources and powerful electron accelerators during the last couple of decades.The programmes of the International Atomic Energy Agency (IAEA) in radiation processing are implemented through the Department of Nuclear Sciences and Applications and the Department of Technical Co-operation. The IAEA has been active in this field for many years, contributing to new developments, training, promotion and transfer of technology. In September 1997, the IAEA held an international symposium in Zakopane, Poland on the 'Use of radiation technology for the conservation of environment' where the status of current developments and of applications of radiation processing in the control of environmental pollution was reviewed (IAEA-TECDOC-1023, 1998). Recent developments and achievements in various aspects of radiation processing have been assessed continuously through the organization of consultants meetings, advisory group meetings and research co-ordination meetings. Worldwide growing interest in the use of radiation technology in various new industrial applications, as exemplified by the reports and presentations made at these meetings, has led the IAEA to organize a symposium to cover every aspect of radiation processing and, exclusively, the emerging industrial applications of radiation technology. The International Symposium on Radiation Technology in Emerging Industrial Applications was convened in November 2000 in Beijing, China. Its main purpose was to bring scientists,technologists, industrialists and regulatory authorities together with a view of exchanging information and reviewing the status of current developments and

  2. The industrial nuclear fuel cycle in Argentina

    International Nuclear Information System (INIS)

    Koll, J.H.; Kittl, J.E.; Parera, C.A.; Coppa, R.C.; Aguirre, E.J.

    1977-01-01

    The nuclear power program of Argentina for the period 1976-85 is described, as a basis to indicate fuel requirements and the consequent implementation of a national fuel cycle industry. Fuel cycle activities in Argentina were initiated as soon as 1951-2 in the prospection and mining activities through the country. Following this step, yellow-cake production was initiated in plants of limited capacity. National production of uranium concentrate has met requirements up to the present time, and will continue to do so until the Sierra Pintada Industrial Complex starts operation in 1979. Presently, there is a gap in local production of uranium dioxide and fuel elements for the Atucha power station, which are produced abroad using Argentine uranium concentrate. With its background, the argentine program for the installation of nuclear fuel cycle industries is described, and the techno-economical implications considered. Individual projects are reviewed, as well as the present and planned infrastructure needed to support the industrial effort [es

  3. Non power applications of nuclear technology: The case of Belgium

    International Nuclear Information System (INIS)

    Jaumotte, A.L.

    1998-01-01

    The historical review and oversight of Belgium activities in applications of nuclear technologies has been presented. Especially attention have been paid on industrial applications as sterilization of surgical tools, medical supplies, drugs, food; radiation induced polymerization and composite materials production; nondestructive testing and application of sealed sources in industry. The detailed review has been done on nuclear medicine development in Belgium covering the range of therapeutic applications as well as diagnostic techniques

  4. Probabilistic safety assessment in the chemical and nuclear industries

    CERN Document Server

    Fullwood, Ralph R

    2000-01-01

    Probabilistic Safety Analysis (PSA) determines the probability and consequences of accidents, hence, the risk. This subject concerns policy makers, regulators, designers, educators and engineers working to achieve maximum safety with operational efficiency. Risk is analyzed using methods for achieving reliability in the space program. The first major application was to the nuclear power industry, followed by applications to the chemical industry. It has also been applied to space, aviation, defense, ground, and water transportation. This book is unique in its treatment of chemical and nuclear risk. Problems are included at the end of many chapters, and answers are in the back of the book. Computer files are provided (via the internet), containing reliability data, a calculator that determines failure rate and uncertainty based on field experience, pipe break calculator, event tree calculator, FTAP and associated programs for fault tree analysis, and a units conversion code. It contains 540 references and many...

  5. Intelligent robotics and remote systems for the nuclear industry

    International Nuclear Information System (INIS)

    Wehe, D.K.; Lee, J.C.; Martin, W.R.; Tulenko, J.

    1989-01-01

    The nuclear industry has a recognized need for intelligent, multitask robots to carry out tasks in harsh environments. From 1986 to the present, the number of robotic systems available or under development for use in the nuclear industry has more than doubled. Presently, artificial intelligence (AI) plays a relatively small role in existing robots used in the nuclear industry. Indeed, the lack of intelligence has been labeled the ''Achilles heel'' of all current robotic technology. However, larger-scale efforts are underway to make the multitask robot more sensitive to its environment, more capable to move and perform useful work, and more fully autonomous via the use of AI. In this paper, we review the terminology, the history, and the factors which are motivating the development of robotics and remove systems; discuss the applications related to the nuclear industry; and, finally, examine the state of the art of the technologies being applied to introduce more autonomous capabilities. Much of this latter work can be classified as within the artificial intelligence framework. (orig.)

  6. Transfer of industry-oriented nuclear technology at NUCOR

    International Nuclear Information System (INIS)

    De Jesus, A.S.M.

    1983-10-01

    The transfer of industry-oriented nuclear technology at the Nuclear Development Corporation of South Africa (Pty) Ltd (NUCOR) is centred in a few divisions only, as most of the NUCOR's program is internally oriented. The industry-oriented activities include radiation technology, production of radioisotopes and application of nuclear techniques in solving problems of industry. The study is concerned mainly with the last of these activities. The general problem of transferring innovative technology is reviewed and a systems approach is used to analyse the transfer process at NUCOR, in terms of the organisation itself and its environment. Organisational strengths and weaknesses are identified and used as a basis to determine opportunities and threats. Possible objectives are formulated and a strategy to meet them is suggested. 'Demand-pull' as opposed to 'technology-push' is advanced as the main triggering mechanism in the transfer of industry-oriented nuclear technology. The importance of marketing this technology, as well as its commercialization, are discussed

  7. The INSTN trains the future professionals of nuclear industry

    International Nuclear Information System (INIS)

    Correa, P.

    2017-01-01

    The INSTN (Institute for Nuclear Sciences and Nuclear Technologies) is the applied school in nuclear technologies that has been present for 60 years for specialized training and vocational training. The integration of numerical technologies has allowed INSTN to adapt its way of teaching and to overcome difficulties like distances and to propose for instance practical exercises on the ISIS experimental reactor through the web for foreign graduate schools. The INSTN has realized its first SPOC (Small Private Online Course) and is preparing 2 MOOC (Massive Open Online Course). Since 2016, the INSTN has become 1 of the 2 training centers appointed as 'collaborating center' by the IAEA in the field of nuclear technologies and their industrial and radio-pharmaceutical applications. (A.C.)

  8. Peaceful applications of nuclear explosions

    International Nuclear Information System (INIS)

    Wallin, L.B.

    1975-12-01

    The intension of this report is to give a survey of the field of peaceful applications of nuclear explosions. As an introduction some examples of possibilities of application are given together with a simple description of nuclear explosions under ground. After a summary of what has been done and will be done in this field nationally and internationally, a short discussion of advantages and problems with peaceful application of nuclear explosions follows. The risks of spreading nuclear weapons due to this applications are also touched before the report is finished with an attempt to judge the future development in this field. (M.S.)

  9. The multiple applications of the nuclear techniques in Argentina; Las multiples aplicaciones de la tecnologia nuclear en Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Manzini, Alberto C [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Programa de Radioisotopos y Aplicaciones

    2001-07-01

    A review is given of the use of nuclear technology in Argentina, especially in the field of the production of radioisotopes and radiopharmaceuticals, nuclear medicine, and industrial applications. The applications of ionizing radiation are also reviewed.

  10. Radiotracer Generators for Industrial Applications

    International Nuclear Information System (INIS)

    2013-01-01

    Radiotracers have been widely used throughout industry to optimize processes, solve problems, improve product quality, save energy and reduce pollution. Their technical, economic and environmental benefits have been recognized by both the industrial and the environmental sectors. The most important radiotracer techniques have been transferred to many developing Member States through IAEA Technical Cooperation projects. However, in spite of their manifest benefits, radiotracer techniques continue to be underutilized, not only by developing countries but also by more industrialized nations. There are a number of factors that restrict the usage of the radioisotope techniques, but chief among them is the timely availability of suitable radiotracers. Ensuring timely availability of suitable radionuclides is a main hurdle to the use of radiotracer techniques in industry. For developing countries that do not possess radioisotope production facilities, the long time required for import of radionuclides not only completely rules out the use of short half-life nuclides, but also makes it impossible for the radioisotope applications teams to respond to problems of an urgent nature. Many possible radiotracer investigations are not being carried out in developing countries because of this problem. Even in industrialized countries, radionuclide supply is often a problem, as many of the former suppliers of industrial radionuclides have switched their production facilities to serve the more lucrative radiopharmaceuticals market. Obtaining continuity of supply of radionuclides with which to carry out extended studies in difficult-to-access locations, such as offshore oil platforms, is also a significant challenge. Making use of tracers from radionuclide generators can alleviate the difficulties associated with radioisotope supply. Two commercially available medical radionuclide generators, 99 Mo/ 99 mTc and 113 Sn/ 113 mIn, have been used for this purpose, but their use has been

  11. nuclea'10. Third industry meeting of the Swiss nuclear forum. Framework conditions for the renaissance of nuclear power

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The Swiss government and the Swiss power industry agree: Switzerland will have to renew its nuclear power plant park in a foreseeable time frame so as to prevent a threatenting gap in electricity supply. At the same time, the present lowest-CO 2 electricity mix in any industrialized country ensured by hydroelectric power and nuclear power must be safeguarded. The power industry is meeting these challenges by actively planning the replacement of existing nuclear power plants and the construction of new ones. Three framework applications for permits have been filed, and the first tenders connected to the new construction projects have been invited. This raises the question not only whether Switzerland is willing to embark on this project of a century, but also whether the country is able to do so. What are the factors helping nuclear power to achieve a breakthrough in Switzerland and its neighboring countries, provided there is public acceptance? Besides providing the necessary technical and economic resources it is the need for political and economic acceptance of nuclear power which constitutes an ongoing task for nuclear industry. nuclea is considered the meeting point of the nuclear industry in Switzerland. nuclea'10, held on November 11, 2010, served for exchanges of information between the nuclear industry and other stakeholders in nuclear power. More than 200 participants from public authorities, politics, the power industry, research and development, and vendors and service providers attended the informative and always interesting event accompanied by an industrial exhibition. (orig.)

  12. Radioisotope tracer applications in industry

    International Nuclear Information System (INIS)

    Rao, S.M.

    1987-01-01

    Radioisotope tracers have many advantages in industrial trouble-shooting and studies on process kinetics. The applications are mainly of two types: one leading to qualitative (Yes or No type) information and the other to quantitative characterisation of flow processes through mass balance considerations and flow models. ''Yes or No'' type methods are mainly used for leakage and blockage locations in pipelines and in other industrial systems and also for location of water seepage zones in oil wells. Flow measurements in pipelines and mercury inventory in electrolytic cells are good examples of tracer methods using the mass balance approach. Axial dispersion model and Tanks-in-Series model are the two basic flow models commonly used with tracer methods for the characterisation of kinetic processes. Examples include studies on flow processes in sugar crystallisers as well as in a precalcinator in a cement plant. (author). 18 figs

  13. Advanced glossmeters for industrial applications

    Science.gov (United States)

    Kuivalainen, Kalle; Oksman, Antti; Juuti, Mikko; Myller, Kari; Peiponen, Kai-Erik

    2010-05-01

    In this paper, we present three new types of diffractive-optical-element (DOE)-based glossmeters (DOGs) that have been developed for both laboratory and online local specular gloss measurements of objects in industrial processes. The three are denoted as the handheld wireless glossmeter, µDOG two-dimensional (2D) and µDOG one-dimensional (1D), respectively. These glossmeters are designed to operate under conditions where gloss measurement with conventional glossmeters is impossible or difficult, or when fine structures of the gloss over a surface are an issue. Here, we show the applicability of the handheld glossmeter and µDOG 2D in the inspection of gloss from rough stainless steel plates finished by different machining methods. We also briefly introduce the concept of online gauge µDOG 1D for gloss assessment in industrial measurement environments.

  14. Applications of nuclear techniques and research 1990

    International Nuclear Information System (INIS)

    1990-01-01

    The application of nuclear techniques, i.e. those techniques where use is made of isotopes and radiation, continues to contribute to progress in science, technology, agriculture, industry and medicine. Nuclear applications found their way into the IAEA's activities from the very beginning, and their promotion constitutes today a substantial fraction of the IAEA's Technical Co-operation and Research Contract Programmes. The 1990 selection is opened by a review of the role and function of the IAEA's Research Contract Programme, which is one of the Agency's most effective tools for promoting and developing nuclear applications. Applications in agriculture are covered in two articles dealing respectively with issues affecting the acceptance of food irradiation by governments, the food industry and consumers and with the use of radiation to induce plant mutation, a practical tool available to plant breeders in their effort to develop better quality crops. The following article deals with a typical nuclear application in medicine, i.e. the use of radionuclides in the diagnosis of lung diseases and in investigations related to the respiratory function. The use of environmental isotopes to assess the energy potential of geothermal fields is the next subject, a good example of nuclear methods applied to the evaluation of natural resources. The 1990 review concludes with a presentation prepared by the Third World Academy of Sciences on magnetic fusion research activity in the developing countries and its connection with the IAEA's own fusion programme

  15. Internet applications in nuclear power plant operation management

    International Nuclear Information System (INIS)

    Munoz, M.

    2000-01-01

    The use of the Internet is quickly becoming widespread in practically all areas of business and industry. The nuclear industry should not remain indifferent to this new trend. This paper analyses some of the Internet applications that can be easily adapted to nuclear power plant operation management, including. (Author)

  16. Education for the nuclear power industry: Swedish perspective

    International Nuclear Information System (INIS)

    Blomgren, J.

    2005-01-01

    In the Swedish nuclear power industry staff, very few newly employed have a deep education in reactor technology. To remedy this, a joint education company, Nuclear Training and Safety Center (KSU), has been formed. To ensure that nuclear competence will be available also in a long-term perspective, the Swedish nuclear power industry and the Swedish Nuclear Power Inspectorate (SKI) have formed a joint center for support of universities, the Swedish Nuclear Technology Center (SKC). The activities of these organisations, their links to universities, and their impact on the competence development for the nuclear power industry will be outlined. (author)

  17. Enhancing Safety Culture in Complex Nuclear Industry Projects

    International Nuclear Information System (INIS)

    Gotcheva, N.

    2016-01-01

    lifecycle phases has implications for the defence in depth. Recently, the Radiation and Nuclear Safety Authority in Finland (STUK) has issued new YVL guides, which specify requirements on project management and safety culture of suppliers and subcontractors (STUK, 2014). International nuclear institutions have also paid attention to safety culture in networks of organizations (e.g., INPO, 2010; Royal Academy of Engineering, 2011; IAEA 2012). Culture has been predominantly studied in safety research as an intra-organizational phenomenon. Thus, it remains unclear how to apply safety culture models in large-scale project networks, consisting of multiple heterogeneous actors with somewhat conflicting objectives. Cultural approaches traditionally emphasise that creating a culture takes time and continuity, which does not reflect well the short time frames, high diversity and temporal dynamics typical for such projects. Each project partner brings own national and work cultural features and practices, which create a complex amalgam of cultural and subcultural influences on the overall project culture. Recently, Gotcheva and Oedewald (2015) summarised safety culture challenges in different lifecycle phases of large nuclear industry projects, and many of them relate to inter-organizational setups. Project governance deals with this inter-organizational space as it aims at aligning multiple diverse stakeholders’ interests to work together towards shared goals (Turner and Simister, 2001). The current study utilises a mixed-methods approach for understanding and enhancing safety culture in complex projects, focusing on management principles, cultural phenomena and simulation modelling. The need to integrate knowledge on safety culture and project governance to support safe and effective execution of complex nuclear projects is highlighted. The study advances the concept of safety culture and its applicability in project contexts by directing the attention to inter

  18. Studying and modelling variable density turbulent flows for industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Chabard, J.P.; Simonin, O.; Caruso, A.; Delalondre, C.; Dalsecco, S.; Mechitoua, N.

    1996-07-01

    Industrial applications are presented in the various fields of interest for EDF. A first example deals with transferred electric arcs couplings flow and thermal transfer in the arc and in the bath of metal and is related with applications of electricity. The second one is the combustion modelling in burners of fossil power plants. The last one comes from the nuclear power plants and concerns the stratified flows in a nuclear reactor building. (K.A.). 18 refs.

  19. Studying and modelling variable density turbulent flows for industrial applications

    International Nuclear Information System (INIS)

    Chabard, J.P.; Simonin, O.; Caruso, A.; Delalondre, C.; Dalsecco, S.; Mechitoua, N.

    1996-07-01

    Industrial applications are presented in the various fields of interest for EDF. A first example deals with transferred electric arcs couplings flow and thermal transfer in the arc and in the bath of metal and is related with applications of electricity. The second one is the combustion modelling in burners of fossil power plants. The last one comes from the nuclear power plants and concerns the stratified flows in a nuclear reactor building. (K.A.)

