WorldWideScience

Sample records for nuclear heat application

  1. Low temperature nuclear heat

    Energy Technology Data Exchange (ETDEWEB)

    Kotakorpi, J.; Tarjanne, R. (comps.)

    1977-08-01

    The meeting was concerned with the use of low grade nuclear heat for district heating, desalination, process heat, and agriculture and aquaculture. The sessions covered applications and demand, heat sources, and economics.

  2. Diffusion Welding of Compact Heat Exchangers for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Denis Clark; Ron Mizia; Dr. Michael V. Glazoff; Mr. Michael W. Patterson

    2012-06-01

    The next-­-generation nuclear plant (NGNP) is designed to be a flexible source of energy, producing various mixes of electrical energy and process heat (for example, for hydrogen generation) on demand. Compact heat exchangers provide an attractive way to move energy from the helium primary reactor coolant to process heat uses. For process heat efficiency, reactor outlet temperatures of 750-­-900°C are desirable. There are minor but deleterious components in the primary coolant; the number of alloys that can handle this environment is small. The present work concentrates on Alloys 800H and 617.

  3. Perspectives of heat transfer enhancement in nuclear reactors toward nanofluids applications

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Marcelo S.; Cabral, Eduardo L.L.; Sabundjian, Gaiane, E-mail: msrocha@ipen.br, E-mail: elcabral@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); and others

    2013-07-01

    Nanofluids are colloidal suspensions of nanoparticles in a base fluid with interesting physical properties and large potential for heat transfer enhancement in thermal systems among other applications. There are an increasing number of nanofluids investigations concerning many aspects of synthesis and fabrication technologies, physical properties, and special applications. Results demonstrate that physical properties like high thermal conductivities and high critical heat flux (CHF) of some nanofluids classifies them as potential working fluids for high heat flux transportation in special systems, including thermal management of microelectronic devices (MEMS) and nuclear reactors. Understanding the importance of such investigations for the knowledge development of nuclear engineering a new research is being conducted at the Nuclear Engineering Center (CEN) of the Nuclear and Energy Research Institute (IPEN/CNEN-SP) to analyze the application potentiality of some nanofluids in nuclear systems for heat transfer enhancement under ionizing radiation influence. In this work a revision of theoretical and experimental studies of nanofluids is performed and its potentiality for using in future generations of nuclear reactors is highlighted showing the status of the research at present. (author)

  4. Nuclear energy and process heating

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a

  5. Nuclear energy and process heating

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1999-07-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating, and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating, (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating, and several industrial applications. Although only about 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven

  6. Application of integral methods to prediction of heat transfer from a nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Blesch, C J; Kulacki, F A; Christensen, R N

    1983-10-01

    Integral methods have been developed and applied to the prediction of the far field thermal impact of a nuclear waste repository. Specifically, the heat balance integral has been applied to a semi-infinite layered domain in which a limited number of sublayers form the repository overburden, and the repository is represented by an infinite plane beneath either one or two sublayers. Calculations for PWR spent fuel with an initial areal thermal loading of 60 kW/acre are carried out for various stratigraphies and overburden compositions. Results of the analyses are temperature distributions and heat fluxes to the surface as a function to time. Based on this study, the thermophysical properties of the individual layers are identified as the most important influence on temperature distributions and maximum temperature rise at any position above the repository. The thicknesses of the sublayers play a secondary role for a given rock composition. Where a comparison to exact or numerical solutions is possible, the method predicts maximum temperature increases in the overburden to within 10 percent. Heat fluxes to the surface are found to be relatively insensitive to overburden composition. For dome salt, a maximum of 1.2 percent to 2.7 percent of the initial areal thermal power of a five-term source reaches the surface. For bedded salt, a maximum of 1 percent to 1.8 percent of the initial areal thermal power reaches the surface over a wide range of sublayer compositions. Similarly, low percentages of initial areal thermal power reach the surface for the other stratigraphies considered in the calculations.

  7. Applications of nuclear physics

    Science.gov (United States)

    Hayes, A. C.

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  8. Heat for industry from nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Novikov, V.M.

    Two factors which incline nations toward the use of heat from nuclear reactors for industrial use are: 1) exhaustion of cheap fossil fuel resources, and 2) ecological problems associated both with extraction of fossil fuel from the earth and with its combustion. In addition to the usual problems that beset nuclear reactors, special problems associated with using heat from nuclear reactors in various industries are explored.

  9. Nuclear Propulsion for Space Applications

    Science.gov (United States)

    Houts, M. G.; Bechtel, R. D.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2013-01-01

    Basics of Nuclear Systems: Long history of use on Apollo and space science missions. 44 RTGs and hundreds of RHUs launched by U.S. during past 4 decades. Heat produced from natural alpha (a) particle decay of Plutonium (Pu-238). Used for both thermal management and electricity production. Used terrestrially for over 65 years. Fissioning 1 kg of uranium yields as much energy as burning 2,700,000 kg of coal. One US space reactor (SNAP-10A) flown (1965). Former U.S.S.R. flew 33 space reactors. Heat produced from neutron-induced splitting of a nucleus (e.g. U-235). At steady-state, 1 of the 2 to 3 neutrons released in the reaction causes a subsequent fission in a "chain reaction" process. Heat converted to electricity, or used directly to heat a propellant. Fission is highly versatile with many applications.

  10. 8. Innovative Technologies: Two-Phase Heat Transfer in Water-Based Nanofluids for Nuclear Applications Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Buongiorno, Jacopo; Hu, Lin-wen

    2009-07-31

    Nanofluids are colloidal dispersions of nanoparticles in water. Many studies have reported very significant enhancement (up to 200%) of the Critical Heat Flux (CHF) in pool boiling of nanofluids (You et al. 2003, Vassallo et al. 2004, Bang and Chang 2005, Kim et al. 2006, Kim et al. 2007). These observations have generated considerable interest in nanofluids as potential coolants for more compact and efficient thermal management systems. Potential Light Water Reactor applications include the primary coolant, safety systems and severe accident management strategies, as reported in other papers (Buongiorno et al. 2008 and 2009). However, the situation of interest in reactor applications is often flow boiling, for which no nanofluid data have been reported so far. In this project we investigated the potential of nanofluids to enhance CHF in flow boiling. Subcooled flow boiling heat transfer and CHF experiments were performed with low concentrations of alumina, zinc oxide, and diamond nanoparticles in water (≤ 0.1 % by volume) at atmospheric pressure. It was found that for comparable test conditions the values of the nanofluid and water heat transfer coefficient (HTC) are similar (within ±20%). The HTC increased with mass flux and heat flux for water and nanofluids alike, as expected in flow boiling. The CHF tests were conducted at 0.1 MPa and at three different mass fluxes (1500, 2000, 2500 kg/m2s) under subcooled conditions. The maximum CHF enhancement was 53%, 53% and 38% for alumina, zinc oxide and diamond, respectively, always obtained at the highest mass flux. A post-mortem analysis of the boiling surface reveals that its morphology is altered by deposition of the particles during nanofluids boiling. A confocal-microscopy-based examination of the test section revealed that nanoparticles deposition not only changes the number of micro-cavities on the surface, but also the surface wettability. A simple model was used to estimate the ensuing nucleation site

  11. Nuclear Heating Measurement in Critical Facilities and Experimental Validation of Code and Libraries - An Application to Prompt and Delayed γ Nuclear Data Needs

    Science.gov (United States)

    Blaise, P.; Di Salvo, J.; Vaglio-Gaudard, C.; Bernard, D.; Amharrak, H.; Lemaire, M.; Ravaux, S.

    Energy from prompt and delayed gammas in actual and future nuclear systems are more and more taken into account into design studies as they play an important role in the assessment of performance and safety concerns. Their incomplete knowledge (both prompt and delayed) require to take conservative design margins on local dimensioning parameters, thus reducing the awaited performances or flexibility of these facilities, with costs that are far from being negligible. The local energy photon deposit must be accurately known for Generation-III (Gen-III), Generation-IV (Gen-IV) or the new MTR Jules Horowitz Reactor (JHR). The last 2 decades has seen the realization, in Zero Power Reactors (ZPR), of several programs partially devoted to γ-heating measurements. Experimental programs were and are still conducted in different Cadarache facilities such as MASURCA (for SFR), and later in MINERVE and EOLE (for JHR and Gen-III reactors). The adequacy of the γ-heating calculation was compared to experimental data using thermo-luminescent (TL) detectors and γ-fission chambers. Inconsistencies in C/E and associated uncertainties led to improvement of both libraries and experimental techniques. For these last one, characterization for TL and optically stimulated (OSL) detectors (calibration, individual response), and Monte Carlo calculation of charge repartition in those detectors and their environment were carefully checked and optimized. This step enabled to reduce the associated experimental uncertainty by a factor of 2 (8% at 2σ). Nevertheless, interpretation of integral experiment with updated calculation schemes and improved experimental techniques still tend to prove that there are some nuclei for which there are missing or erroneous data, mainly in structural and absorbing materials. New integral and differential measurements are needed to guide new evaluation efforts, which could benefit from consolidated theoretical and experimental modeling techniques.

  12. On the applicability of a correlation of critical heat flux prediction for advanced nuclear fuel from Angra-1; Confirmando a aplicabilidade de uma correlacao de previsao do fluxo de calor critico para o combustivel nuclear avancado de Angra-1

    Energy Technology Data Exchange (ETDEWEB)

    Palheiros, Franklin L.; Gomes, Sydney [Industrias Nucleares do Brasil SA, Rio de Janeiro, RJ (Brazil). Gerencia de Analise Tecnica do Combustivel]. E-mail: franklin@inb.gov.br; sydney@inb.gov.br

    2005-07-01

    To establish the nuclear core operation limits it is requested that the safe condition of heat transfer between the fuel rod and the primary system coolant shall be well known. Those limits are set based on the critical heat flux marking the upper limit of nucleate boiling where the interaction of the coolant causes a departure from nucleate boiling - DNB [1]. For the new fuel type (16NGF) to be used at the Angra-1, the Kori-2, and the Krsko sites, the Critical Heat Flux must be characterized as well. Compared to the 16x16STD fuel (a 25+ year old Westinghouse design), the 16NGF design has many new features, including: three Intermediate Flow Mixers (IFM's) were added in the grid spans 4, 5 and 6 to improve the mixing behavior and consequently the thermal margin; an optimized vane pattern was used as well as an improved vane design (RFA Mod-1 vane). Others important thermal characteristics are the use of an optimized fuel rod diameter- from the U/H ratio point of view (0.360'' instead of 0.374'') and others features (Reference 2).Therefore, to demonstrate the applicability of an existing CHF correlation for the 16NGF design, two tests were performed in the Columbia University's Heat Transfer Research Facility, New York City (HTRF). Denominated Tests number 112 and number 113, they employed a 5x5 bundle array with a heated length of 12 ft. and cosine axial power shape. The purpose of this paper is then to present the data analysis from the 16NGF CHF tests and demonstrate, through a statistical evaluation, that the resulting data when evaluated is 'poolable' (combinable) with the WRB-2 database. In so doing, it can be thus stated that the WRB-2 correlation is applicable to 16 NGF Fuel Assemblies. (author)

  13. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ehud Greenspan

    2008-09-30

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  14. Nuclear physics principles and applications

    CERN Document Server

    Lilley, J S

    2001-01-01

    This title provides the latest information on nuclear physics. Based on a course entitled Applications of Nuclear Physics. Written from an experimental point of view this text is broadly divided into two parts, firstly a general introduction to Nuclear Physics and secondly its applications.* Includes chapters on practical examples and problems* Contains hints to solving problems which are included in the appendix* Avoids complex and extensive mathematical treatments* A modern approach to nuclear physics, covering the basic theory, but emphasising the many and important applicat

  15. Axisymmetric analysis of multilayered thermoelastic media with application to a repository for heat-emitting high-level nuclear waste in a geological formation

    Science.gov (United States)

    Yang, Yang; Datcheva, Maria; Schanz, Tom

    2016-08-01

    Comprehensive analytical solutions to 3-D axisymmetric problems for static response of multilayered thermoelastic media subjected to surface loads and containing sources are presented in this study. The solution strategy employs Laplace and Hankel transforms to the field variables. The problem is formulated in cylindrical coordinate system and in this coordinate system vector surface harmonics and generalized propagator matrix are introduced to find the solution for the problem for the behaviour of thermoelastic multilayered media subject to surface loads and containing heat sources. A high-order adaptive Gaussian quadrature method with continued fraction expansions is employed to approximate the integral solutions expressed in terms of semi-infinite Hankel-type integrals. It is the first time to apply the proposed solution method to investigate the behaviour of repository for heat-emitting high-level nuclear waste (HLW) in a geological formation where the HLW can be regarded as a decaying with time point heat source.

  16. Nuclear power plant waste heat utilization

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.; Huke, R.E.; Archer, J.C.; Price, D.R.; Jewell, W.J.; Hayes, T.D.; Witherby, H.R.

    1977-09-01

    The possibility of using Vermont Yankee condenser effluent for commercial food growth enhancement was examined. It was concluded that for the Vermont Yankee Nuclear Station, commercial success, both for horticulture and aquaculture endeavors, could not be assured without additional research in both areas. This is due primarily to two problems. First, the particularly low heat quality of our condenser discharge, being nominally 72 +- 2/sup 0/F; and second, to the capital intensive support systems. The capital needed for the support systems include costs of pumps, piping and controls to move the heated water to growing facilities and the costs of large, efficient heat exchangers that may be necessary to avoid regulatory difficulties due to the 1958 Delaney Amendment to the U.S. Food, Drug and Cosmetics Act. Recommendations for further work include construction of a permanent aquaculture research laboratory and a test greenhouse complex based on a greenhouse wherein a variety of heating configurations would be installed and tested. One greenhouse would be heated with biogas from an adjacent anaerobic digester thermally boosted during winter months by Vermont Yankee condenser effluent. The aquaculture laboratory would initially be dedicated to the Atlantic salmon restoration program. It appears possible to raise fingerling salmon to smolt size within 7 months using water warmed to about 60/sup 0/F. The growth rate by this technique is increased by a factor of 2 to 3. A system concept has been developed which includes an aqua-laboratory, producing 25,000 salmon smolt annually, a 4-unit greenhouse test horticulture complex and an 18,000 square foot commercial fish-rearing facility producing 100,000 pounds of wet fish (brook trout) per year. The aqualab and horticulture test complex would form the initial phase of construction. The trout-rearing facility would be delayed pending results of laboratory studies confirming its commercial viability.

  17. Manufacturing W fibre-reinforced Cu composite pipes for application as heat sink in divertor targets of future nuclear fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Alexander v.; You, Jeong-Ha [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Ewert, Dagmar [Institut fuer Textil- und Verfahrenstechnik Denkendorf, 73770 Denkendorf (Germany); Siefken, Udo [Louis Renner GmbH, 85221 Dachau (Germany)

    2016-07-01

    An important plasma-facing component (PFC) in future nuclear fusion reactors is the so-called divertor which allows power exhaust and removal of impurities from the main plasma. The most highly loaded parts of a divertor are the target plates which have to withstand intense particle bombardment. This intense particle bombardment leads to high heat fluxes onto the target plates which in turn lead to severe thermomechanical loads. With regard to future nuclear fusion reactors, an improvement of the performance of divertor targets is desirable in order to ensure reliable long term operation of such PFCs. The performance of a divertor target is most closely linked to the properties of the materials that are used for its design. W fibre-reinforced Cu (Wf/Cu) composites are regarded as promising heat sink materials in this respect. These materials do not only feature adequate thermophysical and mechanical properties, they do also offer metallurgical flexibility as their microstructure and hence their macroscopic properties can be tailored. The contribution will point out how Wf/Cu composites can be used to realise an advanced design of a divertor target and how these materials can be fabricated by means of liquid Cu infiltration.

  18. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

  19. Heat and power sources based on nuclear shipbuilding technologies

    Energy Technology Data Exchange (ETDEWEB)

    Veshnyakov, K.; Fadeev, Y.; Panov, Y.; Polunichev, V. [JSC Afrikantov OKBM, Nizhny Novgorod (Russian Federation)

    2009-07-01

    The report gives information on the application of power units with small-power nuclear reactors as advanced energy sources to provide world consumers with electric power, domestic and industrial heat and fresh water. The report describes the technical concept of ABV unified reactor plant (RP) for floating and ground small power plants (SPP) developed in JSC 'Afrikantov OKBM'. The report contains the technical specification of the ABV RP utilizing an integral water-cooled reactor with thermal power of 38 to 45 MW, natural coolant circulation and improved inherent safety, as well as main characteristics of the reactor and core fuel ensuring acceptable mobility of the RP and NPP as a whole. The indicated refueling interval is 10-12 years. The report gives a detailed description of the concept for RP safety provision and compliance with international radiation and nuclear safety requirements, as well as the description of passive and other safety systems securing stability to any low-probability internal events, personnel errors and external impacts. The report provides data on application and technological properties of the floating and ground SPPs with a unified ABV RP; absence of spent fuel and radioactive waste at floating nuclear power plants (FNPP); FNPP transportation to consumers in a ready-to-operate state; arrangement, operation and disposal requirements.

  20. APPLICATION OF NUCLEAR TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    1 Application of Fission Track Technique in Stratigraphy Guo Shilun Hao Xiuhong Chen Baoliu Huang Weiwen (Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China) Laterite (red soil) is distributed in the south of China from Qinling mountains to Hainan province and extends to Southeast Asia. The age of the formation and deposition of the laterite is an important subject in geological research. Due to lack of fossils of ancient animals and plants, as well as other objects which could be used for dating , the age of the laterite and its related stratum is unknown in the south of China.

  1. Heat transfer and fluid flow in nuclear systems

    CERN Document Server

    Fenech, Henri

    1982-01-01

    Heat Transfer and Fluid in Flow Nuclear Systems discusses topics that bridge the gap between the fundamental principles and the designed practices. The book is comprised of six chapters that cover analysis of the predicting thermal-hydraulics performance of large nuclear reactors and associated heat-exchangers or steam generators of various nuclear systems. Chapter 1 tackles the general considerations on thermal design and performance requirements of nuclear reactor cores. The second chapter deals with pressurized subcooled light water systems, and the third chapter covers boiling water reacto

  2. Heat pumps in industry. Pt. 2: Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M. [Padova Univ., Vicenza (Italy). Ist. di Ingegneria Gestionale

    1995-04-01

    A selection of applications of heat pumps in industry is described, reporting plant lay-outs and performances. The selection includes compression heat pumps at different temperatures, vapour recompression systems, absorption heat pumps and heat transformers. (author)

  3. Numerical study of heat pipe application in heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Song Lin; Broadbent, John; McGlen, Ryan [Thermacore Europe, Ashington (United Kingdom)

    2005-01-01

    Heat pipes are two-phase heat transfer devices with extremely high effective thermal conductivity. They can be cylindrical or planar in structure. Heat pipes can be embedded in a metal cooling plate, which is attached to the heat source, and can also be assembled with a fin stack for fluid heat transfer. Due to the high heat transport capacity, heat exchangers with heat pipes have become much smaller than traditional heat exchangers in handling high heat fluxes. With the working fluid in a heat pipe, heat can be absorbed on the evaporator region and transported to the condenser region where the vapour condenses releasing the heat to the cooling media. Heat pipe technology has found increasing applications in enhancing the thermal performance of heat exchangers in microelectronics, energy and other industrial sectors. Utilisation of a heat pipe fin stack in the drying cycle of domestic appliances for heat recovery may lead to a significant energy saving in the domestic sector. However, the design of the heat pipe heat exchanger will meet a number of challenges. This paper presents a design method by using CFD simulation of the dehumidification process with heat pipe heat exchangers. The strategies of simulating the process with heat pipes are presented. The calculated results show that the method can be further used to optimise the design of the heat pipe fin stack. The study suggests that CFD modelling is able to predict thermal performance of the dehumidification solution with heat pipe heat exchangers. (Author)

  4. Solution of heat removal from nuclear reactors by natural convection

    Directory of Open Access Journals (Sweden)

    Zitek Pavel

    2014-03-01

    Full Text Available This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR.The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection and its intensification increases significantly the safety of nuclear reactors. Simultaneously the heat removal also solves problems with lifetime of pumps in the primary circuit of high-temperature reactors.

  5. Size control synthesis and characterization of ZnO nanoparticles and its application as ZnO-water based nanofluid in heat transfer enhancement in light water nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Deepak; Pandey, Krishna Murari [National Institute of Technology Silchar, Assam (India). Dept. of Mechanical Engineering

    2017-03-15

    A novel and facile approach for size-tunable synthesis of ZnO nanoparticle (NPs) is reported. Size-tuning was attained by using PEG (polyethylene glycol) of molecular weights 400 and 4000. ZnO NPs was synthesized using homogeneous chemical precipitation followed by hydrothermal. Here triethylamine (TEA) was used as a hydroxylating agent. As-synthesized ZnO NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and Energy Dispersive Spectroscopy (EDS) analysis. Synthesized ZnO nanoparticle was used for the preparation of ZnO-water based nanofluid and its application in heat transfer enhancement in light water nuclear reactor. In this work, ZnO-water based nanofluid of different volume concentration (1%, 2% and 3%) and particle size of 10 nm and 20 nm is used for enhancement in heat transfer in annular channel by using two phase approach. The particle size of 10 nm gives better result for enhancing the heat transfer rate in comparison to 20 nm particle size in nuclear reactor.

  6. Titanium Loop Heat Pipes for Space Nuclear Radiators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop titanium Loop Heat Pipes (LHPs) that can be used in low-mass space nuclear radiators, such as...

  7. Qualitative knowledge engineering for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae H.; Kim, Ko R.; Lee, Jae C.

    1996-01-01

    After the TMI nuclear power plant accident, the two topics of plant safety and operational efficiency became more important areas of artificial intelligence, which have difference characteristics. Qualitative deep model is the recently prospective technology of AI, that can overcome several handicaps of the existing expert systems such as lack of common sense reasoning. The application of AI to the large and complex system like nuclear power plants is typically and effectively done through a module-based hierarchical system. As each module has to be built with suitable AI system. Through the experiences of hierarchical system construction, we aimed to develop basic AI application schemes for the power plant safety and operational efficiency as well as basic technologies for autonomous power plants. The goal of the research is to develop qualitative reasoning technologies for nuclear power plants. For this purpose, the development of qualitative modeling technologies and qualitative behaviour prediction technologies of the power plant are accomplished. In addition, the feasibility of application of typical qualitative reasoning technologies to power plants is studied . The goal of the application is to develop intelligent control technologies of power plants, support technologies. For these purposes, we analyzed the operation of power plants according to its operation purpose: power generation operation, shut-down and start-up operation. As a result, qualitative model of basic components were sketched, including pipes, valves, pumps and heat exchangers. Finally, plant behaviour prediction technologies through qualitative plant heat transfer model and design support technologies through 2nd-order differential equation were developed. For the construction of AI system of power plants, we have studied on the mixed module based hierarchical software. As a testbed, we have considered the spent fuel system and the feedwater system. We also studied the integration

  8. Technical Application of Nuclear Fission

    Science.gov (United States)

    Denschlag, J. O.

    The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.

  9. Modeling transient heat transfer in nuclear waste repositories.

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  10. NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010

    Energy Technology Data Exchange (ETDEWEB)

    Charles V Park

    2011-01-01

    This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

  11. Molten fluorides for nuclear applications

    Directory of Open Access Journals (Sweden)

    Sylvie. Delpech

    2010-12-01

    Full Text Available The importance of pyrochemistry is being increasingly acknowledged and becomes unavoidable in the nuclear field. Molten salts may be used for fuel processing and spent fuel recycling, for heat transfer, as a homogeneous fuel and as a breeder material in fusion systems. Fluorides that are stable at high temperature and under high neutron flux are especially promising. Analysis of several field cases reveals that corrosion in molten fluorides is essentially due to the oxidation of metals by uranium fluoride and/or oxidizing impurities. The thermodynamics of this process are discussed with an emphasis on understanding the mass transfer in the systems, selecting appropriate metallic materials and designing effective purification methods.

  12. Application of robotics in nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, J S; Fisher, J J

    1986-01-01

    Industrial robots and other robotic systems have been successfully applied at the Savannah River nuclear site. These applications, new robotic systems presently under development, general techniques for the employment of robots in nuclear facilities, and future systems are discussed.

  13. Passive heat-transfer means for nuclear reactors. [LMFBR

    Science.gov (United States)

    Burelbach, J.P.

    1982-06-10

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  14. Nuclear Data Needs and Capabilities for Applications

    CERN Document Server

    Bernstein, Lee; Hurst, Aaron; Kelly, John; Kondev, Filip; McCutchan, Elizabeth; Nesaraja, Caroline; Slaybaugh, Rachel; Sonzogni, Alejandro

    2015-01-01

    The Workshop on Nuclear Data Needs and Capabilities for Applications (NDNCA) was held at Lawrence Berkeley National Laboratory (LBNL) on 27-29 May 2015. The goals of NDNCA were compile nuclear data needs across a wide spectrum of applied nuclear science, and to provide a summary of associated capabilities (accelerators, reactors, spectrometers, etc.) available for required measurements. This document represents the results of the workshop and a compilation of other recent documents assessing nuclear data needs for the above-mentioned applications.

  15. Nuclear power plants for mobile applications

    Science.gov (United States)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. The technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants are examined. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  16. Survey of potential process-heat and reject-heat utilization at a Green River nuclear-energy center

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.M.; Sandquist, G.M.

    1982-03-01

    Potential uses of process heat and reject heat from a nuclear-energy center at Green River, Utah have been investigated. The remoteness of the Green River site would preclude many potential industrial uses for economical reasons such as transportation costs and lack of local markets. Water-consumption requirements would also have serious impact on some applications due to limitations imposed by other contractual agreements upon the water in the region. Several processes were identified which could be considered for the Green River site; including the use of heat to separate bitumens from tar sands, district heating, warming of greenhouses and soil, and the production of fish for game and commercial sales. The size of these industries would be limited and no single process or industry can be identified at this time which could use the full amount of low-temperature reject heat that would be generated at a NEC.

  17. Space Nuclear Propulsion Systems and Applications

    Science.gov (United States)

    Schwenk, F. C.

    1972-01-01

    The basic principles of the operation of a nuclear rocket engine are reviewed along with a summary of the early history. In addition, the technology status in the nuclear rocket program for development of the flight-rated NERVA engine is described, and applications for this 75,000-pound thrust engine and the results of nuclear stage studies are presented. Advanced research and supporting technology activities in the nuclear rocket program are also summarized.

  18. Initial economic appraisal of nuclear district heating in France

    Directory of Open Access Journals (Sweden)

    Jasserand Frédéric

    2016-01-01

    Full Text Available Although cogeneration with nuclear power has been proving its feasibility for many years and in many parts of the world, the French nuclear fleet does not use this technique. Nevertheless, current developments within the energy context may offer new opportunities to review the use of nuclear cogeneration. This paper focuses on the use of cogeneration for district heating and its possible development perspectives within the French energy transition. After recapping some common assumptions about nuclear cogeneration, we will describe the techno-economic model that we built to evaluate the characteristics of introducing cogeneration into an already operating power plant. The second step consists in applying the above-described model to a use-case describing the heating of the Parisian area, which represents the largest target for this study. The last step presents the results of a simplified model derived from the first step. Summarizing the model's main input data in a few pertinent parameters gives an initial picture of the potential for developing nuclear district heating in France.

  19. Nuclear Reactions for Astrophysics and Other Applications

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Scielzo, N D; Ressler, J J

    2011-03-01

    Cross sections for compound-nuclear reactions are required for many applications. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  20. Prospect of nuclear application in food technology

    Energy Technology Data Exchange (ETDEWEB)

    Maha, M. (National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre)

    1982-04-01

    Irradiation changes the normal living process of cells and the structure of molecules. It is good for food preservation because it kills off many of the microorganisms in the product and makes the remainder more sensitive to antimicrobial factors prevailing after the radiation treatment. It offers more benefits than conventional preservation in that it increases storage stability and quality of foodstuffs with the minimum use of energy. Good storage quality gives way to wider distribution of food, alleviates the world's food shortage, and improves food supplies. Research proved that irradiation increased the quality of subtropical fruits, spices, fish, and meat. No refrigeration is needed to store meat, poultry and fish preserved by the combination of irradiation and mild heat treatment. Nuclear technology can also be applied to destroy harmful insects, to sterilize food, to inhibit the sprouting of root crops, and to control ripening in stored fruits and vegetables. Based on the above potentials of irradiation, the prospect of nuclear application in food technology is promising.

  1. Offshore watersource heat pump applications

    Energy Technology Data Exchange (ETDEWEB)

    Clark, W.H. II [ARK Associates, Round Rock, TX (United States)

    1996-10-01

    This paper discusses applications of the Water Source Heat Pump (WSHP) technology for offshore drilling or production operations to result in a substantial savings in space conditioning to result in a substantial savings in space conditioning and domestic hot water production. An even more cost competitive application of the WSHP is the once thorough design which circulates cool water from deep in the ocean straight through the unit, then discharges it to the ocean surface. A modification of this open loop technique circulates the fluid within an abandoned well bore casing. The advantage of this system is that natural convection of warm water from deep in the well upward, as the unit returns cool water at or near the surface, will greatly enhance the thermal advantage of the system. This will enable direct use in the heating season and perhaps be sufficient to operate an absorption chiller in the cooling season. The initial cost of either of these systems is equivalent to a packaged ac system, making the WSHP an ideal energy conservation measure.

  2. EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

    2014-09-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

  3. Nuclear- and radiochemistry. Vol. 2. Modern applications

    Energy Technology Data Exchange (ETDEWEB)

    Roesch, Frank (ed.) [Mainz Univ. (Germany). Inst. fuer Kernchemie

    2016-07-01

    This work is conceived to meet the demand of state-of-the-art literature to teach the fundamentals as well as the modern applications of nuclear chemistry. The work will consist of two volumes: the first one covering the basics of nuclear chemistry such as the relevant parameters of instable atomic nuclei, the various modi of radioactive transmutations, the corresponding types of radiation including their detection and dosimetry, and finally the mechanisms of nuclear reactions. The second volume addresses relevant fields of nuclear chemistry, such as the chemistry of radioactive elements, application of radioactive nuclei in life sciences, nuclear energy, waste managements and environmental aspects, radiochemical separations, radioanalytical and spectroscopic methods, etc. Here, leading experts will contribute up-to-date knowledge on the most important application of nuclear chemistry.

  4. Applications of KP Nuclear Parton Distributions

    CERN Document Server

    Kulagin, Sergey

    2016-01-01

    We review the nuclear parton distribution functions computed on the basis of our microscopic model taking into account a number of nuclear effects including Fermi motion and nuclear binding, nuclear meson-exchange currents, off-shell corrections to bound nucleon distributions and nuclear shadowing. We discuss applications to a number of different processes including lepton-nucleus deep inelastic scattering, proton-nucleus Drell-Yan lepton pair production at Fermilab, as well as $W^\\pm$ and $Z^0$ boson production in proton-lead collisions at the LHC.

  5. Promising design options for the encapsulated nuclear heat source reactor

    Energy Technology Data Exchange (ETDEWEB)

    Conway, L.; Carelli, M.D.; Dzodzo, M. [Westinghouse Science and Technology, Pittsburgh, PA (United States); Hossain, Q.; Brown, N.W. [Lawrence Livermore National Lab., CA (United States); Wade, D.C.; Sienick, J.J. [Argonne National Lab., IL (United States); Greenspan, E.; Kastenberg, W.E.; Saphier, D. [University of California Dept of Nuclear Engineering, Berkeley, CA (United States)

    2001-07-01

    Promising design options for the Encapsulated Nuclear Heat Source (ENHS) liquid-metal cooled fast reactor were identified during the first year of the DOE NERI program sponsored feasibility study. Many opportunities for incorporation of innovations in design and fabrication were identified. Three of the innovations are hereby described: a novel IHX (intermediate heat exchanger) made of a relatively small number of rectangular channels, an ENHS module design featuring 100% natural circulation, and a novel conceptual design of core support and fuelling. As a result of the first year study the ENHS concept appears more practical and more promising than perceived at the outset of this study. (authors)

  6. HTGR nuclear heat source component design and experience

    Energy Technology Data Exchange (ETDEWEB)

    Peinado, C.O.; Wunderlich, R.G.; Simon, W.A.

    1982-05-01

    The high-temperature gas-cooled reactor (HTGR) nuclear heat source components have been under design and development since the mid-1950's. Two power plants have been designed, constructed, and operated: the Peach Bottom Atomic Power Station and the Fort St. Vrain Nuclear Generating Station. Recently, development has focused on the primary system components for a 2240-MW(t) steam cycle HTGR capable of generating about 900 MW(e) electric power or alternately producing high-grade steam and cogenerating electric power. These components include the steam generators, core auxiliary heat exchangers, primary and auxiliary circulators, reactor internals, and thermal barrier system. A discussion of the design and operating experience of these components is included.

  7. Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.

    1999-01-13

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  8. Potential industrial market for process heat from nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, R.W.

    1976-07-01

    A specific segment of industrial process heat use has been examined in detail to identify individual plant locations throughout the United states where nuclear generated steam may be a viable alternative. Five major industries have been studied: paper, chemicals, petroleum, rubber, and primary metals. For these industries, representing 75 percent of the total industrial steam consumption, the individual plant locations within the U.S. using steam in large quantities have been located and characterized as to fuel requirements.

  9. Nuclear reaction modeling, verification experiments, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, F.S.

    1995-10-01

    This presentation summarized the recent accomplishments and future promise of the neutron nuclear physics program at the Manuel Lujan Jr. Neutron Scatter Center (MLNSC) and the Weapons Neutron Research (WNR) facility. The unique capabilities of the spallation sources enable a broad range of experiments in weapons-related physics, basic science, nuclear technology, industrial applications, and medical physics.

  10. Thermoacoustic sensor for nuclear fuel temperaturemonitoring and heat transfer enhancement

    Energy Technology Data Exchange (ETDEWEB)

    James A. Smith; Dale K. Kotter; Randall A. Alli; Steven L. Garrett

    2013-05-01

    A new acoustical sensing system for the nuclear power industry has been developed at The Pennsylvania State University in collaboration with Idaho National Laboratories. This sensor uses the high temperatures of nuclear fuel to convert a nuclear fuel rod into a standing-wave thermoacoustic engine. When a standing wave is generated, the sound wave within the fuel rod will be propagated, by acoustic radiation, through the cooling fluid within the reactor or spent fuel pool and can be monitored a remote location external to the reactor. The frequency of the sound can be correlated to an effective temperature of either the fuel or the surrounding coolant. We will present results for a thermoacoustic resonator built into a Nitonic-60 (stainless steel) fuel rod that requires only one passive component and no heat exchangers.

  11. Next Generation Nuclear Plant Intermediate Heat Exchanger Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, Ronald Eugene [Idaho National Laboratory

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C to 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium cooled, prismatic or pebble-bed reactor, and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. The purpose of this report is to address the acquisition strategy for the NGNP Intermediate Heat Exchanger (IHX).This component will be operated in flowing, impure helium on the primary and secondary side at temperatures up to 950°C. There are major high temperature design, materials availability, and fabrication issues that need to be addressed. The prospective materials are Alloys 617, 230, 800H and X, with Alloy 617 being the leading candidate for the use at 950°C. The material delivery schedule for these materials does not pose a problem for a 2018 start up as the vendors can quote reasonable delivery times at the moment. The product forms and amount needed must be finalized as soon as possible. An

  12. Nuclear Data Needs and Capabilities for Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-27

    In July 2014, DOE NP carried out a review of the US Nuclear Data Program. This led to several recommendations, including that the USNDP should “devise effective and transparent mechanisms to solicit input and feedback from all stakeholders on nuclear data needs and priorities.” The review also recommended that USNDP pursue experimental activities of relevance to nuclear data; the revised 2014 Mission Statement accordingly states that the USNDP uses “targeted experimental studies” to address gaps in nuclear data. In support of these recommendations, DOE NP requested that USNDP personnel organize a Workshop on Nuclear Data Needs and Capabilities for Applications (NDNCA). This Workshop was held at Lawrence Berkeley National Laboratory (LBNL) on 27-29 May 2015. The goal of the NDNCA Workshop was to compile nuclear data needs across a wide spectrum of applied nuclear science, and to provide a summary of associated capabilities (accelerators, reactors, spectrometers, etc.) available for the required measurements. The first two days of the workshop consisted of 25 plenary talks by speakers from 16 different institutions, on nuclear energy (NE), national security (NS), isotope production (IP), and industrial applications (IA). There were also shorter “capabilities” talks that described the experimental facilities and instrumentation available for the measurement of nuclear data. This was followed by a third day of topic-specific “breakout” sessions and a final closeout session. The agenda and copies of these talks are available online at http://bang.berkeley.edu/events/NDNCA/agenda. The importance of nuclear data to both basic and applied nuclear science was reflected in the fact that while the impetus for the workshop arose from the 2014 USNDP review, joint sponsorship for the workshop was provided by the Nuclear Science and Security Consortium, a UC-Berkeley based organization funded by the National Nuclear Security Administration (NNSA).

  13. Nuclear medicine therapy principles and clinical applications

    CERN Document Server

    Aktolun, Cumali

    2012-01-01

    This book reviews nuclear medicine techniques and technology for therapy of malignant and benign diseases, covering scientific principles and clinical applications, and trials of experimental agents for treating tumors involving virtually every organ system.

  14. Heat transfer in nuclear fuels: Measurements of gap conductance

    Science.gov (United States)

    Cho, Chun Hyung

    Heat transfer in the fuel-clad gap in a nuclear reactor impacts the overall temperature distribution, stored energy and the mechanical properties of a nuclear fuel rod. Therefore, an accurate estimation of the gap conductance between the fuel and the clad is critically important for reactor design and operations. To obtain the requisite accuracy in the gap conductance estimation, it is important to understand the effects of the convective heat transfer coefficient, the gas composition, pressure and temperature, and so forth. The objectives of this study are to build a bench-scale experimental apparatus for the measurement of thermal gap conductances and to develop a better understanding of the differences that have been previously observed between such measured values and those predicted theoretically. This is accomplished by employing improved analyses of the experiments and improved theoretical models. Using laser heating of slightly separated stainless-steel plates, the gap conductance was measured using a technique that compares the theoretical and experimental time dependent temperatures at the back surface of the second plate. To consider the effects of surface temperature and gas pressure, the theoretical temperatures were calculated using a convective heat transfer coefficient that was dependent upon both the temperature and the gas pressure.

  15. Molten Chloride Salts for Heat Transfer in Nuclear Systems

    Science.gov (United States)

    Ambrosek, James Wallace

    2011-12-01

    A forced convection loop was designed and constructed to examine the thermal-hydraulic performance of molten KCl-MgCl2 (68-32 at %) salt for use in nuclear co-generation facilities. As part of this research, methods for prediction of the thermo-physical properties of salt mixtures for selection of the coolant salt were studied. In addition, corrosion studies of 10 different alloys were exposed to the KCl-MgCl2 to determine a suitable construction material for the loop. Using experimental data found in literature for unary and binary salt systems, models were found, or developed to extrapolate the available experimental data to unstudied salt systems. These property models were then used to investigate the thermo-physical properties of the LINO3-NaNO3-KNO 3-Ca(NO3), system used in solar energy applications. Using these models, the density, viscosity, adiabatic compressibility, thermal conductivity, heat capacity, and melting temperatures of higher order systems can be approximated. These models may be applied to other molten salt systems. Coupons of 10 different alloys were exposed to the chloride salt for 100 hours at 850°C was undertaken to help determine with which alloy to construct the loop. Of the alloys exposed, Haynes 230 had the least amount of weight loss per area. Nickel and Hastelloy N performed best based on maximum depth of attack. Inconel 625 and 718 had a nearly uniform depletion of Cr from the surface of the sample. All other alloys tested had depletion of Cr along the grain boundaries. The Nb in Inconel 625 and 718 changed the way the Cr is depleted in these alloys. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. A high temperature pump, thermal flow meter, and pressure differential device was designed, constructed and tested for use in the loop, The heat transfer of the molten chloride salt was found to

  16. Application of nuclear physics in medical physics and nuclear medicine

    Science.gov (United States)

    Hoehr, Cornelia

    2016-09-01

    Nuclear physics has a long history of influencing and advancing medical fields. At TRIUMF we use the applications of nuclear physics to diagnose several diseases via medical isotopes and treat cancer by using proton beams. The Life Science division has a long history of producing Positron Emission Tomography (PET) isotopes but we are also investigating the production of SPECT and PET isotopes with a potential shortage for clinical operation or otherwise limited access to chemists, biologists and medical researchers. New targets are being developed, aided by a simulation platform investigating the processes inside a target under proton irradiation - nuclear, thermodynamic, and chemical. Simulations also aid in the development of new beam-shaping devices for TRIUMF's Proton Therapy facility, Canada's only proton therapy facility, as well as new treatment testing systems. Both promise improved treatment delivery for cancer patients.

  17. Waste heat recovery for offshore applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Kandepu, Rambabu; Haglind, Fredrik

    2012-01-01

    energy in the gas turbine off-gas using heat exchangers, and the recovered thermal energy acts as heat source for some of the heat loads on the platform. The amount of the recovered thermal energy depends on the heat loads and thus the full potential of waste heat recovery units may not be utilized...... vary in the range 20-30%. There are several technologies available for onshore gas turbines (and low/medium heat sources) to convert the waste heat into electricity. For offshore applications it is not economical and practical to have a steam bottoming cycle to increase the efficiency of electricity...... production, due to low gas turbine outlet temperature, space and weight restrictions and the need for make-up water. A more promising option for use offshore is organic Rankine cycles (ORC). Moreover, several oil and gas platforms are equipped with waste heat recovery units to recover a part of the thermal...

  18. Aging management guideline for commercial nuclear power plants - heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

    1994-06-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  19. Chiral unitary theory: Application to nuclear problems

    Indian Academy of Sciences (India)

    E Oset; D Cabrera; H C Chiang; C Garcia Recio; S Hirenzaki; S S Kamalov; J Nieves; Y Okumura; A Ramos; H Toki; M J Vicente Vacas

    2001-08-01

    In this talk we briefly describe some basic elements of chiral perturbation theory, , and how the implementation of unitarity and other novel elements lead to a better expansion of the -matrix for meson–meson and meson–baryon interactions. Applications are then done to the interaction in nuclear matter in the scalar and vector channels, antikaons in nuclei and - atoms, and how the meson properties are changed in a nuclear medium.

  20. Heterogeneous nuclear ribonucleoprotein K inhibits heat shock-induced transcriptional activity of heat shock factor 1.

    Science.gov (United States)

    Kim, Hee-Jung; Lee, Jae-Jin; Cho, Jin-Hwan; Jeong, Jaeho; Park, A Young; Kang, Wonmo; Lee, Kong-Joo

    2017-08-04

    When cells are exposed to heat shock and various other stresses, heat shock factor 1 (HSF1) is activated, and the heat shock response (HSR) is elicited. To better understand the molecular regulation of the HSR, we used 2D-PAGE-based proteome analysis to screen for heat shock-induced post-translationally modified cellular proteins. Our analysis revealed that two protein spots typically present on 2D-PAGE gels and containing heterogeneous nuclear ribonucleoprotein K (hnRNP K) with trioxidized Cys(132) disappeared after the heat shock treatment and reappeared during recovery, but the total amount of hnRNP K protein remained unchanged. We next tested whether hnRNP K plays a role in HSR by regulating HSF1 and found that hnRNP K inhibits HSF1 activity, resulting in reduced expression of hsp70 and hsp27 mRNAs. hnRNP K also reduced binding affinity of HSF1 to the heat shock element by directly interacting with HSF1 but did not affect HSF1 phosphorylation-dependent activation or nuclear localization. hnRNP K lost its ability to induce these effects when its Cys(132) was substituted with Ser, Asp, or Glu. These findings suggest that hnRNP K inhibits transcriptional activity of HSF1 by inhibiting its binding to heat shock element and that the oxidation status of Cys(132) in hnRNP K is critical for this inhibition. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Nuclear and Radiochemistry Fundamentals and Applications

    CERN Document Server

    Lieser, Karl Heinrich

    2001-01-01

    This handbook gives a complete and concise description of the up-to-date knowledge of nuclear and radiochemsitry and applications in the various fields of science. I is based on teaching courses and on research for over 40 years. The book is addressed to any researcher whishing sound knowledge about the properties of matter, be it a chemist, a physicist, a medical doctor, a mineralogist or a biologist. They will all find it a valuable source of information about the principles and applications of nuclear and radiochemistry. Research in radiochemistry includes: Study of radioactice matter in na

  2. Heat pipe reactors for space power applications

    Science.gov (United States)

    Koenig, D. R.; Ranken, W. A.; Salmi, E. W.

    1977-01-01

    A family of heat pipe reactors design concepts has been developed to provide heat to a variety of electrical conversion systems. Three power plants are described that span the power range 1-500 kWe and operate in the temperature range 1200-1700 K. The reactors are fast, compact, heat-pipe cooled, high-temperature nuclear reactors fueled with fully enriched refractory fuels, UC-ZrC or UO2. Each fuel element is cooled by an axially located molybdenum heat pipe containing either sodium or lithium vapor. Virtues of the reactor designs are the avoidance of single-point failure mechanisms, the relatively high operating temperature, and the expected long lifetimes of the fuel element components.

  3. HEAT PUMP APPLICATION IN FOOD TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Péter Korzenszky

    2012-10-01

    Full Text Available The economy of food technologies is greatly influenced by their energy consumption. Almost no operation or procedure exists that could be executed without the need for electricity. At the same time, several technologies require direct or indirect input of thermal energy as well. An example to quote is the heating of the raw materials of food industry or the pasteurisation or sterilisation of finished products, but heating the production rooms or cleaning or washing the machinery also require energy. Needless to say food industry plants constantly seek ways to improve their energy efficiency such as the reintroduction of waste heat into the technology and the use of renewables. Heat recovering heat exchangers are used in the pasteurisation technology of milk. In case of lower temperatures, however, simple heat exchangers are of no use. Few practical examples of heat recovery obtained upon cooling products or raw materials exist in the food industry even though the possibility of this is available using heat pumps. Heat pumps have been successfully applied to heat apartments with thermal energy recovered from the cooling of soils, water or air or to utilise the excess heat of thermal spring waters. Our present article introduces the application possibility in a soda water plant, fundamentally determining the quality of soda water and showing an example of rational utilisation.

  4. Heat pipes theory, design and applications

    CERN Document Server

    Reay, David; Kew, Peter

    2013-01-01

    Heat Pipes, 6th Edition, takes a highly practical approach to the design and selection of heat pipes, making it an essential guide for practicing engineers and an ideal text for postgraduate students. This new edition has been revised to include new information on the underlying theory of heat pipes and heat transfer, and features fully updated applications, new data sections, and updated chapters on design and electronics cooling. The book is a useful reference for those with experience and an accessible introduction for those approaching the topic for the first time. Contains all informat

  5. Coupling of high temperature nuclear reactor with chemical plant by means of steam loop with heat pump

    Directory of Open Access Journals (Sweden)

    Kopeć Mariusz

    2017-01-01

    Full Text Available High temperature nuclear reactors (HTR can be used as an excellent, emission-free source of technological heat for various industrial applications. Their outlet helium temperature (700°-900°C allows not only for heat supply to all processes below 600°C (referred to as “steam class”, but also enables development of clean nuclear-assisted hydrogen production or coal liquefaction technologies with required temperatures up to 900°C (referred to as “chemical class”. This paper presents the results of analyses done for various configurations of the steam transport loop coupled with the high-temperature heat pump designed for “chemical class” applications. The advantages and disadvantages as well as the key issues are discussed in comparison with alternative solutions, trying to answer the question whether the system with the steam loop and the hightemperature heat pump is viable and economically justified.

  6. Application of Heat Pipes in Cold Region

    Science.gov (United States)

    Mochizuki, Masataka

    Recently, there has been put into practical use of heat pipes as space application, electronics cooling, and waste heat recovery. Especially, the low temperature heat pipe which can be used in below atmospheric temperature are also actively developed and applied in terrestrial field. These are based on utilization of natural energy in cold region. This paper is described about application of snow melting and deicing system on a road and roof, snow damage prevention system for electric pole branch wire, artificial permafrost storage system as a reverse utilization of cold atmosphere, and cryo-anchor applied in Alaska and northern Canada.

  7. Applications of nuclear medicine in genitourinary imaging

    Energy Technology Data Exchange (ETDEWEB)

    Blaufox, M.D.; Kalika, V.; Scharf, S.; Milstein, D.

    1982-01-01

    Major advances in nuclear medicine instrumentation and radiopharmaceuticals for renal studies have occurred during the last decade. Current nuclear medicine methodology can be applied for accurate evaluation of renal function and for renal imaging in a wide variety of clinical situations. Total renal function can be estimated from the plasma clearance of agents excreted by glomerular filtration or tubular secretion, and individual function can be estimated by imaging combined with renography. A major area of radionuclide application is in the evaluation of obstructive uropathy. The introduction of diuretic renography and the use of computer-generated regions of interest offer the clinician added useful data which may aid in diagnosis and management. Imaging is of proven value also in trauma, renovascular hypertension, and acute and chronic renal failure. Methods for the evaluation of residual urine, vesicoureteral reflux, and testicular torsion have achieved increasing clinical use. These many procedures assure a meaningful and useful role for the application of nuclear medicine in genitourinary imaging.

  8. Nuclear and radiochemistry. Fundamental and applications

    Energy Technology Data Exchange (ETDEWEB)

    Lieser, K.H. [VCH Verlagsgesellschaft, Weinheim (Germany)

    1998-03-01

    Here is presented a book that reviews on the knowledge in nuclear chemistry and radiochemistry. It especially for chemists that are interested in properties and applications of radioelements in fields as different as geology, mineralogy, biology, medicine and environment. (N.C.)

  9. Cooling Performance Evaluation of the Hybrid Heat Pipe for Spent Nuclear Fuel Dry Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yeong Shin; Bang, In Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To evaluate the concept of the cooling device, 2-step CFD analysis was conducted for the cooling performance of hybrid heat pipe, which consists of single fuel assembly model and full scope dry cask model. As a passive cooling device of the metal cask for dry storage of spent nuclear fuel, hybrid heat pipe was applied to DPC developed in Korea. Hybrid heat pipe is the heat pipe containing neutron absorber can be used as a passive cooling in nuclear application with both decay heat removal and control the reactivity. In this study, 2-step CFD analysis was performed to find to evaluate the heat pipe-based passive cooling system for the application to the dry cask. Only spent fuel pool cannot satisfy the demands for high burnup fuel and large amount of spent fuel. Therefore, it is necessary to prepare supplement of the storage facilities. As one of the candidate of another type of storage, dry storage method have been preferred due to its good expansibility of storage capacity and easy long-term management. Dry storage uses the gas or air as coolant with passive cooling and neutron shielding materials was used instead of water in wet storage system. It is relatively safe and emits little radioactive waste for the storage. As short term actions for the limited storage capacity of spent fuel pool, it is considered to use dry interim/long term storage method to increase the capacity of spent nuclear fuel storage facilities. For 10-year cooled down spent fuel in the pool storage, fuel rod temperature inside metal cask is expected over 250 .deg. C in simulation. Although it satisfied the criteria that cladding temperature of the spent fuel should keep under 400 .deg. C during storage period, high temperature inside cask can accelerate the thermal degradation of the structural materials consisting metal cask and fuel assembly as well as limitation of the storage capacity of metal cask. In this paper, heat pipe-based cooling device for the dry storage cask was suggested for

  10. Magnetic Flux Controllers for Induction Heating Applications

    Institute of Scientific and Technical Information of China (English)

    Valentin Nemkov; Robert Goldstein; Robert Ruffini

    2004-01-01

    Application of magnetic flux controllers/concentrators to induction heating coils can drastically improve the process efficiency and heat pattern control. Presentation includes: benefits provided by flux controllers, materials available for controllers, application techniques, computer assisted design of induction coils with concentrators, examples of applications. Depending on induction system design, magnetic flux controllers can concentrate heating in a specified area,change heat source distribution and shield a particular part zone or external area preventing unintended eddy current heating.Besides of the coil efficiency improvement and optimal power distribution, magnetic flux controllers reduce the coil current demand from a supplying circuitry thus strongly reducing losses in busswork, cables, transformers and inverter components.Improvement that can be achieved due to magnetic flux controllers is case dependable. 2D and 3D computer simulation allows the designer to predict accurately effect of controllers on the coil parameters and temperature distribution and optimize the whole electromagnetic system. Special attention in presentation is paid to new magnetodielectric materials optimized for induction heating conditions. These materials have high magnetic permeability and saturation flux density,excellent machinability, good chemical and temperature resistance. Concentrators from these materials can work in a wide range of frequencies and specific powers. Examples of magnetic flux controller application include surface hardening of shafts and gears, induction surface hardfacing and brazing.

