WorldWideScience

Sample records for nuclear glass long-term

  1. Physicochemical properties and long-term behavior of french R7T7 nuclear waste glass

    International Nuclear Information System (INIS)

    Vernaz, E.

    1990-01-01

    The French R7T7 nuclear glass composition was carefully selected to allow incorporation of some thirty different oxides found in fission product solutions. The resulting glass exhibits very low crystallization, and its physical and chemical properties are very similar to those of standard industrial glasses. Nuclear glasses have been shown to withstand α doses corresponding to several hundred thousand years under repository conditions. Predicting the long-term behavior of fission product glasses subjected to aqueous corrosion is no doubt the most difficult aspect of the problem. Predictions are necessarily based on mathematical models. A substantial research effort has been undertaken to identify all the basic corrosion mechanisms liable to control long-term alteration. These mechanisms are now relatively well understood, and provide the basis for developing the indispensable models. Realistic storage conditions exist under which glass alteration occurs at a very slow rate, and can fulfill its role as the first containment barrier for several tens of thousands of years

  2. Long-term behavior of nuclear glass: the r(t) operational model

    International Nuclear Information System (INIS)

    Ribet, I.; Gin, S.; Minet, Y.; Vernaz, E.; Chaix, P.; Do Quang, R.

    2001-01-01

    Predicting the long-term behavior of vitrified waste packages requires the development of models incorporating knowledge of the aqueous alteration mechanisms of nuclear glass. The r(t) model allows for the formation of a protective gel layer during leaching, and is thus able to account for the major drops in the glass alteration rate that are observed experimentally. This article describes the model hypotheses, the methodology implemented to determine its three internal parameters, and the results obtained from about fifty leaching experiments performed under various conditions. The orders of magnitude of the internal parameter values are indicated according to the alteration conditions. (author)

  3. The role of natural glasses as analogues in projecting the long-term alteration of high-level nuclear waste glasses: Part 1

    International Nuclear Information System (INIS)

    Mazer, J.J.

    1993-01-01

    The common observation of glasses persisting in natural environments for long periods of time (up to tens of millions of years) provides compelling evidence that these materials can be kinetically stable in a variety of subsurface environments. This paper reviews how natural and historical synthesized glasses can be employed as natural analogues for understanding and projecting the long-term alteration of high-level nuclear waste glasses. The corrosion of basaltic glass results in many of the same alteration features found in laboratory testing of the corrosion of high-level radioactive waste glasses. Evidence has also been found indicating similarities in the rate controlling processes, such as the effects of silica concentration on corrosion in groundwater and in laboratory leachates. Naturally altered rhyolitic glasses and tektites provide additional evidence that can be used to constrain estimates of long-term waste glass alteration. When reacted under conditions where water is plentiful, the corrosion for these glasses is dominated by network hydrolysis, while the corrosion is dominated by molecular water diffusion and secondary mineral formation under conditions where water contact is intermittent or where water is relatively scarce. Synthesized glasses that have been naturally altered result in alkali-depleted alteration features that are similar to those found for natural glasses and for nuclear waste glasses. The characteristics of these alteration features appear to be dependent on the alteration conditions which affect the dominant reaction processes during weathering. In all cases, care must be taken to ensure that the information being provided by natural analogues is related to nuclear waste glass corrosion in a clear and meaningful way

  4. Remaining uncertainties in predicting long-term performance of nuclear waste glass from experiments

    International Nuclear Information System (INIS)

    Grambow, B.

    1994-01-01

    The current knowledge on the glass dissolution mechanism and the representation of glass dissolution concepts within overall repository performance assessment models are briefly summarized and uncertainties related to mechanism, radionuclide chemistry and parameters are discussed. Understanding of the major glass dissolution processes has been significantly increased in recent years. Long-term glass stability is related to the long-term maintenance of silica saturated conditions. The behavior of individual radionuclides in the presence of a dissolving glass has not been sufficiently and results do no yet allow meaningful predictions. Conserving long-term predictions of glass matrix dissolution as upper limit for radionuclide release can be made with sufficient confidence, however these estimations generally result in a situation where the barrier function of the glass is masked by the efficiency of the geologic barrier. Realistic long-term predictions may show that the borosilicate waste glass contributes to overall repository safety to a much larger extent than indicated by overconservatism. Today realistic predictions remain highly uncertain and much more research work is necessary. In particular, the long-term rate under silica saturated conditions needs to be understood and the behavior of individual radionuclides in the presence of a dissolving glass deserves more systematic investigations

  5. Materials interactions relating to long-term geologic disposal of nuclear waste glass

    International Nuclear Information System (INIS)

    Bibler, N.E.; Jantzen, C.M.

    1987-01-01

    In the geologic disposal of nuclear waste glass, the glass will eventually interact with groundwater in the repository system. Interactions can also occur between the glass and other waste package materials that are present. These include the steel canister that holds the glass, the metal overpack over the canister, backfill materials that may be used, and the repository host rock. This review paper systematizes the additional interactions that materials in the waste package will impose on the borosilicate glass waste form-groundwater interactions. The repository geologies reviewed are tuff, salt, basalt, and granite. The interactions emphasized are those appropriate to conditions expected after repository closure, e.g. oxic vs anoxic conditions. Whenever possible, the effect of radiation from the waste form on the interactions is examined. The interactions are evaluated based on their effect on the release and speciation of various elements including radionuclides from the glass. It is noted when further tests of repository interactions are needed before long-term predictions can be made. 63 references, 1 table

  6. Thermal and physicochemical properties important for the long term behavior of nuclear waste glasses

    International Nuclear Information System (INIS)

    Vernaz, E.; Matzke, H.J.

    1992-01-01

    High level nuclear waste from reprocessing of spent nuclear fuel has to be solidified in a stable matrix for safe long-time storage. Vitrification in borosilicate glasses is the technique accepted worldwide. A number of different glasses was developed in different national programs. The criteria and the reasons for selecting the final compositions are briefly described. Emphasis is placed on the French product R7T7 and on thermal and physicochemical properties though glasses developed in other national projects (e.g. the German product GP 98/12 etc.) are also treated. The basic physical and mechanical properties and the chemical durability of the glass in contact with water or other aqueous solutions are described. The basic mechanisms of aqueous corrosion are discussed and the evolving modelling of the leaching process is dealt with, as well as effects of container material, backfill, etc. The thermal behavior has also been studied and extensive data exist on diffusion of glass constituents (Na) and of interesting elements of the waste such as the alkalis Rb and Cs or the actinides U and Pu, as well as on crystallization processes in the glass during storage at elevated temperatures. Emphasis is placed on the radiation stability of the glasses, based on extensive studies using short-lived actinides (e.g. Cm-244) or ion-implantation to produce the damage expected during long storage at an accelerated rate. The radiation stability is shown to be very good, if realistic damage conditions are used. The knowledge accumulated in the past years is used to evaluate and predict the long-term evolution of the glass under storage conditions

  7. Study of archaeological analogs for the validation of nuclear glass long-term behavior models

    International Nuclear Information System (INIS)

    Verney-Carron, A.

    2008-10-01

    Fractured archaeological glass blocks collected from a shipwreck discovered in the Mediterranean Sea near Embiez Island (Var) were investigated because of their morphological analogy with vitrified nuclear waste and of a known and stable environment. These glasses are fractured due to a fast cooling after they were melted (like nuclear glass) and have been altered for 1800 years in seawater. This work results in the development and the validation of a geochemical model able to simulate the alteration of a fractured archaeological glass block over 1800 years. The kinetics associated with the different mechanisms (interdiffusion and dissolution) and the thermodynamic parameters of the model were determined by leaching experiments. The model implemented in HYTEC software was used to simulate crack alteration over 1800 years. The consistency between simulated alteration thicknesses and measured data on glass blocks validate the capacity of the model to predict long-term alteration. This model is able to account for the results from the characterization of crack network and its state of alteration. The cracks in the border zone are the most altered due to a fast renewal of the leaching solution, whereas internal cracks are thin because of complex interactions between glass alteration and transport of elements in solution (influence of initial crack aperture and of the crack sealing). The lowest alteration thicknesses, as well as their variability, can be explained. The analog behavior of archaeological and nuclear glasses from leaching experiments makes possible the transposition of the model to nuclear glass in geological repository. (author)

  8. Thermal stability of the French nuclear waste glass - long term behavior modeling

    International Nuclear Information System (INIS)

    Orlhac, X.

    2000-01-01

    The thermal stability of the French nuclear waste glass was investigated experimentally and by modeling to predict its long-term evolution at low temperature. The crystallization mechanisms were analyzed by studying devitrification in the supercooled liquid. Three main crystalline phases were characterized (CaMoO 4 , CeCO 2 , ZnCr 2 O 4 ). Their crystallisation was TO 4.24 wt%, due to the low concentration of the constituent elements. The nucleation and growth curves showed that platinoid elements catalysed nucleation but did not affect growth, which was governed by volume diffusion. The criteria of classic nucleation theory were applied to determine the thermodynamic and diffusional activation energies. Viscosity measurements illustrate the analogy between the activation energy of viscous flow and diffusion, indicating control of crystallization by viscous flow phenomena. The combined action of nucleation and growth was assessed by TTT plots, revealing a crystallization equilibrium line that enables the crystallized fractions to be predicted over the long term. The authors show that hetero-genetics catalyze the transformation without modifying the maximum crystallized fraction. A kinetic model was developed to describe devitrification in the glass based on the nucleation and growth curves alone. The authors show that the low-temperature growth exhibits scale behavior (between time and temperature) similar to thermo-rheological simplicity. The analogy between the resulting activation energy and that of the viscosity was used to model growth on the basis of viscosity. After validation with a simplified (BaO 2 SiO 2 ) glass, the model was applied to the containment glass. The result indicated that the glass remained completely vitreous after a cooling scenario with the one measured at the glass core. Under isothermal conditions, several million years would be required to reach the maximum theoretical crystallization fraction. (author)

  9. Current Understanding and Remaining Challenges in Modeling Long-Term Degradation of Borosilicate Nuclear Waste Glasses

    International Nuclear Information System (INIS)

    Vienna, John D.; Ryan, Joseph V.; Gin, Stephane; Inagaki, Yaohiro

    2013-01-01

    Chemical durability is not a single material property that can be uniquely measured. Instead it is the response to a host of coupled material and environmental processes whose rates are estimated by a combination of theory, experiment, and modeling. High-level nuclear waste (HLW) glass is perhaps the most studied of any material yet there remain significant technical gaps regarding their chemical durability. The phenomena affecting the long-term performance of HLW glasses in their disposal environment include surface reactions, transport properties to and from the reacting glass surface, and ion exchange between the solid glass and the surrounding solution and alteration products. The rates of these processes are strongly influenced and are coupled through the solution chemistry, which is in turn influenced by the reacting glass and also by reaction with the near-field materials and precipitation of alteration products. Therefore, those processes must be understood sufficiently well to estimate or bound the performance of HLW glass in its disposal environment over geologic time-scales. This article summarizes the current state of understanding of surface reactions, transport properties, and ion exchange along with the near-field materials and alteration products influences on solution chemistry and glass reaction rates. Also summarized are the remaining technical gaps along with recommended approaches to fill those technical gaps

  10. Study of rhyolitic glasses alteration in contact with natural brines (Bolivia). Application to the study of the long-term behaviour of the R7T7 nuclear glass

    International Nuclear Information System (INIS)

    Abdelouas, A.

    1996-01-01

    The purpose of this work is to complement an experimental program on the R7T7 nuclear waste glass alteration in brines at 190 deg C in Germany by the analysis of the structure and the chemical composition of the alteration layers, and to study the alteration of rhyolitic glasses in natural brines from Bolivia as analogue for nuclear waste glasses disposed in salt formations. Alteration experiments with the R7T7 and basaltic glasses and obsidian in MgCl 2 -CaCl 2 -saturated brine at 190 deg. C were also conducted in order to study the influence of the glass composition on the nature of the secondary phases. The experiments with the R7T7 glass in three salt brines, saturated respectively in MgCl 2 , MgCl 2 -CaCl 2 and NaCl, showed that the solubilities of most radionuclides are controlled by the secondary phases. Nd, La, and Pr are trapped in powellite, Ce in cerianite, U in coffinite, and Sr is partially immobilized in barite. These phases are stable for more than one year. There is a good similarity between the secondary phases formed experimentally on volcanic glasses and the R7T7 glass altered in MgCl 2 -CaCl 2 -saturated brine. The abundance of Mg in solution permits the formation of similar magnesian clays on the glass samples independently of the nature of the initial glasses. These results support the use of volcanic glasses alteration patterns in Mg-rich solutions to understand the long-term behavior of nuclear waste glasses and to evaluate the stability of the secondary phases. The study of the sediments of Uyuni (Bolivia) showed that the corrosion rate of the rhyolitic glass in brines at 10 deg. C is 12 to 30 time lower than those of rhyolitic glasses altered in high dilute conditions. The low alteration rate of rhyolitic glasses in brines and the formation of secondary phases such as smectite, barite and cerianite (also formed during the experimental alteration of the R7T7 glass), permit us to expect the low alteration of nuclear waste glasses at long-term

  11. The composition effect on the long-term corrosion of high-level waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, P. [Pacific Northwest National Laboratory, Richland, Washington (United States)

    1997-07-01

    Waste glass can be optimized for long-term corrosion behavior if the key parameters that control the rate of corrosion are identified, measured, and modeled as functions of glass composition. Second-order polynomial models have been used to optimize glass with respect to a set of requirements on glass properties, such as viscosity and outcomes of standard corrosion tests. Extensive databases exist for the 7-day Product Consistency Test and the 28-day Materials Characterization Center tests, which have been used for nuclear waste glasses in the United States. Models based on these tests are reviewed and discussed to demonstrate the compositional effects on the extent of corrosion under specified conditions. However, modeling the rate of corrosion is potentially more useful for predicting long-term behavior than modeling the extent of corrosion measured by standard tests. Based on an experimental study of two glasses, it is shown that the rate of corrosion can be characterized by simple functions with physically meaningful coefficients. (author)

  12. Long-term behavior of glass-ceramic zirconolite

    International Nuclear Information System (INIS)

    Martin, Ch.

    2003-01-01

    This work is a part of the investigation of new containment matrices considered for specific conditioning of radionuclides after separation. The aim was to demonstrate the long-term aqueous corrosion resistance of the glass-ceramic zirconolite considered for the conditioning of plutonium and the minor actinides. This material is composed of crystals of zirconolite (CaZrTi 2 O 7 ) dispersed in a residual vitreous phase. It appears that glass-ceramic zirconolite presents a better kinetic behavior than the nuclear glass R 7T7. This is mainly due to a more important rate decrease that occurs more rapidly, that induces a quantity of glass altered at least 10 times as small as for R 7T7 glass. This high slowdown of the alteration rate is attributed to the formation of an alteration film that has been the subject of a specific study. We have demonstrated that the rate decrease was controlled as for the R7T7 glass by the amorphous phase of the alteration film forming a diffusion barrier for reactive species. It seems that the porosity is not the single parameter that explains the protective effect of the gel. The main differences compared with R7T7 glass are that silicon does not control the alteration of the material and that the gel is composed of two distinct phases. We have in particular identified a dense phase enriched in titanium and neodymium that probably influences deeply the kinetics. (author)

  13. Long-term physical ageing in As-Se glasses with short chalcogen chains

    International Nuclear Information System (INIS)

    Golovchak, R; Shpotyuk, O; Kozdras, A; Vlcek, M; Bureau, B; Kovalskiy, A; Jain, H

    2008-01-01

    Long-term physical ageing of chalcogenide glasses, which occurs over tens of years, is much less understood than the short-term ageing. With Se-rich underconstrained As 30 Se 70 glass as a model composition (consisting of Se n chains with n≤3 on average), a microscopic model is developed for this phenomenon by combining information from differential scanning calorimetry, extended x-ray absorption fine structure, Raman, and 77 Se solid state nuclear magnetic resonance spectroscopies. The accompanying changes in the electronic structure of these glasses are investigated by x-ray photoelectron spectroscopy. The data suggest ageing from cooperative relaxation, presumably involving bond switching or reconfiguration of As-Se-Se-As fragments

  14. Long-term physical ageing in As-Se glasses with short chalcogen chains

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, R; Shpotyuk, O [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska street, Lviv, UA-79031 (Ukraine); Kozdras, A [Faculty of Physics of Opole University of Technology, 75, Ozimska street, Opole, 45370 (Poland); Vlcek, M [Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Pardubice, 532 10 Pardubice (Czech Republic); Bureau, B [Verres et Ceramiques, UMR CNRS 6226 Sciences Chimiques de Rennes, University of Rennes, 1, Campus de Beaulieu, Rennes, 35042 (France); Kovalskiy, A; Jain, H [Department of Materials Science and Engineering, Lehigh University, 5, East Packer Avenue, Bethlehem, PA 18015-3195 (United States)

    2008-06-18

    Long-term physical ageing of chalcogenide glasses, which occurs over tens of years, is much less understood than the short-term ageing. With Se-rich underconstrained As{sub 30}Se{sub 70} glass as a model composition (consisting of Se{sub n} chains with n{<=}3 on average), a microscopic model is developed for this phenomenon by combining information from differential scanning calorimetry, extended x-ray absorption fine structure, Raman, and {sup 77}Se solid state nuclear magnetic resonance spectroscopies. The accompanying changes in the electronic structure of these glasses are investigated by x-ray photoelectron spectroscopy. The data suggest ageing from cooperative relaxation, presumably involving bond switching or reconfiguration of As-Se-Se-As fragments.

  15. Evaluation of long term leaching of borosilicate glasses

    International Nuclear Information System (INIS)

    Lanza, F.; Parnisari, E.

    1978-01-01

    For the evaluation of long term hazard of glass, data on long term glass leaching are needed. Moreover for long term leaching a model of homogeneous dissolution seems reasonable and ask for confirmation. Tests were performed at 30 0 , 80 0 , 100 0 , using an apparatus of the Soxhlet type, to 3.600 hours. Results were obtained as a weight loss and analysed following a relation with time composed by a parabolic and a linear part. Analysis of the surface layer using energy dispersion X ray spectrometry were performed. A critical analysis of the results and of the apparatus is presented

  16. Constraints on the affinity term for modeling long-term glass dissolution rates

    International Nuclear Information System (INIS)

    Bourcier, W.L.; Carroll, S.A.; Phillips, B.L.

    1993-11-01

    Predictions of long-term glass dissolution rates are highly dependent on the form of the affinity term in the rate expression. Analysis of the quantitative effect of saturation state on glass dissolution rate for CSG glass (a simple analog of SRL-165 glass), shows that a simple (1-Q/K) affinity term does not match experimental results. Our data at 100 degree C show that the data is better fit by an affinity term having the form (1 - (Q/K) 1 /σ) where σ = 10

  17. Material interactions relating to long-term geologic disposal of nuclear waste glass

    International Nuclear Information System (INIS)

    Bibler, N.E.; Jantzen, C.M.

    1986-01-01

    This review paper systematizes the additional interactions that materials in a geologic repository will impose on the borosilicate glass waste form-groundwater interactions. These materials are the steel canister that holds the glass, the steel overpack over the canister, backfill materials that may be used, and last, the repository host rock. The repository geologies reviewed are tuff, salt, basalt, and granite. The interactions emphasized are those appropriate to conditions expected after repository closure, e.g., oxic vs anoxic conditions. Whenever possible, the effect of radiation from the waste form on the interaction(s) is examined. The interactions are evaluated based on their effect on the release and speciation of various elements including radionuclides from the glass. Repository relevant interactions testing that requires further study before long-term predictions can be made are noted. 62 refs

  18. Thermal stability of the French nuclear waste glass - long term behavior modeling; Etude de la stabilite thermique du verre nucleaire. Modelisation de son evolution a long terme

    Energy Technology Data Exchange (ETDEWEB)

    Orlhac, X

    2000-07-01

    The thermal stability of the French nuclear waste glass was investigated experimentally and by modeling to predict its long-term evolution at low temperature. The crystallization mechanisms were analyzed by studying devitrification in the supercooled liquid. Three main crystalline phases were characterized (CaMoO{sub 4}, CeCO{sub 2}, ZnCr{sub 2}O{sub 4}). Their crystallisation was TO 4.24 wt%, due to the low concentration of the constituent elements. The nucleation and growth curves showed that platinoid elements catalysed nucleation but did not affect growth, which was governed by volume diffusion. The criteria of classic nucleation theory were applied to determine the thermodynamic and diffusional activation energies. Viscosity measurements illustrate the analogy between the activation energy of viscous flow and diffusion, indicating control of crystallization by viscous flow phenomena. The combined action of nucleation and growth was assessed by TTT plots, revealing a crystallization equilibrium line that enables the crystallized fractions to be predicted over the long term. The authors show that hetero-genetics catalyze the transformation without modifying the maximum crystallized fraction. A kinetic model was developed to describe devitrification in the glass based on the nucleation and growth curves alone. The authors show that the low-temperature growth exhibits scale behavior (between time and temperature) similar to thermo-rheological simplicity. The analogy between the resulting activation energy and that of the viscosity was used to model growth on the basis of viscosity. After validation with a simplified (BaO{sub 2}SiO{sub 2}) glass, the model was applied to the containment glass. The result indicated that the glass remained completely vitreous after a cooling scenario with the one measured at the glass core. Under isothermal conditions, several million years would be required to reach the maximum theoretical crystallization fraction. (author)

  19. Borosilicate nuclear waste glass alteration kinetics theoretical basis for the kinetic law of nuclear glass alteration

    International Nuclear Information System (INIS)

    Jegou, Ch.; Gin, St.; Advocat, Th.; Vernaz, E.

    1997-01-01

    Work carried out since the early 1980's to predict the long-term behavior of nuclear containment glasses has revealed the inadequacy of existing models, notably in accounting for the fundamental mechanisms involved in some complex systems (e.g. glass-water-clay), inciting us to examine and discuss the theoretical basis for the hypotheses generally assumed in our models. This paper discusses the theoretical basis for the Aagaard-Helgeson law and its application to nuclear glasses. The contribution of other types of kinetic laws is also considered to describe the alteration kinetics of nuclear glasses. (authors)

  20. Natural analogues of nuclear waste glass corrosion

    International Nuclear Information System (INIS)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-01

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses

  1. Natural analogues of nuclear waste glass corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  2. Irradiations effects on the structure of boro-silicated glasses: long term behaviour of nuclear waste glassy matrices

    International Nuclear Information System (INIS)

    Bonfils, J. de

    2007-09-01

    This work deals with the long term behaviour of R7T7-type nuclear waste glasses and more particularly of non-active boro-silicated glasses made up of 3 or 5 oxides. Radioactivity of active glasses is simulated by multi energies ions implantations which reproduce the same defects. The damages due to the alpha particles are simulated by helium ions implantations and those corresponding to the recoil nucleus are obtained with gold ions ones. Minor actinides, stemming from the used fuel, is simulated by trivalent rare-earths (Eu 3+ and Nd 3+ ). In a first part, we have shown by macroscopic experiments (Vickers hardness - swelling) and optical spectroscopies (Raman - ATR-IR) that the structure of the glassy matrices is modified under implantations until a dose of 2,3.10 13 at.cm -2 , which corresponds to a R7T7 storage time estimated at 300 years. Beyond this dose, no additional modifications have been observed. The second part concerns the local environment of the rare-earth ions in glasses. Two different environments were found and identified as follows: one is a silicate rich one and the other is attributed to a borate rich one. (author)

  3. A statistical approach to determine the effects of nuclear glass components on the short and long term glass alteration

    International Nuclear Information System (INIS)

    Advocat, Th.; Tovena, I.; Vernaz, E.; Larche, F.; Phan Tan Luu, R.

    1997-01-01

    The experimentation plan methodology may be a powerful tool to design statistical models able to calculate quantitative leach rates as a function of glass compositions. The investigation discussed here implemented an experimentation plan methodology covering a wide range of glass composition variations with two major objectives: - identify the effects of the main component oxides of R7T7 glass (SiO 2 , B 2 O 3 , Al 2 O 3 , Na 2 O+Li 2 O, additive oxides, Fission Products oxides, actinide oxides) on the dissolution rates far and close to equilibrium; - and develop a statistical model relating the measured initial dissolution rate with the selected oxide compositions. A second-degree silica-based model was developed to express the initial dissolution rates at 100 deg C according to the oxide weight percentage of 6 major oxides or oxide groups. The model is qualified by comparison with independent experimental results. For the short term, far from saturation conditions (confined media), plotting the effects of the oxides clearly showed that SiO 2 , Al 2 O 3 and the additive oxides enhanced glass durability at 100 deg C, while B 2 O 3 and Na 2 O+Li 2 O diminished the initial corrosion resistance. For the long term, plotting the effects of the oxides showed that additive oxides, Al 2 O 3 and SiO 2 enhanced glass durability at 90 deg C, in that order, while Na 2 O+Li 2 O still diminished the corrosion resistance. The fission products and actinide oxides and ZrO 2 have apparently a slight beneficial effect on the glass durability, under saturation conditions (long term). (author)

  4. Thermodynamic model of natural, medieval and nuclear waste glass durability

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Plodinec, M.J.

    1983-01-01

    A thermodynamic model of glass durability based on hydration of structural units has been applied to natural glass, medieval window glasses, and glasses containing nuclear waste. The relative durability predicted from the calculated thermodynamics correlates directly with the experimentally observed release of structural silicon in the leaching solution in short-term laboratory tests. By choosing natural glasses and ancient glasses whose long-term performance is known, and which bracket the durability of waste glasses, the long-term stability of nuclear waste glasses can be interpolated among these materials. The current Savannah River defense waste glass formulation is as durable as natural basalt from the Hanford Reservation (10 6 years old). The thermodynamic hydration energy is shown to be related to the bond energetics of the glass. 69 references, 2 figures, 1 table

  5. A statistical approach to determine the effects of nuclear glass components on the short and long term glass alteration

    Energy Technology Data Exchange (ETDEWEB)

    Advocat, Th; Tovena, I; Vernaz, E [CEA Valrho, Dir. de l' Energie Nucleaire, DEN, 30 - Marcoule (France); Larche, F [Montpellier-2 Univ., 34 (France); Phan Tan Luu, R [Faculte de St Jerome, 13 - Marseille (France)

    1997-07-01

    The experimentation plan methodology may be a powerful tool to design statistical models able to calculate quantitative leach rates as a function of glass compositions. The investigation discussed here implemented an experimentation plan methodology covering a wide range of glass composition variations with two major objectives: - identify the effects of the main component oxides of R7T7 glass (SiO{sub 2}, B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, Na{sub 2}O+Li{sub 2}O, additive oxides, Fission Products oxides, actinide oxides) on the dissolution rates far and close to equilibrium; - and develop a statistical model relating the measured initial dissolution rate with the selected oxide compositions. A second-degree silica-based model was developed to express the initial dissolution rates at 100 deg C according to the oxide weight percentage of 6 major oxides or oxide groups. The model is qualified by comparison with independent experimental results. For the short term, far from saturation conditions (confined media), plotting the effects of the oxides clearly showed that SiO{sub 2}, Al{sub 2}O{sub 3} and the additive oxides enhanced glass durability at 100 deg C, while B{sub 2}O{sub 3} and Na{sub 2}O+Li{sub 2}O diminished the initial corrosion resistance. For the long term, plotting the effects of the oxides showed that additive oxides, Al{sub 2}O{sub 3} and SiO{sub 2} enhanced glass durability at 90 deg C, in that order, while Na{sub 2}O+Li{sub 2}O still diminished the corrosion resistance. The fission products and actinide oxides and ZrO{sub 2} have apparently a slight beneficial effect on the glass durability, under saturation conditions (long term). (author)

  6. Results from the long-term interaction and modeling of SRL-131 glass with aqueous solutions

    International Nuclear Information System (INIS)

    Strachan, D.M.; Pederson, L.R.; Lokken, R.O.

    1985-11-01

    Leaching studies of SRL-131 simulated defense nuclear waste glass have been carried out to two years duration, in leachants that simulate groundwaters of different ionic strengths. The leachability of SRL-131 glass followed the trend: deionized water > silicate water > salt brine = simulated groundwater at 40 0 C and deionized water = simulated groundwater > silicate water > salt brine at 90 0 C. The results are in general agreement with calculations using the PHREEQE geochemical code and indicate a sometimes complex sequence temperature dependent of mineral precipitation and redissolution. The calculations done in this study have illustrated the complexity of the precipitation sequence of mineral phases as a function of reaction progress. Complex, temperature dependent, precipitation/dissolution sequences have also been observed in experiments using natural materials, such as sea water and basaltic glass. The results of this two-year study point to the need for further work in establishing the thermodynamics of the observed phases and the relationship of these phases to the thermodynamically favored suite of phases for any given waste form/host rock/groundwater system. In order to study these phases, very long-term experiments may be necessary so that the phases grow to sizes which can be studied. In addition, geochemical codes should be used to better understand the experiments, to design leach test matrices, and to help predict the long-term results of experiments. The combination of long-term experiments and geochemical codes should lead to an improved method for forecasting the long-term behavior of a nuclear waste repository. 15 refs., 3 figs., 4 tabs

  7. Factors influencing chemical durability of nuclear waste glasses

    International Nuclear Information System (INIS)

    Feng, Xiangdong; Bates, J.K.

    1993-01-01

    A short summary is given of our studies on the major factors that affect the chemical durability of nuclear waste glasses. These factors include glass composition, solution composition, SA/V (ratio of glass surface area to the volume of solution), radiation, and colloidal formation. These investigations have enabled us to gain a better understanding of the chemical durability of nuclear waste glasses and to accumulate.a data base for modeling the long-term durability of waste glass, which will be used in the risk assessment of nuclear waste disposal. This knowledge gained also enhances our ability to formulate optimal waste glass compositions

  8. Dissolution rates of DWPF glasses from long-term PCT

    International Nuclear Information System (INIS)

    Ebert, W.L.; Tam, S.W.