  20. Commercial basis to nuclear industry skills

    International Nuclear Information System (INIS)

    King, Mike

    1989-01-01

    The United Kingdom Atomic Energy Authority (UKAEA) has considerable experience in measurement and control systems which it has designed for nuclear reactor use. It is now using this experience to help other industries needing to monitor variables such as flow, level, position, conductivity, thickness, temperature, density, sound, vibrations, light, movement, pressure, strain and radiation. Recently British Nuclear Fuels sought UKAEA's help to solve a process measurement problem at the Sellafield encapsulation plant which is used to recycle unspent fuel and immobilise liquid wastes using a cementation process. The level and specific gravity of the liquid waste slurry must be accurately measured before the correct amount of solidifying material can be added. The solution to this problem, using pneumacator technology, is described. (author)

  1. Industrial fans used in nuclear facilities

    International Nuclear Information System (INIS)

    Carlson, J.A.

    1987-01-01

    Industrial fans are widely used in nuclear facilities, and their most common use is in building ventilation. To control the spread of contamination, airflows are maintained at high levels. Therefore, the selection of the fan and fan control are important to the safety of people, equipment and the environment. As a result, 80% of all energy used in nuclear facilities is fan energy. Safety evolves from the durability, control and redundancy in the system. In new or retrofit installations, testing and qualification of fans and systems are completed prior to start-up. Less important but necessary is the energy conservation aspect of fan selection and installations. Fan efficiency, type of control and system installation are evaluated for energy use

  2. Nuclear challenges in Asia, an industrial perception

    International Nuclear Information System (INIS)

    Tiffou, Jean-Pierre

    2015-01-01

    The author first gives a brief overview of military programmes implemented by India, China, Pakistan and North Korea to develop and manufacture the various vectors of nuclear weapons (submarines, missiles, bombers), the objective being (not always reached) to possess a nuclear triad (intercontinental ground-based missiles, submarines, and bombers). In this respect, the author briefly comments the evolutions of defence budgets, discusses the evolutions of the Chinese defence industry since the end of World War II (strong relationship with USSR, emergence of other various trade relationships, a more independent production but with a search for new technological partnerships). The author then discusses whether China is a threatening military power, more particularly for some Asian countries like Japan and South Korea

  3. The industrial application of radioisotopes

    International Nuclear Information System (INIS)

    Frevert, E.

    1991-01-01

    In this paper the two main fields of the industrial application of radioisotopes are introduced. In the field of process controlling device and control first about the transmission and the backscattering methods is reported. Then the x-ray fluorescence method and the moisture gauging with neutrons are mentioned. Also the measuring of depth of charge. In the field of tracer investigations about all kinds of flow and intermixture measurements is reported. And investigations of corrosion, wear and lubrication and precise location of nonmetallic pipe lines are mentioned. (Author)

  4. Nuclear energy for technology and industry

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    1987-01-01

    It is a sad commentary on the complete lack of informed realism of the Government and people of Australia that, after thirty years of vacillation and political chicanery, nuclear technology, one of this nation's potential ''sunrise industries'' is in its death throes. Whilst our third world neighbours, in particular Indonesia, Malaysia, the Philippines, the People's Republic of China and even impoverished Bangladesh are making giant strides to develop an autonomous expertise Australia's potential has been dissipated and its opportunities for leadership and technology transfer lost. By chance this paper was written some weeks before the nuclear accident at Chernobyl (U.S.S.R.) and many years after accidents at the Three Mile Island nuclear power plant (U.S.A.) and the plutonium production reactor at Windscale (U.K.). None of these incidents alter the basic arguments or conclusions contained in this manuscript. (See Appendix). The year 1986 might represent the final opportunity for concerned professionals to seek to improve the quality of public education and information to end ''the war against the atom''. It will be necessary to re-motivate the public and private sector of a demoralised technology and to launch it on a road of responsible and successful expansion unshackled by beaurocratic interference. It is the purpose of this paper to examine why the first three decades of nuclear technology in Australia have been so singularly unsuccessful and to discuss a coherent and rational implementation of plans and policies for the future. (author)

  5. Government intervention in the Canadian nuclear industry

    International Nuclear Information System (INIS)

    Doern, G.B.

    1980-01-01

    Several facets of government intervention in the Canadian nuclear industry are examined by reviewing the general historical evolution of intervention since the Second World War and by a more detailed analysis of three case studies. The case studies are the public sector - private sector content of the initial CANDU reactor program in the 1950's, the regulation of the health and safety of uranium miners in the late 1960's and early 1970's, and the Ontario Hydro decision in 1978 to enter into longer-term (40 year) contracts for uranium for its power reactors. (auth)

  6. Government intervention in the Canadian nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Doern, G B [Carleton Univ., Ottawa, Ontario (Canada). School of Public Administration

    1980-01-01

    Several facets of government intervention in the Canadian nuclear industry are examined by reviewing the general historical evolution of intervention since the Second World War and by a more detailed analysis of three case studies. The case studies are the public sector - private sector content of the initial CANDU reactor program in the 1950's, the regulation of the health and safety of uranium miners in the late 1960's and early 1970's, and the Ontario Hydro decision in 1978 to enter into longer-term (40 year) contracts for uranium for its power reactors.

  7. Economical state of nuclear industries in 1980

    International Nuclear Information System (INIS)

    1982-01-01

    The Japan Atomic Industrial Forum, Inc., has carried out the survey of the actual state of atomic energy industries in Japan every year, and the 22nd survey was performed on the state in 1980. In this survey, the atomic energy industries are classified into electric power business, mining and manufacture, and trading companies. The actual results of expenditures, sales, the investment in facilities, backlogs, the volume of business, the number of employees and so on were surveyed by questionnaire, respectively. The data show the history of the atomic energy industries for a quarter of a century, and are utilized to search for the problems. The period of survey was from April 1, 1980, to March 31, 1981. The number of enterprises surveyed was 1234, and 924 companies replied, accordingly, the ratio of reply was 75%. 546 enterprises among the 924 had some results related to atomic energy, therefore, the results of survey were classified, totalized, examined and analyzed, based on the survey papers of these 546 enterprises. As for the Japanese economy, the real growth of economy was 3.8%, the index of mining and manufacturing production increased by 4.6%, but total energy consumption decreased by 4.4%, as compared with the previous year. One nuclear power plant began the operation, and 4000 centrifuges are operated in the uranium enrichment pilot plant. The trends of expenditures, sales and employees are shown. (Kako, I.)

  8. Assesment of safe discharge limits in the nuclear industry

    International Nuclear Information System (INIS)

    Van As, D.

    1984-01-01

    Routine releases from the nuclear industry to the environment are controlled by three principles, viz. that the practice creating the effluents should be kept as low as reasonably achievable, and radiation dose limits should not be exceeded. In the nuclear industry, the discharge of radioactive effluent is controlled by a system of dose limitation. The application of this system to conventional effluents require: i) a quantitative relationship between intake and effect so as to establish intake limits; ii) environmental models that will allow calculation of the relationship between discharge and intake; iii) a measure of the total detriment due to the discharge. For such a system discharge limits can be established for the desired level of risk (safety)

  9. Student involvement and research for the nuclear industry

    International Nuclear Information System (INIS)

    Ginniff, M.E.

    1980-01-01

    Nuclear engineering is one of the modern and rapidly advancing technologies. Those already involved in it are continually updating their knowledge to keep abreast of the developments. Of course the sound basic principles of engineering still apply but the scene of application can be transformed in a few years. In fact, because of this, many engineers from more traditional industries often express the view that presently the total range of nuclear engineering is research and development. How can students be trained for such a rapidly advancing technology. Is not the answer early involvement. Effective early involvement for students can only come about by the close co-operation and involvement of the staff of universities and industry. The theme is developed. (author)

  10. Industrial applications of electron beam technology

    International Nuclear Information System (INIS)

    Khairul Zaman Mohd Dahlan

    1997-01-01

    Electron beam technology was first introduced in Malaysia in 1989 with the conclusion of the bilateral cooperation between the Malaysian Institute for Nuclear Technology Research (MINT) and Japan International Co-operation Agency (JICA) on Radiation Application Projects. Two electron beam accelerators with energy of 3.0 MeV and 200 keV were installed at MINT. These two accelerators pave the way for R and D to be carried out in radiation processing of polymers for cross-linking and surface curing. In 1994, another electron beam accelerator was installed in the private sector for cross-linking of home appliance wires. Since then, two more accelerators were installed in the private sector for cross-linking of heat shrinkable plastic films. Recently, a local company has acquired a low energy electron beam machine for cross-linking of plastic film. Within a period of 7 years, industrial applications of electron beam technology in Malaysia have increased significantly

  11. Integrating virtual reality applications in nuclear safeguards

    International Nuclear Information System (INIS)

    Barletta, Michael; Crete, Jean-Maurice; Pickett, Susan

    2011-01-01

    Virtual reality (VR) tools have already been developed and deployed in the nuclear industry, including in nuclear power plant construction, project management, equipment and system design, and training. Recognized as powerful tools for, inter alia, integration of data, simulation of activities, design of facilities, validation of concepts and mission planning, their application in nuclear safeguards is still very limited. However, VR tools may eventually offer transformative potential for evolving the future safeguards system to be more fully information-driven. The paper focuses especially on applications in the area of training that have been underway in the Department of Safeguards of the International Atomic Energy Agency. It also outlines future applications envisioned for safeguards information and knowledge management, and information-analytic collaboration. The paper identifies some technical and programmatic pre-requisites for realizing the integrative potential of VR technologies. If developed with an orientation to integrating applications through compatible platforms, software, and models, virtual reality tools offer the long-term potential of becoming a real 'game changer,' enabling a qualitative leap in the efficiency and effectiveness of nuclear safeguards. The IAEA invites Member States, industry, and academia to make proposals as to how such integrating potential in the use of virtual reality technology for nuclear safeguards could be realized. (author)

  12. BR2 reactor: medical and industrial applications

    International Nuclear Information System (INIS)

    Ponsard, B.

    2005-01-01

    The radioisotopes are produced for various applications in the nuclear medicine (diagnostic, therapy, palliation of metastatic bone pain), industry (radiography of welds, ...), agriculture (radiotracers, ...) and basic research. Due to the availability of high neutron fluxes (thermal neutron flux up to 10 15 n/cm 2 .s), the BR2 reactor is considered as a major facility through its contribution for a continuous supply of products such 99 Mo ( 99 mTc), 131 I, 133 Xe, 192 Ir, 186 Re, 153 Sm, 90 Y, 32 P, 188 W ( 188 Re), 203 Hg, 82 Br, 41 Ar, 125 I, 177 Lu, 89 Sr, 60 Co, 169 Yb, 147 Nd, and others. Neutron Transmutation Doped (NTD) silicon is produced for the semiconductor industry in the SIDONIE (Silicon Doping by Neutron Irradiation Experiment) facility, which is designed to continuously rotate and traverse the silicon through the neutron flux. These combined movements produce exceptional dopant homogeneity in batches of silicon measuring 4 and 5-inches in diameter by up to 750 mm in length. The main objectives of work performed were to provide a reliable and qualitative supply of radioisotopes and NTD-silicon to the customers in accordance with a quality system that has been certified to the requirements of the EN ISO 9001: 2000. This new Quality System Certificate has been obtained in November 2003 for the Production of radioisotopes for medical and industrial applications and the Production of Neutron Transmutation Doped (NTD) Silicon in the BR2 reactor

  13. The world nuclear industry status report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.; Froggatt, A

    2007-11-15

    The status and perspectives of the nuclear industry in the world have been subject to a large number of publications and considerable media attention over the last few years. The present report attempts to provide solid elements of key information for intelligent analysis and informed decision-making. As of 1 November 2007 there are 439 nuclear reactors operating in the world. That is five less than five years ago. There are 32 units listed by the International Atomic Energy Agency (IAEA) as 'under construction'. That is about 20 less than in the late 1990's. In 1989 a total of 177 nuclear reactors had been operated in what are now the 27 EU Member States. That number shrank to 146 units as of 1 November 2007. In 1992 the Worldwatch Institute in Washington, WISE-Paris and Greenpeace International published the first World Nuclear Industry Status Report. As a first updated review in 2004 showed the 1992 analyses proved correct. In reality, the combined installed nuclear capacity of the 436 units operating in the world in the year 2000 was less than 352,000 megawatts - to be compared with the forecast of the International Atomic Energy Agency (IAEA) from the 1970's of up to 4,450,000 megawatts. Today the 439 worldwide operating reactors total 371,000 megawatts. Nuclear power plants provide 16% of the electricity, 6% of the commercial primary energy and 2-3% of the final energy in the world - the tendency is downwards - less than hydropower alone. Twenty-one of the 31 countries operating nuclear power plants decreased their share of nuclear power within the electricity mix if compared with 2003. The average age of the operating power plants is 23 years. Some nuclear utilities envisage reactor lifetimes of 40 years or more. Considering the fact that the average age of all 117 units that have already been closed is equally about 22 years, the doubling of the operational lifetime seems already rather optimistic. However, we have assumed an average

  14. The world nuclear industry status report 2007

    International Nuclear Information System (INIS)

    Schneider, M.; Froggatt, A.

    2007-11-01

    The status and perspectives of the nuclear industry in the world have been subject to a large number of publications and considerable media attention over the last few years. The present report attempts to provide solid elements of key information for intelligent analysis and informed decision-making. As of 1 November 2007 there are 439 nuclear reactors operating in the world. That is five less than five years ago. There are 32 units listed by the International Atomic Energy Agency (IAEA) as 'under construction'. That is about 20 less than in the late 1990's. In 1989 a total of 177 nuclear reactors had been operated in what are now the 27 EU Member States. That number shrank to 146 units as of 1 November 2007. In 1992 the Worldwatch Institute in Washington, WISE-Paris and Greenpeace International published the first World Nuclear Industry Status Report. As a first updated review in 2004 showed the 1992 analyses proved correct. In reality, the combined installed nuclear capacity of the 436 units operating in the world in the year 2000 was less than 352,000 megawatts - to be compared with the forecast of the International Atomic Energy Agency (IAEA) from the 1970's of up to 4,450,000 megawatts. Today the 439 worldwide operating reactors total 371,000 megawatts. Nuclear power plants provide 16% of the electricity, 6% of the commercial primary energy and 2-3% of the final energy in the world - the tendency is downwards - less than hydropower alone. Twenty-one of the 31 countries operating nuclear power plants decreased their share of nuclear power within the electricity mix if compared with 2003. The average age of the operating power plants is 23 years. Some nuclear utilities envisage reactor lifetimes of 40 years or more. Considering the fact that the average age of all 117 units that have already been closed is equally about 22 years, the doubling of the operational lifetime seems already rather optimistic. However, we have assumed an average lifetime of 40 years

  15. An HTR cogeneration system for industrial applications

    International Nuclear Information System (INIS)

    Haverkate, B.R.W.; Heek, A.I. van; Kikstra, J.F.

    2001-01-01

    Because of its favourable characteristics of safety and simplicity the high-temperature reactor (HTR) could become a competitive heat source for a cogeneration unit. The Netherlands is a world leading country in the field of cogeneration. As nuclear energy remains an option for the medium and long term in this country, systems for nuclear cogeneration should be explored and developed. Hence, ECN Nuclear Research is developing a conceptual design of an HTR for Combined generation of Heat and Power (CHP) for the industry in and outside the Netherlands. The design of this small CHP-unit for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. The concept that was subject of this study, INCOGEN, used a 40 MW thermal pebble bed HTR and produced a maximum amount of electricity plus low temperature heat. The system has been improved to produce industrial quality heat, and has been renamed ACACIA. The output of this installation is 14 MW electricity and 17 tonnes of steam per hour, with a pressure of 10 bar and a temperature of 220 deg. C. The economic characteristics of this installation turned out to be much more favourable using modern data. The research work for this installation is embedded in a programme that has links to the major HTR projects in the world. Accordingly ECN participates in several IAEA Co-ordinated Research Programmes (CRPs). Besides this, ECN is involved in the South African PBMR-project. Finally, ECN participates in the European Concerted Action on Innovative HTR. (author)

  16. Proceedings of 1. Regional Meeting on Nuclear Applications

    International Nuclear Information System (INIS)

    1990-01-01

    This Meeting describes nuclear methods and techniques, emphasizing the development or adaptation of methodologies and instrumentations for national conditions. The works present here comprise several field of nuclear application as agronomy; industry; nuclear medicine; dosimetry; radiological protection and instrumentation. (C.G.C.)