  11. Optimum size of nanorods for heating application

    Energy Technology Data Exchange (ETDEWEB)

    Seshadri, G., E-mail: seshg@stanford.edu; Thaokar, Rochish; Mehra, Anurag

    2014-08-01

    Magnetic nanoparticles (MNP's) have become increasingly important in heating applications such as hyperthermia treatment of cancer due to their ability to release heat when a remote external alternating magnetic field is applied. It has been shown that the heating capability of such particles varies significantly with the size of particles used. In this paper, we theoretically evaluate the heating capability of rod-shaped MNP's and identify conditions under which these particles display highest efficiency. For optimally sized monodisperse particles, the power generated by rod-shaped particles is found to be equal to that generated by spherical particles. However, for particles which are not mono dispersed, rod-shaped particles are found to be more effective in heating as a result of the greater spread in the power density distribution curve. Additionally, for rod-shaped particles, a dispersion in the radius of the particle contributes more to the reduction in loss power when compared to a dispersion in the length. We further identify the optimum size, i.e the radius and length of nanorods, given a bi-variate log-normal distribution of particle size in two dimensions. - Highlights: • Theoretically estimated loss power of magnetic nanorods. • Compared the heat generation by nanorods and nano-spheres. • Incorporated size distribution of particles into calculations. • Nanorods are more efficient than nano-spheres for heating. • 2D heat maps for optimizing size of nanorods for heating.

  12. Nuclear medicine applications and their mathematical basis

    CERN Document Server

    Goris, Michael

    2011-01-01

    This book reviews some principal applications of nuclear medicine, specifically from the viewpoint of the mathematical and physical analyses that support the interpretation. In contradistinction to other approaches, the mathematics does not precede the applications in introductory chapters, but is presented in the application chapters with various degrees of granularity. More details on mathematical derivations are illustrated in the last chapter for interested readers. A more detailed review of Bayes theorem can be found (in Chapter 7) explaining how the literature results were retabulated

  13. Tie Tube Heat Transfer Modeling for Bimodal Nuclear Thermal Rockets

    Science.gov (United States)

    Clough, Joshua A.; Starkey, Ryan P.; Lewis, Mark J.; Lavelle, Thomas M.

    2007-01-01

    Bimodal nuclear thermal rocket systems have been shown to reduce the weight and cost of space vehicles to Mars and beyond by utilizing the reactor for power generation in the relatively long duration between burns in an interplanetary trajectory. No information, however, is available regarding engine and reactor-level operation of such bimodal systems. The purpose of this project is to generate engine and reactor models with sufficient fidelity and flexibility to accurately study the component-level effects of operating a propulsion-designed reactor at power generation levels. Previous development of a 1-D reactor and tie tube model found that ignoring heat generation inside of the tie tube leads to under-prediction of the temperature change and over-prediction of pressure change across the tie tube. This paper will present the development and results of a tie tube model that has been extended to account for heat generation, specifically in the moderator layer. This model is based on a 1-D distribution of power in the fuel elements and tie tubes, as a precursor to an eventual neutron-driven reactor model.

  14. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Canaan, R.E.

    1995-12-01

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  15. 77 FR 16278 - License Renewal Application for Indian Point Nuclear Generating Units 2 and 3; Entergy Nuclear...

    Science.gov (United States)

    2012-03-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION License Renewal Application for Indian Point Nuclear Generating Units 2 and 3; Entergy Nuclear Operations, Inc. AGENCY: Nuclear Regulatory Commission. ACTION: License renewal application; intent...

  16. Heat transfer applications for the practicing engineer

    CERN Document Server

    Theodore, Louis

    2011-01-01

    This book serves as a training tool for individuals in industry and academia involved with heat transfer applications. Although the literature is inundated with texts emphasizing theory and theoretical derivations, the goal of this book is to present the subject of heat transfer from a strictly pragmatic point of view. The book is divided into four Parts: Introduction, Principles, Equipment Design Procedures and Applications, and ABET-related Topics. The first Part provides a series of chapters concerned with introductory topics that are required when solving most engineering problems, inclu

  17. Thorium dioxide: properties and nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Belle, J.; Berman, R.M. (eds.)

    1984-01-01

    This is the sixth book on reactor materials published under sponsorship of the Naval Reactors Office of the United States Department of Energy, formerly the United States Atomic Energy Commission. This book presents a comprehensive compilation of the most significant properties of thorium dioxide, much like the book Uranium Dioxide: Properties and Nuclear Applications presented information on the fuel material used in the Shippingport Pressurized Water Reactor core.

  18. Nuclear and radiochemistry fundamentals and applications

    CERN Document Server

    Lieser, Karl Heinrich

    2001-01-01

    his new edition of the best-selling handbook gives a complete and concise description of the latest knowledge on nuclear and radiochemistry as well as their applications in the various fields of science. It is based on over 40 years experience in teaching courses and research.The book is aimed at all researchers seeking sound knowledge about the properties of matter, whether chemists, physicists, medical doctors, mineralogists or biologists. All of them will find this a valuable source of information

  19. Technology development for nuclear power generation for space application

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine N.F.; Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Nascimento, Jamil A.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: lamartine.guimaraes@pq.cnpq.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear; Faria, Saulo M. de [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2015-07-01

    For a few years now, the TERRA project is developing several technology pieces to foster nuclear space applications. In this way, a nuclear reactor concept has been developed as a first proposal. Together, the problem of heat to electricity conversion has been addressed. A closed Brayton cycle is being built and a Stirling machine is being worked out and perfected. In addition, two types of heat pipes are being look at. One related with high temperature made of Mo13Re, an especial alloy. And a second one made of copper, which mainly could be used as a passive heat rejection. In this way, all major areas of interest in a micro station to be used in space has been addressed. A new passive technology has been inferred and is related with Tesla turbine or its evolution, known as multi fluid passive turbine. This technology has the potential to either: improve the Brayton cycle or its efficiency. In this paper, some details are discussed and some will be shown during the presentation, as the work evolve. (author)

  20. Innovations in the supply chain and construction engineering of nuclear-based heat transfer components

    Energy Technology Data Exchange (ETDEWEB)

    Perales, A. [Equipos Nucleares, S.A. - Ensa, Jose Ortega y Gasset, 28006 Madrid (Spain); Woolf, G. [Tecnicas Reunidas - TR, Arapiles, 28014 Madrid (Spain)

    2010-07-01

    Equipos Nucleares S.A. (Ensa) and Tecnicas Reunidas S.A. (TR), both long-established Spanish companies, have brought together innovative approaches for the supply of heat transfer solution packages by combining their respective experiences in heat exchanger design (TR), manufacturing (Ensa), and nuclear materials procurement (Ensa and TR), thereby founding a new potent European component supplier for nuclear power plants with over 50 years of experience in the global nuclear market. The combined strategy of the Ensa-TR association which addresses the problems currently faced by nuclear component suppliers is described herein. (authors)

  1. Nuclear energy an introduction to the concepts, systems, and applications of nuclear processes

    CERN Document Server

    Murray, Raymond L; Murphy, Arthur T; Rosenthal, Daniel I

    1987-01-01

    Nuclear Energy: An Introduction to the Concepts, Systems, and Applications of Nuclear Processes introduces the reader to the concepts, systems, and applications of nuclear processes. It provides a factual description of basic nuclear phenomena, as well as devices and processes that involve nuclear reactions. The problems and opportunities that are inherent in a nuclear age are also highlighted.Comprised of 27 chapters, this book begins with an overview of fundamental facts and principles, with emphasis on energy and states of matter, atoms and nuclei, and nuclear reactions. Radioactivi

  2. Review of nanofluids for heat transfer applications

    Institute of Scientific and Technical Information of China (English)

    Dongsheng Wen; Guiping Lin; Saeid Vafaei; Kai Zhang

    2009-01-01

    Research on nanofluids has progressed rapidly since its enhanced thermal conductivity was first repotted about a decade ago,though much controversy and inconsistency have been reported,and insufficient understanding of the formulation and mechanism of nanofluids further limits their applications.This work presents a critical review of research on heat transfer applications of nanofluids with the aim of identifying the limiting factors so as to push forward their further development.

  3. U.S. Forward Operating Base Applications of Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, George W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.

  4. Recent applications of nuclear track emulsion

    Science.gov (United States)

    Mamatkulov, K. Z.; Ambřozová, I.; Artemenkov, D. A.; Bradnova, V.; Kamanin, D. V.; Kattabekov, R. R.; Majling, L.; Marey, A.; Ploc, O.; Rusakova, V. V.; Stanoeva, R.; Turek, K.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.

    2016-05-01

    Application of the nuclear track emulsion technique (NTE) in radioactivity and nuclear fission studies is discussed. It is suggested to use a HSP-1000 automated microscope for searching for a collinear cluster tri-partition of heavy nuclei implanted in NTE. Calibrations of α-particles and ion ranges in a novel NTE are carried out. Surface exposures of NTE samples to a Cf-252 source started. Planar events containing fragments and long-range α-particles as well as fragment triples only are studied. NTE samples are calibrated by ions Kr and Xe of energy of 1.2 and 3 A MeV. Use of the image recognition program "ImageJ" for obtaining characteristics of individual events and for events from the large scan area is presented.

  5. Freeze Technology for Nuclear Applications - 13590

    Energy Technology Data Exchange (ETDEWEB)

    Rostmark, Susanne C.; Knutsson, Sven [Lulea University of Technology (Sweden); Lindberg, Maria [Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)

    2013-07-01

    Freezing of soil materials is a complicated process of a number of physical processes: - freezing of pore water in a thermal gradient, - cryogenic suction causing water migration and - ice formation expanding pores inducing frost heave. Structural changes due to increase of effective stress during freezing also take place. The over consolidation gives a powerful dewatering/drying effect and the freeze process causes separation of contaminates. Artificial ground freezing (AGF is a well established technique first practiced in south Wales, as early as 1862. AGF is mostly used to stabilize tunnels and excavations. During the last ten years underwater applications of freeze technologies based on the AGF have been explored in Sweden. The technology can, and has been, used in many different steps in a remediation action. Freeze Sampling where undisturbed samples are removed in both soft and hard sediment/sludge, Freeze Dredging; retrieval of sediment with good precision and minimal redistribution, and Freeze Drying; volume reduction of contaminated sludge/sediment. The application of these technologies in a nuclear or radioactive environment provides several advantages. Sampling by freezing gives for example an advantage of an undisturbed sample taken at a specified depth, salvaging objects by freezing or removal of sludges is other applications of this, for the nuclear industry, novel technology. (authors)

  6. Laser applications in nuclear power plants

    Indian Academy of Sciences (India)

    D N Sanyal

    2014-01-01

    This paper reports the state of the art of using a solid-state Nd:YAG laser for material processing applications such as cutting, welding and drilling of several components of operational nuclear reactors in radioactive environment. We have demonstrated several advantages of laserbased material processing over conventional methods, and these are discussed briefly. At NPCIL, we have used laser techniques to cut stainless steel sheets up to 14 mm thickness and stainless steel weld up to a depth of 3 mm. This remotely operable laser system has been engineered for its robustness with proper fixtures and tooling for various material processing operations on industrial scale.

  7. Nuclear Safety Design Base for License Application

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Garrett

    2005-09-29

    The purpose of this report is to identify and document the nuclear safety design requirements that are specific to structures, systems, and components (SSCs) of the repository that are important to safety (ITS) during the preclosure period and to support the preclosure safety analysis and the license application for the high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. The scope of this report includes the assignment of nuclear safety design requirements to SSCs that are ITS and does not include the assignment of design requirements to SSCs or natural or engineered barriers that are important to waste isolation (ITWI). These requirements are used as input for the design of the SSCs that are ITS such that the preclosure performance objectives of 10 CFR 63.111(b) [DIRS 173273] are met. The natural or engineered barriers that are important to meeting the postclosure performance objectives of 10 CFR 63.113(b) and (c) [DIRS 173273] are identified as ITWI. Although a structure, system, or component (SSC) that is ITS may also be ITWI, this report is only concerned with providing the nuclear safety requirements for SSCs that are ITS to prevent or mitigate event sequences during the repository preclosure period.

  8. Nuclear Energy CFD Application Management System

    Energy Technology Data Exchange (ETDEWEB)

    Hyung Lee; Kimberlyn C. Mousseau

    2001-09-01

    In modeling and simulation (M&S), it is virtually impossible to separately evaluate the effectiveness of the model from the data used because the results produced rely heavily on the interaction between the two. Both the data and the simulation are responsible for achieving the ultimate goal of providing defensible research and development (R&D) products and decisions. It is therefore vital that data verification and validation (V&V) activities, along with stringent configuration management, be considered part of the overall M&S accreditation process. In support of these goals is the Nuclear Energy CFD Application Management System (NE-CAMS) for nuclear system design and safety analysis. Working with Bettis Laboratory and Utah State University, a plan of action is being developed by the Idaho National Laboratory (INL) that will address the highest and most immediate needs to track and manage computational fluid dynamics (CFD) models and experimental data in an electronic database. The database will intrinsically incorporate the Nuclear Regulatory Commission (NRC) approved policies and procedures for quality. The quality requirements will be such that the model and data must conform to the quality specifications outlined by the NRC before they can be entered into the database. The primary focus of this database is CFD V&V for nuclear industry needs and will, in practice, serve as the best practice guideline that will accommodate NRC regulations. Such a database, along with a prescriptive methodology for how to utilize it, will provide the NRC with accepted CFD results that could potentially be used for licensing. NE-CAMS will incorporate data V&V as key precursors to the distribution of nuclear systems design and safety data, ensuring that these data are appropriate for use in a particular M&S application. Verification will be conducted to provide a level of confidence that the data selected are the most appropriate for the simulation and are properly prepared, i

  9. Thermodynamic Analysis of the Use a Chemical Heat Pump to Link a Supercritical Water-Cooled Nuclear Reactor and a Thermochemical Water-Splitting Cycle for Hydrogen Production

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved “steam” parameters (outlet temperatures up to 625°C and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600°C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the “nuclear” heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted

  10. Recent applications of nuclear track emulsion technique

    Energy Technology Data Exchange (ETDEWEB)

    Zarubin, P. I., E-mail: zarubin@lhe.jinr.ru [Joint Institute for Nuclear Research, Veksler and Baldin Laboratory of High Energy Physics (Russian Federation)

    2016-12-15

    A survey of recent results obtained using the nuclear track emulsion (NTE) technique in low energy applications is given. NTE irradiation with 60 MeV {sup 8}He nuclei provides identification of their decays at stopping, evaluation of the possibility of α range spectrometry, and observation of drift of thermalized {sup 8}He atoms. Correlations of α particles studied in {sup 12}C → 3α splitting induced by 14.1 MeV neutrons indicate the presence of a superposition of 0{sup +} and 2{sup +} states of the {sup 8}Be nucleus in the ground state of {sup 12}C. Angular correlations of fragments are studied in boron-enriched NTE, and the prospects of NTE application in radioactivity and nuclear fission research are discussed. It is proposed to use an automated microscope to search for collinear tripartition of heavy nuclei implanted in NTE. Surface irradiation of NTE by a {sup 252}Cf source is started. Planar events containing fragment pairs and long range α particles, as well as fragment triples, are studied. NTE samples are calibrated using Kr and Xe ions with an energy of 1.2 and 3 A MeV.

  11. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  12. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-10-03

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in ancircular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mas velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel.

  13. Nuclear Resonance Fluorescence for Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ludewigt, Bernhard A; Quiter, Brian J; Ambers, Scott D

    2011-02-04

    In nuclear resonance fluorescence (NRF) measurements, resonances are excited by an external photon beam leading to the emission of {gamma} rays with specific energies that are characteristic of the emitting isotope. The promise of NRF as a non-destructive analysis technique (NDA) in safeguards applications lies in its potential to directly quantify a specific isotope in an assay target without the need for unfolding the combined responses of several fissile isotopes as often required by other NDA methods. The use of NRF for detection of sensitive nuclear materials and other contraband has been researched in the past. In the safeguards applications considered here one has to go beyond mere detection and precisely quantify the isotopic content, a challenge that is discussed throughout this report. Basic NRF measurement methods, instrumentation, and the analytical calculation of NRF signal strengths are described in Section 2. Well understood modeling and simulation tools are needed for assessing the potential of NRF for safeguards and for designing measurement systems. All our simulations were performed with the radiation transport code MCNPX, a code that is widely used in the safeguards community. Our initial studies showed that MCNPX grossly underestimated the elastically scattered background at backwards angles due to an incorrect treatment of Rayleigh scattering. While new, corrected calculations based on ENDF form factors showed much better agreement with experimental data for the elastic scattering of photons on an uranium target, the elastic backscatter is still not rigorously treated. Photonuclear scattering processes (nuclear Thomson, Delbruck and Giant Dipole Resonance scattering), which are expected to play an important role at higher energies, are not yet included. These missing elastic scattering contributions were studied and their importance evaluated evaluated against data found in the literature as discussed in Section 3. A transmission experiment

  14. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Chan-Gi, E-mail: changipack@amc.seoul.kr [Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Ahn, Sang-Gun [Dept. of Pathology, College of Dentistry, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2015-07-31

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.

  15. Geothermal direct heat applications program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    The use of geothermal energy for direct heat purposes by the private sector within the US has been quite limited to date. However, there is a large potential market for thermal energy in such areas as industrial processing, agribusiness, and space/water heating of commercial and residential buildings. Technical and economic information is needed to assist in identifying prospective direct heat users and to match their energy needs to specific geothermal reservoirs. Technological uncertainties and associated economic risks can influence the user's perception of profitability to the point of limiting private investment in geothermal direct applications. To stimulate development in the direct heat area, the Department of Energy, Division of Geothermal Energy, issued two Program Opportunity Notices (PON's). These solicitations are part of DOE's national geothermal energy program plan, which has as its goal the near-term commercialization by the private sector of hydrothermal resources. Encouragement is being given to the private sector by DOE cost-sharing a portion of the front-end financial risk in a limited number of demonstration projects. The twenty-two projects summarized herein are direct results of the PON solicitations.

  16. Industrial Heat Pump for a High Temperature District Heating Application

    DEFF Research Database (Denmark)

    Poulsen, Claus Nørgaard

    2013-01-01

    by excess thermal energy from thermal solar panels. An industrial heat pump system using the natural refrigerant ammonia, is extracting the thermal energy from the storage when needed, and produce hot water at 85°C, for the district heating grid. The heat pump also acts as contributor to electricity grid...

  17. Advanced ceramic materials for next-generation nuclear applications

    Science.gov (United States)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  18. Advanced ceramic materials for next-generation nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Savannah River National Laboratory Aiken, SC 29802 (United States)

    2011-10-29

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme

  19. A model for heat flow in deep borehole disposals of high-level nuclear waste

    Science.gov (United States)

    Gibb, Fergus G. F.; Travis, Karl P.; McTaggart, Neil A.; Burley, David

    2008-05-01

    Deep borehole disposal (DBD) is emerging as a viable alternative to mined repositories for many forms of highly radioactive waste. It is geologically safer, more secure, less environmentally disruptive and potentially more cost-effective. All high-level wastes generate heat leading to elevated temperatures in and around the disposal. In some versions of DBD this heat is an essential part of the disposal while in others it affects the performances of materials and waste forms and can threaten the success of the disposal. Different versions of DBD are outlined, for all of which it is essential to predict the distribution of temperature with time. A generic physical model is established and a mathematical model set up involving the transient conductive heat flow differential equation for a cylindrical source term with realistic decay. This equation is solved using the method of Finite Differences. A Fortran computer code (GRANITE) has been developed for the model in the context of DBD and validated against theoretical and other benchmarks. The limitations of the model, code, input parameters and data used are discussed and it is concluded that the model provides a satisfactory basis for predicting temperatures in DBD. Examples of applications to some DBD scenarios are given and it is shown that the results are essential to the design strategy of the DBD versions, geometric details and choice of materials used. Without such modeling it would be impossible to progress DBD of nuclear wastes; something that is now being given serious consideration in several countries.

  20. Microscale and nanoscale heat transfer fundamentals and engineering applications

    CERN Document Server

    Sobhan, CB

    2008-01-01

    Preface Introduction to Microscale Heat Transfer Microscale Heat Transfer: A Recent Avenue in Energy Transport State of the Art: Some Introductory Remarks Overview of Microscale Transport Phenomena Discussions on Size-Effect Behavior Fundamental Approach for Microscale Heat Transfer Introduction to Engineering Applications of Microscale Heat Transfer Microscale Heat Conduction Review of Conduction Heat Transfer Conduction at the Microscale Space and Timescales Fundamental Approach Thermal Conductivity Boltzmann Equation and Phonon Transport Conduction in Thin Films

  1. Nuclear Cross Sections for Space Radiation Applications

    Science.gov (United States)

    Werneth, C. M.; Maung, K. M.; Ford, W. P.; Norbury, J. W.; Vera, M. D.

    2015-01-01

    The eikonal, partial wave (PW) Lippmann-Schwinger, and three-dimensional Lippmann-Schwinger (LS3D) methods are compared for nuclear reactions that are relevant for space radiation applications. Numerical convergence of the eikonal method is readily achieved when exact formulas of the optical potential are used for light nuclei (A = 16) and the momentum-space optical potential is used for heavier nuclei. The PW solution method is known to be numerically unstable for systems that require a large number of partial waves, and, as a result, the LS3D method is employed. The effect of relativistic kinematics is studied with the PW and LS3D methods and is compared to eikonal results. It is recommended that the LS3D method be used for high energy nucleon-nucleus reactions and nucleus-nucleus reactions at all energies because of its rapid numerical convergence and stability for both non-relativistic and relativistic kinematics.

  2. NASA solar dynamic ground test demonstration (GTD) program and its application to space nuclear power

    Science.gov (United States)

    Harper, William B.; Shaltens, Richard K.

    1993-01-01

    Closed Brayton cycle power conversion systems are readily adaptable to any heat source contemplated for space application. The inert gas working fluid can be used directly in gas-cooled reactors and coupled to a variety of heat sources (reactor, isotope or solar) by a heat exchanger. This point is demonstrated by the incorporation in the NASA 2 kWe Solar Dynamic (SD) Space Power Ground Test Demonstration (GTD) Program of the turboalternator-compressor and recuperator from the Brayton Isotope Power System (BIPS) program. This paper will review the goals and status of the SD GTD Program, initiated in April 1992. The performance of the BIPS isotope-heated system will be compared to the solar-heated GTD system incorporating the BIPS components and the applicability of the GTD test bed to dynamics space nuclear power R&D will be discussed.

  3. Organic rankine cycle waste heat applications

    Energy Technology Data Exchange (ETDEWEB)

    Brasz, Joost J.; Biederman, Bruce P.

    2007-02-13

    A machine designed as a centrifugal compressor is applied as an organic rankine cycle turbine by operating the machine in reverse. In order to accommodate the higher pressures when operating as a turbine, a suitable refrigerant is chosen such that the pressures and temperatures are maintained within established limits. Such an adaptation of existing, relatively inexpensive equipment to an application that may be otherwise uneconomical, allows for the convenient and economical use of energy that would be otherwise lost by waste heat to the atmosphere.

  4. Hybrid Heat Pipes for High Heat Flux Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The thermal transport requirements for future spacecraft missions continue to increase, approaching several kilowatts. At the same time the heat acquisition areas...

  5. Laser pulse heating of nuclear fuels for simulation of reactor power transients

    Indian Academy of Sciences (India)

    C S Viswanadham; K C Sahoo; T R G Kutty; K B Khan; V P Jathar; S Anantharaman; Arun Kumar; G K Dey

    2010-12-01

    It is important to study the behaviour of nuclear fuels under transient heating conditions from the point of view of nuclear safety. To simulate the transient heating conditions occurring in the known reactor accidents like loss of coolant accident (LOCA) and reactivity initiated accident (RIA), a laser pulse heating system is under development at BARC, Mumbai. As a prelude to work on irradiated nuclear fuel specimens, pilot studies on unirradiated UO2 fuel specimens were carried out. A laser pulse was used to heat specimens of UO2 held inside a chamber with an optically transparent glass window. Later, these specimens were analysed by metallography and X-ray diffraction. This paper describes the results of these studies.

  6. The Basic Framework for Robot Applicability Enhancement of Nuclear Risk Management in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young; Jeong, Kungmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Inn Seock [bISSA Technology, Inc., Germantown (United States)

    2015-05-15

    Beyond-design-basis external events such as the one having occurred at the Fukushima Daiichi Nuclear Power Plant typically pose considerable challenges to the plant personnel because of the harsh environments caused by the events (e.g., extreme terrains, high radiation, radioactive rubbles, high heat, and explosive environment). Therefore, remote response techniques by use of robotic systems are needed to help the plant personnel cope with the extreme events. In this study the basic framework for enhancing robotic applicability to disaster management was developed using the analytic technique of Master Logic Diagram (MLD) and Goal-Tree Success-Tree (GTST). The users of robots have to devise a sound maintenance program, otherwise their unscheduled downtime may increase beyond limit, consequently defeating the purpose of robot applications. In addition, maintainability could be enhanced by designing for ease of diagnosis, and ease of access and repair. Ways to upgrade maintainability could be devised by evaluating maintainability in the design stage. The basic framework discussed herein shall be used by the KAERI's robotics team as a fundamental framework in enhancing the applicability of disaster robots in the hazardous environment caused by extreme events.

  7. Heat kernel method and its applications

    CERN Document Server

    Avramidi, Ivan G

    2015-01-01

    The heart of the book is the development of a short-time asymptotic expansion for the heat kernel. This is explained in detail and explicit examples of some advanced calculations are given. In addition some advanced methods and extensions, including path integrals, jump diffusion and others are presented. The book consists of four parts: Analysis, Geometry, Perturbations and Applications. The first part shortly reviews of some background material and gives an introduction to PDEs. The second part is devoted to a short introduction to various aspects of differential geometry that will be needed later. The third part and heart of the book presents a systematic development of effective methods for various approximation schemes for parabolic differential equations. The last part is devoted to applications in financial mathematics, in particular, stochastic differential equations. Although this book is intended for advanced undergraduate or beginning graduate students in, it should also provide a useful reference ...

  8. Structural Ceramic Composites for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; P.A. Lessing; Y. Katoh; L. L. Snead; E. Lara-Curzio; J. Klett; C. Henager, Jr.; R. J. Shinavski

    2005-08-01

    A research program has been established to investigate fiber reinforced ceramic composites to be used as control rod components within a Very High Temperature Reactor. Two candidate systems have been identified, carbon fiber reinforced carbon (Cf/C) and silicon carbide fiber reinforced silicon carbide (SiCf/SiC) composites. Initial irradiation stability studies to determine the maximum dose for each composite type have been initiated within the High Flux Isotope Reactor at Oak Ridge National Laboratory. Test samples exposed to 10 dpa irradiation dose have been completed with future samples to dose levels of 20 and 30 dpa scheduled for completion in following years. Mechanical and environmental testing is being conducted concurrently at the Idaho National Laboratory and at Pacific Northwest National Laboratory. High temperature test equipment, testing methodologies, and test samples for high temperature (up to 1600º C) tensile strength and long duration creep studies have been established. Specific attention was paid to the architectural fiber preform design as well as the materials used in construction of the composites. Actual testing of both tubular and flat, "dog-bone" shaped tensile composite specimens will begin next year. Since there is no precedence for using ceramic composites within a nuclear reactor, ASTM standard test procedures will be established from these mechanical and environmental tests. Close collaborations between the U.S. national laboratories and international collaborators (i.e. France and Japan) are being forged to establish both national and international test standards to be used to qualify ceramic composites for nuclear reactor applications.

  9. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-12-01

    The U.S. Department of Energy selected the high temperature gas-cooled reactor as the basis for the Next Generation Nuclear Plant (NGNP). The NGNP will demonstrate the use of nuclear power for electricity, hydrogen production, and process heat applications. The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. An intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding. This report describes the preliminary results of a scoping study that evaluated the diffusion welding process parameters and the resultant mechanical properties of diffusion welded joints using Alloy 800H. The long-term goal of the program is to progress towards demonstration of small heat exchanger unit cells fabricated with diffusion welds. Demonstration through mechanical testing of the unit cells will support American Society of Mechanical Engineers rules and standards development, reduce technical risk, and provide proof of concept for heat exchanger fabrication methods needed to deploy heat exchangers in several potential NGNP configurations.1 Researchers also evaluated the usefulness of modern thermodynamic and diffusion computational tools (Thermo-Calc and Dictra) in optimizing the parameters for diffusion welding of Alloy 800H. The modeling efforts suggested a temperature of 1150 C for 1 hour with an applied pressure of 5 MPa using 15 {micro}m nickel foil as joint filler to reduce chromium oxidation on the welded surfaces. Good agreement between modeled and experimentally determined concentration gradients was achieved

  10. Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment.

  11. An improved heat transfer configuration for a solid-core nuclear thermal rocket engine

    Science.gov (United States)

    Clark, John S.; Walton, James T.; Mcguire, Melissa L.

    1992-01-01

    Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines.

  12. Monte Carlo Simulation Study of a Differential Calorimeter Measuring the Nuclear Heating in Material Testing Reactors

    Science.gov (United States)

    Amharrak, H.; Reynard-Carette, C.; Lyoussi, A.; Carette, M.; Brun, J.; De Vita, C.; Fourmentel, D.; Villard, J.-F.; Guimbal, P.

    2016-02-01

    The nuclear heating measurements in Material Testing Reactors (MTRs) are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material. Then these measurements are used for other materials, other geometries, or other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. This paper will present new simulations with MCNP Monte-Carlo transport code to determine the gamma heating profile inside the calorimeter. The whole complex geometry of the sensor has been considered. We use as an input source in the model, the photon spectra calculated in various positions of CARMEN-1 irradiation program in OSIRIS reactor. After a description of the differential calorimeter device, the MCNP modeling used for the calculations of radial profile of nuclear heating inside the calorimeter elements will be introduced. The obtained results of different simulations will be detailed and discussed in this paper. The charged particle equilibrium inside the calorimeter elements will be studied. Then we will focus on parametric studies of the various components of the calorimeter. The influence of source type will be also took into account. Moreover the influence of the material used for the sample will be described.

  13. Monte Carlo Simulation Study of a Differential Calorimeter Measuring the Nuclear Heating in Material Testing Reactors

    Directory of Open Access Journals (Sweden)

    Amharrak H.

    2016-01-01

    Full Text Available The nuclear heating measurements in Material Testing Reactors (MTRs are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material. Then these measurements are used for other materials, other geometries, or other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. This paper will present new simulations with MCNP Monte-Carlo transport code to determine the gamma heating profile inside the calorimeter. The whole complex geometry of the sensor has been considered. We use as an input source in the model, the photon spectra calculated in various positions of CARMEN-1 irradiation program in OSIRIS reactor. After a description of the differential calorimeter device, the MCNP modeling used for the calculations of radial profile of nuclear heating inside the calorimeter elements will be introduced. The obtained results of different simulations will be detailed and discussed in this paper. The charged particle equilibrium inside the calorimeter elements will be studied. Then we will focus on parametric studies of the various components of the calorimeter. The influence of source type will be also took into account. Moreover the influence of the material used for the sample will be described.

  14. Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan (PLN-2804)

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  15. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  16. Extended Heat Deposition in Hot Jupiters: Application to Ohmic Heating

    CERN Document Server

    Ginzburg, Sivan

    2015-01-01

    Many giant exoplanets in close orbits have observed radii which exceed theoretical predictions. One suggested explanation for this discrepancy is heat deposited deep inside the atmospheres of these "hot Jupiters". Here, we study extended power sources which distribute heat from the photosphere to the deep interior of the planet. Our analytical treatment is a generalization of a previous analysis of localized "point sources". We model the deposition profile as a power law in the optical depth and find that planetary cooling and contraction halt when the internal luminosity (i.e. cooling rate) of the planet drops below the heat deposited in the planet's convective region. A slowdown in the evolutionary cooling prior to equilibrium is possible only for sources which do not extend to the planet's center. We estimate the Ohmic dissipation resulting from the interaction between the atmospheric winds and the planet's magnetic field, and apply our analytical model to Ohmically heated planets. Our model can account fo...

  17. Development and application of soil coupled heat pump

    Science.gov (United States)

    Liu, Lu

    2017-05-01

    Soil coupled heat pump technology is a new clean heating mode, is the world's most energy efficient heating one of the ways. And because of the use of renewable geothermal resources with high heating performance so more and more people's attention. Although the use of soil-coupled heat pumps has been in use for more than 50 years (the first application in the United States), the market penetration of this technology is still in its infancy. This paper will focus on the development, characteristics and application of the coupled heat pump.

  18. Nuclear medicine applications for the diabetic foot

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorne, M.F.; Peters, V.

    1987-04-01

    Although not frequently described in the podiatric literature, nuclear medicine imaging may be of great assistance to the clinical podiatrist. This report reviews in detail the use of modern nuclear medicine approaches to the diagnosis and management of the diabetic foot. Nuclear medicine techniques are helpful in evaluating possible osteomyelitis, in determining appropriate amputation levels, and in predicting response to conservative ulcer management. Specific indications for bone, gallium, and perfusion imaging are described.

  19. Nuclear applications in manned space station

    Science.gov (United States)

    Brooksbank, W. A., Jr.; Sieren, G. J.

    1972-01-01

    The zirconium hydride reactor, coupled to a thermo-electric or Brayton conversion system, and the Pu 238 isotope/Brayton system, are considered to be the viable nuclear candidates for the modular space station electrical power system. The basic integration aspects of these nuclear electrical power systems are reviewed, including unique requirements imposed by the buildup and incremental utilization considerations of the modular station. Also treated are the various programmatic aspects of nuclear power system design and selection.

  20. TEI Piraeus students' knowledge on the beneficial applications of nuclear physics: Nuclear energy, radioactivity - consequences

    CERN Document Server

    Pilakouta, Mirofora

    2011-01-01

    The recent nuclear accident in Japan revealed the confusion and the inadequate knowledge of the citizens about the issues of nuclear energy, nuclear applications, radioactivity and their consequences In this work we present the first results of an ongoing study which aims to evaluate the knowledge and the views of Greek undergraduate students on the above issues. A web based survey was conducted and 131 students from TEI Piraeus answered a multiple choice questionnaire with questions of general interest on nuclear energy, nuclear applications, radioactivity and their consequences. The survey showed that students, like the general population, have a series of faulty views on general interest nuclear issues. Furthermore, the first results indicate that our educational system is not so effective as source of information on these issues in comparison to the media and internet

  1. Solid state nuclear track detection principles, methods and applications

    CERN Document Server

    Durrani, S A; ter Haar, D

    1987-01-01

    Solid State Nuclear Track Detection: Principles, Methods and Applications is the second book written by the authors after Nuclear Tracks in Solids: Principles and Applications. The book is meant as an introduction to the subject solid state of nuclear track detection. The text covers the interactions of charged particles with matter; the nature of the charged-particle track; the methodology and geometry of track etching; thermal fading of latent damage trails on tracks; the use of dielectric track recorders in particle identification; radiation dossimetry; and solid state nuclear track detecti

  2. Applications of neutron radiography for the nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    Craft, Aaron E.; Barton, John P.

    2016-11-01

    The World Conference on Neutron Radiography (WCNR) and International Topical Meeting on Neutron Radiography (ITMNR) series have been running over 35 years. The most recent event, ITMNR-8, focused on industrial applications and was the first time this series was hosted in China. In China, more than twenty new nuclear power plants are in construction and plans have been announced to increase the nuclear capacity further by a factor of three within fifteen years. There are additional prospects in many other nations. Neutron tests were vital during previous developments of materials and components for nuclear power applications, as reported in this conference series. For example a majority of the 140 papers in the Proceedings of the First WCNR are for the benefit of the nuclear power industry. Included are reviews of the diverse techniques being applied in Europe, Japan, the United States, and at many other centers. Many of those techniques are being utilized and advanced to the present time. Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Applications include examination of nuclear waste, nuclear fuels, cladding, control elements, and other critical components. In this paper, the techniques developed and applied internationally for the nuclear power industry since the earliest years are reviewed, and the question is asked whether neutron test techniques can be of value in development of the present and future generations of nuclear power plants world-wide.

  3. Ohmic Heating: Concept and Applications-A Review.

    Science.gov (United States)

    Kaur, Nimratbir; Singh, A K

    2016-10-25

    Ohmic heating, also known as Joule heating, electrical resistance heating, and direct electrical resistance heating, is a process of heating the food by passing electric current. In ohmic heating the energy is dissipated directly into the food. Electrical conductivity is a key parameter in the design of an effective ohmic heater. A large number of potential applications exist for ohmic heating, including blanching, evaporation, dehydration, fermentation, sterilization, pasteurization, and heating of foods. Beyond heating, applied electric field under ohmic heating causes electroporation of cell membranes, which increase extraction rates, and reduce gelatinization temperature and enthalpy. Ohmic heating results in faster heating of food along with maintenance of color and nutritional value of food. Water absorption index, water solubility index, thermal properties, and pasting properties are altered with the application of ohmic heating. Ohmic heating results in pre-gelatinized starches, which reduce energy requirement during processing. But its higher initial cost, lack of its applications in foods containing fats and oils, and less awareness limit its use.

  4. 76 FR 81994 - UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit...

    Science.gov (United States)

    2011-12-29

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit 3; Exemption 1.0 Background: UniStar Nuclear Energy (UNE) submitted to the U.S. Nuclear Regulatory...

  5. Extended Heat Deposition in Hot Jupiters: Application to Ohmic Heating

    Science.gov (United States)

    Ginzburg, Sivan; Sari, Re'em

    2016-03-01

    The observed radii of many giant exoplanets in close orbits exceed theoretical predictions. One suggested origin for this discrepancy is heat deposited deep inside the atmospheres of these “hot Jupiters”. Here, we study extended power sources that distribute heat from the photosphere to the deep interior of the planet. Our analytical treatment is a generalization of a previous analysis of localized “point sources”. We model the deposition profile as a power law in the optical depth and find that planetary cooling and contraction halt when the internal luminosity (i.e., cooling rate) of the planet drops below the heat deposited in the planet’s convective region. A slowdown in the evolutionary cooling prior to equilibrium is possible only for sources that do not extend to the planet’s center. We estimate the ohmic dissipation resulting from the interaction between the atmospheric winds and the planet’s magnetic field, and apply our analytical model to ohmically heated planets. Our model can account for the observed radii of most inflated planets, which have equilibrium temperatures of ≈1500-2500 K and are inflated to a radius of ≈ 1.6{R}J. However, some extremely inflated planets remain unexplained by our model. We also argue that ohmically inflated planets have already reached their equilibrium phase, and no longer contract. Following Wu & Lithwick, who argued that ohmic heating could only suspend and not reverse contraction, we calculate the time it takes ohmic heating to re-inflate a cold planet to its equilibrium configuration. We find that while it is possible to re-inflate a cold planet, the re-inflation timescales are longer by a factor of ≈ 30 than the cooling time.

  6. Survey of advanced nuclear technologies for potential applications of sonoprocessing.

    Science.gov (United States)

    Rubio, Floren; Blandford, Edward D; Bond, Leonard J

    2016-09-01

    Ultrasonics has been used in many industrial applications for both sensing at low power and processing at higher power. Generally, the high power applications fall within the categories of liquid stream degassing, impurity separation, and sonochemical enhancement of chemical processes. Examples of such industrial applications include metal production, food processing, chemical production, and pharmaceutical production. There are many nuclear process streams that have similar physical and chemical processes to those applications listed above. These nuclear processes could potentially benefit from the use of high-power ultrasonics. There are also potential benefits to applying these techniques in advanced nuclear fuel cycle processes, and these benefits have not been fully investigated. Currently the dominant use of ultrasonic technology in the nuclear industry has been using low power ultrasonics for non-destructive testing/evaluation (NDT/NDE), where it is primarily used for inspections and for characterizing material degradation. Because there has been very little consideration given to how sonoprocessing can potentially improve efficiency and add value to important process streams throughout the nuclear fuel cycle, there are numerous opportunities for improvement in current and future nuclear technologies. In this paper, the relevant fundamental theory underlying sonoprocessing is highlighted, and some potential applications to advanced nuclear technologies throughout the nuclear fuel cycle are discussed.

  7. Nuclear energy an introduction to the concepts, systems, and applications of nuclear processes

    CERN Document Server

    Murray, Raymond L

    1993-01-01

    This expanded, revised, and updated fourth edition of Nuclear Energy maintains the tradition of providing clear and comprehensive coverage of all aspects of the subject, with emphasis on the explanation of trends and developments. As in earlier editions, the book is divided into three parts that achieve a natural flow of ideas: Basic Concepts, including the fundamentals of energy, particle interactions, fission, and fusion; Nuclear Systems, including accelerators, isotope separators, detectors, and nuclear reactors; and Nuclear Energy and Man, covering the many applications of radionuclides, r

  8. Reflection of ground-source heat pump systems' application

    Institute of Scientific and Technical Information of China (English)

    ZHANGSuyun; LINZhenguo; WUXiangsheng; WUTian

    2003-01-01

    Ground-source heat pump system is an air-conditioning form of energy efficient and environment protection. This article introduced the forms of ground-source heat pump systems, analyzed the problems of ground-source heat pump systems in application in China, and put forward the solutions to these problems.

  9. Application of explosive welding to heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, G.

    1983-10-01

    The subject is discussed under the headings: advantages of explosive welding; principle of explosive welding; explosive welding of tubes; metallurgy of explosive welds (micrographs; microhardness); tubular heat exchangers; plugging; sleeving; retubing; construction of new heat exchangers; thermal sleeves.

  10. The (safety-related) heat exchangers aging management guideline for commercial nuclear power plants, and developments since 1994

    Energy Technology Data Exchange (ETDEWEB)

    Clauss, J.M.

    1998-08-01

    The US Department of Energy (DOE), in cooperation with the Electric Power Research Institute (EPRI) and US nuclear power plant utilities, is preparing a series of aging management guidelines (AMGs) for commodity types of components (e.g., heat exchangers, electrical cable and terminations, pumps). Commodities are included in this series based on their importance to continued nuclear plant operation and license renewal. The AMGs contain a detailed summary of operating history, stressors, aging mechanisms, and various types of maintenance and surveillance practices that can be combined to create an effective aging management program. Each AMG is intended for use by the systems engineers and plant maintenance staff (i.e., an AMG is intended to be a hands-on technical document rather than a licensing document). The heat exchangers AMG, published in June 1994, includes the following information of interest to nondestructive examination (NDE) personnel: aging mechanisms determined to be non-significant for all applications; aging mechanisms determined to be significant for some applications; effective conventional programs for managing aging; and effective unconventional programs for managing aging. Since the AMG on heat exchangers was published four years ago, a brief review has been conducted to identify emerging regulatory issues, if any. The results of this review and lessons learned from the collective set of AMGs are presented.

  11. Industrial heating principles, techniques, materials, applications, and design

    CERN Document Server

    Deshmukh, Yeshvant V

    2005-01-01

    Industry relies on heating for a wide variety of processes involving a broad range of materials. Each process and material requires heating methods suitable to its properties and the desired outcome. Despite this, the literature lacks a general reference on design techniques for heating, especially for small- and medium-sized applications. Industrial Heating: Principles, Techniques, Materials, Applications, and Design fills this gap, presenting design information for both traditional and modern heating processes and auxiliary techniques.The author leverages more than 40 years of experience int

  12. Groundwater and geothermal: urban district heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Mounts, R.; Frazier, A.; Wood, E.; Pyles, O.

    1982-01-01

    This report describes how several cities use groundwater and geothermal energy in district heating systems. It begins with groundwater, introducing the basic technology and techniques of development, and describing two case studies of cities with groundwater-based district heating systems. The second half of the report consists of three case studies of cities with district heating systems using higher temperature geothermal resources.

  13. MEGAHIT Roadmap: Applications for Nuclear Electric Propulsion

    OpenAIRE

    Jansen, Frank; Semenkin, Alexander; Bauer, Waldemar; WORMS, Jean-Claude; Detsis, Emmanouil; CLIQUET-MORENO, Elisa; Masson, Frederic; Ruault, Jean-Marc; Gaia, Enrico; Cristina, T.M.; Tinsley, Tim; Hodgson, Zara

    2014-01-01

    The paper introduces the three EC funded nuclear electric propulsion funded projects DiPoP, MEGAHIT and DEMOCRITOS. It describes in detail the European-Russian MEGAHIT project - the study outputs, the proposal for a key technology plan, a plan for a political and public supportable reference space mission. Moreover the content of the MEGAHIT global roadmap for international realization of the INPPS (International Nuclear Power and Propulsion System) is sketched.

  14. Specific Heat of Matter Formed in Relativistic Nuclear Collisions

    CERN Document Server

    Basu, Sumit; Chatterjee, Rupa; Nayak, Tapan K; Nandi, Basanta K

    2016-01-01

    We report the excitation energy dependence of specific heat (\\cv) of hadronic matter at freeze-out in Au+Au and Cu+Cu collisions at the Relativistic Heavy Ion Collider energies by analyzing the published data on event-by-event mean transverse momentum (\\meanpt) distributions. The \\meanpt~distributions in finite \\pt~ranges are converted to distributions of effective temperatures, and dynamical fluctuations in temperature are extracted by subtracting widths of the corresponding mixed event distributions. The heat capacity per particle at the kinetic freezeout surface is presented as a function of collision energy, which shows a sharp rise in \\cv~below \\sNN~=~62.4~GeV. We employ the Hadron Resonance Gas (HRG) model to estimate \\cv~at the chemical and kinetic freezeout surfaces. The experimental results are compared to the HRG and other theoretical model calculations. HRG results show good agreement with data. Model predictions for \\cv~at the Large Hadron Collider energy are presented.

  15. Dispersion-strengthened aluminium powder products for nuclear application

    DEFF Research Database (Denmark)

    Hansen, Niels

    1967-01-01

    Strength, elongation, corrosion resistance, homogeneity, purity, compatibility with fuel, and resistance to irradiation damage, being main properties of SAP of interest for their application in nuclear technology, are discussed in connection with commercial products; effect on tensile and creep p...

  16. Application Research of Developed Drummed Nuclear Waste Neutron Counting System

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The application researches such as variety of factors affecting the measurement, calibrating etc. are need before the drummed nuclear waste neutron counting system (WNC) can be really put into use after installed at the site.

  17. Dispersion-strengthened aluminium powder products for nuclear application

    DEFF Research Database (Denmark)

    Hansen, Niels

    1967-01-01

    Strength, elongation, corrosion resistance, homogeneity, purity, compatibility with fuel, and resistance to irradiation damage, being main properties of SAP of interest for their application in nuclear technology, are discussed in connection with commercial products; effect on tensile and creep...

  18. Research on application of carbon fiber heating material in clothing

    Science.gov (United States)

    Yang, Huanhong

    2017-08-01

    With the development of society, the way of keeping warm clothing is also developing. Carbon fiber has the advantages of high efficiency, safety, mobility and comfort. As a heating element, it has good application prospect. In this paper, the main technology, application issues and design method of carbon fiber heating garment are analyzed, and the key problems in industrialization are also put forward.

  19. Unsteady heat conduction in the soil layers above underground repository for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talukder, N.K. [Clark Atlanta Univ., GA (United States)

    2000-04-01

    Due to radioactivity of spent nuclear fuel, a repository is expected to act as a heat source of exponentially decreasing intensity over hundreds of years. In case of underground emplacement of such a heat source, the temperature changes in the soil layers surrounding the heat source may have important implications such as evaporation of the water contained in the soil and its subsequent condensation. Assuming a uniformly distributed power generation over a horizontal, relatively thin, circular zone of several thousand meters diameter located several hundred meters below the ground surface, the temperature variations along the vertical centerline of the heating zone was estimated analytically under simplifying assumptions. Unsteady one-dimensional heat conduction in a semi-infinite solid with an exponentially decreasing heat flux at the proximal end was considered. The corresponding solution of the Fourier equation for heat conduction contains Error Functions of complex arguments. The evaluation of the Error Functions for discrete space and time parameters was performed applying analytical procedures and using standard tables. The results show temperature distributions in the soil at various time points over thousands of years after underground emplacement of spent nuclear fuel. (orig.)

  20. Russian nuclear power plants for marine applications

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, O. [Norwegian Radiation Protection Authority (Norway); Oelgaard, P.L. [Risoe National Lab. (Denmark)

    2006-04-15

    In order to establish a systematic approach for future proliferation and environmental analyses of Russia's marine nuclear reactor systems, this paper summarizes and analyzes the available open-source information on the design properties of reactor systems and nuclear fuels. The most distinctive features of Russian marine reactor development are pointed out, and similarities and differences between Russian military and civilian reactor systems and fuel are discussed. Relevant updated information on all Russian vessels using nuclear propulsion is presented in Annex I. The basic analytic division in this paper follows vessel generations first to third generation; and reactor types PWR and LMC technology. Most of the available information is related to nuclear icebreakers. This information is systematically analyzed in order to identify stages in the development of Russia's civilian naval nuclear reactors. Three different reactor models are discussed: OK-150, OK-900 and KLT-40, together with several versions of these. Concerning military reactors, it is not possible to identify characteristics for the individual reactor models, so the basic division follows vessel generations first to third generation. From the information available, however, it is possible to identify the main lines along which the design of submarines of especially the first and the second generation has been made. The conclusions contain a discussion of possible implications of the results, in addition to suggestions for further work. (au)

  1. Physics of nuclear radiations concepts, techniques and applications

    CERN Document Server

    Rangacharyulu, Chary

    2013-01-01

    Physics of Nuclear Radiations: Concepts, Techniques and Applications makes the physics of nuclear radiations accessible to students with a basic background in physics and mathematics. Rather than convince students one way or the other about the hazards of nuclear radiations, the text empowers them with tools to calculate and assess nuclear radiations and their impact. It discusses the meaning behind mathematical formulae as well as the areas in which the equations can be applied. After reviewing the physics preliminaries, the author addresses the growth and decay of nuclear radiations, the stability of nuclei or particles against radioactive transformations, and the behavior of heavy charged particles, electrons, photons, and neutrons. He then presents the nomenclature and physics reasoning of dosimetry, covers typical nuclear facilities (such as medical x-ray machines and particle accelerators), and describes the physics principles of diverse detectors. The book also discusses methods for measuring energy a...

  2. The molecular mechanism for nuclear transport and its application.

    Science.gov (United States)

    Kim, Yun Hak; Han, Myoung-Eun; Oh, Sae-Ock

    2017-06-01

    Transportation between the cytoplasm and the nucleoplasm is critical for many physiological and pathophysiological processes including gene expression, signal transduction, and oncogenesis. So, the molecular mechanism for the transportation needs to be studied not only to understand cell physiological processes but also to develop new diagnostic and therapeutic targets. Recent progress in the research of the nuclear transportation (import and export) via nuclear pore complex and four important factors affecting nuclear transport (nucleoporins, Ran, karyopherins, and nuclear localization signals/nuclear export signals) will be discussed. Moreover, the clinical significance of nuclear transport and its application will be reviewed. This review will provide some critical insight for the molecular design of therapeutics which need to be targeted inside the nucleus.

  3. The Possibility to use a Nuclear Power Plant as a Source of Electrical Energy and Heat

    Directory of Open Access Journals (Sweden)

    Tomasz Minkiewicz

    2014-09-01

    Full Text Available In this article issues concernig the possibility of nuclear power plant (NPP operation also as a source of heat, which means combined heat and power production, have been described. CHP work is possible and profitable only in those areas where high thermal power demand occurs, which means near city agglomerations such as Warsaw or the Tri-City. Two levels of thermal power delivered to the heating system have been considered. Preliminary technical and economic studies regarding NPP location by Żarnowiec Lake have confirmed the NPP potential to work as a primary source of heat in the heating network system, which would feed the regions of Wejherowo and Gdynia.

  4. Nuclear data production, calculation and measurement: a global overview of the gamma heating issue

    Directory of Open Access Journals (Sweden)

    Gueton O.

    2013-03-01

    Full Text Available The gamma heating evaluation in different materials found in current and future generations of nuclear reactor (EPRTM, GENIV, MTR-JHR, is becoming an important issue especially for the design of many devices (control rod, heavy reflector, in-core & out-core experiments…. This paper deals with the works started since 2009 in the Reactor Studies Department of CEA Cadarache in ordre to answer to several problematic which have been identified as well for nuclear data production and calculation as for experimental measurement methods. The selected subjects are: Development of a Monte Carlo code (FIFRELIN to simulate the prompt fission gamma emission which represents the major part of the gamma heating production inside the core Production and qualification of new evaluations of nuclear data especially for radiative capture and inelastic neutron scattering which are the main sources of gamma heating out-core Development and qualification of a recommended method for the total gamma heating calculation using the Monte Carlo simulation code TRIPOLI-4 Development, test and qualification of new devices dedicated to the in-core gamma heating measurement as well in MTR-JHR as in zero power facilities (EOLE-MINERVE of CEA, Cadarache to increase the experimental measurement accuracy.

  5. Nuclear cardiac imaging: Principles and applications

    Energy Technology Data Exchange (ETDEWEB)

    Iskandrian, A.S.

    1987-01-01

    This book is divided into 11 chapters. The first three provide a short description of the instrumentation, radiopharmaceuticals, and imaging techniques used in nuclear cardiology. Chapter 4 discusses exercise testing. Chapter 5 gives the theory, technical aspects, and interpretations of thallium-201 myocardial imaging and radionuclide ventriculography. The remaining chapters discuss the use of these techniques in patients with coronary artery disease, acute myocardial infarction, valvular heart disease, and other forms of cardiac disease. The author intended to emphasize the implications of nuclear cardiology procedures on patient care management and to provide a comprehensive bibliography.