    1996-01-01

    We have characterized the corrosion behavior of several Defense Waste Processing Facility (DWPF) reference waste glasses by conducting static dissolution tests with crushed glasses. Glass dissolution rates were calculated from measured B concentrations in tests conducted for up to five years. The dissolution rates of all glasses increased significantly after certain alteration phases precipitated. Calculation of the dissolution rates was complicated by the decrease in the available surface area as the glass dissolves. We took the loss of surface area into account by modeling the particles to be spheres, then extracting from the short-term test results the dissolution rate corresponding to a linear decrease in the radius of spherical particles. The measured extent of dissolution in tests conducted for longer times was less than predicted with this linear dissolution model. This indicates that advanced stages of corrosion are affected by another process besides dissolution, which we believe to be associated with a decrease in the precipitation rate of the alteration phases. These results show that the dissolution rate measured soon after the formation of certain alteration phases provides an upper limit for the long-term dissolution rate, and can be used to determine a bounding value for the source term for radionuclide release from waste glasses. The long-term dissolution rates measured in tests at 20,000 per m at 90 degrees C in tuff groundwater at pH values near 12 for the Environmental Assessment glass and glasses made with SRL 131 and SRL 202 frits, respectively

  9. The dual effect of Mg on the long-term alteration rate of AVM nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Thien, Bruno M.J., E-mail: bruno.thien@psi.ch [Commissariat a l' Energie Atomique (CEA), Laboratoire d' Etude du Comportement a Long Terme des Materiaux, DTCD/DEN, Marcoule, 30207 Bagnols sur Ceze (France); Godon, Nicole; Ballestero, Anthony; Gin, Stephane [Commissariat a l' Energie Atomique (CEA), Laboratoire d' Etude du Comportement a Long Terme des Materiaux, DTCD/DEN, Marcoule, 30207 Bagnols sur Ceze (France); Ayral, Andre [Institut Europeen des Membranes, Universite de Montpellier, cc. 047, Place Eugene Bataillon, 34095 Montpellier (France)

    2012-08-15

    Inactive Mg-containing nuclear waste glasses simulating actual HLW glasses produced at the AVM facility since 1995 (Marcoule, France), were leached in aqueous solution in order to assess their long term behaviour. The focus was on the effect of Mg. Our findings show that the distribution of Mg between the gel and the secondary crystalline phases strongly influences the glass dissolution rate. The glasses were leached in initially pure water (T = 50 Degree-Sign C, surface/volume ratio (S/V) = 55 cm{sup -1}) with and without addition of Mg{sup 2+} in the solution. 'Mg-free' AVM glasses were also leached in initially pure water (50 Degree-Sign C, 200 cm{sup -1}) with and without addition of Mg{sup 2+} in the solution. Accurate identification of Mg-smectite secondary phases and gel composition calculations enable us to explain the different observed behaviours. Glass AVM 10 was the less altered glass in pure water. Its gel is more protective than the other probably because it is mainly balanced by Mg{sup 2+}. The addition of Mg{sup 2+} in the solution triggers the precipitation of smectite (not observed in pure water experiments), which consumes silicon from the gel, leading finally to a significant increase of the glass alteration. We also focused on the AVM 6 glass which was the most altered glass in pure water of available AVM glasses. Contrary to AVM 10, the gel of AVM 6 is mainly balanced by Na{sup +}. The addition of Mg{sup 2+} in the solution allows the replacement of Na by Mg within the gel. This reaction clearly improves the gel properties and allows the rate to decrease more rapidly, in spite of the precipitation of smectite (also observed in pure water experiments). Finally, the two glasses were altered in synthetic groundwater (SGW) with a high Mg-Ca content. As expected from the previous observations, AVM 10 was insensitive to the presence of alkaline earths in the leaching solution whereas AVM 6 glass exhibited a lower rate than in pure water

  10. The use of natural and archaeological analogues for understanding the long-term behavior of nuclear glasses; L'utilisation des analogues naturels et archeologiques pour la comprehension de l'evolution a long terme des verres nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Libourel, G.; Verney-Carron, A.; Morlok, A. [CNRS UPR2300, centre de recherches petrographiques et geochimiques (CRPG), Nancy-universite, 15, rue Notre-Dame-des-Pauvres, BP 20, 54501 Vandoeuvre-les-Nancy (France); Libourel, G. [INPL, Ecole nationale superieure de geologie (ENSG), Nancy-universite, rue du Doyen-Marcel-Roubault, BP 20, 54501 Vandoeuvre-les-Nancy (France); Gin, St. [CEA Marcoule, DEN/SECM/LCLT, 30 (France); Sterpenich, J. [G2R, CNRS-UMR 7566, Nancy-universite, BP 70239, 54506 Vandoeuvre-les-Nancy cedex (France); Michelin, A.; Neff, D.; Dillmann, Ph. [Laboratoire archeomateriaux et prevision de l' alteration LAPA/SIS2 M, CEA and CNRS, Bat 637, CEA Saclay, 91191 Gif/Yvette cedex (France); Michelin, A.; Dillmann, Ph. [LMC IRAMAT UMR5060 CNRS (France)

    2011-02-15

    The knowledge of the long-term behavior of nuclear waste in anticipation of ultimate disposal in a deep geological formation is of prime importance in a waste management strategy. If phenomenological models have been developed to predict the long-term behavior of these materials, validating these models remains a challenge, when considering the time scale of radioactive decay of radionuclides of environmental concern, typically 10{sup 4}-10{sup 5} yrs. Here we show how natural or archaeological analogues provide critical constraints not only on the phenomenology of glass alteration and the mechanisms involved, but also on the ability of experimental short-term data to predict long-term alteration in complex environments. (authors)

  11. The prediction of the long-term behaviour of glasses

    International Nuclear Information System (INIS)

    Courtois, Ch.; Regent, A.; Plas, F.

    1997-01-01

    Several experts draw a conclusion about the scientific content of this week-long seminar. All agree to highlight the variety and quality of the work done. It appears that there is a consensus about the phenomenology of the long-term behaviour of glasses. All the parameters that are likely to intervene in alteration processes have been identified, but some particular points require further studies: - the impact of alpha, beta and gamma irradiation, - the alteration of glass in no-saturated water, - the coupling effect with the materials surrounding glass (metal canister, over-container...), - the optimization of glass composition to deal with high burn-up spent fuels, - the relation between the formation free energy of glasses and their alteration kinetics, - the release of radionuclides trapped in glass, and - the use of mutual analogue. (A.C.)

  12. Long term alteration of glass/iron systems in anoxic conditions: contribution of archaeological analogues to the study of mechanisms

    International Nuclear Information System (INIS)

    Michelin, A.

    2011-01-01

    The knowledge of glass alteration mechanisms arouses a great interest over the last decades, particularly in the nuclear field, since vitrification is used to stabilize high-level radioactive wastes in many countries. In the French concept, these nuclear glasses would be stored in geological repositories. This multi-barrier system (glass matrix, stainless steel container, low carbon steel over-container, geological barrier) must ensure the durable confinement of radionuclides. But laboratory experiments do not permit to predict directly the behaviour of these materials over typically a million-year timescale and the extrapolation of short-term laboratory data to long time periods remains problematic. Part of the validation of the predictive models relies on natural and archaeological analogues. Here, the analogues considered are vitreous slags produced as wastes by a blast furnace working during the 16. century in the iron making site of Glinet (Normandy, France). The choice of these specific artefacts is due to the presence of particular interface between corrosion products and glass matrix inside the blocks. Thus, they can help us to understand the influence of iron corrosion products from the steel containers on the glass alteration mechanisms and kinetics. A first part of this work concerns the characterization of the archaeological artefacts especially the interfacial area between glass and corrosion products inside cracks using micro and nano-beam techniques (μRaman spectroscopy, FEG-SEM, TEM, STXM...). This study has enabled to suggest an alteration process with different geochemical steps that leads to alteration profile observed. One of these steps is the precipitation of an iron silicate phase. In a second time, leaching experiments were set up on a synthetic glass of similar composition than the archaeological one to understand the first stages of alteration with and without iron. Two phenomena can be observed: silicon sorption and precipitation of iron

  13. Glasses and nuclear waste vitrification

    International Nuclear Information System (INIS)

    Ojovan, Michael I.

    2012-01-01

    Glass is an amorphous solid material which behaves like an isotropic crystal. Atomic structure of glass lacks long-range order but possesses short and most probably medium range order. Compared to crystalline materials of the same composition glasses are metastable materials however crystallisation processes are kinetically impeded within times which typically exceed the age of universe. The physical and chemical durability of glasses combined with their high tolerance to compositional changes makes glasses irreplaceable when hazardous waste needs immobilisation for safe long-term storage, transportation and consequent disposal. Immobilisation of radioactive waste in glassy materials using vitrification has been used successfully for several decades. Nuclear waste vitrification is attractive because of its flexibility, the large number of elements which can be incorporated in the glass, its high corrosion durability and the reduced volume of the resulting wasteform. Vitrification involves melting of waste materials with glass-forming additives so that the final vitreous product incorporates the waste contaminants in its macro- and micro-structure. Hazardous waste constituents are immobilised either by direct incorporation into the glass structure or by encapsulation when the final glassy material can be in form of a glass composite material. Both borosilicate and phosphate glasses are currently used to immobilise nuclear wastes. In addition to relatively homogeneous glasses novel glass composite materials are used to immobilise problematic waste streams. (author)

  14. The use of natural analogues in the long-term extrapolation of glass corrosion processes

    International Nuclear Information System (INIS)

    Lutze, W.; Grambow, B.; Ewing, R.C.; Jercinovic, M.J.

    1987-01-01

    One of the most critical aspects of nuclear waste management is the extrapolation of materials and systems behavior from short term experiments, typically on the order of one year, over comparatively very long periods of time. Safety and risk analyses have to rely on extrapolations and the respective findings have to be evaluated in the frame of licensing procedures. In this unique situation, any source of information that can lend support to the credibility of predicted behavior, should be exploited and investigated with great care. There are natural systems, e.g. the Oklo reactor, which can provide evidence of radionuclide migration over very long periods of time and thus help to answer specific questions of interest. Natural glasses and minerals can serve as analogues for both glass and crystalline nuclear waste forms, and the alteration of the natural materials can be studied to infer information on the behavior of the man-made products in geologic environments. This paper reviews most of the work performed by the authors and their colleagues in this field together with information available from literature and discusses the extent to which natural glasses can be used to validate or verify predictions. (author)

  15. Nuclear Energy, Long Term Requirements

    International Nuclear Information System (INIS)

    Knapp, V.

    2006-01-01

    There are serious warnings about depletion of oil and gas and even more serious warnings about dangers of climate change caused by emission of carbon dioxide. Should developed countries be called to replace CO2 emitting energy sources as soon as possible, and the time available may not be longer then few decades, can nuclear energy answer the call and what are the requirements? Assuming optimistic contribution of renewable energy sources, can nuclear energy expand to several times present level in order to replace large part of fossil fuels use? Paper considers intermediate and long-term requirements. Future of nuclear power depends on satisfactory answers on several questions. First group of questions are those important for near and intermediate future. They deal with economics and safety of nuclear power stations in the first place. On the same time scale a generally accepted concept for radioactive waste disposal is also required. All these issues are in the focus of present research and development. Safer and more economical reactors are targets of international efforts in Generation IV and INPRO projects, but aiming further ahead these innovative projects are also addressing issues such as waste reduction and proliferation resistance. However, even assuming successful technical development of these projects, and there is no reason to doubt it, long term and large-scale nuclear power use is thereby not yet secured. If nuclear power is to play an essential role in the long-term future energy production and in reduction of CO2 emission, than several additional questions must be replied. These questions will deal with long-term nuclear fuel sufficiency, with necessary contribution of nuclear power in sectors of transport and industrial processes and with nuclear proliferation safety. This last issue is more political then technical, thus sometimes neglected by nuclear engineers, yet it will have essential role for the long-term prospects of nuclear power. The

  16. Contributions of vitreous natural analogs to the investigation of long-term nuclear glass behavior

    International Nuclear Information System (INIS)

    Techer, I.

    1999-01-01

    This study assesses the extend of the analogy between the alteration behavior in water and in a moist clay environment of aluminosilicate volcanic glass and alumino-borosilicate nuclear containment glass. Basaltic glass alteration in water initially occurs by hydrolysis processes with an activation energy on the order of 73 kJ.mol -1 . As the reaction progresses, the alteration rate drops by over four orders of magnitude from the initial rate r 0 , The alteration kinetics are not governed by the alteration solution chemistry alone, the glass alteration film appears to have a major role as a diffusion barrier limiting the transfer of reaction species and products. All these aspects highlight the behavioral analogy between basaltic glass and nuclear borosilicate glass in aqueous media. Conversely, the alteration reaction of obsidian-type volcanic glass involves other mechanisms than those governing the dissolution of borosilicate glass. Basaltic glass alteration is also examined in the presence of a clay environmental material, in a study of the natural basaltic glass and argillaceous pelites system of the Salagou basin in southern France, in an approach combining mineralogical, chemical and isotopic data to assess the interactions between a basaltic glass and the argillaceous pelites. Laboratory leach test results with basaltic glass and measured data for the Salagou glass in its natural environment are modeled using a code implementing a kinetic law coupling diffusive transfer of dissolved silica with a reaction affinity law. (author)

  17. Use of natural and archaeological analogs to validate long - term behaviour of HLW glass in geological disposal conditions

    International Nuclear Information System (INIS)

    Gin, S.; Verney-Carron, A.; Libourel, G.

    2008-01-01

    Some old basaltic and Roman glasses have been studied in order to validate the predictive models developed for assessing the long-term behaviour of nuclear glass in geological repository conditions. Leaching behaviour of basaltic glass altered in both laboratory and natural environment conditions allows to validate the key mechanisms that control glass dissolution kinetics and the order of magnitude of glass packages lifetime In a stable clayey formation (French reference concept for a geological disposal of high level waste). The study of Roman glass blocks (with the same geometry as nuclear glass package) altered during 1800 years in a marine environment gives new insight on the basic mechanisms involved in confined media (fractures and small cracks). Results show the importance of the coupling between transport of reactive species and chemical reactions. This study, still in progress, would allow to validate the modelling of such a complex system. (author)

  18. Long-term behavior of glass-ceramic zirconolite; Etude du comportement a long terme des vitrocristallins a base de zirconolite

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Ch

    2003-07-01

    This work is a part of the investigation of new containment matrices considered for specific conditioning of radionuclides after separation. The aim was to demonstrate the long-term aqueous corrosion resistance of the glass-ceramic zirconolite considered for the conditioning of plutonium and the minor actinides. This material is composed of crystals of zirconolite (CaZrTi{sub 2}O{sub 7}) dispersed in a residual vitreous phase. It appears that glass-ceramic zirconolite presents a better kinetic behavior than the nuclear glass R 7T7. This is mainly due to a more important rate decrease that occurs more rapidly, that induces a quantity of glass altered at least 10 times as small as for R 7T7 glass. This high slowdown of the alteration rate is attributed to the formation of an alteration film that has been the subject of a specific study. We have demonstrated that the rate decrease was controlled as for the R7T7 glass by the amorphous phase of the alteration film forming a diffusion barrier for reactive species. It seems that the porosity is not the single parameter that explains the protective effect of the gel. The main differences compared with R7T7 glass are that silicon does not control the alteration of the material and that the gel is composed of two distinct phases. We have in particular identified a dense phase enriched in titanium and neodymium that probably influences deeply the kinetics. (author)

  19. Geochemical modelling of the long-term dissolution behaviour of the French nuclear glass R7T7

    International Nuclear Information System (INIS)

    Michaux, L.; Mouche, E.; Petit, J.-C.; Fritz, B.

    1992-01-01

    The long-term dissolution behaviour of the French nuclear reference glass R7T7 was studied by means of the geochemical code DISSOL. New experimental data which support some of the assumptions of DISSOL are presented: namely, that the dissolution is congruent and that the altered layer can be considered as an assemblage of secondary phases. At 100 o C the main results of modelling are that the altered layer is essentially formed of a pure siliceous phase (amorphous silica or chalcedony) associated with smectites and zeolites. This sequence of secondary minerals is closely linked to the chemical composition of the glass. For high degrees of reaction, corresponding to high B concentration, the ionic strength reaches 1 and the pH varies from 9 to 10 depending on the CO 2 fugacity; B,Li and Na are essentially found in solution and their concentrations depend on the amount of dissolved glass. By contrast Fe,Al and Zn have low solution concentrations which are controlled by solubility products of secondary minerals. Silicon and Ca have an intermediate behaviour which depends on the choice of selected secondary minerals. The total volume of the secondary phases is always lower than that of the corresponding dissolved glass. The results of modelling compared to static leaching experimental results show only minor differences which can be explained by kinetic control or colloid formation. It is concluded that the altered layer is not a barrier to diffusion. The consequences of this work for actinide solubility are also discussed. (author)

  20. Effects of beta/gamma radiation on nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-07-01

    A key challenge in the disposal of high-level nuclear waste (HLW) in glass waste forms is the development of models of long-term performance based on sound scientific understanding of relevant phenomena. Beta decay of fission products is one source of radiation that can impact the performance of HLW glasses through the interactions of the emitted {beta}-particles and g-rays with the atoms in the glass by ionization processes. Fused silica, alkali silicate glasses, alkali borosilicate glasses, and nuclear waste glasses are all susceptible to radiation effects from ionization. In simple glasses, defects (e.g., non-bridging oxygen and interstitial molecular oxygen) are observed experimentally. In more complex glasses, including nuclear waste glasses, similar defects are expected, and changes in microstructure, such as the formation of bubbles, have been reported. The current state of knowledge regarding the effects of {beta}/{gamma} radiation on the properties and microstructure of nuclear waste glasses are reviewed. (author)

  1. Effects of beta/gamma radiation on nuclear waste glasses

    International Nuclear Information System (INIS)

    Weber, W.J.

    1997-01-01

    A key challenge in the disposal of high-level nuclear waste (HLW) in glass waste forms is the development of models of long-term performance based on sound scientific understanding of relevant phenomena. Beta decay of fission products is one source of radiation that can impact the performance of HLW glasses through the interactions of the emitted β-particles and g-rays with the atoms in the glass by ionization processes. Fused silica, alkali silicate glasses, alkali borosilicate glasses, and nuclear waste glasses are all susceptible to radiation effects from ionization. In simple glasses, defects (e.g., non-bridging oxygen and interstitial molecular oxygen) are observed experimentally. In more complex glasses, including nuclear waste glasses, similar defects are expected, and changes in microstructure, such as the formation of bubbles, have been reported. The current state of knowledge regarding the effects of β/γ radiation on the properties and microstructure of nuclear waste glasses are reviewed. (author)

  2. Long-term product consistency test of simulated 90-19/Nd HLW glass

    International Nuclear Information System (INIS)

    Gan, X.Y.; Zhang, Z.T.; Yuan, W.Y.; Wang, L.; Bai, Y.; Ma, H.

    2011-01-01

    Chemical durability of 90-19/Nd glass, a simulated high-level waste (HLW) glass in contact with the groundwater was investigated with a long-term product consistency test (PCT). Generally, it is difficult to observe the long term property of HLW glass due to the slow corrosion rate in a mild condition. In order to overcome this problem, increased contacting surface (S/V = 6000 m -1 ) and elevated temperature (150 o C) were employed to accelerate the glass corrosion evolution. The micro-morphological characteristics of the glass surface and the secondary minerals formed after the glass alteration were analyzed by SEM-EDS and XRD, and concentrations of elements in the leaching solution were determined by ICP-AES. In our experiments, two types of minerals, which have great impact on glass dissolution, were found to form on 90-19/Nd HLW glass surface when it was subjected to a long-term leaching in the groundwater. One is Mg-Fe-rich phyllosilicates with honeycomb structure; the other is aluminosilicates (zeolites). Mg and Fe in the leaching solution participated in the formation of phyllosilicates. The main components of phyllosilicates in alteration products of 90-19/Nd HLW glass are nontronite (Na 0.3 Fe 2 Si 4 O 10 (OH) 2 .4H 2 O) and montmorillonite (Ca 0.2 (Al,Mg) 2 Si 4 O 10 (OH) 2 .4H 2 O), and those of aluminosilicates are mordenite ((Na 2 ,K 2 ,Ca)Al 2 Si 10 O 24 .7H 2 O)) and clinoptilolite ((Na,K,Ca) 5 Al 6 Si 30 O 72 .18H 2 O). Minerals like Ca(Mg)SO 4 and CaCO 3 with low solubility limits are prone to form precipitant on the glass surface. Appearance of the phyllosilicates and aluminosilicates result in the dissolution rate of 90-19/Nd HLW glass resumed, which is increased by several times over the stable rate. As further dissolution of the glass, both B and Na in the glass were found to leach out in borax form.

  3. The long-term acceleration of waste glass corrosion: A preliminary review

    International Nuclear Information System (INIS)

    Kielpinski, A.L.

    1995-07-01

    Whereas a prior conception of glass dissolution assumed a relatively rapid initial dissolution which then slowed to a smaller, fairly constant longer-term rate, some recent work suggests that these two stages are followed by a third phase of dissolution, in which the dissolution rate is accelerated with respect to what had previously been thought of as the final long-term rate. The goals of the present study are to compile experimental data which may have a bearing on this phenomena, and to provide an initial assessment of these data. The Savannah River Technology Center (SRTC) is contracted to develop glass formulation models for vitrification of Hanford low-level waste (LLW), in support of the Hanford Tank Waste Remediation System Technology Development Program. The phenomenon of an increase in corrosion rate, following a period characterized by a low corrosion rate, has been observed by a number of researchers on a number of waste glass compositions. Despite inherent ambiguities arising from SA/V (glass surface area to solution volume ratio) and other effects, valid comparisons can be made in which accelerated corrosion was observed in one test, but not in another. Some glass compositions do not appear to attain a plateau region; it may be that the observation of continued, non-negligible corrosion in these glasses represents a passage from the initial rate to the accelerated rate. The long-term corrosion is a function of the interaction between the glass and its environment, including the leaching solution and the surrounding materials. Reaction path modeling and stability field considerations have been used with some success to predict the changes in corrosion rate over time, due to these interactions. The accelerated corrosion phenomenon highlights the need for such integrated corrosion modeling and the scenario-specific nature of a particular glass composition's durability

  4. Contribution and limits of geochemical calculation codes to evaluate the long term behavior of nuclear waste glasses

    International Nuclear Information System (INIS)

    Fritz, B.; Crovisier, J.L.

    1997-01-01

    Geochemical models have been intensively developed by researchers since more than twenty five years in order to be able to better understand and/or predict the long term stability/instability of water-rock systems. These geochemical codes were ail built first on a thermodynamic approach deriving from the application of Mass Action Law. The resulting first generation of models allowed to detect or predict the possible mass transfers (thermodynamic models) between aqueous and mineral phases including irreversible dissolutions of primary minerals and/or precipitation near equilibrium of secondary mineral phases. The recent development of models based on combined thermodynamics and kinetics opens the field of Lime dependent reactions prediction. This is crucial if one thinks to combine geochemical and hydrological studies in the so-called coupled models for transport and reaction calculations. All these models are progressively applied to the prediction of long term behavior of mineral phases, and more specifically glasses. In order to succeed in chat specific extension of the models, but also the data bases, there is a great need for additional new data from experimental approaches and from natural analogues. The modelling approach appears than also very useful in order to interpret the results of experimental data and to relate them to long term data extracted from natural analogues. Specific functions for modelling solid solution phases mat' also be used for describing the products of glasses alterations. (authors)

  5. Helium behaviour in nuclear glasses

    International Nuclear Information System (INIS)

    Fares, T.

    2011-01-01

    with helium at high concentrations, doped with curium and irradiated in nuclear reactor showed a homogeneous microstructure free of helium bubbles, pores or cracking. The results of the present work were used to develop a long-term diffusion model of helium in an industrial R7T7 nuclear waste glass. The model considers the thermal history, the fracturing and the alpha activity of the glass. (author) [fr

  6. High-level nuclear waste borosilicate glass: A compendium of characteristics

    International Nuclear Information System (INIS)

    Cunnane, J.C.; Bates, J.K.; Ebert, W.L.; Feng, X.; Mazer, J.J.; Wronkiewicz, D.J.; Sproull, J.; Bourcier, W.L.; McGrail, B.P.

    1992-01-01

    With the imminent startup, in the United States, of facilities for vitrification of high-level nuclear waste, a document has been prepared that compiles the scientific basis for understanding the alteration of the waste glass products under the range of service conditions to which they may be exposed during storage, transportation, and eventual geologic disposal. A summary of selected parts of the content of this document is provided. Waste glass alterations in a geologic repository may include corrosion of the glass network due to groundwater and/or water vapor contact. Experimental testing results are described and interpreted in terms of the underlying chemical reactions and physical processes involved. The status of mechanistic modeling, which can be used for long-term predictions, is described and the remaining uncertainties associated with long-term simulations are summarized

  7. Cold-crucible fabrication of nuclear glasses

    International Nuclear Information System (INIS)

    Boen, R.

    2010-01-01

    Vitrification has stood the nuclear industry in good stead, for many years now, as a safe long-term conditioning technology for high-level waste. Major advances are nonetheless still being made, with the development of the cold-crucible technology, affording as it does new possibilities, in terms of volume reduction, and of extending the range of waste products amenable to incorporation. Indeed, by allowing higher melting temperatures to be achieved (1200 - 1400 C degrees), this process opens the way to a considerable increase in glass production capacities, and the fabrication of novel matrices, involving higher incorporation rates than current glasses. In the cold-crucible technology, materials put into the crucible are heated directly through induction. The crucible made of metal is cooled by water circulation. Where the glass comes into contact with the cold wall, a thin layer of solidified glass forms, with a thickness of 5-10 mm preventing the metal forming the crucible from coming into contact with the molten glass. A full scale pilot of the cold crucible was constructed at the La Hague vitrification workshop

  8. Spectroscopic studies of irradiated glasses: Application in nuclear dosimetry

    International Nuclear Information System (INIS)

    Farah, Khaled

    2010-01-01

    The present work aims to study the effects of ionizing radiation on silicate glasses in order to develop a new dosimetry system simple, precise, stable and inexpensive. Indeed, changes in mechanical properties, optical and paramagnetic glasses when subjected to ionizing radiation. The prediction of long-term behavior, physical aging under irradiation, the glass is paramount. many studies have brought many ways to avoid obscuring glass windows used in nuclear reactors or hot cells and optical devices. Recently, much work has concentrated on the application of the color induced by irradiation for developing a recyclable glass in the glass industry is of great interest economically and environmentally.

  9. Neural network analysis of nuclear waste glass composition vs durability

    International Nuclear Information System (INIS)

    Seibel, C.K.

    1994-01-01

    The relationship between the chemical composition of oxide glasses and their physical properties is poorly understood, but it is becoming more important as vitrification (transformation into glass) of high-level nuclear waste becomes the favored method for long-term storage. The vitrified waste will be stored deep in geologic repositories where it must remain intact for at least 10,000 years. A strong resistance to groundwater exposure; i.c. a slow rate of glass dissolution, is of great importance. This project deals specifically with glass samples developed and tested for the nuclear fuel reprocessing facility near West Valley, New York. This facility needs to dispose of approximately 2.2 million liters of high-level radioactive liquid waste currently stored in stainless steel tanks. A self-organizing, artificial neural network was used to analyze the trends in the glass dissolution data for the effects of composition and the resulting durability of borosilicate glasses in an aqueous environment. This durability data can be used to systematically optimize the properties of the complex nuclear glasses and slow the dissolution rate of radionuclides into the environment

  10. Composition - structure - properties relationships of peraluminous glasses for nuclear waste containment

    International Nuclear Information System (INIS)

    Piovesan, Victor

    2016-01-01

    Part of the Research and Development program concerning high level nuclear waste conditioning aims to assess new glass formulations able to incorporate a high waste content with enhanced properties in terms of homogeneity, thermal stability, long term behavior and process ability. This study focuses on peraluminous glasses, defined by an excess of aluminum ions Al"3"+ in comparison with modifier elements such as Na"+, Li"+ or Ca"2"+. A Design of Experiment approach has been employed to determine relationships between composition of simplified peraluminous glasses (SiO_2 - B_2O_3 - Al_2O_3 - Na_2O - Li_2O - CaO - La_2O_3) and their physical properties such as viscosity, glass transition temperature and glass homogeneity. Moreover, some structural investigation (NMR) was performed in order to better understand the structural role of Na"+, Li"+ and Ca"2"+ and the structural organization of peraluminous glasses. Then, physical and chemical properties of fully simulated peraluminous glasses were characterized to evaluate transposition between simplified and fully simulated glasses and also to put forward the potential of peraluminous glasses for nuclear waste containment. (author) [fr

  11. Natural analogue of nuclear waste glass in a geologic formation. Study on long-term behavior of volcanic glass shards collected from drill cores

    International Nuclear Information System (INIS)

    Yoshikawa, Hideki; Yui, Mikazu; Futakuchi, Katsuhito; Hiroki, Minenari

    2005-01-01

    Alteration of the volcanic glass in geologic formation was investigated as one of the natural analog for a glass of high-level nuclear waste in geological disposal. We analyzed some volcanic glasses included in the core sample of the bore hole and estimated the history of its burying and observed its alteration using the polarizing microscope. Some information at the piling up temperature and the piling up time was collected. (author)

  12. Lead-iron phosphate glass: a stable storage medium for high-level nuclear waste

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.

    1984-01-01

    Results are presented which show that lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high-level defense and high-level commercial radioactive waste. Relative to the borosilicate nuclear waste glasses that are currently the ''reference'' waste form for the long-term disposal of nuclear waste, lead-iron phosphate glasses have several distinct advantages: (1) an aqueous corrosion rate that is about 1000 times lower, (2) a processing temperature that is 100 0 to 250 0 C lower and, (3) a much lower melt viscosity in the temperature range from 800 0 to 1000 0 C. Most significantly, the lead-iron phosphate waste form can be processed using a technology similar to that developed for borosilicate nuclear waste glasses

  13. Glass and nuclear wastes

    International Nuclear Information System (INIS)

    Sombret, C.

    1982-10-01

    Glass shows interesting technical and economical properties for long term storage of solidified radioactive wastes by vitrification or embedding. Glass composition, vitrification processes, stability under irradiation, thermal stability and aqueous corrosion are studied [fr

  14. The long-term outlook for nuclear capacity in Ontario

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1979-04-01

    This report derives three estimates of long-term nuclear growth in Ontario for use in strategy studies of alternate nuclear fuel cycles. The low and high estimates encompass the full range of possible long-term nuclear growth rates. The middle, or base growth, estimate represents the nuclear growth pattern which seems at the present time most likely to occur. For the base growth estimate, nuclear capacity in Ontario reaches 31 GWe in 2000, grows to 175 GWe by 2060, and then remains constant. For the high growth estimate, the capacity in 2000 is 33 GWe, and climbs continuously to 833 GWe by the year 2100. (auth)

  15. Long-term characteristics of nuclear emulsion

    International Nuclear Information System (INIS)

    Naganawa, N; Kuwabara, K

    2010-01-01

    Long-term characteristics of the nuclear emulsion so called 'OPERA film' used in the neutrino oscillation experiment, OPERA, has been studied for 8 years since its production or refreshing after it. In the results, it turned out to be excellent in sensitivity, amount of random noise, and refreshing characteristics. The retention capacity of latent image of tracks was also studied. The result will open the way to the recycling of 7,000,000 emulsion films which will remain not developed after 5 years of OPERA's run, and other long-term experiments with emulsion.

  16. Long-term characteristics of nuclear emulsion

    Science.gov (United States)

    Naganawa, N.; Kuwabara, K.

    2010-02-01

    Long-term characteristics of the nuclear emulsion so called ``OPERA film'' used in the neutrino oscillation experiment, OPERA, has been studied for 8 years since its production or refreshing after it. In the results, it turned out to be excellent in sensitivity, amount of random noise, and refreshing characteristics. The retention capacity of latent image of tracks was also studied. The result will open the way to the recycling of 7,000,000 emulsion films which will remain not developed after 5 years of OPERA's run, and other long-term experiments with emulsion.