  17. Industrial applications of radiotracers in Indonesia

    International Nuclear Information System (INIS)

    Wandowo

    1994-01-01

    Applications of isotopes and radiation have been developed since 1970 at the Centre for Application of Isotopes and Radiation, National Atomic Energy Agency or BATAN. The scope of applications cover various fields, namely, agriculture, medicine, hydrology, sedimentology and industry. The use of radiotracers prove to be very beneficial for problem solving in industrial process plants and this technique will continuously be promoted by BATAN to industries in Indonesia. Several examples of radiotracer applications in industries which have been carried out by the Group of Industry of the Centre for Application of Isotopes and Radiation are presented. (author). 7 refs., 4 figs., 1 tab

  18. Nuclear Data Needs and Capabilities for Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-27

    In July 2014, DOE NP carried out a review of the US Nuclear Data Program. This led to several recommendations, including that the USNDP should “devise effective and transparent mechanisms to solicit input and feedback from all stakeholders on nuclear data needs and priorities.” The review also recommended that USNDP pursue experimental activities of relevance to nuclear data; the revised 2014 Mission Statement accordingly states that the USNDP uses “targeted experimental studies” to address gaps in nuclear data. In support of these recommendations, DOE NP requested that USNDP personnel organize a Workshop on Nuclear Data Needs and Capabilities for Applications (NDNCA). This Workshop was held at Lawrence Berkeley National Laboratory (LBNL) on 27-29 May 2015. The goal of the NDNCA Workshop was to compile nuclear data needs across a wide spectrum of applied nuclear science, and to provide a summary of associated capabilities (accelerators, reactors, spectrometers, etc.) available for the required measurements. The first two days of the workshop consisted of 25 plenary talks by speakers from 16 different institutions, on nuclear energy (NE), national security (NS), isotope production (IP), and industrial applications (IA). There were also shorter “capabilities” talks that described the experimental facilities and instrumentation available for the measurement of nuclear data. This was followed by a third day of topic-specific “breakout” sessions and a final closeout session. The agenda and copies of these talks are available online at http://bang.berkeley.edu/events/NDNCA/agenda. The importance of nuclear data to both basic and applied nuclear science was reflected in the fact that while the impetus for the workshop arose from the 2014 USNDP review, joint sponsorship for the workshop was provided by the Nuclear Science and Security Consortium, a UC-Berkeley based organization funded by the National Nuclear Security Administration (NNSA).

  19. Nuclear Data Needs and Capabilities for Applications

    International Nuclear Information System (INIS)

    Brown, D.

    2015-01-01

    In July 2014, DOE NP carried out a review of the US Nuclear Data Program. This led to several recommendations, including that the USNDP should 'devise effective and transparent mechanisms to solicit input and feedback from all stakeholders on nuclear data needs and priorities. The review also recommended that USNDP pursue experimental activities of relevance to nuclear data; the revised 2014 Mission Statement accordingly states that the USNDP uses 'targeted experimental studies' to address gaps in nuclear data. In support of these recommendations, DOE NP requested that USNDP personnel organize a Workshop on Nuclear Data Needs and Capabilities for Applications (NDNCA). This Workshop was held at Lawrence Berkeley National Laboratory (LBNL) on 27-29 May 2015. The goal of the NDNCA Workshop was to compile nuclear data needs across a wide spectrum of applied nuclear science, and to provide a summary of associated capabilities (accelerators, reactors, spectrometers, etc.) available for the required measurements. The first two days of the workshop consisted of 25 plenary talks by speakers from 16 different institutions, on Nuclear Energy, national security (NS), isotope production (IP), and industrial applications (IA). There were also shorter 'capabilities' talks that described the experimental facilities and instrumentation available for the measurement of nuclear data. This was followed by a third day of topic-specific 'breakout' sessions and a final closeout session. The agenda and copies of these talks are available online at http://bang.berkeley.edu/events/NDNCA/agenda. The importance of nuclear data to both basic and applied nuclear science was reflected in the fact that while the impetus for the workshop arose from the 2014 USNDP review, joint sponsorship for the workshop was provided by the Nuclear Science and Security Consortium, a UC-Berkeley based organization funded by the National Nuclear Security Administration (NNSA).

  20. Problems of nuclear industry in Japan

    International Nuclear Information System (INIS)

    Yoshiyama, Hirokichi

    1976-01-01

    The past twenty years growth of Japanese reactor plant makers is historically reviewed in the first part of this report. The first ten years were devoted for the construction of research reactors and for the design studies of power plants. The next ten years were devoted for the construction of power stations. Total income and expenditures of Japanese makers for these two periods are presented. It is emphasized that expenditures always exceeded income. The second part previews the projected growth of nuclear power generation. Generating capacities of 49,000 MW at 1985 and 90,000 MW at 1990 is assumed. To meet this demand, Japanese makers must have the ability of supplying about 8000 MW per year and the number of personnel (at present, about 9,000) must be increased to 25,000 in next ten years. The third part discusses the roles of plant makers. Establishment of safe and reliable technology, promotion of standardization, improvement of economical bases, and the promotion of associated industries (such as nuclear fuel makers and operator training institutions) are the main subjects. The roles of government are also shortly discussed. The rest of this paper shortly discusses about the participation to the national project (ATR, FBR, and centrifuge enrichment) and about future problems in growing to an exporting industry. (Aoki, K.)

  1. Instructional skills evaluation in nuclear industry training

    International Nuclear Information System (INIS)

    Mazour, T.J.; Ball, F.M.

    1985-11-01

    This report provides information to nuclear power plant training managers and their staffs concerning the job performance requirements of instructional personnel to implement prformance-based training programs (also referred to as the Systems Approach Training). The information presented in this report is a compilation of information and lessons learned in the nuclear power industry and in other industries using performance-based training programs. The job performance requirements in this report are presented as instructional skills objectives. The process used to develop the instructional skills objectives is described. Each objective includes an Instructional Skills Statement describing the behavior that is expected and an Instructional Skills Standard describing the skills/knowledge that the individual should possess in order to have achieved mastery. The instructional skills objectives are organized according to the essential elements of the Systems Approach to Training and are cross-referenced to three categories of instructional personnel: developers of instruction, instructors, and instructional managers/supervisors. Use of the instructional skills objectives is demonstrated for reviewing instructional staff training and qualification programs, developing criterion-tests, and reviewing the performance and work products of individual staff members. 22 refs

  2. Learning curve estimation techniques for nuclear industry

    International Nuclear Information System (INIS)

    Vaurio, Jussi K.

    1983-01-01

    Statistical techniques are developed to estimate the progress made by the nuclear industry in learning to prevent accidents. Learning curves are derived for accident occurrence rates based on actuarial data, predictions are made for the future, and compact analytical equations are obtained for the statistical accuracies of the estimates. Both maximum likelihood estimation and the method of moments are applied to obtain parameters for the learning models, and results are compared to each other and to earlier graphical and analytical results. An effective statistical test is also derived to assess the significance of trends. The models used associate learning directly to accidents, to the number of plants and to the cumulative number of operating years. Using as a data base nine core damage accidents in electricity-producing plants, it is estimated that the probability of a plant to have a serious flaw has decreased from 0.1 to 0.01 during the developmental phase of the nuclear industry. At the same time the frequency of accidents has decreased from 0.04 per reactor year to 0.0004 per reactor year

  3. Environmental issues and the nuclear industry

    International Nuclear Information System (INIS)

    Castle, P.

    1995-01-01

    Health safety and environmental liabilities of the 'nuclear industry' reflect those of industry in general and may broadly be divided into two areas: criminal liability for regulatory non-compliance; and civil liability for damage caused to persons and their property (for example, neighbours, employees etc). In addition, environmental liability may be incurred as a result of powers of the regulatory authorities to clean up contamination and to recoup the cost. These are in addition to the regime of strict liability imposed, where relevant, by the Nuclear Installations Act 1965. In the case of environmental liabilities, 'owners;, 'occupiers', 'persons responsible', 'persons in control' may all be held to be liable and for the most part these terms remain undefined both under English law and European Community (now European Union) law. This potentially has ramifications for current and former owners and operators, their boards and senior managers, other employees, parent companies, shareholders and their lenders and investors - of particular relevance in the context of privatization. (author)

  4. Future contracts in the nuclear fuel industry

    International Nuclear Information System (INIS)

    Fuller, D.M.

    1995-01-01

    In a modern futures market, standardized contracts for future delivery of a commodity are traded through an exchange that establishes contract terms and the rules of trading. The futures contract itself is simply an agreement between a buyer and a seller in which the seller is obligated to deliver and the buyer is obligated to accept a predetermined quantity of a specified commodity at a given location on a certain date in the future for a set price. Organized futures markets aid in price discovery; provide a risk management tool for those with commercial interests in a commodity; create speculative opportunities; and contribute to competitiveness, efficiency, and fairness in trading. There are, at present, no standardized futures contracts in the nuclear fuel industry, although the concept has been discovered for years. The idea has been raised again recently in relation to the disposition of Russian uranium. Some adaptation of traditional futures contracts, traded on an exchange composed of nuclear fuel industry participants, could provide many of the benefits found in other commodity futures markets

  5. Nuclear Regulator Knowledge Management in a Dynamic Nuclear Industry Environment

    International Nuclear Information System (INIS)

    Turner, J.

    2016-01-01

    Full text: The paper outlines the experiences to date in developing mature knowledge management within the UK’s nuclear regulatory body The Office for Nuclear Regulation (ONR). In 2010 concerns over the loss of knowledge due to the age profile within the organization instigated a review of knowledge management and the development of a knowledge management initiative. Initially activities focused on knowledge capture but in order to move to through life knowledge transfer, knowledge management was then aligned with organizational resilience initiatives. A review of progress highlighted the need to better engage the whole organization to achieve the desired level of maturity for knowledge management. Knowledge management activities now cover organizational culture and environment and all aspects of organizational resilience. Benefits to date include clear understanding of core knowledge requirements, better specifications for recruitment and training and the ability to deploy new regulatory approaches. During the period of implementing the knowledge management programme ONR undertook several organizational changes in moving to become a separate statutory body. The UK nuclear industry was in a period of increased activity including the planning of new nuclear reactors. This dynamic environment caused challenges for embedding knowledge management within ONR which are discussed in the paper. (author

  6. JAIF formulates policy for strengthening foundation of nuclear industry

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    With recognition that conditions surrounding the nuclear industry are becoming severe with the slowdown in the growth of the Japanese economy, the Japan Atomic Industrial Forum has been discussing ways and means of strengthening the foundations of the nuclear industry. A subcommittee of the Power Reactor Development Committee has been formed. It comprizes two divisions. The first division focused on economic and social prospects for the future and other basic questions. The second division dealt with specific problems viewed from the position of the nuclear quipment supply industry and measures to resolve them. The report was prepared based on the studies done by the two divisions, and focusing on the strengthening of the basis of the nuclear industry through the year 2010. The report estimates that construction of nuclear power plants will be less than 2 units a year in the coming five year period, and will continue at about 2 units a year until about the year 2000. From this outlook, it discusses the work facing the nuclear industry and the steps to be taken to reduce nuclear power generation costs, efficient research and development and the promotion of international cooperation. The report covers four sections: the position of nuclear power development in the national economy; the present state and tasks of the nuclear industry and the nuclear equipment supply industry; measures for maintaining and strengthening the foundations of the nuclear industry, and the tasks to be done. (Nogami, K.)

  7. Nuclear physics principles and applications

    CERN Document Server

    Lilley, J S

    2001-01-01

    This title provides the latest information on nuclear physics. Based on a course entitled Applications of Nuclear Physics. Written from an experimental point of view this text is broadly divided into two parts, firstly a general introduction to Nuclear Physics and secondly its applications.* Includes chapters on practical examples and problems* Contains hints to solving problems which are included in the appendix* Avoids complex and extensive mathematical treatments* A modern approach to nuclear physics, covering the basic theory, but emphasising the many and important applicat

  8. Instrumentation for Nuclear Applications

    International Nuclear Information System (INIS)

    1998-01-01

    The objective of this project was to develop and coordinate nuclear instrumentation standards with resulting economies for the nuclear and radiation fields. There was particular emphasis on coordination and management of the Nuclear Instrument Module (NIM) System, U.S. activity involving the CAMAC international standard dataway system, the FASTBUS modular high-speed data acquisition and control system and processing and management of national nuclear instrumentation and detector standards, as well as a modest amount of assistance and consultation services to the Pollutant Characterization and Safety Research Division of the Office of Health and Environmental Research. The principal accomplishments were the development and maintenance of the NIM instrumentation system that is the predominant instrumentation system in the nuclear and radiation fields worldwide, the CAMAC digital interface system in coordination with the ESONE Committee of European Laboratories, the FASTBUS high-speed system and numerous national and international nuclear instrumentation standards

  9. The development process and tendency of nuclear instruments applied in industry

    International Nuclear Information System (INIS)

    Ji Changsong

    2005-01-01

    The development process of nuclear technique application in industry may be divided into three stages: early stage--density, thickness and level measurement; middle stage--neutron moisture, ash content and X-ray fluorescence analysis; recent state--container inspection and industrial CT, nuclear magnetic resonance, neutron capture and non-elastic collision analysis techniques. The development tendency of nuclear instruments applied in industry is: spectrum measurement; detector array and image technique; nuclide analysis and new kinds of nuclear detectors are widely adopted. (authors)

  10. Safety analysis in the high risk industry: Similarities and differences with the nuclear approach

    International Nuclear Information System (INIS)

    Vilaragut LLanes, Juan Jose; Castillo Alvarez, Jorge Patricio

    2001-01-01

    In this article shows a conceptual aspects to the risk safety analysis, comparing them with the focus to the nuclear industry that has been characterized to be the pioneers in their systematized application

  11. Components and renewal parts in the nuclear power industry

    International Nuclear Information System (INIS)

    Clark, T.F. Jr.

    1986-01-01

    This paper indicates that the nuclear parts industry has been forced to make major investments in time, personnel and financial resources in order to solve short term/emergency procurement problems. What is required, as was previously indicated, is a coordinated industry-wide effort toward long range planning and implementation of a program that addresses these issues. The industry is developing programs directed toward inventory optimization and ''innovative-creative'' financing of manufacturing inventory/work-in-process in an effort to significantly reduce delivery lead times. Product transition, utilization of cancelled plant equipment, equipment qualification programs, and dedication of commercially manufactured/procured parts and components for safety related application continue to be major elements of our program to support current utility requirements

  12. Analysis on Japanese nuclear industrial technologies and their military implications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H S; Yang, M H; Kim, H J. and others

    2000-10-01

    This study covered the following scopes : analysis of Japan's policy trend on the development and utilization of nuclear energy, international and domestic viewpoint of Japan's nuclear weapon capability, Japan's foreign affairs and international cooperation, status of Japan's nuclear technology development and its level, status and level of nuclear core technologies such as nuclear reactor and related fuel cycle technologies. Japan secures the whole spectrum of nuclear technologies including core technologies through the active implementation of nuclear policy for the peaceful uses of nuclear energy during the past five decades. Futhermore, as the result of the active cultivation of nuclear industry, Japan has most nuclear-related facilities and highly advanced nuclear industrial technologies. Therefore, it is reasonable that Japan might be recognized as one of countries having capability to get nuclear capability in several months.

  13. Analysis on Japanese nuclear industrial technologies and their military implications

    International Nuclear Information System (INIS)

    Kim, H. S.; Yang, M. H.; Kim, H. J. and others

    2000-10-01

    This study covered the following scopes : analysis of Japan's policy trend on the development and utilization of nuclear energy, international and domestic viewpoint of Japan's nuclear weapon capability, Japan's foreign affairs and international cooperation, status of Japan's nuclear technology development and its level, status and level of nuclear core technologies such as nuclear reactor and related fuel cycle technologies. Japan secures the whole spectrum of nuclear technologies including core technologies through the active implementation of nuclear policy for the peaceful uses of nuclear energy during the past five decades. Futhermore, as the result of the active cultivation of nuclear industry, Japan has most nuclear-related facilities and highly advanced nuclear industrial technologies. Therefore, it is reasonable that Japan might be recognized as one of countries having capability to get nuclear capability in several months

  14. Analysis on Japanese nuclear industrial technologies and their military implications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. S.; Yang, M. H.; Kim, H. J. and others

    2000-10-01

    This study covered the following scopes : analysis of Japan's policy trend on the development and utilization of nuclear energy, international and domestic viewpoint of Japan's nuclear weapon capability, Japan's foreign affairs and international cooperation, status of Japan's nuclear technology development and its level, status and level of nuclear core technologies such as nuclear reactor and related fuel cycle technologies. Japan secures the whole spectrum of nuclear technologies including core technologies through the active implementation of nuclear policy for the peaceful uses of nuclear energy during the past five decades. Futhermore, as the result of the active cultivation of nuclear industry, Japan has most nuclear-related facilities and highly advanced nuclear industrial technologies. Therefore, it is reasonable that Japan might be recognized as one of countries having capability to get nuclear capability in several months.

  15. Radioisotopes - their applications in industrial radiography

    International Nuclear Information System (INIS)

    Rao, H.R.S.

    1977-01-01

    The nature of radioisotopes and their industrial applications with special reference to industrial radiography are outlined. The various aspects of industrial radiography such as source size, source containers, films, density of radiography, radiographic quality and applications are discussed in brief. (M.G.B.)

  16. Design research and industrial applicability

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup

    1997-01-01

    Imprinted paper (copies of overheads in English) on the nature of design research, the transformation process for industrial utilization and the challenges of ENDREA from industry.......Imprinted paper (copies of overheads in English) on the nature of design research, the transformation process for industrial utilization and the challenges of ENDREA from industry....

  17. Nuclear industrial and power complex of Kazakhstan

    International Nuclear Information System (INIS)

    Shemanskiy, V.A.; Cherepnin, Yu.S.; Zelenski, D.I.; Papafanasopulo, G.A.