  6. Heat energy from hydrogen-metal nuclear interactions

    Science.gov (United States)

    Hadjichristos, John; Gluck, Peter

    2013-11-01

    The discovery of the Fleischmann-Pons Effect in 1989, a promise of an abundant, cheap and clean energy source was premature in the sense that theoretical knowledge, relative technologies and the experimental tools necessary for understanding and for scale-up still were not available. Therefore the field, despite efforts and diversification remained quasi-stagnant, the effect (a scientific certainty) being of low intensity leading to mainstream science to reject the phenomenon and not supporting its study. Recently however, the situation has changed, a new paradigm is in statunascendi and the obstacles are systematically removed by innovative approaches. Defkalion, a Greek company (that recently moved in Canada for faster progress) has elaborated an original technology for the Ni-H system [1-3]. It is about the activation of hydrogen and creation of nuclear active nano-cavities in the metal through a multi-stage interaction, materializing some recent breakthrough announcements in nanotechnology, superconductivity, plasma physics, astrophysics and material science. A pre-industrial generator and a novel mass-spectrometry instrumentations were created. Simultaneously, a meta-theory of phenomena was sketched in collaboration with Prof. Y. Kim (Purdue U).

  7. Application of probabilistic risk assessment in nuclear and environmental licensing processes of nuclear reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Jonatas F.C. da; Vasconcelos, Vanderley de; Mesquita, Amir Z., E-mail: jonatasfmata@yahoo.com.br, E-mail: vasconv@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The nuclear accident at Fukushima Daiichi, occurred in Japan in 2011, brought reflections, worldwide, on the management of nuclear and environmental licensing processes of existing nuclear reactors. One of the key lessons learned in this matter, is that the studies of Probabilistic Safety Assessment and Severe Accidents are becoming essential, even in the early stage of a nuclear development project. In Brazil, Brazilian Nuclear Energy Commission, CNEN, conducts the nuclear licensing. The organism responsible for the environmental licensing is Brazilian Institute of Environment and Renewable Natural Resources, IBAMA. In the scope of the licensing processes of these two institutions, the safety analysis is essentially deterministic, complemented by probabilistic studies. The Probabilistic Safety Assessment (PSA) is the study performed to evaluate the behavior of the nuclear reactor in a sequence of events that may lead to the melting of its core. It includes both probability and consequence estimation of these events, which are called Severe Accidents, allowing to obtain the risk assessment of the plant. Thus, the possible shortcomings in the design of systems are identified, providing basis for safety assessment and improving safety. During the environmental licensing, a Quantitative Risk Analysis (QRA), including probabilistic evaluations, is required in order to support the development of the Risk Analysis Study, the Risk Management Program and the Emergency Plan. This article aims to provide an overview of probabilistic risk assessment methodologies and their applications in nuclear and environmental licensing processes of nuclear reactors in Brazil. (author)

  8. Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing

    2009-08-01

    Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.

  9. PREFACE: EPS Euroconference XIX Nuclear Physics Divisional Conference: New Trends in Nuclear Physics Applications and Technology

    Science.gov (United States)

    2006-06-01

    It was with great pleasure that the Department of Nuclear and Theoretical Physics of the University of Pavia and the INFN (Istituto Nazionale di Fisica Nucleare) Structure of Pavia organised the XIX Nuclear Physics Divisional Conference of the European Physical Society, which was held in the historical buildings of the University of Pavia from 5-9 September 2005. The Conference was devoted to the discussion of the most recent experimental and theoretical achievements in the field of Nuclear Physics applications, as well as of the latest developments in technological tools related to Nuclear Physics research. The University of Pavia has a long tradition in Physics and in Applied Physics, being the site where Alessandro Volta developed his "pila", the precursor of the modern battery. This is the place where the first experiments with electricity were conducted and where the term "capacitance" used for capacitors was invented. Today the University hosts a Triga Mark II nuclear reactor, which is used by the Departments of the University of Pavia and by other Universities and private companies as well. Moreover, Pavia is the site selected for the construction of the CNAO complex "Centro Nazionale di Adroterapia Oncologica" (National Centre for Oncological Hadrontherapy), planned for 2005-2008 which represents a unique facility in Italy and will be among the first complexes of this type in Europe. The Conference has gathered together experts in various fields from different countries and has been the occasion to review the present status and to discuss the new emerging trends in Nuclear Physics and its applications to multidisciplinary researches and the development of new technologies. The following topics were treated: Nuclear Techniques in Medicine and Life Sciences (Cancer Therapy, new Imaging and Diagnostics Tools, Radioisotope production, Radiation Protection and Dosimetry). Applications of Nuclear Techniques in Art, Archaeometry and other Interdisciplinary fields

  10. A Heat Switch for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Various planned NASA missions require heat switches for active thermal control. As an example cryocoolers, including redundant coolers are incorporated on select...

  11. Reliability and radiation tolerance of robots for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, K. [Risoe National Lab. (Denmark); Decreton, M. [SCK.CEN (Belgium); Seifert, C.C. [Siemens AG (Germany); Sharp, R. [AEA Technology (United Kingdom)

    1996-10-01

    The reliability of a robot for nuclear applications will be affected by environmental factors such as dust, water, vibrations, heat, and, in particular, ionising radiation. The present report describes the work carried out in a project addressing the reliability and radiation tolerance of such robots. A widely representative range of components and materials has been radiation tested and the test results have been collated in a database along with data provided by the participants from earlier work and data acquired from other sources. A radiation effects guide has been written for the use by designers of electronic equipment for robots. A generic reliability model has been set up together with generic failure strategies, forming the basis for specific reliability modelling carried out in other projects. Modelling tools have been examined and developed for the prediction of the performance of electronic circuits subjected to radiation. Reports have been produced dealing with the prediction and detection of upcoming failures in electronic systems. Operational experience from the use of robots in radiation work in various contexts has been compiled in a report, and another report has been written on cost/benefit considerations about the use of robots. Also the possible impact of robots on the safety of the surrounding plant has been considered and reported. (au) 16 ills., 236 refs.

  12. Complexity of pilgering in nuclear applications

    Directory of Open Access Journals (Sweden)

    Krishna Aditya Y V

    2014-11-01

    Full Text Available Nuclear reactors use various types and sections of tubes manufactured with exotic materials meeting special requirements. These Tubes are manufactured using a Cold working process of Pilgering. Pilgering process is influenced by a lot of factors making it a highly complex process. In this paper the various influencing factors are compiled, segregated and briefly discussed.

  13. Thermal mechanical analysis of applications with internal heat generation

    Science.gov (United States)

    Govindarajan, Srisharan Garg

    control blade, spatial variations in temperature within the control blade occur from the non-uniform heat generation within the BORAL as a result of the non-uniform thermal neutron flux along the longitudinal direction when the control blade is partially withdrawn. There is also variation in the heating profile through the thickness and about the circumferential width of the control blade. Mathematical curve-fits are generated for the non-uniform volumetric heat generation profile caused by the thermal neutron absorption and the functions are applied as heating conditions within a finite element model of the control blade built using the commercial finite element code Abaqus FEA. The finite element model is solved as a fully coupled thermal mechanical problem as in the case of the annular target. The resulting deflection is compared with the channel gap to determine if there is a significant risk of the control blade binding during reactor operation. Hence, this dissertation will consist of two sections. The first section will seek to present the thermal and structural safety analyses of the annular targets for the production of molybdenum-99. Since there hasn't been any detailed, documented, study on these annular targets in the past, the work complied in this dissertation will help to understand the thermal-mechanical behavior and failure margins of the target during in-vessel irradiation. As the work presented in this dissertation provides a general performance analysis envelope for the annular target, the tools developed in the process can also be used as useful references for future analyses that are specific to any reactor. The numerical analysis approach adopted and the analytical models developed, can also be applied to other applications, outside the Mo-99 project domain, where internal heat generation exists such as in electronic components and nuclear reactor control blades. The second section will focus on estimating the thermally induced deflection and hence

  14. Novel fabrication of silicon carbide based ceramics for nuclear applications

    Science.gov (United States)

    Singh, Abhishek Kumar

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These materials include refractory alloys based on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as SiC--SiCf; carbon--carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the fuel can lower the center-line temperature and, thereby, enhance power production capabilities and reduce the risk of premature fuel pellet failure. Crystalline silicon carbide has superior characteristics as a structural material from the viewpoint of its thermal and mechanical properties, thermal shock resistance, chemical stability, and low radioactivation. Therefore, there have been many efforts to develop SiC based composites in various forms for use in advanced energy systems. In recent years, with the development of high yield preceramic precursors, the polymer infiltration and pyrolysis (PIP) method has aroused interest for the fabrication of ceramic based materials, for various applications ranging from disc brakes to nuclear reactor fuels. The pyrolysis of preceramic polymers allow new types of ceramic materials to be processed at relatively low temperatures. The raw materials are element-organic polymers whose composition and architecture can be tailored and varied. The primary focus of this study is to use a pyrolysis based process to fabricate a host of novel silicon carbide-metal carbide or oxide composites, and to synthesize new materials based on mixed-metal silicocarbides that cannot be processed using conventional techniques. Allylhydridopolycarbosilane (AHPCS), which is an organometal polymer, was used as the precursor for silicon carbide. Inert gas pyrolysis of AHPCS produces near-stoichiometric amorphous

  15. Geothermal direct heat applications program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-08-01

    In 1978, the Department of Energy Division of Geothermal and Hydropower Technologies initiated a program to accelerate the direct use of geothermal energy, in which 23 projects were selected. The projects, all in the western part of the US, cover the use of geothermal energy for space conditioning (heating and cooling) and agriculture (aquaculture and greenhouses). Initially, two projects were slated for industrial processing; however, because of lack of geothermal resources, these projects were terminated. Of the 23 projects, seven were successfully completed, ten are scheduled for completion by the end of 1983, and six were terminated for lack of resources. Each of the projects is being documented from its inception through planning, drilling, and resource confirmation, design, construction, and one year of monitoring. The information is being collected, evaluated, and will be reported. Several reports will be produced, including detailed topical reports on economics, institutional and regulatory problems, engineering, and a summary final report. To monitor progress and provide a forum for exchange of information while the program is progressing, semiannual or annual review meetings have been held with all project directors and lead engineers for the past four years. This is the sixth meeting in that series. Several of the projects which have been terminated are not included this year. Overall, the program has been very successful. Valuable information has been gathered. problems have been encountered and resolved concerning technical, regulatory, and institutional constraints. Most projects have been proven to be economical with acceptable pay-back periods. Although some technical problems have emerged, they were resolved with existing off-the-shelf technologies and equipment. The risks involved in drilling for the resource, the regulatory constraints, the high cost of finance, and large front-end cost remain the key obstacles to the broad development of

  16. Seawater desalination plant using nuclear heating reactor coupled with MED process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A small size plant for seawater desalination using nuclear heating reactor coupled with MED process was developed by the Institute of Nuclear Energy Technology, Tsinghua University, China. This seawater desalination plant was designed to supply potable water demand to some coastal location or island where both fresh water and energy source are severely lacking. It is also recommended as a demonstration and training facility for seawater desalination using nuclear energy. The design of small size of seawater desalination plant couples two proven technologies: Nuclear Heating Reactor (NHR) and Multi-Effect Destination (MED) process. The NHR design possesses intrinsic and passive safety features, which was demonstrated by the experiences of the project NHR-5. The intermediate circuit and steam circuit were designed as the safety barriers between the NHR reactor and MED desalination system. Within 10~200 MWt of the power range of the heating reactor, the desalination plant could provide 8000 to 150,000 m3/d of high quality potable water. The design concept and parameters, safety features and coupling scheme are presented.

  17. Configuration and technology implications of potential nuclear hydrogen system applications.

    Energy Technology Data Exchange (ETDEWEB)

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options

  18. Inverse scattering: applications to nuclear physics

    CERN Document Server

    Mackintosh, Raymond S

    2012-01-01

    In what follows we first set the context for inverse scattering in nuclear physics with a brief account of inverse problems in general. We then turn to inverse scattering which involves the S-matrix, which connects the interaction potential between two scattering particles with the measured scattering cross section. The term `inverse' is a reference to the fact that instead of determining the scattering S-matrix from the interaction potential between the scattering particles, we do the inverse. That is to say, we calculate the interaction potential from the S-matrix. This review explains how this can now be done reliably, but the emphasis will be upon reasons why one should wish to do this, with an account of some of the ways this can lead to understanding concerning nuclear interactions.

  19. A laser application to nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Barbui, M.; Hagel, K.; Schmidt, K.; Zheng, H.; Burch, R.; Barbarino, M.; Natowitz, J. B. [Cyclotron Institute, Texas A and M University, 3366 TAMU, College Station, TX (United States); Bang, W.; Dyer, G.; Quevedo, H. J.; Gaul, E.; Bernstein, A. C.; Donovan, M. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX 78712 (United States); Bonasera, A. [Cyclotron Institute, Texas A and M University, 3366 TAMU, College Station, TX, U.S.A. and INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95125 Catania (Italy); Kimura, S. [Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Mazzocco, M. [Dipartimento di Fisica e Astronomia Università degli Studi di Padova and INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Consoli, F.; De Angelis, R.; Andreoli, P. [Associazione Euratom-ENEA Sulla Fusione, Via Enrico Fermi 45, CP 65-00044 Frascati, Rome (Italy); Ditmire, T. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX, 78712 (United States)

    2014-05-09

    In the last decade, the availability in high-intensity laser beams capable of producing plasmas with ion energies large enough to induce nuclear reactions has opened new research paths in nuclear physics. We studied the reactions {sup 3}He(d,p){sup 4}He and d(d,n){sup 3}He at temperatures of few keV in a plasma, generated by the interaction of intense ultrafast laser pulses with molecular deuterium or deuterated-methane clusters mixed with {sup 3}He atoms. The yield of 14.7 MeV protons from the {sup 3}He(d,p){sup 4}He reaction was used to extract the astrophysical S factor. Results of the experiment performed at the Center for High Energy Density Science at The University of Texas at Austin will be presented.

  20. Hydrous mineral dehydration around heat-generating nuclear waste in bedded salt formations.

    Science.gov (United States)

    Jordan, Amy B; Boukhalfa, Hakim; Caporuscio, Florie A; Robinson, Bruce A; Stauffer, Philip H

    2015-06-02

    Heat-generating nuclear waste disposal in bedded salt during the first two years after waste emplacement is explored using numerical simulations tied to experiments of hydrous mineral dehydration. Heating impure salt samples to temperatures of 265 °C can release over 20% by mass of hydrous minerals as water. Three steps in a series of dehydration reactions are measured (65, 110, and 265 °C), and water loss associated with each step is averaged from experimental data into a water source model. Simulations using this dehydration model are used to predict temperature, moisture, and porosity after heating by 750-W waste canisters, assuming hydrous mineral mass fractions from 0 to 10%. The formation of a three-phase heat pipe (with counter-circulation of vapor and brine) occurs as water vapor is driven away from the heat source, condenses, and flows back toward the heat source, leading to changes in porosity, permeability, temperature, saturation, and thermal conductivity of the backfill salt surrounding the waste canisters. Heat pipe formation depends on temperature, moisture availability, and mobility. In certain cases, dehydration of hydrous minerals provides sufficient extra moisture to push the system into a sustained heat pipe, where simulations neglecting this process do not.

  1. Selection of heat disposal methods for a Hanford Nuclear Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.R.; Kannberg, L.D.; Ramsdell, J.V.; Rickard, W.H.; Watson, D.G.

    1976-06-01

    Selection of the best method for disposal of the waste heat from a large power generation center requires a comprehensive comparison of the costs and environmental effects. The objective is to identify the heat dissipation method with the minimum total economic and environmental cost. A 20 reactor HNEC will dissipate about 50,000 MWt of waste heat; a 40 reactor HNEC would release about 100,000 MWt. This is a much larger discharge of heat than has occurred from other concentrated industrial facilities and consequently a special analysis is required to determine the permissibility of such a large heat disposal and the best methods of disposal. It is possible that some methods of disposal will not be permissible because of excessive environmental effects or that the optimum disposal method may include a combination of several methods. A preliminary analysis is presented of the Hanford Nuclear Energy Center heat disposal problem to determine the best methods for disposal and any obvious limitations on the amount of heat that can be released. The analysis is based, in part, on information from an interim conceptual study, a heat sink management analysis, and a meteorological analysis.

  2. ICSBEP Benchmarks For Nuclear Data Applications

    Science.gov (United States)

    Briggs, J. Blair

    2005-05-01

    The International Criticality Safety Benchmark Evaluation Project (ICSBEP) was initiated in 1992 by the United States Department of Energy. The ICSBEP became an official activity of the Organization for Economic Cooperation and Development (OECD) — Nuclear Energy Agency (NEA) in 1995. Representatives from the United States, United Kingdom, France, Japan, the Russian Federation, Hungary, Republic of Korea, Slovenia, Serbia and Montenegro (formerly Yugoslavia), Kazakhstan, Spain, Israel, Brazil, Poland, and the Czech Republic are now participating. South Africa, India, China, and Germany are considering participation. The purpose of the ICSBEP is to identify, evaluate, verify, and formally document a comprehensive and internationally peer-reviewed set of criticality safety benchmark data. The work of the ICSBEP is published as an OECD handbook entitled "International Handbook of Evaluated Criticality Safety Benchmark Experiments." The 2004 Edition of the Handbook contains benchmark specifications for 3331 critical or subcritical configurations that are intended for use in validation efforts and for testing basic nuclear data. New to the 2004 Edition of the Handbook is a draft criticality alarm / shielding type benchmark that should be finalized in 2005 along with two other similar benchmarks. The Handbook is being used extensively for nuclear data testing and is expected to be a valuable resource for code and data validation and improvement efforts for decades to come. Specific benchmarks that are useful for testing structural materials such as iron, chromium, nickel, and manganese; beryllium; lead; thorium; and 238U are highlighted.

  3. CALMOS: Innovative device for the measurement of nuclear heating in material testing reactors

    Energy Technology Data Exchange (ETDEWEB)

    Carcreff, H. [Alternative Energies and Atomic Energy Commission CEA, Saclay Center, DEN/DANS/DRSN/SIREN, Gif Sur Yvette, 91191 (France)

    2011-07-01

    An R and D program has been carried out since 2002 in order to improve gamma heating measurements in the 70 MWth OSIRIS Material Testing Reactor operated by CEA's Nuclear Energy Div. at the Saclay research center. Throughout this program an innovative calorimetric probe associated to a specific handling system has been designed in order to make measurements both along the fissile height and on the upper part of the core, where nuclear heating rates still remain high. Two mock-ups of the probe were manufactured and tested in 2005 and 2009 in ex-core area of OSIRIS reactor for the process validation, while a displacement system has been especially designed to move the probe axially. A final probe has been designed thanks to modeling results and to preliminary measurements obtained with mock-ups irradiated to a heating level of 2W/g, This paper gives an overview of the development, describes the calorimetric probe, and expected advantages such as the possibility to use complementary methods to get the nuclear heating measurement. Results obtained with mock-ups irradiated in ex-core area of the reactor are presented and discussed. (authors)

  4. NUCLEAR CARDIOLOGY, CURRENT APPLICATIONS IN CLINICAL-PRACTICE

    NARCIS (Netherlands)

    NIEMEYER, MG; VANDERWALL, EE; KUIJPER, AFM; CLEOPHAS, AT; PAUWELS, EKJ

    1995-01-01

    The clinical applications of nuclear cardiology have rapidly expanded since the introduction of suitable imaging cameras and readily applicable isotopes. The currently available methods can provide useful data on estimates of ventricular function and detection of myocardial ischemia for adequate pat

  5. Experimental results of a 3 k Wh thermochemical heat storage module for space heating application

    OpenAIRE

    Finck, C.J.; Henquet, E.M.R.; Soest, C.F.L. van; Oversloot, H.P.; de Jong, A. J.; Cuypers, R.; Spijker, J.C. van 't

    2014-01-01

    A 3 kWh thermochemical heat storage (TCS) module was built as part of an all-in house system implementation focusing on space heating application at a temperature level of 40 ºC and a temperature lift of 20 K. It has been tested and measurements showed a maximum water circuit temperature span (released by adsorption) of 20 – 51 K which is by all means suitable for space heating.

  6. Applications guide for waste heat recovery

    Science.gov (United States)

    Moynihan, P. I.

    1983-01-01

    The state-of-the-art of commercially available organic Rankine cycle (ORC) hardware from a literature search and industry survey is assessed. Engineering criteria for applying ORC technology are established, and a set of nomograms to enable the rapid sizing of the equipment is presented. A comparison of an ORC system with conventional heat recovery techniques can be made with a nomogram developed for a recuperative heat exchanger. A graphical technique for evaluating the economic aspects of an ORC system and conventional heat recovery method is discussed: also included is a description of anticipated future trends in organic Rankine cycle R&D.

  7. Heat transfer capability simulation of high-temperature heat pipe in supersonic vehicle leading edge applications

    Directory of Open Access Journals (Sweden)

    Donghuan Liu

    2016-04-01

    Full Text Available A numerical method is proposed to determine the heat transfer capability of the high-temperature heat pipe and the stagnation temperature with supersonic vehicle leading edge applications. The finite element method is employed here to perform the temperature field simulation. Without considering the heat transfer limitations of the heat pipe, such as capillary limit and sonic limit, both numerical and experimental results indicate that equivalent high thermal conductivity method is a reasonable way to simulate the heat transfer capability of the high-temperature heat pipe in preliminary design of a heat-pipe-cooled leading edge. Several important parameters’ effects on the thermal protection performance are also numerically investigated.

  8. Evaluation of High-Performance Space Nuclear Electric Generators for Electric Propulsion Application

    Science.gov (United States)

    Woodcock, Gordon; Kross, Dennis A. (Technical Monitor)

    2002-01-01

    Electric propulsion applications are enhanced by high power-to-mass ratios for their electric power sources. At multi-megawatt levels, we can expect thrust production systems to be less than 5 kg/kWe. Application of nuclear electric propulsion to human Mars missions becomes an attractive alternative to nuclear thermal propulsion if the propulsion system is less than about 10 kg/kWe. Recent references have projected megawatt-plus nuclear electric sources at specific mass values from less than 1 kg/kWe to about 5 kg/kWe. Various assumptions are made regarding power generation cycle (turbogenerator; MHD (magnetohydrodynamics)) and reactor heat source design. The present paper compares heat source and power generation options on the basis of a parametric model that emphasizes heat transfer design and realizable hardware concept. Pressure drop (important!) is included in the power cycle analysis, and MHD and turbogenerator cycles are compared. Results indicate that power source specific mass less than 5 kg/kWe is attainable, even if peak temperatures achievable are limited to 1500 K. Projections of specific mass less than 1 kg/kWe are unrealistic, even at the highest peak temperatures considered.

  9. Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taehun [City Univ. (CUNY), NY (United States)

    2015-10-20

    The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations, better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.

  10. An introduction to nuclear materials fundamentals and applications

    CERN Document Server

    Linga Murty, K

    2013-01-01

    Covering both fundamental and advanced aspects in an accessible way, this textbook begins with an overview of nuclear reactor systems, helping readers to familiarize themselves with the varied designs. Then the readers are introduced to different possibilities for materials applications in the various sections of nuclear energy systems. Materials selection and life prediction methodologies for nuclear reactors are also presented in relation to creep, corrosion and other degradation mechanisms. An appendix compiles useful property data relevant for nuclear reactor applications. Throughout the book, there is a thorough coverage of various materials science principles, such as physical and mechanical metallurgy, defects and diffusion and radiation effects on materials, with serious efforts made to establish structure-property correlations wherever possible. With its emphasis on the latest developments and outstanding problems in the field, this is both a valuable introduction and a ready reference for beginners...

  11. Space and Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants With Nuclear Reactor Heat Sources

    Science.gov (United States)

    Juhasz, Albert J.

    2007-01-01

    In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the Next Generation Nuclear Plant Project (NGNP) has been established by DOE under the Generation IV Nuclear Systems Initiative. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series. As an attractive alternate heat source the Liquid Fluoride Reactor (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is

  12. Technical support to the Nuclear Regulatory Commission for the boiling water reactor blowdown heat transfer program

    Energy Technology Data Exchange (ETDEWEB)

    Rice, R.E.

    1976-09-01

    Results are presented of studies conducted by Aerojet Nuclear Company (ANC) in FY 1975 to support the Nuclear Regulatory Commission (NRC) on the boiling water reactor blowdown heat transfer (BWR-BDHT) program. The support provided by ANC is that of an independent assessor of the program to ensure that the data obtained are adequate for verification of analytical models used for predicting reactor response to a postulated loss-of-coolant accident. The support included reviews of program plans, objectives, measurements, and actual data. Additional activity included analysis of experimental system performance and evaluation of the RELAP4 computer code as applied to the experiments.

  13. Experimental results of a 3 k Wh thermochemical heat storage module for space heating application

    NARCIS (Netherlands)

    Finck, C.J.; Henquet, E.M.R.; Soest, C.F.L. van; Oversloot, H.P.; Jong, A.J. de; Cuypers, R.; Spijker, J.C. van 't

    2014-01-01

    A 3 kWh thermochemical heat storage (TCS) module was built as part of an all-in house system implementation focusing on space heating application at a temperature level of 40 ºC and a temperature lift of 20 K. It has been tested and measurements showed a maximum water circuit temperature span (relea

  14. Heat conduction controlled combustion for scramjet applications

    Science.gov (United States)

    Ferri, A.; Agnone, A. M.

    1974-01-01

    The use of heat conduction flame generated in a premixed supersonic stream is discussed. It is shown that the flame is controlled initially by heat conduction and then by chemical reaction. Such a flame is shorter than the diffusion type of flame and therefore it requires a much shorter burner. The mixing is obtained by injecting the hydrogen in the inlet. Then the inlet can be cooled by film cooling.

  15. Feasibility study of a dedicated nuclear desalination system: Low-pressure Inherent heat sink Nuclear Desalination plant (LIND

    Directory of Open Access Journals (Sweden)

    Ho Sik Kim

    2015-04-01

    Full Text Available In this paper, we suggest the conceptual design of a water-cooled reactor system for a low-pressure inherent heat sink nuclear desalination plant (LIND that applies the safety-related design concepts of high temperature gas-cooled reactors to a water-cooled reactor for inherent and passive safety features. Through a scoping analysis, we found that the current LIND design satisfied several essential thermal–hydraulic and neutronic design requirements. In a thermal–hydraulic analysis using an analytical method based on the Wooton–Epstein correlation, we checked the possibility of safely removing decay heat through the steel containment even if all the active safety systems failed. In a neutronic analysis using the Monte Carlo N-particle transport code, we estimated a cycle length of approximately 6 years under 200 MWth and 4.5% enrichment. The very long cycle length and simple safety features minimize the burdens from the operation, maintenance, and spent-fuel management, with a positive impact on the economic feasibility. Finally, because a nuclear reactor should not be directly coupled to a desalination system to prevent the leakage of radioactive material into the desalinated water, three types of intermediate systems were studied: a steam producing system, a hot water system, and an organic Rankine cycle system.

  16. Feasibility study of a dedicate nuclear desalination system: Low-pressure inherent heat sink nuclear desalination plant (LIND)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Sik; No, Hee Cheon; Jo, Yu Gwan; Wivisono, Andhika Feri; Park, Byung Ha; Choi, Jin Young; Lee, Jeong Ik; Jeong, Yong Hoon; Cho, Nam Zin [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-04-15

    In this paper, we suggest the conceptual design of a water-cooled reactor system for a low-pressure inherent heat sink nuclear desalination plant (LIND) that applies the safety-related design concepts of high temperature gas-cooled reactors to a water-cooled reactor for inherent and passive safety features. Through a scoping analysis, we found that the current LIND design satisfied several essential thermal-hydraulic and neutronic design requirements. In a thermal-hydraulic analysis using an analytical method based on the Wooton-Epstein correlation, we checked the possibility of safely removing decay heat through the steel containment even if all the active safety systems failed. In a neutronic analysis using the Monte Carlo N-particle transport code, we estimated a cycle length of approximately 6 years under 200 MW{sub th} and 4.5% enrichment. The very long cycle length and simple safety features minimize the burdens from the operation, maintenance, and spent-fuel management, with a positive impact on the economic feasibility. Finally, because a nuclear reactor should not be directly coupled to a desalination system to prevent the leakage of radioactive material into the desalinated water, three types of intermediate systems were studied: a steam producing system, a hot water system, and an organic Rankine cycle system.

  17. Licensed reactor nuclear safety criteria applicable to DOE reactors

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

  18. Laser heating of dielectric particles for medical and biological applications

    OpenAIRE

    2016-01-01

    We consider the general problem of laser pulse heating of a spherical dielectric particle embedded in a liquid. The discussed range of the problem parameters is typical for medical and biological applications. We focus on the case, when the heat diffusivity in the particle is of the same order of magnitude as that in the fluid. We perform quantitative analysis of the heat transfer equation based on interplay of four characteristic scales of the problem, namely the particle radius, the charact...

  19. Heat pipes and solid sorption transformations fundamentals and practical applications

    CERN Document Server

    Vasiliev, LL

    2013-01-01

    Developing clean energy and utilizing waste energy has become increasingly vital. Research targeting the advancement of thermally powered adsorption cooling technologies has progressed in the past few decades, and the awareness of fuel cells and thermally activated (heat pipe heat exchangers) adsorption systems using natural refrigerants and/or alternatives to hydrofluorocarbon-based refrigerants is becoming ever more important. Heat Pipes and Solid Sorption Transformations: Fundamentals and Practical Applications concentrates on state-of-the-art adsorption research and technologies for releva

  20. Possible generation of heat from nuclear fusion in Earth’s inner core

    Science.gov (United States)

    Fukuhara, Mikio

    2016-11-01

    The cause and source of the heat released from Earth’s interior have not yet been determined. Some research groups have proposed that the heat is supplied by radioactive decay or by a nuclear georeactor. Here we postulate that the generation of heat is the result of three-body nuclear fusion of deuterons confined in hexagonal FeDx core-centre crystals; the reaction rate is enhanced by the combined attraction effects of high-pressure (~364 GPa) and high-temperature (~5700 K) and by the physical catalysis of neutral pions: 2D + 2D + 2D → 21H + 4He + 2  + 20.85 MeV. The possible heat generation rate can be calculated as 8.12 × 1012 J/m3, based on the assumption that Earth’s primitive heat supply has already been exhausted. The H and He atoms produced and the anti-neutrino are incorporated as Fe-H based alloys in the H-rich portion of inner core, are released from Earth’s interior to the universe, and pass through Earth, respectively.

  1. Possible generation of heat from nuclear fusion in Earth's inner core.

    Science.gov (United States)

    Fukuhara, Mikio

    2016-11-23

    The cause and source of the heat released from Earth's interior have not yet been determined. Some research groups have proposed that the heat is supplied by radioactive decay or by a nuclear georeactor. Here we postulate that the generation of heat is the result of three-body nuclear fusion of deuterons confined in hexagonal FeDx core-centre crystals; the reaction rate is enhanced by the combined attraction effects of high-pressure (~364 GPa) and high-temperature (~5700 K) and by the physical catalysis of neutral pions: (2)D + (2)D + (2)D → 2(1)H + (4)He + 2  + 20.85 MeV. The possible heat generation rate can be calculated as 8.12 × 10(12) J/m(3), based on the assumption that Earth's primitive heat supply has already been exhausted. The H and He atoms produced and the anti-neutrino are incorporated as Fe-H based alloys in the H-rich portion of inner core, are released from Earth's interior to the universe, and pass through Earth, respectively.

  2. Glassy carbon coated graphite for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Delpeux, S.; Cacciaguerra, T.; Duclaux, L. [Orleans Univ., CRMD, CNRS, 45 (France)

    2005-07-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF{sub 2}, ThF{sub 4}, and UF{sub 4}) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin [1,2] or polyvinyl chloride [3] precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm{sup 3} and closed pores with nano-metric size ({approx} 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons (Fig 1), in good agreement with the proposed texture model for glassy carbon (Fig 2) [4]. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry

  3. Glassy carbon coated graphite for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Delpeux S; Cacciaguerra T; Duclaux L [CRMD, CNRS-University of Orleans, 1B rue de la Ferollerie 45071 Orleans Cedex 2, (France)

    2005-07-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF{sub 2}, ThF{sub 4}, and UF{sub 4}) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin or polyvinyl chloride precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm{sup 3} and closed pores with nano-metric size ({approx} 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons, in good agreement with the proposed texture model for glassy carbon. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry of the graphite substrate. The

  4. Preliminary issues associated with the next generation nuclear plant intermediate heat exchanger design

    Science.gov (United States)

    Natesan, K.; Moisseytsev, A.; Majumdar, S.

    2009-07-01

    The Next Generation Nuclear Plant, with emphasis on production of both electricity and hydrogen, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 850-950 °C. In this concept, an intermediate heat exchanger is used to transfer the heat from primary helium from the core to the secondary fluid, which can be helium, a nitrogen/helium mixture, or a molten salt. This paper assesses the issues pertaining to shell-and-tube and compact heat exchangers. A detailed thermal-hydraulic analysis was performed to calculate heat transfer, temperature distribution, and pressure drop inside both printed circuit and shell-and-tube heat exchangers. The analysis included evaluation of the role of key process parameters, geometrical factors in heat exchanger designs, and material properties of structural alloys. Calculations were performed for helium-to-helium, helium-to-helium/nitrogen, and helium-to-salt heat exchangers.

  5. Thermal storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  6. Fractional calculus with applications for nuclear reactor dynamics

    CERN Document Server

    Ray, Santanu Saha

    2015-01-01

    Introduces Novel Applications for Solving Neutron Transport EquationsWhile deemed nonessential in the past, fractional calculus is now gaining momentum in the science and engineering community. Various disciplines have discovered that realistic models of physical phenomenon can be achieved with fractional calculus and are using them in numerous ways. Since fractional calculus represents a reactor more closely than classical integer order calculus, Fractional Calculus with Applications for Nuclear Reactor Dynamics focuses on the application of fractional calculus to describe the physical behavi

  7. Fabric composite radiators for space nuclear power applications. Final report, March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Klein, A.C.; Al-Baroudi, H.; Gulshan-Ara, Z.; Kiestler, W.C.; Snuggerud, R.D.; Abdul-Hamid, S.A.; Marks, T.S.

    1993-03-24

    Nuclear power systems will be required to provide much greater power levels for both civilian and defense space activities in the future than an currently needed. Limitations on the amount of usable power from radioisotope thermal generators and the limited availability of radioisotope heat source materials lead directly to the conclusion that nuclear power reactors will be needed to enhance the exploration of the solar system as well as to provide for an adequate defense. Lunar bases and travel to the Martian surface will be greatly enhanced by the use of high levels of nuclear power. Space based radar systems requiring many kilowatts of electrical power can provide intercontinental airline traffic control and defense early warning systems. Since the, figure of merit used in defining any space power system is the specific power, the decrease in die mass of any reactor system component will yield a tremendous benefit to the overall system performance. Also, since the heat rejection system of any power system can make up a large portion of the total system mass, any reduction in the mass of the heat rejection radiators will significantly affect the performance of the power system. Composite materials which combine the high strength, flexibility, and low mass characteristics of Si% based fibers with the attractive compatibility and heat transfer features of metallic foils, have been proposed for use m a number of space radiator applications. Thus, the weave of the fabric and the high strength capability of the individual fibers are combined with the high conductivity and chemical stability of a metallic liner to provide a light weight, flexible alternative to heavy, rigid, metallic radiator structural containers. The primary focus of this investigation revolves around two applications of the fabric composite materials, notably a fabric heat pipe radiator design and the Bubble Membrane Radiator concept.

  8. Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine

    CERN Document Server

    Sgouros, George

    2003-01-01

    This book examines the applications of Monte Carlo (MC) calculations in therapeutic nuclear medicine, from basic principles to computer implementations of software packages and their applications in radiation dosimetry and treatment planning. It is written for nuclear medicine physicists and physicians as well as radiation oncologists, and can serve as a supplementary text for medical imaging, radiation dosimetry and nuclear engineering graduate courses in science, medical and engineering faculties. With chapters is written by recognised authorities in that particular field, the book covers the entire range of MC applications in therapeutic medical and health physics, from its use in imaging prior to therapy to dose distribution modelling targeted radiotherapy. The contributions discuss the fundamental concepts of radiation dosimetry, radiobiological aspects of targeted radionuclide therapy and the various components and steps required for implementing a dose calculation and treatment planning methodology in ...

  9. Proposal for grid computing for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Faridah Mohamad; Ismail, Saaidi; Haris, Mohd Fauzi B.; Sulaiman, Mohamad Safuan B.; Aslan, Mohd Dzul Aiman Bin.; Samsudin, Nursuliza Bt.; Ibrahim, Maizura Bt.; Ahmad, Megat Harun Al Rashid B. Megat; Yazid, Hafizal B.; Jamro, Rafhayudi B.; Azman, Azraf B.; Rahman, Anwar B. Abdul; Ibrahim, Mohd Rizal B. Mamat; Muhamad, Shalina Bt. Sheik; Hassan, Hasni [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Abdullah, Wan Ahmad Tajuddin Wan; Ibrahim, Zainol Abidin; Zolkapli, Zukhaimira; Anuar, Afiq Aizuddin; Norjoharuddeen, Nurfikri [Physics Department, University of Malaya, 56003 Kuala Lumpur (Malaysia); and others

    2014-02-12

    The use of computer clusters for computational sciences including computational physics is vital as it provides computing power to crunch big numbers at a faster rate. In compute intensive applications that requires high resolution such as Monte Carlo simulation, the use of computer clusters in a grid form that supplies computational power to any nodes within the grid that needs computing power, has now become a necessity. In this paper, we described how the clusters running on a specific application could use resources within the grid, to run the applications to speed up the computing process.

  10. Simulating experimental investigation on the safety of nuclear heating reactor in loss-of-coolant accidents

    Science.gov (United States)

    Xu, Zhanjie

    1996-12-01

    The 5MW low temperature nuclear heating reactor (NHR-5) is a new and advanced type of nuclear reactor developed by Institute of Nuclear Energy Technology (INET) of Tsinghua University of China in 1989. Its main loop is a thermal-hydraulic system with natural circulation. This paper studies the safety of NHR under the condition of loss-of-coolant accidents (LOCAs) by means of simulant experiments. First, the background and necessity of the experiments are presented, then the experimental system, including the thermal-hydraulic system and the data collection system, and similarity criteria are introduced. Up to now, the discharge experiments with the residual heating power (20% rated heating power) have been carried out on the experimental system. The system parameters including circulation flow rate, system pressure, system temperature, void fraction, discharge mass and so on have been recorded and analyzed. Based on the results of the experiments, the conclusions are shown as follos: on the whole, the reactor is safe under the condition of LOCAs, but the thermal vacillations resulting from the vibration of the circulation flow rate are disadvantageous to the internal parts of the reactor core.

  11. Heat transfer analysis of fuel assemblies in a heterogeneous gas core nuclear rocket

    Science.gov (United States)

    Watanabe, Yoichi; Appelbaum, Jacob; Diaz, Nils; Maya, Isaac

    1991-01-01

    Heat transfer problems of a heterogeneous gaseous core nuclear rocket were studied. The reactor core consists of 1.5-m long hexagonal fuel assemblies filled with pressurized uranium tetrafluoride (UF4) gas. The fuel gas temperature ranges from 3500 to 7000 K at a nominal operating condition of 40 atm. Each fuel assembly has seven coolant tubes, through which hydrogen propellant flows. The propellant temperature is not constrained by the fuel temperature but by the maximum temperature of the graphite coolant tube. For a core achieving a fission power density of 1000 MW/cu m, the propellant core exit temperature can be as high as 3200 K. The physical size of a 1250 MW gaseous core nuclear rocket is comparable with that of a NERVA-type solid core nuclear rocket. The engine can deliver a specific impulse of 1020 seconds and a thrust of 330 kN.

  12. Investigation of Heat Sink Efficiency for Electronic Component Cooling Applications

    DEFF Research Database (Denmark)

    Staliulionis, Ž.; Zhang, Zhe; Pittini, Riccardo

    2014-01-01

    Research and optimisation of cooling of electronic components using heat sinks becomes increasingly important in modern industry. Numerical methods with experimental real-world verification are the main tools to evaluate efficiency of heat sinks or heat sink systems. Here the investigation...... of relatively simple heat sink application is performed using modeling based on finite element method, and also the potential of such analysis was demonstrated by real-world measurements and comparing obtained results. Thermal modeling was accomplished using finite element analysis software COMSOL and thermo......-imaging camera was used to measure the thermal field distribution. Ideas for future research involving improvement of the experimental setup and modeling verification are given....

  13. Applicability of sewage heat pump air-conditioning system

    Institute of Scientific and Technical Information of China (English)

    陈金华; 刘猛; 刘勇; 靳鸣; 陈洁

    2009-01-01

    A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. The theoretical and quantitative calculations indicate that sewage flux in the city sewage main pipe in the project can satisfy heat exchange requirements,and taking water from the pipes has relatively small influence on the pipe net in summer and winter. The sewage heat pump air-conditioning system can save 21.5% operating cost in one year,which is energy efficient and environmentally friendly.

  14. Quercetin suppresses heat shock-induced nuclear translocation of Hsp72

    Directory of Open Access Journals (Sweden)

    Antoni Gawron

    2011-08-01

    Full Text Available The effect of quercetin and heat shock on the Hsp72 level and distribution in HeLa cells was studied by Western blotting, indirect immunofluorescence and immunogold electron microscopy. In control cells and after quercetin treatment, Hsp72 was located both in the cytoplasm and in the nucleus in comparable amounts. After hyperthermia, the level of nuclear Hsp72 raised dramatically. Expression of Hsp72 in cytoplasm was also higher but not to such extent as that observed in the nucleus. Preincubation of heated cells with quercetin inhibited strong Hsp72 expression observed after hyperthermia and changed the intracellular Hsp72 distribution. The cytoplasmic level of protein exceeded the nuclear one, especially around the nucleus, where the coat of Hsp72 was noticed. Observations indicating that quercetin was present around and in the nuclear envelope suggested an involvement of this drug in the inhibition of nuclear translocation. Our results indicate that pro-apoptotic activity of quercetin may be correlated not only with the inhibition of Hsp72 expression but also with suppression of its migration to the nucleus.

  15. Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores

    Science.gov (United States)

    Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim

    2007-01-01

    A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.

  16. Applications of nuclear safety probabilistic risk assessment to nuclear security for optimized risk mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, S.K.; Harvey, S.B. [Amec Foster Wheeler, Toronto, Ontario (Canada)

    2016-06-15

    Critical infrastructure assets such as nuclear power generating stations are potential targets for malevolent acts. Probabilistic methodologies can be applied to evaluate the real-time security risk based upon intelligence and threat levels. By employing this approach, the application of security forces and other protective measures can be optimized. Existing probabilistic safety analysis (PSA) methodologies and tools employed. in the nuclear industry can be adapted to security applications for this purpose. Existing PSA models can also be adapted and enhanced to consider total plant risk, due to nuclear safety risks as well as security risks. By creating a Probabilistic Security Model (PSM), safety and security practitioners can maximize the safety and security of the plant while minimizing the significant costs associated with security upgrades and security forces. (author)

  17. Licensed reactor nuclear safety criteria applicable to DOE reactors

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC (Nuclear Regulatory Commission) licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor.

  18. A Process Heat Application Using Parabolic Trough Collector

    Science.gov (United States)

    Yılmaz, İbrahim Halil; Söylemez, Mehmet Sait; Hayta, Hakan; Yumrutaş, Recep

    A pilot study has been performed based on a heat process application that is designed, installed and tested at Gaziantep University to establish the technical and economic feasibility of high temperature solar-assisted cooking process. The system has been designed to be satisfying the process conditions integrated with parabolic trough solar collector (PTSC). It is primarily consists of the PTSC array, auxiliary heater, plate type heat exchanger, cooking system and water heating tanks. In the operation of the process heat application, the energy required to cook wheat (used as cooking material) has been supplied from solar energy which is transferred to heat transfer fluid (HTF) by heat exchanging units and finally discharged to water in order to produce bulgur. The performance parameters of the sub-systems and the process compatibility have been accomplished depending on the system operation. In addition that the system performance of the high temperature solar heat process has been presented and the recommendations on its improvement have been evaluated by performing an experimental study. As a result that the use of solar energy in process heat application has been projected and its contribution to economics view with respect to conventional cooking systems has been conducted.

  19. Nuclear energy I, Non-energetic applications; Energia Nuclear I, Aplicaciones no energeticas

    Energy Technology Data Exchange (ETDEWEB)

    Lartigue G, J.; Navarrete T, M.; Cabrera M, L.; Arandia, P.A.; Arriola S, H. [Facultad de Quimica, 04510 Mexico D.F. (Mexico)

    1986-07-01

    The nuclear energy is defined as the energy produced or absorbed in the nuclear reactions, therefore, these are divided in endothermic and exothermic. The exothermic nuclear reactions present more interest from the point of view of its applications and they can show in four main forms: radioactivity (from 0 to 4 MeV/reaction; light nucleus fusion ( {approx} 20 MeV/reaction), heavy nucleus fusion ({approx} 200 MeV/reaction) and nucleons annihilation ( {approx} 2000 MeV/reaction). Nowadays only the fission has reached the stage of profitable energetic application, finding the other three forms in research and development. The non-energetic applications of the nuclear energy are characterized by they do not require of prior conversion to another form of energy and they are made through the use of radioisotopes as well as through the use of endothermic reaction caused in particle accelerators. In this work are presented some of the non-energetic applications with its theoretical and experimental basis as well as its benefits of each one. (Author)

  20. Experimental Study of a Stoppage Natural Circulation during a Nuclear Heating Reactor LOCA

    Institute of Scientific and Technical Information of China (English)

    博金海; 张佑杰; 姜胜耀

    2001-01-01

    The 5MW nuclear heating reactor is an integral naturalcirculation reactor. The rupture of the coolant penetrating tube is a typical accident causing coolant loss. When the water level drops down to the upper edge of the inlet of the heat exchanger, the natural circulation stops. This influences the core cooling and the stability of the main loop. A series of tests showed that there is a stable drop of pressure, and the heated element temperature is not too high to cause burnout. But the backward flow or flow oscillation in the primary coolant circuit occurs when the flow breaks completely in the end. The whole flow process is described and the mechanism is discussed.

  1. Nuclear-physics applications of MYRRHA

    Directory of Open Access Journals (Sweden)

    Popescu Lucia

    2014-03-01

    Full Text Available The Belgian Nuclear Research Centre SCK·CEN is currently working on the design of the MYRRHA research reactor, able to operate in both critical and sub-critical mode as an Accelerator-Driven System (ADS. When operated as an ADS, the MYRRHA reactor core will be coupled to an external neutron source, which is generated by a 600-MeV, 2- to 4-mA proton beam impinging on a lead-bismuth spallation target. By using a small fraction (up to 5% of the MYRRHA proton beam, intensities of 100-200 μA can be sent to a separate facility called ISOL@MYRRHA. Given the high proton energy, most isotopes known on the chart of nuclides can be produced. The production in the hot-target is followed by selective ionization and extraction of atoms in a Radioactive Ion Beam (RIB. Following mass-purification, high-intensity RIBs will be delivered for a large variety of experimental programmes requiring long measurement times. By its experimental programme, the ISOL@MYRRHA facility will be complementary to running and planned Isotope Separator On-Line (ISOL facilities in Europe and abroad.

  2. Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Tuncbilek, K.; Sari, A. [Gaziosmanpasa Univ., Tokat (Turkey). Dept. of Chemistry; Tarhan, S.; Erguenes, G. [Gaziosmanpasa Univ., Tokat (Turkey). Dept. of Agricultural Machinery; Kaygusuz, K. [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Chemistry

    2005-04-01

    Palmitic acid (PA, 59.8 {sup o}C) and lauric acid (LA, 42.6 {sup o}C) are phase change materials (PCM) having quite high melting temperatures which can limit their use in low temperature solar applications such as solar space heating and greenhouse heating. However, their melting temperatures can be tailored to appropriate value by preparing a eutectic mixture of the lauric and the palmitic acids. In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of 69.0 wt% LA and 31 wt% PA forms a eutectic mixture having melting temperature of 35.2 {sup o}C and the latent heat of fusion of 166.3 J g{sup -1}. This study also considers the experimental determination of the thermal characteristics of the eutectic mixture during the heat charging and discharging processes. Radial and axial temperature distribution, heat transfer coefficient between the heat transfer fluid (HTF) pipe and the PCM, heat recovery rate and heat charging and discharging fractions were experimentally established employing a vertical concentric pipe-in-pipe energy storage system. The changes of these characteristics were evaluated with respect to the effect of inlet HTF temperature and mass flow rate. The DSC thermal analysis and the experimental results indicate that the LA-PA eutectic mixture can be a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics. (author)

  3. Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Kadir Tuncbilek; Ahmet Sari [Gaziosmanpasa University, Tokat (Turkey). Dept. of Chemistry; Sefa Tarhan; Gazanfer Ergunes [Gaziosmanpasa University, Tokat (Turkey). Dept. of Agricultural Machinery; Kamil Kaygusuz [Karadeniz University, Trabzon (Turkey). Dept. of Chemistry

    2005-04-01

    Palmitic acid (PA, 59.8{sup o}C) and lauric acid (LA, 42.6{sup o}C) are phase change materials (PCM) having quite high melting temperatures which can limit their use in low temperature solar applications such as solar space heating and greenhouse heating. However, their melting temperatures can be tailored to appropriate value by preparing a eutectic mixture of the lauric and the palmitic acids. In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of 69.0 wt% LA and 31 wt% PA forms a eutectic mixture having melting temperature of 35.2 {sup o}C and the latent heat of fusion of 166.3 J g{sup -1}. This study also considers the experimental determination of the thermal characteristics of the eutectic mixture during the heat charging and discharging processes. Radial and axial temperature distribution, heat transfer coefficient between the heat transfer fluid (HTF) pipe and the PCM, heat recovery rate and heat charging and discharging fractions were experimentally established employing a vertical concentric pipe-in-pipe energy storage system. The changes of these characteristics were evaluated with respect to the effect of inlet HTF temperature and mass flow rate. The DSC thermal analysis and the experimental results indicate that the LA-PA eutectic mixture can be a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics. (author)

  4. Absorption heat pump for space applications

    Science.gov (United States)

    Nguyen, Tuan; Simon, William E.; Warrier, Gopinath R.; Woramontri, Woranun

    1993-01-01

    In the first part, the performance of the Absorption Heat Pump (AHP) with water-sulfuric acid and water-magnesium chloride as two new refrigerant-absorbent fluid pairs was investigated. A model was proposed for the analysis of the new working pairs in a heat pump system, subject to different temperature lifts. Computer codes were developed to calculate the Coefficient of Performance (COP) of the system with the thermodynamic properties of the working fluids obtained from the literature. The study shows the potential of water-sulfuric acid as a satisfactory replacement for water-lithium bromide in the targeted temperature range. The performance of the AHP using water-magnesium chloride as refrigerant-absorbent pair does not compare well with those obtained using water-lithium bromide. The second part concentrated on the design and testing of a simple ElectroHydrodynamic (EHD) Pump. A theoretical design model based on continuum electromechanics was analyzed to predict the performance characteristics of the EHD pump to circulate the fluid in the absorption heat pump. A numerical method of solving the governing equations was established to predict the velocity profile, pressure - flow rate relationship and efficiency of the pump. The predicted operational characteristics of the EHD pump is comparable to that of turbomachinery hardware; however, the overall efficiency of the electromagnetic pump is much lower. An experimental investigation to verify the numerical results was conducted. The pressure - flow rate performance characteristics and overall efficiency of the pump obtained experimentally agree well with the theoretical model.

  5. Nuclear heating measurements by in-pile calorimetry: prospective works for a microsensor design

    Energy Technology Data Exchange (ETDEWEB)

    Reynard-Carette, C.; Carette, M.; Aguir, K.; Bendahan, M.; Fiorido, T. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Lyoussi, A.; Fourmentel, D.; Villard, J.F. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 (France); Barthes, M.; Lanzetta, F.; Layes, G.; Vives, S. [FEMTO-ST, UMR 6174, Departement ENERGIE, Universite de Franche-Comte, 90000, Belfort (France)

    2015-07-01

    Since 2009 works have been performed in the framework of joint research programs between CEA and Aix-Marseille University. The main aim of these programs is to design and develop in-pile instrumentations, advanced calibration procedure and accurate measurement methods in particular for the new Material Testing Reactor (MTR) under construction in the South of France: Jules Horowitz Reactor (JHR). One major sensor is a specific radiometric calorimeter, which was studied out-of-pile from a thermal point of view and in-pile during irradiation campaigns. This sensor type is dedicated to measurements of nuclear heating (energy deposition rate per mass unit induced by interactions between nuclear rays and matter) inside experimental channels of MTRs. This kind of in-pile calorimeter corresponds to heat flux calorimeter exchanging with the external cooling fluid. This thermal running mode allows the establishment of steady thermal conditions inside the sensor to carry out online continuous measurements inside the reactor (core or reflector). Two main types of calorimeters exist. The first type consists of a single cell calorimeter. It is divided into a sample of material to be tested and a jacket instrumented with two thermocouples or a single thermocouple (Gamma Thermometer). The second, called a differential calorimeter, is composed of two superposed twin cells (a measurement cell containing a sample of material, and a reference cell to remove the heating of the cell body) instrumented with four thermocouples and two electrical heaters. Contrary to a single-cell calorimeter, a differential calorimeter allows the compensation of the parasite nuclear heating of the sensor body or jacket. Moreover, it possesses interesting advantages: thanks to the heaters embedded in the cells, three different measurement methods can be applied during irradiations to quantify nuclear heating. The first one is based on the use of out-of-pile calibration curves obtained by generating a heat

  6. Applications of tomography in nuclear research

    Energy Technology Data Exchange (ETDEWEB)

    Tanke, R.H.J.; Jaspers, J.E.; Gaalman, P.A.M. (KEMA, Arnhem (Netherlands). Dept. of Chemical Technology and Materials Research); Killian, D. (State Univ. of Utrecht (Netherlands). Buys Ballot Lab.)