  17. Long-Term Problems of Nuclear Energy, October 1976

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    The Text was written by Enelbert Broda in Oktober 1976. In this report, the physicist and chemist Engelbert Broda discusses various areas of peaceful uses of nuclear energy and concludes that the negative aspects outweigh the positive and that the use of nuclear energy has to be rejected in the long term. In 16 chapters the biggest and most dangerous problems are discussed. Include the unresolved question of disposal, problems of reprocessing and transport of fissile materials, the proliferation of nuclear weapons technology, risks of terrorism, dismantling and decontamination of old nuclear power plants, the toxicity of fissile material, as well as the general unprofitable use of nuclear power plants. As a long-term alternative the author suggests an intensification of the exploitation of solar energy, as well as a deliberate restriction of the rising demand for energy.(roessner) [de

  18. Long-Term Problems of Nuclear Energy, December 1976

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    The Text was written by Enelbert Broda in Oktober 1976. In this report, the physicist and chemist Engelbert Broda discusses various areas of peaceful uses of nuclear energy and concludes that the negative aspects outweigh the positive and that the use of nuclear energy has to be rejected in the long term. In 16 chapters the biggest and most dangerous problems are discussed. Include the unresolved question of disposal, problems of reprocessing and transport of fissile materials, the proliferation of nuclear weapons technology, risks of terrorism, dismantling and decontamination of old nuclear power plants, the toxicity of fissile material, as well as the general unprofitable use of nuclear power plants. As a long-term alternative the author suggests an intensification of the exploitation of solar energy, as well as a deliberate restriction of the rising demand for energy.(roessner)

  19. Irradiations effects on the structure of boro-silicated glasses: long term behaviour of nuclear waste glassy matrices; Effets d'irradiations sur la structure de verres borosilicates - comportement a long terme des matrices vitreuses de stockage des dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Bonfils, J. de

    2007-09-15

    This work deals with the long term behaviour of R7T7-type nuclear waste glasses and more particularly of non-active boro-silicated glasses made up of 3 or 5 oxides. Radioactivity of active glasses is simulated by multi energies ions implantations which reproduce the same defects. The damages due to the alpha particles are simulated by helium ions implantations and those corresponding to the recoil nucleus are obtained with gold ions ones. Minor actinides, stemming from the used fuel, is simulated by trivalent rare-earths (Eu{sup 3+} and Nd{sup 3+}). In a first part, we have shown by macroscopic experiments (Vickers hardness - swelling) and optical spectroscopies (Raman - ATR-IR) that the structure of the glassy matrices is modified under implantations until a dose of 2,3.10{sup 13} at.cm{sup -2}, which corresponds to a R7T7 storage time estimated at 300 years. Beyond this dose, no additional modifications have been observed. The second part concerns the local environment of the rare-earth ions in glasses. Two different environments were found and identified as follows: one is a silicate rich one and the other is attributed to a borate rich one. (author)

  20. Long term wet spent nuclear fuel storage

    International Nuclear Information System (INIS)

    1987-04-01

    The meeting showed that there is continuing confidence in the use of wet storage for spent nuclear fuel and that long-term wet storage of fuel clad in zirconium alloys can be readily achieved. The importance of maintaining good water chemistry has been identified. The long-term wet storage behaviour of sensitized stainless steel clad fuel involves, as yet, some uncertainties. However, great reliance will be placed on long-term wet storage of spent fuel into the future. The following topics were treated to some extent: Oxidation of the external surface of fuel clad, rod consolidation, radiation protection, optimum methods of treating spent fuel storage water, physical radiation effects, and the behaviour of spent fuel assemblies of long-term wet storage conditions. A number of papers on national experience are included

  1. The long-term Global LAnd Surface Satellite (GLASS) product suite and applications

    Science.gov (United States)

    Liang, S.

    2015-12-01

    Our Earth's environment is experiencing rapid changes due to natural variability and human activities. To monitor, understand and predict environment changes to meet the economic, social and environmental needs, use of long-term high-quality satellite data products is critical. The Global LAnd Surface Satellite (GLASS) product suite, generated at Beijing Normal University, currently includes 12 products, including leaf area index (LAI), broadband shortwave albedo, broadband longwave emissivity, downwelling shortwave radiation and photosynthetically active radiation, land surface skin temperature, longwave net radiation, daytime all-wave net radiation, fraction of absorbed photosynetically active radiation absorbed by green vegetation (FAPAR), fraction of green vegetation coverage, gross primary productivity (GPP), and evapotranspiration (ET). Most products span from 1981-2014. The algorithms for producing these products have been published in the top remote sensing related journals and books. More and more applications have being reported in the scientific literature. The GLASS products are freely available at the Center for Global Change Data Processing and Analysis of Beijing Normal University (http://www.bnu-datacenter.com/), and the University of Maryland Global Land Cover Facility (http://glcf.umd.edu). After briefly introducing the basic characteristics of GLASS products, we will present some applications on the long-term environmental changes detected from GLASS products at both global and local scales. Detailed analysis of regional hotspots, such as Greenland, Tibetan plateau, and northern China, will be emphasized, where environmental changes have been mainly associated with climate warming, drought, land-atmosphere interactions, and human activities.

  2. Alteration of medieval stained-glasses. Contribution to the long-term behaviour of vitrified wastes

    International Nuclear Information System (INIS)

    Sterpenich, J.

    1998-01-01

    In this work, the behaviour of glasses during alteration have been studied in two different ways: 1)study of the alteration of medieval stained-glasses 2)experimental leaching of modelled glasses. Medieval stained-glasses have a silico-calcic and alkaline composition. It appears three different alteration modes for these glasses: 1)by condensation waters 2)by atmospheric agents 3)by porosity waters and humic acids. A chemical study of the altered areas has allowed to understand the alteration behaviour of a lot of elements: in particular transition elements, heavy metals and some rare earths. On the other hand, two vitrified wastes and a glass having the same composition of the potassic medieval stained-glasses have been leached in a static mode (pH=1 to 10, T=20 to 80 degrees Celsius, T=12 hours to 6 months). These experiments have revealed that the alteration mechanisms depend on the pH of the solution and on the chemical composition of the glass. An increasing durability of glasses in terms of the global polymerization degree has been revealed too. At last, the behaviours of glasses during alteration, observed with natural and experimental conditions, show that it is necessary to study natural analogous for predicting the long-term behaviour of vitrified wastes. (O.M.)

  3. Basaltic glass alteration in confined media: analogy with nuclear glass in geological disposal conditions

    International Nuclear Information System (INIS)

    Parruzot, Benjamin

    2014-01-01

    This dissertation concerns basaltic glass alteration mechanisms and rates. Through a better understanding of the processes controlling the basaltic glass durability, this thesis attempts to establish a link between laboratory studies and volcanic glass alteration in natural environment. The methodology used here is similar to the one used for nuclear glasses. Thus, we measured for the first time the residual alteration rate of basaltic glasses. Protective effect of the alteration film is clearly established. Moreover, synthetic glass representativeness is evaluated through a study focused on the effect of iron oxidation degree on the glass structure and leaching properties. A minor effect of Fe II on the forward rate and a negligible effect on the residual rate are shown. The residual rate is extrapolated at 5 C and compared to the mean alteration rate of natural samples of ages ranging from 1900 to 10 7 years. Non-zeolitized natural glasses follow this linear tendency, suggesting a control of the long-term rate by clayey secondary phase precipitation. Natural environments are open environments: a parametric study was performed in order to quantify the water flow rate effect on chemical composition of the alteration layer. When applied to two natural samples, the obtained laws provide coherent results. It seems possible to unify the descriptive approach from the study of natural environments to the mechanistic approach developed at the laboratory. The next step will consist in developing a model to transpose these results to nuclear glasses. (author) [fr

  4. Corrosion of Spent Nuclear Fuel: The Long-Term Assessment

    International Nuclear Information System (INIS)

    Ewing, Rodney C.

    2003-01-01

    The successful disposal of spent nuclear fuel (SNF) is one of the most serious challenges to the successful completion of the nuclear fuel cycle and the future of nuclear power generation. In the United States, 21 percent of the electricity is generated by 107 commercial nuclear power plants (NPP), each of which generates 20 metric tons of spent nuclear fuel annually. In 1996, the total accumulation of spent nuclear fuel was 33,700 metric tons of heavy metal (MTHM) stored at 70 sites around the country. The end-of-life projection for current nuclear power plants (NPP) is approximately 86,000 MTHM. In the proposed nuclear waste repository at Yucca Mountain over 95% of the radioactivity originates from spent nuclear fuel. World-wide in 1998, approximately 130,000 MTHM of SNF have accumulated, most of it located at 236 NPP in 36 countries. Annual production of SNF is approximately 10,000 MTHM, containing about 100 tons of ''reactor grade'' plutonium. Any reasonable increase in the proportion of energy production by NPP, i.e., as a substitute for hydrocarbon-based sources of energy, will significantly increase spent nuclear fuel production. Spent nuclear fuel is essentially UO 2 with approximately 4-5 atomic percent actinides and fission product elements. A number of these elements have long half-lives hence, the long-term behavior of the UO 2 is an essential concern in the evaluation of the safety and risk of a repository for spent nuclear fuel. One of the unique and scientifically most difficult aspects of the successful disposal of spent nuclear fuel is the extrapolation of short-term laboratory data (hours to years) to the long time periods (10 3 to 10 5 years) as required by the performance objectives set in regulations, i.e. 10 CFR 60. The direct verification of these extrapolations or interpolations is not possible, but methods must be developed to demonstrate compliance with government regulations and to satisfy the public that there is a reasonable basis for

  5. Glass implanted 210Po as a method of determination of long term exposure to radon: First experiments in Israel

    International Nuclear Information System (INIS)

    Haquin, G.; Lang, B.; Even, O.; Asael, Y.; Shamai, Y.; Margaliot, M.; Shirav, M.

    2002-01-01

    Radon gas ( 222 Rn) is known to be the major contributor of the total exposure of the population to ionizing radiation. Retrospective assessment techniques have been developed to estimate long term exposures to ( 222 Rn and its progeny in epidemiological studies. Measurements of implanted 210 Po on glass panes surfaces characterize room radon concentration or habitant characterization.Various methods for retrospective radon measurement are described in the literature. The surface trap method is based on the 210 Po implanted on glass or other vitreous objects, measured using solid-state nuclear track detectors (SSNTD). The volume trap method is based on measurements of 210 Po in spongy, porous materials ( 210 Po volume traps). Other approach is in-vivo measurements of 210 Pb in the human skeleton. The present study uses the surface trap retrospective technique for the first time in Israel, coupled with an approach to estimate the 210 Po concentration in glasses exposed to 222 Rn using alpha spectrometry

  6. Corrosion of Spent Nuclear Fuel: The Long-Term Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Rodney C.

    2003-09-14

    The successful disposal of spent nuclear fuel (SNF) is one of the most serious challenges to the successful completion of the nuclear fuel cycle and the future of nuclear power generation. In the United States, 21 percent of the electricity is generated by 107 commercial nuclear power plants (NPP), each of which generates 20 metric tons of spent nuclear fuel annually. In 1996, the total accumulation of spent nuclear fuel was 33,700 metric tons of heavy metal (MTHM) stored at 70 sites around the country. The end-of-life projection for current nuclear power plants (NPP) is approximately 86,000 MTHM. In the proposed nuclear waste repository at Yucca Mountain over 95% of the radioactivity originates from spent nuclear fuel. World-wide in 1998, approximately 130,000 MTHM of SNF have accumulated, most of it located at 236 NPP in 36 countries. Annual production of SNF is approximately 10,000 MTHM, containing about 100 tons of ''reactor grade'' plutonium. Any reasonable increase in the proportion of energy production by NPP, i.e., as a substitute for hydrocarbon-based sources of energy, will significantly increase spent nuclear fuel production. Spent nuclear fuel is essentially UO{sub 2} with approximately 4-5 atomic percent actinides and fission product elements. A number of these elements have long half-lives hence, the long-term behavior of the UO{sub 2} is an essential concern in the evaluation of the safety and risk of a repository for spent nuclear fuel. One of the unique and scientifically most difficult aspects of the successful disposal of spent nuclear fuel is the extrapolation of short-term laboratory data (hours to years) to the long time periods (10{sup 3} to 10{sup 5} years) as required by the performance objectives set in regulations, i.e. 10 CFR 60. The direct verification of these extrapolations or interpolations is not possible, but methods must be developed to demonstrate compliance with government regulations and to satisfy the

  7. Basaltic glasses from Iceland and the deep sea: Natural analogues to borosilicate nuclear waste-form glass

    International Nuclear Information System (INIS)

    Jercinovic, M.J.; Ewing, R.C.

    1987-12-01

    The report provides a detailed analysis of the alteration process and products for natural basaltic glasses. Information of specific applicability to the JSS project include: * The identification of typical alteration products which should be expected during the long-term corrosion process of low-silica glasses. The leached layers contain a relatively high proportion of crystalline phases, mostly in the form of smectite-type clays. Channels through the layer provide immediate access of solutions to the fresh glass/alteration layer interface. Thus, glasses are not 'protected' from further corrosion by the surface layer. * Corrosion proceeds with two rates - an initial rate in silica-undersaturated environments and a long-term rate in silica-saturated environments. This demonstrates that there is no unexpected change in corrosion rate over long periods of time. The long-term corrosion rate is consistent with that of borosilicate glasses. * Precipitation of silica-containing phases can result in increased alteration of the glass as manifested by greater alteration layer thicknesses. This emphasizes the importance of being able to predict which phases form during the reaction sequence. * For natural basaltic glasses the flow rate of water and surface area of exposed glass are critical parameters in minimizing glass alteration over long periods of time. The long-term stability of basalt glasses is enhanced when silica concentrations in solution are increased. In summary, there is considerable agreement between corrosion phenomena observed for borosilicate glasses in the laboratory and those observed for natural basalt glasses of great age. (With 121 refs.) (authors)

  8. Long-term storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Kempe, T.F.; Martin, A.; Thorne, M.C.

    1980-06-01

    This report presents the results of a study on the storage of spent nuclear fuel, with particular reference to the options which would be available for long-term storage. Two reference programmes of nuclear power generation in the UK are defined and these are used as a basis for the projection of arisings of spent fuel and the storage capacity which might be needed. The characteristics of spent fuel which are relevant to long-term storage include the dimensions, materials and physical construction of the elements, their radioactive inventory and the associated decay heating as a function of time after removal from the reactor. Information on the behaviour of spent fuel in storage ponds is reviewed with particular reference to the corrosion of the cladding. The review indicates that, for long-term storage, both Magnox and AGR fuel would need to be packaged because of the high rate of cladding corrosion and the resulting radiological problems. The position on PWR fuel is less certain. Experience of dry storage is less extensive but it appears that the rate of corrosion of cladding is much lower than in water. Unit costs are discussed. Consideration is given to the radiological impact of fuel storage. (author)

  9. The long-term effect of 1550 nm erbium:glass fractional laser in acne vulgaris.

    Science.gov (United States)

    Liu, Yale; Zeng, Weihui; Hu, Die; Jha, Smita; Ge, Qin; Geng, Songmei; Xiao, Shengxiang; Hu, Guanglei; Wang, Xiaoxiao

    2016-04-01

    We evaluated the short-term and long-term effects of the 1550 nm erbium:glass (Er:glass) fractional laser in the treatment of facial acne vulgaris. Forty-five (9 male and 36 female) acne patients were treated 4 times at 4-week intervals with the following parameters: 169 spot density and 15-30 mJ/cm(2) fluence. There was no control group. The laser spots were adjustable (maximum overlap: 20%) according to the treatment area, and delivered in rows in order to cover all the face. Clinical photographs were taken. The IGA scores and lesion counts were performed for each treatment. Their current state was obtained by phone call follow-up to determine the long-term effect and photographs were offered by themselves or taken in hospital. After four treatments, all patients had an obvious reduction of lesion counts and IGA score and the peak lesion counts decreased to 67.7% after the initial four treatment sessions. For long-term effect, 8 patients lost follow-up, hence 37 patients were followed-up. 8 patients were 2-year follow up, 27 at the 1-year follow-up, and all patients at the half-year follow-up. The mean percent reduction was 72% at the half-year follow-up, 79 at the 1-year follow-up and 75% at the 2-year follow-up. Side effects and complications were limited to transient erythema and edema, and few patients suffered from transient acne flare-ups and sensitivity. All patients responded that their skin was less prone to oiliness. In conclusion, acne can be successfully treated by 1550 nm Er:glass fractional laser, with few side effects and prolonged acne clearing.

  10. Reference document on the long life behavior of nuclear glasses

    International Nuclear Information System (INIS)

    Godon, N.

    2004-01-01

    This document exposes the scientific analysis of the operational modelizations concerning the behavior of glasses (C wastes) for the long time storage and for the retrieval or ultimate underground disposal. The scientific approach adopted to establish the behavior of glasses uses a methodology, a strategy and defined approaches, described in this document. The containment glasses specifications, the glass behavior dry or in non saturated open environment, the glass behavior in aqueous environment, predictions models of glasses alteration and elements of validation are also presented. (A.L.B.)

  11. Nuclear waste glass product consistency test (PCT), Version 5.0

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.; Waters, B.J.

    1992-06-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF), poured into stainless steel canisters, and eventually disposed of in a geologic repository. In order to comply with the Waste Acceptance Preliminary Specifications (WAPS), the durability of the glass needs to be measured during production to assure its long term stability and radionuclide release properties. A durability test, designated the Produce Consistency Test (PCT), was developed for DWPF glass in order to meet the WAPS requirements. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly, and to be easily performed in shielded cell facilities with radioactive samples. Version 5.0 of the PCT procedure is attached

  12. R7T7 glass alteration mechanism in an aqueous closed system: understanding and modelling the long term alteration kinetic

    International Nuclear Information System (INIS)

    Chave, T.

    2007-10-01

    The long term alteration rate of the French R7T7 nuclear glass has been investigated since many years because it will define the overall resistance of the radionuclide containment matrix. Recent studies have shown that the final rate remains constant or is slightly decreasing with time. It never reaches zero. Though this residual rate is very low, only 5 nm per year at 50 C, it would be the dominant alteration phenomenon in a geological repository. Two mechanisms are suggested for explaining such behaviour: diffusion in solution of elements from glass through an amorphous altered layer and precipitation of neo-formed phases. The diffusion processes are in agreement with a solid state diffusion mechanism and can lead to secondary phase precipitation due to solution concentration increases. Observed phases are mainly phyllosilicates and zeolites, in specific conditions. Phyllosilicates are expected to maintain the residual kinetic rate whereas alteration resumption could be observed in presence of zeolites at very high pH or temperature (10.5 at 90 C or temperature above 150 C). Both diffusion and neo-formed phase precipitation have been investigated in order to better understand their impact on the residual alteration rate and have then been modelled by a calculation code, coupling chemistry and transport, in order to be able to better anticipate the long term behaviour of the glass R7T7 in an aqueous closed system. (author)

  13. Risk assessment in long-term storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Ahn, T.; Guttmann, J.; Mohseni, A.

    2013-01-01

    This paper presents probabilistic risk-informed approaches that the Nuclear Regulatory Commission (NRC) staff is planning to consider in preparing regulatory bases for long-term storage of spent nuclear fuel (SNF) for up to 300 years. Due to uncertainties associated with long-term SNF storage, the NRC is considering a probabilistic risk-informed approach as well as a deterministic design-based approach. The uncertainties considered here are primarily associated with materials aging of the canister and SNF in the cask system during long-term storage of SNF. This paper discusses some potential risk contributors involved in long-term SNF storage. Methods of performance evaluation are presented that assess the various types of risks involved. They include deterministic evaluation, probabilistic evaluation, and consequence assessment under normal conditions and the conditions of accidents and natural hazards. Some potentially important technical issues resulting from the consideration of a probabilistic risk-informed evaluation of the cask system performance are discussed for the canister and SNF integrity. These issues are also discussed in comparison with the deterministic approach for comparison purposes, as appropriate. Probabilistic risk-informed methods can provide insights that deterministic methods may not capture. Two specific examples include stress corrosion cracking of the canister and hydrogen-induced cladding failure. These examples are discussed in more detail, in terms of their effects on radionuclide release and nuclear subcriticality associated with the failure. The plan to consider the probabilistic risk-informed approaches is anticipated to provide helpful regulatory insights for long-term storage of SNF that provide reasonable assurance for public health and safety. (authors)

  14. Nuclear waste immobilization in iron phosphate glasses

    International Nuclear Information System (INIS)

    Garcia, D.A.; Rodriguez, Diego A.; Menghini, Jorge E.; Bevilacqua, Arturo

    2007-01-01

    Iron-phosphate glasses have become important in the nuclear waste immobilization area because they have some advantages over silicate-based glasses, such as a lower processing temperature and a higher nuclear waste load without losing chemical and mechanical properties. Structure and chemical properties of iron-phosphate glasses are determined in terms of the main components, in this case, phosphate oxide along with the other oxides that are added to improve some of the characteristics of the glasses. For example, Iron oxide improves chemical durability, lead oxide lowers fusion temperature and sodium oxide reduces viscosity at high temperature. In this work a study based on the composition-property relations was made. We used different techniques to characterize a series of iron-lead-phosphate glasses with uranium and aluminium oxide as simulated nuclear waste. We used the Arquimedes method to determine the bulk density, differential temperature analysis (DTA) to determine both glass transition temperature and crystallization temperature, dilatometric analysis to calculate the linear thermal expansion coefficient, chemical durability (MCC-1 test) and X-ray diffraction (XRD). We also applied some theoretic models to calculate activation energies associated with the glass transition temperature and crystallization processes. (author)

  15. Nuclear Winter: Uncertainties Surround the Long-Term Effects of Nuclear War. Report to the Congress.

    Science.gov (United States)

    General Accounting Office, Washington, DC.

    Nuclear winter, a term used to describe potential long-term climate and environmental effects of nuclear war, has been a subject of debate and controversy. This report examines and presents scientific and policy implications of nuclear winter. Contents include: (1) an executive summary (highlighting previous and current studies on the topic); (2)…

  16. Analytical electron microscopy examination of solid reaction products in long-term test of SRL 200 waste glasses

    International Nuclear Information System (INIS)

    Buck, E.C.; Fortner, J.A.; Bates, J.K.; Feng, X.; Dietz, N.L.; Bradley, C.R.; Tani, B.S.

    1993-01-01

    Alteration phases, found on the leached surfaces and present as colloids in the leachates of 200-based frit (fully active and simulated) nuclear waste glass, reacted under static test conditions, at a surface area to leachate volume ratio of 20,000 m -1 for 15 days to 728 days, have been examined by analytical electron microscopy. The compositions of the secondary phases were determined using x-ray energy dispersive spectroscopy and electron energy loss spectroscopy, and structural analysis was accomplished by electron diffraction. Long-term samples of simulated glass, which had undergone an acceleration of reaction after 182 days, possessed a number of silicate secondary phases, including; smectite (iron silicate and potassium iron alumina-silicate, weeksite (uranium silicate), zeolite (calcium potassium alumino-silicate), tobermorite (calcium silicate), and a pure silica phase. However, uranium silicates and smectite have also been observed in tests, which have not undergone the acceleration of reaction, in both the leachate and leached layer, suggesting that these phases are not responsible for the acceleration of reaction

  17. Nuclear waste glass product consistency test (PCT): Version 7.0. Revision 3

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.

    1994-06-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF), poured into stainless steel canisters, and eventually disposed of in a geologic repository. In order to comply with the Waste Acceptance Product Specifications (WAPS), the durability of the glass needs to be measured during production to assure its long term stability and radionuclide release properties. A durability test, designated the Product Consistency Test (PCT), was developed for DWPF glass in order to meet the WAPS requirements. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly, and to be easily performed in shielded cell facilities with radioactive samples. Version 7.0 of the PCT procedure is attached. This draft version has been submitted to ASTM for full committee (C26, Nuclear Fuel Cycle) ballot after being balloted successfully through subcommittee C26.13 on Repository Waste Package Materials Testing

  18. Overview of chemical modeling of nuclear waste glass dissolution

    International Nuclear Information System (INIS)

    Bourcier, W.L.

    1991-02-01

    Glass dissolution takes place through metal leaching and hydration of the glass surface accompanied by development of alternation layers of varying crystallinity. The reaction which controls the long-term glass dissolution rate appears to be surface layer dissolution. This reaction is reversible because the buildup of dissolved species in solution slows the dissolution rate due to a decreased dissolution affinity. Glass dissolution rates are therefore highly dependent on silica concentrations in solution because silica is the major component of the alteration layer. Chemical modeling of glass dissolution using reaction path computer codes has successfully been applied to short term experimental tests and used to predict long-term repository performance. Current problems and limitations of the models include a poorly defined long-term glass dissolution mechanism, the use of model parameters determined from the same experiments that the model is used to predict, and the lack of sufficient validation of key assumptions in the modeling approach. Work is in progress that addresses these issues. 41 refs., 7 figs., 2 tabs

  19. Corrosion mechanisms and behaviour of actinides in the 'R7T7' nuclear glass

    International Nuclear Information System (INIS)

    Fillet, Sylvie

    1987-01-01

    This research thesis reports the study of aqueous corrosion of the R7T7 nuclear glass and of the identified corrosion mechanisms in conditions of static lixiviation which are close to that expected during long term storage in a geological environment. More specifically, this work aims at assessing the durability of this glass which has been selected for the vitrification of solutions from pressurized water reactors. The main glass alteration phenomena have been studied. The first part addresses the study of the alteration of the glassy matrix, and aims at identifying corrosion mechanisms in various lixiviation conditions (high temperature, saturation). The second part addresses the action of different materials present in the environment on the glassy matrix by simulating as well as possible a storage case. Based on the obtained results, a mathematical model is developed to predict the glass behaviour on the long term. Finally, the glass confinement power with respect to actinides is studied [fr

  20. Long-term global nuclear energy and fuel cycle strategies

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1997-01-01

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E 3 (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E 3 model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E 3 model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues

  1. Long-term global nuclear energy and fuel cycle strategies

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A. [Los Alamos National Lab., NM (United States). Technology and Safety Assessment Div.

    1997-09-24

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E{sup 3} (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E{sup 3} model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E{sup 3} model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues.

  2. Analysis on long-term perspectives of sustainable nuclear energy towards global warming protection

    International Nuclear Information System (INIS)

    Yamazawa, M.; Ichimura, E.; Shibata, Y.; Kobayashi, K.; Wajima, T.

    1998-01-01

    Study of long-term perspectives of the nuclear power generation was made from the point of views of both CO 2 emission constraints and sustainability of nuclear energy. To this end, STREAM (Semi-empirical TRiple E Analysis Model) program, as a social model, has been developed by Tokyo Electric Power Co. and Hitachi, Ltd. Using this program, long-term world demands of primary and nuclear energy were deduced, in view of the protection against the global warming due to the CO 2 gas accumulation. The inevitable conclusion has been drawn that nuclear energy plays an indispensable role in the reduction of green house effect. Evaluations were then made on conditions that the nuclear power system would be the long-term major sustainable energy source. (author)

  3. Contributions of vitreous natural analogs to the investigation of long-term nuclear glass behavior; Apports des analogues naturels vitreux a la validation des codes de prediction du comportement a long terme des verres nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Techer, I

    1999-07-01

    This study assesses the extend of the analogy between the alteration behavior in water and in a moist clay environment of aluminosilicate volcanic glass and alumino-borosilicate nuclear containment glass. Basaltic glass alteration in water initially occurs by hydrolysis processes with an activation energy on the order of 73 kJ.mol{sup -1}. As the reaction progresses, the alteration rate drops by over four orders of magnitude from the initial rate r{sub 0}, The alteration kinetics are not governed by the alteration solution chemistry alone, the glass alteration film appears to have a major role as a diffusion barrier limiting the transfer of reaction species and products. All these aspects highlight the behavioral analogy between basaltic glass and nuclear borosilicate glass in aqueous media. Conversely, the alteration reaction of obsidian-type volcanic glass involves other mechanisms than those governing the dissolution of borosilicate glass. Basaltic glass alteration is also examined in the presence of a clay environmental material, in a study of the natural basaltic glass and argillaceous pelites system of the Salagou basin in southern France, in an approach combining mineralogical, chemical and isotopic data to assess the interactions between a basaltic glass and the argillaceous pelites. Laboratory leach test results with basaltic glass and measured data for the Salagou glass in its natural environment are modeled using a code implementing a kinetic law coupling diffusive transfer of dissolved silica with a reaction affinity law. (author)

  4. Challenges in long-term operation of nuclear power plants - Implications for regulatory bodies

    International Nuclear Information System (INIS)

    Soda, Kunihisa; Van Wonterghem, Frederik; Khouaja, Hatem; Vilpas, Martti; Osouf, Nicolas; Harikumar, S.; Ishigaki, Hiroki; Osaki, Toru; Yamada, Tomoho; Carlsson, Lennart; Shepherd, David; Galloway, Melanie; Liszka, Ervin; Svab, Miroslav; Pereira, Ken; Huerta, Alejandro

    2012-01-01

    Nuclear power reactors have become a major source of electricity supply in many countries in the past half a century. Based on this experience, many operators have sought and have received authorisation for long-term operation, whereby plant operation continues beyond the period considered in the design of the plant. Acceptance of a nuclear power plant for extended service should be based on assurance of the fitness of the plant and the operator for safe and reliable operation over the entire period considered for long-term operation. This assurance may be obtained by establishment of appropriate regulatory requirements, specification of goals and safety levels and regulatory assessment and oversight of the operator's programme for long-term operation. The operators and regulators should ensure that operating experience continues to be evaluated during long-term operation to ensure that any relevant lessons are effectively applied. Other considerations for assurance of safe operation are effective management of ageing, possible need for safety improvements, application of lessons learnt from operating experience, evaluation of environmental impacts, adequate staff resources and performance, review of security at the plant, action in response to emerging issues, and openness and transparency in the transition to long-term operation. Even though most of these considerations are addressed under the regulatory framework that applies to the initial operating period, additional regulatory activities in these areas may be necessary for long-term operation. Although there can be significant differences in regulatory approaches used by different countries for evaluating acceptability of long-term operation, there is general agreement on the purposes and goals of the regulatory reviews. An authorisation of long-term operation could involve a licence renewal or a periodic safety review or an approach that melds elements of both. This report presents guidance that is intended

  5. Requirement for nuclear calcium signaling in Drosophila long-term memory.

    Science.gov (United States)

    Weislogel, Jan-Marek; Bengtson, C Peter; Müller, Michaela K; Hörtzsch, Jan N; Bujard, Martina; Schuster, Christoph M; Bading, Hilmar

    2013-05-07

    Calcium is used throughout evolution as an intracellular signal transducer. In the mammalian central nervous system, calcium mediates the dialogue between the synapse and the nucleus that is required for transcription-dependent persistent neuronal adaptations. A role for nuclear calcium signaling in similar processes in the invertebrate brain has yet to be investigated. Here, we show by in vivo calcium imaging of adult brain neurons of the fruit fly Drosophila melanogaster, that electrical foot shocks used in olfactory avoidance conditioning evoked transient increases in cytosolic and nuclear calcium concentrations in neurons. These calcium signals were detected in Kenyon cells of the flies' mushroom bodies, which are sites of learning and memory related to smell. Acute blockade of nuclear calcium signaling during conditioning selectively and reversibly abolished the formation of long-term olfactory avoidance memory, whereas short-term, middle-term, or anesthesia-resistant olfactory memory remained unaffected. Thus, nuclear calcium signaling is required in flies for the progression of memories from labile to transcription-dependent long-lasting forms. These results identify nuclear calcium as an evolutionarily conserved signal needed in both invertebrate and vertebrate brains for transcription-dependent memory consolidation.