    1997-01-01

    While selecting the national power supply strategy of economic potential development four factors are laid in the basis of discussions and technical and economic decisions: effect either power complexes on people health, consequences environmental, economics and resources existence. Atomic power requires the balanced approach to power politics which, by that, avoids the dependence on any energy source. The existing electric power generation structure in Kazakhstan is Featured by the following numbers: -TEPP on coal - 79%; - TEPP on gas-black-oil fuel - 12-13%; - HEPP - 6-7%; - Atomic PP - about 0.7%. The ground for nuclear power development is considerable uranium deposits and rather developed atomic industry. Kazakhstan atomic industry includes: - uranium extractive enterprise - State Holding Company 'Tselinnyi Mining-Chemical Plant' (SHC 'TCMP'), Stepnoy Ore Division (SOD), Central ore Division 6 (COD 6), KASKOR (Aktau); - plant on fuel pellets production for APP (JSC 'UMP'); - plants on production of rare and rare-earth metals - Irtysh Chemical and Metallurgical (JSC 'CMP') and Ulba Metallurgical Plant (JSC 'UMP'); - Mangyshlak Power Plant (MAEK); - Scientific Complex of NNC RK of Ministry of Science-Academy of Science. About 25% of world deposits and uranium resources are concentrated in Kazakhstan bowels. The scientific potential of atomic production complex of the Republic of Kazakhstan is concentrated in NNC RK divisions (IAE and INP) and at JSC 'UMP' and MAEK enterprises. Ministry Energy and Nature Resources is a Board responsible for the development of atomic industry and power branches. Atomic Energy Agency of the Republic Kazakhstan performs the independent effective state supervision and control providing safety of atomic industry power installations operation

  18. Dialogue between the nuclear industry and environmentalists is the key

    International Nuclear Information System (INIS)

    Padley, P.J.

    1987-01-01

    'Nuclear energy - the good news for British Industry' was the title of a meeting organised by the Confederation of British Industry in July 1987. This article summarizes the contributions of each of the speakers. Between them they produced figures on the importance of the nuclear industry in various countries including the USA, France and the United Kingdom. The risks were mentioned, also the public fears following the accident at Chernobyl. The UK policy on the disposal of nuclear waste is summarized. The disposal is not technically difficult, only politically so because of adverse public opinion. These points also emerged; the nuclear industry must liaise with environmentalists and the UK manufacturing industry needs low cost energy which the nuclear industry could supply. However, the long-term development of nuclear power is only possible if there are no more reactor accidents leading to injury by radioactivity. (U.K.)

  19. Joint submission of the Canadian Nuclear Association and the Organization of CANDU Industries to the Ontario Nuclear Safety Review

    International Nuclear Information System (INIS)

    1987-08-01

    The manufacturing company members of the Canadian Nuclear Association and the Organization of CANDU Industries are proud to have played their part in the development of the peaceful application of nuclear technology in Ontario, and the achievement of the very real benefits discussed in this paper, which greatly outweigh the hypothetical risks

  20. Expert System Applications for the Electric Power Industry: Proceedings

    International Nuclear Information System (INIS)

    1992-06-01

    A conference on Expert System Applications for the Electric Power Industry was held in Boston on September 8--11, 1991 to provide a forum for technology transfer, technical information exchange, and education. The conference was attended by more than 150 representatives of electric utilities, equipment manufacturers, engineering consulting organizations, universities, national laboratories, and government agencies. The meeting included a keynote address, 70 papers, and 18 expert system demonstrations. Sessions covered expert systems in power system planning operations, fossil power plant applications, nuclear power plant applications, and intelligent user interfaces. The presentations showed how expert systems can provide immediate benefits to the electric power industry in many applications. Individual papers are indexed separately

  1. Proceedings of the 3. Brazilian Meeting on Nuclear Applications

    International Nuclear Information System (INIS)

    1995-01-01

    Researches in nuclear applications have been developed in Brazil, and were presented in this Meeting. Over 230 papers were presented in the areas of dosimetry, instrumentation, medicine, biology, agriculture, industry, radiochemistry, radiological protection, hydrology, environment and waste management

  2. The World Nuclear Industry Status Report 2016

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie; Katsuta, Tadahiro; Ramana, M.V.; Fairlie, Ian; Maltini, Fulcieri; Thomas, Steve; Kaaberger, Tomas

    2016-07-01

    The World Nuclear Industry Status Report 2015 provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. Nuclear power generation in the world increased by 1.3%, entirely due to a 31% increase in China. Ten reactors started up in 2015-more than in any other year since 1990-of which eight were in China. Construction on all of them started prior to the Fukushima disaster. Eight construction starts in the world in 2015-to which China contributed six-down from 15 in 2010 of which 10 were in China. No construction starts in the world in the first half of 2016. The number of units under construction is declining for the third year in a row, from 67 reactors at the end of 2013 to 58 by mid-2016, of which 21 are in China. China spent over US$100 billion on renewables in 2015, while investment decisions for six nuclear reactors amounted to US$18 billion. Eight early closure decisions taken in Japan, Sweden, Switzerland, Taiwan and the U.S. Nuclear phase-out announcements in the U.S. (California) and Taiwan. In nine of the 14 building countries all projects are delayed, mostly by several years. Six projects have been listed for over a decade, of which three for over 30 years. China is no exception here, at least 10 of 21 units under construction are delayed. With the exception of United Arab Emirates and Belarus, all potential newcomer countries delayed construction decisions. Chile suspended and Indonesia abandoned nuclear plans. AREVA has accumulated US$11 billion in losses over the past five years. French government decides euro 5.6 billion bailout and breaks up the company. Share value 95 percent below 2007 peak value. State utility EDF struggles with US$ 41.5 billion debt, downgraded by S and P. Chinese utility CGN, EDF partner for Hinkley Point C, loses 60% of its share value

  3. Energy policy and nuclear power. Expectations of the power industry

    International Nuclear Information System (INIS)

    Harig, H.D.

    1995-01-01

    In the opinion of the power industry, using nuclear power in Germany is a responsible attitude, while opting out of nuclear power is not. Electricity utilities will build new nuclear power plants only if the structural economic and ecological advantages of nuclear power are preserved and can be exploited in Germany. The power industry will assume responsibility for new complex, capital-intensive nuclear plants only if a broad societal consensus about this policy can be reached in this country. The power industry expects that the present squandering of nuclear power resources in Germany will be stopped. The power industry is prepared to contribute to finding a speedy consensus in energy policy, which would leave open all decisions which must not be taken today, and which would not constrain the freedom of decision of coming generations. The electricity utilities remain committed proponents of nuclear power. However, what they sell to their customers is electricity, not nuclear power. (orig.) [de

  4. The development of Chinese power industry and its nuclear power

    International Nuclear Information System (INIS)

    Zhou Dabin

    2002-01-01

    The achievements and disparity of Chinese power industry development is introduced. The position and function of nuclear power in Chinese power industry is described. Nuclear power will play a role in ensuring the reliable and safe supply of primary energy in a long-term and economic way. The development prospects of power source construction in Chinese power industry is presented. Challenge and opportunity in developing nuclear power in China are discussed

  5. Environmental impact of the nuclear industry in China

    International Nuclear Information System (INIS)

    Pan Ziqiang; Wang Zhibo; Chen Zhuzhou; Zhang Yongxing; Xie Jianlun

    1996-01-01

    Since its foundation in 1955, the nuclear industry has become a comprehensive industrial, scientific and technical system in China. The nuclear industry has obviously brought great profit to the country, but how much environmental effect it has caused is a question of common interest which we should answer. This report shows the environmental assessment of the nuclear fuel cycle in China. (author). 4 refs, 1 fig., 22 tabs

  6. Industrial and Systems Engineering Applications in NASA

    Science.gov (United States)

    Shivers, Charles H.

    2006-01-01

    A viewgraph presentation on the many applications of Industrial and Systems Engineering used for safe NASA missions is shown. The topics include: 1) NASA Information; 2) Industrial Engineering; 3) Systems Engineering; and 4) Major NASA Programs.

  7. Industrial Applications of Pulsed Power Technology

    Science.gov (United States)

    Takaki, Koichi; Katsuki, Sunao

    Recent progress of the industrial applications of pulsed power is reviewed in this paper. Repetitively operated pulsed power generators with a moderate peak power have been developed for industrial applications. These generators are reliable and low maintenance. Development of the pulsed power generators helps promote industrial applications of pulsed power for such things as food processing, medical treatment, water treatment, exhaust gas treatment, ozone generation, engine ignition, ion implantation and others. Here, industrial applications of pulsed power are classified by application for biological effects, for pulsed streamer discharges in gases, for pulsed discharges in liquid or liquid-mixture, and for bright radiation sources.

  8. Industrial development - consequences about the implantation of Brazilian Nuclear Program

    International Nuclear Information System (INIS)

    Syllus, C.

    1987-07-01

    The strategy to promote the growing industry participation in the Brazilian Nuclear Program, the difficulties, the measurements adopted for overcoming and the results obtained in terms of industrial development, are presented. (M.C.K.) [pt

  9. Germany, an industrialized country, and nuclear power

    International Nuclear Information System (INIS)

    Wartenberg, L. v.

    2001-01-01

    The question of the future of nuclear power in Germany, and the agreement between the federal government and industry of June 14, 2000 about the future operation of plants, are important far beyond the confines of this sector of industry. In times of economic globalization and of competition among national economies, questions of location have become key issues in meeting future challenges. For this purpose, there must be more freedom for the economy; entrepreneurial action must be regarded as a positive duty to be fulfilled by society. Personal responsibility and competition, with room for self-responsibility, must not be hampered further by interventions and red tape. This applies to all sectors of the economy, in particular to the power supply sector, as is borne out by the current debate about the quota regulations for cogeneration systems (CHP). Social justice, one of the most important unifying forces in this modern society, must be interpreted as solidarity. This solidarity must be sought also in an international context. Supplying the basic necessities to all inhabitants of this earth requires all sources of energy, also in the interest of achieving sustainability. This term should be interpreted, above and beyond its meaning in environmental protection, as a concept in all areas of politics, implying that the future must be taken into account in all decisions made today. In the light of the problems associated with establishing a worldwide sustainable power supply system, inter alia meeting the objectives of climate protection, continuity of supply, and economic viability, there is no way around nuclear power. Free decisions are required in the sense of sustainable economic management, and the political boundary conditions must be created for this to be possible. (orig.) [de

  10. Application of knowledge based software to industrial automation in Japan

    International Nuclear Information System (INIS)

    Matsumoto, Yoshihiro

    1985-01-01

    In Japan, large industrial undertakings such as electric utilities or steel works are making first steps towards knowledge engineering, testing the applicability of knowledge based software to industrial automation. The goal is to achieve more intelligent, computer-aided assistance for the personnel and thus to enhance safety, reliability, and maintenance efficiency in large industrial plants. The article presents various examples showing advantages and draw-backs of such systems, and potential applications among others in nuclear or fossil fueled power plants or in electricity supply control systems. (orig./HP) [de

  11. Intelligent vision in the nuclear industry

    International Nuclear Information System (INIS)

    Luna, F.

    1983-01-01

    General Electric has developed an intelligent microprocessor-based machine vision system that is character font independent and is capable of reading characters that may be variably defined as a result of dirt, misalignment, or scratches incurred during processing. This system, the Alphavision System, was developed at the GE fuel fabrication facility in Wilmington, North Carolina, and has been used to read serial numbers on fuel rods. This paper describes the system and considerations for its use and suggests some potential applications in nuclear materials item accountability

  12. Robots in the nuclear industry: conference report

    International Nuclear Information System (INIS)

    Kochan, Anna.

    1992-01-01

    Current robotic technology is severely challenged by the conditions which nuclear environments present. In such applications, reliability demands are stringent; the environment is highly unstructured; and the ionizing radiation field is extremely hazardous to equipment. But an international conference, held recently in Marseille, indicated clearly that there is no shortage of robotic solutions adapted to these special needs. Organized by the Institut International de Robotique et d'Intelligence Artificelle in Marseille, the conference focused on telerobotics in hostile environments, including sessions on Perception of Environment; Man/machine Interface; and Technologies and Components. (Author)

  13. Application of Statistical Increase in Industrial Quality

    International Nuclear Information System (INIS)

    Akhmad-Fauzy

    2000-01-01

    Application of statistical method in industrial field is slightly newcompared with agricultural and biology. Statistical method which is appliedin industrial field more focus on industrial system control and useful formaintaining economical control of produce quality which is produced on bigscale. Application of statistical method in industrial field has increasedrapidly. This fact is supported by release of ISO 9000 quality system in 1987as international quality standard which is adopted by more than 100countries. (author)

  14. Applications of nuclear physics: Future trends

    International Nuclear Information System (INIS)

    Eichler, R.

    2005-01-01

    Nuclear physics and energy research depends on and advances science and technology outside of the nuclear field. Perhaps the most commonly perceived benefits to society from nuclear and particle physics are those derived from particle beam technology. Charged particle accelerators play an increasing role in applications in industry and medicine. Neutrons produced with a high power proton accelerator in a spallation process are used from basic research, radiography in automotive industry (example fuel cell development) to transmutation of highly radioactive fission products. Production and acceleration of ultra cold neutrons provide intense and almost mono-energetic neutrons to study soft matter. Heavier radioisotopes are used in a wide field ranging from medicine to semiconductor industry (ion implantation for doping or coating technologies). Concrete examples and future trends will be given. Detailed understanding of ion physics at low energy allows the design of compact accelerator mass spectroscopy (close to table top size). The ability to measure concentrations of specific radioactive isotopes even below the natural radioactivity widens the scope of applications from archaeology, climate research to food industry. Such a compact device is close to commercialisation. (author)

  15. The nuclear power industry: financial considerations

    International Nuclear Information System (INIS)

    Leward, S.J.

    1984-01-01

    It is important not to allow the present liquidity crisis to escalate into economic and political dislocations that could result in a prolonged cessation of necessary capital investment. In assessing the future growth of nuclear power in other parts of the world, it may be instructive to consider the plight of the U.S. industry and the parallels that are apparent. In the United States, electric utility debt is growing too fast; a structural imbalance has developed even on the better corporate balance sheets; and cash flow or internal generation has diminished, particularly as the time needed to complete nuclear plants has extended, thereby precluding revenue production for as long as 10 to 15 years from the beginning of construction. Newcomers to the lending business may have little appetite to lend in unfavorable climates, and regulatory (political) bodies may irresponsibly allow unproductive use of resources and refuse to adopt difficult but essential economic policies to preserve the financial integrity of the borrower. These issues are relevant in the examination of any lender/borrower relationship, whether it be between sovereign nations, banker and borrower, or vendor and vendee. (author)

  16. Review of neutron radiographic applications in industrial and biological systems

    International Nuclear Information System (INIS)

    Ashraf, M.M.; Khan, A.R.

    1992-10-01

    Neutron radiography is a non-destructive testing technique and is being used worldwide for the design and the development of reactor fuels for research and power reactors. It is also being used for non-destructive examination of nuclear industrial products. In addition to its explosives and other industrial sectors. In addition to its applications in industrial sectors, the technique is widely used for research and development activities in biological systems. A review of technical applications of neutron radiography in different fields particularly in nuclear fuel management, aerospace industry, explosives and biology is presented. The methodology of neutron radiography is also discussed in detail along with the advantages of the technique. In addition, the potential of the neutron radiography facility at PINSTECH has been described. (author)

  17. Probabilistic risk assessment in the nuclear power industry

    International Nuclear Information System (INIS)

    Fullwood, R.R.; Hall, R.E.

    1988-01-01

    This book describes the more important improvements in risk assessment methodology developed over the last decade. The book covers the following areas - a general view of risk pertaining to nuclear power, mathematics necessary to understand the text, a concise overview of the light water reactors and their features for protecting the public, probabilities and consequences calculated to form risk assessment to the plant, and 34 applications of probabilistic risk assessment (PRA) in the power generation industry. There is a glossary of acronyms and unusual words and a list of references. (author)

  18. Human factors in the Canadian nuclear industry: future needs

    International Nuclear Information System (INIS)

    Harrison, F.

    2008-01-01

    Currently the industry is facing refurbishment and new builds. At present most licensees in Canada do not have sufficient numbers of Human Factors staff. As a result, the activities of the CNSC are too often focused on providing guidance regarding the application of Human Factors, in addition to reviewing work submitted by the licensee. Greater efficiencies for both the licensee and the CNSC could be realized if licensee staff had greater Human Factors expertise. Strategies for developing Human Factors expertise should be explored through cooperative partnerships with universities, which could be encouraged to include Human Factors courses specific to nuclear. (author)

  19. The nuclear industry and the NPT: a perspective from Washington

    International Nuclear Information System (INIS)

    Porter, D.J.