    1991-10-01

    Transmission tomography was applied to radioactive waste packages, and emission tomography was applied to fuel rods, fuel elements and as an analysis tool for the determination of the transport of fission products in irradiated UO{sub 2} fuel. An overview of these applications at the KEMA including results hitherto achieved is given. In addition, the theory of tomographic reconstruction in two and three dimensions is shortly described. (orig./HP).

  7. Nanoparticle heating: nanoscale to bulk effects of electromagnetically heated iron oxide and gold for biomedical applications

    Science.gov (United States)

    Qin, Zhenpeng; Etheridge, Michael; Bischof, John C.

    2011-03-01

    Biomedical applications of nanoparticle heating range in scale from molecular activation (i.e. molecular beacons, protein denaturation, lipid melting and drug release), cellular heating (i.e. nanophotolysis and membrane permeability control and rupture) to whole tumor heating (deep and superficial). This work will present a review on the heating of two classes of biologically compatible metallic nanoparticles: iron oxide and gold with particular focus on spatial and temporal scales of the heating event. The size range of nanoparticles under discussion will focus predominantly in the 10 - 200 nm diameter size range. Mechanisms of heating range from Néelian and Brownian relaxation due to magnetic susceptibility at 100s of kHz, optical absorption due to VIS and NIR lasers and "Joule" heating at higher frequency RF (13.56 MHz). The heat generation of individual nanoparticles and the thermal responses at nano-, micro-, and macroscales are presented. This review will also discuss how to estimate a specific absorption rate (SAR, W/g) based on individual nanoparticles heating in bulk samples. Experimental setups are designed to measure the SAR and the results are compared with theoretical predictions.

  8. Parametric study of the energy deposition inside the calorimeter measuring the nuclear heating in Material Testing Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Amharrak, H., E-mail: hicham.amharrak@im2np.fr [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Reynard-Carette, C. [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint Paul lez Durance (France); Carette, M.; Brun, J.; De Vita, C. [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Fourmentel, D.; Villard, J-F. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint Paul lez Durance (France)

    2015-11-01

    The nuclear heating measurements in Material Testing Reactors (MTRs) are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material and two calorimetric cells. Then these measurements are used for other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. This paper will present simulations with MCNP5 Monte-Carlo transport code (using ENDF/B-VI nuclear data library) to evaluate the nuclear heating inside the calorimeter during irradiation campaigns of the CARMEN-1P mock-up inside OSIRIS reactor periphery (MTR based on Saclay, France). The whole complete geometry of the sensor has been considered. The calculation method corresponds to a calculation in two steps. Consequently, we used as an input source in the model, the neutron and photon spectra calculated in various experimental locations tested during the irradiation campaign (H9, H10, H11, D9). After a description of the differential calorimeter sensor, the MCNP5 model used for the calculations of nuclear heating inside the calorimeter elements is introduced by two quantities: KERMA and energy deposition rate per mass unit. The Charged Particle Equilibrium (CPE) inside the calorimeter elements is studied. The contribution of prompt gamma and neutron is determined. A comparison between this total nuclear heating calculation and the experimental results in a graphite sample will be made. Then parametric studies performed on the influence of the various calorimeter components on the nuclear heating are presented and discussed. The studies of the influence of the nature of materials, the sensor jacket, the source type and the comparison of the results obtained for the two calorimetric cells leads to some proposals for the sensor improvement.

  9. Applications of accelerator mass spectrometry to nuclear physics and astrophysics

    CERN Document Server

    Guo, Z Y

    2002-01-01

    As an ultra high sensitive analyzing method, accelerator mass spectrometry is playing an important role in the studies of nuclear physics and astrophysics. The accelerator mass spectrometry (AMS) applications in searching for violation of Pauli exclusion principle and study on supernovae are discussed as examples

  10. IMPACT AND APPLICATIONS OF NUCLEAR-SCIENCE - OPPORTUNITIES AND PERSPECTIVES

    NARCIS (Netherlands)

    VANDERWOUDE, A

    1995-01-01

    Some highlights of the forthcoming NUPECC report on IMPACT AND APPLICATIONS of NUCLEAR PHYSICS will be discussed. The role of accelerators is stressed. The discussion will not be limited to what has been achieved but will also indicate what opportunities there are and what that implies for research

  11. Nuclear magnetic resonance in environmental engineering: principles and applications.

    NARCIS (Netherlands)

    Lens, P.N.L.; Hemminga, M.A.

    1998-01-01

    This paper gives an introduction to nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) in relation to applications in the field of environmental science and engineering. The underlying principles of high resolution solution and solid state NMR, relaxation time measure

  12. Geothermal Direct Heat Applications Program Summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-09-25

    Because of the undefined risk in the development and use of geothermal energy as a thermal energy source, the Department of Energy Division of Geothermal Energy solicited competitive proposals for field experiments in the direct use of geothermal energy. Twenty-two proposals were selected for cost-shared funding with one additional project co-funded by the State of New Mexico. As expected, the critical parameter was developing a viable resource. So far, of the twenty resources drilled, fourteen have proved to be useful resources. These are: Boise, Idaho; Elko heating Company in Nevada; Pagosa Springs, Colorado; Philip School, Philip, South Dakota; St. Mary's Hospital, Pierre, South Dakota; Utah Roses near Salt Lake City; Utah State Prison, Utah; Warm Springs State Hospital, Montana; T-H-S Hospital, Marlin, Texas; Aquafarms International in the Cochella Valley, California; Klamath County YMCA and Klamath Falls in Oregon; Susanville, California and Monroe, utah. Monroe's 164 F and 600 gpm peak flow was inadequate for the planned project, but is expected to be used in a private development. Three wells encountered a resource insufficient for an economical project. These were Madison County at Rexburg, Idaho; Ore-Ida Foods at Ontario, Oregon and Holly Sugar at Brawley, California. Three projects have yet to confirm their resource. The Navarro College well in Corsicana, Texas is being tested; the Reno, Moana, Nevada well is being drilled and the El Centro, California well is scheduled to be drilled in January 1982. The agribusiness project at Kelly Hot Springs was terminated because a significant archeological find was encountered at the proposed site. The Diamond Ring Ranch in South Dakota, and the additional project, Carrie Tingley Hospital in Truth or Consequences, New Mexico both used existing wells. The projects that encountered viable resources have proceeded to design, construct, and in the most advanced projects, to operate geothermal systems for

  13. Application of Nuclear Regulatory Commission Regulation Equivalency to Construction of New Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    BISHOP, G.E.

    1999-06-02

    The Spent Nuclear Fuels Project (SNFP) Office of the Department of Energy (DOE), Richland Operations Office, is charged with moving 2.100 metric tons of spent nuclear fuel elements left over from plutonium production into semi-permanent storage at DOE'S Hanford site in Washington state. In anticipation of eventual NRC regulation, the DOE decided to impose NRC requirements on new SNFP facility design and construction, specifically for the Cold Vacuum Drying Facility (CVDF) and the Canister Storage Building (CSB). The SNFP implemented this policy of ''NRC equivalency'' with the goal of achieving a level of nuclear safety equivalent to that of NRC-licensed fuel processing facilities. Appropriate features of the NRC licensing process were adopted. However, the SNFP maintained applicable DOE requirements in tandem with the NRC regulations. Project work is continuing, with the first fuel movement scheduled for November, 2000.

  14. Mobile robots and remote systems in nuclear applications; Robots moviles y sistemas remotos en aplicaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Segovia de los Rios, J. A.; Benitez R, J. S., E-mail: armando.segovia@inin.gob.m [ININ, Departamento de Automatizacion e Instrumentacion, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    Traditionally, the robots have been used in the industry for the colored to the spray, welding, schemed, assemble and handling of materials. However, these devices have had a deep impact in the nuclear industry where the first objective has been to reduce the exhibition and the personnel contact with radioactive materials. Knowing the utility of the mobile robots and remote systems in nuclear facilities in the world, the Department of Automation and Instrumentation of the Instituto Nacional de Investigaciones Nucleares (ININ) has carried out some researches and applications that they have facilitated the work of the researches and professionals of the ININ involved in the handling of radioactive materials, as the system with monorail for the introduction of irradiated materials in a production cell of Iodine-131 and the robot vehicle for the radioactive materials transport TRASMAR (contraction of Transportacion Asistida de Materiales Radiactivos). (Author)

  15. Management of waste heat at nuclear power plants: Its potential impact on the environment and its possible economic use

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Y.H.

    1987-01-01

    The efficacy of the disposal of waste heat from nuclear power plants by means of once-through and closed-cycle cooling systems is examined in the context of the physical aspects of water quality standards and guidelines for thermal discharges. Typical thermal standards for each of the four classes of water bodies (rivers, lakes, estuaries, and coastal waters) are identified. Examples of thermal standards established for once-through cooling on open coastal waters are presented. The design and general layout of various types of cooling systems are reviewed. The advantages and disadvantages of each of the cooling systems are presented, with particular emphasis on the discussion of potential environmental impacts. Modeling techniques available for impact assessment are presented. Proper selection and application of the models depend on the availability of site characteristics and understanding of the modeling techniques. Guidelines for choosing an appropriate model are presented. Various methods have been developed for the beneficial use of waste heat largely dissipated to the environment. Examples and associated problems of waste-heat utilization are discussed for agricultural, industrial, aquacultural, and residential uses.

  16. Report on nuclear safety in EU applicant countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Nuclear safety in the candidate countries to the European Union is a major issue which needs to be addressed in the frame of the enlargement process. The Heads of the nuclear safety Regulatory Bodies of the European Union member states having nuclear power plants, i.e. Belgium, Finland, France, Germany, Italy, the Netherlands, Spain, Sweden and the United Kingdom thought it was their duty to offer their assistance to the European Union institutions at a moment when the expansion of the Union is being considered. As a consequence, they decided to issue a report giving their collective opinion on nuclear safety in those applicant countries having at least one nuclear power reactor (Bulgaria, Czech Republic, Hungary, Lithuania, Romania, Slovak Republic, Slovenia) and covering: the status of the regulatory regime and regulatory body and the nuclear power plant safety status. This report is based on the knowledge they gained through multilateral assistance programmes, in particular the Phare programmes, and also through bilateral contacts. It must be stressed that in some cases, they recognised that their current knowledge was not sufficient to express a clear and exhaustive opinion. Also, it should be pointed out that the judgements are based on widely applied Western European design standards for the defence-in-depth and associated barriers. Quantitative comparisons of Probabilistic Safety Assessments have not been used as the available results are of widely different depth and quality. They also recognised that such a report could only present the situation at a given moment and they intend to periodically update it so as to reflect the changes which may occur in these countries. At this stage, the report does not cover radioactive waste or radiation protection issues in any detail. After they had taken the decision to issue this report, they decided to create an association, the Western European Nuclear Regulators Association (WENRA) in order to increase the co

  17. SPring-8 and application of nuclear scattering

    Energy Technology Data Exchange (ETDEWEB)

    Harami, Taikan [Japan Atomic Energy Research Inst., Kamigori, Hyogo (Japan). Kansai Research Establishment

    1997-03-01

    The SPring-8 has Linac synchrotron, incidence type facility and an accumulation ring. By preparing a beam line to take out light at the accumulation ring, the SPring-8 is supplied for common applications. Development of science adopting new method to study of properties and organisms by using high brightness source is expected. Construction of the SPring-8 accelerator was finished and adjusting test and commissioning of apparatuses are now in proceeding. At pre-use inspection of the accumulation ring on March, 1997, beam lines for R and D and crystalline structure analysis are applied to the Science and Technology Agency to inspect them simultaneously. And, by activating character of the SPring-8 radiation facility of high brightness and high energy X-ray generator, property study using Moessbauer nuclide to a probe can be conducted. (G.K.)

  18. Sensitivity analysis for heat diffusion in a fin on a nuclear fuel element; Analise de sensitividade na difusao de calor em uma aleta de um elemento combustivel nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Tito, Max Werner de Carvalho

    2001-11-15

    projected to gas-cooled nuclear reactors to compensate the low coolant thermal transport efficiency. The model is described by the temperature distribution equation and the further specific boundary conditions. The adjoint system is used to determine the sensitivity coefficients to the case of interest. Both, the direct model and the perturbative formalism resultant equations are solved. The heat flow rate on a point of the fin and the average temperature excess were the response functionals studied. The half thickness, the thermal conductivity and heat transfer coefficients and the heat flow from the base material were the parameters of interest to the sensitivity analysis. The results obtained through the perturbative method and the direct variation presented, in a general form and within acceptable physical limits, good concordance and excellent representativeness to the analyzed cases. It evidences that the differential formalism is an important tool to the sensitivity analysis and also it validates the application of the methodology in heat transmission problems on extended surfaces. The method proves to be necessary and efficient while elaborating thermal engineering projects. (author)

  19. Nonlinear Adaptive Dynamic Output-Feedback Power-Level Control of Nuclear Heating Reactors

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2013-01-01

    Full Text Available Due to the high safety performance of small nuclear reactors, there is a promising future for small reactors. Nuclear heating reactor (NHR is a small reactor that has many advanced safety features such as the integrated arrangement, natural circulation at any power levels, self-pressurization, hydraulic control rod driving, and passive residual heating removing and can be applied to the fields of district heating, seawater desalination, and electricity production. Since the NHR dynamics has strong nonlinearity and uncertainty, it is meaningful to develop the nonlinear adaptive power-level control technique. From the idea of physically based control design method, a novel nonlinear adaptive power-level control is given for the NHR in this paper. It is theoretically proved that this newly built controller does not only provide globally asymptotic closed-loop stability but is also adaptive to the system uncertainty. Numerical simulation results show the feasibility of this controller and the relationship between the performance and controller parameters.

  20. Applications of resistive heating in gas chromatography: a review.

    Science.gov (United States)

    Jacobs, Matthew R; Hilder, Emily F; Shellie, Robert A

    2013-11-25

    Gas chromatography is widely applied to separate, identify, and quantify components of samples in a timely manner. Increasing demand for analytical throughput, instrument portability, environmental sustainability, and more economical analysis necessitates the development of new gas chromatography instrumentation. The applications of resistive column heating technologies have been espoused for nearly thirty years and resistively heated gas chromatography has been commercially available for the last ten years. Despite this lengthy period of existence, resistively heated gas chromatography has not been universally adopted. This low rate of adoption may be partially ascribed to the saturation of the market with older convection oven technology, coupled with other analytical challenges such as sampling, injection, detection and data processing occupying research. This article assesses the advantages and applications of resistive heating in gas chromatography and discusses practical considerations associated with adoption of this technology.

  1. High Temperature Steam Corrosion of Cladding for Nuclear Applications: Experimental

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M; Garnier, John E; Sergey Rashkeev; Michael V. Glazoff; George W. Griffith; Shannong M. Bragg-Sitton

    2013-01-01

    Stability of cladding materials under off-normal conditions is an important issue for the safe operation of light water nuclear reactors. Metals, ceramics, and metal/ceramic composites are being investigated as substitutes for traditional zirconium-based cladding. To support down-selection of these advanced materials and designs, a test apparatus was constructed to study the onset and evolution of cladding oxidation, and deformation behavior of cladding materials, under loss-of-coolant accident scenarios. Preliminary oxidation tests were conducted in dry oxygen and in saturated steam/air environments at 1000OC. Tube samples of Zr-702, Zr-702 reinforced with 1 ply of a ß-SiC CMC overbraid, and sintered a-SiC were tested. Samples were induction heated by coupling to a molybdenum susceptor inside the tubes. The deformation behavior of He-pressurized tubes of Zr-702 and SiC CMC-reinforced Zr-702, heated to rupture, was also examined.

  2. Solar thermal water heating : an application for Alberta, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, T. [Simple Solar Heating Ltd., Okotoks, AB (Canada); Lonseth, R.; Lonseth, A.; Jagoda, K. [Mount Royal College, Calgary, AB (Canada)

    2009-07-01

    The use of renewable energy resources is an essential feature in curtailing greenhouse gas (GHG) emissions. This paper discussed solar thermal water heating applications for Alberta. In particular, it presented a case study of the successful commercial application of solar thermal water heating systems in households in the city of Calgary. The system used solar-thermal collectors with heat pipes mounted inside vacuum sealed glass cylinders. The devices collected heat and transferred it to a copper manifold even in extreme winter temperatures. The system included a solar storage tank integrated into a domestic hot water system. The solar fluid circulated through the solar tank. Fresh cold water entered the solar tank when hot water was used in the house in order to be preheated before entering the original water heating tank. A 25 watt pump was mounted in the closed solar loop to circulate the solar heat transfer fluid. An economic analysis demonstrated that a 2-panel system saved the equivalent of 2.4 acres of carbon-absorbing forest and had the same benefit as purchasing a hybrid car. The payback period for the system was 4 years. It was concluded that solar thermal systems are the best renewable energy method for domestic water heating in Calgary. 10 refs., 2 tabs., 5 figs.

  3. On the Nuclear Mechanisms Underlying the Heat Production by the E-Cat

    CERN Document Server

    Cook, Norman D

    2015-01-01

    We discuss the isotopic abundances found in the E-Cat reactor with regard to the nuclear mechanisms responsible for excess heat. We argue that a major source of energy is a reaction between the first excited-state of 7Li4 and a proton, followed by the breakdown of 8Be4 into two alphas with high kinetic energy, but without gamma radiation. The unusual property of the 7Li4 isotope that allows this reaction is similar to the property that underlies the Mossbauer effect: the presence of unusually low-lying excited states in stable, odd-Z and/or odd-N nuclei. We use the lattice version of the independent-particle model (IPM) of nuclear theory to show how the geometrical structure of isotopes indicate nuclear reactions that are not predicted in the conventional version of the IPM. Finally, we speculate on similar mechanisms that may be involved in other low-energy nuclear reactions (LENR).

  4. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-04-01

    The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.

  5. Application of Technetium and Rhenium in Nuclear Medicine

    Science.gov (United States)

    Alberto, Roger

    2012-06-01

    Technetium and Rhenium are the two lower elements in the manganese triad. Whereas rhenium is known as an important part of high resistance alloys, technetium is mostly known as a cumbersome product of nuclear fission. It is less known that its metastable isotope 99mTc is of utmost importance in nuclear medicine diagnosis. The technical application of elemental rhenium is currently complemented by investigations of its isotope 188Re, which could play a central role in the future for internal, targeted radiotherapy. This article will briefly describe the basic principles behind diagnostic methods with radionuclides for molecular imaging, review the 99mTc-based radiopharmaceuticals currently in clinical routine and focus on the chemical challenges and current developments towards improved, radiolabeled compounds for diagnosis and therapy in nuclear medicine.

  6. Capsaicinoids improve egg production by regulating ovary nuclear transcription factors against heat stress in quail.

    Science.gov (United States)

    Sahin, N; Orhan, C; Tuzcu, M; Juturu, V; Sahin, K

    2016-12-12

    To examine the molecular mechanism of capsaicinoid supplementation from capsicum extract, laying Japanese quail (n = 180, 5 weeks old) were reared either at 22°C for 24 h/d (thermoneutral, TN) or at 34°C for 8 h/d (heat stress, HS) and fed on one of three diets containing 0, 25 or 50 mg of capsaicinoids per kilogram for 12 weeks (2 × 3 factorial arrangement). The results revealed that exposure to HS decreased feed consumption by 10.7% and egg production by 13.6%, increased serum and ovary malondialdehyde (MDA) levels by 66.9% and 88.1%, respectively, and reduced ovary superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities by 28.3%, 48.7% and 43.8%, respectively. There were magnifications in the ovary nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) levels by 42.4% and suppressions in nuclear factor (erythroid-derived 2)-like 2 (Nrf2), protein kinase B (Akt) and haem-oxygenase 1 (HO-1) levels by 29.2%, 38.2% and 30.7%, respectively, in heat-stressed quail. With increasing supplemental capsaicinoids, there were linear increases in egg production, antioxidant enzyme activity, linear decreases in ovary MDA and NF-κB levels and linear increases in ovary Nrf2, Akt and HO-1 levels at a greater extent in quail reared under TN condition than those reared under HS condition. Two-way treatment interactions showed that the degree of restorations in all response variables was more notable under the HS environment than under the TN environment as supplemental capsaicinoid level was increased. In conclusion, capsaicinoid supplementation alleviates oxidative stress through regulating the ovary nuclear transcription factors in heat-stressed quail.

  7. Advances in processing technologies for titanium heat exchanger tubes of fossil and nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Likhareva, T.P.; Tchizhik, A.A.; Chavchanidze, N.N. [Polzanov Central Boiler and Turbine Institute, St. Petersburg (Russian Federation)

    1998-12-31

    The advances in processing technologies for titanium heat exchangers with rolled and welded tubes of fossil and nuclear power plants in Russia are presented. The special methodology of investigations with constant small strain rate have been used to study the effects of mixed corrosion and creep processes in condensers cooled by sea or synthetic sea waters. The results of corrosion creep tests and K1scc calculations are given. The Russian science activities concerning condensers manufactured from titanium show the possibilities for designing structures with very high level service reliability in different corrosion aggressive mediums with high total salt, Cl-ion and oxygen contents. (orig.)

  8. Heat Transfer Enhancement By Three-Dimensional Surface Roughness Technique In Nuclear Fuel Rod Bundles

    Science.gov (United States)

    Najeeb, Umair

    This thesis experimentally investigates the enhancement of single-phase heat transfer, frictional loss and pressure drop characteristics in a Single Heater Element Loop Tester (SHELT). The heater element simulates a single fuel rod for Pressurized Nuclear reactor. In this experimental investigation, the effect of the outer surface roughness of a simulated nuclear rod bundle was studied. The outer surface of a simulated fuel rod was created with a three-dimensional (Diamond-shaped blocks) surface roughness. The angle of corrugation for each diamond was 45 degrees. The length of each side of a diamond block is 1 mm. The depth of each diamond block was 0.3 mm. The pitch of the pattern was 1.614 mm. The simulated fuel rod had an outside diameter of 9.5 mm and wall thickness of 1.5 mm and was placed in a test-section made of 38.1 mm inner diameter, wall thickness 6.35 mm aluminum pipe. The Simulated fuel rod was made of Nickel 200 and Inconel 625 materials. The fuel rod was connected to 10 KW DC power supply. The Inconel 625 material of the rod with an electrical resistance of 32.3 kO was used to generate heat inside the test-section. The heat energy dissipated from the Inconel tube due to the flow of electrical current flows into the working fluid across the rod at constant heat flux conditions. The DI water was employed as working fluid for this experimental investigation. The temperature and pressure readings for both smooth and rough regions of the fuel rod were recorded and compared later to find enhancement in heat transfer coefficient and increment in the pressure drops. Tests were conducted for Reynold's Numbers ranging from 10e4 to 10e5. Enhancement in heat transfer coefficient at all Re was recorded. The maximum heat transfer co-efficient enhancement recorded was 86% at Re = 4.18e5. It was also observed that the pressure drop and friction factor increased by 14.7% due to the increased surface roughness.

  9. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Edward H. Seabury

    2008-08-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  10. Power quality considerations for nuclear spectroscopy applications: Grounding

    Energy Technology Data Exchange (ETDEWEB)

    García-Hernández, J.M., E-mail: josemanuel.garcia@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de México, México (Mexico); Instituto Tecnológico de Toluca, Departamento de Estudios de Posgrado e Investigación, Av. Tecnológico S/N, ExRancho La Virgen, 52140 Metepec, México (Mexico); Ramírez-Jiménez, F.J., E-mail: fjr@ieee.org [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de México, México (Mexico); Instituto Tecnológico de Toluca, Departamento de Estudios de Posgrado e Investigación, Av. Tecnológico S/N, ExRancho La Virgen, 52140 Metepec, México (Mexico); Mondragón-Contreras, L.; López-Callejas, R. [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de México, México (Mexico); Instituto Tecnológico de Toluca, Departamento de Estudios de Posgrado e Investigación, Av. Tecnológico S/N, ExRancho La Virgen, 52140 Metepec, México (Mexico); Torres-Bribiesca, M.A. [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de México, México (Mexico); and others

    2013-11-21

    Traditionally the electrical installations are designed for supplying power and to assure the personnel safety. In nuclear analysis laboratories, additional issues about grounding also must be considered for proper operation of high resolution nuclear spectroscopy systems. This paper shows the traditional ways of grounding nuclear spectroscopy systems and through different scenarios, it shows the effects on the more sensitive parameter of these systems: the energy resolution, it also proposes the constant monitoring of a power quality parameter as a way to preserve or to improve the resolution of the systems, avoiding the influence of excessive extrinsic noise. -- Highlights: •We analyze the performance of nuclear spectroscopy systems with different configurations of the grounding system. •The neutral to ground voltage is an indicator of the ground conditions, a high value may contribute to the increase of the FWHM in nuclear spectroscopy systems. •The use of an isolated ground system is the best option to preserve the best FWHM value. •The application of power quality concepts can help to guaranty the best configuration of the grounding system.

  11. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers, Volumes 1, 2

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, Belle R. [Univ. of Tennessee, Knoxville, TN (United States); Hines, J. Wesley [Univ. of Tennessee, Knoxville, TN (United States); Lu, Baofu [Univ. of Tennessee, Knoxville, TN (United States)

    2005-06-03

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001 September 2004. Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance.Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. Development of advanced signal processing methods using

  12. Selenium electrochemistry. Applications in the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Maslennikov, A.; Peretroukhine, V. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Physical Chemistry; David, F. [Centre National de la Recherche Scientifique (CNRS), 91 - Orsay (France); Lecomte, M. [CEA Centre d' Etudes de la Valle du Rhone, 30 - Marcoule (France). Direction du Cycle du Combustible

    1999-07-01

    Modern state of selenium electrochemistry is reviewed in respect of the application of electrochemical methods for the study of the behavior of this element and its quantitative analysis in the solutions of nuclear fuel cycle. The review includes the data on the redox potentials of Se in aqueous solutions, and the data on Se redox reactions, occurring at mercury and solid electrodes. Analysis of the available literature data shows that the inverse stripping voltammetry technique for trace Se concentration and determination seems to be the most promising in application for the Se determination in PUREX solutions and in radioactive wastes. The adaptation of the ISV technique for the trace Se concentration and determination in the solutions of the nuclear fuel cycle is indicated as the most prospective goal of the future experimental study. (author)

  13. Impact of the High Flux Isotope Reactor HEU to LEU Fuel Conversion on Cold Source Nuclear Heat Generation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [ORNL

    2014-03-01

    Under the sponsorship of the US Department of Energy National Nuclear Security Administration, staff members at the Oak Ridge National Laboratory have been conducting studies to determine whether the High Flux Isotope Reactor (HFIR) can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. As part of these ongoing studies, an assessment of the impact that the HEU to LEU fuel conversion has on the nuclear heat generation rates in regions of the HFIR cold source system and its moderator vessel was performed and is documented in this report. Silicon production rates in the cold source aluminum regions and few-group neutron fluxes in the cold source moderator were also estimated. Neutronics calculations were performed with the Monte Carlo N-Particle code to determine the nuclear heat generation rates in regions of the HFIR cold source and its vessel for the HEU core operating at a full reactor power (FP) of 85 MW(t) and the reference LEU core operating at an FP of 100 MW(t). Calculations were performed with beginning-of-cycle (BOC) and end-of-cycle (EOC) conditions to bound typical irradiation conditions. Average specific BOC heat generation rates of 12.76 and 12.92 W/g, respectively, were calculated for the hemispherical region of the cold source liquid hydrogen (LH2) for the HEU and LEU cores, and EOC heat generation rates of 13.25 and 12.86 W/g, respectively, were calculated for the HEU and LEU cores. Thus, the greatest heat generation rates were calculated for the EOC HEU core, and it is concluded that the conversion from HEU to LEU fuel and the resulting increase of FP from 85 MW to 100 MW will not impact the ability of the heat removal equipment to remove the heat deposited in the cold source system. Silicon production rates in the cold source aluminum regions are estimated to be about 12.0% greater at BOC and 2.7% greater at EOC for the LEU core in comparison to the HEU core. Silicon is aluminum s major transmutation product and

  14. Monte Carlo methods and applications in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.

    1990-01-01

    Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs.

  15. Potential applications of nanostructured materials in nuclear waste management.

    Energy Technology Data Exchange (ETDEWEB)

    Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi (University of New Mexico, Albuquerque, NM); Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

    2003-09-01

    This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

  16. Nuclear magnetic resonance in environmental engineering: principles and applications.

    Science.gov (United States)

    Lens, P N; Hemminga, M A

    1998-01-01

    This paper gives an introduction to nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) in relation to applications in the field of environmental science and engineering. The underlying principles of high resolution solution and solid state NMR, relaxation time measurements and imaging are presented. Then, the use of NMR is illustrated and reviewed in studies of biodegradation and biotransformation of soluble and solid organic matter, removal of nutrients and xenobiotics, fate of heavy metal ions, and transport processes in bioreactor systems.

  17. Radiation Heat Transfer Procedures for Space-Related Applications

    Science.gov (United States)

    Chai, John C.

    2000-01-01

    Over the last contract year, a numerical procedure for combined conduction-radiation heat transfer using unstructured grids has been developed. As a result of this research, one paper has been published in the Numerical Heat Transfer Journal. One paper has been accepted for presentation at the International Center for Heat and Mass Transfer's International Symposium on Computational Heat Transfer to be held in Australia next year. A journal paper is under review by my NASA's contact. A conference paper for the ASME National Heat Transfer conference is under preparation. In summary, a total of four (4) papers (two journal and two conference) have been published, accepted or are under preparation. There are two (2) to three (3) more papers to be written for the project. In addition to the above publications, one book chapter, one journal paper and six conference papers have been published as a result of this project. Over the last contract year, the research project resulted in one Ph.D. thesis and partially supported another Ph.D. student. My NASA contact and myself have formulated radiation heat transfer procedures for materials with different indices of refraction and for combined conduction-radiation heat transfer. We are trying to find other applications for the procedures developed under this grant.

  18. Laser heating of metallic nanoparticles for photothermal ablation applications

    Science.gov (United States)

    Liu, Xiaoming; Shan, Guangshuai; Yu, Junsheng; Yang, Wei; Ren, Zhaodi; Wang, Xiaohui; Xie, Xi; Chen, Hui-jiuan; Chen, Xiaodong

    2017-02-01

    In order to search for a suitable frequency and material with higher photothermal efficacy for hyperthermia application in cancer treatment, a comparative study on laser heating of Au/Ag nanoparticles and Ag nanowires has been conducted. It is found that gold nanoparticles are more photothermal efficient in comparison with silver nanoparticles and silver nanowires at 450nm and 532 nm. Gold nanoparticles are more heated by 532 nm laser than 450 nm laser. In contrast, silver nanoparticles show slightly less temperature rise at 532 nm than 450 nm laser. For silver nanowires, no significant photothermal effect has been observed. Size-dependent effect study indicates that the absorption efficiency of single gold nanoparticles of larger diameter is higher than that of smaller diameter, in the diameter range of 0-50nm. A mathematical model for describing the heating profile in the heating sample has been built. The mathematical model can be utilized to predict the optimal treatment size of tumor.

  19. Recent applications of nuclear medicine in diagnostics (I part

    Directory of Open Access Journals (Sweden)

    Giorgio Treglia

    2013-04-01

    Full Text Available Introduction: Aim of this review is to describe the recent applications of nuclear medicine techniques in diagnostics, particularly in oncology. Materials and methods: We reviewed scientific literature data searching for the current role of tomographic nuclear medicine techniques (SPECTand PET in oncology and summarized the main applications of these techniques. Results: Nuclear medicine techniques have a key role in oncology allowing early diagnosis of many tumours, an accurate staging of disease and evalutation of treatment response. Hybrid SPECT/CT and PET/CT imaging systems now provide metabolic and functional information from SPECTor PETcombined with the high spatial resolution and anatomic information of CT. The most frequent applications of SPECT/CT in oncology concern thyroid tumours, neuroendocrine tumours, bone metastases and lymph node mapping. Furthermore the evaluation of many tumours may benefit from PET/CT imaging. Discussion: The recent development of new radiopharmaceuticals and the growth of hybrid tomographic devices, such as SPECT/CT and PET/CT, now permits molecular imaging of biologic processes at the cellular level to improve both the diagnosis and treatment of many tumours.

  20. A Critical Heat Generation for Safe Nuclear Fuels after a LOCA

    Directory of Open Access Journals (Sweden)

    Jae-Yong Kim

    2014-01-01

    Full Text Available This study applies a thermo-elasto-plastic-creep finite element procedure to the analysis of an accidental behavior of nuclear fuel as well as normal behavior. The result will be used as basic data for the robust design of nuclear power plant and fuels. We extended the range of mechanical strain from small or medium to large adopting the Hencky logarithmic strain measure in addition to the Green-Lagrange strain and Almansi strain measures, for the possible large strain situation in accidental environments. We found that there is a critical heat generation after LOCA without ECCS (event category 5, under which the cladding of fuel sustains the internal pressure and temperature for the time being for the rescue of the power plant. With the heat generation above the critical value caused by malfunctioning of the control rods, the stiffness of cladding becomes zero due to the softening by high temperature. The weak position of cladding along the length continuously bulges radially to burst and to discharge radioactive substances. This kind of cases should be avoid by any means.

  1. Optical fiber temperature sensors: applications in heat treatments for foods

    Science.gov (United States)

    Sosa-Morales, María Elena; Rojas-Laguna, Roberto; López-Malo, Aurelio

    2010-10-01

    Heat treatments are important methods to provide safe foods. Conventional heat treatments involve the application of steam and recently microwave treatments have been studied and applied as they are considered as fast, clean and efficient. Optical fiber sensing is an excellent tool to measure the temperature during microwave treatments. This paper shows the application of optical fiber temperature sensing during the heat treatment of different foods such as vegetables (jalapeño pepper and cilantro), cheese and ostrich meat. Reaching the target temperature, important bacteria were inactivated: Salmonella, Listeria and Escherichia coli. Thus, the use of optical fiber sensors has resulted be a useful way to develop protocols to inactivate microorganisms and to propose new methods for food processing.

  2. Enhancement of gas phase heat transfer by acoustic field application.

    Science.gov (United States)

    Komarov, Sergey; Hirasawa, Masahiro

    2003-06-01

    This study discusses a possibility for enhancement of heat transfer between solids and ambient gas by application of powerful acoustic fields. Experiments are carried out by using preheated Pt wires (length 0.1-0.15 m, diameter 50 and 100 micro m) positioned at the velocity antinode of a standing wave (frequency range 216-1031 Hz) or in the path of a travelling wave (frequency range 6.9-17.2 kHz). A number of experiments were conducted under conditions of gas flowing across the wire surface. Effects of sound frequency, sound strength, gas flow velocity and wire preheating temperature on the Nusselt number are examined with and without sound application. The gas phase heat transfer rate is enhanced with acoustic field strength. Higher temperatures result in a vigorous radiation from the wire surface and attenuate the effect of sound. The larger the gas flow velocity, the smaller is the effect of sound wave on heat transfer enhancement.

  3. Medical applications of nuclear physics and heavy-ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Jose R.

    2000-08-01

    Isotopes and accelerators, hallmarks of nuclear physics, are finding increasingly sophisticated and effective applications in the medical field. Diagnostic and therapeutic uses of radioisotopes are now a $10B/yr business worldwide, with over 10 million procedures and patient studies performed every year. This paper will discuss the use of isotopes for these applications. In addition, beams of protons and heavy ions are being more and more widely used clinically for treatment of malignancies. To be discussed here as well will be the rationale and techniques associated with charged-particle therapy, and the progress in implementation and optimization of these technologies for clinical use.

  4. Characterization of Heat-treated Clay Minerals in the Context of Nuclear Waste Disposal

    Science.gov (United States)

    Matteo, E. N.; Wang, Y.; Kruichak, J. N.; Mills, M. M.

    2015-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes, if any, that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of repository-relevant clay minerals (illite, mixed layer illite/smectite, and montmorillonite), were heated for a range of temperatures between 100-1000 °C. These samples were characterized to determine surface area, mineralogical alteration, and cation exchange capacity (CEC). Our results show that for conditions up to 500 °C, no significant change occurs, so long as the clay mineral remains mineralogically intact. At temperatures above 500 °C, transformation of the layered silicates into silica phases leads to alteration that impacts important clay characteristics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's Nation Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: SAND2015-6524 A

  5. Application of a Heat Flux Sensor in Wind Power Electronics

    Directory of Open Access Journals (Sweden)

    Elvira Baygildina

    2016-06-01

    Full Text Available This paper proposes and investigates the application of the gradient heat flux sensor (GHFS for measuring the local heat flux in power electronics. Thanks to its thinness, the sensor can be placed between the semiconductor module and the heat sink. The GHFS has high sensitivity and yields direct measurements without an interruption to the normal power device operation, which makes it attractive for power electronics applications. The development of systems for monitoring thermal loading and methods for online detection of degradation and failure of power electronic devices is a topical and crucial task. However, online condition monitoring (CM methods, which include heat flux sensors, have received little research attention so far. In the current research, an insulated-gate bipolar transistor (IGBT module-based test setup with the GHFS implemented on the base plate of one of the IGBTs is introduced. The heat flux experiments and the IGBT power losses obtained by simulations show similar results. The findings give clear evidence that the GHFS can provide an attractive condition monitoring method for the thermal loading of power devices.

  6. Theoretical Design of a Thermosyphon for Efficient Process Heat Removal from Next Generation Nuclear Plant (NGNP) for Production of Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Fred Gunnerson; Akira Tokuhiro; Vivek Utgiker; Kevan Weaver; Steven Sherman

    2007-10-01

    The work reported here is the preliminary analysis of two-phase Thermosyphon heat transfer performance with various alkali metals. Thermosyphon is a device for transporting heat from one point to another with quite extraordinary properties. Heat transport occurs via evaporation and condensation, and the heat transport fluid is re-circulated by gravitational force. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. For process heat, intermediate heat exchangers (IHX) are required to transfer heat from the NGNP to the hydrogen plant in the most efficient way possible. The production of power at higher efficiency using Brayton Cycle, and hydrogen production requires both heat at higher temperatures (up to 1000oC) and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. The purpose for selecting a compact heat exchanger is to maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. The IHX design requirements are governed by the allowable temperature drop between the outlet of the NGNP (900oC, based on the current capabilities of NGNP), and the temperatures in the hydrogen production plant. Spiral Heat Exchangers (SHE’s) have superior heat transfer characteristics, and are less susceptible to fouling. Further, heat losses to surroundings are minimized because of its compact configuration. SHEs have never been examined for phase-change heat transfer applications. The research presented provides useful information for thermosyphon design and Spiral Heat Exchanger.

  7. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.

    Energy Technology Data Exchange (ETDEWEB)

    Belle R. Upadhyaya; J. Wesley Hines

    2004-09-27

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal

  8. Literature survey of heat transfer enhancement techniques in refrigeration applications

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M.K.; Shome, B. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering, Aeronautical Engineering and Mechanics

    1994-05-01

    A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

  9. EXPERIMENTAL STUDY ON SEMI-OPEN HEAT PIPES AND ITS APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Semi-open heat pipes were studied experimentally in this work. A new kind of semi-open heat pipe with fluid swirl backflow was developed on the basis of the traditional semi-open heat pipe. Heat transfer characteristics during operation and start-up of closed heat pipe、traditional semi-open heat pipe and swirl flow semi-open heat pipe were investigated. The swirl orifice' s backflow effect on enhancing the working limitation was obtained. Heat exchangers or waste heat boilers made of swirl flow semi-open heat pipes and semi-open heat pipes have been successfully used in high or variable gas temperature engineering applications.

  10. Applications of nuclear and isotopic techniques in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Hilmy, N.; Hendranto, K. [Centre for Applications of Isotopes and Radiation, Batan (Indonesia)

    1994-12-31

    Applications of Nuclear and Isotopic Techniques have been developed by the National Atomic Energy Agency (BATAN) since early 1970 in Indonesia. The scope of these applications covers various fields such as agriculture, hydrology, sedimentology and industry. Some applications of tracer techniques in industry which have been done such as measurement of homogeneity of mixing process in fertiliser and paper factory, residence time distribution in gold processing plant, mercury inventory in caustic soda plant, enhanced oil recovery in oil production wells, leakage investigation in dust chamber of fertiliser plant and blockage of pipeline, are presented in this paper. In the field of NDT by radiographic technique, BATAN regularly conducts training courses and also issues licences for Level I and II. Some applications of nuclear techniques in agriculture such as mutation breeding, animal production and animal health have shown the potential of radiation in creating variability as a basis for varietal improvements in several food crop species, the potential of using isotopes as tracers in the studies on metabolism, particularly in relation to the efficiency of rumen fermentative digestion and biological evaluation of locally available feedstuffs from agricultural and agro-industrial byproducts. So far, four varieties of nice, two varieties of soybean, and one variety of mungbean have been officially approved for release, and one formulation of feed supplement utilizing locally available agricultural and agro-industrial byproducts has been established and used for cattle and goats. In animal health, a radiovaccine against coccidiosis in poultry has been produced and used routinely.

  11. Search of new scintillation materials for nuclear medicine application

    CERN Document Server

    Korzhik, M V

    2000-01-01

    Oxide crystals have a great potential to develop new advanced scintillation materials which are dense, fast, and bright. This combination of parameters, when combined to affordable price, gives a prospect for materials to be applied in nuclear medicine devices. Some of them have been developed for the last two decades along the line of rear-earth (RE) garnet (RE/sub 3/Al/sub 5/O/sub 12/) oxiorthosilicate (RE/sub 2/SiO/sub 5/) and perovskite (REAlO/sub 3/) crystals doped with Ce ions. Among recently developed oxide materials the lead tungstate scintillator (PWO) becomes the most used scintillation material in high energy physics experiments due to its application in CMS and ALICE experiments at LHC. In this paper we discuss scintillation properties of some new heavy compounds doped with Ce as well as light yield improvement of PWO crystals to apply them in low energy physics and nuclear medicine. (18 refs).

  12. Nuclear spin relaxation in liquids theory, experiments, and applications

    CERN Document Server

    Kowalewski, Jozef

    2006-01-01

    Nuclear magnetic resonance (NMR) is widely used across many fields because of the rich data it produces, and some of the most valuable data come from the study of nuclear spin relaxation in solution. While described to varying degrees in all major NMR books, spin relaxation is often perceived as a difficult, if not obscure, topic, and an accessible, cohesive treatment has been nearly impossible to find.Collecting relaxation theory, experimental techniques, and illustrative applications into a single volume, this book clarifies the nature of the phenomenon, shows how to study it, and explains why such studies are worthwhile. Coverage ranges from basic to rigorous theory and from simple to sophisticated experimental methods, and the level of detail is somewhat greater than most other NMR texts. Topics include cross-relaxation, multispin phenomena, relaxation studies of molecular dynamics and structure, and special topics such as relaxation in systems with quadrupolar nuclei and paramagnetic systems.Avoiding ove...

  13. Refractory alloy technology for space nuclear power applications

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.H. Jr.; Hoffman, E.E. (eds.)

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  14. Preliminary issues associated with the next generation nuclear plant intermediate heat exchanger design.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Moisseytsev, A.; Majumdar, S.; Shankar, P. S.; Nuclear Engineering Division

    2007-04-05

    The Next Generation Nuclear Plant (NGNP), which is an advanced high temperature gas reactor (HTGR) concept with emphasis on production of both electricity and hydrogen, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 900-1000 C. In the indirect cycle system, an intermediate heat exchanger is used to transfer the heat from primary helium from the core to the secondary fluid, which can be helium, nitrogen/helium mixture, or a molten salt. The system concept for the vary high temperature reactor (VHTR) can be a reactor based on the prismatic block of the GT-MHR developed by a consortium led by General Atomics in the U.S. or based on the PBMR design developed by ESKOM of South Africa and British Nuclear Fuels of U.K. This report has made a preliminary assessment on the issues pertaining to the intermediate heat exchanger (IHX) for the NGNP. Two IHX designs namely, shell and tube and compact heat exchangers were considered in the assessment. Printed circuit heat exchanger, among various compact heat exchanger (HX) designs, was selected for the analysis. Irrespective of the design, the material considerations for the construction of the HX are essentially similar, except may be in the fabrication of the units. As a result, we have reviewed in detail the available information on material property data relevant for the construction of HX and made a preliminary assessment of several relevant factors to make a judicious selection of the material for the IHX. The assessment included four primary candidate alloys namely, Alloy 617 (UNS N06617), Alloy 230 (UNS N06230), Alloy 800H (UNS N08810), and Alloy X (UNS N06002) for the IHX. Some of the factors addressed in this report are the tensile, creep, fatigue, creep fatigue, toughness properties for the candidate alloys, thermal aging effects on the mechanical properties, American Society of Mechanical Engineers (ASME) Code compliance

  15. Characterizing high-temperature deformation of internally heated nuclear fuel element simulators

    Energy Technology Data Exchange (ETDEWEB)

    Belov, A.I.; Fong, R.W.L.; Leitch, B.W.; Nitheanandan, T.; Williams, A., E-mail: alexander.belov@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    The sag behaviour of a simulated nuclear fuel element during high-temperature transients has been investigated in an experiment utilizing an internal indirect heating method. The major motivation of the experiment was to improve understanding of the dominant mechanisms underlying the element thermo-mechanical response under loss-of-coolant accident conditions and to obtain accurate experimental data to support development of 3-D computational fuel element models. The experiment was conducted using an electrically heated CANDU fuel element simulator. Three consecutive thermal cycles with peak temperatures up to ≈1000 {sup o}C were applied to the element. The element sag deflections and sheath temperatures were measured. On heating up to 600 {sup o}C, only minor lateral deflections of the element were observed. Further heating to above 700 {sup o}C resulted in an element multi-rate creep and significant permanent bow. Post-test visual and X-ray examinations revealed a pronounced necking of the sheath at the pellet-to-pellet interface locations. A wall thickness reduction was detected in the necked region that is interpreted as a sheath longitudinal strain localization effect. The sheath cross-sectioning showed signs of a 'hard' pellet-cladding interaction due to the applied cycles. A 3-D model of the experiment was generated using the ANSYS finite element code. As a fully coupled thermal mechanical simulation is computationally expensive, it was deemed sufficient to use the measured sheath temperatures as a boundary condition, and thus an uncoupled mechanical simulation only was conducted. The ANSYS simulation results match the experiment sag observations well up to the point at which the fuel element started cooling down. (author)

  16. High speed automated microtomography of nuclear emulsions and recent application

    Energy Technology Data Exchange (ETDEWEB)

    Tioukov, V.; Aleksandrov, A.; Consiglio, L. [INFN Napoli (Italy); De Lellis, G. [Universita di Napoli (Italy); Vladymyrov, M. [LPI Moscow (Russian Federation)

    2015-12-31

    The development of high-speed automatic scanning systems was the key-factor for massive and successful emulsions application for big neutrino experiments like OPERA. The emulsion detector simplicity, the unprecedented sub-micron spatial resolution and the unique ability to provide intrinsically 3-dimensional spatial information make it a perfect device for short-living particles study, where the event topology should be precisely reconstructed in a 10-100 um scale vertex region. Recently the exceptional technological progress in image processing and automation together with intensive R&D done by Italian and Japanese microscopy groups permit to increase the scanning speed to unbelievable few years ago m{sup 2}/day scale and so greatly extend the range of the possible applications for emulsion-based detectors to other fields like: medical imaging, directional dark matter search, nuclear physics, geological and industrial applications.

  17. Comprehensive Technical Report, General Electric Direct-Air-Cycle Aircraft Nuclear Propulsion Program; Aircraft Nuclear Propulsion Application Studies

    Energy Technology Data Exchange (ETDEWEB)

    Comassar, S.

    1962-04-30

    This volume is one of twenty-one summarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This portion describes the studies of advanced applications of nuclear reactors that were performed, including various types of aircraft, missiles, space vehicles, ships, and portable power plants.

  18. Application of Pressure Equipment Standard at nuclear power plants; Aplicacion del Reglamento de Equipos a Presion a las centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Mostaza, J. M.

    2011-07-01

    Regarding with the paper presented on 9{sup t}h June 2011 referred to the Industrial Security standard in Nuclear Plants, it was about the application of Pressure Equipment standard to mentioned Nuclear Plants, this article is an extract of the paper going to be exposed. (Author)

  19. Comprehensive Technical Report, General Electric Direct-Air-Cycle Aircraft Nuclear Propulsion Program; Aircraft Nuclear Propulsion Application Studies

    Energy Technology Data Exchange (ETDEWEB)

    Comassar, S.

    1962-04-30

    This volume is one of twenty-one summarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This portion describes the studies of advanced applications of nuclear reactors that were performed, including various types of aircraft, missiles, space vehicles, ships, and portable power plants.

  20. Application of TL dosemeters for dose distribution measurements at high temperatures in nuclear reactors.

    Science.gov (United States)

    Osvay, M; Deme, S

    2006-01-01

    Al2O3:Mg,Y ceramic thermoluminescence dosemeters were developed at the Institute of Isotopes for high dose applications at room temperatures. The glow curve of Al2O3:Mg,Y exhibits two peaks--one at 250 degrees C (I) and another peak at approximately 400 degrees C (II). In order to extend the application of these dosemeters to high temperatures, the effect of irradiation temperature was investigated using temperature controlled heating system during high dose irradiation at various temperatures (20-100 degrees C). The new calibration and measuring method has been successfully applied for dose mapping within the hermetic zone of the Paks Nuclear Power Plant even at high temperature parts of blocks.

  1. Transparent heat mirrors for solar-energy applications.

    Science.gov (United States)

    Fan, J C; Bachner, F J

    1976-04-01

    Transparent heat-mirror films, which transmit solar radiation but reflect ir thermal radiation, have potentially important applications in solar/thermal/electric conversion, solar heating, solar photovoltaic conversion, and window insulation. We have used rf sputtering to prepare two types of films: TiO(2)/Ag/TiO(2) and Sn-doped In(2)O(3). To characterize the properties of heat-mirror films for solar-energy collection, we define the parameters alpha(eff), the effective solar absorptivity, and epsilon(eff), the effective ir emissivity. For our Sn-doped In(2)O(3) films, alpha(eff)/epsilon(eff) is comparable to the values of alpha/epsilon reported for the leading selective absorbers. Even higher values of alpha(eff)/epsilon(eff) are obtained for the TiO(2)/Ag/TiO(2) films.

  2. 75 FR 57299 - First Energy Nuclear Operating Company; Notice of Receipt and Availability of Application for...

    Science.gov (United States)

    2010-09-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION First Energy Nuclear Operating Company; Notice of Receipt and Availability of Application for... application, dated August 30, 2010, from FirstEnergy Nuclear Operating Company, filed pursuant to Section 104...

  3. Radiation dosimetry of a conformal heat-brachytherapy applicator.

    Science.gov (United States)

    Taschereau, Richard; Stauffer, Paul R; Hsu, I-Chow; Schlorff, Jaime L; Milligan, Andrew J; Pouliot, Jean

    2004-08-01

    The purpose of this paper is to report the radiation dosimetric characteristics of a new combination applicator for delivering heat and radiation simultaneously to large area superficial disease conformal printed circuit board microwave antenna array (for heat generation), and a body-conforming 5-10 mm thick temperature-controlled water bolus. The rationale for applying both modalities simultaneously includes the potential for significantly higher response rate due to enhanced synergism of modalities, and lower peak toxicity due to temporal extension of heat and radiation induced toxicities. Treatment plans and radiation dosimetry are calculated with IPSA (an optimization tool developed at UCSF) for 15 x 15 cm(2) and 35 x 24 cm(2) applicators, lesion thicknesses of 5 to 15 mm, flat and curved surfaces, and catheter separation of 5 and 10 mm. The effect on skin dose of bolus thickness and presence of thin copper antenna structures between radiation source and tissue are also evaluated. Results demonstrate the ability of the applicator to provide conformal radiation dose coverage for up to 15 mm deep target volumes under the applicator. For clinically acceptable plans, tumor coverage is > 98%, homogeneity index > 0.95 and the percentage of normal tissue irradiated is antenna array is of the order 0.25% and secondary electron emissions are absorbed completely within 5 mm of water bolus and plastic layers. Both phenomena can then be neglected in dose calculations allowing commercial software to be used for treatment planning. This novel applicator should prove useful for the treatment of diffuse chestwall disease located over contoured anatomy that may be difficult to treat with single field external beam therapy. By delivering heat and radiation simultaneously, increased synergism is expected with a TER in the range of 2-5. Lowering radiation dose by an equivalent factor may produce lower radiation toxicity with similar efficacy, while preserving the option of

  4. A Stable Carbon Nanotube Nanofluid for Latent Heat-Driven Volumetric Absorption Solar Heating Applications

    OpenAIRE

    Nathan Hordy; Delphine Rabilloud; Jean-Luc Meunier; Sylvain Coulombe

    2015-01-01

    Recently, direct solar collection through the use of broadly absorbing nanoparticle suspensions (known as nanofluids) has been shown as a promising method to improve efficiencies in solar thermal devices. By utilizing a volatile base fluid, this concept could also be applied to the development of a direct absorption heat pipe for an evacuated tube solar collector. However, for this to happen or for any other light-induced vapor production applications, the nanofluid must remain stable over ex...