  6. Long-term tradeoffs between nuclear- and fossil-fuel burning

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1996-01-01

    A global energy/economics/environmental (E 3 ) model has been adapted with a nuclear energy/materials model to understand better open-quotes top-levelclose quotes, long-term trade offs between civilian nuclear power, nuclear-weapons proliferation, fossil-fuel burning, and global economic welfare. Using a open-quotes business-as-usualclose quotes (BAU) point-of-departure case, economic, resource, proliferation-risk implications of plutonium recycle in LAIRs, greenhouse-gas-mitigating carbon taxes, and a range of nuclear energy costs (capital and fuel) considerations have been examined. After describing the essential elements of the analysis approach being developed to support the Los Alamos Nuclear Vision Project, preliminary examples of parametric variations about the BAU base-case scenario are presented. The results described herein represent a sampling from more extensive results collected in a separate report. The primary motivation here is: (a) to compare the BAU basecase with results from other studies; (b) to model on a regionally resolved global basis long-term (to year ∼2100) evolution of plutonium accumulation in a variety of forms under a limited range of fuel-cycle scenarios; and (c) to illustrate a preliminary connectivity between risks associated with nuclear proliferation and fossil-fuel burning (e.g., greenhouse-gas accumulations)

  7. Glass containing radioactive nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1985-01-01

    Lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level-radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800 C, since they exhibit very low melt viscosities in the 800 to 1050 C temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550 C and are not adversely affected by large doses of gamma radiation in H 2 O at 135 C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear waste forms. (author)

  8. Application of ceramic and glass materials in nuclear power plants

    International Nuclear Information System (INIS)

    Hamnabard, Z.

    2008-01-01

    Ceramic and glass are high temperature materials that can be used in many fields of application in nuclear industries. First, it is known that nuclear fuel UO 2 is a ceramic material. Also, ability to absorb neutrons without forming long lived radio-nuclides make the non-oxide ceramics attractive as an absorbent for neutron radiation arising in nuclear power plants. Glass-ceramic materials are a new type of ceramic that produced by the controlled nucleation and crystallization of glass, and have several advantages such as very low or null porosity, uniformity of microstructure, high chemical resistance etc. over conventional powder processed ceramics. These ceramic materials are synthesized in different systems based on their properties and applications. In nuclear industries, those are resistant to leaching and radiation damage for thousands of years, Such as glass-ceramics designed for radioactive waste immobilization and machinable glass-ceramics are used. This article introduces requirements of different glass and ceramic materials used in nuclear power plants and have been focused on developments in properties and application of them

  9. Radiation and Thermal Ageing of Nuclear Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J [ORNL

    2014-01-01

    The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behavior of nuclear waste glass are reviewed.

  10. Aqueous corrosion of silicate glasses. Analogy between volcanic glasses and the French nuclear waste glass R7T7

    International Nuclear Information System (INIS)

    Goldschmidt, F.

    1991-01-01

    The behaviour of borosilicate glasses upon aqueous corrosion is controlled for long periods of time (>10,000 years) by processes which are not directly accessible by means of laboratory experiments. The analogical approach consists here to compare leaching performances between the french nuclear waste glass R7T7 and natural volcanic glasses, basaltic and rhyolitic ones. The three glasses were leached in the same conditions; open system, 90 deg C, initial pH of 9.7. Basaltic and R7T7 glasses having the same kinetic of dissolution, the basaltic glass was chosen as the best analogue. (author). refs., figs., tabs

  11. Long-term release from high level waste glass. Part IV. The effect of leaching mechanism

    International Nuclear Information System (INIS)

    Freude, E.; Grambow, B.; Lutze, W.; Rabe, H.; Ewing, R.C.

    1984-01-01

    A linear time dependence for the corrosion under near saturation conditions is considered, and a rate equation in the QTERM code is used to model the long-term behavior of the German glass, C-31-3EC, JSS A, and SRL TDS 131. 22 refs., 4 figs., 1 tab

  12. Change of nuclear administrative system and long-term program for nuclear energy in Japan

    International Nuclear Information System (INIS)

    Yun, S. W.; Yang, M. H.; Jeong, H. S.

    2001-01-01

    Japanese new governmental adminstrative system was restructured and became in operation from January 1, 2001 including newly establishment of the Ministry of Cabinet. Accordingly, Japanese nuclear administrative system were also changed significantly, in order to reflect the changing policy environment and response to them more efficiently in the use and development of nuclear energy. Atomic Energy Commission, Nuclear Safety Commission administrated by Science and Technology Agency in the past, were moved to the Ministry of Cabinet, and Integrated Science and Technology Council was also newly established under the Ministry of Cabinet. And Ministry of Economy, Trade and Industry(METI) is in charge of nuclear energy policy and the Ministry of Education, Culture, Sports, Science and Technology(MEXT) is in charge of nuclear academic science consequently. At the same time, the revision work of 'Long-term Program for Research, Development and Utilization of Nuclear of Japan' established in 1994, has been carried out from 1999 in order to set up the long term based national nuclear policy towards the 21st century, and finally the results were open to the public in November 2000. Major changes of nuclear policy of Japan the will be good references in the establishing future national nuclear policy for the use and development of nuclear energy

  13. Study on behaviour in long term of vitrified materials

    International Nuclear Information System (INIS)

    Vernaz, E.

    1993-01-01

    In collaboration with EDF (Electricite de France), after testing fusion of Refiom (Residus d'Epuration des Fumees d'Incineration d'Ordures Menageres), residues from purification of incineration smokes of household rubbish, realised at Porcheville and at the Laboratory of Renardieres with experimental processing of vitrification by plasma, CEA (Centre d'Etudes Atomiques), atomic center of research, began study on resistance in long term of vitrified products. From about thirty five years, CEA carries out research to confine radioactive waste of high activity in stable materials. Glass was the first best one which allowed to incorporate about thirty different chemical elements found in fission products solutions into a stable die with a good chemical durability; three vitrification shops raised, one at Marcoule ('AVM', 1978) in the south of France, the two other ones at La Hague ('R7', 1989 and 'T7', 1992) in Normandy. To determine a possible impact of a deep radioactive waste disposal on human and environment, several studies began. In particular, studies on aqueous corrosion of glasses to determine behaviour in long term of glass package (first barrier of confinement) and to estimate kinetics of releasing confined toxical elements on periods of several thousands years. Principal results are exposed in this conference. Experience shows that safety analysis cannot be based on long term extrapolation of a simple lixiviation result. This analysis must include: a sufficient knowledge in basic mechanisms of alteration to predict the kinetic evolution in a long term. To take in account environment conditions with a normal or accidental scheme (acidity, clay, organic compounds,...). This knowledge broadly developed by CEA for nuclear glasses seems to be easily transposable to different wastes (industrial ones or from hospitals) and takes place in a contract of research CEA/EDF to valorize vitrified products. 9 figs. 4 refs

  14. Rhyolitic glasses as natural analogues of nuclear waste glasses: behaviour of an Icelandic glass upon natural aqueous corrosion

    International Nuclear Information System (INIS)

    Magonthier, M.-C.; Petit, J.-C.; Dran, J.-C.

    1992-01-01

    A detailed study of the altered rims present in narrow fissures of a 52 ka-old Icelandic obsidian reveals the behaviour of transition and heavy elements, as well as the mechanism and kinetics of alteration, during glass/solution interaction. These complex altered rims are alkali depleted and consist of alternating layers of Fe-rich aluminosilicate and aluminium thihydroxide. The elemental partitioning observed on this naturally corroded obsidian is supported by laboratory experiments performed on the same glass, the elemental accumulation being explained by the formation of a hydrosilicate. A good correlation exists between the thickness of the altered rims and that calculated from the amounts of Fe and Ti accumulated locally. Thus, immobile elements can be used reliably as indices of the extent of alteration because only near-equilibrium conditions occur. The good agreement between the experimental hydration rate of obsidians and the progress of natural corrosion, leads to the assumption that ion diffusion is the long-term controlling mechanism of corrosion. Such an assumption is supported by the particular distribution of the immobile elements which is due to ion diffusion and coprecipitation processes (self-organization genesis). These observations have implications for nuclear waste disposal topics and support the validity of obsidians as analogues of nuclear waste glasses with respect to some local environmental constraints induced by waste packaging and disposal. (author)

  15. Long-term perspectives of the worldwide use of nuclear power

    International Nuclear Information System (INIS)

    Jaek, W.

    1981-01-01

    The world energy scenarios developed by WEC and IIASA, which contain analyses and estimates on the long-term development perspectives of regional development areas, show that the worldwide energy requirement can no longer be met without the large-scale expansion of nuclear power. This implies an expansion on nuclear power in the next forty or fifty years to more than the 38 countries at present known to use or wanting to use nuclear power. With respect to the aspects of supply and non-proliferation, the question of the geographic distribution of future nuclear power plants is becoming more and more important. If the more global statements in the different world energy scenarios can be translated into information about the potential use of nuclear power in specific countries in the fifty years, this will allow a picture of a possible nuclear future to be sketched, on the basis of which considerations of non-proliferation and nuclear transfer can be put on a firm basis. This is not meant to be another set of long-term forecasts of nuclear power, but a concrete implementation of world energy scenarios and the consequences with respect to non-proliferation and transfer potentially arising from them. (orig.) [de

  16. Necessity of long term nuclear data development for various applications needing nuclear data

    International Nuclear Information System (INIS)

    Fukahori, Tokio

    2001-01-01

    Necessity of long term nuclear data development for accelerator-driven system target design, high-energy radiation shielding, medical application, space and astrophysical applications, etc. is described in this paper. For each application field needing nuclear data, considered were importance of nuclear data in determining the success or failure of the application, important gaps remaining in the nuclear data and feasibility of filling the gaps with a modest research effort. It can be concluded much more international discussions are required. (author)

  17. Communication on energy: who pays for the long-term costs of nuclear power

    International Nuclear Information System (INIS)

    Jeffery, J.W.

    1987-01-01

    The question in the title arises in making a fair comparison between a coal-fired station, which has no long-term costs, and a nuclear station, whose large long-term costs are discounted into insignificance by the present method of calculation. This problem was raised by the present author in his evidence to the Sizewell Inquiry, and has recently been discussed by the House of Commons Select Committee on Energy, who expressed grave disquiet that 'the costs of decommissioning become almost irrelevant to the current economics of nuclear power'. The present article analyses the bizarre effects of long-term discounting, and suggests a method of making a fair and symmetrical comparison between coal-fired and nuclear stations. (author)

  18. Glass dissolution at 20, 40, 70 and 90 C: Short-term effects of solution chemistry and long-term Na release

    International Nuclear Information System (INIS)

    Bakel, A.J.; Ebert, W.L.; Strachan, D.M.

    1996-01-01

    The corrosion behavior of a borosilicate glass containing 20 mass 5 Na 2 O was assessed using static dissolution tests. This glass (LD6-5412) is representative of high Na glasses that may be used to stabilize Hanford low-level radioactive waste. The normalized mass loss (NL) decreases as NL(Na) ∼ NL(B) > NL(Si) in 20 and 40 C for tests conducted at glass surface area to leachant volume (S/V) ratio of 10 m -1 , and decreases as NL(Na) > NL(B) ∼ NL(Si) in 90 C tests conducted at 10 m -1 and in all tests conducted at higher S/V. The difference in the corrosion behavior is probably caused by the influence of dissolved glass components in the leachates. The NL(Na) is greater than the NL(B) or NL(Si) in all the tests conducted. Results from long-term tests at 2,000 m -1 show that the preferential release of Na persists for longer than one year at all temperatures and indicate that Na is released from this glass by an ion exchange process

  19. The long-term nuclear explosives predicament

    International Nuclear Information System (INIS)

    Swahn, J.

    1992-01-01

    A scenario is described, where the production of new military fissile materials is halted and where civil nuclear power is phased out in a 'no-new orders' case. It is found that approximately 1100 tonnes of weapons-grade uranium, 233 tonnes of weapons-grade plutonium and 3795 tonnes of reactor-grade plutonium have to be finally disposed of as nuclear waste. This material could be used for the construction of over 1 million nuclear explosives. Reactor-grade plutonium is found to be easier to extract from spent nuclear fuel with time and some physical characteristics important for the construction of nuclear explosives are improved. Alternative methods for disposal of the fissile material that will avoid the long-term nuclear explosives predicament are examined. Among these methods are dilution, denaturing or transmutation of the fissile material and options for practicably irrecoverable disposal in deep boreholes, on the sea-bed, and in space. It is found that the deep boreholes method for disposal should be the primary alternative to be examined further. This method can be combined with an effort to 'forget' where the material was put. Included in the thesis is also an evaluation of the possibilities of controlling the limited civil nuclear activities in a post-nuclear world. Some surveillance technologies for a post-nuclear world are described, including satellite surveillance. In a review part of the thesis, methods for the production of fissile material for nuclear explosives are described, the technological basis for the construction of nuclear weapons is examined, including use of reactor-grade plutonium for such purposes; also plans for the disposal of spent fuel from civil nuclear power reactors and for the handling of the fissile material from dismantled warheads is described. The Swedish plan for the handling and disposal of spent nuclear fuel is described in detail. (490 refs., 66 figs., 27 tabs.)

  20. Glass corrosion in natural environments

    Science.gov (United States)

    Thorpe, Arthur N.; Barkatt, Aaron

    1992-01-01

    Experiments carried out during the progress period are summarized. Experiments carried out involving glass samples exposed to solutions of Tris have shown the appearance of 'spikes' upon monitoring glass dissolution as a function of time. The periodic 'spikes' observed in Tris-based media were interpreted in terms of cracking due to excessive stress in the surface region of the glass. Studies of the interactions of silicate glasses with metal ions in buffered media were extended to systems containing Al. Caps buffer was used to establish the pH. The procedures used are described and the results are given. Preliminary studies were initiated as to the feasibility of adding a slowly dissolving solid compound of the additive to the glass-water system to maintain a supply of dissolved additive. It appears that several magnesium compounds have a suitable combination of solubility and affinity towards silicate glass surfaces to have a pronounced retarding effect on the extraction of uranium from the glass. These preliminary findings raise the possibility that introducing a magnesium source into geologic repositories for nuclear waste glass in the form of a sparingly soluble Mg-based backfill material may cause a substantial reduction in the extent of long-term glass corrosion. The studies described also provide mechanistic understanding of the roles of various metal solutes in the leachant. Such understanding forms the basis for developing long-term predictions of nuclear waste glass durability under repository conditions. From what is known about natural highly reduced glasses such as tektites, it is clear that iron is dissolved as ferrous iron with little or no ferric iron. The reducing conditions were high enough to cause metallic iron to exsolve out of the glass in the form of submicroscopic spherules. As the nuclear waste glass is much less reduced, a study was initiated on other natural glasses in addition to the nuclear waste glass. Extensive measurements were

  1. Nuclear Waste Disposal and Strategies for Predicting Long-Term Performance of Material

    International Nuclear Information System (INIS)

    Wicks, G.G.

    2001-01-01

    Ceramics have been an important part of the nuclear community for many years. On December 2, 1942, an historic event occurred under the West Stands of Stagg Field, at the University of Chicago. Man initiated his first self-sustaining nuclear chain reaction and controlled it. The impact of this event on civilization is considered by many as monumental and compared by some to other significant events in history, such as the invention of the steam engine and the manufacturing of the first automobile. Making this event possible and the successful operation of this first man-made nuclear reactor, was the use of forty tons of UO2. The use of natural or enriched UO2 is still used today as a nuclear fuel in many nuclear power plants operating world-wide. Other ceramic materials, such as 238Pu, are used for other important purposes, such as ceramic fuels for space exploration to provide electrical power to operate instruments on board spacecrafts. Radioisotopic Thermoelectric Generators (RTGs) are used to supply electrical power and consist of a nuclear heat source and converter to transform heat energy from radioactive decay into electrical power, thus providing reliable and relatively uniform power over the very long lifetime of a mission. These sources have been used in the Galileo spacecraft orbiting Jupiter and for scientific investigations of Saturn with the Cassini spacecraft. Still another very important series of applications using the unique properties of ceramics in the nuclear field, are as immobilization matrices for management of some of the most hazardous wastes known to man. For example, in long-term management of radioactive and hazardous wastes, glass matrices are currently in production immobilizing high-level radioactive materials, and cementious forms have also been produced to incorporate low level wastes. Also, as part of nuclear disarmament activities, assemblages of crystalline phases are being developed for immobilizing weapons grade plutonium, to

  2. NUCLEAR WASTE GLASSES: CONTINUOUS MELTING AND BULK VITRIFICAITON

    International Nuclear Information System (INIS)

    KRUGER, A.A.

    2008-01-01

    This contribution addresses various aspects of nuclear waste vitrification. Nuclear wastes have a variety of components and composition ranges. For each waste composition, the glass must be formulated to possess acceptable processing and product behavior defined in terms of physical and chemical properties that guarantee the glass can be easily made and resist environmental degradation. Glass formulation is facilitated by developing property-composition models, and the strategy of model development and application is reviewed. However, the large variability of waste compositions presents numerous additional challenges: insoluble solids and molten salts may segregate; foam may hinder heat transfer and slow down the process; molten salts may accumulate in container refractory walls; the glass on cooling may precipitate crystalline phases. These problems need targeted exploratory research. Examples of specific problems and their possible solutions are discussed

  3. Characterization of glass and glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lutze, W.; Borchardt, J.; De, A.K.

    1979-01-01

    Characteristics of solidified nuclear waste forms, glass and glass ceramic compositions and the properties (composition, thermal stability, crystallization, phase behavior, chemical stability, mechanical stability, and radiation effects) of glasses and glass ceramics are discussed. The preparation of glass ceramics may be an optional step for proposed vitrification plants if tailored glasses are used. Glass ceramics exhibit some improved properties with respect to glasses. The overall leach resistance is similar to that of glasses. An increased leach resistance may become effective for single radionuclides being hosted in highly insoluble crystal phases mainly when higher melting temperatures are applicable in order to get more leach resistant residual glass phases. The development of glass ceramic is going on. The technological feasibility is still to be demonstrated. The potential gain of stability when using glass ceramics qualifies the material as an alternative nuclear waste form

  4. Nuclear waste glass corrosion mechanisms

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1987-04-01

    Dissolution of nuclear waste glass occurs by corrosion mechanisms similar to those of other solids, e.g., metallurgical and mineralogic systems. Metallurgical phenomena such as active corrosion, passivation and immunity have been observed to be a function of the glass composition and the solution pH. Hydration thermodynamics was used to quantify the role of glass composition and its effect on the solution pH during dissolution. A wide compositional range of natural, lunar, medieval, and nuclear waste glasses, as well as some glass-ceramics were investigated. The factors observed to affect dissolution in deionized water are pertinent to the dissolution of glass in natural environments such as the groundwaters anticipated to interact with nuclear waste glass in a geologic repository. The effects of imposed pH and oxidation potential (Eh) conditions existing in natural environments on glass dissolution is described in the context of Pourbaix diagrams, pH potential diagrams, for glass

  5. The long-term behavior of glasses for wastes containment purposes

    International Nuclear Information System (INIS)

    Gin, S.

    2010-01-01

    In the presence of water, nuclear glasses undergo reactions that may be attributed, in part, to the nature of the chemical bonds set up within the glass structure, and - as regards other reactions - owing to the properties of the solute species. The main reactions involved include ion exchanges, these chiefly involving alkali metals, weakly bonded as these are to the glass network, silicon hydrolysis-condensation reactions, resulting in the formation of a porous hydrated layer, gradually taking on a passivating role, along with the precipitation of crystallized secondary phases. At the temperatures of interest in the disposal context (25 - 90 C degrees), such secondary phases mainly involve clay minerals. Fundamental research studies, conducted to gain an understanding of the mechanisms involved, have highlighted the existence of a strong coupling, at the mesoscopic scale, between the aforementioned chemical reactions, and solute transport, the hydrated layer having the ability to take on a passivating role, as its porosity closes. A new model named GRAAL (for Glass Reactivity with Allowance for the Alteration Layer), includes an explicit description of the four chief alteration mechanisms acting on glass: formation of the passivating layer by glass hydration, diffusion of water across that layer, dissolution of that layer over its outside surface, and precipitation of crystallized secondary phases. The equations may either be solved analytically, for simple cases, or be integrated into a geochemical code, to cater for chemistry-transport couplings, and simulate complex systems

  6. Glass material oxidation and dissolution system: Converting miscellaneous fissile materials to glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Ferrada, J.J.

    1996-01-01

    The cold war and the development of nuclear energy have resulted in significant inventories of miscellaneous fissile materials (MFMs). MFMs include (1) plutonium scrap and residue, (2) miscellaneous spent nuclear fuel (SNF), (3) certain hot cell wastes, and (4) many one-of-a-kind materials. Major concerns associated with the long-term management of these materials include: safeguards and nonproliferation issues; health, environment, and safety concerns. waste management requirements; and high storage costs. These issues can be addressed by converting the MFMs to glass for secure, long-term storage or repository disposal; however, conventional glass-making processes require oxide-like feed materials. Converting MFMs to oxide-like materials with subsequent vitrification is a complex and expensive process. A new vitrification process has been invented, the Glass Material Oxidation and Dissolution System (GMODS), which directly converts metals, ceramics, and amorphous solids to glass; oxidizes organics with the residue converted to glass; and converts chlorides to borosilicate glass and a secondary sodium chloride (NaCl) stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium, Zircaloy, stainless steel, multiple oxides, and other materials to glass. However, significant work is required to develop GMODS further for applications at an industrial scale. If implemented, GMODS will provide a new approach to manage these materials

  7. Contribution and limits of geochemical calculation codes to evaluate the long term behavior of nuclear waste glasses; Apports et limites des modeles geochimiques pour l'evaluation du comportement a long terme des verres de confinement des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, B; Crovisier, J L [Universite Louis Pasteur, Centre de Geochimie de la Surface, CNRS ULP, Ecole et Observatoire des Sciences de la Terre, 67 - Strasbourg (France)

    1997-07-01

    Geochemical models have been intensively developed by researchers since more than twenty five years in order to be able to better understand and/or predict the long term stability/instability of water-rock systems. These geochemical codes were ail built first on a thermodynamic approach deriving from the application of Mass Action Law. The resulting first generation of models allowed to detect or predict the possible mass transfers (thermodynamic models) between aqueous and mineral phases including irreversible dissolutions of primary minerals and/or precipitation near equilibrium of secondary mineral phases. The recent development of models based on combined thermodynamics and kinetics opens the field of Lime dependent reactions prediction. This is crucial if one thinks to combine geochemical and hydrological studies in the so-called coupled models for transport and reaction calculations. All these models are progressively applied to the prediction of long term behavior of mineral phases, and more specifically glasses. In order to succeed in chat specific extension of the models, but also the data bases, there is a great need for additional new data from experimental approaches and from natural analogues. The modelling approach appears than also very useful in order to interpret the results of experimental data and to relate them to long term data extracted from natural analogues. Specific functions for modelling solid solution phases mat' also be used for describing the products of glasses alterations. (authors)

  8. Effect of irradiation on the evolution of alteration layer formed during nuclear glass leaching

    International Nuclear Information System (INIS)

    Mougnaud, Sarah

    2016-01-01

    High-level radioactive waste (HLW) remaining after spent nuclear fuel reprocessing is immobilized within a glass matrix, eventually destined for geological disposal. Water intrusion into the repository is expected after several thousand years. The alteration of a non-radioactive surrogate for nuclear glass has been extensively studied and it has been determined that successive leaching mechanisms lead to the formation of a 'passivating' alteration layer and to the establishment of a residual rate regime in the long term. However, glass packages are submitted to the radioactivity of confined radioelements. This work focuses on the influence of irradiation on the alteration layer formed during the residual rate regime, in a structural and mechanistic point of view. Three focal areas have been selected. Non-radioactive simple glasses have been leached and externally irradiated in order to determine modifications induced by electronic effects (irradiations with electrons and alpha particles). The same type of glass samples have been previously irradiated with heavy ions and their leaching behavior have been studied in order to assess the impact of ballistic dose cumulated by the glass before water intrusion. Leaching behavior of a complex radioactive glass, doped with an alpha-emitter, has been studied to consider a more realistic situation. (author) [fr

  9. A mechanistic model for long-term nuclear waste glass dissolution integrating chemical affinity and interfacial diffusion barrier

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Teqi [Northwest Institute of Nuclear Technology, No.28 Pingyu Road, Baqiao District, Xi' an,Shaanxi, 710024 (China); Mechanics and Physics of Solids Research Group, Modelling and Simulation Centre, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Jivkov, Andrey P., E-mail: andrey.jivkov@manchester.ac.uk [Mechanics and Physics of Solids Research Group, Modelling and Simulation Centre, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Li, Weiping; Liang, Wei; Wang, Yu; Xu, Hui [Northwest Institute of Nuclear Technology, No.28 Pingyu Road, Baqiao District, Xi' an,Shaanxi, 710024 (China); Han, Xiaoyuan, E-mail: xyhan_nint@sina.cn [Northwest Institute of Nuclear Technology, No.28 Pingyu Road, Baqiao District, Xi' an,Shaanxi, 710024 (China)

    2017-04-01

    Understanding the alteration of nuclear waste glass in geological repository conditions is critical element of the analysis of repository retention function. Experimental observations of glass alterations provide a general agreement on the following regimes: inter-diffusion, hydrolysis process, rate drop, residual rate and, under very particular conditions, resumption of alteration. Of these, the mechanisms controlling the rate drop and the residual rate remain a subject of dispute. This paper offers a critical review of the two most competitive models related to these regimes: affinity–limited dissolution and diffusion barrier. The limitations of these models are highlighted by comparison of their predictions with available experimental evidence. Based on the comprehensive discussion of the existing models, a new mechanistic model is proposed as a combination of the chemical affinity and diffusion barrier concepts. It is demonstrated how the model can explain experimental phenomena and data, for which the existing models are shown to be not fully adequate.

  10. The economics of long-term operation of nuclear power plants

    International Nuclear Information System (INIS)

    Lokhov, Alexey; Huerta, Alejandro; Dufresne, Luc; Giraud, Anne; Osouf, Nicolas

    2012-01-01

    Refurbishment and long-term operation (LTO) of existing nuclear power plants (NPPs) today are crucial to the competitiveness of the nuclear industry in OECD countries as existing nuclear power plants produce base-load power at a reliable cost. A number of nuclear power plants, most notably 73 units in the United States (up to 2012), have been granted lifetime extensions of up to 60 years, a development that is being keenly watched in other OECD countries. In many of these (e.g. France, Switzerland), there is no legal end to the operating licence, but continued operation is based on the outcomes of periodic safety reviews. This study analyses technical and economic data on the upgrade and lifetime extension experience in OECD countries. A multi-criteria assessment methodology is used considering various factors and parameters reflecting current and future financial conditions of operation, political and regulatory risks, the state of the plants' equipment and the general role of nuclear power in the country's energy policy. The report shows that long-term operation of nuclear power plants has significant economic advantages for most utilities envisaging LTO programmes. In most cases, the continued operation of NPPs for at least ten more years is profitable even taking into account the additional costs of post-Fukushima modifications, and remains cost-effective compared to alternative replacement sources

  11. Present state and long term planning on nuclear power plants in principal countries in the world

    International Nuclear Information System (INIS)

    Nomura, Junichi

    1978-01-01

    The situation of nuclear power stations and the long term planning in each major country in the world were summarized, but the situation is changing from time to time, therefore it is difficult to make the long term prediction. The advanced countries in terms of nuclear power established the long term plans to adopt nuclear power generation largely owing to the oil crisis, but thereafter the revision was carried out again and again in respective countries. The developing countries already started the operation of nuclear power generation occupy only 2 to 3% of the total installed capacity in the world, but the countries constructing or planning nuclear power generation are many, and if the operation will be started as scheduled, their capacity will reach 30 million kW by 1985, and occupy about 10% of the total installed capacity of nuclear power generation in the world. As for the range of investigation of this report, the countries where the long term plans are unknown or the number of construction is small, Japan, Great Britain, USA and communist countries are excluded. As a rule, the light water reactors with power output of more than 200,000 kW are listed. The number of nuclear power plants in operation, under construction and in planning stage, national situation, long term plan, and others in each country are described. (Kako, I.)

  12. Long-term reliability evaluation of nuclear containments with tendon force degradation

    International Nuclear Information System (INIS)

    Kim, Sang-Hyo; Choi, Moon-Seock; Joung, Jung-Yeun; Kim, Kun-Soo

    2013-01-01

    Highlights: • A probabilistic model on long-term degradation of tendon force is developed. • By using the model, we performed reliability evaluation of nuclear containment. • The analysis is also performed for the case with the strict maintenance programme. • We showed how to satisfy the target safety in the containments facing life extension. - Abstract: The long-term reliability of nuclear containment is important for operating nuclear power plants. In particular, long-term reliability should be clarified when the service life of nuclear containment is being extended. This study focuses not only on determining the reliability of nuclear containment but also presenting the reliability improvement by strengthening the containment itself or by running a strict maintenance programme. The degradation characteristics of tendon force are estimated from the data recorded during in-service inspection of containments. A reliability analysis is conducted for a limit state of through-wall cracking, which is conservative, but most crucial limit state. The results of this analysis indicate that reliability is the lowest at 3/4 height of the containment wall. Therefore, this location is the most vulnerable for the specific limit state considered in this analysis. Furthermore, changes in structural reliability owing to an increase in the number of inspecting tendons are analysed for verifying the effect of the maintenance program's intensity on expected containment reliability. In the last part of this study, an example of obtaining target reliability of nuclear containment by strengthening its structural resistance is presented. A case study is conducted for exemplifying the effect of strengthening work on containment reliability, especially during extended service life

  13. Long-term cost targets for nuclear energy

    International Nuclear Information System (INIS)

    Rogner, H.H.; McDonald, A.