    1987-01-01

    Whilst exporting nuclear reactors, the nuclear industry in the United States and other nuclear exporting countries also supports the Non-Proliferation Treaty. The nuclear industry needs the IAEA safeguards and the NPT as these allow the nuclear trade to be conducted in an orderly fashion. Non-sensitive equipment, materials and technology can be made available to other nations which adhere to the NPT. Indeed article IV of the NPT encourages this. Many developing countries do not, however, have the money to pay for the imported technology. This article looks at the current situation in the world where nuclear technology has been, is being, or will be, transferred. (U.K.)

  20. World atlas of nuclear industry: civil and military

    International Nuclear Information System (INIS)

    Alexandre, Nicolas

    2011-01-01

    Todays, with the energy supplies and global warming concerns, nuclear energy in making a come-back, witness the numerous nuclear programs launched or re-launched in the US, in Europe, China and India. In parallel, on the military side, the deterrence strategy remains in the center of security politics of big powers. This atlas takes stock of the overall issues linked with the nuclear technology: production, civil applications (power generation, medicine etc..), military usages (naval propulsion, weapons). It answers the main questions of this complex world, often dominated by secrecy: who does what in the nuclear domain in France? Is an accident, like the Chernobyl's one, possible today in Europe? What solutions for radioactive wastes? Do we take risks when we export our reactor technologies to Middle-East countries? Are we at the dawn of a new arms rush? What do international agreements foresee in this domain? Taking into account the costs, the hazards and the advantages of nuclear industry, the atlas shows that it is possible to establish solid technical and legal barriers between its civil and military sides. (J.S.)

  1. The thin layer activation method and its applications in industry

    International Nuclear Information System (INIS)

    1997-01-01

    The thin layer activation (TLA) method is one of the most effective and precise methods for the measurement and monitoring of corrosion (erosion) and wear in industry and is used for on-line remote measurement of wear and corrosion rate of central parts in machines or processing vessels under real operating conditions. This document is a comprehensive manual on TLA method in its applications for monitoring wear and corrosion in industry. It describes the theory and presents case studies on TLA method applications in industry. In addition, in annexes are given tables of nuclear data relating to TLA (decay characteristics, depth distribution of reaction products, activation data for charged-particle nuclear reactions), references from INIS database on TLA and a detailed production of the application of TLA for wear measurement of superhard turning tools

  2. The thin layer activation method and its applications in industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The thin layer activation (TLA) method is one of the most effective and precise methods for the measurement and monitoring of corrosion (erosion) and wear in industry and is used for on-line remote measurement of wear and corrosion rate of central parts in machines or processing vessels under real operating conditions. This document is a comprehensive manual on TLA method in its applications for monitoring wear and corrosion in industry. It describes the theory and presents case studies on TLA method applications in industry. In addition, in annexes are given tables of nuclear data relating to TLA (decay characteristics, depth distribution of reaction products, activation data for charged-particle nuclear reactions), references from INIS database on TLA and a detailed production of the application of TLA for wear measurement of superhard turning tools.

  3. Application of thermal-hydraulic codes in the nuclear sector

    International Nuclear Information System (INIS)

    Queral, C.; Coriso, M.; Garcia Sedano, P. J.; Ruiz, J. A.; Posada, J. M.; Jimenez Varas, G.; Sol, I.; Herranz, L. E.

    2011-01-01

    Use of thermal-hydraulic codes is extended all over many different aspects of nuclear engineering. This article groups and briefly describes the main features of some of the well known codes as an introduction to their recent applications in the Spain nuclear sector. the broad range and quality of applications highlight the maturity achieved both in industry and research organizations and universities within the Spanish nuclear sector. (Author)

  4. Hard facings used in welded joints. Industrial applications

    International Nuclear Information System (INIS)

    Delair, J.

    1998-01-01

    In this article, two industrial application cases of special hard facings used in offshore and nuclear fabrications are described into details. These hard facings concern more particularly 1)the heterogeneous joints of a martensitic steel on an ordinary carbon steel 2)the homogeneous joints of a high resistive low alloy carbon steel. (O.M.)

  5. Cyber security in nuclear power plants and its portability to other industrial infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Champigny, Sebastien; Gupta, Deeksha; Watson, Venesa; Waedt, Karl [AREVA GmbH, Erlangen (Germany)

    2017-06-15

    Power generation increasingly relies on decentralised and interconnected computerised systems. Concepts like ''Industrial Internet of Things'' of the Industrial Internet Consortium (IIC), and ''Industry 4.0'' find their way in this strategic industry. Risk of targeted exploits of errors and vulnerabilities increases with complexity, interconnectivity and decentralization. Inherently stringent security requirements and features make nuclear computerised applications and systems a benchmark for industrial counterparts seeking to hedge against those risks. Consequently, this contribution presents usual cyber security regulations and practices for nuclear power plants. It shows how nuclear cyber security can be ported and used in an industrial context to protect critical infrastructures against cyber-attacks and industrial espionage.

  6. Organization, structure, and performance in the US nuclear power industry

    International Nuclear Information System (INIS)

    Lester, R.K.

    1986-01-01

    Several propositions are advanced concerning the effects of industry organization and structure on the economic performance of the American commercial nuclear power industry. Both the electric utility industry and the nuclear power plant supply industry are relatively high degree of horizontal disaggregation. The latter is also characterized by an absence of vertical integration. The impact of each of these factors on construction and operating performance is discussed. Evidence is presented suggesting that the combination of horizontal and vertical disaggregation in the industry has had a significant adverse effect on economic performance. The relationship between industrial structure and regulatory behavior is also discussed. 43 references, 4 figures, 9 tables

  7. Industry based performance indicators for nuclear power plants

    International Nuclear Information System (INIS)

    Connelly, E.M.; Van Hemel, S.B.; Haas, P.M.

    1990-07-01

    This report presents the results of the first phase of a two-phase study, performed with the goal of developing indirect (leading) indicators of nuclear power plant safety, using other industries as a model. It was hypothesized that other industries with similar public safety concerns could serve as analogs to the nuclear power industry. Many process industries have many more years of operating experience, and many more plants than the nuclear power industry, and thus should have accumulated much useful safety data. In Phase 1, the investigators screened a variety of potential industry analogs and chose the chemical/petrochemical manufacturing industry as the primary analog for further study. Information was gathered on safety programs and indicators in the chemical industry, as well as in the nuclear power industry. Frameworks were selected for the development of indicators which could be transferred from the chemical to the nuclear power environment, and candidate sets of direct and indirect safety indicators were developed. Estimates were made of the availability and quality of data in the chemical industry, and plans were developed for further investigating and testing these candidate indicators against safety data in both the chemical and nuclear power industries in Phase 2. 38 refs., 4 figs., 7 tabs

  8. Nuclear industry will be short of engineers

    International Nuclear Information System (INIS)

    Yates, M.

    1990-01-01

    This article discusses the potential shortage of nuclear engineers due to reduction of educational and training facilities and difficulty in attracting minorities into nuclear engineering. The article reports on recommendations from the National Research Council Nuclear Education Study Committee on attracting minorities to nuclear engineering, increasing DOE fellowships, funding for research and development, involvement of utilities and vendors, and support of the American Nuclear Society's advocacy of nuclear engineering education

  9. The role of quality assurance in the nuclear industry

    International Nuclear Information System (INIS)

    1985-01-01

    The paper reports on the proceedings of a one day conference on ''the role of quality assurance in the nuclear industry'', presented by the British Nuclear Forum Working Group on Quality Assurance, 1985. The conference reviews the application and effectiveness of the British Standards in the light of experience with the AGR programme, and considers the lessons learned that will benefit future projects. Seven papers are presented at the conference, of which five deal with the AGR experience with respect to quality assurance in design and manufacture. The remaining two papers examine quality assurance in computing software and building on the AGR experience. All seven papers are selected for INIS and indexed separately. (U.K.)

  10. Vapor explosion studies for nuclear and non-nuclear industries

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, Rusi P. [Arden L. Bement, Jr. Professor Nuclear Engineering, School of Nuclear Engineering, 1290 Nuclear Engineering Building, Room 108C, Purdue University, West Lafayette, IN 47905 (United States)]. E-mail: rusi@purdue.edu

    2005-05-01

    Energetic melt-water explosions are a well-established contributor to risk for nuclear reactors, and even more so for the metal casting industry. In-depth studies were undertaken in an industry-national laboratory collaborative effort to understand the root causes of explosion triggering and to evaluate methods for prevention. The steam explosion triggering studies (SETS) facility was devised and implemented for deriving key insights into explosion prevention. Data obtained indicated that onset of base surface-entrapment induced explosive boiling-caused trigger shocks is a result of complex combination of surface wettability, type of coating (organic versus inorganic), degree of coating wearoff, existence of bypass pathways for pressure relief, charring and non-condensable gas (NCG) release potential. Of these parameters NCGs were found to play a preeminent role on explosion prevention by stabilizing the melt-water steam interface and acting as a shock absorber. The role of NCGs was experimentally confirmed using SETS for their effect on stable film boiling using a downward facing heated body through which gases were injected. The presence of NCGs in the steam film layer caused a significant delay in the transitioning of film-to-nucleate boiling. The role of NCGs on explosion prevention was thereafter demonstrated more directly by introducing molten metal drops into water pools with and without NCG bubbling. Whereas spontaneous and energetic explosions took place without NCG injection, only benign quenching occurred in the presence of NCGs. Gravimetric analyses of organic coatings which are known to prevent explosion onset were also found to release significant NCGs during thermal attack by melt in the presence of water. These findings offer a novel, simple, cost-effective technique for deriving fundamental insights into melt-water explosions as well as for explosion prevention under most conditions of interest to metal casting, and possibly for nuclear reactor

  11. Synthesis of industrial applications of local approach to fracture models

    International Nuclear Information System (INIS)

    Eripret, C.

    1993-03-01

    This report gathers different applications of local approach to fracture models to various industrial configurations, such as nuclear pressure vessel steel, cast duplex stainless steels, or primary circuit welds such as bimetallic welds. As soon as models are developed on the basis of microstructural observations, damage mechanisms analyses, and fracture process, the local approach to fracture proves to solve problems where classical fracture mechanics concepts fail. Therefore, local approach appears to be a powerful tool, which completes the standard fracture criteria used in nuclear industry by exhibiting where and why those classical concepts become unvalid. (author). 1 tab., 18 figs., 25 refs

  12. Nuclear applications in life sciences

    International Nuclear Information System (INIS)

    Uenak, P.

    2009-01-01

    Radioactivity has revolutionized life sciences during the last century, and it is still an indispensable tool. Nuclear Medicine, Radiation Biology and Radiotherapy, Dosimetry and Medical Radiation Physics, Nutrition and Environmental Problems Relevant Health are significant application fields of Nuclear Sciences. Nuclear medicine today is a well established branch of medicine. Radionuclides and radiopharmaceuticals play a key role both in diagnostic investigations and therapy-Both cyclotron and reactor produced radionuclides find application, the former more in diagnostic studies and the latter in therapy. New therapy applications such as bor neutron therapy are increasing by time together with the technological improvements in imaging systems such as PET and SPECT. Radionuclides and radiopharmaceuticals play important role in both therapy and imaging. However cyclotron produced radionuclides have been using generally in imaging purposes while reactor produced radionuclides have also therapeutic applications. With the advent of emission tomography, new vistas for probing biochemistry in vivo have been opened. The radio chemist faces an ever-increasing challenge of designing new tracers for diagnostic and therapeutic applications. Rapid, efficient and automated methods of radionuclide and precursor production, labeling of biomolecules, and quality control need to be developed. The purpose of this article is a short interface from Nuclear Medicine, Radiation Biology and Radiotherapy, Dosimetry and Medical Radiation Physics Applications of Nuclear Sciences.

  13. A new context for the nuclear research and industry

    International Nuclear Information System (INIS)

    2000-01-01

    Pascal Colombani, general administrator of the CEA, develops in this presentation the situation of the nuclear industry to introduce the new orientations of the CEA group. The energy context, the deregulation impacts, the energy dependence and the greenhouse effect project are discussed before the presentation of the research programs and the necessary reorganizing of the nuclear industry. (A.L.B.)

  14. Applications of Radiation Processing in Industry

    International Nuclear Information System (INIS)

    Abad, Lucille V.

    2015-01-01

    Radiation processing has long been known as commercially viable technology that can be beneficially used to enhance the characteristics of many materials. Several gamma irradiators and electron beam accelerators are operating worldwide which are utilized for various established industrial applications. These could be used for the following processes: a) radiation crosslinking e.g. crosslinking of wires and cables, heat shrinkable film and tube productions, manufacture of plastic bags and tubings for medical products, pre-curing of automobile tire components, curing of polymeric coatings, etc. b) radiation degradation e.g. Scrap Teflon (Polytetraflouroethylene) to form powders, disinfestations and pasteurization of agricultural products, sterilization of medical products, etc.; and c) radiation grafting e.g. grafted non-woven fabrics for metal adsorbent. Emerging applications for radiation processing include grafted membranes for fuel cell, electrodes, cell sheet for tissue engineering, nanoparticle production, polymer composite synthesis, and fibrous catalyst for biodiesel production. Current researches at the Philippine Nuclear Research Institute consist of crosslinking of natural and synthetic polymers for medical application e.g. wound dressing, hemostats, and bioimplants for vesicouretal reflux (VUR); grafting of natural and synthetic fabrics for metal adsorbents; and radiation degradation of carrageenan as plant growth promoter. (author)

  15. Augmented reality. Fundamentals and nuclear related applications

    International Nuclear Information System (INIS)

    Ishii, Hirotake

    2010-01-01

    In recent years, Augmented Reality (AR) has attracted considerable interest from both academia and industry. Virtual Reality enables users to interact only with virtual objects in a virtual environment, but AR enables users to interact with both virtual objects and real objects in the real world. This feature supports application of AR to various fields such as education, driving, entertainment, and navigation. Especially, by application of AR to support workers in nuclear power plants, it is expected that working time and human error can be decreased. However, many problems remain unsolved to apply AR to real fields. In this lecture note, fundamental knowledge of AR is presented first including the overview of elemental technologies to realize AR. Then various AR applications to nuclear fields are described. Finally, future prospects are given. (author)

  16. Health and safety record of the nuclear industry

    International Nuclear Information System (INIS)

    Carter, M.W.; Carruthers, E.; Button, J.C.E.

    1975-09-01

    This paper examines the claim of the nuclear industry to have an excellent safety record, in terms of health and accident records of workers in the industry. It does not consider accidents which have not resulted in harm to the workers' health. The nuclear industry is considered to include all work with ionising radiations and radioactive materials, in education, research, medicine and industry. Since 'safety' is not an absolute concept, comparisons are made with the published records of other industries, and a study is made of the performance of the nuclear industry in relation to its own safety criteria. Data are presented on the radiation exposure of nuclear workers in Europe, America, India and Australia, in relation to the internationally recommended limits, and there is some discussion of the risks involved in these limits. The death rate in parts of the nuclear industry in America, the United Kingdom, and Australia is presented and compared with the death rate for other industries in those countries, and a listing is made of deaths caused by radiation in the period 1945 to 1968. Injury rates for the US and Australian nuclear industries are also compared with the injury rates for other industries in these countries. Consideration is given to the safety record of individual components of the nuclear industry (using the wide definition of this industry given above), special attention being given to health records of uranium miners, plutonium workers and radiologists. Although there are difficulties in obtaining sufficiently detailed information of this kind it is considered that the data presented, relative to any reasonable standard, demonstrate that the nuclear industry has a safety record to be proud of. (author)

  17. Business environment of nuclear power industry in Korea

    International Nuclear Information System (INIS)

    Lee, Yoon Young

    2003-01-01

    In Korea, there are total of 18 Nuclear Power Plants in operation as of the end of 2002 and 6 more plants are under construction. The first project for the Advanced Power Reactor (APR) 1400 nuclear power plant is being launched to provide reliable electricity economical competitiveness in Korea. The competitive business environment both globally and in Korea, where the power industry is undergoing significant restructuring, is requiring the Korean nuclear industry to continually improve the economic associated with nuclear power. Introduction of the APR 1400 design and continued improvement of local capabilities are two of the ways that the industry is responding to the challenge. (author)

  18. Radiation safety in nuclear industry in retrospect and perspective

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1993-01-01

    More than 30 years have passed since the starting up of nuclear industry in China from the early 1950's. Over the past 30-odd years, nuclear industry has always kept a good record in China thanks to the policy of 'quality first, safety first' clearly put forward for nuclear industry from the outset and a lot of suitable effective measures taken over that period. Internationally, there is rapid progress in radiation protection and nuclear safety (hereafter refereed to as radiation safety) and a number of new concepts in the field of radiation protection have been advanced. Nuclear industry is developing based on the international standardization. To ensure the further development of nuclear utility, radiation safety needs to be further strengthened

  19. CVD diamond for nuclear detection applications

    CERN Document Server

    Bergonzo, P; Tromson, D; Mer, C; Guizard, B; Marshall, R D; Foulon, F

    2002-01-01

    Chemically vapour deposited (CVD) diamond is a remarkable material for the fabrication of radiation detectors. In fact, there exist several applications where other standard semiconductor detectors do not fulfil the specific requirements imposed by corrosive, hot and/or high radiation dose environments. The improvement of the electronic properties of CVD diamond has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. Here, we report on CVD diamond-based detector developments and we describe how this material, even though of a polycrystalline nature, is readily of great interest for applications in the nuclear industry as well as for physics experiments. Improvements in the material synthesis as well as on device fabrication especially concern the synthesis of films that do not exhibit space charge build up effects which are often encountered in CVD diamond materials and that are highly detrimental for detection devices. On a pre-i...