  5. Applications of somatic cell nuclear transfer in goats

    Directory of Open Access Journals (Sweden)

    Ton Yoisungnern

    2014-06-01

    Full Text Available A number of animals with genetically identical appearance can be produced by somatic cell nuclear transfer (SCNT. From current advancement of SCNT and molecular techniques, production of a transgenic animal becomes easier. Although cloning efficiency in goat is low, the ability to propagate genetically identical animals, with a gene or genes of interest, would be important for increasing productivity and ultimately the economic livelihood. In this paper, the potential applications and uses of SCNT technology like production of transgenic goat for production of quality milk and meat are discussed.

  6. Applications of nuclear magnetic resonance sensors to cultural heritage.

    Science.gov (United States)

    Proietti, Noemi; Capitani, Donatella; Di Tullio, Valeria

    2014-04-21

    In recent years nuclear magnetic resonance (NMR) sensors have been increasingly applied to investigate, characterize and monitor objects of cultural heritage interest. NMR is not confined to a few specific applications, but rather its use can be successfully extended to a wide number of different cultural heritage issues. A breakthrough has surely been the recent development of portable NMR sensors which can be applied in situ for non-destructive and non-invasive investigations. In this paper three studies illustrating the potential of NMR sensors in this field of research are reported.

  7. Application study of nuclear technologies for dual use

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae Gon; Chung, W. S.; Park, W. S.; Lee, K. W.; Cha, H. K.; Han, M. H.; Yoon, J. S.; Honh, D. H.; Park, J. Y.; Lee, C. H.; Yeo, J. W.; Jung, M.; Ra, G. H

    2000-02-01

    The projects for the joint development of technology common to the civilian and military sectors are being carried out at national level to maximize the utilization of limited resources. The technologies have been identified through a process which considered whether they are duplicates of the present military technology, whether they are necessary, and whether their realization is feasible. In addition, the problems surfaced during the identification process have been analyzed and suggestions to vitalize the military application of civilian nuclear technology are presented in the contexts of personal channel, institutional networking, R and D information exchange, and budgetary support. (author)

  8. Applications of Nuclear Magnetic Resonance Sensors to Cultural Heritage

    Directory of Open Access Journals (Sweden)

    Noemi Proietti

    2014-04-01

    Full Text Available In recent years nuclear magnetic resonance (NMR sensors have been increasingly applied to investigate, characterize and monitor objects of cultural heritage interest. NMR is not confined to a few specific applications, but rather its use can be successfully extended to a wide number of different cultural heritage issues. A breakthrough has surely been the recent development of portable NMR sensors which can be applied in situ for non-destructive and non-invasive investigations. In this paper three studies illustrating the potential of NMR sensors in this field of research are reported.

  9. New and classical applications of heat flow studies

    Science.gov (United States)

    Clauser, C.

    2005-12-01

    This special issue of Journal of Geophysics and Engineering is dedicated to a collection of papers which resulted from an international workshop held in Aachen, Germany, on 4-7 October 2004, called 'New and Classical Applications of Heat Flow Studies'. This was the third in a series of topical geothermal workshops arranged by the Geothermal Working Group of the German Geophysical Society (DGG) and was organized by the Institute of Applied Geophysics at RWTH Aachen University under the auspices of the International Heat Flow Commission of the International Association of Seismology and Physics (IASPEI). The meeting was attended by some 60 scientists from 14 countries and three continents. Financial assistance, granted by DGG and IASPEI, allowed us to provide partial support for a total of eight students, young scientists and eminent researchers from eastern Europe and overseas. The convenors of the meeting were Christoph Clauser (Aachen), Thomas Kohl (Zürich) and Makoto Taniguchi (Kyoto). The main local organizers were Volker Rath (scientific programme) and Ute Kreutz (accommodation and financial affairs). The topics addressed in more than 50 oral and poster presentations indicated that today intriguing new applications of heat flow studies have emerged, complementing the classical topics of heat flow mapping and the tectonic implications of heat flow. In classical applications, for instance, thermal signatures of water flow or downward diffusion of variations in the Earth's mean temperature are considered as noise which needs to be corrected prior to further use of the data. In contrast, in several new applications it is exactly the information contained in these signatures which has been extracted and interpreted. For instance, over the past two decades, work on the most prominent of these new applications has been devoted to inverting the variation of the Earth's past mean ground surface temperature (GST). As of today, GST provided by the geothermal method has

  10. The development of VR technology for nuclear industry applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Cho, Jai Wan; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong

    1998-01-01

    By searching the present condition of virtual reality technology of which researches were carried out not only abroad but also the country in nuclear power industry, we confirm the possibility of practical usage of VR in it. And as a fundamental research for applications of VR in nuclear power industry, gesture recognition for remote working and VR training system for severe working were performed. 1. A study on gesture recognition for remote working : The hand gesture recognition technology using visual signal and tactile magnetic sensor as a basic study for the introduction of task command and communication were performed. 2. A study on an construction of the virtual environment training system for the task in a severe condition: A construction of virtual reality training system for the tasks in a severe working condition was implemented. This system was intended to enhance the efficiency of actual tasks through advanced practicing the motion procedures those should be performed in a severe working condition where it is difficult to access for personnel. The motion information which is came from the sensors attached on trainers body was used for construction of the virtual environment through the computer graphic procedures. The VR training system has many merits relative to the conservative training method that was performed with mock-up which was made as the same size and shape as real component in nuclear power plant. (author). 27 refs., 21 tabs., 51 figs

  11. Recent applications of nuclear medicine in diagnostics: II part

    Directory of Open Access Journals (Sweden)

    Giorgio Treglia

    2013-04-01

    Full Text Available Introduction: Positron-emission tomography (PET and single photon emission computed tomography (SPECT are effective diagnostic imaging tools in several clinical settings. The aim of this article (the second of a 2-part series is to examine some of the more recent applications of nuclear medicine imaging techniques, particularly in the fields of neurology, cardiology, and infection/inflammation. Discussion: A review of the literature reveals that in the field of neurology nuclear medicine techniques are most widely used to investigate cognitive deficits and dementia (particularly those associated with Alzheimer disease, epilepsy, and movement disorders. In cardiology, SPECT and PET also play important roles in the work-up of patients with coronary artery disease, providing accurate information on the state of the myocardium (perfusion, metabolism, and innervation. White blood cell scintigraphy and FDG-PET are widely used to investigate many infectious/inflammatory processes. In each of these areas, the review discusses the use of recently developed radiopharmaceuticals, the growth of tomographic nuclear medicine techniques, and the ways in which these advances are improving molecular imaging of biologic processes at the cellular level.

  12. Digital game for education and dissemination of nuclear energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Legey, Ana Paula; Silva, Marcio H.; Machado, Daniel M.; Santo, Andre Cotelli E.; Lapa, Celso M.F.; Mol, Antonio C.A., E-mail: analegey@hotmail.com, E-mail: machado.mol@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Realidade Virtual; Lima, Tiago Rocha; Paula, Vanessa M.; Junior, Israel L.; Augusto, Haline F., E-mail: tlrtiago@gmail.com, E-mail: vnspaula@hotmail.com, E-mail: halineffa@hotmail.com, E-mail: israel_plj@hotmail.com [Centro Universitario Carioca (UniCarioca), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Students are immersed in a society with many possibilities of interaction, either computer or smart phones. In addition, students demand more innovation, dynamism and interactivity in classrooms. The form of education that can motivate students to engage in the learning process can get them to be interested in the lessons and not prematurely abandon schools. On the other hand, educational materials based on Virtual Reality (VR), as computer games, have been considered an important educational tool for making dynamic, motivating, innovative, in addition to achieving those areas where traditional methods are not reaching its goal. Motivated by the above, and given the competence developed by the Virtual Reality Laboratory of the Instituto de Engenharia Nuclear / CNEN and the collaboration of the University Center UniCarioca, was developed a digital game based on virtual reality tools for the teaching of a subject of area of science that needs to be addressed to society more contextualized way: the different applications of nuclear energy. It is expected that this digital game is an important tool for the dissemination, teaching and learning the benefits of nuclear energy. (author)

  13. Design criteria and realization of a computerized supervisory system for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Maestri, F.; Mangiarotti, M.; Maciocco, G.

    1987-11-01

    This paper describes the design criteria and the realization modalities of a computerized supervisory system for nuclear applications. The man-machine interface design aspects for the Alto Lazio Nuclear Power Plant control room are discussed.

  14. 78 FR 40519 - Cooper Nuclear Station; Application and Amendment to Facility Operating License Involving...

    Science.gov (United States)

    2013-07-05

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Cooper Nuclear Station; Application and Amendment to Facility Operating License Involving Proposed... No. DPR-46, issued to Nebraska Public Power District (the licensee), for operation of the...

  15. Thermodynamic coupling of heat and matter flows in near-field regions of nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Carnahan, C.L.

    1983-11-01

    In near-field regions of nuclear waste repositories, thermodynamically coupled flows of heat and matter can occur in addition to the independent flows in the presence of gradients of temperature, hydraulic potential, and composition. The following coupled effects can occur: thermal osmosis, thermal diffusion, chemical osmosis, thermal filtration, diffusion thermal effect, ultrafiltration, and coupled diffusion. Flows of heat and matter associated with these effects can modify the flows predictable from the direct effects, which are expressed by Fourier's law, Darcy's law, and Fick's law. The coupled effects can be treated quantitatively together with the direct effects by the methods of the thermodynamics of irreversible processes. The extent of departure of fully coupled flows from predictions based only on consideration of direct effects depends on the strengths of the gradients driving flows, and may be significant at early times in backfills and in near-field geologic environments of repositories. Approximate calculations using data from the literature and reasonable assumptions of repository conditions indicate that thermal-osmotic and chemical-osmotic flows of water in semipermeable backfills may exceed Darcian flows by two to three orders of magnitude, while flows of solutes may be reduced greatly by ultrafiltration and chemical osmosis, relative to the flows predicted by advection and diffusion alone. In permeable materials, thermal diffusion may contribute to solute flows to a smaller, but still significant, extent.

  16. Nuclear heating analysis for an HCPB TBM test case using an integrated mesh translation scheme

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Yuefeng; Pereslavtsev, Pavel; Fischer, Ulrich; Kecskes, Szabolcs [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2013-07-01

    The design of components such as blanket modules in a fusion device is achieved through an iterative process by performing a series of sequential neutronics, thermal hydraulics (TH) and structural mechanical (SM) calculations. Therefore the appropriate data (typically mesh data) transfer has to be implemented between these different physical disciplines. A mesh translation module has been developed and integrated into the computational platform SALOME, performing the translation of neutronic results to TH/SM boundary conditions. For testing its reliability, accuracy and robustness, a simplified blanket model which was derived from the conceptual engineering design of the Helium Cooled Pebble Bed Test Blanket Module (HCPB TBM) was employed. In this work, a neutronic model was generated using the McCad software tool. The neutron transport calculations were performed making use of the Monte Carlo particle transport code MCNP. The nuclear heating results, provided on regular meshes, were processed and tailored into the unstructured mesh of structural components of this TBM test case. The integral heating results were evaluated to verify this translation scheme. (orig.)

  17. The feasibility of retrieving nuclear heat sources from orbit with the space shuttle

    Energy Technology Data Exchange (ETDEWEB)

    Pyatt, D.W.; Englehart, R.W.

    1980-01-01

    Spacecraft launched for orbital missions have a finite orbital lifetime. Current estimates for the lifetime of the nine nuclear powered U.S. satellites now in orbit range from 150 years to 10{sup 6} years. Orbital lifetime is determined primarily by altitude, solar activity, and the satellite ballistic coefficient. There is also the potential of collision with other satellites or space debris, which would reduce the lifetime in orbit. These orbiting power sources contain primarily Pu-238 and Pu-239 as the fuel material. Pu-238 has an approximate 87-year half life and so considerable amounts of daughter products are present after a few tens of years. In addition, there are minor but possibly significant amounts of impurity isotopes present with their own decay chains. Radioisotopic heat sources have been designed to evolving criteria since the first launches. Early models were designed to burn up upon reentry. Later designs were designed to reenter intact. After tens or hundreds of years in orbit, the ability of any orbiting heat source to reenter intact and impact while maintaining containment integrity is in doubt. Such ability could only be verified by design to provide protection in the case of early mission failures such as launch aborts, failure to achieve orbit, or the attainment of only a short orbit. With the development of the Space Shuttle there exists the potential ability to recover heat sources in orbit after their missions are completed. Such retrieval could allow the risk of eventual reentry burnup or impact with atmospheric dispersion and subsequent radiation doses to the public to be avoided.

  18. Application of Solar Chimney Concept to Solve Potential Safety Issues of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Khasawneh, Khalid; PARK, Youn Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    In this paper two main events and their causes have been investigated and a potential alternative supporting system will be provided. The first event to be addressed is the Station Blackout (SBO) caused by the inherent unreliability of the Emergency Diesel Generators (EDGs) and Alternative AC (AAC) power sources. Different parameters affect The EDG unreliability; for instance, mechanical, operational, maintenance and surveillance. Those parameters will be analyzed and linked to plant safety and Core Damage Frequency (CDF). Also the AACs, the SBO diesel generators, will be studied and their operational requirements similarity with the EDGs will be discussed. The second event to be addressed is the Loss of Ultimate Heat Sink (LUHS) caused by the degradation of heat exchange effectiveness, that is, the poor heat transfer to the Ultimate Heat Sink (UHS). Different causes to such case were observed; intake lines blockages due to ice and foreign biological matters formation and oil spill near the heat sink causing the oil leakage to the heat exchangers tubes. The later cause, oil spill, has been given a special attention here due its potential effects for different nuclear power plants (NPPs) around the world; for example, Finland and the United Arab Emirates (UAE). For the Finnish case, the Finnish nuclear regulator (STUK) took already countermeasures for such scenario by introducing alternative heat sink, cooling towers, for the primary used heat sink, sea water, for one of its nuclear power plants. The abundance of the solar irradiation in the UAE region provides a perfect condition for the implementation of solar power applications. Utilizing this unique characteristic of that region may provide promising alternative and diverse options for solving potential safety related issues of their NPPs. The Solar Chimney Power Plant (SCPP) could be employed to serve as a supporting system to provide emergency power, in the case of SBO, and emergency cooling, in the case of

  19. Applications of nuclear magnetic resonance imaging in process engineering

    Science.gov (United States)

    Gladden, Lynn F.; Alexander, Paul

    1996-03-01

    During the past decade, the application of nuclear magnetic resonance (NMR) imaging techniques to problems of relevance to the process industries has been identified. The particular strengths of NMR techniques are their ability to distinguish between different chemical species and to yield information simultaneously on the structure, concentration distribution and flow processes occurring within a given process unit. In this paper, examples of specific applications in the areas of materials and food processing, transport in reactors and two-phase flow are discussed. One specific study, that of the internal structure of a packed column, is considered in detail. This example is reported to illustrate the extent of new, quantitative information of generic importance to many processing operations that can be obtained using NMR imaging in combination with image analysis.

  20. Diamond-based heat spreaders for power electronic packaging applications

    Science.gov (United States)

    Guillemet, Thomas

    As any semiconductor-based devices, power electronic packages are driven by the constant increase of operating speed (higher frequency), integration level (higher power), and decrease in feature size (higher packing density). Although research and innovation efforts have kept these trends continuous for now more than fifty years, the electronic packaging technology is currently facing a challenge that must be addressed in order to move toward any further improvements in terms of performances or miniaturization: thermal management. Thermal issues in high-power packages strongly affect their reliability and lifetime and have now become one of the major limiting factors of power modules development. Thus, there is a strong need for materials that can sustain higher heat flux levels while safely integrating into the electronic package architecture. In such context, diamond is an attractive candidate because of its outstanding thermal conductivity, low thermal expansion, and high electrical resistivity. Its low heat capacity relative to metals such as aluminum or copper makes it however preferable for heat spreading applications (as a heat-spreader) rather than for dissipating the heat flux itself (as a heat sink). In this study, a dual diamond-based heat-spreading solution is proposed. Polycrystalline diamond films were grown through laser-assisted combustion synthesis on electronic substrates (in the U.S) while, in parallel, diamond-reinforced copper-matrix composite films were fabricated through tape casting and hot pressing (in France). These two types of diamond-based heat-spreading films were characterized and their microstructure and chemical composition were related to their thermal performances. Particular emphasize was put on the influence of interfaces on the thermal properties of the materials, either inside a single material (grain boundaries) or between dissimilar materials (film/substrate interface, matrix/reinforcement interface). Finally, the packaging

  1. Nb3Sn SRF Cavities for Nuclear Physics Applications

    Science.gov (United States)

    Eremeev, Grigory

    2017-01-01

    Nuclear physics experiments rely increasingly on accelerators, which employ superconducting RF (SRF) technology. CEBAF, SNS, FRIB, ESS, among others exploit the low surface resistance of SRF cavities to efficiently accelerate particle beams towards experimental targets. Niobium is the cavity material of choice for all current or planned SRF accelerators, but it has been long recognized that other superconductors with high superconducting transition temperatures have the potential to surpass niobium for SRF applications. Among the alternatives, Nb3Sn coated cavities are the most advanced on the path to practical applications: Nb3Sn coatings on R&D cavities have Tc consistently close the optimal 18 K, very low RF surface resistances, and very recently were shown to reach above Hc1 without anomalous RF surface resistance increase. In my talk I will discuss the prospects of Nb3Sn SRF cavities, the research efforts to realize Nb3Sn coatings on practical multi-cell accelerating structures, and the path toward possible inclusion in CEBAF. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics.

  2. Long-term modelling of Carbon Capture and Storage, Nuclear Fusion, and large-scale District Heating

    DEFF Research Database (Denmark)

    Grohnheit, Poul Erik; Korsholm, Søren Bang; Lüthje, Mikael

    2011-01-01

    Among the technologies for mitigating greenhouse gasses, carbon capture and storage (CCS) and nuclear fusion are interesting in the long term. In several studies with time horizon 2050 CCS has been identified as an important technology, while nuclear fusion cannot become commercially available...... on nuclear fusion and the Pan European TIMES model, respectively. In the next decades CCS can be a driver for the development and expansion of large-scale district heating systems, which are currently widespread in Europe, Korea and China, and with large potentials in North America. If fusion will replace...... fossil fuel power plants with CCS in the second half of the century, the same infrastructure for heat distribution can be used which will support the penetration of both technologies. This paper will address the issue of infrastructure development and the use of CCS and fusion technologies using...

  3. Somatic cell nuclear transfer cloning: practical applications and current legislation.

    Science.gov (United States)

    Niemann, H; Lucas-Hahn, A

    2012-08-01

    Somatic cloning is emerging as a new biotechnology by which the opportunities arising from the advances in molecular genetics and genome analysis can be implemented in animal breeding. Significant improvements have been made in SCNT protocols in the past years which now allow to embarking on practical applications. The main areas of application of SCNT are: Reproductive cloning, therapeutic cloning and basic research. A great application potential of SCNT based cloning is the production of genetically modified (transgenic) animals. Somatic cell nuclear transfer based transgenic animal production has significant advances over the previously employed microinjection of foreign DNA into pronuclei of zygotes. This cell based transgenesis is compatible with gene targeting and allows both, the addition of a specific gene and the deletion of an endogenous gene. Efficient transgenic animal production provides numerous opportunities for agriculture and biomedicine. Regulatory agencies around the world have agreed that food derived from cloned animals and their offspring is safe and there is no scientific basis for questioning this. Commercial application of somatic cloning within the EU is via the Novel Food regulation EC No. 258/97. Somatic cloning raises novel questions regarding the ethical and moral status of animals and their welfare which has prompted a controversial discussion in Europe which has not yet been resolved.

  4. Probes for inspections of heat exchanges installed at nuclear power plants type PWR by eddy current method; Sondas para inspecao de trocadores de calor instalados em usinas nucleares tipo PWR pelo metodo de correntes parasitas

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alonso F.O. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Enghenharia Mecanica]. E-mail: kauzz21@yahoo.com; Alencar, Donizete A. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: daa@cdtn.br

    2007-07-01

    From all non destructive examination methods usable to perform integrity evaluation of critical equipment installed at nuclear power plants (NPP), eddy current test (ET) may be considered the most important one, when examining heat exchangers. For its application, special probes and reference calibration standards are employed. In pressurized water reactor (PWR) NPPs, a particularly critical equipment is the steam generator (SG), a huge heat exchanger that contains thousands of U-bend thin wall tubes. Due to its severe working conditions (pressure and temperature), that component is periodically examined by means of ET. In this paper a revision of the operating fundamentals of the main ET probes, used to perform SG inspections is presented. (author)

  5. Advanced nuclear materials development -Development of superconductor application technology-

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Kye Won; Lee, Heui Kyoon; Lee, Hoh Jin; Kim, Chan Joong; Jang, Kun Ik; Kim, Kee Baek; Kwon, Sun Chil; Park, Hae Woong; Yoo, Jae Keun; Kim, Jong Jin; Jang, Joong Chul; Yang, Suk Woo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype fly wheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies on the method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting powder with good reactivity and fine particle size was obtained by emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Tc of 16,000 A/cm{sup 2} was fabricated by applying CIP packing procedure. Multifilamentary wire with the Jc of approx. 10000 A/cm{sup 2} was fabricated by rolling method using square billet as starting shape. The joining of the multifilament wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. 126 figs, 14 tabs, 214 refs. (Author).

  6. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    Energy Technology Data Exchange (ETDEWEB)

    Horn, K.M.; Doyle, B. [Sandia National Labs., Albuquerque, NM (United States); Segal, M.N. [Univ. of New Mexico Medical School, Albuquerque, NM (United States). Dept. of Otolaryngology; Hamm, R.W. [Accsys Technology Inc., Pleasanton, CA (United States); Adler, R.J. [North Star Research Corp., Albuquerque, NM (United States); Glatstein, E. [Univ. of Texas Southwest Medical Center, Dallas, TX (United States)

    1995-04-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use, innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d({sup 3}He,p){sup 4}He nuclear reaction. This examination will describe the basic physics associated with this reaction`s production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data are also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in `nested`-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output {sup 3}He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment.

  7. Knowledge elicitation techniques and application to nuclear plant maintenance

    Science.gov (United States)

    Doyle, E. Kevin

    The new millennium has brought with it the opportunity of global trade which in turn requires the utmost in efficiency from each individual industry. This includes the nuclear power industry, a point which was emphasized when the electrical generation industry began to be de regulated across North America the late 1990s and re-emphasized when the northeast power grid of North America collapsed in the summer of 2003. This dissertation deals with reducing the cost of the maintenance function of Candu nuclear power plants and initiating a strong link between universities and the Canadian nuclear industry. Various forms of RCM (reliability-centred maintenance) have been the tools of choice in industry for improving the maintenance function during the last 20 years. In this project, pilot studies, conducted at Bruce Power between 1999 and 2005, and reported on in this dissertation, lay out a path to implement statistical improvements as the next step after RCM in reducing the cost of the maintenance. Elicitation protocols, designed for the age group being elicited, address the much-documented issue of a lack of data. Clear, graphical, inferential statistical interfaces are accentuated and developed to aid in building the teams required to implement the various methodologies and to help in achieving funding targets. Graphical analysis and Crow/AMSAA (army materials systems analysis activity) plots are developed and demonstrated from the point of view of justifying the expenditures of cost reduction efforts. This dissertation ultimately speaks to the great opportunity being presented by this approach at this time: of capturing the baby-boom generation's huge pool of knowledge before those people retire. It is expected that the protocols and procedures referenced here will have applicability across the many disciplines where collecting expert information from a similar age group is required.

  8. Oxidation and emittance of superalloys in heat shield applications

    Science.gov (United States)

    Wiedemann, K. E.; Clark, R. K.; Unnam, J.

    1986-01-01

    Recently developed superalloys that form alumina coatings have a high potential for heat shield applications for advanced aerospace vehicles at temperatures above 1095C. Both INCOLOY alloy MA 956 (of the Inco Alloys International, Inc.), an iron-base oxide-dispersion-strengthened alloy, and CABOT alloy No. 214 (of the Cabot Corporation), an alumina-forming nickel-chromium alloy, have good oxidation resistance and good elevated temperature strength. The oxidation resistance of both alloys has been attributed to the formation of a thin alumina layer (alpha-Al2O3) at the surface. Emittance and oxidation data were obtained for simulated Space Shuttle reentry conditions using a hypersonic arc-heated wind tunnel. The surface oxides and substrate alloys were characterized using X-ray diffraction and scanning and transmission electron microscopy with an energy-dispersive X-ray analysis unit. The mass loss and emittance characteristics of the two alloys are discussed.

  9. A new heat pump desiccant dehumidifier for supermarket application

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R. M.; Castellotti, F. [Department of Management and Engineering, University of Padova, Vicenza (Italy)

    2007-07-01

    Recently a new equipment for dehumidification was put onto the market. It is a self-regenerating liquid desiccant cooling system able to dehumidify, heating or cooling the ambient air by an electric heat pump that is a part of the equipment. Its operation is here studied in a supermarket application where air temperature and relative humidity play a very important role and the air-conditioning becomes necessary not only to assure a suitable thermal comfort, but also to make the refrigerated display cabinets operate properly. In this paper possible energy savings, compared to a traditional mechanical dehumidification, are evaluated by means of a numerical model that simulates a typical Italian supermarket. (author)

  10. Coupled thermochemical, isotopic evolution and heat transfer simulations in highly irradiated UO2 nuclear fuel

    Science.gov (United States)

    Piro, M. H. A.; Banfield, J.; Clarno, K. T.; Simunovic, S.; Besmann, T. M.; Lewis, B. J.; Thompson, W. T.

    2013-10-01

    Predictive capabilities for simulating irradiated nuclear fuel behavior are enhanced in the current work by coupling thermochemistry, isotopic evolution and heat transfer. Thermodynamic models that are incorporated into this framework not only predict the departure from stoichiometry of UO2, but also consider dissolved fission and activation products in the fluorite oxide phase, noble metal inclusions, secondary oxides including uranates, zirconates, molybdates and the gas phase. Thermochemical computations utilize the spatial and temporal evolution of the fission and activation product inventory in the pellet, which is typically neglected in nuclear fuel performance simulations. Isotopic computations encompass the depletion, decay and transmutation of more than 2000 isotopes that are calculated at every point in space and time. These computations take into consideration neutron flux depression and the increased production of fissile plutonium near the fuel pellet periphery (i.e., the so-called “rim effect”). Thermochemical and isotopic predictions are in very good agreement with reported experimental measurements of highly irradiated UO2 fuel with an average burnup of 102 GW d t(U)-1. Simulation results demonstrate that predictions are considerably enhanced when coupling thermochemical and isotopic computations in comparison to empirical correlations. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  11. Lycopene activates antioxidant enzymes and nuclear transcription factor systems in heat-stressed broilers.

    Science.gov (United States)

    Sahin, K; Orhan, C; Tuzcu, M; Sahin, N; Hayirli, A; Bilgili, S; Kucuk, O

    2016-05-01

    This study was conducted to evaluate the effects of dietary lycopene supplementation on growth performance, antioxidant status, and muscle nuclear transcription factor [Kelch like-ECH-associated protein 1 (Keap1) and (erythroid-derived 2)-like 2 (Nrf2)] expressions in broiler chickens exposed to heat stress (HS). A total of 180 one-day-old male broiler chicks (Ross 308) were assigned randomly to one of 2×3 factorially arranged treatments: two housing temperatures (22°C for 24 h/d; thermoneutral, TN or 34°C for 8 h/d HS) and three dietary lycopene levels (0, 200, or 400 mg/kg). Each treatment consisted of three replicates of 10 birds. Birds were reared to 42 d of age. Heat stress caused reductions in feed intake and weight gain by 12.2 and 20.7% and increased feed efficiency by 10.8% (Plycopene level improved performance in both environments. Birds reared under the HS environment had lower serum and muscle lycopene concentration (0.34 vs. 0.50 μg/mL and 2.80 vs. 2.13 μg/g), activities of superoxide dismutase (151 vs. 126 U/mL and 131 vs. 155 U/mg protein), glutathione peroxidase (184 vs. 154 U/mL and 1.39 vs. 1.74 U/mg protein), and higher malondialdehyde (MDA) concentration (0.53 vs. 0.83 μg/mL and 0.78 vs. 0.45 μg/ mg protein) than birds reared under the TN environment. Changes in levels of lycopene and MDA and activities of enzymes in serum and muscle varied by the environmental temperature as dietary lycopene level increased. Moreover, increasing dietary lycopene level suppressed muscle Keap1 expression and enhanced muscle Nrf2 expression, which had increased by 150% and decreased by 40%, respectively in response to HS. In conclusion, lycopene supplementation alleviates adverse effects of HS on performance through modulating expressions of stress-related nuclear transcription factors.

  12. Gradient chromatography under constant frictional heat: realization and application.

    Science.gov (United States)

    Gritti, Fabrice; Guiochon, Georges

    2013-05-10

    A new mode of gradient elution in liquid chromatography is proposed. It is derived from simple theoretical considerations and is particularly suitable for applications to fast, very-high pressure gradients. It is designed to improve the injection-to-injection repeatability of chromatographic runs at either constant flow (cF, cooling case scenario) or constant pressure (cP, heating case scenario). The purpose of this original gradient mode is to minimize the variations of the temperatures and the pressures across and along the column during the gradient time. These variations are caused by the heat generated in the column due to the friction of the eluent percolating the bed. Any temperature fluctuation affects to some extent the precision of the measurements of retention times and bandwidths of eluted compounds. The minimization of this effect was achieved by maintaining constant the frictional heat power (i.e., the product of the flow rate by the column pressure drop) generated during the gradient run, the washing step, and the re-equilibration time. The eluent temperature was recorded at the column outlet. One useful application of gradient chromatography at constant frictional heat (cFH) is illustrated for a 50-100% volume gradient of acetonitrile in water using a 4.6mm × 150 mm column packed with 3.5 μm BEH-C18 particles and operated with an Agilent 1290 Infinity liquid chromatograph. The reproducibility (eleven consecutive injections) of the retention times and peak variances of nine small molecules (RPLC check-out sample mixture) using cF, cP, and cFH gradients were compared for the same amount of heat produced (403 J) during each run time. The RSDs of the retention times and the peak variances for four consecutive injections were systematically below 0.035 and 0.50% in constant frictional heat gradient chromatography, after three initial injections. These RSDs were markedly higher for cF (0.050 and 0.90%) and cP (0.070 and 1.80%) gradients. Copyright

  13. 77 FR 39521 - Application for a License To Export Nuclear Reactor Major Components and Equipment

    Science.gov (United States)

    2012-07-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Application for a License To Export Nuclear Reactor Major Components and Equipment Pursuant to 10... Reactor internals, Components and For use in Braka nuclear power Company LLC reactor coolant equipment...

  14. 78 FR 37324 - Preparation of Environmental Reports for Nuclear Power Plant License Renewal Applications

    Science.gov (United States)

    2013-06-20

    ... COMMISSION 10 CFR Parts 51 and 54 RIN 3150-AI42 Preparation of Environmental Reports for Nuclear Power Plant..., Supplement 1 (RG 4.2S1), ``Preparation of Environmental Reports for Nuclear Power Plant License Renewal... reports that are submitted with the application for the renewal of a nuclear power plant operating...

  15. 78 FR 16302 - Crystal River Unit 3 Nuclear Generating Plant, Application for Amendment to Facility Operating...

    Science.gov (United States)

    2013-03-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Crystal River Unit 3 Nuclear Generating Plant, Application for Amendment to Facility Operating... Operating License No. DPR-72 for the Crystal River Unit 3 Nuclear Generating Plant (CR-3), located in...

  16. 78 FR 52571 - Tennessee Valley Authority, Browns Ferry Nuclear Plant, Unit 1; Applications and Amendments to...

    Science.gov (United States)

    2013-08-23

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Tennessee Valley Authority, Browns Ferry Nuclear Plant, Unit 1; Applications and Amendments to... (TVA or the licensee), for operation of the Browns Ferry Nuclear Plant (BFN) Unit 1, located in Alabama...

  17. Status and improvement of CLAM for nuclear application

    Science.gov (United States)

    Huang, Qunying

    2017-08-01

    A program for China low activation martensitic steel (CLAM) development has been underway since 2001 to satisfy the material requirements of the test blanket module (TBM) for ITER, China fusion engineering test reactor and China fusion demonstration reactor. It has been undertaken by the Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences under wide domestic and international collaborations. Extensive work and efforts are being devoted to the R&D of CLAM, such as mechanical property evaluation before and after neutron irradiation, fabrication of scaled TBM by welding and additive manufacturing, improvement of its irradiation resistance as well as high temperature properties by precipitate strengthening to achieve its final successful application in fusion systems. The status and improvement of CLAM are introduced in this paper.

  18. Development of Metallic Magnetic Calorimeters for Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Cameron Russell [Univ. of California, Berkeley, CA (United States)

    2015-03-11

    Many nuclear safeguards applications could benefit from high-resolution gamma-ray spectroscopy achievable with metallic magnetic calorimeters. This dissertation covers the development of a system for these applications based on gamma-ray detectors developed at the University of Heidelberg. It demonstrates new calorimeters of this type, which achieved an energy resolution of 45.5 eV full-width at half-maximum at 59.54 keV, roughly ten times better than current state of the art high purity germanium detectors. This is the best energy resolution achieved with a gamma-ray metallic magnetic calorimeter at this energy to date. In addition to demonstrating a new benchmark in energy resolution, an experimental system for measuring samples with metallic magnetic calorimeters was constructed at Lawrence Livermore National Laboratory. This system achieved an energy resolution of 91.3 eV full-width at half-maximum at 59.54 keV under optimal conditions. Using this system it was possible to characterize the linearity of the response, the count-rate limitations, and the energy resolution as a function of temperature of the new calorimeter. With this characterization it was determined that it would be feasible to measure 242Pu in a mixed isotope plutonium sample. A measurement of a mixed isotope plutonium sample was performed over the course of 12 days with a single two-pixel metallic magnetic calorimeter. The relative concentration of 242Pu in comparison to other plutonium isotopes was determined by direct measurement to less than half a percent accuracy. This is comparable with the accuracy of the best-case scenario using traditional indirect methods. The ability to directly measure the relative concentration of 242Pu in a sample could enable more accurate accounting and detection of indications of undeclared activities in nuclear safeguards, a better constraint on source material in forensic samples containing plutonium, and improvements in verification in a future plutonium

  19. Cleaning chemical and mechanical of heat exchangers in french nuclear plants; Limpieza mecanica y quimica de intercambiadores de calor en centrales nucleares francesas

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, J. t.; Guerra, P.; Carreres, C.

    2013-03-01

    This project was carried out under the frame of the approval of LAINSA as a supplier of EDF in France. The inspection performed on systems called the moisture separator reheaters (GSS) of CPO series reactor of EDF nuclear power plants has shown evidence of significant clogging due to deposits of magnetite inside the tubes of tube bundle. The pressure drop between inlet and outlet of the heating was close to maximum design criterion. This effect could result in equipment damage and loss of plant productivity. The aim of the work was the design, development, approval and implementation of a procedure for un blocking the tubes of the GSS respecting the integrity of materials and ensuring the harmlessness of cleaning procedures. The procedure used was to completely remove magnetite deposits in order to recover a passage diameter and a surface finish equivalent to the origin, thus avoiding the replacement of the GSS and obtaining a considerable reduction of costs. The achieve these objectives we have developed a procedure that is basically a mechanical pre-cleaning of all tubes of the GSS in order to unblock tem, followed by a chemical cleaning where magnetite is dissolved and crawled out of the tube bundle. The main results were: -Corrosion less than 10 microns. 100-110 Kg of magnetite removed by heat exchanger. -Final pressure drop similar to that of new equipment. -Waste water: 70 m{sup 3} per exchanger, which were managed by an authorized waste management company. This procedure has been applied successfully in 14 GSS type heat exchangers in Fessenheim and Bugey nuclear power plants in France between 2009 and 2011. This project demonstrates that the long experience of LAINSA in the Spanish nuclear industry along with the knowledge and experience in chemical cleaning of SOLARCA, have served to successfully work demanding and mature markets such as the French nuclear market, solving the problem of deposits of magnetite with an effective and safe method for the treated

  20. SINGLE PHASE HIGH FREQUENCY AC CONVERTER FOR INDUCTION HEATING APPLICATION

    Directory of Open Access Journals (Sweden)

    M.A INAYATHULLAAH,

    2010-12-01

    Full Text Available The proposed topology reduces the total harmonic distortion (THD of a high frequency AC/AC Converter well below the acceptable limit. This paper deals with a novel single phase AC/DC/AC soft switching utility frequency AC to high frequency AC converter. In this paper a single phase full bridge inverter with Vienna rectifier as front end is used instead of conventional diode bridge rectifier to provide continuous sinusoidal input current with nearly unity power factor at the source side with extremely low distortion.. This power converter is more suitable and acceptable for cost effective high frequency (HF consumer induction heating applications.

  1. Evaluation of heat engine for hybrid vehicle application

    Science.gov (United States)

    Schneider, H. W.

    1984-01-01

    The status of ongoing heat-engine developments, including spark-ignition, compression-ignition, internal-combustion, and external-combustion engines is presented. The potential of engine concepts under consideration for hybrid vehicle use is evaluated, using self-imposed criteria for selection. The deficiencies of the engines currently being evaluated in hybrid vehicles are discussed. Focus is on recent research with two-stroke, rotary, and free-piston engines. It is concluded that these engine concepts have the most promising potential for future application in hybrid vehicles. Recommendations are made for analysis and experimentation to evaluate stop-start and transient emission behavior of recommended engine concepts.

  2. A study on the development and application of expert system for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Hee Gon; Kim, Seong Bok [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1995-12-31

    It is a final report of the research that is a study on the development and application of expert system for nuclear power plants and development of the schemes computing environments and user interfaces for the expert system, which is a systematic and efficient development of expert system for nuclear power plants in the future. This report is consisted of -Development trends of expert system for nuclear power plants. -Classification of expert system applications for nuclear power plants. -Systematic and efficient developments schemes of expert system for nuclear power plants, and -Suitable computing environments and user interfaces for the expert systems. (author). 113 refs., 85 figs.

  3. Application of fluidized-bed technology to the recovery of waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, G.J.; Grogan, P.J.; Evans, A.R.

    1979-08-01

    The fluidized-bed, waste-heat boiler (FBWHB) may represent a significant opportunity for industrial energy conservation. The applications of FBWHBs to the recovery of heat from waste streams are examined. Compared to other waste-heat recovery units, FBWHBs can transfer more heat per unit volume and are physically smaller - an important consideration for retrofit and construction costs. A detailed discussion of fluidized beds, including their application in waste-heat recovery and the factors affecting FBWHB design is presented. Design methodology is discussed along with a preliminary engineering design for recovering heat from a waste-gas stream, a typical FBWHB application.

  4. INDIVIDUAL DOSIMETRY IN DISPOSAL REPOSITORY OF HEAT-GENERATING NUCLEAR WASTE.

    Science.gov (United States)

    Pang, Bo; Saurí Suárez, Héctor; Becker, Frank

    2016-09-01

    Certain working scenarios in a disposal facility of heat-generating nuclear waste might lead to an enhanced level of radiation exposure for workers in such facilities. Hence, a realistic estimation of the personal dose during individual working scenarios is desired. In this study, the general-purpose Monte Carlo N-Particle code MCNP6 (Pelowitz, D. B. (ed). MCNP6 user manual LA-CP-13-00634, Rev. 0 (2013)) was applied to simulate a representative radiation field in a disposal facility. A tool to estimate the personal dose was then proposed by taking into account the influence of individual motion sequences during working scenarios. As basis for this approach, a movable whole-body phantom was developed to describe individual body gestures of the workers during motion sequences. In this study, the proposed method was applied to the German concept of geological disposal in rock salt. The feasibility of the proposed approach was demonstrated with an example of working scenario in an emplacement drift of a rock salt mine.

  5. Analysis of the application of an open-cycle absorption heat pump in industrial convection drying

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M.; Gasparella, A.; Longo, G.A. [Dipt. di Tecnica e Gestione dei Sistemi Industriali, Univ. degli Studi di Padova, Vicenza (Italy)

    1999-07-01

    Heat recovery in convection driers has been investigated comparing different solutions (regenerative heat exchanger, vapour compression heat pump, sorption dehumidification heat pump) in a specific application of food industry. Systems based on chemical dehumidification show the best performance allowing a primary energy saving higher than 40% with respect to traditional plants. (orig.)

  6. Application of entransy dissipation extremum principle in radiative heat transfer optimization

    Institute of Scientific and Technical Information of China (English)

    WU Jing; LIANG XinGang

    2008-01-01

    The concepts of entransy flux and entransy dissipation in radiative heat transfer were introduced based on the analogy with heat conduction and heat convection processes. Entransy will be partially dissipated during the radiative heat transfer processes due to the irreversibility. The extremum principle of entransy dissipation was developed for optimizing radiative heat transfer processes. This principle states that for a fixed boundary temperature the radiative heat transfer is optimized when the entransy dissipation is maximized, while for a fixed boundary heat flux the radiative heat transfer process is optimized when the entransy dissipation is minimized. Finally, examples for the application of the entransy dissipation extre-mum principle are presented.

  7. Application of entransy dissipation extremum principle in radiative heat transfer optimization

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The concepts of entransy flux and entransy dissipation in radiative heat transfer were introduced based on the analogy with heat conduction and heat convection processes. Entransy will be partially dissipated during the radiative heat transfer processes due to the irreversibility. The extremum principle of entransy dissipation was developed for optimizing radiative heat transfer processes. This principle states that for a fixed boundary temperature the radiative heat transfer is optimized when the entransy dissipation is maximized, while for a fixed boundary heat flux the radiative heat transfer process is optimized when the entransy dissipation is minimized. Finally, examples for the application of the entransy dissipation extre- mum principle are presented.

  8. Some design considerations for ceramic components in heat engine applications

    Science.gov (United States)

    Gyekenyesi, John P.

    1986-01-01

    The design methodology for brittle material structures which is being developed and used at the Lewis Research Center for sizing ceramic components in heat engine applications is reviewed. Theoretical aspects of designing with structural ceramics are discussed, and a general purpose reliability program for predicting fast fracture response due to volume distributed flaws is described. Statistical treatment of brittle behavior, based on the Weibull model, is reviewed and its advantages, as well as drawbacks, are listed. A mechanistic statistical fracture theory, proposed by Batdorf to overcome the Weibull model limitations and based on Griffith fracture mechanics, is summarized. Failure probability predictions are made for rotating annular Si3N4 disks using various fracture models, and the results are compared to actual failure data. The application of these design methods to Government funded ceramics engine demonstration programs is surveyed. The uncertainty in observed component performance emphasizes the need for proof testing and improved nondestructive evaluation to guarantee adequate structural integrity.

  9. Recent Applications of Heat Capacity Measurement in Physicochemical Investigations

    Science.gov (United States)

    Lakshmikumar, S. T.; Gopal, E. S. R.

    This review discusses the recent experimental heat capacity measurements which have been very useful in physicochemical investigations. Areas reviewed include critical point phenomena in systems such as fluids, magnetic systems, liquid crystals, co-operative Jahn-Teller transitions, etc. The uses of Cp measurements in the study of discrete energy levels in solids, in glasses at very low temperatures, in thin films and at high pressures are discussed. Calorimetric investigations in A-15 and other superconducting materials and applications of Cp measurements for evaluation of thermodynamic parameters in several new classes of materials are then briefly described. Finally, examples of applications of calorimetry in areas of biophysics, biological sciences and clinical medicine are cited. Two hundred and seventy references are cited and 25 figures are used for illustration.

  10. A Review of Neutron Scattering Applications to Nuclear Materials

    OpenAIRE

    VOGEL, Sven.C

    2013-01-01

    The growing demand for electric energy will require expansion of the amount of nuclear power production in many countries of the world. Research and development in this field will continue to grow to further increase safety and efficiency of nuclear power generation. Neutrons are a unique probe for a wide range of problems related to these efforts, ranging from crystal chemistry of nuclear fuels to engineering diffraction on cladding or structural materials used in nuclear reactors. Increased...

  11. Master on Nuclear Engineering and Applications (MINA): instrument of knowledge management in the nuclear sector; Master en Ingenieria Nuclear y Aplicaciones (MINA): instrumento de gestion del conocimiento en el sector nuclear espanol

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L. E.; Garcia Cuesta, J. C.; Falcon, S.; Casas, J. A.

    2013-03-01

    Knowledge Management in nuclear industry is indispensable to ensure excellence in performance and safety of nuclear installations. The Master on Nuclear Engineering and Applications (MINA) is a Spanish education venture which foundations and evolution have meant and adaptation to the European Education system and to the domestic and international changes occurred in the nuclear environment. This paper summarizes the most relevant aspects of such transformation, its motivation and the final outcome. Finally, it discusses the potential benefit of a closer collaboration among the existing national education ventures in the frame of Nuclear Engineering. (Author)

  12. A survey of decontamination processes applicable to DOE nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

    1997-05-01

    The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs.

  13. Application of Telepresence Technologies to Nuclear Material Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Wright, M.C.; Rome, J.A.

    1999-09-20

    Implementation of remote monitoring systems has become a priority area for the International Atomic Energy Agency and other international inspection regimes. For the past three years, DOE2000 has been the US Department of Energy's (DOE's) initiative to develop innovative applications to exploit the capabilities of broadband networks and media integration. The aim is to enhance scientific collaboration by merging computing and communications technologies. These Internet-based telepresence technologies could be easily extended to provide remote monitoring and control for confidence building and transparency systems at nuclear facilities around the world. One of the original DOE2000 projects, the Materials Microcharacterization Collaboratory is an interactive virtual laboratory, linking seven DOE user facilities located across the US. At these facilities, external collaborators have access to scientists, data, and instrumentation, all of which are available to varying degrees using the Internet. Remote operation of the instruments varies between passive (observational) to active (direct control), in many cases requiring no software at the remote site beyond a Web browser. Live video streams are continuously available on the Web so that participants can see what is happening at a particular location. An X.509 certificate system provides strong authentication, The hardware and software are commercially available and are easily adaptable to safeguards applications.

  14. Nanostructured Fe-Cr Alloys for Advanced Nuclear Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Scattergood, Ronald O. [North Carolina State Univ., Raleigh, NC (United States)

    2016-04-26

    We have completed research on the grain-size stabilization of model nanostructured Fe14Cr base alloys at high temperatures by the addition of non-equilibrium solutes. Fe14Cr base alloys are representative for nuclear reactor applications. The neutron flux in a nuclear reactor will generate He atoms that coalesce to form He bubbles. These can lead to premature failure of the reactor components, limiting their lifetime and increasing the cost and capacity for power generation. In order to mitigate such failures, Fe14Cr base alloys have been processed to contain very small nano-size oxide particles (less than 10 nm in size) that trap He atoms and reduce bubble formation. Theoretical and experimental results indicate that the grain boundaries can also be very effective traps for He atoms and bubble formation. An optimum grain size will be less than 100 nm, ie., nanocrystalline alloys must be used. Powder metallurgy methods based on high-energy ball milling can produce Fe-Cr base nanocrystalline alloys that are suitable for nuclear energy applications. The problem with nanocrystalline alloys is that excess grain-boundary energy will cause grains to grow at higher temperatures and their propensity for He trapping will be lost. The nano-size oxide particles in current generation nuclear alloys provide some grain size stabilization by reducing grain-boundary mobility (Zener pinning – a kinetic effect). However the current mitigation strategy minimizing bubble formation is based primarily on He trapping by nano-size oxide particles. An alternate approach to nanoscale grain size stabilization has been proposed. This is based on the addition of small amounts of atoms that are large compared to the base alloy. At higher temperatures these will diffuse to the grain boundaries and will produce an equilibrium state for the grain size at higher temperatures (thermodynamic stabilization – an equilibrium effect). This would be preferred compared to a kinetic effect, which is not

  15. Modeling a Printed Circuit Heat Exchanger with RELAP5-3D for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-01

    The main purpose of this report is to design a printed circuit heat exchanger (PCHE) for the Next Generation Nuclear Plant and carry out Loss of Coolant Accident (LOCA) simulation using RELAP5-3D. Helium was chosen as the coolant in the primary and secondary sides of the heat exchanger. The design of PCHE is critical for the LOCA simulations. For purposes of simplicity, a straight channel configuration was assumed. A parallel intermediate heat exchanger configuration was assumed for the RELAP5 model design. The RELAP5 modeling also required the semicircular channels in the heat exchanger to be mapped to rectangular channels. The initial RELAP5 run outputs steady state conditions which were then compared to the heat exchanger performance theory to ensure accurate design is being simulated. An exponential loss of pressure transient was simulated. This LOCA describes a loss of coolant pressure in the primary side over a 20 second time period. The results for the simulation indicate that heat is initially transferred from the primary loop to the secondary loop, but after the loss of pressure occurs, heat transfers from the secondary loop to the primary loop.

  16. Evaluation of the Safety Issue Concerning the Potential for Loss of Decay Heat Removal Function due to Crude Oil Spill in the Ultimate Heat Sink of Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Roh, Kyung Wan; Yune, Young Gill; Kang, Dong Gu; Kim, Hho Jhung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2008-05-15

    A barge crashed into a moored oil tanker at about 7:15 a.m., Dec. 12, 2007, dumping around 10,500 tons of crude oil into the sea in Korea. The incident took place about 15 kilometers northwest of Manripo beach in South Chungcheong where is Korea's west coast in the Yellow Sea. In a few days, the oil slicks spread to the northern and southern tips of the Taean Peninsula by strong winds and tides. As time went the spilled oil floating on the surface of sea water was volatilized to become tar-balls and lumps and drifted far away in the southern direction. 13 days after the incident, some of oil slicks and tar lumps were observed to flow in the service water intake at the Younggwang nuclear power plants (NPPs) operating 6 reactors, which are over 150 km away from the incident spot in the southeastern direction. According to the report by the Younggwang NPPs, a total weight 83 kg of tar lumps was removed for about 3 days. Oil spills in the sea can happen in any country or anytime due to human errors or mistakes, wars, terrors, intentional dumping of waste oils, and natural disasters like typhoon and tsunami. In fact, there have been 7 major oil spills over 10,000 tons that have occurred around the world since 1983. As such serious oil spill incidents may happen near the operating power plants using the sea water as ultimate heat sink. To ensure the safe operation of nuclear reactors it is required to evaluate the potential for loss of decay heat removal function of nuclear reactors due to the spilled oils flowing in the service water intake, from which the service water is pumped. Thus, Korea Institute of Nuclear Safety identified this problem as one of the important safety. When an incident of crude oil spill from an oil carrier occurs in the sea near the nuclear power plants, the spilled oil can be transported to the intake pit, where all service water pumps locate, by sea current and wind drift (induced) current. The essential service water pumps take the

  17. Thermophotovoltaic Energy Conversion in Space Nuclear Reactor Power Systems

    Science.gov (United States)

    2004-12-01

    contrasted with nuclear thermal rockets which use the heat from a nuclear fission reactor to heat propellant to provide rocket thrust and radioisotope...K. Note that the highest temperature (2550 K by the Pewee reactor) was for a nuclear thermal rocket application and has the shortest duration (40 min

  18. Least dissipation principle of heat transport potential capacity and its application in heat conduction optimization

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In the viewpoint of heat transfer, heat transport potential capacity and its dissipation are defined based on the essence of heat transport phenomenon. Respectively, their physical meanings are the overall heat transfer capabilityand the dissipation rate of the heat transfer capacity. Then the least dissipation principle of heat transport potential capacity is presented to enhance the heat conduction efficiency in the heat conduction optimization. The principle is,for a conduction process with the constant integral of the thermal conductivityover the region, the optimal distribution of thermal conductivity, which corresponds to the highest heat conduction efficiency, is characterized by the least dissipation of heat transport potential capacity. Finally the principle is applied to some cases in heat conduction optimization.