    2004-01-01

    In 2000 the International Atomic Energy Agency (IAEA) began the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) to help guide nuclear R and D strategies targeted on anticipated mid-century energy system needs. One part of INPRO seeks to develop cost targets for new designs to be competitive in mid-century markets. The starting point was the 40 scenarios of the Special Report on Emissions Scenarios (SRES) of the Intergovernmental Panel on Climate Change. This paper summarizes four of the SRES scenarios, one from each of the four SRES scenario families. It discusses their implications for nuclear energy, including cost targets, and develops for each an 'aggressive nuclear' variant. The aggressive nuclear variants estimate the potential market for nuclear energy if, by improving faster than assumed by the SRES authors, nuclear energy can make inroads into vulnerable market shares projected for its competitors. In addition to projected demands for nuclear generated electricity, hydrogen and heat, the aggressive variants include prospective demand for nuclear desalination and use in upgrading fossil fuels. The paper then presents learning rates and implied cost targets consistent with the aggressive nuclear variants of the SRES scenarios. One provocative initial result is that many of the scenarios with substantial nuclear expansion do not seem to require big reductions in nuclear investment costs. One interpretation discussed at the end of the paper highlights the difference between cost reductions consistent with long-term energy system optimization based on perfect foresight, and cost reductions necessary to attract private investment in today's 'deregulating' and uncertain energy markets. (orig.)

  14. Molecular Dynamics-based Simulations of Bulk/Interfacial Structures and Diffusion Behaviors in Nuclear Waste Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jincheng

    2018-03-16

    This NEUP Project aimed to generate accurate atomic structural models of nuclear waste glasses by using large-scale molecular dynamics-based computer simulations and to use these models to investigate self-diffusion behaviors, interfacial structures, and hydrated gel structures formed during dissolution of these glasses. The goal was to obtain realistic and accurate short and medium range structures of these complex oxide glasses, to provide a mechanistic understanding of the dissolution behaviors, and to generate reliable information with predictive power in designing nuclear waste glasses for long-term geological storage. Looking back of the research accomplishments of this project, most of the scientific goals initially proposed have been achieved through intensive research in the three and a half year period of the project. This project has also generated a wealth of scientific data and vibrant discussions with various groups through collaborations within and outside of this project. Throughout the project one book chapter and 14 peer reviewed journal publications have been generated (including one under review) and 16 presentations (including 8 invited talks) have been made to disseminate the results of this project in national and international conference. Furthermore, this project has trained several outstanding graduate students and young researchers for future workforce in nuclear related field, especially on nuclear waste immobilization. One postdoc and four PhD students have been fully or partially supported through the project with intensive training in the field material science and engineering with expertise on glass science and nuclear waste disposal

  15. Long-term consequences of and prospects for recovery from nuclear war: Two views. View II

    International Nuclear Information System (INIS)

    Anspaugh, L.R.

    1986-01-01

    The author comments on the information presented in this volume and speculates on the long-term consequences of nuclear war and the prospects for recovery. In order to do that, it might be useful to define long term. To him this means time frames of years to perhaps even hundreds of years in terms of the ultimate response and recovery of large-scale ecosystems. Such long time frames may seem excessive, but if some of the speculated efforts of nuclear war are actually realized, it may indeed take centuries before native ecosystems restabilize. Also, when referring to long-term effects of the magnitude required to have a major impact on entire ecosystems, it is clear that the driving force would not be the direct effects of nuclear war. Of potentially greater significance would be the secondary effects mediated by the intermediate-term impacts on global climate. Specifically, he refers to the speculative impacts of major decreases in the heat and light fluxes reaching the Earth's surface. Such changes are commonly referred to as ''nuclear winter.''

  16. Long-term capital planning considering nuclear plant life-cycle management

    International Nuclear Information System (INIS)

    Negin, C.A.; Simpson, J.M.; Hostetler, D.R.

    1992-09-01

    The creation of a Life Cycle Management (LCM) group at utilities to evaluate the long term capital refurbishment needs is gaining favor. Among the functions of such groups can be the responsibility for recommending long term capital planning projects based on results of evaluations of systems, structures, and components that are not only essential to achieving the full current license term of operation, but also to extend the service life of the plant. Making such recommendations, in content and timing, requires the ability to view all recommendations in the context of an overall capital budget and long range outage impacts. This report illustrates an approach for creating a Long-Term Capital Plan with methods for deciding on, compiling, integrating, and presenting projects from the perspective of an LCM program for a nuclear power plant. It also addresses a rationale for capitalization of LCM program activities that would not be allowed under current accounting treatment

  17. Long-term development of nuclear maintenance service provider in Slovenia

    International Nuclear Information System (INIS)

    Androjna, A.; Racic, Z.; Balazic, D.

    2004-01-01

    In recent years, most utilities have been facing a challenge of optimizing maintenance costs, while maintaining or improving equipment reliability. As the equipment ages and maintenance skills within the plant staff may decline due to a generation exchange, the challenge becomes even stronger. Consequently, many plants are looking for possible solutions through partnering with maintenance service providers. The fact that there is only one nuclear power plant in Slovenia hinders the development of local maintenance contractors to some extent. Additionally, they have to face everincreasing technical and organizational requirements while a longer fuel cycle and shorter outage durations result in a narrower annual scope of outage activities. In such circumstances, it may be very difficult for local maintenance service providers to retain and improve skills and qualifications in the long run. Even more so, since they also face the need to rejuvenate their staff and the interest of subcontractors to participate diminishes. The paper presents a case on long-term development issues as experienced by NUMIP, the leading Slovenian nuclear maintenance service provider. Above all, we would like to contribute to a better understanding of efficient local maintenance support. NUMIP's future strategic options are explored in light of possible partnering relationship with the nuclear power plant, based on trust, win-win attitude and continuous improvement. Long-term benefits of the proposed partnering are indicated for both parties, the nuclear power plant and the local maintenance service provider. (author)

  18. Long-term stability of high-level waste forms

    International Nuclear Information System (INIS)

    Vernaz, E.; Loida, A.; Malow, G.; Marples, J.A.C.; Matzke, H.J.

    1990-01-01

    The long-term stability of HLW forms is reviewed with regard to temperature, irradiation and aqueous corrosion in a geological environment. The paper focuses on borosilicate glasses, but the radiation stability results are compared with some HLW ceramics. Thermal stability: most nuclear waste glass compositions have been adjusted to ensure a low final crystallized fraction. The crystallization of highly active Pamela glass samples was similar to that of nonradioactive glass. Radiation stability: No adverse effect of irradiation damage was found in glasses doped with short-lived actinides: volume changes were small, no significant change in the leach rate was observed, and the fracture toughness increased. For most ceramics investigated, volume changes of up to 9%, amorphization and higher leach rates were observed as a consequence of high α decay doses. For the KAB 78 ceramic, however, none of these effects were detected since the matrix was not subject to α recoil damage. Chemical stability: It has been demonstrated that alteration by water depends largely on the repository conditions. Most clay act as silica sinks, and increase the glass corrosion rate. It is possible, however, to specify realistic temperature, pressure and environmental conditions to ensure glass integrity for more than 10 000 years

  19. Global prospects for nuclear power development in the long term

    International Nuclear Information System (INIS)

    Semenov, Boris A.

    1994-01-01

    Population growth, economic development and improvement of quality of life will lead to significant increase of electricity consumption worldwide with more rapid growth in developing and newly industrialised countries. At the same time, concerns for environmental protection and security of supply will call for the development of alternatives to fossil fuels for electricity generation. Sustain ability will be a major driving factor for the choice of electricity generation options and strategies. Costs, and macro-economic and social impacts, will also influence future strategies in the electricity sector. Since renewable sources require significant development efforts to reach competitiveness, nuclear power is the most likely non-fossil source to be deployed on a large scale for base load electricity generation. Nuclear power is already a proven technology providing a significant share of electricity supply worldwide. In several countries, including the Republic of Korea, nuclear generated electricity is a major contributor to secure and competitive electricity supply. Technological progress aiming towards enhancing safety as well as technical and economic performance of nuclear power plants will enlarge the potential market share of nuclear generated electricity. The purpose of the paper is to give an overview of the prospects for nuclear power development in the world in the medium and long term. For the short term, up to 2005, projections of nuclear power installed capacities are rather straightforward to establish. The Agency publishes such projections every years, based upon a review of nuclear programmes in Member States. For the medium term, up to 2015, two illustrative cases have been developed by the IAEA reflecting contrasted, but not extreme, assumptions on the different parameters influencing nuclear power deployment worldwide. The paper gives estimations of the installed nuclear capacity, and of the share of nuclear power in total electricity and energy

  20. Predicted environmental impacts of long-term waste management at the Savannah River Site

    International Nuclear Information System (INIS)

    Topp, S.V.

    1979-01-01

    This paper describes the different alternative approaches to long-term waste management at SRP, along with their probable relative costs, risks, and uncertainties; the issue of methodology for decision-making in nuclear waste management is also raised. This paper contains a preliminary listing of the SRP alternaties including a simple cost-risk analysis. The alternatives are: glass shipped offsite to Federal repository; air-cooled vault with glass at SRP; liquid waste slurry stored in SRP bedrock cavern; and continued tank farm operation with salt and sludge

  1. Long-term performance of structures comprising nuclear power plants PART 1: Deterioration assessment of nuclear power station buildings PART 2: Long-term stability and the leak-tightness of reactor containments

    International Nuclear Information System (INIS)

    Pocock, D.C.; Worthington, J.C.; Oberpichler, R.; Van Exel, H.; Beukelmann, D.; Huth, R.; Rose, B.

    1990-01-01

    The objective of this research was to study the long-term performance of structures comprising nuclear power plants. The time period of interest for this study is 140 years (this figure is based on maximum periods of 40 years for operation and 100 years of storage). It was divided in two parts: - the first based on four UK nuclear power plants examine the principle deterioration mechanism of reinforced structure which is chloride ingress and carbonation penetration - the second based on 2 German nuclear power plants examine the long term behaviour of reinforced and prestressed concrete and also the corrosion of steel containments with particular reference on plastic seals and potential risk areas

  2. Development of nuclear fuel cycle technologies - bases of long-term provision of fuel and environmental safety of nuclear power

    International Nuclear Information System (INIS)

    Solonin, M.I.; Polyakov, A.S.; Zakharkin, B.S.; Smelov, V.S.; Nenarokomov, E.A.; Mukhin, I.V.

    2000-01-01

    To-day nuclear power is one of the options, however, to-morrow it may become the main source of the energy, thus, providing for the stable economic development for the long time to come. The availability of the large-scale nuclear power in the foreseeable future is governed by not only the safe operation of nuclear power plants (NPP) but also by the environmentally safe management of spent nuclear fuel, radioactive waste conditioning and long-term storage. More emphasis is to be placed to the closing of the fuel cycle in view of substantial quantities of spent nuclear fuel arisings. The once-through fuel cycle that is cost effective at the moment cannot be considered to be environmentally safe even for the middle term since the substantial build-up of spent nuclear fuel containing thousands of tons Pu will require the resolution of the safe management problem in the nearest future and is absolutely unjustified in terms of moral ethics as a transfer of the responsibility to future generations. The minimization of radioactive waste arisings and its radioactivity is only feasible with the closed fuel cycle put into practice and some actinides and long-lived fission radionuclides burnt out. The key issues in providing the environmentally safe fuel cycle are efficient processes of producing fuel for NPP, radionuclide after-burning included, a long-term spent nuclear fuel storage and reprocessing as well as radioactive waste management. The paper deals with the problems inherent in producing fuel for NPP with a view for the closed fuel cycle. Also discussed are options of the fuel cycle, its effectiveness and environmental safety with improvements in technologies of spent nuclear fuel reprocessing and long-lived radionuclide partitioning. (authors)

  3. Development of nuclear fuel cycle technologies - bases of long-term provision of fuel and environmental safety of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Solonin, M I; Polyakov, A S; Zakharkin, B S; Smelov, V S; Nenarokomov, E A; Mukhin, I V [SSC, RF, A.A. Bochvar ALL-Russia Research Institute of Inorganic Materials, Moscow (Russian Federation)

    2000-07-01

    To-day nuclear power is one of the options, however, to-morrow it may become the main source of the energy, thus, providing for the stable economic development for the long time to come. The availability of the large-scale nuclear power in the foreseeable future is governed by not only the safe operation of nuclear power plants (NPP) but also by the environmentally safe management of spent nuclear fuel, radioactive waste conditioning and long-term storage. More emphasis is to be placed to the closing of the fuel cycle in view of substantial quantities of spent nuclear fuel arisings. The once-through fuel cycle that is cost effective at the moment cannot be considered to be environmentally safe even for the middle term since the substantial build-up of spent nuclear fuel containing thousands of tons Pu will require the resolution of the safe management problem in the nearest future and is absolutely unjustified in terms of moral ethics as a transfer of the responsibility to future generations. The minimization of radioactive waste arisings and its radioactivity is only feasible with the closed fuel cycle put into practice and some actinides and long-lived fission radionuclides burnt out. The key issues in providing the environmentally safe fuel cycle are efficient processes of producing fuel for NPP, radionuclide after-burning included, a long-term spent nuclear fuel storage and reprocessing as well as radioactive waste management. The paper deals with the problems inherent in producing fuel for NPP with a view for the closed fuel cycle. Also discussed are options of the fuel cycle, its effectiveness and environmental safety with improvements in technologies of spent nuclear fuel reprocessing and long-lived radionuclide partitioning. (authors)

  4. Nuclear energy; real problems of the long term development

    International Nuclear Information System (INIS)

    Knapp, V.

    1996-01-01

    Whilst general public accepts the operation of western designed nuclear power stations as safe, waste management and decommission still figure as open problems, although such views are not in agreement with technical and economic status of these operations. A concern with imagined problems can have the effect of neglecting the real ones. In considering the long term development of nuclear energy the real problems can be associated with the wide use of plutonium and multiplication of national reprocessing and enrichment installations. Nuclear proliferation safety could be retained and developed through establishment of international nuclear fuel centres. Their operation would be particularly beneficial for small or medium nuclear countries. Several arguments are given why it is not premature to initiate a study which would identify and analyze the problems of establishing an international nuclear fuel centre. Central Europe could be a region which could be served by one of such nuclear fuel centres. (author)

  5. Long-term leaching behavior of simulated Savannah River Plant waste glass: Part 1, MCC-1 leachability results, four-year leaching data

    International Nuclear Information System (INIS)

    Wicks, G.G.; Stone, J.A.; Chandler, G.T.; Williams, S.

    1986-08-01

    Long-term leaching data were obtained on SRP 131/TDS waste glass using MCC-1 or slightly modified MCC-1 standard leaching tests. Experiments were conducted out to four years at 40 0 C and 3-1/2 years at 90 0 C. These experiments have produced the longest standardized leaching data currently available in the waste management community. Long-term leaching data provide important input to modeling of waste glass behavior and ultimate prediction of waste glass performance. In this study, the leaching behavior of SRP waste glass was found to be excellent; leachates based on a variety of elements were not only very low, but also improved with increasing time. In addition to these data, results are also reported from another independent Savannah River study. Leaching behavior at 40 0 C and 90 0 C was assessed not only for a similar SRP 131 waste glass composition, but also for extreme waste glass compositions involving high-iron and high-aluminum waste. In addition, these experiments were performed using not only a standard deionized water leachant, but also simplified brine and silicate groundwater simulations. These two large data bases will be summarized and correlated along with some of the more interesting results recently reported in another study, a two-year leaching program performed on a similar SRP waste glass composition at Battelle Pacific Northwest Laboratories

  6. Radionuclides containment in nuclear glasses. An overview

    Energy Technology Data Exchange (ETDEWEB)

    Gin, Stephane; Jollivet, Patrick; Tribet, Magaly; Peuget, Sylvain; Schuller, Sophie [CEA Marcoule, Bagnols-sur-Ceze (France). DE2D SEVT

    2017-07-01

    Radioactive waste vitrification has been carried out industrially in several countries for nearly 40 years. Research into the formulation and long term behavior of high and intermediate level waste glasses, mainly borosilicate compositions, is still continuing in order to (i) safely condition new types of wastes and (ii) design and demonstrate the safety of the disposal of these long-lived waste forms in a deep geological repository. This article presents a summary of current knowledge on the formulation, irradiation resistance and the chemical durability of these conditioning materials, with a special focus on the fate of radionuclides during glass processing and aging. It is shown that, apart from the situation for certain elements with very low incorporation rate in glass matrices, vitrification in borosilicate glass can enable waste loadings of up to ∝20 wt% while maintaining the glass homogeneity for geological time scales and guaranteeing a high stability level in spite of irradiation and water contact.

  7. Mineralogy and thermodynamic properties of magnesium phyllosilicates formed during the alteration of a simplified nuclear glass

    Energy Technology Data Exchange (ETDEWEB)

    Debure, Mathieu, E-mail: m.debure@brgm.fr [CEA, DEN, DTCD, SECM, F-30207 Bagnols-sur-Ceze (France); MINES-ParisTech, PSL Research University, Centre de Géosciences, 77305 Fontainebleau (France); De Windt, Laurent [MINES-ParisTech, PSL Research University, Centre de Géosciences, 77305 Fontainebleau (France); Frugier, Pierre; Gin, Stéphane [CEA, DEN, DTCD, SECM, F-30207 Bagnols-sur-Ceze (France); Vieillard, Philippe [IC2MP-CNRS-UMR 7285, 5 Ave. Albert Turpain TSA 51106, 86073 Poitiers Cedex 09 (France)

    2016-07-15

    The precipitation of crystallized magnesium phyllosilicates generally sustains the alteration rate of nuclear waste containment glass. However, glass alteration slows down to a residual rate as soon as Mg disappears from the solution. The identification of the phyllosilicates formed is therefore crucial for modeling the long-term behavior of nuclear glass. This study deals with batch alteration of the simplified nuclear glass ISG in presence of magnesium, and the characterization of the secondary phases. Morphological, chemical and structural analyses (MET, EDX, XRD) were performed to determine the nature and structure of the precipitated phases identified as trioctahedral smectites. Analyses conducted on the secondary phases proved the presence of Al, Na and Ca in the Mg-phyllosilicate phases. Such elements had been suspected but never quantitatively measured. The experimental results were then used to determine the thermodynamic solubility constants for each precipitated secondary phase at various temperatures. The calculated values were consistent with those available for sodium and magnesium saponites in the existing thermodynamic databases. - Highlights: • The international simple glass dissolution rate increases in presence of magnesium. • Mg added in solution combines with Si from glass to yield trioctahedral smectites. • Their calculated logK are close to smectite thermodynamic constants reported in databases. • It confirms assumptions on Mg-silicates phases made in previous geochemical modeling.

  8. Mechanical properties of nuclear waste glasses

    International Nuclear Information System (INIS)

    Connelly, A.J.; Hand, R.J.; Bingham, P.A.; Hyatt, N.C.

    2011-01-01

    The mechanical properties of nuclear waste glasses are important as they will determine the degree of cracking that may occur either on cooling or following a handling accident. Recent interest in the vitrification of intermediate level radioactive waste (ILW) as well as high level radioactive waste (HLW) has led to the development of new waste glass compositions that have not previously been characterised. Therefore the mechanical properties, including Young's modulus, Poisson's ratio, hardness, indentation fracture toughness and brittleness of a series of glasses designed to safely incorporate wet ILW have been investigated. The results are presented and compared with the equivalent properties of an inactive simulant of the current UK HLW glass and other nuclear waste glasses from the literature. The higher density glasses tend to have slightly lower hardness and indentation fracture toughness values and slightly higher brittleness values, however, it is shown that the variations in mechanical properties between these different glasses are limited, are well within the range of published values for nuclear waste glasses, and that the surveyed data for all radioactive waste glasses fall within relatively narrow range.

  9. Critical review of glass performance modeling

    International Nuclear Information System (INIS)

    Bourcier, W.L.

    1994-07-01

    Borosilicate glass is to be used for permanent disposal of high-level nuclear waste in a geologic repository. Mechanistic chemical models are used to predict the rate at which radionuclides will be released from the glass under repository conditions. The most successful and useful of these models link reaction path geochemical modeling programs with a glass dissolution rate law that is consistent with transition state theory. These models have been used to simulate several types of short-term laboratory tests of glass dissolution and to predict the long-term performance of the glass in a repository. Although mechanistically based, the current models are limited by a lack of unambiguous experimental support for some of their assumptions. The most severe problem of this type is the lack of an existing validated mechanism that controls long-term glass dissolution rates. Current models can be improved by performing carefully designed experiments and using the experimental results to validate the rate-controlling mechanisms implicit in the models. These models should be supported with long-term experiments to be used for model validation. The mechanistic basis of the models should be explored by using modern molecular simulations such as molecular orbital and molecular dynamics to investigate both the glass structure and its dissolution process

  10. Critical review of glass performance modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, W.L. [Lawrence Livermore National Lab., CA (United States)

    1994-07-01

    Borosilicate glass is to be used for permanent disposal of high-level nuclear waste in a geologic repository. Mechanistic chemical models are used to predict the rate at which radionuclides will be released from the glass under repository conditions. The most successful and useful of these models link reaction path geochemical modeling programs with a glass dissolution rate law that is consistent with transition state theory. These models have been used to simulate several types of short-term laboratory tests of glass dissolution and to predict the long-term performance of the glass in a repository. Although mechanistically based, the current models are limited by a lack of unambiguous experimental support for some of their assumptions. The most severe problem of this type is the lack of an existing validated mechanism that controls long-term glass dissolution rates. Current models can be improved by performing carefully designed experiments and using the experimental results to validate the rate-controlling mechanisms implicit in the models. These models should be supported with long-term experiments to be used for model validation. The mechanistic basis of the models should be explored by using modern molecular simulations such as molecular orbital and molecular dynamics to investigate both the glass structure and its dissolution process.

  11. Alteration of rhyolitic (volcanic) glasses in natural Bolivian salt lakes. - Natural analogue for the behavior of radioactive waste glasses in rock salt repositories

    International Nuclear Information System (INIS)

    Abdelouas, A.

    1996-06-01

    Alteration experiments with the R7T7 glass in three salt brines, saturated respectively in MgCl 2 , MgCl 2 -CaCl 2 and NaCl, showed that the solubilities of most radionuclides are controlled by the secondary phases. Nd, La, and Pr are trapped in powellite, Ce in cerianite, U in coffinite, and Sr is partially immobilized in barite. There is a good similarity between the secondary phases formed experimentally on volcanic glasses and the R7T7 glass altered in MgCl 2 CaCl 2 -saturated brine (formation of hydrotalcite and chlorite-serpentine at short-term and saponite at long-term). These results support the use of volcanic glasses alteration patterns in Mg-rich solutions (seawater, brines) to understand the long-term behavior of nuclear waste glasses and to evaluate the stability of the secondary phases. The study of the sediments of Uyuni (Bolivia) showed that the corrosion rate of the rhyolitic glass in brines at 10 C is 12 to 30 time lower than those of rhyolitic glasses altered in high dilute conditions. The neoformed phases in the sediments are: Smectite, alunite, pyrite, barite, celestite and cerianite. The low alteration rate of rhyolitic glasses in brines and the formation of secondary phases such as smectite, barite and cerianite (also formed during the experimental alteration of the R7T7 glass), permit us to expect the low alteration of nuclear waste glasses at long-term in brines and the trapping of certain radionuclides in secondary phases. (orig.) [de

  12. Synthesis on the long term behavior of spent nuclear fuel. Vol.1,2

    International Nuclear Information System (INIS)

    Poinssot, Ch.; Toulhoat, P.; Grouiller, J.P.; Pavageau, J.; Piron, J.P.; Pelletier, M.; Dehaudt, Ph.; Cappelaere, Ch.; Limon, R.; Desgranges, L.; Jegou, Ch.; Corbel, C.; Maillard, S.; Faure, M.H.; Cicariello, J.C.; Masson, M.

    2001-01-01

    The aim of this report is to present the major objectives, the key scientific issues, and the preliminary results of the research conducted in France in the framework of the third line of the 1991 Law, on the topic of the long term behavior of spent nuclear fuel in view of long term storage or geological disposal. Indeed, CEA launched in 1998 the Research Program on the Long Term Behavior of Spent Nuclear Fuel (abbreviated and referred to as PRECCI in French; Poinssot, 1998) the aim of which is to study and assess the ability of spent nuclear fuel packages to keep their initially allocated functions in interim storage and geological disposal: total containment and recovery functions for duration up to hundreds of years (long term or short-term interim storage and/or first reversible stages of geological disposal) and partial confinement function (controlled fluxes of RN) for thousands of years in geological disposal. This program has to allow to obtain relevant and reliable data concerning the long term behavior of the spent fuel packages so that feasibility of interim storage and/or geological disposal can be assessed and demonstrated as well as optimized. Within this framework, this report presents for every possible scenario of evolution (closed system, in Presence of water in presence of gases) what are estimated to be the most relevant evolution mechanism. For the most relevant scientific issues hence defined, a complete scientific review of the best state of knowledge is subsequently here given thus allowing to draw a clear guideline of the major R and D issues for the next years. (authors)

  13. Corrosion of simulated nuclear waste glass

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.; Gotic, M.; Foric, J.

    1988-01-01

    In this study the preparation and characterization of borosilicate glasses of different chemical composition were investigated. Borosilicate glasses were doped with simulated nuclear waste oxides. The chemical corrosion in water of these glasses was followed by measuring the leach rates as a function of time. It was found that a simulated nuclear waste glass with the chemical composition (weight %), 15.61% Na 2 O, 10.39% B 2 O 3 , 45.31% SiO 2 , 13.42% ZnO, 6.61% TiO 2 and 8.66% waste oxides, is characterized by low melting temperature and with good corrosion resistance in water. Influence of passive layers on the leaching behaviour of nuclear waste glasses is discussed. (author) 20 refs.; 7 figs.; 4 tabs

  14. Severity Stages in Essential Tremor: A Long-Term Retrospective Study Using the Glass Scale

    Directory of Open Access Journals (Sweden)

    Alexandre Gironell

    2015-03-01

    Full Text Available Background:  Few prospective studies have attempted to estimate the rate of decline of essential tremor (ET and these were over a relatively short time period (less than 10 years.  We performed a long-term study of severity stages in ET using the Glass scale scoring system.Methods: Fifty consecutive patients with severe ET were included. We retrospectively obtained Glass Scale scores throughout the patient’s life. Common milestone events were used to help recall changes in tremor severity.Results:  According to the Glass Scale, the age distributions were as follows: score I, 40±17 years, score II, 55±12 years, score III, 64±9 years, and score IV, 69±7 years. A significant negative correlation between age at first symptom and rate of progression was found (r=−0.669, p<0.001. The rate of progression was significantly different (p<0.001 when the first symptom appeared at a younger age (under 40 years of age compared with older age (40 years or older.Discussion:  Our results support the progressive nature of ET. Age at onset was a prognostic factor. The Glass Scale may be a useful tool to determine severity stages during the course of ET in a manner similar to the Hoehn and Yahr Scale for Parkinson’s disease.

  15. Severity Stages in Essential Tremor: A Long-Term Retrospective Study Using the Glass Scale

    Science.gov (United States)

    Gironell, Alexandre; Ribosa-Nogué, Roser; Gich, Ignasi; Marin-Lahoz, Juan; Pascual-Sedano, Berta

    2015-01-01

    Background Few prospective studies have attempted to estimate the rate of decline of essential tremor (ET) and these were over a relatively short time period (less than 10 years). We performed a long-term study of severity stages in ET using the Glass Scale scoring system. Methods Fifty consecutive patients with severe ET were included. We retrospectively obtained Glass Scale scores throughout the patient's life. Common milestone events were used to help recall changes in tremor severity. Results According to the Glass Scale, the age distributions were as follows: score I, 40±17 years, score II, 55±12 years, score III, 64±9 years, and score IV, 69±7 years. A significant negative correlation between age at first symptom and rate of progression was found (r = −0.669, p<0.001). The rate of progression was significantly different (p<0.001) when the first symptom appeared at a younger age (under 40 years of age) compared with older age (40 years or older). Discussion Our results support the progressive nature of ET. Age at onset was a prognostic factor. The Glass Scale may be a useful tool to determine severity stages during the course of ET in a manner similar to the Hoehn and Yahr Scale for Parkinson's disease. PMID:25793146

  16. Diffusion processes in nuclear waste glasses

    International Nuclear Information System (INIS)

    Serruys, Y.; Limoge, Y.; Brebec, G.

    1992-01-01

    Problems concerning the containment of nuclear wastes are presented. Different materials which have been considered for this purpose are briefly reviewed and we see why glass is one of the favorite candidates. It is focussed on what is known about diffusion in 'simple enough' glasses. After a recall concerning the structure and possible defects, the main results on diffusion in 'simple' glasses are given and it is shown what these results involve for the mechanisms of diffusion. The diffusion models are presented which can account for transport in random media: percolation and random walk models. Specific phenomena for the nuclear waste glasses are considered: the effect of irradiation on diffusion and leaching (i.e. corrosion by water). Finally diffusion data in nuclear waste glasses are presented. (author). 199 refs., 6 figs., 1 tab

  17. Closing the gap between short- and long-term scenarios for nuclear energy

    International Nuclear Information System (INIS)

    Toth, F. L.; Rogner, H.-H.

    2005-01-01

    Many scenarios published in recent years explore the driving forces and assess plausible ranges of global energy use and the resources they draw on. Some scenarios (e.g., OECD IEA, Organization for Economic Co-operation and Development International Energy Agency, 2004) focus on the next decade or two and project the evolution of world energy demand, supply as well as the resources, technologies, and prices to match them. Other scenarios (e.g., the Special Report on Emissions Scenarios, SRES, prepared by the Intergovernmental Panel on Climate Change, IPCC, 2000) explore the long term with a view to resource availability and depletion, technological transformations, and environmental concerns, predominantly climate change. A persistent gap (see Figure 1) can be observed in the projections for nuclear energy: near-term scenarios typically project a flat or slightly declining contribution of nuclear energy to the world energy supply whereas medium- and long-term scenarios anticipate significant increases. The magnitude of the gap between the OECD IEA (2002) projections and the median of the 40 IPCC SRES scenarios for the year 2020 amounts to almost 300 GWe installed capacity. Reasons for the gap originate in the differences between the analytical frameworks (including projection techniques) adopted by the short- and long-term studies. Another, closely related reason is the difference in the underlying assumptions, particularly their relations to recent trends and the current situation. In addition, near-term projections are heavily influenced by the social context (perceived unpopularity or outright rejection of nuclear power after Chernobyl), political factors (government pronouncements and policies at the national level, diplomacy and balancing of national positions at international organizations), economic aspects (energy market deregulation and liberalization unveiling excess capacities; financial risks), technology matters (the role of learning, definition of

  18. Systems approach to nuclear waste glass development

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1986-01-01

    Development of a host solid for the immobilization of nuclear waste has focused on various vitreous wasteforms. The systems approach requires that parameters affecting product performance and processing be considered simultaneously. Application of the systems approach indicates that borosilicate glasses are, overall, the most suitable glasses for the immobilization of nuclear waste. Phosphate glasses are highly durable; but the glass melts are highly corrosive and the glasses have poor thermal stability and low solubility for many waste components. High-silica glasses have good chemical durability, thermal stability, and mechanical stability, but the associated high melting temperatures increase volatilization of hazardous species in the waste. Borosilicate glasses are chemically durable and are stable both thermally and mechanically. The borosilicate melts are generally less corrosive than commercial glasses, and the melt temperature miimizes excessive volatility of hazardous species. Optimization of borosilicate waste glass formulations has led to their acceptance as the reference nuclear wasteform in the United States, United Kingdom, Belgium, Germany, France, Sweden, Switzerland, and Japan

  19. Spent fuel, plutonium and nuclear waste: long-term management; Le combustible use et le plutonium en tant que dechets nucleaires: gestion a long terme

    Energy Technology Data Exchange (ETDEWEB)

    Collard, G

    1998-11-01

    Different options for the management of nuclear waste arising from the nuclear fuel cycle are discussed. Special emphasis is on reprocessing followed by geological disposal, geological disposal of reprocessing waste, direct geological disposal of spent nuclear fuel, long term storage. Particular emphasis is on the management of plutonium including recycling, immobilisation and disposal, partitioning and transmutation.