  20. Reliability estimation for multiunit nuclear and fossil-fired industrial energy systems

    International Nuclear Information System (INIS)

    Sullivan, W.G.; Wilson, J.V.; Klepper, O.H.

    1977-01-01

    As petroleum-based fuels grow increasingly scarce and costly, nuclear energy may become an important alternative source of industrial energy. Initial applications would most likely include a mix of fossil-fired and nuclear sources of process energy. A means for determining the overall reliability of these mixed systems is a fundamental aspect of demonstrating their feasibility to potential industrial users. Reliability data from nuclear and fossil-fired plants are presented, and several methods of applying these data for calculating the reliability of reasonably complex industrial energy supply systems are given. Reliability estimates made under a number of simplifying assumptions indicate that multiple nuclear units or a combination of nuclear and fossil-fired plants could provide adequate reliability to meet industrial requirements for continuity of service

  1. Chemistry of cements for nuclear applications

    International Nuclear Information System (INIS)

    Barrett, P.; Glasser, F.P.

    1992-01-01

    In recent times the nuclear industry has thrown up challenges which cannot be met by the application of conventional civil and materials engineering knowledge. The contributions in this volume investigate all aspects of cement performance. The scope of the papers demonstrates the current balance of activities which have as their objective the elucidation of kinetics and immobilization, determining material interactions and of assessing future performance. The papers reflect the varied goals of the sponsors who include national governments, the Commission of the European Communities and the nuclear industries. In six parts attention is paid to the durability of cement and concrete in repository environment; interactions between cement, waste components and ground water; properties and performance of cement materials; leach behavior and mechanisms, diffusional properties of cement and concrete, including porosity-permeability relationships; and thermodynamics of cementitious systems and modelling of cement performance

  2. Application of the Best Available Technique (BAT) in Swedish Nuclear Industry: Ringhals and Barsebaeck Nuclear Power Plants. Report to the Oslo and Paris Commissions in accordance with PARCOM Recommendation 91/4

    International Nuclear Information System (INIS)

    1996-01-01

    With regard to the general objectives of the Paris Convention, contracting parties have agreed, as stated in PARCOM Recommendation 91/4, to apply best available technique (BAT) to reduce radioactive releases from the nuclear industry. Progress in implementing BAT shall be reported to the Oslo and Paris Commissions every four years. This report contains the Swedish submission for the second round of implementation reports. Data are provided relevant to the Ringhals NPP, which discharged into Convention waters, and - for information -the Barsebaeck NPP which discharged into waters close to the Convention area. 20 tabs

  3. Application of the Best Available Technique (BAT) in Swedish Nuclear Industry: Ringhals and Barsebaeck Nuclear Power Plants. Report to the Oslo and Paris Commissions in accordance with PARCOM Recommendation 91/4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    With regard to the general objectives of the Paris Convention, contracting parties have agreed, as stated in PARCOM Recommendation 91/4, to apply best available technique (BAT) to reduce radioactive releases from the nuclear industry. Progress in implementing BAT shall be reported to the Oslo and Paris Commissions every four years. This report contains the Swedish submission for the second round of implementation reports. Data are provided relevant to the Ringhals NPP, which discharged into Convention waters, and - for information -the Barsebaeck NPP which discharged into waters close to the Convention area. 20 tabs.

  4. Human performance in the nuclear industry

    International Nuclear Information System (INIS)

    Koncz, Steven M.

    2015-01-01

    Management of employees human performance in the Nuclear Industry is endemic to their safety when working. In the United Kingdom it has been a key focus since 2003. Employees were made aware through a detailed program of workshops, of the error prevention methods and how to apply them. The use of effective incident barriers became embedded in the safety culture. The methodology implemented was personal ownership, to enable self assessment of behaviors, attitudes and beliefs. When put in place, there are many specific barriers, which can reduce the chances of an error occurring. They come under the headings of organisational, procedural and physical barriers. All of these were used in some way and continue to be reinforced on a daily basis. Specific barriers are applied in specific situations. However, some general ones are also effective. In common use are the Take 2 or Take 5 Minutes, point of work risk assessments. Applying the human performance barrier Independent Verification (I.V.) would result in 'Take 3 and I.V.' This would independently double check the risk assessment. New ways of thinking are required to continuously improve and evolve. Results of the error reduction process included; reduced workload, increased plant reliability, efficiencies and productivity. (author)

  5. Human performance in the nuclear industry

    International Nuclear Information System (INIS)

    Koncz, S.M.

    2015-01-01

    Management of employees human performance in the Nuclear Industry is endemic to their safety when working. In the United Kingdom it has been a key focus since 2003. Employees were made aware through a detailed program of workshops, of the error prevention methods and how to apply them. The use of effective incident barriers became embedded in the safety culture. The methodology implemented was personal ownership, to enable self assessment of behaviors, attitudes and beliefs. When put in place, there are many specific barriers, which can reduce the chances of an error occurring. They come under the headings of organisational, procedural and physical barriers. All of these were used in some way and continue to be reinforced on a daily basis. Specific barriers are applied in specific situations. However, some general ones are also effective. In common use are the Take 2 or Take 5 Minutes, point of work risk assessments. Applying the human performance barrier Independent Verification (I.V.) would result in 'Take 3 and I.V.' This would independently double check the risk assessment. New ways of thinking are required to continuously improve and evolve. Results of the error reduction process included; reduced workload, increased plant reliability, efficiencies and productivity. (author)

  6. Instilling professionalism in the nuclear industry

    International Nuclear Information System (INIS)

    Widen, W.C.; Keeley, W.A.

    1990-01-01

    The American nuclear industry has implemented many technical changes in the past TMI decade. Equipment and facilities have been improved, procedures have been rewritten and refined, and operational personnel have bolstered their technical expertise. This paper reports that to place an increased focus upon professional -- the attitude, demeanor, and conscientiousness with which everyone conduct their jobs --- Westinghouse implemented the Conduct of Operations training program at the Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). The program began by involving plant operations personnel in an intensive one-day training session using case studies to emphasize that it is people who determine the safety and effectiveness of our work environment. The case studies made it apparent that the human element is the factor common in all of these incidents. And, in these cases, when people became too removed from and/or complacent to automation, tragedy resulted. Finally, several organizations were explored in which a positive work culture and ethic is imbued so deeply and completely within the work force that it would be unthinkable to oppose the culture. Also, during the seminar session, work groups compiled their goals and values for good conduct of operations. In particular, each work group listed its standards for good conduct of operations as well as those factors necessary in the working environment to achieve their standard

  7. Radioactive waste: the poisoned legacy of the nuclear industry

    International Nuclear Information System (INIS)

    Rousselet, Y.

    2011-01-01

    The nuclear industry produces a huge amount of radioactive waste from one end to the other of the nuclear cycle: i.e. from mining uranium to uranium enrichment through reactor operating, waste reprocessing and dismantling nuclear power plants. Nuclear power is now being 'sold' to political leaders and citizens as an effective way to deal with climate change and ensure security of energy supplies. Nonetheless, nuclear energy is not a viable solution and is thus a major obstacle to the development of clean energy for the future. In addition to safety and security issues, the nuclear industry is, above all, faced with the huge problem of how to deal with the waste it produces and for which it has no solution. This ought to put a brake on the nuclear industry, but instead, against all expectations, its development continues to gather pace. (author)

  8. Materials of All-Polish Symposium Nuclear Techniques in Industry, Medicine, Agriculture and Environment Protection

    International Nuclear Information System (INIS)

    2005-01-01

    The All-Polish Symposium Nuclear Techniques in Industry, Medicine, Agriculture and Environment Protection is cyclic (in 3 year period) conference being a broad review of state of art and development of all nuclear branches cooperated with industry and other branches of national economy and public life in Poland. The conference has been divided in one plenary session and 6 problem sessions as follow: Environmental protection, earth sciences, protection of cultural objects; Industrial applications; applications in medicine, medical apparatus; measurement methods, simulations, experiment planning; radiation techniques; laboratories, metrology

  9. Novel uses of magnetic separation in the nuclear industry

    International Nuclear Information System (INIS)

    Coe, B.T.

    1999-08-01

    High Gradient Magnetic Separation (HGMS) has been investigated in the nuclear industry, for the application of advanced technology in present and future nuclear environments within BNFL. Previous applications of HGMS have been reviewed and future novel applications investigated. The two most promising applications were then chosen as the focus of the PhD. In the first project, HGMS has been used to selectively recover biologically precipitated iron sulphide (Fe 1-x S) particles containing heavy metal ions, from a BNFL soil remediation effluent stream. The uptake of the ions is believed to be a consequence of the bacterial metabolism and the adsorptive properties of the iron sulphide. Biologically precipitated iron sulphide is known to differ in structure to its chemically precipitated equivalent and as such has certain advantages, for example, increased adsorbent properties and magnetic properties. The HGMS system was optimised and its performance investigated as a function of the magnetic field, the flow rate and the concentration of the biological particles in solution, with time. Results have shown that an efficiency of over 95% can be obtained, proving that HGMS is a valuable method for the concentration of metal ions from contaminated soils, especially when the adsorbed heavy metals are toxic or even radioactive and difficult to handle by other means. In the second project, the removal out of solution of radioactive technetium, in the form of the pertechnate ion [TcO 4 - ] was investigated. This was achieved using ion exchange techniques, Liquid Scintillation Counting LSC and HGMS. (author)

  10. Application of nuclear energy in Vietnam

    International Nuclear Information System (INIS)

    Van Thuan, V.

    2006-01-01

    Full text: Radioactive isotopes were introduced to medical treatment in Vietnam very early by M. Curie in 1923. A research reactor has been in operation since 1963 serving up to now an effective base for radioisotope production and nuclear analysis. After reunification of the country, the nuclear technique applications are developing faster and getting widespread. The twenty-year period from 1976 to 1995 was relatively limited by activity of R and D institutions. Nowadays, their interaction with companies demonstrates a dynamic commercialization of nuclear techniques in Vietnam. Investment from government as well as from the private sector has been increased significantly for the last ten years to nuclear medicine and radiotherapy. The radiographic NDT is getting a familiar technique to industry, particularly, in construction of strategy-important industrial and civil projects. NCS are upgraded in different factories, such as mining, ore processing and cement industries. Tracer techniques have shown benefit in oil offshore exploring and in sedimentation management of rivers and harbours. Isotope techniques are playing a competitive role for environmental monitoring and underground water management in the country. Radiation processing is transferred to a commercial scale emphasizing on sterilization of medical products and food preservation. There are still some problems such as public acceptance of radioactive techniques or a lack of both infrastructure and manpower to meet the national demands. However, the government of Vietnam has recently approved the national strategy for peaceful uses of atomic energy, which not only highlights the development of isotope and radiation applications in near future, but also clearly emphasizes the need of nuclear electrical generation by 2017-2020 for the national energy security

  11. The information of the nuclear industry before and during the nuclear debate

    International Nuclear Information System (INIS)

    Borgstroem, P.

    1978-10-01

    A review of the organization and resources for information and public relations, which the nuclear industry have at its disposal in Sweden as well as in other countries. Furthermore, pre-nuclear organizations in the Northern Countries, which are not financed by the nuclear industry are discussed. (E.R.)

  12. Decision making in the digital age: the nuclear industry response

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, G. [Energy Group, Kepner-Tregoe, Inc. (Canada)

    2002-07-01

    Ten years ago, the consequences of a prolonged outage - or of choosing a costly alternative - could usually be recovered from the ratepayers without major difficulty. But today, as in the rest of industrial America, poorly crafted decisions have very real economic consequences. This paper discusses the decision making process within the nuclear industry in the age of industry deregulation.

  13. Decision making in the digital age: the nuclear industry response

    International Nuclear Information System (INIS)

    Edelman, G.

    2002-01-01

    Ten years ago, the consequences of a prolonged outage - or of choosing a costly alternative - could usually be recovered from the ratepayers without major difficulty. But today, as in the rest of industrial America, poorly crafted decisions have very real economic consequences. This paper discusses the decision making process within the nuclear industry in the age of industry deregulation

  14. Ecknomic benefits arising from the Canadian nuclear industry

    International Nuclear Information System (INIS)

    1982-03-01

    This document is a collection of surveys of the Canadian nuclear industry, with forecasts covering a number of possible scenarios. Topics covered include uranium mining and processing; economic benefits arising from the design, manufacture and construction of CANDU generating stations; employment and economic activity in the Canadian nqclear industry; and an overview of the remainder of the industry

  15. Applications of nuclear track detectors

    International Nuclear Information System (INIS)

    Medveczky, L.

    1980-01-01

    The results of a scientific research-work are summarized. Nuclear track detectors were used for new applications or in unusual ways. Photographic films, nuclear emulsions and dielectric track detectors were investigated. The tracks were detected by optical microscopy. Empirical formulation has been derived for the neutron sensitivity of certain dielectric materials. Methods were developed for leak testing of closed alpha emitting sources. New procedures were found for the application and evaluation of track detector materials. The results were applied in the education, personnel dosimetry, radon dosimetry etc. (R.J.)

  16. Steel for nuclear applications

    International Nuclear Information System (INIS)

    Zorev, N.N.; Astafiev, A.A.; Loboda, A.S.

    1978-01-01

    A steel contains, in percent by weight, the following constituents: carbon from 0.13 to 0.18, silicon from 0.17 to 0.37, manganese from 0.30 to 0.60, chromium from 1.7 to 2.4, nickel from 1.0 to 1.5, molybdenum from 0.5 to 0.7, vanadium from 0.05 to 0.12, aluminium from 0.01 to 0.035, nitrogen from 0.05 to 0.012, copper from 0.11 to 0.20, arsenic from 0.0035 to 0.0055, iron and impurities, the balance. This steel is preferable for use in the manufacture of nuclear reactors. 1 table

  17. Biocatalysts: application and engineering for industrial purposes.

    Science.gov (United States)

    Jemli, Sonia; Ayadi-Zouari, Dorra; Hlima, Hajer Ben; Bejar, Samir

    2016-01-01

    Enzymes are widely applied in various industrial applications and processes, including the food and beverage, animal feed, textile, detergent and medical industries. Enzymes screened from natural origins are often engineered before entering the market place because their native forms do not meet the requirements for industrial application. Protein engineering is concerned with the design and construction of novel enzymes with tailored functional properties, including stability, catalytic activity, reaction product inhibition and substrate specificity. Two broad approaches have been used for enzyme engineering, namely, rational design and directed evolution. The powerful and revolutionary techniques so far developed for protein engineering provide excellent opportunities for the design of industrial enzymes with specific properties and production of high-value products at lower production costs. The present review seeks to highlight the major fields of enzyme application and to provide an updated overview on previous protein engineering studies wherein natural enzymes were modified to meet the operational conditions required for industrial application.

  18. IAEA nuclear databases for applications

    International Nuclear Information System (INIS)

    Schwerer, Otto

    2003-01-01

    The Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA) provides nuclear data services to scientists on a worldwide scale with particular emphasis on developing countries. More than 100 data libraries are made available cost-free by Internet, CD-ROM and other media. These databases are used for practically all areas of nuclear applications as well as basic research. An overview is given of the most important nuclear reaction and nuclear structure databases, such as EXFOR, CINDA, ENDF, NSR, ENSDF, NUDAT, and of selected special purpose libraries such as FENDL, RIPL, RNAL, the IAEA Photonuclear Data Library, and the IAEA charged-particle cross section database for medical radioisotope production. The NDS also coordinates two international nuclear data centre networks and is involved in data development activities (to create new or improve existing data libraries when the available data are inadequate) and in technology transfer to developing countries, e.g. through the installation and support of the mirror web site of the IAEA Nuclear Data Services at IPEN (operational since March 2000) and by organizing nuclear-data related workshops. By encouraging their participation in IAEA Co-ordinated Research Projects and also by compiling their experimental results in databases such as EXFOR, the NDS helps to make developing countries' contributions to nuclear science visible and conveniently available. The web address of the IAEA Nuclear Data Services is http://www.nds.iaea.org and the NDS mirror service at IPEN (Brasil) can be accessed at http://www.nds.ipen.br/ (author)

  19. HTGR Industrial Application Functional and Operational Requirements

    International Nuclear Information System (INIS)

    Demick, L.E.

    2010-01-01

    This document specifies the functional and performance requirements to be used in the development of the conceptual design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to a typical industrial facility. These requirements were developed from collaboration with industry and HTGR suppliers over the preceding three years to identify the energy needs of industrial processes for which the HTGR technology is technically and economically viable. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a conceptual design of the plant that will serve the broadest range of industrial applications.