  19. Effects of transient and non-uniform distribution of heat flux on intensity of heat transfer and burnout conditions in the channels of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vitaly Osmachkin [Russian Research Center ' Kurchatov Institute' 1, Kurchatov sq, Moscow 123182 (Russian Federation)

    2005-07-01

    Full text of publication follows: The influence of power transient, changes of flow rate, inlet temperatures or pressure in cores of nuclear reactors on heat transfer and burnout conditions in channels depend on rate of such violations. Non-uniform distribution of the heat flux is also important factor for heat transfer and development of crisis phenomenon. Such effects may be significant for NPPs safety. But they have not yet generally accepted interpretation. Steady state approach is often recommended for use in calculations. In the paper a review of experimental observed so-called non-equilibrium effects is presented. The effects of space and time factors are displaying due delay in reformation turbulence intensity, velocity, temperatures or void fraction profiles, water film flow on the surface of heated channels. For estimation of such effect different methods are used. Modern computer codes based on two or three fluids approaches are considered as most effective. But simple and clear correlations may light up the mechanics of effects on heat transfer and improve general understanding of scale and significance of the transient events. In the paper the simplified methods for assessment the influence of lags in the development of distributions of parameters of flow, the relaxation of temporal or space violations are considered. They are compared with more sophisticated approaches. Velocities of disturbance fronts moving along the channels are discussed also. (author)

  20. Heat shock factor 1 upregulates transcription of Epstein-Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng-Wei [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Wu, Xian-Rui [Department of Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou (China); Liu, Wen-Ju; Liao, Yi-Ji [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Lin, Sheng [Laboratory of Integrated Biosciences, School of Life Science, Sun Yat-sen University, Guangzhou (China); Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Mai, Shi-Juan, E-mail: maishj@sysucc.org.cn [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Xie, Dan, E-mail: xied@mail.sysu.edu.cn [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China)

    2011-12-20

    Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the - 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  1. Effects of Induction Heat Bending and Heat Treatment on the Boric Acid Corrosion of Low Alloy Steel Pipe for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Tae; Kim, Young-Sik [Andong National University, Gyeongbuk (Korea, Republic of); Chang, Hyun-Young; Park, Heung-Bae [KEPCO EandC, Gyeongbuk (Korea, Republic of); Sung, Gi-Ho; Shin, Min-Chul [Sungil SIM Co. Ltd, Busan (Korea, Republic of)

    2016-11-15

    In many plants, including nuclear power plants, pipelines are composed of numerous fittings such as elbows. When plants use these fittings, welding points need to be increased, and the number of inspections also then increases. As an alternative to welding, the pipe bending process forms bent pipe by applying strain at low or high temperatures. This work investigates how heat treatment affects on the boric acid corrosion of ASME SA335 Gr. P22 caused by the induction heat bending process. Microstructure analysis and immersion corrosion tests were performed. It was shown that every area of the induction heat bent pipe exhibited a high corrosion rate in the boric acid corrosion test. This behavior was due to the enrichment of phosphorous in the ferrite phase, which occurred during the induction heat bending process. This caused the ferrite phase to act as a corrosion initiation site. However, when re-heat treatment was applied after the bending process, it enhanced corrosion resistance. It was proved that this resistance was closely related to the degree of the phosphorus segregation in the ferrite phase.

  2. Using Nuclear Theory, Data and Uncertainties in Monte Carlo Transport Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-03

    These are slides for a presentation on using nuclear theory, data and uncertainties in Monte Carlo transport applications. The following topics are covered: nuclear data (experimental data versus theoretical models, data evaluation and uncertainty quantification), fission multiplicity models (fixed source applications, criticality calculations), uncertainties and their impact (integral quantities, sensitivity analysis, uncertainty propagation).

  3. Candidate thermal energy storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  4. Thermohydraulic Design Analysis Modeling for Korea Advanced NUclear Thermal Engine Rocket for Space Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Choi, Jae Young; Venneria, Paolo F.; Jeong, Yong Hoon; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Space exploration is a realistic and profitable goal for long-term humanity survival, although the harsh space environment imposes lots of severe challenges to space pioneers. To date, almost all space programs have relied upon Chemical Rockets (CRs) rating superior thrust level to transit from the Earth's surface to its orbit. However, CRs inherently have insurmountable barrier to carry out deep space missions beyond Earth's orbit due to its low propellant efficiency, and ensuing enormous propellant requirement and launch costs. Meanwhile, nuclear rockets typically offer at least two times the propellant efficiency of a CR and thus notably reduce the propellant demand. Particularly, a Nuclear Thermal Rocket (NTR) is a leading candidate for near-term manned missions to Mars and beyond because it satisfies a relatively high thrust as well as a high efficiency. The superior efficiency of NTRs is due to both high energy density of nuclear fuel and the low molecular weight propellant of Hydrogen (H{sub 2}) over the chemical reaction by-products. A NTR uses thermal energy released from a nuclear fission reactor to heat the H{sub 2} propellant and then exhausted the highly heated propellant through a propelling nozzle to produce thrust. A propellant efficiency parameter of rocket engines is specific impulse (I{sub s}p) which represents the ratio of the thrust over the propellant consumption rate. If the average exhaust H{sub 2} temperature of a NTR is around 3,000 K, the I{sub s}p can be achieved as high as 1,000 s as compared with only 450 - 500 s of the best CRs. For this reason, NTRs are favored for various space applications such as orbital tugs, lunar transports, and manned missions to Mars and beyond. The best known NTR development effort was conducted from 1955 to1974 under the ROVER and NERVA programs in the USA. These programs had successfully designed and tested many different reactors and engines. After these projects, the researches on NERVA derived

  5. Nuclear energy an introduction to the concepts, systems, and applications of nuclear processes

    CERN Document Server

    Murray, Raymond

    2001-01-01

    Nuclear Energy, Fifth Edition provides nuclear engineers, plant designers and radiation physicists with a comprehensive overview of nuclear energy and its uses, discusses potential problems and provides an outlook for the futureNew and important trends are discussed including probabilistic safety analysis (PSA), deregulation of the electric power industry to permit competition in the supply of electricity; improvements in performance characteristics of nuclear power plants, such as capacity factor, production costs, and safety factors; storage and disposal of all types of radioactive w

  6. Simulating Experimental Investigation on the Safety of Nuclear Heating Reactor in Loss—of —Coolant Accidents

    Institute of Scientific and Technical Information of China (English)

    ZhanjieXu

    1996-01-01

    The 5MW low temperature nuclear heating reactor (NHR-5) is a new and advanced type of nuclear reactor developed by Institute of Nuclear Energy Technology(INET) of Tisinghuan University of CHina in 1989,Its main loop is a thermal-hydraulic system with natural circulation.This paper studies the safety of NHR under the condition of loss-of -coolant accidents(LOCAs) by means of simulant experiments.First,the Background and necessity of the experiments are presented.then the experimental system,including the thermal-hydraulic system and the data collection system,and similarity criteria are introduced.Up to now ,the discharge experiments with the residual heating power(20% rated heating power)have been carried out on the experimental system,The system prameters including circulation flow rate,system pressure,system temperature,void fraction,discharge mass and so on have been recorded and analyzed.Based on the results of the experiments,the conclusionas are shown as follos:on the whole,the reactor is safe under the condition of LOCAs,but the thermal vacillations resulting from the vibration of the circulation flow rate are disadvantageous to the internal parts of the reactor core.

  7. Nuclear effects on ion heating within the small-angle charged-particle elastic-scattering regime

    Science.gov (United States)

    Andrade, A.; Hale, G. M.

    1984-10-01

    The effects of nuclear forces (in contrast to pure Coulomb interaction) on the ion heating rate which results from small-angle scattering processes between charged particles in plasmas are investigated within the framework of Fokker-Planck theory. These effects are included through the addition of analytic Coulomb-nuclear interference and nuclear elastic cross sections in the scattering integrals of the dynamical friction coefficient and dispersion tensor. It is found that corrections to traditional Fokker-Planck predictions of the ion-ion energy exchange rate can be calculated and that these corrections are sensitive to the choice of the maximum scattering angle defining the cutoff between small- and large-angle scattering.

  8. A Stable Carbon Nanotube Nanofluid for Latent Heat-Driven Volumetric Absorption Solar Heating Applications

    Directory of Open Access Journals (Sweden)

    Nathan Hordy

    2015-01-01

    Full Text Available Recently, direct solar collection through the use of broadly absorbing nanoparticle suspensions (known as nanofluids has been shown as a promising method to improve efficiencies in solar thermal devices. By utilizing a volatile base fluid, this concept could also be applied to the development of a direct absorption heat pipe for an evacuated tube solar collector. However, for this to happen or for any other light-induced vapor production applications, the nanofluid must remain stable over extended periods of time at high temperatures and throughout repetitive evaporation/condensation cycles. In this work, we report for the first time a nanofluid consisting of plasma-functionalized multiwalled carbon nanotubes (MWCNTs suspended in denatured alcohol, which achieves this required stability. In addition, optical characterization of the nanofluid demonstrates that close to 100% of solar irradiation can be absorbed over a relatively small nanofluid thickness.

  9. 78 FR 4465 - PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption

    Science.gov (United States)

    2013-01-22

    ... COMMISSION PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption 1.0... Approvals for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant... (RCOL) application for UniStar's Calvert Cliffs Nuclear Power Plant, Unit 3 (CCNPP3). The......

  10. Experimental study on the heat transfer characteristics of a nuclear reactor containment wall cooled by gravitationally falling water

    Science.gov (United States)

    Pasek, Ari D.; Umar, Efrison; Suwono, Aryadi; Manalu, Reinhard E. E.

    2012-06-01

    Gravitationally falling water cooling is one of mechanism utilized by a modern nuclear Pressurized Water Reactor (PWR) for its Passive Containment Cooling System (PCCS). Since the cooling is closely related to the safety, water film cooling characteristics of the PCCS should be studied. This paper deals with the experimental study of laminar water film cooling on the containment model wall. The influences of water mass flow rate and wall heat rate on the heat transfer characteristic were studied. This research was started with design and assembly of a containment model equipped with the water cooling system, and calibration of all measurement devices. The containment model is a scaled down model of AP 1000 reactor. Below the containment steam is generated using electrical heaters. The steam heated the containment wall, and then the temperatures of the wall in several positions were measure transiently using thermocouples and data acquisition. The containment was then cooled by falling water sprayed from the top of the containment. The experiments were done for various wall heat rate and cooling water flow rate. The objective of the research is to find the temperature profile along the wall before and after the water cooling applied, prediction of the water film characteristic such as means velocity, thickness and their influence to the heat transfer coefficient. The result of the experiments shows that the wall temperatures significantly drop after being sprayed with water. The thickness of water film increases with increasing water flow rate and remained constant with increasing wall heat rate. The heat transfer coefficient decreases as film mass flow rate increase due to the increases of the film thickness which causes the increasing of the thermal resistance. The heat transfer coefficient increases slightly as the wall heat rate increases. The experimental results were then compared with previous theoretical studied.

  11. Assessment of very high-temperature reactors in process applications. Appendix III. Engineering evaluation of process heat applications for very-high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, D.S.; Williams, J.J.

    1977-04-01

    An engineering and economic evaluation is made of coal conversion processes that can be coupled to a very high-temperature nuclear reactor heat source. The basic system developed by General Atomic/Stone and Webster (GA/S and W) is similar to the H-coal process developed by Hydrocarbon Research, Inc., but is modified to accommodate a nuclear heat source and to produce synthetic natural gas (SNG), synthesis gas, and hydrogen in addition to synthetic crude liquids. The synthetic crude liquid production is analyzed by using the GA/S and W process coupled to either a nuclear- or fossil-heat source. Four other processes are included for comparison: (1) the Lurgi process for production of SNG, (2) the Koppers-Totzek process for production of either hydrogen or synthesis gas, (3) the Hygas process for production of SNG, and (4) the Westinghouse thermal-chemical water splitting process for production of hydrogen. The production of methanol and iron ore reduction are evaluated as two potential applications of synthesis gas from either the GA/S and W or Koppers-Totzek processes. The results indicate that the product costs for each of the gasification and liquefaction processes did not differ significantly, with the exception that the unproven Hygas process was cheaper and the Westinghouse process considerably more expensive than the others.

  12. Program for the thermal design and simulation of the operation of a steam condenser for thermal and nuclear power stations and its application to the condenser at the Cofrentes nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Bartual, R.; Pallares Huici, E.

    A program is being developed for an IBM-PC or AT computer based on a calculation system which synthesises the heat transfer process which takes place in the steam condensors at conventional thermal power stations. The program incorporates a useful tool capable of representing characteristic operating curves for a given condensor. Describes its application to the steam condenser at the Cofrentes nuclear power station. 4 refs., 5 tabs., 8 figs.

  13. Heat pumps: Industrial applications. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The bibliography contains citations concerning design, development, and applications of heat pumps for industrial processes. Included are thermal energy exchanges based on air-to-air, ground-coupled, air-to-water, and water-to-water systems. Specific applications include industrial process heat, drying, district heating, and waste processing plants. Other Published Searches in this series cover heat pump technology and economics, and heat pumps for residential and commercial applications. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. The generalized nuclear contact and its application to the photoabsorption cross-section

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Ronen; Barnea, Nir [The Hebrew University, The Racah Institute of Physics, Jerusalem (Israel); Bazak, Betzalel [The Hebrew University, The Racah Institute of Physics, Jerusalem (Israel); Universite Paris-Sud, Institut de Physique Nucleaire, CNRS/IN2P3, Orsay (France)

    2016-04-15

    Using the zero-range model, it was demonstrated recently that Levinger's quasi-deuteron model can be utilized to extract the nuclear neutron-proton contact. Going beyond the zero-range approximation and considering the full nuclear contact formalism, we rederive here the quasi-deuteron model for the nuclear photoabsorption cross-section and utilize it to establish relations and constraints for the general contact matrix. We also define and demonstrate the importance of the diagonalized nuclear contacts, which can be also relevant to further applications of the nuclear contacts. (orig.)

  15. Application of cross finned tubes in latent heat storages

    Energy Technology Data Exchange (ETDEWEB)

    Schwind, H.; Wolff, D. (Dortmund Univ. (Germany, F.R.). Lehrstuhl fuer Anlagentechnik); Brose, J. (Dortmund Univ. (Germany, F.R.). Arbeitsgruppe Chemieapparatebau)

    1978-01-01

    Heat storages, utilizing the latent heat of materials have in comparison with sensible heat storages the two fundamental advantages of small storage volumes and constant temperatures during charge and discharge. Known storage systems in the field of industrial heating may be replaced advantageous by latent heat storage systems. A new latent heat storage, applying storage material around vertical arranged cross finned tubes is presented. It results in good heat transfer rates and avoids degredation and stratification of salthydrates during operation. The scaling-up of a single cross finned tube to a compact unit with plate fins seems to be practicable without problems. Some experimental results are presented.

  16. Monte Carlo Numerical Models for Nuclear Logging Applications

    OpenAIRE

    Fusheng Li; Xiaogang Han

    2012-01-01

    Nuclear logging is one of most important logging services provided by many oil service companies. The main parameters of interest are formation porosity, bulk density, and natural radiation. Other services are also provided from using complex nuclear logging tools, such as formation lithology/mineralogy, etc. Some parameters can be measured by using neutron logging tools and some can only be measured by using a gamma ray tool. To understand the response of nuclear logging tools, the neutron t...

  17. Isotopic Ratios of Samarium by TIMS for Nuclear Forensic Application

    Energy Technology Data Exchange (ETDEWEB)

    Louis Jean, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Inglis, Jeremy David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-08

    The isotopic ratio of Nd, Sm, and Gd can provide important information regarding fissile material (nuclear devices, reactors), neutron environment, and device yield. These studies require precise measurement of Sm isotope ratios, by either TIMS or MC-ICP-MS. There has been an increasing trend to measure smaller and smaller quantities of Sm bearing samples. In nuclear forensics 10-100 ng of Sm are needed for precise measurement. To measure sub-ng Sm samples using TIMS for nuclear forensic analysis.

  18. Analytical and experimental stiffness estimation of heat pipe supporter for nuclear power plant through a homogenization process

    Directory of Open Access Journals (Sweden)

    Sang-Young Kim

    2015-07-01

    Full Text Available This article aims to study the in-plane stiffness estimation of heat pipe supporter (a large lattice structure using experimental and numerical methods. The in-plane stiffness of heat pipe supporter for nuclear power plant is very important because of the safety against natural disasters, such as seismic load or tsunami, and has to be evaluated because it greatly affects the durability of the heat exchanger. However, the modeling process of the whole lattice structure for finite element analysis increases resources needed caused by too many nodes and elements. In this study, the mechanical properties of large lattice structures are determined by a unit cell finite element analysis. The mechanical behavior of a large lattice structure has been estimated by finite element analysis through a homogenization process for reducing analysis time and efforts. The finite element analysis results have been verified and show a good agreement with the experimental results.

  19. ¹H Nuclear Magnetic Resonance monitoring of the degradation of margarines of varied compositions when heated to high temperature.

    Science.gov (United States)

    Ibargoitia, María L; Sopelana, P; Guillén, María D

    2014-12-15

    In this study, (1)H Nuclear Magnetic Resonance was used to monitor the evolution of three margarines of varied compositions when submitted to heating at 180°C in an oven with aeration. Heating causes degradation of polyunsaturated acyl groups and this depends not only on their unsaturation degree, but also on the concentration of the different acyl groups. The evolution of monounsaturated groups varies depending on the disappearance rate of the groups with higher unsaturation degree. Heat treatment also causes hydrolysis reactions that lead to a reduction in 1-monoglycerides and an increase in 1,2-diglycerides, especially in the margarines with higher water content, as well as degradation of some vegetable sterols. Different types of aldehydes and epoxides were identified and quantified, above all in the margarine with the highest proportion of polyunsaturated groups, especially linoleic; some of these are toxic, such as 4-hydroxy- and 4,5-epoxy-2-alkenals.

  20. HEISHI: A fuel performance model for space nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Young, M.F.

    1994-08-01

    HEISHI is a Fortran computer model designed to aid in analysis, prediction, and optimization of fuel characteristics for use in Space Nuclear Thermal Propulsion (SNTP). Calculational results include fission product release rate, fuel failure fraction, mode of fuel failure, stress-strain state, and fuel material morphology. HEISHI contains models for decay chain calculations of retained and released fission products, based on an input power history and release coefficients. Decay chain parameters such as direct fission yield, decay rates, and branching fractions are obtained from a database. HEISHI also contains models for stress-strain behavior of multilayered fuel particles with creep and differential thermal expansion effects, transient particle temperature profile, grain growth, and fuel particle failure fraction. Grain growth is treated as a function of temperature; the failure fraction depends on the coating tensile strength, which in turn is a function of grain size. The HEISHI code is intended for use in analysis of coated fuel particles for use in particle bed reactors; however, much of the code is geometry-independent and applicable to fuel geometries other than spherical.

  1. Review of LIBS application in nuclear fusion technology

    Science.gov (United States)

    Li, Cong; Feng, Chun-Lei; Oderji, Hassan Yousefi; Luo, Guang-Nan; Ding, Hong-Bin

    2016-12-01

    Nuclear fusion has enormous potential to greatly affect global energy production. The next-generation tokamak ITER, which is aimed at demonstrating the feasibility of energy production from fusion on a commercial scale, is under construction. Wall erosion, material transport, and fuel retention are known factors that shorten the lifetime of ITER during tokamak operation and give rise to safety issues. These factors, which must be understood and solved early in the process of fusion reactor design and development, are among the most important concerns for the community of plasma-wall interaction researchers. To date, laser techniques are among the most promising methods that can solve these open ITER issues, and laser-induced breakdown spectroscopy (LIBS) is an ideal candidate for online monitoring of the walls of current and next-generation (such as ITER) fusion devices. LIBS is a widely used technique for various applications. It has been considered recently as a promising tool for analyzing plasma-facing components in fusion devices in situ. This article reviews the experiments that have been performed by many research groups to assess the feasibility of LIBS for this purpose.

  2. Nuclear molecular imaging with nanoparticles: radiochemistry, applications and translation.

    Science.gov (United States)

    Abou, D S; Pickett, J E; Thorek, D L J

    2015-10-01

    Molecular imaging provides considerable insight into biological processes for greater understanding of health and disease. Numerous advances in medical physics, chemistry and biology have driven the growth of this field in the past two decades. With exquisite sensitivity, depth of detection and potential for theranostics, radioactive imaging approaches have played a major role in the emergence of molecular imaging. At the same time, developments in materials science, characterization and synthesis have led to explosive progress in the nanoparticle (NP) sciences. NPs are generally defined as particles with a diameter in the nanometre size range. Unique physical, chemical and biological properties arise at this scale, stimulating interest for applications as diverse as energy production and storage, chemical catalysis and electronics. In biomedicine, NPs have generated perhaps the greatest attention. These materials directly interface with life at the subcellular scale of nucleic acids, membranes and proteins. In this review, we will detail the advances made in combining radioactive imaging and NPs. First, we provide an overview of the NP platforms and their properties. This is followed by a look at methods for radiolabelling NPs with gamma-emitting radionuclides for use in single photon emission CT and planar scintigraphy. Next, utilization of positron-emitting radionuclides for positron emission tomography is considered. Finally, recent advances for multimodal nuclear imaging with NPs and efforts for clinical translation and ongoing trials are discussed.

  3. Materials Selection Criteria for Nuclear Power Applications: A Decision Algorithm

    Science.gov (United States)

    Rodríguez-Prieto, Álvaro; Camacho, Ana María; Sebastián, Miguel Ángel

    2016-02-01

    An innovative methodology based on stringency levels is proposed in this paper and improves the current selection method for structural materials used in demanding industrial applications. This paper describes a new approach for quantifying the stringency of materials requirements based on a novel deterministic algorithm to prevent potential failures. We have applied the new methodology to different standardized specifications used in pressure vessels design, such as SA-533 Grade B Cl.1, SA-508 Cl.3 (issued by the American Society of Mechanical Engineers), DIN 20MnMoNi55 (issued by the German Institute of Standardization) and 16MND5 (issued by the French Nuclear Commission) specifications and determine the influence of design code selection. This study is based on key scientific publications on the influence of chemical composition on the mechanical behavior of materials, which were not considered when the technological requirements were established in the aforementioned specifications. For this purpose, a new method to quantify the efficacy of each standard has been developed using a deterministic algorithm. The process of assigning relative weights was performed by consulting a panel of experts in materials selection for reactor pressure vessels to provide a more objective methodology; thus, the resulting mathematical calculations for quantitative analysis are greatly simplified. The final results show that steel DIN 20MnMoNi55 is the best material option. Additionally, more recently developed materials such as DIN 20MnMoNi55, 16MND5 and SA-508 Cl.3 exhibit mechanical requirements more stringent than SA-533 Grade B Cl.1. The methodology presented in this paper can be used as a decision tool in selection of materials for a wide range of applications.

  4. Application of Induction Heating for Brazing Parts of Solar Collectors

    Directory of Open Access Journals (Sweden)

    Kristína Demianová

    2012-01-01

    Full Text Available This paper reports on the application of induction heating for brazing parts of solar collectors made of Al alloys. The tube-flange joint is a part of the collecting pipe of a solar collector. The main task was to design an induction coil for this type of joint, and to select the optimum brazing parameters. Brazing was performed with AlSi12 brazing alloy, and corrosive and non-corrosive flux types were also applied. The optimum brazing parameters were determined on the basis of testing the fabricated brazed joints by visual inspection, by leakage tests, and by macro- and micro-analysis of the joint boundary. The following conditions can be considered to be the best for brazing Al materials: power 2.69 kW,brazing time 24 s, flux BrazeTec F32/80.

  5. Development and experimental validation of a calculation scheme for nuclear heating evaluation in the core of the OSIRIS material testing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Malouch, F. [Saclay Center CEA, DEN/DANS/DM2S/SERMA, F-91191 Gif-sur-Yvette Cedex (France)

    2011-07-01

    The control of the temperature in material samples irradiated in a material testing reactor requires the knowledge of the nuclear heating caused by the energy deposition by neutrons and photons interacting in the irradiation device structures. Thus, a neutron-photonic three-dimensional calculation scheme has been developed to evaluate the nuclear heating in experimental devices irradiated in the core of the OSIRIS MTR reactor (CEA/Saclay Center). The aim is to obtain a predictive tool for the nuclear heating estimation in irradiation devices. This calculation scheme is mainly based on the TRIPOLI-4 three-dimensional continuous-energy Monte Carlo transport code, developed by CEA (Saclay Center). An experimental validation has been carried out on the basis of nuclear heating measurements performed in the OSIRIS core. After an overview of the experimental devices irradiated in the OSIRIS reactor, we present the calculation scheme and the first results of the experimental validation. (authors)

  6. 76 FR 39922 - Notice of Acceptance of Application for Special Nuclear Materials License From Sensor Concepts...

    Science.gov (United States)

    2011-07-07

    ... COMMISSION Notice of Acceptance of Application for Special Nuclear Materials License From Sensor Concepts and... Sensor Concepts and Applications, Inc's., (SCA) application is available electronically under ADAMS... Detection Office (DNDO) of the U.S. Department of Homeland Security (DHS). Sensor Concepts and Applications...

  7. A Safer Nuclear Enterprise - Application to Nuclear Explosive Safety (NES)(U)

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Tommy J. [Los Alamos National Laboratory

    2012-07-05

    Activities and infrastructure that support nuclear weapons are facing significant challenges. Despite an admirable record and firm commitment to make safety a primary criterion in weapons design, production, handling, and deployment - there is growing apprehension about terrorist acquiring weapons or nuclear material. At the NES Workshop in May 2012, Scott Sagan, who is a proponent of the normal accident cycle, presented. Whether a proponent of the normal accident cycle or High Reliability Organizations - we have to be diligent about our safety record. Constant vigilance is necessary to maintain our admirable safety record and commitment to Nuclear Explosive Safety.

  8. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.

    2010-09-29

    Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) for construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management

  9. Process heat transfer principles, applications and rules of thumb

    CERN Document Server

    Serth, Robert W

    2014-01-01

    Process Heat Transfer is a reference on the design and implementation of industrial heat exchangers. It provides the background needed to understand and master the commercial software packages used by professional engineers in the design and analysis of heat exchangers. This book focuses on types of heat exchangers most widely used by industry: shell-and-tube exchangers (including condensers, reboilers and vaporizers), air-cooled heat exchangers and double-pipe (hairpin) exchangers. It provides a substantial introduction to the design of heat exchanger networks using pinch technology, the mos

  10. Monte Carlo Numerical Models for Nuclear Logging Applications

    Directory of Open Access Journals (Sweden)

    Fusheng Li

    2012-06-01

    Full Text Available Nuclear logging is one of most important logging services provided by many oil service companies. The main parameters of interest are formation porosity, bulk density, and natural radiation. Other services are also provided from using complex nuclear logging tools, such as formation lithology/mineralogy, etc. Some parameters can be measured by using neutron logging tools and some can only be measured by using a gamma ray tool. To understand the response of nuclear logging tools, the neutron transport/diffusion theory and photon diffusion theory are needed. Unfortunately, for most cases there are no analytical answers if complex tool geometry is involved. For many years, Monte Carlo numerical models have been used by nuclear scientists in the well logging industry to address these challenges. The models have been widely employed in the optimization of nuclear logging tool design, and the development of interpretation methods for nuclear logs. They have also been used to predict the response of nuclear logging systems for forward simulation problems. In this case, the system parameters including geometry, materials and nuclear sources, etc., are pre-defined and the transportation and interactions of nuclear particles (such as neutrons, photons and/or electrons in the regions of interest are simulated according to detailed nuclear physics theory and their nuclear cross-section data (probability of interacting. Then the deposited energies of particles entering the detectors are recorded and tallied and the tool responses to such a scenario are generated. A general-purpose code named Monte Carlo N– Particle (MCNP has been the industry-standard for some time. In this paper, we briefly introduce the fundamental principles of Monte Carlo numerical modeling and review the physics of MCNP. Some of the latest developments of Monte Carlo Models are also reviewed. A variety of examples are presented to illustrate the uses of Monte Carlo numerical models

  11. Performance Expectations of Closed-Brayton-Cycle Heat Exchangers in 100-kWe Nuclear Space Power Systems

    Science.gov (United States)

    Barrett, Michael J.

    2003-01-01

    Performance expectations of closed-Brayton-cycle heat exchangers to be used in 100-kWe nuclear space power systems were forecast. Proposed cycle state points for a system supporting a mission to three of Jupiter s moons required effectiveness values for the heat-source exchanger, recuperator and rejection exchanger (gas cooler) of 0.98,0.95 and 0.97, respectively. Performance parameters such as number of thermal units (Nm), equivalent thermal conductance (UA), and entropy generation numbers (Ns) varied from 11 to 19,23 to 39 kWK, and 0.019 to 0.023 for some standard heat exchanger configurations. Pressure-loss contributions to entropy generation were significant; the largest frictional contribution was 114% of the heat-transfer irreversibility. Using conventional recuperator designs, the 0.95 effectiveness proved difficult to achieve without exceeding other performance targets; a metallic, plate-fin counterflow solution called for 15% more mass and 33% higher pressure-loss than the target values. Two types of gas-coolers showed promise. Single-pass counterflow and multipass cross-counterflow arrangements both met the 0.97 effectiveness requirement. Potential reliability-related advantages of the cross-countefflow design were noted. Cycle modifications, enhanced heat transfer techniques and incorporation of advanced materials were suggested options to reduce system development risk. Carbon-carbon sheeting or foam proved an attractive option to improve overall performance.

  12. Steady-state heat transfer in transversely heated porous media with application to focused solar energy collectors

    Science.gov (United States)

    Nichols, L. D.

    1976-01-01

    A fluid flowing in a porous medium heated transversely to the fluid flow is considered. This configuration is applicable to a focused solar energy collector for use in an electric power generating system. A fluidized bed can be regarded as a porous medium with special properties. The solutions presented are valid for describing the effectiveness of such a fluidized bed for collecting concentrated solar energy to heat the working fluid of a heat engine. Results indicate the advantage of high thermal conductivity in the transverse direction and high operating temperature of the porous medium.

  13. Application of aqueous nanofluids in a horizontal mesh heat pipe

    Energy Technology Data Exchange (ETDEWEB)

    ZhenHua Liu [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); QunZhi Zhu [School of Energy Sources and Environment Engineering, Shanghai University of Electric Power, Shanghai 200090 (China)

    2011-01-15

    An experimental study was carried out to investigate the effects of aqueous CuO nanofluids on thermal performance of a horizontal mesh heat pipe working at steady sub-atmospheric pressures. The nanofluid was composed of deionized water and CuO nanoparticles with an average diameter of 50 nm. The experimental results show that adding CuO nanoparticles into deionized water can significantly enhance heat transfer coefficients of both evaporator and condenser, and the maximum heat flux of the heat pipe. There is an optimal mass concentration of nanoparticles corresponding to the maximum heat transfer enhancement. The operating pressure has an apparent impact on both the evaporating and condensing heat transfer enhancements. The heat transfer enhancement effects increase distinctly with the decrease of the pressure. The present investigation discovers that the thermal performance of a mesh heat pipe can be evidently strengthened by substituting CuO nanofluids for deionized water under sub-atmospheric pressures. (author)

  14. Application of aqueous nanofluids in a horizontal mesh heat pipe

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhenhua, E-mail: liuzhenh@sjtu.edu.c [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Zhu Qunzhi [School of Energy Sources and Environment Engineering, Shanghai University of Electric Power, Shanghai 200090 (China)

    2011-01-15

    An experimental study was carried out to investigate the effects of aqueous CuO nanofluids on thermal performance of a horizontal mesh heat pipe working at steady sub-atmospheric pressures. The nanofluid was composed of deionized water and CuO nanoparticles with an average diameter of 50 nm. The experimental results show that adding CuO nanoparticles into deionized water can significantly enhance heat transfer coefficients of both evaporator and condenser, and the maximum heat flux of the heat pipe. There is an optimal mass concentration of nanoparticles corresponding to the maximum heat transfer enhancement. The operating pressure has an apparent impact on both the evaporating and condensing heat transfer enhancements. The heat transfer enhancement effects increase distinctly with the decrease of the pressure. The present investigation discovers that the thermal performance of a mesh heat pipe can be evidently strengthened by substituting CuO nanofluids for deionized water under sub-atmospheric pressures.

  15. Debate heats up over potential Interim Nuclear Waste Repository, as studies of Yucca Mountain continue

    Science.gov (United States)

    Showstack, Randy

    With spent nuclear fuel piling up at power plants around the United States, and with a potential permanent nuclear waste repository at Nevada's Yucca Mountain not scheduled to accept waste until 11 years from now in the year 2010, the nuclear energy industry and many members of Congress have renewed their push to establish an interim repository at the adjacent Nevada Test Site of nuclear bombs.At a sometimes contentious March 12 hearing to consider the Nuclear Waste Policy Act of 1999 (House Resolution 45) that would require an interim facility to begin accepting waste in 2003, bill cosponsor Rep. Jim Barton (R-Tex.) told Energy Secretary Bill Richardson that he preferred that Congress and the Clinton Administration negotiate rather than fight over the measure.

  16. Application of Abaqus to analysis of the temperature field in elements heated by moving heat sources

    Directory of Open Access Journals (Sweden)

    W. Piekarska

    2010-10-01

    Full Text Available Numerical analysis of thermal phenomena occurring during laser beam heating is presented in this paper. Numerical models of surface andvolumetric heat sources were presented and the influence of different laser beam heat source power distribution on temperature field wasanalyzed. Temperature field was obtained by a numerical solution the transient heat transfer equation with activity of inner heat sources using finite element method. Temperature distribution analysis in welded joint was performed in the ABAQUS/Standard solver. The DFLUXsubroutine was used for implementation of the movable welding heat source model. Temperature-depended thermophysical properties for steelwere assumed in computer simulations. Temperature distribution in laser beam surface heated and butt welded plates was numericallyestimated.

  17. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change

  18. The New S-RAM Air Variable Compressor/Expander for Heat Pump and Waste Heat to Power Application

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; Jestings, Lee [S-RAM Dynamics; Conde, Ricardo [S-RAM Dynamics

    2016-05-23

    S-RAM Dynamics (S-RAM) has designed an innovative heat pump system targeted for commercial and industrial applications. This new heat pump system is more efficient than anything currently on the market and utilizes air as the refrigerant instead of hydrofluorocarbon (HFC) refrigerants, leading to lower operating costs, minimal environmental costs or concerns, and lower maintenance costs. The heat pumps will be manufactured in the United States. This project was aimed at determining the feasibility of utilizing additive manufacturing to make the heat exchanger device for the new heat pump system. ORNL and S-RAM Dynamics collaborated on determining the prototype performance and subsequently printing of the prototype using additive manufacturing. Complex heat exchanger designs were fabricated using the Arcam electron beam melting (EBM) powder bed technology using Ti-6Al-4V material. An ultrasonic welding system was utilized in order to remove the powder from the small openings of the heat exchanger. The majority of powder in the small chambers was removed, however, the amount of powder remaining in the heat exchanger was a function of geometry. Therefore, only certain geometries of heat exchangers could be fabricated. SRAM Dynamics evaluated a preliminary heat exchanger design. Although the results of the additive manufacturing of the heat exchanger were not optimum, a less complex geometry was demonstrated. A sleeve valve was used as a demonstration piece, as engine designs from S-RAM Dynamics require the engine to have a very high density. Preliminary designs of this geometry were successfully fabricated using the EBM technology.

  19. The Nuclear Industry

    Science.gov (United States)

    Congedo, Tom; Lahoda, Edward; Matzie, Regis; Task, Keith

    The objective of the nuclear industry is to pro-duce energy in the forms of heat from either fission reactions or radioactive decay and radiation from radioactive decay or by accelerator methods. For fission heat applications, the nuclear fuel has a very high specific energy content that currently has two principal uses, for military explosives and for electricity generation. As higher temperature reactors become more widely available, the high temperature heat (>900°C) will also be useful for making chemicals such as hydrogen. For radiation applications, the emissions from radioactive decay of unstable nuclides are employed in research, medicine, and industry for diagnostic purposes and for chemical reaction initiation. Radioactive decay heat is also employed to generate electricity from thermoelectric generators for low-power applications in space or remote terrestrial locations.

  20. Chemical thermodynamics of nuclear materials. 8. The high-temperature heat capacity of unalloyed plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Oetting, F.L.; Adams, R.O. (Rockwell International Corp., Golden, CO (USA). Energy Systems Group)

    1983-06-01

    The heat capacity of pure plutonium metal has been determined from 330 to 700 K by adiabatic calorimetry. This includes measurements on the ..cap alpha..-, ..beta..-, ..gamma..-, and delta-phases. A large contribution to the heat capacity, especially in the delta-phase, is due to the electronic heat capacity. A negative anharmonic heat capacity is found for the ..cap alpha..-phase. The enthalpies and temperatures of the transitions between these phases were also determined. With the use of thermodynamic quantities on the delta'-, epsilon-, and (1)-phases available from the literature, the thermal functions for pure plutonium metal were calculated to 1000 K.

  1. 76 FR 78702 - Progress Energy Florida, Inc. (Combined License Application for Levy County Nuclear Power Plant...

    Science.gov (United States)

    2011-12-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Progress Energy Florida, Inc. (Combined License Application for Levy County Nuclear Power Plant...) and 2.321(b), the Atomic Safety and Licensing Board (Board) in the above-captioned Progress Energy...

  2. Performance Evaluation of the Concept of Hybrid Heat Pipe as Passive In-core Cooling Systems for Advanced Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yeong Shin; Kim, Kyung Mo; Kim, In Guk; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    As an arising issue for inherent safety of nuclear power plant, the concept of hybrid heat pipe as passive in-core cooling systems was introduced. Hybrid heat pipe has unique features that it is inserted in core directly to remove decay heat from nuclear fuel without any changes of structures of existing facilities of nuclear power plant, substituting conventional control rod. Hybrid heat pipe consists of metal cladding, working fluid, wick structure, and neutron absorber. Same with working principle of the heat pipe, heat is transported by phase change of working fluid inside metal cask. Figure 1 shows the systematic design of the hybrid heat pipe cooling system. In this study, the concept of a hybrid heat pipe was introduced as a Passive IN-core Cooling Systems (PINCs) and demonstrated for internal design features of heat pipe containing neutron absorber. Using a commercial CFD code, single hybrid heat pipe model was analyzed to evaluate thermal performance in designated operating condition. Also, 1-dimensional reactor transient analysis was done by calculating temperature change of the coolant inside reactor pressure vessel using MATLAB. As a passive decay heat removal device, hybrid heat pipe was suggested with a concept of combination of heat pipe and control rod. Hybrid heat pipe has distinct feature that it can be a unique solution to cool the reactor when depressurization process is impossible so that refueling water cannot be injected into RPV by conventional ECCS. It contains neutron absorber material inside heat pipe, so it can stop the reactor and at the same time, remove decay heat in core. For evaluating the concept of hybrid heat pipe, its thermal performance was analyzed using CFD and one-dimensional transient analysis. From single hybrid heat pipe simulation, the hybrid heat pipe can transport heat from the core inside to outside about 18.20 kW, and total thermal resistance of hybrid heat pipe is 0.015 .deg. C/W. Due to unique features of long heat

  3. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications

    Directory of Open Access Journals (Sweden)

    Borislav Bogdanović

    2009-01-01

    Full Text Available For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  4. High temperature metal hydrides as heat storage materials for solar and related applications.

    Science.gov (United States)

    Felderhoff, Michael; Bogdanović, Borislav

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 degrees C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  5. Application of Predictive Control in District Heating Systems

    DEFF Research Database (Denmark)

    Palsson, Olafur Petur; Madsen, Henrik; Søgaard, Henning Tangen

    1993-01-01

    In district heating systems, and in particular if the heat production cakes place at a combined heat and power (CHP) plant, a reasonable control strategy is to keep the supply temperature from the district heating plant as low as possible. However, the control is subject to some restrictions....... A district heating system is an example of a non-stationary system, and the model parameters have to be time varying. Hence, the classical predictive control theory has to be modified. Simulation experiments are performed in order to study the performance of modified predictive controllers. The systems ape......, for example, that the total heat requirement for all consumers is supplied at any time and each individual consumer is guaranteed some minimum supply temperature at any time. A lower supply temperature implies lower heat loss from the transport and the distribution network, and lower production costs...

  6. Heat-shock protein 90 promotes nuclear transport of herpes simplex virus 1 capsid protein by interacting with acetylated tubulin.

    Directory of Open Access Journals (Sweden)

    Meigong Zhong

    Full Text Available Although it is known that inhibitors of heat shock protein 90 (Hsp90 can inhibit herpes simplex virus type 1 (HSV-1 infection, the role of Hsp90 in HSV-1 entry and the antiviral mechanisms of Hsp90 inhibitors remain unclear. In this study, we found that Hsp90 inhibitors have potent antiviral activity against standard or drug-resistant HSV-1 strains and viral gene and protein synthesis are inhibited in an early phase. More detailed studies demonstrated that Hsp90 is upregulated by virus entry and it interacts with virus. Hsp90 knockdown by siRNA or treatment with Hsp90 inhibitors significantly inhibited the nuclear transport of viral capsid protein (ICP5 at the early stage of HSV-1 infection. In contrast, overexpression of Hsp90 restored the nuclear transport that was prevented by the Hsp90 inhibitors, suggesting that Hsp90 is required for nuclear transport of viral capsid protein. Furthermore, HSV-1 infection enhanced acetylation of α-tubulin and Hsp90 interacted with the acetylated α-tubulin, which is suppressed by Hsp90 inhibition. These results demonstrate that Hsp90, by interacting with acetylated α-tubulin, plays a crucial role in viral capsid protein nuclear transport and may provide novel insight into the role of Hsp90 in HSV-1 infection and offer a promising strategy to overcome drug-resistance.

  7. Parametric Investigation and Thermoeconomic Optimization of a Combined Cycle for Recovering the Waste Heat from Nuclear Closed Brayton Cycle

    Directory of Open Access Journals (Sweden)

    Lihuang Luo

    2016-01-01

    Full Text Available A combined cycle that combines AWM cycle with a nuclear closed Brayton cycle is proposed to recover the waste heat rejected from the precooler of a nuclear closed Brayton cycle in this paper. The detailed thermodynamic and economic analyses are carried out for the combined cycle. The effects of several important parameters, such as the absorber pressure, the turbine inlet pressure, the turbine inlet temperature, the ammonia mass fraction, and the ambient temperature, are investigated. The combined cycle performance is also optimized based on a multiobjective function. Compared with the closed Brayton cycle, the optimized power output and overall efficiency of the combined cycle are higher by 2.41% and 2.43%, respectively. The optimized LEC of the combined cycle is 0.73% lower than that of the closed Brayton cycle.

  8. Application of induction heating in food processing and cooking: A Review

    Science.gov (United States)

    Induction heating is an electromagnetic heating technology that has several advantages such as high safety, scalability, and high energy efficiency. It has been applied for a long time in metal processing, medical applications, and cooking. However, the application of this technology in the food pro...

  9. International nuclear liability law. Range of application and principles of liability; Internationales Atomhaftungsrecht. Anwendungsbereich und Haftungsprinzipien

    Energy Technology Data Exchange (ETDEWEB)

    Kissich, S.

    2004-07-01

    In this book the technical and the geographical range of application of the conventions of nuclear liability as well as the new comprehensively are analyzed for the first time. The author distributes a lot of open questions and offers own proposals of solution. Among other things, the questions cover the subsequent topics: liability for final storage facilities, application at military nuclear plants, validity of the conventions in accidents on high seas, application on nuclear damages in third-party governments, impact of the non-applicability of the convention on the liability of the operator and third persons. In addition, this book also is suitable for a venturing into the international nuclear liability law. The complex and bulky subject is prepared clearly and in an easily readable style.

  10. Intensification of heat and mass transfer by ultrasound: application to heat exchangers and membrane separation processes.

    Science.gov (United States)

    Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E

    2015-07-01

    This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions.

  11. Application of nuclear techniques in Poland; Perspektywy wykorzystania atomistyki w Polsce

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A.G.; Owczarczyk, A.; Urbanski, P. [Instytut Chemii i Techniki Jadrowej, Warsaw (Poland); Romanowski, M. [Biuro Studiow i Projektow Techniki Jadrowej `Proatom`, Warsaw (Poland); Stegowski, Z. [Akademia Gorniczo-Hutnicza, Cracow (Poland); Nowak, K. [Osrodek Badawczo-Rozwojowy Izotopow, Swierk-Otwock (Poland); Pachan, A. [Instytut Problemow Jadrowych, Swierk-Otwock (Poland); Tanczyk, R. [Centralne Laboratorium Ochrony Radiologicznej, Warsaw (Poland); Jablonski, R. [Zaklad Techniki Izotopowej `Polon-Izot`, Warsaw (Poland)

    1997-12-31

    The commercial applications of nuclear techniques in Poland have been presented. The special attention have been paid at: radiation technologies, application of radiometric gages in different branches of industry, tracer techniques, production and application of radiation sources in medicine, industry and material testing. 10 refs, 6 figs, 6 tabs.

  12. The aligned nuclear targets for investigation of time reversal invariance violation: thermal heating and optimization of target dimension

    CERN Document Server

    Beda, A G

    2007-01-01

    The thermal heating of aligned nuclear targets of HIO_3, LiIO_3 ans Sb target materials under neutron irradiation at JSNS is considered. It is shown that presently the targets of large volumes (several tens of cm^3) can be used in experiment. The optimal target dimensions are recommended for investigation with resonance neutrons. The use of proposed aligned targets at the new neutron spallation source JSNS (Japan) will make p[ossible to discover TRIV or decrease the present limit on the intensity of parity conserving time violating interaction by two-three order of magnitude.

  13. Application of Kriging-based optimization and smoothed particle hydrodynamics in development of a microchannel heat exchanger model

    Energy Technology Data Exchange (ETDEWEB)

    McLellan, J.; Kaya, T.; Goldak, J., E-mail: joshuamclellan@cmail.carleton.ca, E-mail: Tarik.Kaya@carleton.ca, E-mail: jgoldak@mrco2.carleton.ca [Carleton Univ., Ottawa, Ontario (Canada)

    2014-07-01

    A microchannel heat exchanger (MCHX) is a technology that provides increased thermal efficiency in a small volume relative to other types of heat exchangers via an extremely high surface area-to-volume ratio. This characteristic is specifically valued when considering use in small modular reactors. With relatively little design information for commercial MCHXs available in open literature, development of a robust model and optimization thereof for use in nuclear reactors takes on significant importance. Some applications of this technology involve phase change, which is a challenging modelling problem given large volumetric changes of the liquid and gas phases, as well as moving boundaries at the phase interface. This problem is mitigated by use of a Lagrangian formulation such as smoothed particle hydrodynamics (SPH), whose use in the development of the MCHX model is discussed. Additionally, the Kriging optimization algorithm is introduced, including its use to generate a suitable MCHX design. (author)

  14. Application of thermal-hydraulic codes in the nuclear sector; Aplicaciones de los codigos termo-hidraulicos en el sector nuclear espanol

    Energy Technology Data Exchange (ETDEWEB)

    Queral, C.; Coriso, M.; Garcia Sedano, P. J.; Ruiz, J. A.; Posada, J. M.; Jimenez Varas, G.; Sol, I.; Herranz, L. E.

    2011-07-01

    Use of thermal-hydraulic codes is extended all over many different aspects of nuclear engineering. This article groups and briefly describes the main features of some of the well known codes as an introduction to their recent applications in the Spain nuclear sector. the broad range and quality of applications highlight the maturity achieved both in industry and research organizations and universities within the Spanish nuclear sector. (Author)

  15. Scaling STI's sapphire cryocooler for applications requiring higher heat loads

    Science.gov (United States)

    Karandikar, Abhijit; Fiedler, Andreas

    2012-06-01

    Superconductor Technologies Inc. (STI) developed the Sapphire cryocooler specifically for the SuperLink® product; a high performance superconducting Radio Frequency (RF) front-end receiver used by wireless carriers such as Verizon Wireless and AT&T to improve network cell coverage and data speeds. STI has built and deployed over 6,000 systems operating 24 hours a day (24/7), 7 days a week in the field since 1999. Sapphire is an integrated free piston Stirling cycle cryocooler with a cooling capacity of 5 Watts at 77 Kelvin (K) with less than 100 Watts (W) input power. It has a field-proven Mean Time Between Failure (MTBF) of well over 1 million hours, requires zero maintenance and has logged over 250 million cumulative runtime hours. The Sapphire cooler is built on a scalable technology platform, enabling the design of machines with cooling capacities greater than 1 kilowatt (kW). This scalable platform also extends the same outstanding attributes as the Sapphire cooler, namely high reliability, zero maintenance, and compact size - all at a competitive cost. This paper will discuss emerging applications requiring higher heat loads and these attributes, describe Sapphire, and show a preliminary concept of a scaled machine with a 100 W cooling capacity.

  16. Air, contaminant and heat transport models. Integration and application

    Energy Technology Data Exchange (ETDEWEB)

    Dorer, V.; Weber, A. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Section 175 Building Equipment, CH-8600 Duebendorf (Switzerland)

    1999-07-01

    Comfort evaluations cover air quality, thermal, visual and acoustic comfort. Today, only few computer programs allow for the integrated evaluation of several or all relevant parameters. Heat transport, ventilation as well as lighting in a room are influenced by each other. Therefore they should be integrally modelled. As a part of the IEA-ECBCS Annex 23 'Multizone Air Flow Modelling' (IEA, International Energy Agency; ECBCS, Energy Conservation in Buildings and Community Systems, an IEA research programme), such a coupling has been realised by integrating the air flow and contaminant transport simulation code of COMIS into the building and systems simulation code TRNSYS. This paper gives a short description of the concept used for the coupling. Then, two application examples typical for a building design study situation are presented, the first being a multi-storey school building which was passively cooled at night due to natural stack airflow. In the second example the facade of the same building was retrofitted with a glazed outer facade. Ventilation was provided by naturally driven shaft ventilation through the facade spaces. For such cases as described in the examples, it may be necessary due to the complex interactions, to study many configurations to find optimum control strategies for the openings and the blinds with respect to overheating risk as well as to air quality. For the upper floors, the risk of overheating and low air quality may be difficult to minimize without extending the shaft above roof level. (author)

  17. Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Edwin A. Harvego; Michael G. McKellar

    2011-11-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature

  18. Multiphase, multicomponent flow and transport models for Nuclear Test-Ban Treaty monitoring and nuclear waste disposal applications

    Science.gov (United States)

    Jordan, Amy

    Open challenges remain in using numerical models of subsurface flow and transport systems to make useful predictions related to nuclear waste storage and nonproliferation. The work presented here addresses the sensitivity of model results to unknown parameters, states, and processes, particularly uncertainties related to incorporating previously unrepresented processes (e.g., explosion-induced fracturing, hydrous mineral dehydration) into a subsurface flow and transport numerical simulator. The Finite Element Heat and Mass (FEHM) transfer code is used for all numerical models in this research. An experimental campaign intended to validate the predictive capability of numerical models that include the strongly coupled thermal, hydrological, and chemical processes in bedded salt is also presented. Underground nuclear explosions (UNEs) produce radionuclide gases that may seep to the surface over weeks to months. The estimated timing of gas arrival at the surface may be used to deploy personnel and equipment to the site of a suspected UNE, if allowed under the terms of the Comprehensive Nuclear Test-Ban Treaty. A model was developed using FEHM that considers barometrically pumped gas transport through a simplified fractured medium and was used to quantify the impact of uncertainties in hydrologic parameters (fracture aperture, matrix permeability, porosity, and saturation) and season of detonation on the timing of gas breakthrough. Numerical sensitivity analyses were performed for the case of a 1 kt UNE at a 400 m burial depth. Gas arrival time was found to be most affected by matrix permeability and fracture aperture. Gases having higher diffusivity were more sensitive to uncertainty in the rock properties. The effect of seasonality in the barometric pressure forcing was found to be important, with detonations in March the least likely to be detectable based on barometric data for Rainier Mesa, Nevada. Monte Carlo modeling was also used to predict the window of

  19. 78 FR 4467 - UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3...

    Science.gov (United States)

    2013-01-22

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3, Exemption 1.0 Background UniStar Nuclear Energy (UNE), on behalf of Calvert Cliffs Nuclear Project, LLC and...

  20. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Peterson, Per [Univ. of Wisconsin, Madison, WI (United States); Calderoni, Pattrick [Univ. of Wisconsin, Madison, WI (United States); Scheele, Randall [Univ. of Wisconsin, Madison, WI (United States); Casekka, Andrew [Univ. of Wisconsin, Madison, WI (United States); McNamara, Bruce [Univ. of Wisconsin, Madison, WI (United States)

    2015-01-22

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsin had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re

  1. Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications

    Science.gov (United States)

    Zhong, Yuan; Rännar, Lars-Erik; Liu, Leifeng; Koptyug, Andrey; Wikman, Stefan; Olsen, Jon; Cui, Daqing; Shen, Zhijian

    2017-04-01

    A feasibility study was performed to fabricate ITER In-Vessel components by one of the metal additive manufacturing methods, Electron Beam Melting® (EBM®). Solid specimens of SS316L with 99.8% relative density were prepared from gas atomized precursor powder granules. After the EBM® process the phase remains as austenite and the composition has practically not been changed. The RCC-MR code used for nuclear pressure vessels provides guidelines for this study and tensile tests and Charpy-V tests were carried out at 22 °C (RT) and 250 °C (ET). This work provides the first set of mechanical and microstructure data of EBM® SS316L for nuclear fusion applications. The mechanical testing shows that the yield strength, ductility and toughness are well above the acceptance criteria and only the ultimate tensile strength of EBM® SS316L is below the RCC-MR code. Microstructure characterizations reveal the presence of hierarchical structures consisting of solidified melt pools, columnar grains and irregular shaped sub-grains. Lots of precipitates enriched in Cr and Mo are observed at columnar grain boundaries while no sign of element segregation is shown at the sub-grain boundaries. Such a unique microstructure forms during a non-equilibrium process, comprising rapid solidification and a gradient 'annealing' process due to anisotropic thermal flow of accumulated heat inside the powder granule matrix. Relations between process parameters, specimen geometry (total building time) and sub-grain structure are discussed. Defects are formed mainly due to the large layer thickness (100 μm) which generates insufficient bonding between a few of the adjacently formed melt pools during the process. Further studies should focus on adjusting layer thickness to improve the strength of EBM® SS316L and optimizing total building time.

  2. Heat Analysis of Liquid piston Compressor for Hydrogen Applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2014-01-01

    of hydrogen temperature from adiabatic case is very small, due to large wall resistance and small contact area at the interface. Moreover, the results illustrates that the increasing of the total heat transfer coefficient at the interface and the wall will play a key role in reducing the hydrogen temperature......A new hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model...... and through the walls, is investigated and compared with the adiabatic case. The amount of heat transfer towards the wall is assessed according to widely used heat transfer models available in the literature.The results show very low sensitivity of the model to different heat transfer correlations. Deviation...