  20. Long term operation of nuclear power plants in the U.S

    International Nuclear Information System (INIS)

    Young, G.G.

    2015-01-01

    This series of slides shows that safety, performance, cost, environmental and public opinion factors are favorable for long term operation of U.S. nuclear power plants. In the U.S. 1 reactor has an operating life ranging between 10 and 19 years, 37 reactors have an operating life ranging between 20 and 29 years, 42 reactors between 30 and 39 years and 20 reactors have an operating life over 40 years. The original license term is 40 years and it can be extended by 20 years for each renewal. The application for renewal must be at least 5 years before expiration of the current license. 3 main areas are reviewed by NRC to get the renewal: safety, environmental and adjudicatory. A slide describes the NRC license renewal process and another slide lists the regulatory and industry guidance documents based on lessons learned and operating experience. Research and development efforts around materials aging and safety margin characterization by EPRI, DOE, NRC and industry groups are essential to support and maintain the option of long term operation of nuclear reactors. (A.C.)

  1. Corrosion of Spent Nuclear Fuel: The Long-Term Assessment

    International Nuclear Information System (INIS)

    Ewing, Rodney C.

    2004-01-01

    Spent nuclear fuel, essentially U 2 , accounts for over 95% of the total radioactivity of all of the radioactive wastes in the United States that require disposal, disposition or remediation. The UO 2 in SNF is not stable under oxiding conditions and may also be altered under reducing conditions. The alteration of SNF results in the formation of new uranium phases that can cause the release or retardation of actinide and fission product radionuclides. Over the long term, and depending on the extent to which the secondary uranium phases incorporate fission products and actinides, these alteration phases become the near-field source term

  2. Recycling versus Long-Term Storage of Nuclear Fuel: Economic Factors

    Directory of Open Access Journals (Sweden)

    B. Yolanda Moratilla Soria

    2013-01-01

    Full Text Available The objective of the present study is to compare the associated costs of long-term storage of spent nuclear fuel—open cycle strategy—with the associated cost of reprocessing and recycling strategy of spent fuel—closed cycle strategy—based on the current international studies. The analysis presents cost trends for both strategies. Also, to point out the fact that the total cost of spent nuclear fuel management (open cycle is impossible to establish at present, while the related costs of the closed cycle are stable and known, averting uncertainties.

  3. Foundations of a long-term strategy for nuclear power development in Japan

    International Nuclear Information System (INIS)

    Murata, H.

    1975-01-01

    A long-term strategy for nuclear power developments in Japan is proposed. The situation in the world has greatly changed in the recent years due to the rise in oil prices as well as the considerable concern about the environmental problems caused by the nuclear power plants. Stress is being placed on the harmonization with the environmental protection rather than on the economical generation of the nuclear power. In order to meet the future requirements, five systems are given for the short, medium and long ranges beyond the year 2000. For the final stage a system is proposed that combines fusion-fission hybrid reactors with very high temperature gas cooled reactors to supply clean energy. (author)

  4. Na, Mg, Ni and Cs distribution and speciation after long-term alteration of a simulated nuclear waste glass: A micro-XAS/XRF/XRD and wet chemical study

    Science.gov (United States)

    Curti, Enzo; Dähn, Rainer; Farges, François; Vespa, Marika

    2009-04-01

    Microscopic distribution and speciation of Na, Mg, Ni and Cs in a simulated (inactive) nuclear waste glass were studied using micro X-ray fluorescence (μ-XRF) and micro X-ray absorption spectroscopy (μ-XAS), after aqueous leaching during 12 years at 90 °C. Na and Mg are major constituents of the glass that can be used to determine the progress of the glass corrosion process and the nature of secondary alteration phases. Ni and Cs represent dose determining long-lived radionuclides ( 59Ni, 135Cs) in vitrified nuclear waste. The Na-Mg μ-XRF maps revealed that the core regions of the glass fragments are apparently unaltered and compositionally homogeneous, whereas rims and interstitial spaces are enriched with Mg-rich smectite formed during the leaching process. The micro X-ray absorption near edge structure (μ-XANES) spectra collected at the Mg K-edge in the altered zones show three sharp resonances typical for crystalline Mg-silicates. These resonances are distinctive of Mg occupying undistorted octahedral positions. In contrast, the μ-XANES spectra collected in the core zones of the glass fragments lack this resonance pattern and are identical to the spectra measured on the pristine (unleached) MW glass. Micro extended X-ray absorption fine structure (μ-EXAFS) and μ-XANES analyses at the Ni K-edge revealed three distinct Ni(II) species: (a) Ni uniformly distributed in the glass matrix, (b) micro-inclusions with high Ni concentrations and (c) Ni associated to the Mg-clay. The comparison with reference spectra of unleached MW and other Ni-bearing silicate glasses indicated that species (a) represents the original coordinative environment of Ni in the glass. The μ-EXAFS analyses revealed that species (b) is structural Ni in trevorite (NiFe 2O 4), which probably formed through unmixing processes during the cooling of the glass melt. The μ-EXAFS of species (c) could be successfully modeled assuming specific adsorption or incorporation of Ni into the lattice of

  5. The role of nuclear energy system for Korean long-term energy supply strategy

    International Nuclear Information System (INIS)

    Chae, K.N.; Lee, D.G.; Lim, C.Y.; Lee, B.W.

    1995-01-01

    The energy supply optimization model MESSAGE-III is improved to evaluate the role of nuclear energy system in Korean long-term energy supply strategy. Emphasis is placed on the potential contribution of nuclear energy in case of environmental constraints and energy resource limitation. The time horizon is 1993-2040. A program to forecast useful energy demand is developed, and optimization is performed from the overall energy system to the nuclear energy system. Reactor and fuel cycle strategy and the expanded utilization options for nuclear energy system are suggested. FBRs, HTGRs and thorium fuel cycle would play key roles in the long run. The most important factors for nuclear energy in Korean energy supply strategy would be the availability of fossil fuels, CO 2 reduction regulation, and the supply capability of nuclear energy. (author)

  6. Nanoporous Glasses for Nuclear Waste Containment

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2016-01-01

    Full Text Available Research is in progress to incorporate nuclear waste in new matrices with high structural stability, resistance to thermal shock, and high chemical durability. Interactions with water are important for materials used as a containment matrix for the radio nuclides. It is indispensable to improve their chemical durability to limit the possible release of radioactive chemical species, if the glass structure is attacked by corrosion. By associating high structural stability and high chemical durability, silica glass optimizes the properties of a suitable host matrix. According to an easy sintering stage, nanoporous glasses such as xerogels, aerogels, and composite gels are alternative ways to synthesize silica glass at relatively low temperatures (≈1,000–1,200°C. Nuclear wastes exist as aqueous salt solutions and we propose using the open pore structure of the nanoporous glass to enable migration of the solution throughout the solid volume. The loaded material is then sintered, thereby trapping the radioactive chemical species. The structure of the sintered materials (glass ceramics is that of nanocomposites: actinide phases (~100 nm embedded in a vitreous silica matrix. Our results showed a large improvement in the chemical durability of glass ceramic over conventional nuclear glass.

  7. Radiolytic gas production during long-term storage of nuclear wastes

    International Nuclear Information System (INIS)

    Bibler, N.E.

    1976-01-01

    Gases produced by in situ radiolysis of sealed solidified nuclear wastes during long-term storage could conceivably breach containment. Therefore, candidate waste forms (matrices containing simulated nuclear wastes) were irradiated with 60 Co-γ and 244 Cm-α radiation. These forms were: cement containing simulated fission product sludges, vermiculite containing organic liquids, and cellulosics contaminated with α-emitting transuranic isotopes. For cement waste forms exposed to γ-radiolysis, an equilibrium hydrogen pressure was reached that was dose rate dependent. For α-radiolysis, equilibrium was not reached. With organic wastes (n-octane on vermiculite), H 2 and traces of CO 2 and CH 4 were produced, and O 2 was consumed with both radiations. Only energy absorbed by the organic material was effective in producing H 2 . At low dose rates with both α- and γ-irradiations, G(H 2 ) was 4.5 and G(-O 2 ) was 5.0. Also, equilibrium was not obtained. For cellulosic material, H 2 , CO 2 , and CO were produced in the ratio of 1.0:0.7:0.3, and O 2 was consumed. With α-radiolysis, G(gas) was dose dependent; measured values ranged from 2.2 to 0.6 as the dose increased. Implications of all these results on long-term storage of radioactive waste are discussed. Some data from an actual nuclear wasteform are also presented

  8. Radiation effects in moist-air systems and the influence of radiolytic product formation on nuclear waste glass corrosion

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.; Bates, J.K.; Buck, E.C.; Hoh, J.C.; Emery, J.W.; Wang, L.M.

    1997-07-01

    Ionizing radiation may affect the performance of glass in an unsaturated repository site by interacting with air, water vapor, or liquid water to produce a variety of radiolytic products. Tests were conducted to examine the effects of radiolysis under high gas/liquid ratios. Results indicate that nitrate is the predominant radiolytic product produced following both gamma and alpha radiation exposure, with lesser amounts of nitrite and carboxylic acids. The formation of nitrogen acids during exposure to long-lived, alpha-particle-emitting transuranic elements indicates that these acids may play a role in influencing nuclear waste form reactions in a long-term unsaturated disposal scenario. Experiments were also conducted with samples that simulate the composition of Savannah River Plant nuclear waste glasses. Radiolytic product formation in batch tests (340 m -1 , 90 C) resulted in a small increase in the release rates of many glass components, such as alkali and alkaline earth elements, although silicon and uranium release rates were slightly reduced indicating an overall beneficial effect of radiation on waste form stability. The radiolytic acids increased the rate of ion exchange between the glass and the thin film of condensate, resulting in accelerated corrosion rates for the glass. The paragenetic sequence of alteration phases formed on both the irradiated and nonirradiated glass samples reacted in the vapor hydration tests matches closely with those developed during volcanic glass alteration in naturally occurring saline-alkaline lake systems. This correspondence suggests that the high temperatures used in these tests have not changed the underlying glass reaction mechanism relate to that which controls glass reactions under ambient surficial conditions

  9. Radiation effects in moist-air systems and the influence of radiolytic product formation on nuclear waste glass corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Wronkiewicz, D.J.; Bates, J.K.; Buck, E.C.; Hoh, J.C.; Emery, J.W. [Argonne National Lab., IL (United States). Chemical Technology Div.; Wang, L.M. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Geology

    1997-07-01

    Ionizing radiation may affect the performance of glass in an unsaturated repository site by interacting with air, water vapor, or liquid water to produce a variety of radiolytic products. Tests were conducted to examine the effects of radiolysis under high gas/liquid ratios. Results indicate that nitrate is the predominant radiolytic product produced following both gamma and alpha radiation exposure, with lesser amounts of nitrite and carboxylic acids. The formation of nitrogen acids during exposure to long-lived, alpha-particle-emitting transuranic elements indicates that these acids may play a role in influencing nuclear waste form reactions in a long-term unsaturated disposal scenario. Experiments were also conducted with samples that simulate the composition of Savannah River Plant nuclear waste glasses. Radiolytic product formation in batch tests (340 m{sup {minus}1}, 90 C) resulted in a small increase in the release rates of many glass components, such as alkali and alkaline earth elements, although silicon and uranium release rates were slightly reduced indicating an overall beneficial effect of radiation on waste form stability. The radiolytic acids increased the rate of ion exchange between the glass and the thin film of condensate, resulting in accelerated corrosion rates for the glass. The paragenetic sequence of alteration phases formed on both the irradiated and nonirradiated glass samples reacted in the vapor hydration tests matches closely with those developed during volcanic glass alteration in naturally occurring saline-alkaline lake systems. This correspondence suggests that the high temperatures used in these tests have not changed the underlying glass reaction mechanism relate to that which controls glass reactions under ambient surficial conditions.

  10. Corrosion of Spent Nuclear Fuel: The Long-Term Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rodney C. Ewing

    2004-10-07

    Spent nuclear fuel, essentially U{sub 2}, accounts for over 95% of the total radioactivity of all of the radioactive wastes in the United States that require disposal, disposition or remediation. The UO{sub 2} in SNF is not stable under oxiding conditions and may also be altered under reducing conditions. The alteration of SNF results in the formation of new uranium phases that can cause the release or retardation of actinide and fission product radionuclides. Over the long term, and depending on the extent to which the secondary uranium phases incorporate fission products and actinides, these alteration phases become the near-field source term.

  11. Long-Term Nuclear Knowledge Management (NKM) on Nuclear Production of Hydrogen - A Case Study of the Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    2007-01-01

    In Japan, so-called a formal nuclear policy; The Framework for Nuclear Energy Policy is built up by Japan Atomic Energy Commission at every 5-year, in which not only a conventional light water reactor (LWR) but also a fast breeder reactor (FBR), HTGR and a fusion reactor (FR) is referred as a prominent candidate of long-term (<100 years) nuclear energy source. The policy makers might have multi-purpose scenarios for a future of innovated nuclear energy systems through results of various discussions at their level. According to long-term nuclear knowledge management, the author made ex ante evaluation of HTGR known as the intellectual assets of JAERI 1, from the viewpoint of hypothetical benefits under conditions of substantial uncertainty. Nuclear knowledge management (NKM) is an integrated, systematic approach to identifying, managing and sharing an organization's nuclear knowledge, and enabling persons to create new nuclear knowledge collectively and thereby helping achieve the objectives. NKM identifies, optimizes, and actively manages intellectual assets either in the form of explicit knowledge held in intangible products or tacit knowledge possessed by individuals or communities in the nuclear fields. In the present study the authors wish not only to show the validity of long-term NKM as a key factor of HTGR but also to assess their hypothetical benefits through the year 2050 under conditions of substantial uncertainty. It should be stressed that those factors are important intellectual assets of JAERI developed to date. Additionally, in the Framework for Nuclear Energy Policy constructed up by the Japan Atomic Energy Commission, a LWR, a fast breeder reactor (FBR), a HTGR, and a fusion reactor (FR) are all defined as eligible and prominent candidates for long-term nuclear energy sources. In this sense, we estimate here a direct market creation of (1) hydrogen energy production and (2) electricity generation, by commercialized HTGR through the year 2050 with

  12. Long-term biological consequences of nuclear war

    International Nuclear Information System (INIS)

    Ehrlich, P.R.; Harte, J.; Harwell, M.A.

    1983-01-01

    Subfreezing temperatures, low light levels, and high doses of ionizing and ultraviolet radiation extending for many months after a large-scale nuclear war could destroy the biological support systems of civilization, at least in the Northern Hemisphere. Productivity in natural and agricultural ecosystems could be severely restricted for a year or more. Postwar survivors would face starvation as well as freezing conditions in the dark and be exposed to near-lethal doses of radiation. If, as now seems possible, the Southern Hemisphere were affected also, global disruption of the biosphere could ensue, In any event, there would be severe consequences, even in the areas not affected directly, because of the interdependence of the world economy. In either case the extinction of a large fraction of the Earth's animals, plants, and microorganisms seems possible. The population size of Homo sapiens conceivably could be reduced to prehistoric levels or below and extinction of the human species itself cannot be excluded. These conclusions are the concensus from the meeting on Long-Term Worldwide Biological Consequences of Nuclear War

  13. Natural analogue study of long-term leaching behavior of vitrification glass

    International Nuclear Information System (INIS)

    Arai, Takashi; Yusa, Yasuhisa; Kamei; Gento

    1990-01-01

    In the research on the formation disposal of high level radioactive wastes, the evaluation of the leaching behavior of vitrification glass over ultralong term is one of the important themes. Therefore, the research on the phenomena of quality change in natural environment of volcanic glass, of which the chemical composition resembles well, was carried out (natural analogue study). Among the pyroclastic fall deposit in Fuji and Izu Oshima Volcanoes, the examples of the weathering change of quality of basaltic glass over several hundreds-several thousands years were selected, and on the spot survey, the analysis of groundwater, SEM observation, EPMA and so on were carried out. As the results, the following facts were found. According to the review of the literatures on ancient climate, the atmospheric temperature and precipitation in the past 3000 years were regarded as nearly the same as now. The products from the quality change were similar to the case of laboratory leaching experiment on vitrification glass. The measured ion concentration in groundwater agreed with the calculated values. (K.I.)

  14. Canada's plan for the long-term management of used nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Shaver, K. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2015-07-01

    Our mission is to develop and implement collaboratively with Canadians, a management approach for the long-term care of Canada's used nuclear fuel that is socially acceptable, technically sound, environmentally responsible, and economically feasible. The technical method is for Isolation of used nuclear fuel in deep geological repository with continuous monitoring and potential for retrievability.

  15. Stress corrosion in a borosilicate glass nuclear wasteform

    International Nuclear Information System (INIS)

    Ringwood, A.E.; Willis, P.

    1984-01-01

    The authors discuss a typical borosilicate glass wasteform which, when exposed to water vapour and water for limited periods, exhibits evidence of stress corrosion cracking arising from the interaction of polar OH groups with stressed glass surfaces. Glass wasteforms may experience similar stress corrosion cracking when buried in a geological repository and exposed to groundwaters over an extended period. This would increase the effective surface areas available for leaching by groundwater and could decrease the lifetime of the wasteform. Conventional leach-testing methods are insensitive to the longer-term effects of stress corrosion cracking. It is suggested that specific fracture-mechanics tests designed to evaluate susceptibility to stress corrosion cracking should be used when evaluating the wasteforms for high-level nuclear wastes. (author)

  16. Parameter values for the long-term nuclear waste management food chain model LIMCAL

    International Nuclear Information System (INIS)

    Zach, Reto.

    1982-09-01

    Eighteen parameters of LIMCAL, a comprehensive food chain model for predicting ICRP 26 50-year committed effective dose equivalents to man due to long-term nuclear waste management are reviewed. The parameters are: soil bulk density, plowlayer depth, soil surface layer depth, resusupension factor, atmospheric dust load, deposition velocity, plant interception fraction, plant environmental half-time, translocation factor, time of above-ground exposure, plant yield, holdup time, animals' feed consumption rate, animals' water consumption rate, man's water consumption rate, food type calorie conversion factors, man's total caloric intake rate and food type calorie fractions. LIMCAL has both traditional and unique parameters. The former occur in most of the currently used assessment models for nuclear installations, whereas the latter do not. For each of the parameters of LIMCAL, a suitable generic value for long-term nuclear waste management was determined. Thus, the general literature and the values currently used or recommended by various agencies were reviewed

  17. Life Limiting Issues for Long Term Operation of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Esselman, Thomas; Gaertner, John

    2012-01-01

    This paper reports on a study which identified and characterized life limiting issues for consideration by nuclear plant owners in their decision to extend plant life or seek subsequent license renewal. As nuclear plants operate for longer periods, the risk that a condition in the plant or an event that occurs, at the plant or elsewhere, will cause a plant owner not to extend plant life increases. The Fukushima accident has made this concept concrete. This paper defines 'Life Limiting' concepts for nuclear plants. It identifies the highest risk conditions and events that may limit duration of continued operation in nuclear plants and employs a survey to prioritize these concerns. Methods for evaluating these risks and changing the capability of systems, structures, and components (SSC) to reduce and manage this risk in long term operation are presented. Integrated obsolescence -the existence of an accumulation of events or condition that can threaten long term operation- is discussed. Many of the life limiting conditions or events may be controllable by early identification, recognition, and mitigation of the potential threat. The recognition of conditions may allow measures to be taken to mitigate the condition. Recognition of the potential for events that may be life limiting may allow actions to be taken that will minimize the likelihood or consequences of the event. These actions may include enhanced research on the expected behavior of the SSC, risk assessment and management, and enhanced monitoring and aging management at the plant. (author)

  18. Modeling long-term aspects of nuclear waste disposal: the AEGIS experience

    International Nuclear Information System (INIS)

    Dove, F.H.

    1983-01-01

    Modeling the long-term aspects of nuclear waste disposal has its roots in risk analysis of man-made systems like nuclear reactors. Analytical problems can be introduced into the performance assessment of a site-specific repository if an appreciation for the behavior of a natural earth system is not maintained. However, this should not preclude the application of historically useful analytical techniques like bounding strategies in favor of emerging, data-intensive techniques. The technical challenge is to apply existing technology and available data to a complex problem and produce a useful result

  19. Long term testing and evaluation of PV modules with and without Sunarc antireflective coating of the cover glass

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Han, Jiangong

    2015-01-01

    Two Photovoltaic (PV) modules have been manufactured by Swemodule. One with Sunarc antireflective coated glass and one without glass surface treatment. The modules have been tested at DTU during 16 months under realistic outdoor conditions. Exactly the same polycrystalline cells were used...... in the modules. No cleaning of the glass has been made except for removal of bird droppings and leaves on single cells that could give a very wrong comparison. The PV modules were mounted due south at 45 degree tilt angle. They were connected to the electric grid with small 250W module inverters from Involar...... that also realized the MPP tracking to give the maximum output of each module. The electric power output was measured both on the AC and DC side and with different measurement equipment to be sure about the accuracy in improvement. The results indicate a potential long term improvement in a system from 3...

  20. Nuclear energy - Standard method for testing the long-term alpha irradiation stability of matrices for solidification of high-level radioactive waste. 2. ed.

    International Nuclear Information System (INIS)

    2004-01-01

    This International Standard specifies a method designed to check the long-term stability of a solid to alpha disintegration by detection of all modifications in the properties of an irradiated sample. The material favoured hitherto is a borosilicate glass, but possible alternatives include: ceramics or glass-ceramics, and other glass compositions

  1. China's current status and long-term outlook of nuclear power and radioactive waste disposal management

    International Nuclear Information System (INIS)

    Li, Zhidong

    2015-01-01

    This study identified the current status and long-term outlook of China's nuclear power development and radioactive waste disposal management after the 3.11 FUKUSHIMA accidents. China strengthened the actions for achieving nuclear power safety and cost efficiency as well as safety management of radioactive waste. It is a hard work to expand the capacity to 58 GW, the governmental target in 2020. The long-term development will strongly depend on the progress in safety management of nuclear power and radioactive waste and economic competitiveness. (author)

  2. The understanding of the R7T7 glass blocks long term behavior: chemical and transport coupling in fractured media

    International Nuclear Information System (INIS)

    Chomat, L.

    2008-04-01

    The long term behavior of nuclear waste glass blocks depends highly on chemical reactions which occur at the surface in contact with water. Studies carried out on inactive fractured glass blocks show that fracture networks play a significant part in reactive surface area. Nevertheless, the complexity of results interpretation, due to a weak knowledge of fracture networks and local lixiviation conditions, does not allow us to comprehend the physical and chemical mechanisms involved. Model cracks are a key step to study chemical and transport coupling in fractured media. Crack lixiviation in aggressive conditions (pH≥11) show that the crack's position (horizontal or vertical) determines the dominant transport mechanism (respectively diffusion or convection induced by gravity). This gravity driven flow seems to be negligible in lower pH conditions. The convective velocity is estimated by a 1D model of reactive transport. Two other parameters are studied: the influence of thermal gradient and the influence of interconnected cracks on alteration. A strong retroactive effect of convection, due to thermal gradient, on the alteration kinetic is observed inside the crack. These works lead to a complete alteration experiment of a 163 crack network subject to a thermal gradient. The use of the geochemical software, HYTEC, within the framework of this study shows the potential of the software which is however limited by the kinetics law used. (author)

  3. Durability of feldspathic veneering ceramic on glass-infiltrated alumina ceramics after long-term thermocycling.

    Science.gov (United States)

    Mesquita, A M M; Ozcan, M; Souza, R O A; Kojima, A N; Nishioka, R S; Kimpara, E T; Bottino, M A

    2010-01-01

    This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 ºC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.

  4. The role and position of nuclear energy in the long-term energy supply of China

    International Nuclear Information System (INIS)

    Bao Yunqiao

    1992-03-01

    The history for development of world nuclear energy and policies in various countries are retrospected, and the development of world nuclear energy is reviewed. On the basis of analysis for the economy of nuclear power in abroad, it is verified that the cost of nuclear power is cheaper than that of coal-fired power. In the future, the nuclear power is still competitive in economy. The prospect for long-term energy supply in China is predicted on the present situation of energy industry. It is estimated that the gap between energy demands and supply will become larger and larger. The solution is to develop nuclear energy in south-east area. The long-term demands of electricity and electrical resources are estimated in China, and if nuclear energy is utilized, it will optimize the constitution of electricity. The economy of nuclear power is also evaluated. It is expected that the nuclear power will be cheaper than that of coal-fired power in China after equipment are made domestically and serially. From the analysis of the conditions of communication, transportation and pollution, the development of nuclear energy will reduce the tension of transportation and improve the environmental quality. Finally, the prospect of developing nuclear heating and the supply level of uranium resources in China are analyzed

  5. Global economics/energy/environmental (E3) modeling of long-term nuclear energy futures

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Davidson, J.W.; Bathke, C.G.; Arthur, E.D.; Wagner, R.L. Jr.

    1997-01-01

    A global energy, economics, environment (E 3 ) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Using this model, consistent nuclear energy scenarios are constructed. A spectrum of future is examined at two levels in a hierarchy of scenario attributes in which drivers are either external or internal to nuclear energy. Impacts of a range of nuclear fuel-cycle scenarios are reflected back to the higher-level scenario attributes. An emphasis is placed on nuclear materials inventories (in magnitude, location, and form) and their contribution to the long-term sustainability of nuclear energy and the future competitiveness of both conventional and advanced nuclear reactors

  6. SON68 glass alteration enhanced by magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Godon, Nicole; Gin, Stephane; Rebiscoul, Diane; Frugier, Pierre [CEA, DEN-Marcoule, F30207, Bagnols-sur-Ceze (France)

    2013-07-01

    This paper reports experimental and modeling results of SON68 glass / magnetite interactions while in contact with synthetic groundwater from a clay environment. It is shown that magnetite enhances glass alteration, first by the sorption of Si released from the glass onto magnetite surfaces, then by a second process that could be the precipitation of an iron silicate mineral or the transformation of magnetite into a more reactive phase like hematite or goethite. This study globally suggests a detrimental effect of magnetite on the long-term durability of nuclear glass in geological disposal conditions. (authors)

  7. Maintenance Issues in Long Term Operation of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Contri, P.; Bieth, M.; Rieg, C.

    2006-01-01

    Due to current social and economical framework, in last years many nuclear power plant owners started a program for the Long Term Operation (LTO)/PLEX (Plant Life Extension) of their older nuclear facilities. This process has many nuclear safety implications, other than strategic and political ones. The need for tailoring the available safety assessment tools to such applications has become urgent in recent years and triggered many research actions. The review of regular maintenance and ageing management programs are tools widely used in LTO/PLEX context in many Countries. However, most of these tools are rather general and in many cases they need reshaping in an LTO/PLEX framework before application, with focus to the safety implications of the LTO/PLEX. Many Countries and plants radically modified their maintenance rules towards a condition based approach as a precondition for the implementation of LTO/PLEX programs. In 2004 a network of European Organisations operating Nuclear Power Plants, SENUF, under the coordination of the JRC-IE, carried out an extensive questionnaire on maintenance practice in their facilities aiming at capturing the aspects of the maintenance programs where research is mostly needed. This paper uses some results of the questionnaire, which was not oriented to LTO/PLEX, to draw some conclusions on how the current maintenance programs could support a potential LTO/PLEX, among the other programs running at NPPs. In this sense, it is spin-off of the SENUF WG on maintenance. The paper aims at identifying the technical attributes of the maintenance programs more directly affecting the decision for a long-term safe operation of a nuclear facility, the issues related to their implementation and safety review. The paper includes an analysis of the questionnaire circulated among the SENUF participants and a discussion on the implications of optimised maintenance programs in existing plants. Some examples at WWER plants taken by sources other than

  8. Cumulative and competitive effects of chemical elements on nuclear glass alteration

    International Nuclear Information System (INIS)

    Arena, Helene

    2016-01-01

    This work takes place in the context of the long-term behavior of nuclear glasses under repository conditions. The main objective is to identify, understand and compare the effects of some chemical elements present in the glass composition and/or in the repository media (Zn, Mg, Ni, Co, Fe, Ca, Gd, Ce, K, Cs, Cr and Ag) on the processes involved in glass alteration by water. The cumulative or competitive nature of the effects of these chemical elements was determined. To reach this goal, a 6 oxides simple glass (ISG) has been altered for more than 500 days in a solution containing one or more of the chemical elements of interest. The results indicate that Zn, Mg, Ni, Co and Fe elements increase glass alteration forming secondary phases with the same structure and stoichiometry (tri-octahedral smectites). To form, these silicates consume chemical elements (Si, Al) from the environment and induce a pH decrease until a limiting value of pH. Beyond this pH the precipitation of secondary phases is inhibited and these chemical elements can be integrated into the gel, replacing Ca whose solubility increases at lower pH. As long as they form secondary phases, the effects of these elements are cumulative. Rare earths Gd and Ce also increase glass alteration forming secondary phases but their effects are lower as they contain less silicon. These elements are not integrated in the gel. Chromium increases glass alteration by precipitating with Ca and leading to a less protective gel, depleted in Ca. Silver precipitates as AgCl and has no effect on the alteration of the glass. The chemical elements K, Cs and Ca limit glass alteration by integrating into the gel and slowing down the transport phenomena therein. This integration is competitive: the order of integration (quantity and effectiveness glass alteration limitation) is the following Ca≥≥Cs≥K. Thus, the increase of glass alteration may be proportional to the quantity of elements promoting the precipitation of

  9. Corrosion of Spent Nuclear Fuel: The Long-Term Assessment

    International Nuclear Information System (INIS)

    Ewing, Rodney C.