  20. Status of the civilian nuclear industry in Asia

    International Nuclear Information System (INIS)

    Heim, Alexandre; Laconde, Thibault

    2011-01-01

    The main nuclear actors in Asia are China, South Korea, India and Japan. The authors indicate the share of nuclear energy in their energy mix, the number of operating reactors, the total installed power, and the number of projects. Then, for each of these four countries, and for Pakistan and Taiwan, they propose a brief history of the nuclear program and briefly present its current status. They also evoke the official reactions after the Fukushima accident. Finally, they briefly discuss some issues for the development of civilian nuclear industry in Asia: uranium supplies, nuclear waste processing, development of a national nuclear sector

  1. Standards development for the nuclear industry

    International Nuclear Information System (INIS)

    Domondon, D.B.

    The ushering of nuclear era in the Philippines with the construction of the PNPP-I (Philippine Nuclear Power Plant) necessitates the evolvement and use of nuclear standards as a tool for safety evaluation in the licensing process. The Department of Nuclear Regulation and Safeguards under the Philippine Atomic Energy Commission has as one of its responsibilities the establishment of regulatory standards to ensure safe operation of nuclear facilities. This article points out the needs for nuclear standards and the steps in standard development which involve an enormous amount of resources in terms of manpower, expertise and money. The staff of the Department of Nuclear Regulations and Safeguards (DNRS) does not intend to engage in the original development of standards; rather, it reviews standards in use elsewhere, specifically in the U.S. and adopts to local conditions. (author)

  2. Mechatronics ideas for industrial application

    CERN Document Server

    Szewczyk, Roman; Trojnacki, Maciej; Kaliczyńska, Małgorzata

    2015-01-01

    This book presents recent advances and developments in control, automation, robotics, and measuring techniques. It presents contributions of top experts in the fields, focused on both theory and industrial practice. The particular chapters present a deep analysis of a specific technical problem which is in general followed by a numerical analysis and simulation, and results of an implementation for the solution of a real world problem. The presented theoretical results, practical solutions and guidelines will be useful for both researchers working in the area of engineering sciences and for practitioners solving industrial problems.  

  3. Deeline and Fail: The ailing nuclear power industry

    International Nuclear Information System (INIS)

    Stoler, P.

    1985-01-01

    Peter Stoler, a Time correspondent, believes that if the government had regulated the nuclear power industry more strictly instead of being so friendly to it, the industry would be better off today. But Stoler thinks the dying industry can and should be saved. Better management, learning from foreign experience plus more governmental concern with safety are the main prescriptions. Most of the book contains a detailed history of the industry

  4. Potential industrial market for process heat from nuclear reactors

    International Nuclear Information System (INIS)

    Barnes, R.W.

    1976-07-01

    A specific segment of industrial process heat use has been examined in detail to identify individual plant locations throughout the United states where nuclear generated steam may be a viable alternative. Five major industries have been studied: paper, chemicals, petroleum, rubber, and primary metals. For these industries, representing 75 percent of the total industrial steam consumption, the individual plant locations within the U.S. using steam in large quantities have been located and characterized as to fuel requirements

  5. Integrated project management information systems: the French nuclear industry experience

    International Nuclear Information System (INIS)

    Jacquin, J.-C.; Caupin, G.-M.

    1990-01-01

    The article discusses the desirability of integrated project management systems within the French nuclear power industry. Change in demand for nuclear generation facilities over the last two decades has necessitated a change of policy concerning organization, cost and planning within the industry. Large corporate systems can benefit from integrating equipment and bulk materials tracking. Project management for the nuclear industry will, in future, need to incorporate computer aided design tools and project management information systems data bases as well as equipment and planning data. (UK)

  6. Integrated project management information systems: the French nuclear industry experience

    Energy Technology Data Exchange (ETDEWEB)

    Jacquin, J.-C.; Caupin, G.-M.

    1990-03-01

    The article discusses the desirability of integrated project management systems within the French nuclear power industry. Change in demand for nuclear generation facilities over the last two decades has necessitated a change of policy concerning organization, cost and planning within the industry. Large corporate systems can benefit from integrating equipment and bulk materials tracking. Project management for the nuclear industry will, in future, need to incorporate computer aided design tools and project management information systems data bases as well as equipment and planning data. (UK).

  7. Applications of radionuclides in industry

    International Nuclear Information System (INIS)

    Leveque, P.

    1955-01-01

    After a brief recall of a few concepts (mass number, charge and beams properties) and the description of used detectors (ionization chamber, Geiger-Mueller counter, scintillation counters), some radionuclides applications are described. In a first part, the well-developed applications are presented in three distinct groups: continuous applications such as β and γ gauges (determination hydrogen content of an hydrocarbon and content of an emulsion; discharge of static electricity), discontinuous applications such as radiography and autoradiography, wear or manufacture problems (distribution of a fungicide on tobacco) and finally, applications in research laboratories such as diffusion, exchange and solubility. It also describes the applications which are still in development such as the action of beams on matter (reticulation and degradation of polymers, monomers polymerisation, cold sterilization). In conclusion, few advices on the opportunity of such applications and the choice of the radionuclides are given. (M.P.)

  8. Optimalisation of national industry participation in nuclear power plant construction

    International Nuclear Information System (INIS)

    Sriyana

    2008-01-01

    A study of national industry participation based on recent data has already been conducted. The current industry data is used to estimate the optimum level of national industry participation in nuclear power plant (NPP) construction based on the prior study. The purpose of the study is to give a figure of the optimum level of national industry participation in NPP construction. The scope of the study is the NPP construction project in related to the potency of national industry to participate in the project. The methodology used in the study are literature study, web surfing for industrial data, and on-the-spot industry survey that are potential to participate in NPP construction. In addition to that, discussion with expertise of industrial practitioner was also conducted. The study concludes that (1) based on the recent national industry capability provided and compared to prior similar study, it is estimated that the level of national industry participation in the first NPP construction with the capacity of 1000 MWe PWR is about 40%. (2) to accelerate NPP technology transfer, we need to build a small size NPP. The nuclear island will be developed by BATAN in cooperation with national industry and the non-nuclear island will be developed by national industry. Universities and other academicians should be involved to support and keep the sustainability of man power availability in developing the NPP technology. (author)

  9. French nuclear industry exportations: companies and organisations, achievements and projects

    International Nuclear Information System (INIS)

    Faudon, V.; Pailler, S.; Miniere, D.; Pouget-Abadie, X.; Journes, F.; Ouali, F.; Brochard, D.; Choho, T.; Lagarde, D.; Anglaret, P.; Kottman, G.; Mockly, D.; Ouzounian, G.; Cordier, P.Y.; Prenez, J.C.; Arpino, J.M.; Jaouen, C.; Jolly, B.

    2013-01-01

    This document gathers a series of short articles in which the following players: French Nuclear Safety Authority (ASN), Electricity of France (EdF), French Alternative Energies and Atomic Energy Commission (CEA), AREVA, ALSTOM, the Association of French Nuclear Industry Exporters (AIFEN), the National Radioactive Waste Management Agency (ANDRA) and the French Society of Nuclear Energy (SFEN) present their competencies in their respective fields and their strategies and commercial offers for exports. 2 articles are dedicated to the achievements of the French nuclear industry in China and another details the cooperation between SFEN and its foreign counterparts. Another article briefly presents the EPR and ATMEA reactors. (A.C.)

  10. Development of thermal scanning probe microscopy for the determination of thin films thermal conductivity: application to ceramic materials for nuclear industry

    International Nuclear Information System (INIS)

    David, L.

    2006-10-01

    -reflectance microscope. Our results permit to propose a first estimate of the degradation of the thermal conductivity, caused by an irradiation with energy heavy ions, of the considered ceramics. This estimate is carried out in the field of the electronic collisions and that of the nuclear collisions. This study, first in its kind, revealed that SiC has been degraded much more because of irradiation than other materials. With the exception of ZrC, semi-metal ceramics seem better adapted to the concerned application. (author)

  11. World nuclear power generation market and prospects of industry reorganization

    International Nuclear Information System (INIS)

    Murakami, Tomoko

    2007-01-01

    In late years there are many trends placing nuclear energy with important energy in various countries in the world due to a remarkable rise to an energy price, importance of energy security and a surge of recognition to a global environment problem. Overseas nuclear industry's acquisition by a Japanese nuclear power plant maker and its capital or business tie-up with an overseas company, were announced in succession in 2006. A nuclear power plant maker has played an extremely important role supporting wide technology in all stages of a design, construction, operation and maintenance in a nuclear power generation business. After having surveyed the recent trend of world nuclear power generation situation, a background and the summary of these acquisition/tie-ups made were investigated and analyzed to consider the influence that movement of such an industry gives a world nuclear power generation market. (T. Tanaka)

  12. Technological and industrial applications of neutrons

    International Nuclear Information System (INIS)

    Weitkamp, C.

    1976-07-01

    Technological and industrial applications of neutrons are reviewed except applications in power generation, biology and medicine, and solid-state research. Techniques are grouped in three main categories: isotope production, material testing, and material analysis. Following a brief description of the different methods, an attempt is made to assess their applicability and to point out current developments. (orig.) [de

  13. Technological and industrial applications of neutrons

    International Nuclear Information System (INIS)

    Weitkamp, C.

    1977-01-01

    Technological and industrial applications of neutrons are reviewed except applications in power generation, biology and medicine, and solid-state research. Techniques are grouped in three main catagories: material production, material testing, and material analysis. Following a brief description of the different methods, an attempt is made to assess their applicability and to point out current developments. (author)

  14. Materials of All-Polish Symposium Nuclear Techniques in Industry, Medicine, Agriculture and Environment Protection

    International Nuclear Information System (INIS)

    1998-01-01

    The All-Polish Symposium Nuclear Techniques in Industry, Medicine, Agriculture and Environment Protection is cyclic (in 3 year period) conference being a broad review of state of art and development of all nuclear branches cooperated with industry and other branches of national economy and public life in Poland. The conference has been divided in one plenary session and 8 problem sessions as follow: Radiation technologies of flue gas purification; radiation technologies in food and cosmetic industry; application of nuclear techniques in environmental studies and earth science; radiometric methods in material engineering; isotope tracers in biological studies and medical diagnostics; radiometric industrial measuring systems; radiation detectors and device; nuclear methods in cultural objects examination. The poster section as well as small exhibition have been also organised

  15. Report of nuclear utility industry responses to Kemeny Commission recommendations

    International Nuclear Information System (INIS)

    1989-02-01

    The purpose of this paper is to provide a report of nuclear utility industry progress in responding to the recommendations of the President's Commission on the Accident at Three Mile Island (The Kemeny Commission). On April 11, 1979, in response to TMI, President Carter established a Commission to conduct '.... a comprehensive study and investigation of the recent accident involving the nuclear power facility on Three Mile Island in Pennsylvania'. The Commission was chaired by Dr. John G. Kemeny, then President of Dartmouth College. (A list of all members of The Kemeny Commission is provided in Attachment to the Appendix ). The report of the commission's findings and recommendations was transmitted to the President in October 1979. During this same period, the nuclear utility industry responded to TMI by creating the Institute of Nuclear Power Operations (INPO) with a mission to promote the highest levels of safety and reliability - to promote excellence - in the operation of nuclear electric generating plants. In addition, the Nuclear Safety Analysis Center (NSAC) was established at the Electric Power Research Institute (EPRI to evaluate the accident and assist in determining the best industry response. In a White House paper (and press release) of December 7 1979, the President announced that he agreed fully with the spirit and intent of al the Kemeny Commission recommendations and requested that the industry and The Nuclear Regulatory Commission (NRC) comply with the recommendations. The President also recognized the industry initiative in establishing INPO and called for several actions involving the Institute; the President directed the Department of Energy and other government agencies to provide assistance to INPO and the industry. An overall status of the nuclear utility industry responses to Kemeny Commission recommendations in the key areas directly related to nuclear plant operations is provided below. A more detailed status of industry responses to the

  16. Report of nuclear utility industry responses to Kemeny Commission recommendations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-02-15

    The purpose of this paper is to provide a report of nuclear utility industry progress in responding to the recommendations of the President's Commission on the Accident at Three Mile Island (The Kemeny Commission). On April 11, 1979, in response to TMI, President Carter established a Commission to conduct '.... a comprehensive study and investigation of the recent accident involving the nuclear power facility on Three Mile Island in Pennsylvania'. The Commission was chaired by Dr. John G. Kemeny, then President of Dartmouth College. (A list of all members of The Kemeny Commission is provided in Attachment to the Appendix ). The report of the commission's findings and recommendations was transmitted to the President in October 1979. During this same period, the nuclear utility industry responded to TMI by creating the Institute of Nuclear Power Operations (INPO) with a mission to promote the highest levels of safety and reliability - to promote excellence - in the operation of nuclear electric generating plants. In addition, the Nuclear Safety Analysis Center (NSAC) was established at the Electric Power Research Institute (EPRI to evaluate the accident and assist in determining the best industry response. In a White House paper (and press release) of December 7 1979, the President announced that he agreed fully with the spirit and intent of al the Kemeny Commission recommendations and requested that the industry and The Nuclear Regulatory Commission (NRC) comply with the recommendations. The President also recognized the industry initiative in establishing INPO and called for several actions involving the Institute; the President directed the Department of Energy and other government agencies to provide assistance to INPO and the industry. An overall status of the nuclear utility industry responses to Kemeny Commission recommendations in the key areas directly related to nuclear plant operations is provided below. A more detailed status of industry responses to the

  17. On industrial application of structural reliability theory

    Energy Technology Data Exchange (ETDEWEB)

    Thoft-Christensen, P

    1998-06-01

    In this paper it is shown that modern structural reliability theory is being successfully applied to a number of different industries. This review of papers is in no way complete. In the literature there is a large number of similar applications and also application not touched on in this presentation. There has been some concern among scientists from this area that structural reliability theory is not being used by industry. It is probably correct that structural reliability theory is not being used by industry as much as it should be used. However, the work by the ESReDA Working Group clearly shows the vary wide application of structural reliability theory by many different industries. One must also have in mind that industry often is reluctant to publish data related to safety and reliability. (au) 32 refs.

  18. On industrial application of structural reliability theory

    International Nuclear Information System (INIS)

    Thoft-Christensen, P.

    1998-01-01

    In this paper it is shown that modern structural reliability theory is being successfully applied to a number of different industries. This review of papers is in no way complete. In the literature there is a large number of similar applications and also application not touched on in this presentation. There has been some concern among scientists from this area that structural reliability theory is not being used by industry. It is probably correct that structural reliability theory is not being used by industry as much as it should be used. However, the work by the ESReDA Working Group clearly shows the vary wide application of structural reliability theory by many different industries. One must also have in mind that industry often is reluctant to publish data related to safety and reliability. (au)

  19. Contrast variation by dynamic nuclear polarization and time-of-flight small-angle neutron scattering. I. Application to industrial multi-component nanocomposites1

    Science.gov (United States)

    Noda, Yohei; Koizumi, Satoshi; Masui, Tomomi; Mashita, Ryo; Kishimoto, Hiroyuki; Yamaguchi, Daisuke; Kumada, Takayuki; Takata, Shin-ichi; Ohishi, Kazuki; Suzuki, Jun-ichi

    2016-01-01

    Dynamic nuclear polarization (DNP) at low temperature (1.2 K) and high magnetic field (3.3 T) was applied to a contrast variation study in small-angle neutron scattering (SANS) focusing on industrial rubber materials. By varying the scattering contrast by DNP, time-of-flight SANS profiles were obtained at the pulsed neutron source of the Japan Proton Accelerator Research Complex (J-PARC). The concentration of a small organic molecule, (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO), was carefully controlled by a doping method using vapour sorption into the rubber specimens. With the assistance of microwave irradiation (94 GHz), almost full polarization of the paramagnetic electronic spin of TEMPO was transferred to the spin state of hydrogen (protons) in the rubber materials to obtain a high proton spin polarization (P H). The following samples were prepared: (i) a binary mixture of styrene–butadiene random copolymer (SBR) with silica particles (SBR/SP); and (ii) a ternary mixture of SBR with silica and carbon black particles (SBR/SP/CP). For the binary mixture (SBR/SP), the intensity of SANS significantly increased or decreased while keeping its q dependence for P H = −35% or P H = 40%, respectively. The q behaviour of SANS for the SBR/SP mixture can be reproduced using the form factor of a spherical particle. The intensity at low q (∼0.01 Å−1) varied as a quadratic function of P H and indicated a minimum value at P H = 30%, which can be explained by the scattering contrast between SP and SBR. The scattering intensity at high q (∼0.3 Å−1) decreased with increasing P H, which is attributed to the incoherent scattering from hydrogen. For the ternary mixture (SBR/SP/CP), the q behaviour of SANS was varied by changing P H. At P H = −35%, the scattering maxima originating from the form factor of SP prevailed, whereas at P H = 29% and P H = 38%, the scattering maxima disappeared. After decomposition of the total SANS according to inverse matrix

  20. Diverting indirect subsidies from the nuclear industry to the photovoltaic industry: Energy and financial returns

    International Nuclear Information System (INIS)

    Zelenika-Zovko, I.; Pearce, J.M.