  3. Adapting Human Reliability Analysis from Nuclear Power to Oil and Gas Applications

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory

    2015-09-01

    ABSTRACT: Human reliability analysis (HRA), as currently used in risk assessments, largely derives its methods and guidance from application in the nuclear energy domain. While there are many similarities be-tween nuclear energy and other safety critical domains such as oil and gas, there remain clear differences. This paper provides an overview of HRA state of the practice in nuclear energy and then describes areas where refinements to the methods may be necessary to capture the operational context of oil and gas. Many key distinctions important to nuclear energy HRA such as Level 1 vs. Level 2 analysis may prove insignifi-cant for oil and gas applications. On the other hand, existing HRA methods may not be sensitive enough to factors like the extensive use of digital controls in oil and gas. This paper provides an overview of these con-siderations to assist in the adaptation of existing nuclear-centered HRA methods to the petroleum sector.

  4. SP-100 nuclear space power systems with application to space commercialization

    Science.gov (United States)

    Smith, J. M.

    1990-01-01

    The technology of the SP-100 space nuclear power system program is compared to that of more familiar solar-power systems. The SP-100 program develops, validates, and demonstrates the technology for space nuclear power systems in the range of 10 to 1000 kilowatts electric for use in future military and civilian space missions. Mission applications, including earth orbiting platforms and lunar/Mars surface power, are enhanced or made possible by SP-100 technology. Attention is given to the SP-100 reference flight system design, the SP-100 nuclear reactor and nuclear-reactor shield, the platform-mounted, tethered, and free-flying reactors, and installation, operation, and disposal options, as well as lunar-Mars surface applications. The SP-100 is presented as one of the nuclear energy sources needed for long-life, compact, lightweight, continuous high power independent of solar orientation, specific orbits, or missions.

  5. High temperature heat exchanger studies for applications to gas turbines

    Science.gov (United States)

    Min, June Kee; Jeong, Ji Hwan; Ha, Man Yeong; Kim, Kui Soon

    2009-12-01

    Growing demand for environmentally friendly aero gas-turbine engines with lower emissions and improved specific fuel consumption can be met by incorporating heat exchangers into gas turbines. Relevant researches in such areas as the design of a heat exchanger matrix, materials selection, manufacturing technology, and optimization by a variety of researchers have been reviewed in this paper. Based on results reported in previous studies, potential heat exchanger designs for an aero gas turbine recuperator, intercooler, and cooling-air cooler are suggested.

  6. Heat transfer enhancement by application of nano-powder

    Energy Technology Data Exchange (ETDEWEB)

    Mosavian, M. T. Hamed, E-mail: mosavian@um.ac.ir; Heris, S. Zeinali [Ferdowsi University of Mashhad, Department of Chemical Engineering, Faculty of Engineering (Iran, Islamic Republic of); Etemad, S. Gh.; Esfahany, M. Nasr [Isfahan University of Technology, Department of Chemical Engineering (Iran, Islamic Republic of)

    2010-09-15

    In this investigation, laminar flow heat transfer enhancement in circular tube utilizing different nanofluids including Al{sub 2}O{sub 3} (20 nm), CuO (50 nm), and Cu (25 nm) nanoparticles in water was studied. Constant wall temperature was used as thermal boundary condition. The results indicate enhancement of heat transfer with increasing nanoparticle concentrations, but an optimum concentration for each nanofluid suspension can be found. Based on the experimental results, metallic nanoparticles show better enhancement of heat transfer coefficient in comparison with oxide particles. The promotions of heat transfer due to utilizing nanoparticles are higher than the theoretical correlation prediction.

  7. On the application of heat integration in oil sands processing

    Energy Technology Data Exchange (ETDEWEB)

    Salama, A.I.A. [Natural Resources Canada, Devon, AB (Canada). CANMET Western Research Centre

    2005-07-01

    During bitumen recovery, process heat is generated by burning natural gas or by using electrical energy that is also generated from a hydrocarbon source, typically coal. This adds carbon dioxide (CO{sub 2}) emissions to the atmosphere and contributes to global warming. The Canadian oil sands industry is challenged by stringent environmental regulations, including Kyoto Protocol obligations. In order to address the challenge of reducing CO{sub 2} emissions to the atmosphere, the oil sands industry has adopted more efficient operations, has implemented heat and process integration and efficient energy management into its bitumen recovery operations. In particular, it has targeted the optimal integration of the supply and removal of heat among the process streams. The use of heat integration schemes results in conservation of heat energy and reductions in utility requirements, energy consumption, and production cost per unit of production. This paper described a heat exchanger network (HEN) design automation using pinch technology in which the existing problem table algorithm (PTA) is used to determine the optimal heat energy targets. It then proposed a simple modification of the existing PTA and presented a newly developed and improved algorithm called the simple problem table algorithm (SPTA) that eliminates the lumping stage in the PTA. The algorithm is used to determine the optimal heat energy targets. The main objective of this method is to save expense by maximizing process to-process heat recovery. This also reduces the external utility requirements for steam and cooling water. 22 refs., 4 tabs., 7 figs.

  8. Application of Heat Pump in Cooling Water System of HIRFL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Accelerator generates a lot of heat when it is working.It must be cooled by the circulating cooling water.Generally the heat was released to atimosphere by the cooling water tower.Because the heat energy is very huge(about 2M watts for HIRFL),it is big waste and the machine can’t be cooled to appropriate temperature when ambient temperature is high in summer.In order to solve the problems,the heat pump has been used

  9. Industrial heat pumps for high temperature process applications

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær

    Industrial processes often consume large quantities of heat, while of-ten dissipating large quantities of waste heat to the ambient. The main energy source for industrial heat supply is fossil fuels, either oil or nat-ural gas. Thus, the heat consumption of industrial processes often entail large...... is determined. This is know as an exergoeconomic analysis. Further, a life cycle assessment is performed and combined with the exergy analysis to associate environmental impact to all streams of exergy and thereby determine the environmental impact of exergy destruction. This is known as an exergoenvironmental...

  10. QMD application of sub-saturated nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Toshiki; Maruyama, Tomoyuki; Iwamoto, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Niita, Koji; Chikamatsu, Kazuhiro

    1997-05-01

    QMD (quantum molecular dynamics) has not been applied to supernova and neutron star matter. We begun to apply QMD, microscopic simulation of nuclear reaction, to the infinite system of nuclear matter. The infinite system was simulated by N particles system under the periodic boundary condition. Pauli potential introduced repulsive force which the same kinds of particles could not approach at phase space, instead of antisymmetrization of the system. Supernova matter was appropriate to the symmetric nuclear matter, the inhomogeneous structure was observed less than 0.8 {rho}{sub 0} of density, but homogeneous more than it. Each nucleus was seen to separate from others less than 0.2 {rho}{sub 0}. Neutron star matter attains {beta} equilibrium and not symmetric matter and the lowest energy was obtained at about 0.03-0.08 of proton content. (S.Y.)

  11. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines

    Science.gov (United States)

    Kato, Akihito; Tanimura, Yoshitaka

    2016-12-01

    We consider a quantum system strongly coupled to multiple heat baths at different temperatures. Quantum heat transport phenomena in this system are investigated using two definitions of the heat current: one in terms of the system energy and the other in terms of the bath energy. When we consider correlations among system-bath interactions (CASBIs)—which have a purely quantum mechanical origin—the definition in terms of the bath energy becomes different. We found that CASBIs are necessary to maintain the consistency of the heat current with thermodynamic laws in the case of strong system-bath coupling. However, within the context of the quantum master equation approach, both of these definitions are identical. Through a numerical investigation, we demonstrate this point for a non-equilibrium spin-boson model and a three-level heat engine model using the reduced hierarchal equations of motion approach under the strongly coupled and non-Markovian conditions. We observe the cyclic behavior of the heat currents and the work performed by the heat engine, and we find that their phases depend on the system-bath coupling strength. Through consideration of the bath heat current, we show that the efficiency of the heat engine decreases as the strength of the system-bath coupling increases, due to the CASBI contribution. In the case of a large system-bath coupling, the efficiency decreases further if the bath temperature is increased, even if the ratio of the bath temperatures is fixed, due to the discretized nature of energy eigenstates. This is also considered to be a unique feature of quantum heat engines.

  12. An application of the RFQ Linac: Nuclear waste assay characterization

    Science.gov (United States)

    Lamkin, K.; Schultz, F.; Womble, P.; Humphrey, D.; Vourvopoulos, G.

    1997-02-01

    A collaboration between Oak Ridge National Laboratory and Western Kentucky University examines the problem of characterization and assay of nuclear waste with high intrinsic neutron and gamma-ray fields. This waste is defined as Remote Handled-Transuranic waste (RH-TRU). A Radiofrequency Quadrupole Linac is used to produce pulses of neutrons, which impinge on the drum that contains the nuclear waste. The neutrons, after being thermalized in the matrix of the drum, are captured by the fissile material (239Pu or 235U), which releases fast neutrons upon fission. Experimental results will be presented to show the versatility of employing the RFQ with the Differential Die-away Technique.

  13. Application of nuclear-physics methods in space materials science

    Science.gov (United States)

    Novikov, L. S.; Voronina, E. N.; Galanina, L. I.; Chirskaya, N. P.

    2017-07-01

    The brief history of the development of investigations at the Skobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) in the field of space materials science is outlined. A generalized scheme of a numerical simulation of the radiation impact on spacecraft materials and elements of spacecraft equipment is examined. The results obtained by solving some of the most important problems that modern space materials science should address in studying nuclear processes, the interaction of charged particles with matter, particle detection, the protection from ionizing radiation, and the impact of particles on nanostructures and nanomaterials are presented.

  14. Cycloheximide- and puromycin-induced heat resistance : different effects on cytoplasmic and nuclear luciferases

    NARCIS (Netherlands)

    Michels, AA; Kanon, B; Konings, AWT; Bensaude, O; Kampinga, HH

    2000-01-01

    Inhibition of translation can result in cytoprotection against heat shock. The mechanism of this protection has remained elusive so far. Here, the thermoprotective effects of the translation inhibitor cycloheximide (CHX) and puromycin were investigated, using as reporter firefly luciferase localized

  15. 76 FR 81992 - PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption

    Science.gov (United States)

    2011-12-29

    ... COMMISSION PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption 1.0..., Certifications, and Approvals for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP), in Salem County, Pennsylvania. The BBNPP COL application incorporates by...

  16. 77 FR 10784 - Calvert Cliffs Nuclear Power Plant, LLC; Notice of Withdrawal of Application for Amendment to...

    Science.gov (United States)

    2012-02-23

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Notice of Withdrawal of Application for Amendment to... of Calvert Cliffs Nuclear Power Plant, LLC, the licensee, to withdraw its application dated October... the Calvert Cliffs Nuclear Plant, Units 1 and 2, respectively, located in Calvert County,...

  17. Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 Nuclear Research Emulsions (NRE) have a long and illustrious history of applications in the physical sciences, earth sciences and biological sciences (1,2) . In the physical sciences, NRE experiments have led to many fundamental discoveries in such diverse disciplines as nuclear physics, cosmic ray physics and high energy physics. In the applied physical sciences, NRE have been used in neutron physics experiments in both fission and fusion reactor environments (3-6). Numerous NRE neutron experiments can be found in other applied disciplines, such as nuclear engineering, environmental monitoring and health physics. Given the breadth of NRE applications, there exist many textbooks and handbooks that provide considerable detail on the techniques used in the NRE method. As a consequence, this practice will be restricted to the application of the NRE method for neutron measurements in reactor physics and nuclear engineering with particular emphasis on neutron dosimetry in benchmark fields (see Matrix E706). 1...

  18. Thermal efficiency improvements : a chemical heat pump system application

    Energy Technology Data Exchange (ETDEWEB)

    Mert, M.S.; Salt, I.; Bolat, E. [Yildiz Technical Univ., Istanbul (Turkey). Dept. of Chemical Engineering; Karaca, F. [Marmara Univ., Istanbul (Turkey). Dept. of Chemical Engineering

    2006-07-01

    Chemical heat pumps are used to upgrade thermal energy and provide energy storage without losses. The feasibility of an n-hexane/1-hexane/hydrogen chemical heat pump system based on the dehydrogenation of n-hexane at low temperatures and 1-hexane at high temperatures was investigated. Theoretical analysis was carried out using related thermodynamic and equilibrium data to determine the thermal efficiency of the cycle. The latent heats of vaporization at normal boiling points for n-hexane and 1-hexane were calculated using a Riedel equation. Heat capacities as a function of temperature were calculated by Missenard group contribution and Rowlinson-Bondi methods. Estimated C{sub PL} values were presented. The effect of temperature on the Standart heat of reaction was calculated. Gibbs free energy was expressed as a function of temperature. Results indicated that a high 1-hexane concentration in the liquid mixture was required. The ratio of upgraded heat to supplied heat was the key parameter for estimating the thermal coefficient of performance (COP). It was observed that the efficiency of the pump increased with an increase in low level hydrogenation pressure. It was concluded that designing a chemical heat pump involves the consideration of a variety of interacting parameters. 17 refs., 5 tabs., 3 figs.

  19. Application of nuclear logging to porosity studies in Itaborai basin

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Milena F.S.; Lima, Inaya; Lopes, Ricardo Tadeu, E-mail: milena@lin.ufrj.br, E-mail: inaya@lin.ufrj.br, E-mail: ricardo@lin.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Ferrucio, Paula Lucia; Borghi, Leonardo, E-mail: ferrucio@acd.ufrj.br, E-mail: borghi@ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Geociencias. Dept. de Geologia; Abreu, Carlos Jorge, E-mail: jo_abreu@unb.br [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Geociencias

    2011-07-01

    Nuclear logging provides information on bulk density and porosity variations by measuring the intensity of the scattered radiation induced on the formation by radioactive sources. In this study, nuclear logging was employed to analyze the pore-space system of the 2-ITAB-1-RJ well placed on the Itaborai limestone basin, in the state of Rio de Janeiro. This is one of the smallest sedimentary basin in Brazil and it is formed by clastic deposits and travertine limestone rocks which are fractured. Understanding the pore-space system of carbonate rocks has become important subject for the oil industry, specially in Brazil. A Density Gamma Probe (LSD) and a Neutron Probe (NEUT) were used for data acquisition, which nuclear logging was carried out in part of the well, with continuous detection for about 50 m of deep. The detection speed was 4 m/min for the LSD and 5 m/min for the NEUT. The results obtained by nuclear logging showed that the 2-ITAB-1-RJ well consists of three different intervals with rocks ranging from low to moderate porosity present in travertine, marls and gneisses. (author)

  20. COMPARATIVE EFFICIENCY OF HEAT-PUMPS APPLICATION IN LOW TEMPERATURE HEAT SUPPLY SYSTEMS

    Directory of Open Access Journals (Sweden)

    M. N. Chepurnoy

    2015-01-01

    Full Text Available The  article  considers  comparative  operation-efficiency  of  the  low-temperature  heatsupply systems with heat pumping plants (HPP and with hot-water boilers. The paper shows that for energy evaluation of the alternative heat-supply systems effectiveness one cannot employ the transformation ratio (heating coefficient and the fuel heat-utilization factor in the HPP. Nonetheless the transformation ratio enters the formulae designating the efficiency of HPP operation. The authors obtain a generalized formula for ascertainment of transformation ratio and suggest evaluating the operation efficiency of the heat-supply systems by means of indicators specifying relative gain in the exergy-efficiency factor, fuel savings and saving expenditures connected with fuel and utilities. They attain formulae and build nomographic charts for those indicators ascertainment. The operation-efficiency comparative analysis of the low-temperature heat supply systems with HPP and with hot-water boilers shows that the HPP systems increase their effectiveness with transformation ratio, fuel price increase as well as with low electric-energy prices. The article specifies that with fuel low prices, the transformation-ratios limiting values with which the HPP operation-efficacy gains, grow. Energy-efficiency increase in the HPP does not always guaranty their economic effectiveness. These findings are true only for the heating systems. The hot water-supply systems will require the HPP condenser water additional heating to the assumed temperature from another thermal source, which reduces the effectiveness of the heat pump plants utilizing.

  1. Heat transfer analysis of liquid piston compressor for hydrogen applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2015-01-01

    based on the mass and energy balance of the hydrogen, liquid, and the wall of the compression chamber at each time step and positional node with various compression ratios, to calculate the temperature distribution of the system. The amount of heat extracted from hydrogen, directly at the interface......A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...... at the interface. Moreover, the results of the sensitivity analysis illustrates that increasing the total heat transfer coefficients at the interface and the wall, together with compression time, play key roles in reducing the hydrogen temperature. Increasing the total heat transfer coefficient at the interface...

  2. Heat transfer analysis of liquid piston compressor for hydrogen applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2015-01-01

    at the interface. Moreover, the results of the sensitivity analysis illustrates that increasing the total heat transfer coefficients at the interface and the wall, together with compression time, play key roles in reducing the hydrogen temperature. Increasing the total heat transfer coefficient at the interface......A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...... and through the walls, is investigated and compared with the adiabatic case. The results show that depending on heat transfer correlation, the hydrogen temperature reduces slightly between 0.2% and 0.4% compared to the adiabatic case, at 500bar, due to the large wall resistance and small contact area...

  3. An Integrated Control System for Heating and Indoor Climate Applications

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh

    2012-01-01

    in terms of energy efficiency, associated energy cost and occupants’ thermal comfort is the main objective to be fulfilled via design of an integrated controller. We also proposed control strategies to manage energy consumption of the building to turn domestic heat demands into a flexible load in the smart...... which geothermal heat pump, solar driven heat pumps and the other types are categorized as renewable or renewable energy sources. In the present study, we investigated modeling and control of hydronic heat emitters integrated with a ground-source heat pump. Optimization of the system performance...... electricity grid. We developed a simulation infrastructure for computer-based testing of the developed control methodologies. As the basis for components modeling, dynamical modeling of hydronic radiators controlled by thermostatic radiator valves is studied thoroughly. We have shown via analytical studies...

  4. Heat pump applications and water heating by means of solar collectors. Waermepumpenanwendungen und Wasserwaermung mit Sonnenkollektoren

    Energy Technology Data Exchange (ETDEWEB)

    Szokody, G.

    1990-01-15

    About 25 to 30% of all newly constructed single-family houses in Switzerland are equipped with heat pump systems. This increasing attractivity is partly due to new techniques, e.g. microprocessor control, as well as to higher component efficiencies, a more efficient heat exchange technology, and to the compactness of systems. Active solar energy conversion, i.e. by means of solar collectors, is another technique which is predominantly applied for water heating in single-family buildings. Public investments in this field are scarce. (BWI).

  5. Lessons from UNSCOM/IAEA applicable to nuclear arms control

    Energy Technology Data Exchange (ETDEWEB)

    Dorn, D.W.

    1995-12-05

    In early 1991, the Security Council of the United Nations tasked the Director General of the International Atomic Energy Agency, with the assistance and cooperation of the United Nations Special Commission, to oversee the destruction, removal or rendering harmless of nuclear weapons material and capabilities in Iraq. The conduct of the nuclear inspections, and the subsequent activities (identification, destruction, removal rendering harmless), have provided a wealth of experience and insight into the inspection and monitoring process as well as into the political realities of such an operation. The early inspections were conducted in an atmosphere of discovery and inexperience on both the part of the Iraqis and the IAEA and UNSCOM. As time went on, the Iraqis became more adept at hiding and obscuring relevant documents and equipment, and the inspection teams became more knowledgeable about inspection and investigative techniques, and the pre-existing Iraqi programs. A continuous monitoring presence in Iraq has now been established and an import/export monitoring regime is being developed. While steps taken to date have proven effective in inhibiting resumption of nuclear weaponization activities, it remains to be seen how effective these measures will be in the future. The external and internal conditions which led the Iraqi leadership to undertake a nuclear weaponization program have not changed, and the prognosis for the long term is uncertain. The entire process in Iraq has shown how fragile are the tools available to the international community, and how a determined proliferator can evade inspection and monitoring measures. Such measures cannot prevent nuclear proliferation, they can only hope to deter it, or, failing in that, detect it.

  6. Applications of nuclear techniques relevant for civil security

    Science.gov (United States)

    Valkovi, Vlado

    2006-05-01

    The list of materials which are subject to inspection with the aim of reducing the acts of terrorism includes explosives, narcotics, chemical weapons, hazardous chemicals and radioactive materials. To this we should add also illicit trafficking with human beings. The risk of nuclear terrorism carried out by sub-national groups is considered not only in construction and/or use of nuclear device, but also in possible radioactive contamination of large urban areas. Modern personnel, parcel, vehicle and cargo inspection systems are non-invasive imaging techniques based on the use of nuclear analytical techniques. The inspection systems use penetrating radiations: hard x-rays (300 keV or more) or gamma-rays from radioactive sources (137Cs and 60Co with energies from 600 to 1300 keV) that produce a high resolution radiograph of the load. Unfortunately, this information is ''non-specific'' in that it gives no information on the nature of objects that do not match the travel documents and are not recognized by a visual analysis of the radiographic picture. Moreover, there are regions of the container where x and gamma-ray systems are ''blind'' due to the high average atomic number of the objects irradiated that appear as black spots in the radiographic image. Contrary to that is the use of neutrons; as results of the bombardment, nuclear reactions occur and a variety of nuclear particles, gamma and x-ray radiation is emitted, specific for each element in the bombarded material. The problem of material (explosive, drugs, chemicals, etc.) identification can be reduced to the problem of measuring elemental concentrations. Neutron scanning technology offers capabilities far beyond those of conventional inspection systems. The unique automatic, material specific detection of terrorist threats can significantly increase the security at ports, border-crossing stations, airports, and even within the domestic transportation infrastructure of potential urban targets as well as

  7. Applications of nuclear techniques relevant for civil security

    Energy Technology Data Exchange (ETDEWEB)

    Valkovi, Vlado [Institute Ruder Boskovi, Zagreb (Croatia)

    2006-05-15

    The list of materials which are subject to inspection with the aim of reducing the acts of terrorism includes explosives, narcotics, chemical weapons, hazardous chemicals and radioactive materials. To this we should add also illicit trafficking with human beings. The risk of nuclear terrorism carried out by sub-national groups is considered not only in construction and/or use of nuclear device, but also in possible radioactive contamination of large urban areas. Modern personnel, parcel, vehicle and cargo inspection systems are non-invasive imaging techniques based on the use of nuclear analytical techniques. The inspection systems use penetrating radiations: hard x-rays (300 keV or more) or gamma-rays from radioactive sources ({sup 137}Cs and {sup 60}Co with energies from 600 to 1300 keV) that produce a high resolution radiograph of the load. Unfortunately, this information is 'non-specific' in that it gives no information on the nature of objects that do not match the travel documents and are not recognized by a visual analysis of the radiographic picture. Moreover, there are regions of the container where x and gamma-ray systems are 'blind' due to the high average atomic number of the objects irradiated that appear as black spots in the radiographic image. Contrary to that is the use of neutrons; as results of the bombardment, nuclear reactions occur and a variety of nuclear particles, gamma and x-ray radiation is emitted, specific for each element in the bombarded material. The problem of material (explosive, drugs, chemicals, etc.) identification can be reduced to the problem of measuring elemental concentrations. Neutron scanning technology offers capabilities far beyond those of conventional inspection systems. The unique automatic, material specific detection of terrorist threats can significantly increase the security at ports, border-crossing stations, airports, and even within the domestic transportation infrastructure of potential

  8. PREFACE: XX International School on Nuclear Physics, Neutron Physics and Applications (Varna2013)

    Science.gov (United States)

    Stoyanov, Chavdar; Dimitrova, Sevdalina

    2014-09-01

    The present volume contains the lectures and short talks given at the XX International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 16-22 September 2013 in 'Club Hotel Bolero' located in 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by the Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Sciences. Co-organizer of the School was the Bulgarian Nuclear Regulatory Agency and the Bogoliubov Laboratory of Theoretical Physics of Joint Institute for Nuclear Research - Dubna. Financial support was also provided by the Bulgarian Ministry of Education and Science. According to the long-standing tradition the School has been held every second year since 1973. The School's program has been restructured according to our enlarged new international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts many young scientists and students from around the world. This year, 2013, we had the pleasure to welcome more than sixty distinguished scientists as lecturers. Additionally, twenty young colleagues received the opportunity to present a short contribution. Ninety-four participants altogether enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and during the pleasant evenings. The program of the School ranged from latest results in fundamental areas such as nuclear structure and reactions to the hot issues of application of nuclear methods, reactor physics and nuclear safety. The main topics have been the following: Nuclear excitations at various energies. Nuclei at high angular moments and temperature. Structure and reactions far from stability. Symmetries and collective phenomena. Methods for lifetime measurements. Astrophysical aspects of nuclear structure. Neutron nuclear physics. Nuclear data. Advanced methods in

  9. PREFACE: XIX International School on Nuclear Physics, Neutron Physics and Applications (VARNA 2011)

    Science.gov (United States)

    Stoyanov, Chavdar; Dimitrova, Sevdalina; Voronov, Victor

    2012-05-01

    This volume contains the lectures and short talks given at the XIX International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 19-25 September 2011 in 'Club Hotel Bolero' located in the 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by the Institute for Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences. The co-organizer of the School was the Bulgarian Nuclear Regulatory Agency and the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research - Dubna. According to long-standing tradition the School has been held every second year since 1973. The School's program has been restructured according to our enlarged new international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts many young scientists and students from around the world. This year - 2011, we had the pleasure of welcoming more than 50 distinguished scientists as lecturers. Additionally, 14 young colleagues received the opportunity to each present a short contribution. The program ranged from recent achievements in areas such as nuclear structure and reactions to the hot topics of the application of nuclear methods, reactor physics and nuclear safety. The 94 participants enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and during the pleasant evenings. The main topics were as follows: Nuclear excitations at various energies Nuclei at high angular moments and temperature Structure and reactions far from stability Symmetries and collective phenomena Methods for lifetime measurements Astrophysical aspects of nuclear structure Neutron nuclear physics Nuclear data Advanced methods in nuclear waste treatment Nuclear methods for applications Several colleagues helped with the organization of the School. We would like

  10. Materials Laboratory at the Institute of Nuclear Fusion: growth and characterization of coatings with nuclear applications; Laboratorio de Materiales en el Instituto de Fusion Nuclear: crecimiento y caracterizacion de recubrimientos con aplicaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Arrabal, R.; Gordillo, N.; Panizo-Laiz, M.; Fernandez-Martinez, I.; Wennberg, A.; Rivera, A.; Pena, O.; Briones, F.; Perlado, J. M.

    2013-07-01

    We report on the capabilities of the new materials lab located at the Instituto de Fusion Nuclear to develop coating for nuclear applications. The main objectives of the lab are described: (a) design of coatings which fulfil industrial requirements and (b) development of the need instrumentation to coat non-planar surfaces, i.e. inner and outer surface of pipes. Some examples of radiation resistance materials (self-healing) will be shown. Moreover, we present some new solution with improved corrosion resistance when facing liquid metals to conform the cooling system of future fission and fusion nuclear reactors. (Author)

  11. Basic Research and Development Effort to Design a Micro Nuclear Power Plant for Brazilian Space Applications

    Science.gov (United States)

    Guimares, L. N. F.; Camillo, G. P.; Placco, G. M.; Barrios, G., A., Jr.; Do Nascimento, J. A.; Borges, E. M.; De Castro Lobo, P. D.

    For some years the Nuclear Energy Division of the Institute for Advanced Studies is conducting the TERRA (Portuguese abbreviation for advanced fast reactor technology) project. This project aims at research and development of the key issues related with nuclear energy applied to space technology. The purpose of this development is to allow future Brazilian space explorers the access of a good and reliable heat, power and/or propulsion system based on nuclear energy. Efforts are being made in fuel and nuclear core design, designing and building a closed Brayton cycle loop for energy conversion, heat pipe systems research for passive space heat rejection, developing computational programs for thermal loop safety analysis and other technology that may be used to improve efficiency and operation. Currently there is no specific mission that requires these technology development efforts; therefore, there is a certain degree of freedom in the organization and development efforts. This paper will present what has been achieved so far, what is the current development status, where efforts are heading and a proposed time table to meet development objectives.

  12. Effect of sequential heat and cold shocks on nuclear phenotypes of the blood-sucking insect, Panstrongylus megistus (Burmeister (Hemiptera, Reduviidae

    Directory of Open Access Journals (Sweden)

    Garcia Simone L

    2002-01-01

    Full Text Available Thermal shocks induce changes in the nuclear phenotypes that correspond to survival (heterochromatin decondensation, nuclear fusion or death (apoptosis, necrosis responses in the Malpighian tubules of Panstrongylus megistus. Since thermal tolerance increased survival and molting rate in this species following sequential shocks, we investigated whether changes in nuclear phenotypes accompanied the insect survival response to sequential thermal shocks. Fifth instar nymphs were subjected to a single heat (35 or 40°C, 1 h or cold (5 or 0°C, 1 h shock and then subjected to a second shock for 12 h at 40 or 0°C, respectively, after 8, 18, 24 and 72 h at 28°C (control temperature. As with specimen survival, sequential heat and cold shocks induced changes in frequency of the mentioned nuclear phenotypes although their patterns differed. The heat shock tolerance involved decrease in apoptosis simultaneous to increase in cell survival responses. Sequential cold shocks did not involve cell/nuclear fusion and even elicited increase in necrosis with advancing time after shocks. The temperatures of 40 and 0ºC were more effective than the temperatures of 35 and 5ºC in eliciting the heat and cold shock tolerances, respectively, as shown by cytological analysis of the nuclear phenotypes. It is concluded that different sequential thermal shocks can trigger different mechanisms of cellular protection against stress in P. megistus, favoring the insect to adapt to various ecotopes.

  13. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a

  14. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    Science.gov (United States)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  15. Mono or 3D video production for scientific dissemination of nuclear energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Victor Goncalves G.; Mol, Antonio Carlos A.; Biermann, Bruna; Jorge, Carlos Alexandre F., E-mail: mol@ien.gov.b, E-mail: vgoncalves@ien.gov.b, E-mail: calexandre@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Araujo, Tawein [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Belas Artes; Legey, Ana Paula [Universidade Gama Filho (UGF), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    This work presents results of educational videos development, mono or stereo, for scientific dissemination of nuclear energy applications. Nuclear energy span through many important applications for the society, ranging from electrical power generation to nuclear medicine, among others. Thus, the purpose is to disseminate this information for the general public and specially for students. Educational videos consist in a good approach for this purpose, due to the involvement of the public they provide, more than simply text or oral exposition, or even static images presentation. Stereo videos result in even more involvement of the public, besides immersion, the later due to the realism 3D views provide. The video developed in this work deals with explanations of electrical power generation, including nuclear reactor operation, shows the percentage of nuclear source as power generation all over the world, and explains also nuclear energy application in medicine. It is expected all these characteristics provided by the use of video or virtual reality techniques will achieve the purpose of disseminating such important information, regarding the benefits of nuclear energy to the society. (author)

  16. Applications of the gas chromatography in the nuclear science and technology; Aplicaciones de la cromatografia de gases a la ciencia y tecnologia nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Gasco Sanchez, L.

    1972-07-01

    This paper is a review on the applications of the gas chromatography in the nuclear science and technology published up to December 1971. Its contents has been classified under the following heads; I) Radiogaschromatography, II) Isotope separation, III) Preparation of labelled molecules, IV) Nuclear fuel cycle, V) Nuclear reactor technology, VI) Irradiation chemistry, VIl) Separation of me tal compounds in gas phase, VIII) Applications of the gas chromatography carried out at the Junta de Energia Nuclear, Spain. Arapter VIII only includes the investigations carried out from January 1969 to December 1971. Previous investigations in this field has been published elsewhere. (Author)

  17. Comparisons and applications of numerical simulation methods for predicting aerodynamic heating around complex configurations

    Institute of Scientific and Technical Information of China (English)

    Jin-Ling Luo; Hong-Lin Kang; Jian Li; Wu-Ye Dai

    2011-01-01

    Numerical simulation methods of aerodynamic heating were compared by considering the influence of numerical schemes and turbulence models, and attempting to investigate the applicability of numerical simulation methods on predicting heat flux in engineering applications. For some typical cases provided with detailed experimental data, four spatial schemes and four turbulence models were adopted to calculate surface heat flux. By analyzing and comparing,some influencing regularities of numerical schemes and turbulence models on calculating heat flux had been acquired. It is clear that AUSM+-up scheme with rapid compressibilitymodified high Reynolds number k-ω model should be appropriate for calculating heat flux. The numerical methods selected as preference above were applied to calculate the heat flux of a 3-D complex geometry in high speed turbulent flows. The results indicated that numerical simulation can capture the complex flow phenomena and reveal the mechanism of aerodynamic heating. Especially, the numerical result of the heat flux at the stagnation point of the wedge was well in agreement with the prediction of Kemp-Riddel formula, and the surface heat flux distribution was consistent with experiment results, which implied that numerical simulation can be introduced to predict heat flux in engineering applications.

  18. The Inhibition of Heat Shock Protein 90 Facilitates the Degradation of Poly-Alanine Expanded Poly (A Binding Protein Nuclear 1 via the Carboxyl Terminus of Heat Shock Protein 70-Interacting Protein.

    Directory of Open Access Journals (Sweden)

    Chao Shi

    Full Text Available Since the identification of poly-alanine expanded poly(A binding protein nuclear 1 (PABPN1 as the genetic cause of oculopharyngeal muscular dystrophy (OPMD, considerable progress has been made in our understanding of the pathogenesis of the disease. However, the molecular mechanisms that regulate the onset and progression of the disease remain unclear.In this study, we show that PABPN1 interacts with and is stabilized by heat shock protein 90 (HSP90. Treatment with the HSP90 inhibitor 17-AAG disrupted the interaction of mutant PABPN1 with HSP90 and reduced the formation of intranuclear inclusions (INIs. Furthermore, mutant PABPN1 was preferentially degraded in the presence of 17-AAG compared with wild-type PABPN1 in vitro and in vivo. The effect of 17-AAG was mediated through an increase in the interaction of PABPN1 with the carboxyl terminus of heat shock protein 70-interacting protein (CHIP. The overexpression of CHIP suppressed the aggregation of mutant PABPN1 in transfected cells.Our results demonstrate that the HSP90 molecular chaperone system plays a crucial role in the selective elimination of abnormal PABPN1 proteins and also suggest a potential therapeutic application of the HSP90 inhibitor 17-AAG for the treatment of OPMD.

  19. Development and Application of Heat-integrated Aromatics Fractionation Process

    Institute of Scientific and Technical Information of China (English)

    Yang Weisheng; Kong Dejin; Tan Yongzhong

    2009-01-01

    The PRO/Ⅱ process simulation software was applied to carry out simulated calculation of the aromatics frac-tionation unit and the heat integrated rectification process was proposed for the aromatics fractionation section of the 1.0 Mt/a toluene disproportionation unit at the Zhenhai Refining and Chemical Company. The optimized operating parameters were obtained through the energy utilization analysis, process simulation, heat exchanger calculations and comparisons of utility consumption. The operation of commercialized unit has revealed that the design parameters of each rectification column were consistent with the operation results, and the utility consumption was about 47% lower than the waditional heat integrated process.

  20. Heat transfer in the core graphite structures of RBMK nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Knoglinger, E., E-mail: ernst.knoglinger@a1.net [Am Winklerwald 15, A 4020 Linz (Austria); Wölfl, H., E-mail: herbert.woelfl@tele2.at [Berg, Im Weideland 19, A 4060 Linz (Austria); Kaliatka, A., E-mail: algirdas.kaliatka@lei.lt [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos 3, LT-44403 Kaunas (Lithuania)

    2015-11-15

    Highlights: • Proposed solution of heat transfer model from a hollow cylinder to a fluid through narrow duct. • Thermal conductance of annular gaps, filled by two component gas was discussed. • Xenon transient preceding the Chernobyl Accident was analyzed. • Reactivity balance during power manoeuvres and potenrial causes of the accident were discussed. - Abstract: Conductive and combined radiative/conductive gap conductance models are presented and discussed in great detail. The heat resistance concept and an exact solution to the one dimensional heat conduction equation for a 3-region composite hollow cylinder are used to calculate gap conductance in function of gap gas composition and fuel burn up. The study includes the back calculation of a reactor experiment performed at the Ignalina NPP Unit-1 which provides some insight in the function of the RBMK nitrogen supply and regulating device and an investigation of the role the graphite temperature played during the power manoeuvres preceding the Chernobyl Accident.

  1. Application of AdS/CFT in Nuclear Physics

    Directory of Open Access Journals (Sweden)

    M. R. Pahlavani

    2014-01-01

    Full Text Available We review some recent progress in studying the nuclear physics especially nucleon-nucleon (NN force within the gauge-gravity duality, in context of noncritical string theory. Our main focus is on the holographic QCD model based on the AdS6 background. We explain the noncritical holography model and obtain the vector-meson spectrum and pion decay constant. Also, we study the NN interaction in this frame and calculate the nucleonmeson coupling constants. A further topic covered is a toy model for calculating the light nuclei potential. In particular, we calculate the light nuclei binding energies and also excited energies of some available excited states. We compare our results with the results of other nuclear models and also with the experimental data. Moreover, we describe some other issues which are studied using the gauge-gravity duality.

  2. Benefits of explosive cutting for nuclear-facility applications

    Energy Technology Data Exchange (ETDEWEB)

    Hazelton, R.F.; Lundgren, R.A.; Allen, R.P.

    1981-06-01

    The study discussed in this report was a cost/benefit analysis to determine: (1) whether explosive cutting is cost effective in comparison with alternative metal sectioning methods and (2) whether explosive cutting would reduce radiation exposure or provide other benefits. Two separate approaches were pursued. The first was to qualitatively assess cutting methods and factors involved in typical sectioning cases and then compare the results for the cutting methods. The second was to prepare estimates of work schedules and potential radiation exposures for candidate sectioning methods for two hypothetical, but typical, sectioning tasks. The analysis shows that explosive cutting would be cost effective and would also reduce radiation exposure when used for typical nuclear facility sectioning tasks. These results indicate that explosive cutting should be one of the principal cutting methods considered whenever steel or similar metal structures or equipment in a nuclear facility are to be sectioned for repair or decommissioning. 13 figures, 7 tables. (DLC)

  3. Technetium and rhenium: coordination chemistry and nuclear medical applications

    OpenAIRE

    Abram,Ulrich; Alberto, Roger

    2006-01-01

    Coordination compounds of the radioactive element technetium are well established in diagnostic nuclear medicine, and various complexes of the gamma-emitting nuclide 99mTc are routinely used for organ imaging. Modern trends in the radiopharmaceutical chemistry of technetium focus on the 'labeling' of biologically active molecules such as peptides, steroids or other receptor-seeking units. This requires more knowledge about the coordination chemistry of the artificial transition metal, particu...

  4. Analysis of Heat Balance on Innovative-Simplified Nuclear Power Plant Using Multi-Stage Steam Injectors

    Science.gov (United States)

    Goto, Shoji; Ohmori, Shuichi; Mori, Michitsugu

    The total space and weight of the feedwater heaters in a nuclear power plant (NPP) can be reduced by replacing low-pressure feedwater heaters with high-efficiency steam injectors (SIs). The SI works as a direct heat exchanger between feedwater from condensers and steam extracted from turbines. It can attain pressures higher than the supplied steam pressure. The maintenance cost is lower than that of the current feedwater heater because of its simplified system without movable parts. In this paper, we explain the observed mechanisms of the SI experimentally and the analysis of the computational fluid dynamics (CFD). We then describe mainly the analysis of the heat balance and plant efficiency of the innovative-simplified NPP, which adapted to the boiling water reactor (BWR) with the high-efficiency SI. The plant efficiencies of this innovative-simplified BWR with SI are compared with those of a 1100MWe-class BWR. The SI model is adopted in the heat balance simulator as a simplified model. The results show that the plant efficiencies of the innovate-simplified BWR with SI are almost equal to those of the original BWR. They show that the plant efficiency would be slightly higher if the low-pressure steam, which is extracted from the low-pressure turbine, is used because the first-stage of the SI uses very low pressure.

  5. CFD simulation on critical heat flux of flow boiling in IVR-ERVC of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang, E-mail: zhangxiang3@snptc.com.cn [State Nuclear Power Technology Research & Development Center, South Area, Future Science and Technology Park, Chang Ping District, Beijing 102209 (China); Hu, Teng [State Nuclear Power Technology Research & Development Center, South Area, Future Science and Technology Park, Chang Ping District, Beijing 102209 (China); Chen, Deqi, E-mail: chendeqi@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, 400044 (China); Zhong, Yunke; Gao, Hong [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, 400044 (China)

    2016-08-01

    Highlights: • CFD simulation on CHF of boiling two-phase flow in ERVC is proposed. • CFD simulation result of CHF agrees well with that of experimental result. • The characteristics of boiling two-phase flow and boiling crisis are analyzed. - Abstract: The effectiveness of in-vessel retention (IVR) by external reactor vessel cooling (ERVC) strongly depends on the critical heat flux (CHF). As long as the local CHF does not exceed the local heat flux, the lower head of the pressure vessel can be cooled sufficiently to prevent from failure. In this paper, a CFD simulation is carried out to investigate the CHF of ERVC. This simulation is performed by a CFD code fluent couple with a boiling model by UDF (User-Defined Function). The experimental CHF of ERVC obtained by State Nuclear Power Technology Research and Development Center (SNPTRD) is used to validate this CFD simulation, and it is found that the simulation result agrees well with the experimental result. Based on the CFD simulation, detailed analysis focusing on the pressure distribution, velocity distribution, void fraction distribution, heating wall temperature distribution are proposed in this paper.

  6. A Multi-Dimensional Heat Transfer Model of a Tie-Tube and Hexagonal Fuel Element for Nuclear Thermal Propulsion

    Science.gov (United States)

    Gomez, C. F.; Mireles, O. R.; Stewart, E.

    2016-01-01

    The Space Capable Cryogenic Thermal Engine (SCCTE) effort considers a nuclear thermal rocket design based around a Low-Enriched Uranium (LEU) design fission reactor. The reactor core is comprised of bundled hexagonal fuel elements that directly heat hydrogen for expansion in a thrust chamber and hexagonal tie-tubes that house zirconium hydride moderator mass for the purpose of thermalizing fast neutrons resulting from fission events. Created 3D steady state Hex fuel rod model with 1D flow channels. Hand Calculation were used to set up initial conditions for fluid flow. The Hex Fuel rod uses 1D flow paths to model the channels using empirical correlations for heat transfer in a pipe. Created a 2-D axisymmetric transient to steady state model using the CFD turbulent flow and Heat Transfer module in COMSOL. This model was developed to find and understand the hydrogen flow that might effect the thermal gradients axially and at the end of the tie tube where the flow turns and enters an annulus. The Hex fuel rod and Tie tube models were made based on requirements given to us by CSNR and the SCCTE team. The models helped simplify and understand the physics and assumptions. Using pipe correlations reduced the complexity of the 3-D fuel rod model and is numerically more stable and computationally more time-efficient compared to the CFD approach. The 2-D axisymmetric tie tube model can be used as a reference "Virtual test model" for comparing and improving 3-D Models.

  7. Application of a nuclear localization signal gene in transgene mice

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Efficient gene transfer by cytoplasm co-injec- tion will offer a powerful means for transgenic animals. Using co-injection in cytoplasm, two independent gene constructs, including bovine (?-s1-casein-hG-CSF and a mammal expression vector expressing a nuclear localization signal (mNLS), were introduced into fertilized mouse eggs. The target gene construct was docked into host nucleus probably by the nuclear localization signal. Transgene mice have been obtained at 58% (29/50) of integration ratio. Expression level of the positive transgene mice was detected by Western blotting. Maximal expression of human G-CSF was estimated about 540 mg/L of milk. The expression ratio was up to 75% (9/12). The results here have important practical implications for the generation of mammary gland bioreactors and other transgene studies. Co-injection of a target gene with an expression vector of a mammal nuclear localization signal by cytoplasm appears to be a useful, efficient and easy strategy for generating transgenic animals, which may be able to substitute the routine method of pronucleus-injection of fertilized eggs.

  8. Applications of the Similarity Renormalization Group to the Nuclear Interaction

    CERN Document Server

    Jurgenson, E D

    2009-01-01

    The Similarity Renormalization Group (SRG) is investigated as a powerful yet practical method to modify nuclear potentials so as to reduce computational requirements for calculations of observables. The key feature of SRG transformations that leads to computational benefits is the decoupling of low-energy nuclear physics from high-energy details of the inter-nucleon interaction. We examine decoupling quantitatively for two-body observables and few-body binding energies. The universal nature of this decoupling is illustrated and errors from suppressing high-momentum modes above the decoupling scale are shown to be perturbatively small. To explore the SRG evolution of many-body forces, we use as a laboratory a one-dimensional system of bosons with short-range repulsion and mid-range attraction, which emulates realistic nuclear forces. The free-space SRG is implemented for few-body systems in a symmetrized harmonic oscillator basis using a recursive construction analogous to no-core shell model implementations. ...

  9. Applications of nuclear physics to interdisciplinary research and to industry

    Science.gov (United States)

    Schweitzer, Jeffrey

    2000-04-01

    Techniques that have been developed to understand nuclear structure can be used for interdisciplinary research and to determine useful properties. Both microscopic and macroscopic techniques can be used. The introduction discusses the diversity of fields that can benefit from applying nuclear physics techniques. Three current areas of research are used as illustrations. The use of gamma-ray spectroscopy following thermal neutron capture to better understand the formation and evolution of planetary bodies. Such measurements can be performed from orbit, on landers or on rovers, but each type of measurement puts different constraints on the instrument design. Nuclear resonant reaction analysis has recently been used to better understand the chemical kinetics in the curing of cement. Elemental concentrations of hydrogen have been measured with a spatial resolution of a few nanometers at the grain surface and about 20 nanometers at a depth of about two microns as a function of time during the reaction. Finally, x-ray techniques are being developed to provide an x-ray fluorescence instrument that can be used safely and reliably at a crime scene for investigative purposes. Unique problems of applying laboratory techniques to random, human-occupied locations and the requirements for providing a technically viable analysis that will be accepted by our legal system will be discussed.

  10. Tracking heat flux sensors for concentrating solar applications

    Science.gov (United States)

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  11. Radio frequency heating of ceramic windows in fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.D. Jr.

    1981-11-01

    Ceramic windows will be used as material barriers for radio frequency plasma heating in fusion reactors. This report examines the theory behind rf heating phenomena. Heating calculations are presented for various window materials, thicknesses, wavelengths, and power densities. The most pertinent material properties are loss tangent, thermal conductivity, dielectric constant, strength, and radiation resistance. Calculations indicate that among candidate materials, beryllium oxide offers the most promise because of its large thermal conductivity and relatively low loss tangent and dielectric constant. On the other hand, beryllia is susceptible to neutron damage, and this may adversely affect its electrical properties. Another promising candidate is sapphire, particularly at lower temperatures where the thermal conductivity is high. Fused silica suffers from low thermal conductivity and large positive temperature coefficient for loss tangent, but it may be useful under some conditions. In summary, calculations of heating can lead to elimination of some candidate materials and selection of others for further study.

  12. Geothermal technology transfer for direct heat applications: Final report, 1983--1988

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Culver, G.

    1988-01-01

    This report describes a geothermal technology transfer program, performed by Oregon Institute of Technology's Geo-Heat Center, used to aid in the development of geothermal energy for direct heat applications. It provides a summary of 88 technical assistance projects performed in 10 states for space heating, district heating, green-houses, aquaculture, industrial processing, small scale binary electric power generation and heat pump applications. It describes an inventory compiled for over 100 direct heat projects that contains information on project site, resource and engineering data. An overview of information services is provided to users of the program which includes; advisory, referrals, literature distribution, geothermal technology library, quarterly Bulletin, training programs, presentations and tours, and reporting of activities for the USDOE Geothermal Progress Monitor.

  13. Assessement of Codes and Standards Applicable to a Hydrogen Production Plant Coupled to a Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    M. J. Russell

    2006-06-01

    This is an assessment of codes and standards applicable to a hydrogen production plant to be coupled to a nuclear reactor. The result of the assessment is a list of codes and standards that are expected to be applicable to the plant during its design and construction.

  14. Thermionic Power Cell To Harness Heat Energies for Geothermal Applications

    Science.gov (United States)

    Manohara, Harish; Mojarradi, Mohammad; Greer, Harold F.

    2011-01-01

    A unit thermionic power cell (TPC) concept has been developed that converts natural heat found in high-temperature environments (460 to 700 C) into electrical power for in situ instruments and electronics. Thermionic emission of electrons occurs when an emitter filament is heated to gwhite hot h temperatures (>1,000 C) allowing electrons to overcome the potential barrier and emit into the vacuum. These electrons are then collected by an anode, and transported to the external circuit for energy storage.

  15. Sorption dehumidification and heat recovery: applications in industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M.; Longo, G.A. (Padua Univ. (Italy)); Piccininni, F. (Politecnico di Bari (Italy). Ist. di Fisica Tecnica)

    1992-09-01

    A new sorption dehumidification plant is proposed for industrial drying. It works with a LiBr-H[sub 2]O mixture and it recovers a large fraction of sensible and latent heat from the exhaust air. It gives an energy saving higher than 25% if compared with a conventional air drying plant equipped with a heat recovery system. A scheme operating in a closed loop is also considered. (author).

  16. Evaluation and management of a solar heated application in Alexandria

    Energy Technology Data Exchange (ETDEWEB)

    Sorour, M.M.; Sedra, V.I.

    1987-01-01

    Using hourly incident solar intensities, ambient temperature data and the efficiency relationship, a stochastic technique was employed to predict the performance of solar systems. The Markovian model evaluates the useful solar energy at different temperature levels every month of the year in Alexandria. In addition, an economic study was made on solar heating of poultry farms after calculating the necessary heating load. The results reveal the limit of economic benefit in using solar systems as a function of fuel price and collector area.

  17. High heat flux engineering in solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.

    1993-07-01

    Solar thermal energy systems can produce heat fluxes in excess of 10,000 kW/m{sup 2}. This paper provides an introduction to the solar concentrators that produce high heat flux, the receivers that convert the flux into usable thermal energy, and the instrumentation systems used to measure flux in the solar environment. References are incorporated to direct the reader to detailed technical information.

  18. Databases and tools for nuclear astrophysics applications BRUSsels Nuclear LIBrary (BRUSLIB), Nuclear Astrophysics Compilation of REactions II (NACRE II) and Nuclear NETwork GENerator (NETGEN)

    CERN Document Server

    Xu, Yi; Jorissen, Alain; Chen, Guangling; Arnould, Marcel; 10.1051/0004-6361/201220537

    2012-01-01

    An update of a previous description of the BRUSLIB+NACRE package of nuclear data for astrophysics and of the web-based nuclear network generator NETGEN is presented. The new version of BRUSLIB contains the latest predictions of a wide variety of nuclear data based on the most recent version of the Brussels-Montreal Skyrme-HFB model. The nuclear masses, radii, spin/parities, deformations, single-particle schemes, matter densities, nuclear level densities, E1 strength functions, fission properties, and partition functions are provided for all nuclei lying between the proton and neutron drip lines over the 8<=Z<=110 range, whose evaluation is based on a unique microscopic model that ensures a good compromise between accuracy, reliability, and feasibility. In addition, these various ingredients are used to calculate about 100000 Hauser-Feshbach n-, p-, a-, and gamma-induced reaction rates based on the reaction code TALYS. NACRE is superseded by the NACRE II compilation for 15 charged-particle transfer react...

  19. An Advanced Loop Heat Pipe for Cryogenic Applications

    Science.gov (United States)

    Ku, Jentung; Hoang, Triem

    2016-01-01

    A loop heat pipe (LHP) is a very versatile heat transfer device which can transport a large heat load over a long distance with a small temperature difference. All LHPs currently servicing orbiting spacecraft are designed to operate in the room temperature range. Future space telescopes and space-based Earth resource imaging satellites require passive cryogenic heat transport devices that can thermally couple remote cryocoolers to sensor or instrument of interest while providing the capability of payload vibration/jitter isolation, implementation of redundant coolers, and coupling of multiple sensors to a common heat sink. All of these requirements can be satisfied by using a cryogenic LHP (CLHP). Although the development of CLHPs faces several technical challenges, NASA Goddard Space Flight Center has devoted extensive efforts in developing CLHP technology over the past decade and has made significant progress. In particular, the combination of the innovative ideas of using a secondary capillary pump to manage the parasitic heat gain and using a hot reservoir to reduce the system pressure under the ambient condition has led to the successful development of the CLHP. Several CLHPs charged with nitrogen and hydrogen were built and tested in thermal vacuum chambers. These CLHPs demonstrated reliable start-up and robust operation during power cycle and sink temperature cycle tests.