    2003-01-01

    This research program is a broadly based effort to understand the long-term behavior of spent nuclear fuel (SNF) and its alteration products in a geologic repository. We have established by experiments and field studies that natural uraninite, UO2+x, and its alteration products are excellent ''natural analogues'' for the study of the corrosion of UO2 in SNF. This on-going research program has addressed the following major issues: (1) What are the long-term corrosion products of natural UO2+x, uraninite, under oxidizing and reducing conditions? (2) What is the paragenesis or the reaction path for the phases that form during alteration? (3) What is the radionuclide content in the corrosion products as compared with the original UO2+x? Do the trace element contents substantiate models developed to predict radionuclide incorporation into the secondary phases? Are the corrosion products accurately predicted from geochemical codes (e.g., EQ3/6 or Geochemist's Workbench) that are used in performance assessments? Can these codes be tested by studies of natural analogue sites (e.g., Oklo, Cigar Lake or Pena Blanca)

  10. Study of nuclear glasses alteration gel and synthesis of some model gels

    International Nuclear Information System (INIS)

    Ricol, S.

    1995-01-01

    This work deals with the general problem of alteration of the reference nuclear glass R7T7. Attention is paid particularly to the altered layer formed at the glass surface during alteration process. In opposition to previous works, related essentially to glass dissolution kinetics based on chemical analyses of lixiviated elements, this thesis deals with alteration problems through structural studies of the reference glass and derived gel. This approach allows the determination of mechanisms for the gel formation and a better understanding of the behaviour of glasses towards lixiviation. Both approaches appeared complementary. Based on several spectroscopic techniques, this work showed the particular role of cations such as calcium, zirconium and iron. Studies of silica-based synthetic gels showed the synergic effect of formers cation and of one highly coordinated cation. The variation of the wavenumber related to Si-O-Si asymmetric stretching vibration can be correlated to O/Si ratio for ternary systems Si/Na/Zr. On the contrary, the Si losses of the materials depend on the number of non-bridging oxygen atoms. In the perspective of long-term behaviour, the alteration gel presents better characteristics than initial glass. It is therefore a highly stable material in static conditions. In the same way, synthetic gels are materials with very low solubilities (much lower than the alteration gel) and could be used as confining matrices. (authors). refs., 71 figs., 37 tabs

  11. Neutron balance as indicator of long-term resource availability in growing nuclear energy system

    Energy Technology Data Exchange (ETDEWEB)

    Blandinskiy, Victor [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2017-09-15

    The article describes neutron balance in nuclear energy system as necessary but not sufficient indicator of long-term sustainability. Three models are introduced to evaluate neutron balance based on nuclide chain evolution and reaction rates comparison. The indicator introduced is used to compare several nuclear energy systems consisting of thermal, fast and molten salt reactors.

  12. Prediction of long-term behaviour for nuclear waste disposal

    International Nuclear Information System (INIS)

    Shoesmith, D.W.; Ikeda, B.M.; King, F.; Sunder, S.

    1996-09-01

    The modelling procedures developed for the long-term prediction of the corrosion of used fuel and of titanium and copper nuclear waste containers are described. The corrosion behaviour of these materials changes with time as the conditions within the conceptual disposal vault evolve from an early warm, oxidizing phase to an indefinite period of cool, anoxic conditions. For the two candidate container materials, this evolution of conditions means that the containers will be initially susceptible to localized corrosion but that in the long-term, corrosion should be more general in nature. The propagation of the pitting of Cu and of the crevice corrosion of Ti alloys is modelled using statistical models. General corrosion processes are modelled deterministically. For the fuel, deterministic electrochemical models have been developed to predict the long-term dissolution rate of U0 2 . The corrosion behaviour of materials in the disposal vault can be influenced by reengineering the vault environment. For instance, increasing the areal loading of containers will produce higher vault temperatures resulting in more extensive drying of the porous backfill materials. The initiation of crevice corrosion on Ti may then be delayed, leading to longer container lifetimes. For copper containers, minimizing the amount Of O 2 initially trapped in the pores of the backfill, or adding reducing agents to consume this O 2 faster, will limit the extent of corrosion, permitting a reduction of the container wall thickness necessary for containment. (author). 55 refs., 19 figs

  13. The long-term environmental and medical effects of nuclear war

    International Nuclear Information System (INIS)

    1986-03-01

    Part 1 describes the physical structure of the atmosphere and reviews recent studies which have considered the atmospheric perturbations which could follow a nuclear war according to various scenarios. Part 2 describes the biological consequences of predicted atmospheric and climatic changes, concentrating on the long term implications for health and human well- being. Part 3 outlines some policy implications arising out of these environmental consequences and includes the conclusions and a summary of the report. (author)

  14. Nuclear waste under glass, further discussion

    Science.gov (United States)

    O'Keefe, J. A.; Barkatt, A.; Glass, B. P.; Alterescu, S.

    J. J. Crovisier and J. Honnorez [1988] discuss an article by W. W. Maggs, “Mg May Protect Waste Under Glass” [Maggs, 1988] summarizing work by A. Barkatt (Catholic University, Washington, D.C.), B. P. Glass (University of Delaware, Newark), and S. Alterescu and J. A. O'Keefe (NASA/GSFC, Greenbelt, Md.). We found that seawater is orders of magnitude less corrosive t h an fresh water in attacking tektite glass; traced the protective effect to the presence of magnesium, at a level of about 1.3 g/L in seawater; and suggested that the effect might be useful in protecting nuclear waste glasses from corrosion.Crovisier and Honnorez first make the point that the rate of corrosion of glass is, in principle, a function of the ratio of surface area 5 to the effective volume V. This concept, which is usually discussed in American literature under the name of S/V effects, is discussed by Crovisier and Honnorez in terms of the “permeability of the environment.” These effects have been carefully considered throughout our work (see, for example, Barkatt et al. [19867rsqb;). It turns out that in the sea the effective S/V is so small that the effects referred to by Crovisier and Honnorez can be ignored.

  15. Statement on safety requirements concerning the long-term operation of the Muehleberg nuclear power station

    International Nuclear Information System (INIS)

    2012-12-01

    This report published by the Swiss Federal Nuclear Safety Inspectorate ENSI investigates the safety requirements with respect to the long-term operation of the Muehleberg nuclear power station in Switzerland. Relevant international requirements and Swiss legal stipulations concerning the long-term operation of the power station are stated. The management of aging processes is looked at. The regular verification of the integrity of various plant components such as containments, piping, steam generation system, etc. is looked at in detail. The state-of-the-art concerning deterministic accident analyses and refitting technology are discussed, as are automated safety systems. The applicable laws, decrees and guidelines are listed in appendices

  16. Thermochemical modeling of nuclear waste glass

    International Nuclear Information System (INIS)

    Spear, K.E.; Besmann, T.M.; Beahm, E.C.

    1998-06-01

    The development of assessed and consistent phase equilibria and thermodynamic data for major glass constituents used to incorporate high-level nuclear waste is discussed in this paper. The initial research has included the binary Na 2 O-SiO 2 , Na 2 O-Al 2 O 3 , and SiO 2 -Al 2 O 3 systems. The nuclear waste glass is assumed to be a supercooled liquid containing the constituents in the glass at temperatures of interest for nuclear waste storage. Thermodynamic data for the liquid solutions were derived from mathematical comparisons of phase diagram information and the thermodynamic data available for crystalline solid phases. An associate model is used to describe the liquid solution phases. Utilizing phase diagram information provides very stringent limits on the relative thermodynamic stabilities of all phases which exist in a given system

  17. Introduction to the crystallization phenomenon in nuclear glass

    International Nuclear Information System (INIS)

    Jacquet Francillon, N.

    1997-01-01

    Crystallization is a subject for concern because of its potentially detrimental effects on the technological feasibility of high-temperature melting, and on the chemical durability of the material at intermediate and low temperatures during interim storage or after disposal. The tendency of glass to crystallize depends to a large extent on the composition of the frit and/or of the waste to be solidified. It depends too of the thermal history of the glass generally, the knowledge is mainly upon determination of the time-temperature-transition (TTT) curves, crystal identification and quantification techniques, and their effects on the durability of the glass matrix. French experience is presented. Only a few authors addressed the long-term development of crystalline phases, notably at temperatures below the vitreous transition temperature Tg. Some recommendations for glass crystallization studies are made but glass crystallization after disposal is acceptable provided some conditions are met. (author)

  18. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    International Nuclear Information System (INIS)

    Karakurt, G.; Abdelouas, A.; Guin, J.-P.; Nivard, M.; Sauvage, T.; Paris, M.; Bardeau, J.-F.

    2016-01-01

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He + ions and 7 MeV Au 5+ ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to −0.7% and −2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about −22% to −38% of the hardness and a decrease of the reduced Young's modulus by −8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also 11 B and 27 Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO 4 to BO 3 units but also a formation of AlO 5 and AlO 6 species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed. - Highlights: • Mechanical and structural properties of two borosilicate glass compositions irradiated with alpha particles and heavy ions were investigated. • Both kinds of particles induced a decrease of the hardness, reduced Young's modulus and density. • Electronic and nuclear interactions are responsible for the changes observed. • The evolution of the mechanical properties under irradiation is linked to the changes occured in the

  19. Glass binder development for a glass-bonded sodalite ceramic waste form

    International Nuclear Information System (INIS)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; Kroll, Jared O.; Peterson, Jacob A.

    2017-01-01

    This paper discusses work to develop Na_2O-B_2O_3-SiO_2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. In this paper, five new glasses with ~20 mass% Na_2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. Finally, these improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.

  20. Raman and X-ray absorption spectroscopic studies of hydrothermally altered alkali-borosilicate nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, David A., E-mail: davidm@vsl.cua.ed [Vitreous State Laboratory, Catholic University of America, 620 Michigan Ave., N.E., Washington, DC 20064 (United States); Buechele, Andrew C.; Viragh, Carol; Pegg, Ian L. [Vitreous State Laboratory, Catholic University of America, 620 Michigan Ave., N.E., Washington, DC 20064 (United States)

    2010-04-01

    Raman spectroscopy and X-ray absorption spectroscopy (XAS) are used to characterize structural changes that took place in hydrothermally altered (Na,K)-alumina-borosilicate glasses with different Na/K ratios, formulated as part of a durability study to investigate the behavior of glasses for nuclear waste storage. The hydrothermal experiments, or vapor hydration tests (VHT), were performed on each glass for 3 and 20 days at 200 deg. C to accelerate and approximate long-term alteration processes that may occur in a nuclear waste repository. Results found for both glasses and their VHT altered counterparts show little, if any, structural influence from the different starting Na/K ratios. X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Raman spectroscopy indicate that the altered samples are mostly amorphous with small amounts of analcime-like and leucite-like crystals within 200 mum of the sample surface and contain up to 9.7 wt.% water or OH. The Raman data are nearly identical for the amorphous portions of all altered VHT samples investigated, and indicate that two glass structural changes took place during alteration: one, partial depolymerization of the alumina-borosilicate network, and two, introduction of water or OH. Al and Si XAS data indicate tetrahedral AlO{sub 4} and SiO{sub 4} environments in the original glasses as well as in the altered samples. Small energy shifts of the Si K-edge also show that the altered VHT samples have less polymerized networks than the original glass. Na XAS data indicate expanded Na environments in the VHT samples with longer Na-O distances and more nearest-neighbor oxygen atoms, compared with the original glasses, which may be due to hydrous species introduced into the expanding Na-sites.

  1. Influence of clay environment and of corroding canister on the long-term behaviour of nuclear glasses

    International Nuclear Information System (INIS)

    GIn, St.

    1997-01-01

    This article reviews the current state of knowledge of R77 glass alteration mechanisms in the presence of the clay materials under consideration for use in an engineered barrier, and in the presence of metal canister corrosion products. These issues are addressed by a phenomenological approach and by modeling. In most cases, the codes are unable to account for the glass alteration data obtained in clay media. The main reason for this discrepancy lies in the glass alteration kinetics (a first-order law based exclusively on silicon) that do not take into account other elements including aluminum, zirconium or the rare earths, which are strongly mobilized in clay media. (author)

  2. The uranium industry: long-term planning for short-term competition

    International Nuclear Information System (INIS)

    Vottero, X.; Georges Capus, G.

    2001-01-01

    Long term planning for short term competition Today, uranium producers face new challenges in terms of both production (new regulatory, environmental and social constraints) and market conditions (new sources of uranium supply, very low prices and tough competition). In such a context, long-term planning is not just a prerequisite to survive in the nuclear fuel cycle industry. In fact, it also contributes to sustaining nuclear electricity generation facing fierce competition from other energy sources in increasingly deregulated markets. Firstly, the risk of investing in new mining projects in western countries is growing because, on the one hand, of very erratic market conditions and, on the other hand, of increasingly lengthy, complex and unpredictable regulatory conditions. Secondly, the supply of other sources of uranium (uranium derived from nuclear weapons, uranium produced in CIS countries, ...) involve other risks, mainly related to politics and commercial restrictions. Consequently, competitive uranium supply requires not only technical competence but also financial strength and good marketing capabilities in order to anticipate long-term market trends, in terms of both demand and supply. It also requires taking into account new parameters such as politics, environment, regulations, etc. Today, a supplier dedicated to the sustainable production of nuclear electricity must manage a broad range of long-term risks inherent to the procurement of uranium. Taking into account all these parameters in a context of short-term, fast-changing market is a great challenge for the future generation. World Uranium Civilian Supply and Demand. (authors)

  3. Nuclear fuel cycle requirements and supply considerations, through the long-term

    International Nuclear Information System (INIS)

    1978-02-01

    The OECD Nuclear Energy Agency and the International Atomic Energy Agency have for many years published a joint report entitled ''Uranium Resources, Production and Demand'', and a revised edition of this work, dated December 1977, is now available. This report, on the other hand, is the result of a separate study of the supply and demand outlook for all fuel cycle services, as well as for uranium, through the long-term. The work was undertaken by the Nuclear Energy Agency's Working Party on Uranium Demand, whose members are listed in Appendix III. The intent here has been to contribute to the orderly development of nuclear power, by: 1. identifying potential problems in the supply of uranium and fuel cycle services, and possible areas for international co-operation in the resolution of such problems; 2. examining several long-range scenarios to determine the comparative needs of advanced reactors for uranium and for supporting services, thereby establishing the basis for the further development of uranium resources and specific reactor systems; and 3. assisting those having responsibilities in planning, forecasting, and programme management. This report is the work of a group of technical experts and does not necessarily reflect official policy or endorsement of the report's projections and conclusions by the Member Governments of the Nuclear Energy Agency

  4. Synthesis on the long term behavior of spent nuclear fuel. Vol.1,2; Synthese sur l'evolution a long terme des colis de combustibles irradies. Tome 1,2

    Energy Technology Data Exchange (ETDEWEB)

    Poinssot, Ch.; Toulhoat, P.; Grouiller, J.P.; Pavageau, J.; Piron, J.P.; Pelletier, M.; Dehaudt, Ph.; Cappelaere, Ch.; Limon, R.; Desgranges, L.; Jegou, Ch.; Corbel, C.; Maillard, S.; Faure, M.H.; Cicariello, J.C.; Masson, M. [CEA Saclay, DEN/DDIN/DPRGD, 91 - Gif sur Yvette (France)

    2001-07-01

    The aim of this report is to present the major objectives, the key scientific issues, and the preliminary results of the research conducted in France in the framework of the third line of the 1991 Law, on the topic of the long term behavior of spent nuclear fuel in view of long term storage or geological disposal. Indeed, CEA launched in 1998 the Research Program on the Long Term Behavior of Spent Nuclear Fuel (abbreviated and referred to as PRECCI in French; Poinssot, 1998) the aim of which is to study and assess the ability of spent nuclear fuel packages to keep their initially allocated functions in interim storage and geological disposal: total containment and recovery functions for duration up to hundreds of years (long term or short-term interim storage and/or first reversible stages of geological disposal) and partial confinement function (controlled fluxes of RN) for thousands of years in geological disposal. This program has to allow to obtain relevant and reliable data concerning the long term behavior of the spent fuel packages so that feasibility of interim storage and/or geological disposal can be assessed and demonstrated as well as optimized. Within this framework, this report presents for every possible scenario of evolution (closed system, in Presence of water in presence of gases) what are estimated to be the most relevant evolution mechanism. For the most relevant scientific issues hence defined, a complete scientific review of the best state of knowledge is subsequently here given thus allowing to draw a clear guideline of the major R and D issues for the next years. (authors)

  5. High-level waste glass compendium; what it tells us concerning the durability of borosilicate waste glass

    International Nuclear Information System (INIS)

    Cunnane, J.C.; Allison, J.

    1993-01-01

    Facilities for vitrification of high-level nuclear waste in the United States are scheduled for startup in the next few years. It is, therefore, appropriate to examine the current scientific basis for understanding the corrosion of high-level waste borosilicate glass for the range of service conditions to which the glass products from these facilities may be exposed. To this end, a document has been prepared which compiles worldwide information on borosilicate waste glass corrosion. Based on the content of this document, the acceptability of canistered waste glass for geological disposal is addressed. Waste glass corrosion in a geologic repository may be due to groundwater and/or water vapor contact. The important processes that determine the glass corrosion kinetics under these conditions are discussed based on experimental evidence from laboratory testing. Testing data together with understanding of the long-term corrosion kinetics are used to estimate radionuclide release rates. These rates are discussed in terms of regulatory performance standards

  6. EU 2030 targets 'unachievable' without long-term nuclear operation

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Lubomir [NucNet, Brussels (Belgium)

    2015-01-15

    Nuclear energy will continue to support greenhouse gas emission reduction targets until 2020, but without decisions on long-term operation of ageing reactors, it will be difficult for the EU to meet its 2030 targets, International Energy Agency (IEA) executive director Maria van der Hoeven, tells NucNet in an interview. The IEA has quite a few remarks and questions related to the EU goals of competitiveness, security of supply and sustainability. It is good to have these targets, but up until now the EU is missing the direct connection between the three goals. What is mostly needed to achieve the goals is to finalise the EU's internal energy market. Secondly cost-effective climate and energy policies are needed because it is not only about climate and energy, but also about economic development and competitiveness. The ageing EU reactor fleet requires country-level and owner/operator-level decisions in the short term regarding plant safety regulations, plant upgrades, uprates, lifetime extensions and licence renewals. Upgrading and uprating existing nuclear plants is one of the cheapest ways of producing carbon-free electricity in the EU. Without long-term operation, the IEA expects nuclear capacity in the EU could fall by a factor of six by 2030 and that will make it more difficult to achieve the EU's 2030 climate targets. Public opinion is an important topic for the acceptance of all energy sources and it is different in all IEA member countries. Europe is very sensitive to almost all forms of energy, including wind turbines and solar panels. This is linked to a lack of information, so we need more and better transparency on information for people.

  7. Long-term conversion of 45S5 bioactive glass-ceramic microspheres in aqueous phosphate solution.

    Science.gov (United States)

    Fu, Hailuo; Rahaman, Mohamed N; Day, Delbert E; Huang, Wenhai

    2012-05-01

    The conversion of 45S5 glass and glass-ceramics to a hydroxyapatite (HA)-like material in vitro has been studied extensively, but only for short reaction times (typically glass-ceramic microspheres (designated 45S5c) in an aqueous phosphate solution. Microspheres of 45S5c (75-150 μm) were immersed for 10 years at room temperature (~25 °C) in K(2)HPO(4) solution with a concentration of 0.01 M or 1.0 M, and with a starting pH of 7.0 or 9.5. The reacted 45S5c microspheres and solutions were analyzed using structural and analytical techniques. Only 25-45 vol% of the 45S5c microspheres were converted to an HA-like material after the 10 year reaction. In solutions with a starting pH of 9.5, an increase in the K(2)HPO(4) concentration from 0.01 to 1.0 M resulted in a doubling of the volume of the microspheres converted to an HA-like material but had little effect on the composition of the HA-like product. In comparison, reaction of the 45S5c microspheres in the solution with a starting pH of 7.0 resulted in an HA-like product in the 0.01 M K(2)HPO(4) solution but a calcium pyrophosphate product, Ca(10)K(4)(P(2)O(7))(6).9H(2)O, in the 1.0 M solution. The consequences of these results for the long-term use of 45S5 glass-ceramics in biomedical applications are discussed.

  8. Global economics/energy/environmental (E{sup 3}) modeling of long-term nuclear energy futures

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A.; Davidson, J.W.; Bathke, C.G.; Arthur, E.D.; Wagner, R.L. Jr.

    1997-09-01

    A global energy, economics, environment (E{sup 3}) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Using this model, consistent nuclear energy scenarios are constructed. A spectrum of future is examined at two levels in a hierarchy of scenario attributes in which drivers are either external or internal to nuclear energy. Impacts of a range of nuclear fuel-cycle scenarios are reflected back to the higher-level scenario attributes. An emphasis is placed on nuclear materials inventories (in magnitude, location, and form) and their contribution to the long-term sustainability of nuclear energy and the future competitiveness of both conventional and advanced nuclear reactors.

  9. Report on the possibilities of long-term storage of irradiated nuclear fuels

    International Nuclear Information System (INIS)

    2001-01-01

    This report aims at giving a legislative aspect to the many rules that govern the activities of the back-end of the fuel cycle in France. These activities concern the unloading of spent nuclear fuels, their reprocessing, storage, recycling and definitive disposal. The following points are reviewed and commented: the management of non-immediately reprocessed fuels (historical reasons of the 'all wastes reprocessing' initial choice, evolution of the economic and political context, the future reprocessing or the definitive disposal of spent fuels in excess); the inevitable long-term storage of part of the spent fuels (quantities and required properties of long-term stored fuels, the eventuality of a definitive disposal of spent fuels); the criteria that long-term storage facilities must fulfill (confinement measures, reversibility, surveillance and control during the whole duration of the storage); storage concept to be retained (increase of storage pools capacity, long-term storage in pools of reprocessing plants, centralized storage in pools, surface dry-storage on power plant sites, reversible underground storage, subsurface storage and storage/disposal in galleries, surface dry-storage facilities); the preliminary studies for the creation of long-term storage facilities (public information, management by a public French organization, clarifying of the conditions of international circulation of spent fuels); problems linked with the presence of foreign spent fuels in France (downstream of the reprocessing cycle, foreign plutonium and wastes re-shipment); conclusions and recommendations. (J.S.)

  10. Determination of alpha dose rate profile at the HLW nuclear glass/water interface

    Energy Technology Data Exchange (ETDEWEB)

    Mougnaud, S., E-mail: sarah.mougnaud@cea.fr [CEA Marcoule, DEN/DTCD/SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Tribet, M.; Rolland, S. [CEA Marcoule, DEN/DTCD/SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Renault, J.-P. [CEA Saclay, NIMBE UMR 3685 CEA/CNRS, 91191 Gif-sur-Yvette cedex (France); Jégou, C. [CEA Marcoule, DEN/DTCD/SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France)

    2015-07-15

    Highlights: • The nuclear glass/water interface is studied. • The way the energy of alpha particles is deposited is modeled using MCNPX code. • A model giving dose rate profiles at the interface using intrinsic data is proposed. • Bulk dose rate is a majoring estimation in alteration layer and in surrounding water. • Dose rate is high in small cracks; in larger ones irradiated volume is negligible. - Abstract: Alpha irradiation and radiolysis can affect the alteration behavior of High Level Waste (HLW) nuclear glasses. In this study, the way the energy of alpha particles, emitted by a typical HLW glass, is deposited in water at the glass/water interface is investigated, with the aim of better characterizing the dose deposition at the glass/water interface during water-induced leaching mechanisms. A simplified chemical composition was considered for the nuclear glass under study, wherein the dose rate is about 140 Gy/h. The MCNPX calculation code was used to calculate alpha dose rate and alpha particle flux profiles at the glass/water interface in different systems: a single glass grain in water, a glass powder in water and a water-filled ideal crack in a glass package. Dose rate decreases within glass and in water as distance to the center of the grain increases. A general model has been proposed to fit a dose rate profile in water and in glass from values for dose rate in glass bulk, alpha range in water and linear energy transfer considerations. The glass powder simulation showed that there was systematic overlapping of radiation fields for neighboring glass grains, but the water dose rate always remained lower than the bulk value. Finally, for typical ideal cracks in a glass matrix, an overlapping of irradiation fields was observed while the crack aperture was lower than twice the alpha range in water. This led to significant values for the alpha dose rate within the crack volume, as long as the aperture remained lower than 60 μm.

  11. Glass: a candidate engineered material for management of high level nuclear waste

    International Nuclear Information System (INIS)

    Mishra, R.K.; Kaushik, C.P.

    2011-01-01

    While the commercial importance of glass is generally recognized, a few people are aware of extremely wide range of glass formulations that can be made and of the versatility of this engineered material. Some of the recent developments in the field of glass leading to various technological applications include glass fiber reinforcement of cement to give new building materials, substrates for microelectronics circuitry in form of semiconducting glasses, nuclear waste immobilization and specific medical applications. The present paper covers fundamental understanding of glass structure and its application for immobilization of high level radioactive liquid waste. High level radioactive liquid waste (HLW) arising during reprocessing of spent fuel are immobilized in sodium borosilicate glass matrix developed indigenously. Glass compositions are modified according to the composition of HLW to meet the criteria of desirable properties in terms. These glass matrices have been characterized for different properties like homogeneity, chemical durability, thermal stability and radiation stability. (author)

  12. On fluidization of borosilicate glasses in intense radiation fields - 16055

    International Nuclear Information System (INIS)

    Ojovan, Michael; Moebus, Guenter; Tsai, Jim; Cook, Stuart; Yang, Guang

    2009-01-01

    The viscosity is rate-limiting for many processes in glassy materials such as homogenisation and crystallisation. Changes in the viscous flow behaviour in conditions of long-term irradiation are of particular interest for glassy materials used in nuclear installations as well as for nuclear waste immobilising glasses. We analyse the viscous flow behaviour of oxide amorphous materials in conditions of electron-irradiation using the congruent bond lattice model of oxide materials accounting for the flow-mediating role of broken bonds termed configurons. An explicit equation of viscosity was obtained which is in agreement with experimental data for non-irradiated glasses and shows for irradiated glasses, first, a significant decrease of viscosity, and, second, a stepwise reduction of the activation energy of flow. An equation for glass-transition temperature was derived which shows that irradiated glasses have lower glass transition temperatures. Intensive electron irradiation of glasses causes their fluidization due to non-thermal bond breaking and can occur below the glass transition temperature. Due to surface tension forces fluidization of glasses at enough high electron flux densities can result in modification of nano-size volumes and particles such as those experimentally observed under TEM electron beams. (authors)

  13. water alteration processes and kinetics of basaltic glasses, natural analogue of nuclear glasses

    International Nuclear Information System (INIS)

    Techer, I.; Advocat, Th.; Vernaz, E.; Lancelot, J.R.; Liotard, J.M.

    1997-01-01

    Dissolution experiments of a basaltic glass were carried out at 90 deg C for different reaction progresses. The initial dissolution rate was compared with values obtained for rhyolitic glass and the R7T7 nuclear glass. The activation energy was also determined by computing literature data. The results provide similar reactional mechanism for basaltic and nuclear glasses. Dissolution rates measured under saturation conditions were compared to theoretical dissolution rates. These ones were calculated using two kinetic models: the first rate equation is the Grambow's law which only takes into account ortho-silica acid activity; the second rate equation was proposed by Daux et al., where silica and aluminum are combined to formulate the affinity. The comparison between experimental and theoretical results point out that these two models are not appropriate to describe the alteration kinetic of basaltic glasses. (authors)

  14. Human factors and nuclear space technology in long-term exploration

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.; VanHoozer, W.R.

    2000-01-01

    Allocation of manual versus automated tasks for operation and maintenance of nuclear power systems in space will be crucial at the onset and at the return of a space flight. Such factors as space adaptation syndrome (SAS), a temporary space motion sickness that has affected 40 to 50% of crew members on past space flights, can result in lost effort ranging from a few hours to a full day. This could have a significant impact on manual performance where high levels of execution are likely to be required in the very early stages of the mission. Other considerations involving higher-level behavioral phenomena such as interpersonal and group processes, individual belief systems, social and motivational factors, and (subjective) cognitive function have received little attention; nevertheless these will be essential elements for success in long-term exploration. Understanding that long-term space flight missions may create groups that become unique societies distinct unto themselves will test current ethical, moral, and social belief systems, requiring one to examine the amalgamation as well as organizational structures for the safety and balance of the crew

  15. A study on the long-term nuclear policy direction responding the changes of international and domestic nuclear situation

    International Nuclear Information System (INIS)

    Kim, Hyun Jun; Yang, M. H.; Lee, B. O.; Ham, C. H.; Chung, W. S.; Lee, T. J.; Yun, S. W.; Ko, H. S.; Nha, K. H.

    1998-06-01

    The long-term nuclear policy directions are proposed with three aspects of nuclear technology development policy, nuclear regulatory policy, and tasks required for promoting pro-nuclear movement. Several nuclear technology areas, such as technology for the improvement of nuclear economics, safety enhancement technology, radwaste, treatment/disposal technology, fuel cycle technology, and proliferation-resistant nuclear technology, fuel recycle technology, and proliferation-resistant nuclear technology, appear very important in the future nuclear technology development policy. Nuclear regulation policy should be established with balancing between public safety and expansion of nuclear industry. Objective of nuclear regulation should be recognized not to collapse a nuclear industry, and the worth of nuclear regulatory regime may be also meaningful if nuclear industry can be well developed. It should be necessary to make a proper atmosphere that can resolve revealed or potential problems and issues against the harmonious implementation of nuclear policy. For the purpose, nuclear policy should contain certain policies to promote a nuclear development, such as social policy, international cooperation strategy, and national resource allocation policy. (author). 20 refs., 8 tabs., 5 figs

  16. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Karakurt, G., E-mail: karakurt_gokhan@yahoo.fr [SUBATECH, UMR 6457CNRS-IN2P3, Ecole des Mines de Nantes, 4 rue Alfred Kastler, 44307 Nantes (France); Abdelouas, A. [SUBATECH, UMR 6457CNRS-IN2P3, Ecole des Mines de Nantes, 4 rue Alfred Kastler, 44307 Nantes (France); Guin, J.-P.; Nivard, M. [Institut de Physique de Rennes, Université de Rennes 1 – UMR 62051 IPR, 263 avenue du Général Leclerc, 35042 Rennes (France); Sauvage, T. [Laboratoire CEMHTI (Conditions Extrêmes et Matériaux: Haute Température et Irradiation), CNRS UPR, 3079 Orléans (France); Paris, M. [Institut des Matériaux Jean ROUXEL, Université de Nantes, UMR 6502 CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03 (France); Bardeau, J.-F. [Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, avenue Olivier Messiaen, 72085 Le Mans (France)

    2016-07-15

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He{sup +} ions and 7 MeV Au{sup 5+} ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to −0.7% and −2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about −22% to −38% of the hardness and a decrease of the reduced Young's modulus by −8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also {sup 11}B and {sup 27}Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO{sub 4} to BO{sub 3} units but also a formation of AlO{sub 5} and AlO{sub 6} species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed. - Highlights: • Mechanical and structural properties of two borosilicate glass compositions irradiated with alpha particles and heavy ions were investigated. • Both kinds of particles induced a decrease of the hardness, reduced Young's modulus and density. • Electronic and nuclear interactions are responsible for the changes observed. • The evolution of the mechanical properties under irradiation is linked

  17. Short-term versus long-term contracting for uranium enrichment services

    International Nuclear Information System (INIS)

    Rudy, G.P.