    2011-01-01

    Nuclear power and solar photovoltaic energy conversion often compete for policy support that governs economic viability. This paper compares current subsidization of the nuclear industry with providing equivalent support to manufacturing photovoltaic modules. Current U.S. indirect nuclear insurance subsidies are reviewed and the power, energy and financial outcomes of this indirect subsidy are compared to equivalent amounts for indirect subsidies (loan guarantees) for photovoltaic manufacturing using a model that holds economic values constant for clarity. The preliminary analysis indicates that if only this one relatively ignored indirect subsidy for nuclear power was diverted to photovoltaic manufacturing, it would result in more installed power and more energy produced by mid-century. By 2110 cumulative electricity output of solar would provide an additional 48,600 TWh over nuclear worth $5.3 trillion. The results clearly show that not only does the indirect insurance liability subsidy play a significant factor for nuclear industry, but also how the transfer of such an indirect subsidy from the nuclear to photovoltaic industry would result in more energy over the life cycle of the technologies. - Highlights: → The indirect insurance liability subsidy has been quantified over the life cycle of the U.S. nuclear fleet. → It was found to play a significant factor in the economics of the nuclear industry. → A transfer of such an indirect subsidy from the nuclear to photovoltaic industry would result in significantly more energy over the life cycle of the technologies.

  1. Nuclear safety. ICFTU proposals for the international control of the nuclear energy industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    are strong proponents of its use and others have said that they are only prepared to accept its application if safety controls are substantially improved. All affiliates of the ICFTU are convinced that energy policy options must be widened through increased research and development of new and renewable sources and through extensive energy conservation measures. The environmental impact of all methods of energy generation must be assessed on the basis of the public availability of all relevant information. It is in this context, that whatever their views about the desirability or otherwise of nuclear power, all ICFTU affiliates recognise the immediate need to assure the highest possible level of safety for all nuclear plants and activities everywhere - for example to deal with radioactive wastes created over the last 30 years. Even if some countries opt out of nuclear power it is likely that many others will be committed to it for many years. Given the widespread effects of a catastrophic failure anywhere in the world we must therefore all be concerned to strengthen the international safety regime. Because of their historic role in campaigning for health and safety at work, unions are well placed to exercise an independent watchdog role - making use of the knowledge and skills of their members in the nuclear industry - and are also able to speak on behalf of a large membership which is representative representative of the wide public concern about nuclear safety. Immediately following the Chernobyl disaster, the ICFTU Executive Board adopted a resolution (reproduced as Appendix 2 to this document) calling for immediate steps to tighten up nuclear safety. In the light of subsequent developments, the Confederation has now given further detailed consideration to the whole question of nuclear safety and has decided to publish this report which contains detailed proposals for tighter international control of nuclear energy via the International Atomic Energy Agency (IAEA

  2. Nuclear safety. ICFTU proposals for the international control of the nuclear energy industry

    International Nuclear Information System (INIS)

    1989-01-01

    are strong proponents of its use and others have said that they are only prepared to accept its application if safety controls are substantially improved. All affiliates of the ICFTU are convinced that energy policy options must be widened through increased research and development of new and renewable sources and through extensive energy conservation measures. The environmental impact of all methods of energy generation must be assessed on the basis of the public availability of all relevant information. It is in this context, that whatever their views about the desirability or otherwise of nuclear power, all ICFTU affiliates recognise the immediate need to assure the highest possible level of safety for all nuclear plants and activities everywhere - for example to deal with radioactive wastes created over the last 30 years. Even if some countries opt out of nuclear power it is likely that many others will be committed to it for many years. Given the widespread effects of a catastrophic failure anywhere in the world we must therefore all be concerned to strengthen the international safety regime. Because of their historic role in campaigning for health and safety at work, unions are well placed to exercise an independent watchdog role - making use of the knowledge and skills of their members in the nuclear industry - and are also able to speak on behalf of a large membership which is representative representative of the wide public concern about nuclear safety. Immediately following the Chernobyl disaster, the ICFTU Executive Board adopted a resolution (reproduced as Appendix 2 to this document) calling for immediate steps to tighten up nuclear safety. In the light of subsequent developments, the Confederation has now given further detailed consideration to the whole question of nuclear safety and has decided to publish this report which contains detailed proposals for tighter international control of nuclear energy via the International Atomic Energy Agency (IAEA

  3. Manpower development in the US nuclear power industry

    International Nuclear Information System (INIS)

    Todreas, N.E.; Foulke, L.R.

    1985-01-01

    This paper reviews the history and current status of the university nuclear education sector and the utility training sector of the United States (US) nuclear power industry. Recently, the number of programs in the university nuclear education sector has declined, and the remaining programs are in need of both strong governmental and industrial assistance if they are to remain a stable source for educating nuclear engineers and health physicists to staff the resurgence of the nuclear power industry. The utility training sector has undergone remarkable development since the TMI-2 accident. Programs to recruit, train, and qualify the variety of personnel needed, as well as the steps to accredit these programs, are being developed on a systematic, industry-wide basis. A number of new technologies for educating and training personnel are emerging which may be used to create or improve learning environments. Manpower development for the US nuclear power industry is a shared responsibility among the universities, the nuclear utilities, and the nuclear suppliers. This shared responsibility can continue to be best discharged by enhancement of the interaction among all parties with respect to evaluating the proper level of cognitive development within the utility training program

  4. Industrial applications of the Kalman filter

    DEFF Research Database (Denmark)

    Auger, François; Hilairet, Mickael; Guerrero, Josep M.

    2013-01-01

    The Kalman filter has received a huge interest from the industrial electronics community and has played a key role in many engineering fields since the 70s, ranging, without being exhaustive, trajectory estimation, state and parameter estimation for control or diagnosis, data merging, signal...... processing and so on. This paper provides a brief overview of the industrial applications and implementation issues of the Kalman filter in six topics of the industrial electronics community, highlighting some relevant reference papers and giving future research trends....

  5. Spanish Nuclear Industry in Lungmen Project

    International Nuclear Information System (INIS)

    Alomar, F.

    1998-01-01

    Spain's Advanced Nuclear Reactors Programs, under DTN's leadership, has meant an active participation the American Design of Advanced Nuclear Power Plants, in both General Electric and Westinghouse Programs. This collaboration has given to the Companies, which directly involved, an in-depth knowledge of both Development Programs, as well as it has allowed to establish relationships with Nuclear Island DTN's coordination. These Companies included a broad sample of Spanish Companies most interest in the Nuclear Field: DTN representing Spanish Utilities with Nuclear Assets; Empresarios Agrupados and INITEC as a Joint Venture, representing Spanish A/E; Equipos Nucleares, S.A., representing Nuclear Components Manufacturers; Tecnatom, representing Nuclear Services and Engineering and CIEMAT as National Laboratory. Taiwan Electric Power has awarded its two 1300 MWe Lungmen Units to General Electric. Knowledge acquired by these Spanish Companies along FOAKE First of kind then Engineering has allowed them to bid for some authorities in Lungmen NPP and in some cases to get important awards. Furthermore, the good working relationship which has been established has made way for other Spanish Companies to bid for other Project Packages. On a case by case basis the response of Spanish manufacturer has been irregular . In some instances manufactures have stopped manufacturing nuclear components, and in other instances a distinct lack of interest has been detected. (Author)

  6. Japan's nuclear industry; taking off in the mist

    International Nuclear Information System (INIS)

    1979-01-01

    This survey of the nuclear industry aimed at investigating the results and prospects of nuclear energy-related sales, expenditures and manpower in electric utilities, mining and manufacturing industries and trading companies in Japan, so that the study of the economic aspects of the nuclear industry and the analysis of problems may contribute to the sound development of the industry and provide with fundamental informations for interested persons in all sectors. It covers the fiscal year 1978, and is the 20th of a series of annual investigations. The fiscal year 1978 began with the court ruling on the Ikata case, and ended with the impact of the accident in the Three Mile Island plant, USA. As for the results of survey, the answers to questionnaire, the trend of expenditures, the trend of sales, the trend of manpower, the prospects for the future, and the flow of money in the nuclear industry are reported. The gross expenditures in private industries increased by 41% to 1,450 billion yen in comparison with the previous fiscal year. Sales exceeded expenditures by 12,600 million yen in mining and manufacturing industries. Manpower increased by 9% in electric utilities and 7% in mining and manufacturing industries. The construction of 3 nuclear power plants is due to start in fiscal 1978. (Kako, I.)

  7. Industrial applications of neutron diffraction

    International Nuclear Information System (INIS)

    Felcher, G.P.

    1989-01-01

    Neutron diffraction (or, to be more general, neutron scattering) is a most versatile and universal tool, which has been widely employed to probe the structure, the dynamics and the magnetism of condensed matter. Traditionally used for fundamental research in solid state physics, this technique more recently has been applied to problems of immediate industrial interest, as illustrated in examples covering the main fields of endeavour. 14 refs., 14 figs

  8. Industrial applications of radioisotope tracers

    International Nuclear Information System (INIS)

    Easey, J.F.

    1985-01-01

    Radioisotope tracing techniques are powerful tools for analysing the behaviour of large systems and investigating industrially or economically important processes. The results of radioisotope experiments can yield important information, for example, on parameters such as flow rates, mixing phenomena, flow abnormalities and leaks. Some examples of current AAEC research are described, covering studies on hearth drainage in blast furnaces, flow behaviour in waste-water treatment ponds, and sediment transport in marine environments

  9. The industrial applications of ionizing radiations

    International Nuclear Information System (INIS)

    1992-10-01

    This report presents all industrial applications of ionizing radiations in France, for food preservation, radiosterilization of drugs, medical materials and cosmetic products, for radiation chemistry of polymers. This report also describes the industrial plants of irradiation (electron, cobalt 60). Finally, it explains the legal and safety aspects

  10. Skoda JS's proposal for Slovak nuclear power industry

    International Nuclear Information System (INIS)

    Borovec, J.

    2004-01-01

    In this presentation author deals with the structure and revenues of the Skoda JS, a.s., as well as productions of the company for nuclear power industry in the Czech Republic, Ukraine and the Slovak Republic

  11. Supplier quality assurance systems: a study in the nuclear industry

    International Nuclear Information System (INIS)

    Singer, A.J.; Churchill, G.F.; Dale, B.G.

    1988-01-01

    The results are reported of a study which investigated the impact of quality assurance on 13 suppliers to the nuclear industry. The purpose of the study was to determine the benefits and problems of applying quality assurance in the supply of high risk plant items and material for nuclear installations. The paper discusses the problems facing the industry including: multiple audits and inspections, the irritation with having to contend with two quality system standards (namely BS 5750 and BS 5882) and the cost effectiveness of the more stringent quality system and quality control surveillance requirements imposed by the nuclear industry. It is also pointed out that companies supplying non-nuclear industrial customers were dissatisfied with the qualifications, experience and professional competence of some auditors and many inspectors. (author)

  12. Cycle of radionuclides released into waters by the nuclear industry

    International Nuclear Information System (INIS)

    Bovard, A.; Grauby, A.

    1975-01-01

    A review is made of the main radionuclides released by nuclear industry into the aquatic environment. The water-sediment interactions, the uptake of radionuclides by aquatic organisms and the problem of irrigation water are considered [fr

  13. Nuclear industry in a country with a substantial oil reserve

    International Nuclear Information System (INIS)

    Alvarez, R.; Castillo, H.; Costa, D.; Galan, I.; Martinez, M.

    1981-01-01

    The importance of the development of a nuclear industry in a country like Mexico, with a substantial oil reserve is analyzed, taking into account the technical, economical, political, ecological and social aspects of the problem. (author)

  14. Ion exchange in the nuclear industry

    International Nuclear Information System (INIS)

    Bibler, J.P.

    1990-01-01

    Ion exchange is used in nearly every part of the nuclear fuel cycle -- from the purification of uranium from its ore to the final recovery of uranium and transmutation products. Ion exchange also plays a valuable role in the management of nuclear wastes generated in the fuel cycle

  15. Nuclear energy can compete, industry watchers say

    International Nuclear Information System (INIS)

    Cash, C.J.

    1995-01-01

    Nuclear power plants with outstanding operating records and cost-conscious management can continue to compete with other forms of generation as the electricity business becomes more competitive. Natural gas-fired units will set the pricing standard with which nuclear power plants must compete

  16. Perspectives of development in the nuclear industry

    International Nuclear Information System (INIS)

    Barthelt, K.

    1987-01-01

    Modern economy cannot do without electricity, and safe and reliable electricity supply cannot do without nuclear power. This implies that the F.R.G. will continue to build nuclear power stations, and as the power stations of the future benefit from the experience gained with existing plant, there will be continuous improvement in terms of safety, pollution control, and economics. (orig.) [de

  17. Numerical and experimental investigations of water hammers in nuclear industry

    Directory of Open Access Journals (Sweden)

    R Messahel

    2016-10-01

    Full Text Available In nuclear and petroleum industries, supply pipes are often exposed to high pressure loading which can cause to the structure high strains, plasticity and even, in the worst scenario, failure. Fast Hydraulic Transient phenomena such as Water Hammers (WHs are of this type. It generates a pressure wave that propagates in the pipe causing high stress. Such phenomena are of the order of few msecs and numerical simulation can offer a better understanding and an accurate evaluation of the dynamic complex phenomenon including fluid-structure interaction, multi-phase flow, cavitation … For the last decades, the modeling of phase change taking into account the cavitation effects has been at the centre of many industrial applications (chemical engineering, mechanical engineering, … and has a direct impact on the industry as it might cause damages to the installation (pumps, propellers, control valves, …. In this paper, numerical simulation using FSI algorithm and One-Fluid Cavitation models ("Cut-Off" and "HEM (Homogeneous Equilibrium Model Phase-Change" introduced by Saurel et al. [1] of WHs including cavitation effects is presented.

  18. Comprehensive survey of the Russian nuclear industry

    International Nuclear Information System (INIS)

    2004-03-01

    This document presents the organization of nuclear activities in the Russian federation: Minatom and its replacement by the federal agency of atomic energy, personnel, nuclear power plants (VVER, RBMK, fast neutron and mixed reactors), availability and power production, export of activities (construction of nuclear power plants in Slovakia, Iran, China, India, project in Viet Nam), expansion of the nuclear power plants park (improvement of plants safety, increase of service life), completion of uncompleted plants, the construction of which was stopped after the Chernobyl accident and the reorganization of the former-USSR, construction of new generation power plants (VVER-640, -1000 and -1500), fuel cycle facilities (geographical distribution, production of natural uranium, conversion and enrichment), fuel fabrication, reprocessing processes and spent fuel storage, management of radioactive wastes (leasing), R and D activities (organizations and institutes), research programs of the international scientific and technical center, nuclear safety authority (Gosatomnadzor - GAN). (J.S.)

  19. Chapter 13. Industrial Application of Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Design and application of modern pure tap water components and systems in industries, in particular food processing industry.......Design and application of modern pure tap water components and systems in industries, in particular food processing industry....

  20. Industrial ceramics - Properties, forming and applications

    International Nuclear Information System (INIS)

    Fantozzi, Gilbert; Niepce, Jean-Claude; Bonnefont, Guillaume; Alary, J.A.; Allard, B.; Ayral, A.; Bassat, J.M.; Elissalde, C.; Maglione, M.; Beauvy, M.; Bertrand, G.; Bignon, A.; Billieres, D.; Blanc, J.J.; Blumenfeld, P.; Bonnet, J.P.; Bougoin, M.; Bourgeon, M.; Boussuge, M.; Thorel, A.; Bruzek, C.E.; Cambier, F.; Carrerot, H.; Casabonne, J.M.; Chaix, J.M.; Chevalier, J.; Chopinet, M.H.; Couque, H.; Courtois, C.; Leriche, A.; Dhaler, D.; Denape, J.; Euzen, P.; Ganne, J.P.; Gauffinet, S.; Girard, A.; Gonon, M.; Guizard, C.; Hampshire, S.; Joulin, J.P.; Julbe, A.; Ferrato, M.; Fontaine, M.L.; Lebourgeois, R.; Lopez, J.; Maquet, M.; Marinel, S.; Marrony, M.; Martin, J.F.; Mougin, J.; Pailler, R.; Pate, M.; Petitpas, E.; Pijolat, C.; Pires-Franco, P.; Poirier, C.; Poirier, J.; Pourcel, F.; Potier, A.; Tulliani, J.M.; Viricelle, J.P.; Beauger, A.

    2013-01-01

    After a general introduction to ceramics (definition, general properties, elaboration, applications, market data), this book address conventional ceramics (elaboration, material types), thermo-structural ceramics (oxide based ceramics, non-oxide ceramics, fields of application, functional coatings), refractory ceramics, long fibre and ceramic matrix composites, carbonaceous materials, ceramics used for filtration, catalysis and the environment, ceramics for biomedical applications, ceramics for electronics and electrical engineering (for capacitors, magnetic, piezoelectric, dielectric ceramics, ceramics for hyper-frequency resonators), electrochemical ceramics, transparent ceramics (forming and sintering), glasses, mineral binders. The last chapter addresses ceramics used in the nuclear energy sector: in nuclear fuels and fissile material, absorbing ceramics and shields, in the management of nuclear wastes, new ceramics for reactors under construction or for future nuclear energy