  20. An Advanced Loop Heat Pipe for Cryogenic Applications

    Science.gov (United States)

    Ku, Jentung; Hoang, Triem

    2017-01-01

    A loop heat pipe (LHP) is a very versatile heat transfer device that can transport a large heat load over a long distance with a small temperature difference. All LHPs currently servicing orbiting spacecraft are designed to operate in the room temperature range. Future space telescopes and space-based Earth resource imaging satellites require passive cryogenic heat transport devices that can thermally couple remote cryocoolers to sensor or instrument of interest while providing the capability of payload vibration jitter isolation, implementation of redundant coolers, and coupling of multiple sensors to a common heat sink. All of these requirements can be satisfied by using a cryogenic LHP (CLHP). Although the development of CLHPs faces several technical challenges, NASA Goddard Space Flight Center has devoted extensive efforts in developing CLHP technology over the past decade and has made significant progress. In particular, the combination of the innovative ideas of using a secondary capillary pump to manage the parasitic heat gain and using a hot reservoir to reduce the system pressure under the ambient condition has led to the successful development of the CLHP. Several CLHPs charged with nitrogen and hydrogen were built and tested in thermal vacuum chambers. These CLHPs demonstrated reliable start-up and robust operation during power cycle and sink temperature cycle tests.

  1. CO2 heat pumps for commercial building applications with simultaneous heating and cooling demand

    Science.gov (United States)

    Dharkar, Supriya

    Many commercial buildings, including data centers, hotels and hospitals, have a simultaneous heating and cooling demand depending on the season, occupation and auxiliary equipment. A data center on the Purdue University, West Lafayette campus is used as a case study. The electrical equipment in data centers produce heat, which must be removed to prevent the equipment temperature from rising to a certain level. With proper integration, this heat has the potential to be used as a cost-effective energy source for heating the building in which the data center resides or the near-by buildings. The proposed heat pump system utilizes carbon dioxide with global warming potential of 1, as the refrigerant. System simulations are carried out to determine the feasibility of the system for a 12-month period. In addition, energy, environmental and economic analyses are carried out to show the benefits of this alternative technology when compared to the conventional system currently installed in the facility. Primary energy savings of ~28% to ~61%, a payback period of 3 to 4.5 years and a decrease in the environmental impact value by ~36% makes this system an attractive option. The results are then extended to other commercial buildings.

  2. Altered association of transcriptionally active DNA with the nuclear-matrix after heat shock

    NARCIS (Netherlands)

    Sakkers, RJ; Brunsting, JF; Filon, AR; Kampinga, HH; Konings, AWT; Mullenders, LHF

    1999-01-01

    Purpose: Exposure of human cells to heat leads to denaturation and aggregation of proteins. Within the nucleus, it has been suggested that protein aggregation is linked to the: selective inhibition by hyperthermia of nucleotide excision repair in transcriptionally active genes. Tn this study it was

  3. Altered association of transcriptionally active DNA with the nuclear-matrix after heat shock

    NARCIS (Netherlands)

    Sakkers, RJ; Brunsting, JF; Filon, AR; Kampinga, HH; Konings, AWT; Mullenders, LHF

    Purpose: Exposure of human cells to heat leads to denaturation and aggregation of proteins. Within the nucleus, it has been suggested that protein aggregation is linked to the: selective inhibition by hyperthermia of nucleotide excision repair in transcriptionally active genes. Tn this study it was

  4. Nuclear metallurgy lectures. Chapter 9, Fabrication and heat treatment of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Riches, J.W.

    1955-05-12

    This chapter presents the highlights of the fabrication and heat treatment of uranium with emphasis on HAPO type core material. For pile use three properties of uranium are of prime interest; grain size, type and degree of preferred orientation, and the mechanical properties.

  5. Calibration of new batches and a study of applications of nuclear track detectors under the harsh conditions of nuclear fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Malinowska, A., E-mail: a.malinowska@ncbj.gov.pl [National Centre for Nuclear Research, Andrzeja Soltana 7 Str., 05-400 Otwock (Poland); Szydlowski, A.; Jaskola, M.; Korman, A.; Malinowski, K.; Kuk, M. [National Centre for Nuclear Research, Andrzeja Soltana 7 Str., 05-400 Otwock (Poland)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Each new batch of PM-355 material should be carefully calibrated. Black-Right-Pointing-Pointer The detectors heated at a temperature higher than 100 Degree-Sign C demonstrate v nearly equal to 1. Black-Right-Pointing-Pointer The dependence of V{sub B} on the temperature is similar to the dependence of V{sub B} on the dose of electron and gamma radiation. Black-Right-Pointing-Pointer The aging effect of these materials also has a significant influence on the track diameter. - Abstract: This paper describes calibration studies of PM-355 detectors manufactured at different times in order to compare their sensitivity to the investigated ions. These studies were motivated by the application of solid-state nuclear track detectors (SSNTDs) in fusion experiments to measure energetic ions escaping from high-temperature plasmas. The CR-39 detector and its new versions such as PM-355, PM-500, PM-600 have been examined for several years at our institute. The PM-355 plastic appeared to be the best, especially for the detection of light ions. However, to use these detectors optimally, especially in spectroscopic measurements, each new batch of PM-355 material should be carefully calibrated. In high temperature plasma experiments the detectors operate under harsh conditions of high temperature, heat impact, intense X-ray, neutron and fast electron radiation. In order to evaluate the effect of these conditions on the crater formation process, some of the {alpha} particle- and proton-irradiated PM-355 detector samples were heated in an oven and then etched and scanned. Other alpha- and proton-irradiated samples were exposed to {gamma} and electron radiation of doses varying from 100 to 2000 kGy. The irradiated samples were then etched in steps and the bulk etching rate v{sub B} of the PM-355 material was determined. The craters induced by the projectiles in both heated and {gamma} and electron irradiated samples differ considerably from the

  6. Transient modeling of the thermohydraulic behavior of high temperature heat pipes for space reactor applications

    Science.gov (United States)

    Hall, Michael L.; Doster, Joseph M.

    1986-01-01

    Many proposed space reactor designs employ heat pipes as a means of conveying heat. Previous researchers have been concerned with steady state operation, but the transient operation is of interest in space reactor applications due to the necessity of remote startup and shutdown. A model is being developed to study the dynamic behavior of high temperature heat pipes during startup, shutdown and normal operation under space environments. Model development and preliminary results for a hypothetical design of the system are presented.

  7. Color tunable low cost transparent heat reflector using copper and titanium oxide for energy saving application

    OpenAIRE

    Goutam Kumar Dalapati; Saeid Masudy-Panah; Sing Teng Chua; Mohit Sharma; Ten It Wong; Hui Ru Tan; Dongzhi Chi

    2016-01-01

    Multilayer coating structure comprising a copper (Cu) layer sandwiched between titanium dioxide (TiO2) were demonstrated as a transparent heat reflecting (THR) coating on glass for energy-saving window application. The main highlight is the utilization of Cu, a low-cost material, in-lieu of silver which is widely used in current commercial heat reflecting coating on glass. Color tunable transparent heat reflecting coating was realized through the design of multilayer structure and process opt...

  8. Max Phase Materials And Coatings For High Temperature Heat Transfer Applications

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Rodriguez, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Olson, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fuentes, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sindelar, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-19

    Molten salts have been used as heat transfer fluids in a variety of applications within proposed Gen IV nuclear designs and in advanced power system such as Concentrating Solar Power (CSP). However, operating at elevated temperatures can cause corrosion in many materials. This work developed coating technologies for MAX phase materials on Haynes-230 and characterized the corrosion of the coatings in the presence of commercial MgCl2-KCl molten salt. Cold spraying of Ti2AlC and physical vapor deposition (PVD) of Ti2AlC or Zr2AlC were tested to determine the most effective form of coating MAX phases on structural substrates. Corrosion testing at 850°C for 100 hrs showed that 3.9 μm Ti2AlC by PVD was slightly protective while 117 μm Ti2AlC by cold spray and 3.6 μm Zr2AlC by PVD were completely protective. None of the tests showed decomposition of the coating (Ti or Zr) into the salt

  9. International and national security applications of cryogenic detectors - mostly nuclear safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, Michael W [Los Alamos National Laboratory

    2009-01-01

    As with science, so with security - in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma ray, neutron, and alpha particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invi sible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

  10. Databases and tools for nuclear astrophysics applications. BRUSsels Nuclear LIBrary (BRUSLIB), Nuclear Astrophysics Compilation of REactions II (NACRE II) and Nuclear NETwork GENerator (NETGEN)

    Science.gov (United States)

    Xu, Y.; Goriely, S.; Jorissen, A.; Chen, G. L.; Arnould, M.

    2013-01-01

    An update of a previous description of the BRUSLIB + NACRE package of nuclear data for astrophysics and of the web-based nuclear network generator NETGEN is presented. The new version of BRUSLIB contains the latest predictions of a wide variety of nuclear data based on the most recent version of the Brussels-Montreal Skyrme-Hartree-Fock-Bogoliubov model. The nuclear masses, radii, spin/parities, deformations, single-particle schemes, matter densities, nuclear level densities, E1 strength functions, fission properties, and partition functions are provided for all nuclei lying between the proton and neutron drip lines over the 8 ≤ Z ≤ 110 range, whose evaluation is based on a unique microscopic model that ensures a good compromise between accuracy, reliability, and feasibility. In addition, these various ingredients are used to calculate about 100 000 Hauser-Feshbach neutron-, proton-, α-, and γ-induced reaction rates based on the reaction code TALYS. NACRE is superseded by the NACRE II compilation for 15 charged-particle transfer reactions and 19 charged-particle radiative captures on stable targets with mass numbers A < 16. NACRE II features the inclusion of experimental data made available after the publication of NACRE in 1999 and up to 2011. In addition, the extrapolation of the available data to the very low energies of astrophysical relevance is improved through the systematic use of phenomenological potential models. Uncertainties in the rates are also evaluated on this basis. Finally, the latest release v10.0 of the web-based tool NETGEN is presented. In addition to the data already used in the previous NETGEN package, it contains in a fully documented form the new BRUSLIB and NACRE II data, as well as new experiment-based radiative neutron capture cross sections. The full new versions of BRUSLIB, NACRE II, and NETGEN are available electronically from the nuclear database at http://www.astro.ulb.ac.be/NuclearData. The nuclear material is presented in

  11. Application of the Integrated Signal Converting Circuit in the Nuclear Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Choon; Sohn, Chang Ho; Kim, Jung Seon; Kim, Min Kyu [Samchang Enterprise Co., Ltd., Ulsan (Korea, Republic of)

    2005-07-01

    In the present nuclear fields, all Instrument and Control (I and C) applications are operating by the analog method using the analog device and passive things. It is hard to make miniaturization of modules and robust system against noise, reliability is decreased also because malfunctions are occurred very often. In order to solve these problems, we suggest that adopt the digital method using the digital device and active things in the nuclear fields. In these papers represented, from these results of the investigation.

  12. The outlook for application of powerful nuclear thermionic reactor - powered space electric jet propulsion engines

    Energy Technology Data Exchange (ETDEWEB)

    Semyonov, Y.P.; Bakanov, Y.A.; Synyavsky, V.V.; Yuditsky, V.D. [Rocket-Space Corp. `Energia`, Moscow (Russian Federation)

    1997-12-31

    This paper summarizes main study results for application of powerful space electric jet propulsion unit (EJPUs) which is powered by Nuclear Thermionic Power Unit (NTPU). They are combined in Nuclear Power/Propulsion Unit (NPPU) which serves as means of spacecraft equipment power supply and spacecraft movement. Problems the paper deals with are the following: information satellites delivery and their on-orbit power supply during 10-15 years, removal of especially hazardous nuclear wastes, mining of asteroid resources and others. Evaluations on power/time/mass relationship for this type of mission are given. EJPU parameters are compatible with Russian existent or being under development launch vehicle. (author)

  13. Development of underwater laser cutting technique for steel and zircaloy for nuclear applications

    Indian Academy of Sciences (India)

    R K Jain; D K Agrawal; S C Vishwakarma; A K Choubey; B N Upadhyaya; S M Oak

    2010-12-01

    In nuclear field, underwater cutting and welding technique is required for post-irradiation examination, maintenance, decommissioning and to reduce storage space of irradiated materials like used zircaloy pressure tubes etc., of nuclear power plants. We have developed underwater cutting technique for 4.2 mm thick zircaloy pressure tubes and up to 6 mm thick steel using fibre-coupled 250 W average power pulsed Nd:YAG laser. This underwater cutting technique will be highly useful in various nuclear applications as well as in dismantling/repair of ship and pipe lines in water.

  14. Handbook of nuclear medicine and molecular imaging principles and clinical applications

    CERN Document Server

    Kim, Edmund E; Tateishi, Ukihide; Baum, Richard P

    2012-01-01

    This handbook will provide updated information on nuclear medicine and molecular imaging techniques as well as its clinical applications, including radionuclide therapy, to trainees and practitioners of nuclear medicine, radiology and general medicine. Updated information on nuclear medicine and molecular imaging are vitally important and useful to both trainees and existing practitioners. Imaging techniques and agents are advancing and changing so rapidly that concise and pertinent information are absolutely necessary and helpful. It is hoped that this handbook will help readers be better equipped for the utilization of new imaging methods and treatments using radiopharmaceuticals.

  15. Up-to-date review of nuclear medicine applications in pediatric thoracic imaging.

    Science.gov (United States)

    Kwatra, Neha S; Grant, Frederick D; Lim, Ruth; Lee, Edward Y

    2017-10-01

    Nuclear medicine has an important role in the evaluation of various congenital and acquired pediatric chest diseases. Although the radiopharmaceuticals and nuclear medicine examinations used in children are broadly the same as in adults, there are some key differences in clinical indications and underlying disorders. This article provides the reader with an up-to-date review of practice of nuclear medicine as it relates to the pediatric chest, including its current role and future applications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Progress in the Development of Compressible, Multiphase Flow Modeling Capability for Nuclear Reactor Flow Applications

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Berry; R. Saurel; F. Petitpas; E. Daniel; O. Le Metayer; S. Gavrilyuk; N. Dovetta

    2008-10-01

    In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. Within the context of multiphase flows, two bubble-dynamic phenomena – boiling (heterogeneous) and flashing or cavitation (homogeneous boiling), with bubble collapse, are technologically very important to nuclear reactor systems. The main difference between boiling and flashing is that bubble growth (and collapse) in boiling is inhibited by limitations on the heat transfer at the interface, whereas bubble growth (and collapse) in flashing is limited primarily by inertial effects in the surrounding liquid. The flashing process tends to be far more explosive (and implosive), and is more violent and damaging (at least in the near term) than the bubble dynamics of boiling. However, other problematic phenomena, such as crud deposition, appear to be intimately connecting with the boiling process. In reality, these two processes share many details.

  17. Radio frequency heating of foods: principles, applications and related properties--a review.

    Science.gov (United States)

    Piyasena, Punidadas; Dussault, Chantal; Koutchma, Tatiana; Ramaswamy, H S; Awuah, G B

    2003-01-01

    Radio frequency (RF) heating is a promising technology for food applications because of the associated rapid and uniform heat distribution, large penetration depth and lower energy consumption. Radio frequency heating has been successfully applied for drying, baking and thawing of frozen meat and in meat processing. However, its use in continuous pasteurization and sterilization of foods is rather limited. During RF heating, heat is generated within the product due to molecular friction resulting from oscillating molecules and ions caused by the applied alternating electric field. RF heating is influenced principally by the dielectric properties of the product when other conditions are kept constant. This review deals with the current status of RF heating applications in food processing, as well as product and system specific factors that influence the RF heating. It is evident that frequency level, temperature and properties of food, such as viscosity, water content and chemical composition affect the dielectric properties and thus the RF heating of foods. Therefore, these parameters should be taken into account when designing a radio frequency heating system for foods.

  18. Microwave heating: Industrial applications. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The bibliography contains citations concerning industrial uses and design of microwave heating equipment. Citations discuss applications in food processing, industrial heating, vulcanization, textile finishing, metallurgical sintering, ceramic manufacturing, paper industries, and curing of polymers. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  19. Spark Plasma Sintering of Fuel Cermets for Nuclear Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhong; Robert C. O' Brien; Steven D. Howe; Nathan D. Jerred; Kristopher Schwinn; Laura Sudderth; Joshua Hundley

    2011-11-01

    The feasibility of the fabrication of tungsten based nuclear fuel cermets via Spark Plasma Sintering (SPS) is investigated in this work. CeO2 is used to simulate fuel loadings of UO2 or Mixed-Oxide (MOX) fuels within tungsten-based cermets due to the similar properties of these materials. This study shows that after a short time sintering, greater than 90 % density can be achieved, which is suitable to possess good strength as well as the ability to contain fission products. The mechanical properties and the densities of the samples are also investigated as functions of the applied pressures during the sintering.

  20. Overview of Nuclear Physics Data: Databases, Web Applications and Teaching Tools

    Science.gov (United States)

    McCutchan, Elizabeth

    2017-01-01

    The mission of the United States Nuclear Data Program (USNDP) is to provide current, accurate, and authoritative data for use in pure and applied areas of nuclear science and engineering. This is accomplished by compiling, evaluating, and disseminating extensive datasets. Our main products include the Evaluated Nuclear Structure File (ENSDF) containing information on nuclear structure and decay properties and the Evaluated Nuclear Data File (ENDF) containing information on neutron-induced reactions. The National Nuclear Data Center (NNDC), through the website www.nndc.bnl.gov, provides web-based retrieval systems for these and many other databases. In addition, the NNDC hosts several on-line physics tools, useful for calculating various quantities relating to basic nuclear physics. In this talk, I will first introduce the quantities which are evaluated and recommended in our databases. I will then outline the searching capabilities which allow one to quickly and efficiently retrieve data. Finally, I will demonstrate how the database searches and web applications can provide effective teaching tools concerning the structure of nuclei and how they interact. Work supported by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

  1. New zirconium alloys for nuclear application; Novas ligas de zirconio para aplicacao nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, R.M.; Andrade, A.H.P., E-mail: rmlobo@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    Zirconium alloys are widely used in the nuclear industry, mainly in fuel cladding tubes and structural components for PWR plants. The service life of these components, which operate under high temperatures conditions ({approx} 300 deg C), has led to developing new alloys with the aim to improve the mechanical properties, corrosion resistance and irradiation damage. The variation in the composition of the alloy produces second phase particles which alter the materials properties according to their size and distribution, is essential therefore, knowledge their characteristics. Analysis of second phase particles in zirconium alloys are carried out by scanning electron microscopy, transmission electron microscopy and image analysis. This study used the zircaloy-4 to illustrate the characterization of these alloys through the study of second phase particles. (author)

  2. Application of gas-cooled Accelerator Driven System (ADS) transmutation devices to sustainable nuclear energy development

    OpenAIRE

    2011-01-01

    The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel f...

  3. PCM-air heat exchangers for free-cooling applications in buildings: Empirical model and application to design

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, Ana; Dolado, Pablo; Marin, Jose M.; Zalba, Belen [Aragon Institute for Engineering Research (I3A), Thermal Engineering and Energy Systems Group, Torres Quevedo Building, C/Maria de Luna 3, 50018 Zaragoza (Spain)

    2009-03-15

    This paper presents novel design conclusions based on the experimental results and on an empirical model for a real-scale prototype of a PCM-air heat exchanger. From experimental results, an empirical model was built aimed at simulating the thermal behavior in the tested heat exchanger in different cases. These simulations were used to evaluate the technical viability of its application. Since the thermal properties of PCM vary with temperature, a PCM-heat exchanger works as a transitory system and therefore, its design must be based on transitory analysis. This work shows that PCM selection criteria must include the power demand. The conclusions obtained for the PCM-air heat exchange can be useful for selecting PCM for other heat exchanger applications that use the tested geometry. (author)

  4. On applicability of plate and shell heat exchangers for steam generation in naval PWR

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Luciano Ondir, E-mail: luciano.ondir@gmail.com; Andrade, Delvonei Alves de, E-mail: delvonei@ipen.br

    2014-12-15

    Highlights: • Given emissions restrictions, nuclear propulsion may be an alternative. • Plate and shell heat exchangers (PSHE) are a mature technology on market. • PSHE are compact and could be used as steam generators. • Preliminary calculations to obtain a PWR for a large container ship are performed. • Results suggest PSHE improve overall compactness and cost. - Abstract: The pressure on reduction of gas emissions is going to raise the price of fossil fuels and an alternative to fossil fuels is nuclear energy. Naval reactors have some differences from stationary PWR because they have limitations on volume and weight, requiring compact solutions. On the other hand, a source of problems in naval reactors across history is the steam generation function. In order to reduce nuclear containment footprint, it is desirable to employ integral designs, which, however, poses complications and design constraints for recirculation type steam generators, being interesting to employ once through steam generators, whose historic at Babcock and Wilcox is better than recirculation steam generators. Plate and shell heat exchangers are a mature technology made available by many suppliers which allows heat exchange at high temperature and pressure. This work investigates the feasibility of the use of an array of welded plate heat exchangers of a material approved by ASME for pressure barrier (Ti-3Al-2.5V) in a hypothetical naval reactor. It was found it is feasible from thermal-hydraulic point of view and presents advantages over other steam generator designs.

  5. Localized Beampipe Heating due to $e^{-}$ Capture and Nuclear Excitation in Heavy Ion Colliders

    CERN Document Server

    Klein, S R

    2001-01-01

    At heavy ion colliders, two major sources of beam loss are expected to be $e^+e^-$ production, where the $e^-$ is bound to one of the nuclei, and photonuclear excitation and decay via neutron emission. Both processes alter the ions charged to mass ratio by well defined amounts, creating beams of particles with altered magnetic rigidity. These beams will deposit their energy in a localized region of the accelerator, causing localized heating, The size of the target region depends on the collider optics. For medium and heavy ions, at design luminosity at the Large Hadron Collider, local heating may be more than an order of magnitude higher than expected. This could cause magnet quenches if the local cooling is inadequate. The altered-rigidity beams will also produce localized radiation damage. The beams could also be extracted and used for fixed target experiments.

  6. Application of gaseous core reactors for transmutation of nuclear waste

    Science.gov (United States)

    Schnitzler, B. G.; Paternoster, R. R.; Schneider, R. T.

    1976-01-01

    An acceptable management scheme for high-level radioactive waste is vital to the nuclear industry. The hazard potential of the trans-uranic actinides and of key fission products is high due to their nuclear activity and/or chemical toxicity. Of particular concern are the very long-lived nuclides whose hazard potential remains high for hundreds of thousands of years. Neutron induced transmutation offers a promising technique for the treatment of problem wastes. Transmutation is unique as a waste management scheme in that it offers the potential for "destruction" of the hazardous nuclides by conversion to non-hazardous or more manageable nuclides. The transmutation potential of a thermal spectrum uranium hexafluoride fueled cavity reactor was examined. Initial studies focused on a heavy water moderated cavity reactor fueled with 5% enriched U-235-F6 and operating with an average thermal flux of 6 times 10 to the 14th power neutrons/sq cm-sec. The isotopes considered for transmutation were I-129, Am-241, Am-242m, Am-243, Cm-243, Cm-244, Cm-245, and Cm-246.

  7. Application of fluorescent nuclear track detectors for cellular dosimetry

    Science.gov (United States)

    Rahmanian, S.; Niklas, M.; Abdollahi, A.; Jäkel, O.; Greilich, S.

    2017-04-01

    Ion beams radiotherapy with charged particles show greater relative biological effectiveness (RBE) compared to conventional photon therapy. This enhanced RBE is due to a localized energy deposition pattern, which is subject to large fluctuations on cellular scales. Fluorescent nuclear track detectors (FNTDs) based on Al2O3:C,Mg crystals coated with cells (Cell-Fit-HD) can provide information on individual cellular energy deposition. In this study we provide a theoretical framework to obtain the distribution of microscopic energy deposition and ionization density in cells exposed to ion beams and identifies contributions of five different sources of variations to the overall energy fluctuation at different depths of a biologically optimized spread-out Bragg peak. We show that fluctuation in the individual energy loss of the particles is the major source of variability while the fluctuation in particle hits plays a minor role. With the Cell-Fit-HD system the uncertainty arising from four of these sources, namely the nucleus area, the number of nuclear hits, the particle linear energy transfer and the chord length can be reduced and only energy loss straggling remains fundamentally unknown. The ability to quantify these factors results in a reduction of the uncertainty in cellular energy deposition from 24-55% down to only 7-12%. We have also shown current experimental results with FNTDs which show promising results, but need further improvements to reach the ideals predicted in this study.

  8. Neutron Time Projection Chamber for Nuclear Security and Verification Applications

    Science.gov (United States)

    Jovanovic, I.; Bowden, N. S.; Carosi, G. P.; Heffner, M.; Roecker, C.

    2011-12-01

    Detection of fast neutrons produced by fission is a powerful method for discovering, verifying the presence, or monitoring significant quantities of special nuclear material (SNM) at up to moderate distances. Fast neutrons are relatively rare in the natural background and can be very penetrating, even in situations when the energetic gamma-rays are well shielded. Fast neutrons point in the direction of their source and can thus be considered for use in imaging, a feature desirable for rapid, high-signal-to-noise detection of concealed SNM and for nuclear verification. We describe the development and performance of a prototype neutron time projection chamber (nTPC) and its use for directional neutron detection and high-resolution neutron imaging. The nTPC is based on ˜0.025 m3 of a hydrogen-methane mixture and utilizes a readout system with low channel count and is optimized for low event rates. We experimentally demonstrate robust operation, reliable particle identification, event-by-event directional reconstruction over the entire 4π solid angle, and insensitivity to gamma-rays. High-efficiency and high-resolution modes of operation based on single and double neutron scatters, respectively, have also been demonstrated.

  9. Application of gaseous core reactors for transmutation of nuclear waste

    Science.gov (United States)

    Schnitzler, B. G.; Paternoster, R. R.; Schneider, R. T.

    1976-01-01

    An acceptable management scheme for high-level radioactive waste is vital to the nuclear industry. The hazard potential of the trans-uranic actinides and of key fission products is high due to their nuclear activity and/or chemical toxicity. Of particular concern are the very long-lived nuclides whose hazard potential remains high for hundreds of thousands of years. Neutron induced transmutation offers a promising technique for the treatment of problem wastes. Transmutation is unique as a waste management scheme in that it offers the potential for "destruction" of the hazardous nuclides by conversion to non-hazardous or more manageable nuclides. The transmutation potential of a thermal spectrum uranium hexafluoride fueled cavity reactor was examined. Initial studies focused on a heavy water moderated cavity reactor fueled with 5% enriched U-235-F6 and operating with an average thermal flux of 6 times 10 to the 14th power neutrons/sq cm-sec. The isotopes considered for transmutation were I-129, Am-241, Am-242m, Am-243, Cm-243, Cm-244, Cm-245, and Cm-246.

  10. Nuclear thermal rocket propulsion application to Mars missions

    Science.gov (United States)

    Emrich, W. J., Jr.; Young, A. C.; Mulqueen, J. A.

    1991-01-01

    Options for vehicle configurations are reviewed in which nuclear thermal rocket (NTR) propulsion is used for a reference mission to Mars. The scenario assumes an opposition-class Mars transfer trajectory, a 435-day mission, and the use of a single nuclear engine with 75,000 lbs of thrust. Engine parameters are examined by calculating mission variables for a range of specific impulses and thrust/weight ratios. The reference mission is found to have optimal values of 925 s for the specific impulse and thrust/weight ratios of 4.0 and 0.06 for the engine and total stage ratios respectively. When the engine thrust/weight ratio is at least 4/1 the most critical engine parameter is engine specific impulse for reducing overall stage weight. In the context of this trans-Mars three-burn maneuver the NTR engine with an expander engine cycle is considered a more effective alternative than chemical/aerobrake and other propulsion options.

  11. Laser Heat Treatment on Gear Surface and Its Practical Application

    Institute of Scientific and Technical Information of China (English)

    MA Chun-yin; DAI Zhong-sen; SU Bao-rong

    2004-01-01

    Making gears with hardened tooth flank is one of the important developments in gear manufacturing. However, the conventional heat treating methods have a common shortcoming--producing big deformation. In this work, we demonstrate, by study, experiment and practical use, that not only has the laser heat treatment solved the difficult problems in conventional technique, but also it has great superiority. The use cases proved that the laser-treated gears are able to substitute for all the gears including gears with complicated shape, high precision and high performance imported gears and all those gears that cannot be manufactured by conventional methods. Moreover, our laser-treated gears have won quite good economic benefit.Obviously, the laser heat treatment for gears is a highly competitive technique having good prospects.

  12. Motionless heat pump - A new application of thermal transpiration

    Science.gov (United States)

    Kugimoto, K.; Hirota, Y.; Kizaki, Y.

    2016-11-01

    A motionless heat pump system using a combination of thermal transpiration flow of a rarefied gas and a phase change of water has been proposed. This system consists primarily of a thermal transpiration pump, referred to as a Knudsen pump, and two chambers filled with water and water vapor, respectively. The Knudsen pump moves water vapor from one chamber to the other. The pressure drop in the outflow chamber promotes the evaporation of water and heat absorption, whereas the pressure increase in the inflow chamber promotes vapor condensation and heat generation. The maximum pressure difference and mass flow rate obtained by a Knudsen pump composed of a glass fiber filter were 57.6 Pa and 0.0484 mg/s/cm2, respectively, at a temperature difference across the filter of 120 K between the two chambers. The vapor delivery capacity of this pump was also measured experimentally.

  13. Application of fractional calculus in ground heat flux estimation

    Directory of Open Access Journals (Sweden)

    Protić Milan Z.

    2012-01-01

    Full Text Available Ground (soil heat flux is important physical factor primarily because of its role in surface energy balance, analysis of atmospheric boundary layer and land surface-atmosphere interaction. Direct measurement of this property is often associated with difficulties arising from need for adequate calibration of measuring devices, determination of proper depth for probes, upward water migration and accumulation below measuring plates to lack of understanding of the governing thermal processes occurring at the ground surface. In the following paper approach for inferring heat flux indirectly, from known ground surface temperature time-dependant functions, using previously developed fractional diffusion equation for ground heat conduction is elaborated. Fractional equation is solved for two, most frequently encountered harmonic surface temperature functions. Yielded results were compared with analytic solutions. Validation results indicate that solutions obtained with fractional approach closely correspond to analytic solutions with remark that former are more general, containing the term covering the transitional effect.

  14. Irreversible thermodynamic analysis and application for molecular heat engines

    Science.gov (United States)

    Lucia, Umberto; Açıkkalp, Emin

    2017-09-01

    Is there a link between the macroscopic approach to irreversibility and microscopic behaviour of the systems? Consumption of free energy keeps the system away from a stable equilibrium. Entropy generation results from the redistribution of energy, momentum, mass and charge. This concept represents the essence of the thermodynamic approach to irreversibility. Irreversibility is the result of the interaction between systems and their environment. The aim of this paper is to determine lost works in a molecular engine and compare results with macro (classical) heat engines. Firstly, irreversible thermodynamics are reviewed for macro and molecular cycles. Secondly, irreversible thermodynamics approaches are applied for a quantum heat engine with -1/2 spin system. Finally, lost works are determined for considered system and results show that macro and molecular heat engines obey same limitations. Moreover, a quantum thermodynamic approach is suggested in order to explain the results previously obtained from an atomic viewpoint.

  15. Technologies for waste heat recovery in off-shore applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Haglind, Fredrik; Kandepu, Rambabu;

    2013-01-01

    In off-shore oil and gas platforms the selection of the gas turbine to support the electrical and mechanical demand on site is often a compromise between reliability, efficiency, compactness, low weight and fuel flexibility. Therefore, recovering the waste heat in off-shore platforms presents both...... technological and economic challenges that need to be overcome. However, onshore established technologies such as the steam Rankine cycle, the air bottoming cycle and the organic Rankine cycle can be tailored to recover the exhaust heat off-shore. In the present paper, benefits and challenges of these three...... pressure level steam Rankine cycle employing the once-through heat recovery steam generator without bypass stack. We compare the three technologies considering the combined cycle thermal efficiency, the weight, the net present value, the profitability index and payback time. Both incomes related to CO2...

  16. Near-term viability of solar heat applications for the federal sector

    Science.gov (United States)

    Williams, T. A.

    1991-12-01

    Solar thermal technologies are capable of providing heat across a wide range of temperatures, making them potentially attractive for meeting energy requirements for industrial process heat applications and institutional heating. The energy savings that could be realized by solar thermal heat are quite large, potentially several quads annually. Although technologies for delivering heat at temperatures above 100 C currently exist within industry, only a fairly small number of commercial systems have been installed to date. The objective of this paper is to investigate and discuss the prospects for near term solar heat sales to federal facilities as a mechanism for providing an early market niche to the aid the widespread development and implementation of the technology. The specific technical focus is on mid-temperature (100 to 350 C) heat demands that could be met with parabolic trough systems. Federal facilities have several features relative to private industry that may make them attractive for solar heat applications relative to other sectors. Key features are specific policy mandates for conserving energy, a long term planning horizon with well defined decision criteria, and prescribed economic return criteria for conservation and solar investments that are generally less stringent than the investment criteria used by private industry. Federal facilities also have specific difficulties in the sale of solar heat technologies that are different from those of other sectors, and strategies to mitigate these difficulties will be important. For the baseline scenario developed in this paper, the solar heat application was economically competitive with heat provided by natural gas. The system levelized energy cost was $5.9/MBtu for the solar heat case, compared to $6.8/MBtu for the life cycle fuel cost of a natural gas case. A third-party ownership would also be attractive to federal users, since it would guarantee energy savings and would not need initial federal funds.

  17. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sobolik, Steven R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-07-07

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as seal systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences

  18. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sobolik, Steven R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-07-07

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as seal systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation, and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences

  19. A techno-economic assessment of primary heat transport system decontamination in support of decommissioning Pickering Nuclear Generating Stations

    Energy Technology Data Exchange (ETDEWEB)

    Husain, A.; Krasznai, J. [Kinectrics, Inc., Analytical and Waste Services Dept., Toronto, Ontario, (Canada); Vijay, R. [Ontario Power Generation, Nuclear Decommissioning Organization, Toronto, Ontario, (Canada)

    2013-07-01

    The operating reactor units at Pickering are expected to be permanently shut down by approximately 2020 (this nominal date is for planning purposes only) and then decommissioned. OPG has adopted the 'Deferred Dismantling' strategy for decommissioning its nuclear plants. In contrast with prompt dismantling, radioactive decay leads to reduced dose expenditure during deferred dismantling. As part of the decommissioning strategy, chemical decontamination of the primary heat transport (PHT) system may be undertaken prior to Safe Storage. Decommissioning costs depend significantly on the chosen deferral period. The overall objective of the present work was to contribute to the optimization of the existing decommissioning plan by assessing the benefits of decontamination. Accordingly, an overall cost-benefit analysis for PHT system decontamination was performed. Details are presented in this paper. (author)

  20. Corrigendum to "Coupled thermochemical, isotopic evolution and heat transfer simulations in highly irradiated UO2 nuclear fuel"

    Science.gov (United States)

    Piro, M. H. A.; Banfield, J.; Clarno, K.; Simunovic, S.; Besmann, T. M.; Lewis, B. J.; Thompson, W. T.

    2016-09-01

    Figs. 7-9 in "Coupled thermochemical, isotopic evolution and heat transfer simulations in highly irradiated UO2 nuclear fuel" [1] have a consistent error corresponding to the relative proportions of iodine. Reported concentrations of iodine in the original manuscript are approximately ten times higher than expected, and are comparable in atomic proportions to cesium. One would expect that the amount of cesium would be about one order of magnitude greater than iodine based on the difference in fission yields of 235U and 239Pu. A practical consequence of this error would affect the predicted quantity and chemical composition of iodine on the fuel surface, which is related to iodine-induced stress corrosion cracking [2].

  1. Application of genetic algorithms in nonlinear heat conduction problems.

    Science.gov (United States)

    Kadri, Muhammad Bilal; Khan, Waqar A

    2014-01-01

    Genetic algorithms are employed to optimize dimensionless temperature in nonlinear heat conduction problems. Three common geometries are selected for the analysis and the concept of minimum entropy generation is used to determine the optimum temperatures under the same constraints. The thermal conductivity is assumed to vary linearly with temperature while internal heat generation is assumed to be uniform. The dimensionless governing equations are obtained for each selected geometry and the dimensionless temperature distributions are obtained using MATLAB. It is observed that GA gives the minimum dimensionless temperature in each selected geometry.

  2. Heat transfer simulation for industrial applications. Needs, limitations, expectations

    Energy Technology Data Exchange (ETDEWEB)

    Peniguel, C. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches

    1997-12-31

    The goal of this paper is to present a few problems and difficulties to which heat transfer engineers are confronted. Then, possible ways used to tackle these problems are exposed. The paper shows that in many occasions the approaches used are not completely satisfactory and that some aspects should be improved. It is also the opportunity to underline that even if turbulent heat transfer modelling is very important, from the industrial point of view, it represents often only one part of the problems which need to be addressed to perform a complete numerical simulation. (K.A.) 15 refs.

  3. Potential National Security Applications of Nuclear Resonance Fluorescence Methods

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Glen A.; Peplowski, Patrick N.; Caggiano, Joseph A.

    2009-06-09

    The objective of this report is to document the initial investigation into the possible research issues related to the development of NRF-based national security applications. The report discusses several potential applications ranging from measuring uranium enrichment in UF6 canisters to characterization of gas samples. While these applications are varied, there are only a few research issues that need to be addressed to understand the limitation of NRF in solving these problems. These research issues range from source and detector development to measuring small samples. The next effort is to determine how best to answer the research issues, followed by a prioritization of those questions to ensure that the most important are addressed. These issues will be addressed through either analytical calculations, computer simulations, analysis of previous data or collection of new measurements. It will also be beneficial to conduct a thorough examination of a couple of the more promising applications in order to develop concrete examples of how NRF may be applied in specific situations. The goals are to develop an understanding of whether the application of NRF is limited by technology or physics in addressing national security applications, to gain a motivation to explore those possible applications, and to develop a research roadmap so that those possibilities may be made reality.

  4. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  5. Nuclear data for production and medical application of radionuclides: Present status and future needs.

    Science.gov (United States)

    Qaim, Syed M

    2017-01-01

    The significance of nuclear data in the choice and medical application of a radionuclide is considered: the decay data determine its suitability for organ imaging or internal therapy and the reaction cross section data allow optimisation of its production route. A brief discussion of reaction cross sections and yields is given. The standard SPECT, PET and therapeutic radionuclides are enumerated and their decay and production data are considered. The status of nuclear data is generally good. Some existing discrepancies are outlined. A few promising alternative production routes of (99m)Tc and (68)Ga are discussed. The increasing significance of non-standard positron emitters in organ imaging and of low-energy highly-ionizing radiation emitters in internal therapy is discussed, their nuclear data are considered and a brief review of their status is presented. Some other related nuclear data issues are also mentioned. The data needs arising from new directions in radionuclide applications (multimode imaging, theranostic approach, radionanoparticles, etc.) are considered. The future needs of data associated with possible utilization of newer irradiation technologies (intermediate energy cyclotron, high-intensity photon accelerator, spallation neutron source, etc.) are outlined. Except for a few small discrepancies, the available nuclear data are sufficient for routine production and application of radionuclides. Considerable data needs exist for developing novel radionuclides for applications. The developing future technologies for radionuclide production will demand further data-related activities. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. 70-kDa Heat Shock Cognate Protein hsc70 Mediates Calmodulin-dependent Nuclear Import of the Sex-determining Factor SRY*

    Science.gov (United States)

    Kaur, Gurpreet; Lieu, Kim G.; Jans, David A.

    2013-01-01

    We recently showed that the developmentally important family of SOX (SRY (sex determining region on the Y chromosome)-related high mobility group (HMG) box) proteins require the calcium-binding protein calmodulin (CaM) for optimal nuclear accumulation, with clinical mutations in SRY that specifically impair nuclear accumulation via this pathway resulting in XY sex reversal. However, the mechanism by which CaM facilitates nuclear accumulation is unknown. Here, we show, for the first time, that the 70-kDa heat shock cognate protein hsc70 plays a key role in CaM-dependent nuclear import of SRY. Using a reconstituted nuclear import assay, we show that antibodies to hsc70 significantly reduce nuclear accumulation of wild type SRY and mutant derivatives thereof that retain CaM-dependent nuclear import, with an increased rate of nuclear accumulation upon addition of both CaM and hsc70, in contrast to an SRY mutant derivative with impaired CaM binding. siRNA knockdown of hsc70 in intact cells showed similar results, indicating clear dependence upon hsc70 for CaM-dependent nuclear import. Analysis using the technique of fluorescence recovery after photobleaching indicated that hsc70 is required for the maximal rate of SRY nuclear import in living cells but has no impact upon SRY nuclear retention/nuclear dynamics. Finally, we demonstrate direct binding of hsc70 to the SRY·CaM complex, with immunoprecipitation experiments from cell extracts showing association of hsc70 with wild type SRY, but not with a mutant derivative with impaired CaM binding, dependent on Ca2+. Our novel findings strongly implicate hsc70 in CaM-dependent nuclear import of SRY. PMID:23235156

  7. Parametric analysis of geothermal residential heating and cooling application

    Energy Technology Data Exchange (ETDEWEB)

    Sagia, Zoi N.; Stegou, Athina B.; Rakopoulos, Constantinos D. [National Technical University of Athens, School of Mechanical Engineering, Department of Thermal Engineering, Heroon Polytechniou 9, 15780, Zografou, Attiki (Greece)

    2012-07-01

    A study is carried out to evaluate the efficiency of a Ground Source Heat Pump (GSHP) system with vertical heat exchangers applied to a three-storey terraced building, with total heated area 271.56 m2, standing on Hellinikon, Athens. The estimation of building loads is made with TRNSYS 16.1 using climatic data calculated by Meteonorm 6.1. The GSHP system is modeled with two other packages GLD 2009 and GLHEPRO 4.0. A comparison of the mean fluid temperature (fluid temperature in the borehole calculated as the average of exiting and entering fluid temperature), computed by above software, shows how close the results are. In addition, a parametric analysis is done to examine the influence of undisturbed ground temperature, ground heat exchanger (GHE) length and borehole separation distance to system’s operational characteristics so as to cover building loads. Finally, a 2D transient simulation is performed by means of COMSOL Multiphysics 4.0a. The carrier fluid in the borehole is modeled as a solid with extremely high thermal conductivity, extracting from and injecting to the ground the hourly load profile calculated by TRNSYS. The mean fluid temperature and the borehole wall temperature are computed for an entire year and compared with the values calculated by GLD.

  8. Application of microwave heating to a polyesterification plant

    NARCIS (Netherlands)

    Komorowska-Durka, M.

    2015-01-01

    Utilizing microwave irradiation, a fundamentally different method of the energy transfer, to the chemical process units can potentially be advantageous compared to the conventional heating, inter alia due to the selective nature of interaction of the microwaves with the matter. This doctoral dissert

  9. Application of microwave heating to a polyesterification plant

    NARCIS (Netherlands)

    Komorowska-Durka, M.

    2015-01-01

    Utilizing microwave irradiation, a fundamentally different method of the energy transfer, to the chemical process units can potentially be advantageous compared to the conventional heating, inter alia due to the selective nature of interaction of the microwaves with the matter. This doctoral

  10. Parametric analysis of geothermal residential heating and cooling application

    Directory of Open Access Journals (Sweden)

    Zoi N. Sagia, Athina B. Stegou, Constantinos D. Rakopoulos

    2012-01-01

    Full Text Available A study is carried out to evaluate the efficiency of a Ground Source Heat Pump (GSHP system with vertical heat exchangers applied to a three-storey terraced building, with total heated area 271.56 m2, standing on Hellinikon, Athens. The estimation of building loads is made with TRNSYS 16.1 using climatic data calculated by Meteonorm 6.1. The GSHP system is modeled with two other packages GLD 2009 and GLHEPRO 4.0. A comparison of the mean fluid temperature (fluid temperature in the borehole calculated as the average of exiting and entering fluid temperature, computed by above software, shows how close the results are. In addition, a parametric analysis is done to examine the influence of undisturbed ground temperature, ground heat exchanger (GHE length and borehole separation distance to system’s operational characteristics so as to cover building loads. Finally, a 2D transient simulation is performed by means of COMSOL Multiphysics 4.0a. The carrier fluid in the borehole is modeled as a solid with extremely high thermal conductivity, extracting from and injecting to the ground the hourly load profile calculated by TRNSYS. The mean fluid temperature and the borehole wall temperature are computed for an entire year and compared with the values calculated by GLD.

  11. Interview in Radio Educacion on the applications of nuclear energy; Entrevista en Radio Educacion sobre las aplicaciones de la energia nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar G, M

    1991-01-15

    The objective that presides over this interview, is to show before the public the diverse applications that can have the nuclear energy, apart from the warlike aspect and the electric power generation. (Author)

  12. Applications of the Trojan Horse method in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, Claudio, E-mail: spitaleri@lns.infn.it [Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy and Laboratori Nazionali del Sud-INFN, Catania (Italy)

    2015-02-24

    The study of the energy production in stars and related nucleosyntesis processes requires increasingly precise knowledge of the nuclear reaction cross section and reaction rates at interaction energy. In order to overcome the experimental difficulties, arising from small cross-sections involved in charge particle induced reactions at astrophysical energies, and from the presence of electron screening, it was necessary to introduce indirect methods. Trough these methods it is possible to measure cross sections at very small energies and retrieve information on electron screening effect when ultra-low energy direct measurements are available. The Trojan Horse Method (THM) represents the indirect technique to determine the bare nucleus astrophysical S-factor for reactions between charged particles at astrophysical energies. The basic theory of the THM is discussed in the case of non-resonant.

  13. Applications of digital pulse processing in nuclear spectroscopy

    CERN Document Server

    Grzywacz, R

    2003-01-01

    Data acquisition systems for nuclear spectroscopy have traditionally been based on hybrid systems with analog shaping amplifiers followed by analog-to-digital converters. Recently, however, new systems based on digital signal processing concepts have been developed. For example, one specific design, the Digital Gamma Finder (DGF-4C), has been used extensively for particle- and gamma-spectroscopy of nuclei far from stability. Using the DGF-4C, a variety of data acquisition systems have been implemented and used for measurements with semiconductor and scintillator detectors at recoil separators like the RMS at ORNL, the FRS at GSI and LISE at GANIL. Some novel features and unique advantages, such as trigger-less operation and pulse shape recording, are discussed in the context of selected studies.

  14. Reactor Fuel Isotopics and Code Validation for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Matthew W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Weber, Charles F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pigni, Marco T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-02-01

    Experimentally measured isotopic concentrations of well characterized spent nuclear fuel (SNF) samples have been collected and analyzed by previous researchers. These sets of experimental data have been used extensively to validate the accuracy of depletion code predictions for given sets of burnups, initial enrichments, and varying power histories for different reactor types. The purpose of this report is to present the diversity of data in a concise manner and summarize the current accuracy of depletion modeling. All calculations performed for this report were done using the Oak Ridge Isotope GENeration (ORIGEN) code, an internationally used irradiation and decay code solver within the SCALE comprehensive modeling and simulation code. The diversity of data given in this report includes key actinides, stable fission products, and radioactive fission products. In general, when using the current ENDF/B-VII.0 nuclear data libraries in SCALE, the major actinides are predicted to within 5% of the measured values. Large improvements were seen for several of the curium isotopes when using improved cross section data found in evaluated nuclear data file ENDF/B-VII.0 as compared to ENDF/B-V-based results. The impact of the flux spectrum on the plutonium isotope concentrations as a function of burnup was also shown. The general accuracy noted for the actinide samples for reactor types with burnups greater than 5,000 MWd/MTU was not observed for the low-burnup Hanford B samples. More work is needed in understanding these large discrepancies. The stable neodymium and samarium isotopes were predicted to within a few percent of the measured values. Large improvements were seen in prediction for a few of the samarium isotopes when using the ENDF/B-VII.0 libraries compared to results obtained with ENDF/B-V libraries. Very accurate predictions were obtained for 133Cs and 153Eu. However, the predicted values for the stable ruthenium and rhodium isotopes varied

  15. Emerging battery research in Indonesia: The role of nuclear applications

    Science.gov (United States)

    Kartini, E.

    2015-12-01

    Development of lithium ion batteries will play an important role in achieving innovative sustainable energy. To reduce the production cost of such batteries, the Indonesian government has instituted a strategy to use local resources. Therefore, this technology is now part of the National Industrial Strategic Plan. One of the most important scientific challenges is to improve performance of lithium batteries. Neutron scattering is a very important technique to investigate crystal structure of electrode materials. The unique properties of neutrons, which allow detection of light elements such as lithium ions, are indispensable. The utilization of neutron scattering facilities at the Indonesian National Nuclear Energy Agency will provide significant contributions to the development of improved lithium ion battery technologies.

  16. Emerging battery research in Indonesia: The role of nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Kartini, E. [Science and Technology Center for Advanced Materials, National Nuclear Energy Agency, South Tangerang (Indonesia)

    2015-12-31

    Development of lithium ion batteries will play an important role in achieving innovative sustainable energy. To reduce the production cost of such batteries, the Indonesian government has instituted a strategy to use local resources. Therefore, this technology is now part of the National Industrial Strategic Plan. One of the most important scientific challenges is to improve performance of lithium batteries. Neutron scattering is a very important technique to investigate crystal structure of electrode materials. The unique properties of neutrons, which allow detection of light elements such as lithium ions, are indispensable. The utilization of neutron scattering facilities at the Indonesian National Nuclear Energy Agency will provide significant contributions to the development of improved lithium ion battery technologies.

  17. User`s manual for the FEHM application -- A finite-element heat- and mass-transfer code

    Energy Technology Data Exchange (ETDEWEB)

    Zyvoloski, G.A.; Robinson, B.A.; Dash, Z.V.; Trease, L.L.

    1997-07-01

    The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved in the FEHM application by using the finite-element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat- and mass-transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. In fact, FEHM is capable of describing flow that is dominated in many areas by fracture and fault flow, including the inherently three-dimensional flow that results from permeation to and from faults and fractures. The code can handle coupled heat and mass-transfer effects, such as boiling, dryout, and condensation that can occur in the near-field region surrounding the potential repository and the natural convection that occurs through Yucca Mountain due to seasonal temperature changes. This report outlines the uses and capabilities of the FEHM application, initialization of code variables, restart procedures, and error processing. The report describes all the data files, the input data, including individual input records or parameters, and the various output files. The system interface is described, including the software environment and installation instructions.

  18. Vital area identification for U.S. Nuclear Regulatory Commission nuclear power reactor licensees and new reactor applicants.

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, Donnie Wayne; Varnado, G. Bruce

    2008-09-01

    U.S. Nuclear Regulatory Commission nuclear power plant licensees and new reactor applicants are required to provide protection of their plants against radiological sabotage, including the placement of vital equipment in vital areas. This document describes a systematic process for the identification of the minimum set of areas that must be designated as vital areas in order to ensure that all radiological sabotage scenarios are prevented. Vital area identification involves the use of logic models to systematically identify all of the malicious acts or combinations of malicious acts that could lead to radiological sabotage. The models available in the plant probabilistic risk assessment and other safety analyses provide a great deal of the information and basic model structure needed for the sabotage logic model. Once the sabotage logic model is developed, the events (or malicious acts) in the model are replaced with the areas in which the events can be accomplished. This sabotage area logic model is then analyzed to identify the target sets (combinations of areas the adversary must visit to cause radiological sabotage) and the candidate vital area sets (combinations of areas that must be protected against adversary access to prevent radiological sabotage). Any one of the candidate vital area sets can be selected for protection. Appropriate selection criteria will allow the licensee or new reactor applicant to minimize the impacts of vital area protection measures on plant safety, cost, operations, or other factors of concern.

  19. Multi-Element CZT Array for Nuclear Safeguards Applications

    Science.gov (United States)

    Kwak, S.-W.; Lee, A.-R.; Shin, J.-K.; Park, U.-R.; Park, S.; Kim, Y.; Chung, H.

    2016-12-01

    Due to its electronic properties, a cadmium zinc telluride (CZT) detector has been used as a hand-held portable nuclear measurement instrument. However, a CZT detector has low detection efficiency because of a limitation of its single crystal growth. To address its low efficiency, we have constructed a portable four-CZT array based gamma-ray spectrometer consisting of a CZT array, electronics for signal processing and software. Its performance has been characterized in terms of energy resolution and detection efficiency using radioactive sources and nuclear materials. Experimental results showed that the detection efficiency of the four-CZT array based gamma-ray spectrometer was much higher than that of a single CZT detector in the array. The FWHMs of the CZT array were 9, 18, and 21 keV at 185.7, 662, and 1,332 keV, respectively. Some gamma-rays in a range of 100 keV to 200 keV were not clear in a single crystal detector while those from the CZT array system were observed to be clear. The energy resolution of the CZT array system was only slightely worse than those of the single CZT detectors. By combining several single crystals and summing signals from each single detector at a digital electronic circuit, the detection efficiency of a CZT array system increased without degradation of its energy resolution. The technique outlined in this paper shows a very promising method for designing a CZT-based gamma-ray spectroscopy that overcomes the fundamental limitations of a small volume CZT detector.

  20. DEAP actuator and its high voltage driver for heating valve application

    DEFF Research Database (Denmark)

    Huang, Lina; Nørmølle, L. F.; Sarban, R.;

    2014-01-01

    Due to the advantages of DEAP (Dielectric Electro Active Polymer) material, such as light weight, noise free operation, high energy and power density and fast response speed, it can be applied in a variety of applications to replace the conventional transducers or actuators. This paper introduces...... DEAP actuator to the heating valve system and conducts a case study to discuss the feasible solution in designing DEAP actuator and its driver for heating valve application. First of all, the heating valves under study are briefly introduced. Then the design and the development for DEAP actuator...