    1990-01-01

    The US Department of Energy (US DOE) is the world's largest and most experienced supplier of uranium enrichment services. Through the late 1970s and early 1980s, emerging market forces transformed what was once a monopoly into a highly competitive industry. In the early 1980's the DOE lost market share. But as we enter the 1990s, new market forces have emerged. The US DOE believes a responsible balance between long-term and short-term contracting will be the key to success and the key to assuring the long-term health and reliability of the nuclear fuel industry. The US DOE intends to be in this nuclear business for a long time and will continue to offer reliable and responsive services second to none

  18. Nuclear wastes: vitrification and long term behaviour. Information available on Internet sites

    International Nuclear Information System (INIS)

    Macias, R.M.

    2004-01-01

    This document reports an information search on the long-term behaviour of vitrified nuclear wastes. This search has been performed on the Internet and this report presents 21 forms corresponding to the 21 relevant Internet web sites. These forms contain the name of the organization, its country, its Internet address, its language, a brief description of the available information, the concerned public (general public, scholars and students, scientific community)

  19. The Role of the Government and the Public in the Planning of Long Term Management for Nuclear Fuel Wastes in Canada

    International Nuclear Information System (INIS)

    Diah Hidayanti; Yudi Pramono

    2007-01-01

    The generation of electricity from nuclear power has the consequence of producing some wastes that are radioactive, especially in the form of spent fuels which are classified as high level nuclear wastes. Nuclear fuel wastes must be managed properly in order to protect public and environment from its big potential hazard. One type of long term management for nuclear fuel wastes is the final disposal in a permanent storage. Because of the importance of safety aspects for final disposal, it needs the involvement of government and the public to determine the reliability and the acceptance of final disposal concept. Those involvements can be implemented in some aspects such as regulation aspect, review and assessment process, and the public feedback. The evaluation on the plan of long term management for nuclear fuel wastes in Canada provides Indonesia an overview of its long term management plans for all radioactive materials, including nuclear fuel wastes generated from the nuclear power plant which is planned to be in service by 2016. (author)

  20. Glass consistency and glass performance

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Ramsey, W.G.

    1994-01-01

    Glass produced by the Defense Waste Processing Facility (DWPF) will have to consistently be more durable than a benchmark glass (evaluated using a short-term leach test), with high confidence. The DWPF has developed a Glass Product Control Program to comply with this specification. However, it is not clear what relevance product consistency has on long-term glass performance. In this report, the authors show that DWPF glass, produced in compliance with this specification, can be expected to effectively limit the release of soluble radionuclides to natural environments. However, the release of insoluble radionuclides to the environment will be limited by their solubility, and not glass durability

  1. Long-term leaching behavior of vitrified high-level wastes

    International Nuclear Information System (INIS)

    Ishiguro, Katsuhiko; Sonobe, Hitoshi; Sasaki, Noriaki; Kashihara, Hidechiyo

    1985-01-01

    A long-term Soxhlet leaching test, long-term static leaching test, solubility evaluation test and actual-scale glass solid leaching test were carried out for simulated vitrified wastes. Under high flow-rate leachate conditions, the leaching of high-solubility substances such as B and Na increases almost linearly with time while that of Fe, Ni and rare earth metals strongly depends on their solubility. The overall leaching rate changes (tends to decrease) with time under static conditions. The elution or diffusion is the rate determining step in the earlier region of the leaching process while the solubilities of major components have greater effects in the latter region. The change of the dominant leaching mechanism is delayed more largely as the surface-area to leachate-volume (SA/V) ratio decreases. Actual-scale glass specimens showed almost the same leaching behaviors as small-scale ones. If cracks exist in glass solid, the leaching in them is slow causing little effects on the overall leaching rate. This may be due to the fact that solubility-dependent leaching is occuring in the cracks. The long-term static leaching observations were not satisfactorily explained by the MCC-3 type solubility test results. It is important to clarify the solubility-dependent leaching behaviors at large SA/V ratios. (Nogami, K.)

  2. Long term needs for nuclear data development. Summary report of the advisory group meeting

    International Nuclear Information System (INIS)

    Muir, D.W.; Herman, M.

    2001-05-01

    The Advisory Group Meeting on Long Term Needs for Nuclear Data Development, was held from 28 November - 1 December 2000 at IAEA Headquarters, Vienna, Austria. The goal of this meeting was to develop a vision of the work needed over the next decades (2000-2020) on the measurement, calculation and evaluation of improved nuclear data for emerging applications. Of particular interest were data improvement activities that could be coordinated by the IAEA. The following areas of nuclear data applications were selected for discussion during the Meeting: Medical Applications; Ion Beam Analysis and Related Techniques; Nuclear Astrophysics; Nuclear Safeguards and Related Applications; Critical Reactors, including Closed Fuel Cycles; Accelerator Driven Subcritical Reactors; ADS Target Design and High-Energy Radiation Shielding. (author)

  3. Completely automated nuclear reactors for long-term operation

    International Nuclear Information System (INIS)

    Teller, E.; Ishikawa, M.; Wood, L.

    1996-01-01

    The authors discuss new types of nuclear fission reactors optimized for the generation of high-temperature heat for exceedingly safe, economic, and long-duration electricity production in large, long-lived central power stations. These reactors are quite different in design, implementation and operation from conventional light-water-cooled and -moderated reactors (LWRs) currently in widespread use, which were scaled-up from submarine nuclear propulsion reactors. They feature an inexpensive initial fuel loading which lasts the entire 30-year design life of the power-plant. The reactor contains a core comprised of a nuclear ignitor and a nuclear burn-wave propagating region comprised of natural thorium or uranium, a pressure shell for coolant transport purposes, and automatic emergency heat-dumping means to obviate concerns regarding loss-of-coolant accidents during the plant's operational and post-operational life. These reactors are proposed to be situated in suitable environments at ∼100 meter depths underground, and their operation is completely automatic, with no moving parts and no human access during or after its operational lifetime, in order to avoid both error and misuse. The power plant's heat engine and electrical generator subsystems are located above-ground

  4. Molecular dynamics study of a nuclear waste glass matrix with plutonium

    International Nuclear Information System (INIS)

    Meis, C.; Delaye, J.M.; Ghaleb, D.

    1999-01-01

    Molecular dynamics simulation techniques were applied to model the incorporation of plutonium in the French nuclear waste glass matrix. Born-Mayer-Huggins analytical potentials were established to characterize short-range interactions between Pu-O and Pu-Pu pairs; the potentials were fitted to the structural properties of plutonium dioxide in the light of a recent experimental study showing that plutonium is found as Pu(IV) in the glass. The transferability of the established potentials to the glass structure is discussed, and the potential parameters are further refined by molecular dynamics simulations in an aluminoborosilicate glass to obtain mean Pu-O interatomic distances and first-neighbor coordination numbers matching the experimental values as closely as possible. Previously published Born-Mayer-Huggins potentials supplemented by Stillinger-Weber three-body terms were used for oxygen-cation and cation-cation interactions. The difficulties encountered in establishing a Pu-O potential that provides satisfactory results in both oxides and glasses are also discussed

  5. Plan for glass waste form testing for NNWSI [Nevada Nuclear Waste Storage Investigations

    International Nuclear Information System (INIS)

    Aines, R.D.

    1987-09-01

    The purpose of glass waste form testing is to determine the rate of release of radionuclides from breached glass waste containers. This information will be used to qualify glass waste forms with respect to the release requirements. It will be the basis of the source term from glass waste for repository performance assessment modeling. This information will also serve as part of the source term in the calculation of cumulative releases after 100,000 years in the site evaluation process. It will also serve as part of the source term input for calculation of cumulative releases to the accessible environment for 10,000 years after disposal, to determine compliance with EPA regulations. This investigation will provide data to resolve information needs. Information about the waste forms which is provided by the producer will be accumulated and evaluated; the waste form will be tested, properties determined, and mechanisms of degradation determined; and models providing long-term evaluation of release rates designed and tested. 23 refs

  6. Workshop on IAEA Tools for Nuclear Energy System Assessment for Long-Term Planning and Development

    International Nuclear Information System (INIS)

    2009-01-01

    The purpose of the workshop is to present to Member States tools and methods that are available from the IAEA in support of long-term energy planning and nuclear energy system assessments, both focusing on the sustainable development of nuclear energy. This includes tools devoted to energy system planning, indicators for sustainable energy development, the INPRO methodology for Nuclear Energy System Assessment (NESA) and tools for analysing nuclear fuel cycle material balance. The workshop also intends to obtain feedback from Member States on applying the tools, share experiences and lessons learned, and identify needs for IAEA support

  7. Mineral-modeled ceramics for long-term storage of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Vance, E.R.

    1980-01-01

    Over the past ten years, Penn State's Materials Research Laboratory has done extensive work on mineral-modeled ceramics for high-level nuclear waste storage. These ceramics are composed of several mineral analogues that form a monolithic polycrystalline aggregate. Mineral-modeling can be made in a similar fashion to nuclear waste glasses, and their naturally occurring analogues are known to last millions, and even billions, of years in hot, wet conditions. It is believed that such ceramics could reduce dispersal of radionuclides by leaching to a minimum

  8. Comparison of the corrosion behaviors of the glass-bonded sodalite ceramic waste form and reference HLW glasses

    International Nuclear Information System (INIS)

    Ebert, W. L.; Lewis, M. A.

    1999-01-01

    A glass-bonded sodalite ceramic waste form is being developed for the long-term immobilization of salt wastes that are generated during spent nuclear fuel conditioning activities. A durable waste form is prepared by hot isostatic pressing (HIP) a mixture of salt-loaded zeolite powders and glass frit. A mechanistic description of the corrosion processes is being developed to support qualification of the CWF for disposal. The initial set of characterization tests included two standard tests that have been used extensively to study the corrosion behavior of high level waste (HLW) glasses: the Material Characterization Center-1 (MCC-1) Test and the Product Consistency Test (PCT). Direct comparison of the results of tests with the reference CWF and HLW glasses indicate that the corrosion behaviors of the CWF and HLW glasses are very similar

  9. The role of nuclear energy for Korean long-term energy supply strategy : application of energy demand-supply model

    International Nuclear Information System (INIS)

    Chae, Kyu Nam

    1995-02-01

    An energy demand and supply analysis is carried out to establish the future nuclear energy system of Korea in the situation of environmental restriction and resource depletion. Based on the useful energy intensity concept, a long-term energy demand forecasting model FIN2USE is developed to integrate with a supply model. The energy supply optimization model MESSAGE is improved to evaluate the role of nuclear energy system in Korean long-term energy supply strategy. Long-term demand for useful energy used as an exogeneous input of the energy supply model is derived from the trend of useful energy intensity by sectors and energy carriers. Supply-side optimization is performed for the overall energy system linked with the reactor and nuclear fuel cycle strategy. The limitation of fossil fuel resources and the CO 2 emission constraints are reflected as determinants of the future energy system. As a result of optimization of energy system using linear programming with the objective of total discounted system cost, the optimal energy system is obtained with detailed results on the nuclear sector for various scenarios. It is shown that the relative importance of nuclear energy would increase especially in the cases of CO 2 emission constraint. It is concluded that nuclear reactor strategy and fuel cycle strategy should be incorporated with national energy strategy and be changed according to environmental restriction and energy demand scenarios. It is shown that this modelling approach is suitable for a decision support system of nuclear energy policy

  10. Structural role of molybdenum in nuclear glasses: an EXAFS study

    International Nuclear Information System (INIS)

    Calas, G.; Le Grand, M.; Galoisy, L.; Ghaleb, D.

    2003-01-01

    The Mo environment has been investigated in inactive nuclear glasses using extended X-ray absorption spectroscopy (XAS). Mo is present in a tetrahedron coordinated to oxygen in the form of molybdate groups [MoO 4 ] 2- (d(Mo-O)=1.78 A). This surrounding is not affected by the presence of noble metal phases in the nuclear glass. Relying on the XAS results, on the bond-valence model and on molecular dynamics simulations of a simplified borosilicate model glass, we show that these groups are not directly linked to the borosilicate network but rather located within alkali and alkaline-earth rich domains in the glass. This specific location in the glass network is a way to understand the low solubility of Mo in glasses melted under oxidizing conditions. It also explains the possible phase separation of a yellow phase enriched in alkali molybdates in molten nuclear glasses or the nucleation of calcium molybdates during thermal aging of these glasses. Boron coordination changes in the molten and the glassy states may explain the difference in the composition of the crystalline molybdates, as they exert a direct influence on the activity of alkalis in borosilicate glasses and melts

  11. A comparison of the performance of nuclear waste glasses by modeling

    International Nuclear Information System (INIS)

    Grambow, B.; Strachan, D.M.

    1988-12-01

    Through a combination of data collection and computer modeling, the dissolution mechanism of nuclear waste glasses has been investigated and more clearly defined. Glass dissolution can be described as a dissolution/precipitation process in which glass dissolves in aqueous solution and solids precipitate as the solubility products are exceeded. The dissolution process is controlled by activity of the rate-limiting specie H 4 SiO 4 . As a concentration of H 4 SiO 4 increases, the rate of dissolution decreases until a final reaction rate is reached. Between the forward reaction rate (early time) and final reaction rate (very long time), glasses may exhibit an intermediate root time dependence caused by a transport resistance for the diffusion of H 4 SiO 4 within the gel layer on the glass surface. In this report, three glasses are studied: JSS-A, PNL 76-68, and SRL-131. Data from static and dynamic leach tests are assembled, plotted, and successfully modeled. The kinetic parameters for these glasses are reported. With four parameters derived from experiments for each glass, the model can be used to calculate the effects of changes in the initial composition of the water contacting the glass. The effects of convective flow can also be modeled. Furthermore, glasses of different compositions can be readily compared. 49 refs., 27 figs., 5 tabs

  12. Long-term issues associated with spent nuclear power fuel management options

    International Nuclear Information System (INIS)

    Jae-Sol, Lee; Kosaku, Fukuda; Burcl, R.; Bell, M.

    2003-01-01

    Spent fuel management is perceived as one of the crucial issues to be resolved for sustainable utilisation of nuclear power. In the last decades, spent fuel management policies have shown diverging tendencies among the nuclear power production countries - a group has adhered to reprocessing- recycle and another has turned to direct disposal, while the rest of the countries have not taken decision yet, often with ''wait and see'' position. Both the closed and open fuel cycle options for spent fuel management have been subject to a number of debates with pros and cons on various issues such as proliferation risk, environmental impact, etc. The anticipation for better technical solutions that would mitigate those issues has given rise to the renewal of interest in partitioning and transmutation of harmful nuclides to be disposed of, and in a broader context, the recent initiatives for development of innovative nuclear systems. The current trend toward globalization of market economy, which has already brought important impacts on nuclear industry, might have a stimulating effect on regional-international co-operations for cost-effective efforts to mitigate some of those long-term issues associated with spent fuel management. (author)

  13. Do we soon run out of uranium? Long-term concepts of nuclear fuel supply

    International Nuclear Information System (INIS)

    Prasser, Horst-Michael

    2008-01-01

    The extension of the worldwide light water reactor fleet will cause the demand for uranium to grow. The static reach of identified resources might soon fall below the life time of new nuclear power plants which are usually designed for 60 years of operation, if the exploration of new uranium deposits will stop resulting in exploitable resources. The article discusses, if, as frequently claimed, the energy consumption in the uranium mines renders impossible to secure the nuclear fuel supply in the long term. (orig.)

  14. Turning nuclear waste into glass

    Energy Technology Data Exchange (ETDEWEB)

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  15. Long-term behaviour of waste-forms in the near-field environment of a deep underground storage site, overview

    International Nuclear Information System (INIS)

    Toulhoat, P.; Lassabatere, Th.; Galle, Ch.; Cranga, M.; Trotignon, L.; Maillard, S.; Iracane, D.

    1997-01-01

    CEA (French Atomic Energy Commission) is responsible for the achievement of high activity and/or long life waste conditioning processes. Various waste-forms are used (glass, bitumen, etc...). ANDRA (French National Agency for Nuclear Waste Management) has to integrate the long-term durability of such waste-forms in the conception of a deep disposal and the assessment of its long-term confinement performances. The influence of near-field and of the boundary conditions imposed by the far-field on the long-term evolution is being more and more documented. Transport properties and reactivity of silica in the near field is one of the best examples of such effects. A coherent framework with relevant successive events (site re-saturation, chemical evolution of the engineered barrier, overpack corrosion) and a thorough analysis of hierarchized couplings are necessary to evaluate the long term durability of waste-form, and finally, to deliver a near-field-integrated source-term of radionuclides versus lime. We present hereafter some preliminary results obtained in the framework of the CEA 'C3P' project - long-term behaviour of waste-forms in their near-field environment. (authors)

  16. Methodology of long term behaviour study of containment materials

    International Nuclear Information System (INIS)

    Vernaz, E.; Godon, N.

    1994-01-01

    Here is the presentation of the papers shown in the colloquium on environment and ceramics; the Atomic Energy Commissariat (Cea) have been working for fifteen years on the long term behaviour of fission products glasses on very long periods, about several millions years. The method of studies is detailed. 2 refs

  17. Report on the possibilities of long-term storage of irradiated nuclear fuels; Rapport sur les possibilites d'entreposage a long terme de combustibles nucleaires irradies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report aims at giving a legislative aspect to the many rules that govern the activities of the back-end of the fuel cycle in France. These activities concern the unloading of spent nuclear fuels, their reprocessing, storage, recycling and definitive disposal. The following points are reviewed and commented: the management of non-immediately reprocessed fuels (historical reasons of the 'all wastes reprocessing' initial choice, evolution of the economic and political context, the future reprocessing or the definitive disposal of spent fuels in excess); the inevitable long-term storage of part of the spent fuels (quantities and required properties of long-term stored fuels, the eventuality of a definitive disposal of spent fuels); the criteria that long-term storage facilities must fulfill (confinement measures, reversibility, surveillance and control during the whole duration of the storage); storage concept to be retained (increase of storage pools capacity, long-term storage in pools of reprocessing plants, centralized storage in pools, surface dry-storage on power plant sites, reversible underground storage, subsurface storage and storage/disposal in galleries, surface dry-storage facilities); the preliminary studies for the creation of long-term storage facilities (public information, management by a public French organization, clarifying of the conditions of international circulation of spent fuels); problems linked with the presence of foreign spent fuels in France (downstream of the reprocessing cycle, foreign plutonium and wastes re-shipment); conclusions and recommendations. (J.S.)

  18. Ancient Glass: A Literature Search and its Role in Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Pierce, Eric M.

    2010-07-01

    needed to simulate the long-term performance of nuclear waste glasses in a near-surface or deep geologic repositories. The information that will be required include 1) experimental measurements to quantify the model parameters, 2) detailed analyses of altered glass samples, and 3) detailed analyses of the sediment surrounding the ancient glass samples.

  19. Ancient Glass: A Literature Search and its Role in Waste Management

    International Nuclear Information System (INIS)

    Strachan, Denis M.; Pierce, Eric M.

    2010-01-01

    needed to simulate the long-term performance of nuclear waste glasses in a near-surface or deep geologic repositories. The information that will be required include (1) experimental measurements to quantify the model parameters, (2) detailed analyses of altered glass samples, and (3) detailed analyses of the sediment surrounding the ancient glass samples.

  20. Thermodynamical modeling of nuclear glasses: coexistence of amorphous phases

    International Nuclear Information System (INIS)

    Adjanor, G.

    2007-11-01

    Investigating the stability of borosilicate glasses used in the nuclear industry with respect to phase separation requires to estimate the Gibbs free energies of the various phases appearing in the material. In simulation, using current computational resources, a direct state-sampling of a glassy system with respect to its ensemble statistics is not ergodic and the estimated ensemble averages are not reliable. Our approach consists in generating, at a given cooling rate, a series of quenches, or paths connecting states of the liquid to states of the glass, and then in taking into account the probability to generate the paths leading to the different glassy states in ensembles averages. In this way, we introduce a path ensemble formalism and calculate a Landau free energy associated to a glassy meta-basin. This method was validated by accurately mapping the free energy landscape of a 38-atom glassy cluster. We then applied this approach to the calculation of the Gibbs free energies of binary amorphous Lennard-Jones alloys, and checked the correlation between the observed tendencies to order or to phase separate and the computed Gibbs free energies. We finally computed the driving force to phase separation in a simplified three-oxide nuclear glass modeled by a Born-Mayer-Huggins potential that includes a three-body term, and we compared the estimated quantities to the available experimental data. (author)

  1. Stimulated nuclear spin echos and spectral diffusion in glasses

    International Nuclear Information System (INIS)

    Borges, N.M.; Engelsberg, M.

    1984-01-01

    Experimental results of stimulated nuclear spin echos decay in glasses are presented. The measurements were performed in B 2 O 3 glasses, at the 23Na and 11 B resonance lines. The data analysis allows the study of Spectral diffusion at an inhomogeneous nuclear magnetic (NMR) resonance line, broadened for a desordered system of nuclear spins. A model is proposed to explain the time constants, and the particular form of the decay. (A.C.A.S.) [pt

  2. Simulation used to qualify nuclear waste glass for disposal

    International Nuclear Information System (INIS)

    Reimus, T.W.; Kuhn, W.L.

    1987-07-01

    A hypothetical vitrification system was simulated errors associated with controlling and predicting the composition of the nuclear waste glass produced in the system. The composition of the glass must fall within certain limits to qualify for permanent geologic disposal. The estimated error in predicting the concentrations of various constituents in the glass was 2% to 8%, depending on the strategy for sampling and analyzing the feed and on the assumed magnitudes of the process uncertainties. The estimated error in controlling the glass composition was 2% to 9%, depending on the strategy for sampling and analyzing the waste and on the assumed magnitudes of the uncertainties. This work demonstrates that simulation techniques can be used to assist in qualifying nuclear waste glass for disposal. 3 refs., 2 figs., 4 tabs

  3. The corrosion behavior of DWPF glasses

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bates, J.K.

    1995-01-01

    The authors analyzed the corroded surfaces of reference glasses developed for the Defense Waste Processing Facility (DWPF) to characterize their corrosion behavior. The corrosion mechanism of nuclear waste glasses must be known in order to provide source terms describing radionuclide release for performance assessment calculations. Different DWPF reference glasses were corroded under conditions that highlighted various aspects of the corrosion process and led to different extents of corrosion. The glasses corroded by similar mechanisms, and a phenomenological description of their corrosion behavior is presented here. The initial leaching of soluble glass components results in the formation of an amorphous gel layer on the glass surface. The gel layer is a transient phase that transforms into a layer of clay crystallites, which equilibrates with the solution as corrosion continues. The clay layer does not act as a barrier to either water penetration or glass dissolution, which continues beneath it, and may eventually separate from the glass. Solubility limits for glass components may be established by the eventual precipitation of secondary phases; thus, corrosion of the glass becomes controlled by the chemical equilibrium between the solution and the assemblage of secondary phases. In effect, the solution is an intermediate phase through which the glass transforms to an energetically more favorable assemblage of phases. Implications regarding the prediction of long-term glass corrosion behavior are discussed

  4. Reaction of water with a simulated high-level nuclear waste glass at 3000C, 300 bars

    International Nuclear Information System (INIS)

    McCarthy, G.J.; Scheetz, B.E.; Komarneni, S.; Smith, D.K.

    1978-01-01

    The hydrothermal stability of high-level nuclear wastes is an important consideration in establishing waste form acceptance criteria for a geological repository in basalt. A detailed examination of the stability of a typical simulated high-level waste glass and pressurized water at 300 0 C in a closed system has shown that extensive reaction occurred within a few weeks. The water acted first as a catalyst-solvent in devitrification of the glass and in dissolution, transport, and recrystallization of some of its constituents, and, second, as a reactant in forming hydrated and hydroxylated phases. This reaction with water resulted in the conversion of a solid shard of glass into a fragmented and partially dispersed mass of crystalline and noncrystalline material plus dissolved species within two weeks. The major crystalline reaction products were found to be analogs of naturally occurring minerals: (Cs,Na,Rb) 2 (UO 2 ) 2 .(Si 2 O 5 ) 3 .4H 2 O (weeksite) and a series of pyroxene-structure phases, (Na,Ca) (Fe,Zn,Ti)Si 2 O 6 (acmite, acmite--augites). Weeksite, however, is not expected to have long-term stability in the basalt environment. Much of the Na and Mo, and almost all of the B, in the original glass was identified in the product solutions. Of the elements or analogs of long-lived, hazardous radionuclides studied in this work, only Cs was observed in these solutions in substantial amounts. Although the comparatively rapid and extensive reactions at 300 0 C would appear to require that an acceptable glass would have low waste and heat loading, it is suggested that there is good potential for favorable glass--basalt--water hydrothermal interactions. Favorable interactions would mean that, in the event of a hydrothermal incident, the interaction products would be more stable than the original waste form and would remain in the immediate repository

  5. Long term impacts of nuclear energy: On which purpose do we try to evaluate them?

    International Nuclear Information System (INIS)

    Beutler, Didier

    1998-01-01

    The indicators and the time limits for evaluation of the long term impacts of nuclear energy depend on the purpose: assessing the total cost of electricity generation; comparing different nuclear strategies; responding to public acceptance concerns; elaborating and selecting the most sustainable energy systems. Indicators that can be used are: consumption of non renewable resources; concentrations in the environment; individual exposures; collective dose; potential radiotoxicity. For all of them predicted or conditional values can be applied

  6. Study of the mechanisms underlying resumptions of alteration. Modeling and evaluation of the impact on nuclear waste glasses

    International Nuclear Information System (INIS)

    Fournier, Maxime

    2015-01-01

    A sudden and still poorly understood phenomenon, the resumption of alteration results in a sudden acceleration of the glass alteration rate due to the destabilization of the amorphous passivating layer formed on the glass surface. Understanding the origin and the consequences of this phenomenon is a major issue for the prediction of nuclear glass long-term behavior. This study quantitatively links the alteration degree of a six-oxide reference glass and the formation mechanisms of zeolites and C-S-H that control the solution chemistry. The role played by the decrease in aluminum concentration as an indicator of resumption is highlighted. It appears that the resumption occurrence and rate are correlated to the couple (T, pH), but even in the most adverse situations the resumption rate is lower than the initial alteration rate, which remains the fastest kinetic regime. Previously limited to alkaline pH, the characterization of alteration resumptions was extended to conditions more representative of those found in a geological repository. This approach required the development of a new tool: seeding, that reduces or eliminates the latency period preceding a resumption. The results obtained demonstrate its usefulness in understanding the role of zeolites in amorphous layer destabilization and for modeling alteration resumptions. A geochemical modeling approach to alteration resumption is proposed, based on the formalism of the GRAAL glass alteration model. It is based on the calculation of zeolite thermodynamic constants, on the implementation of their nucleation and growth kinetics, and on assumptions related to the solubility of the amorphous layer. When zeolite precipitation consumes alkali, glass alteration - driven by zeolite precipitation - releases alkali. The model highlights the importance of such chemical couplings and shows that, in the stoichiometry of French nuclear reference glass, their cumulative effects are the cause of a pH decrease which limits

  7. Long-term criticality safety concerns associated with surplus fissile material disposition

    International Nuclear Information System (INIS)

    Choi, J.S.

    1995-01-01

    A substantial inventory of surplus fissile material would result from ongoing and planned dismantlement of US and Russian nuclear weapons. This surplus fissile material could be dispositioned by irradiation in nuclear reactors, and the resulting spent MOx fuel would be similar in radiation characteristics to regular LWR spent UO2 fuel. The surplus fissile material could also be immobilized into high-level waste forms, such as borosilicate glass, synroc, or metal-alloy matrix. The MOx spent fuel, or the immobilized waste forms, could then be directly disposed of in a geologic repository. Long-term criticality safety concerns arise because the fissile contents (i.e., Pu-239 and its decay daughter U-235) in these waste forms are higher than in LWR spent UO2 fuel. MOx spent fuel could contain 3 to 4 wt% of reactor-grade plutonium, compared to only 0.9 wt% of plutonium in LWR spent UO2 fuel. At some future time (tens of thousand of years), when the waste forms had deteriorated due to intruding groundwater, the water could mix with the long-lived fissile materials to form into a critical system. If the critical system is self-sustaining, somewhat like the natural-occurring reactor in OKLO, fission products produced could readily be available for dissolution and release out to the accessible environment, adversely affecting public health and safety. This paper will address ongoing activities to evaluate long-term criticality safety concerns associated with disposition of fissile material in a geologic setting. Issues to be addressed include the identification of a worst-case water-intrusion scenario and waste-form geometries which present the most concern for long-term criticality safety; and suggests of technical solutions for such concerns

  8. An assessment method for long-term management of Canada's used nuclear fuel

    International Nuclear Information System (INIS)

    Leiss, W.

    2006-01-01

    The nine-member Assessment Team, assembled by the Nuclear Waste Management Organization in early 2004, reported the results of its work in the NWMO document, 'Assessing the Options: Future Management of Used Nuclear Fuel in Canada (June 2004). The team was responding to the challenge to develop a rigorous and credible evaluation of multiple options, and one which would also satisfy a complex set of objectives: a solution that would be 'socially acceptable, technically sound, environmentally responsible, and economically feasible.' This paper describes the special challenges faced by the Assessment Team in seeking to respond to this multifaceted assignment. I open by discussing the implications of the institutional and legal framework inherited by the NWMO from the Seaborn Panel (including the government's response to the Seaborn Panel report), which in effect set a new standard for the practice of risk management decision making in Canada. I then review the highlights of the Assessment Team's report, including its chosen method, namely, multi-objective utility analysis. I conclude with a discussion of the longer term implications of the assessment work done to date for the next stages in the process of finding a credible solution for the long-term management of used nuclear fuel in Canada. (author)

  9. Role of lead as modifier on the properties of lead iron phosphate nuclear waste glasses

    International Nuclear Information System (INIS)

    Hazra, G.; Mitra, P.; Das, T.

    2011-01-01

    Lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high level defence and high level commercial radioactive waste for long term disposal. Lead iron phosphate glasses have several advantages such as lower aqueous corrosion rate, lower processing temperature etc. (author)

  10. Use of depleted uranium silicate glass to minimize release of radionuclides from spent nuclear fuel waste packages

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1996-01-01

    A Depleted Uranium Silicate Container Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill the void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (a) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (b) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments

  11. Long-term risk assessment of radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Girardi, F.; Bertozzi, G.; D'Alessandro, M.

    1978-01-01

    Methods for long-term safety analysis of waste from nuclear power production in the European Community are under study at the Joint Research Centre (JRC) at Ispra, Italy. Aim of the work is to develop a suitable methodology for long-term risk assessment. The methodology under study is based on the assessment of the quantitative value of a system of barriers which may be interposed between waste and man. The barriers considered are: a) quality of the segregation afforded by the geological formation, b) chemical and physical stability of conditioned waste, c) interaction with geological environments (subsoil retention), d) distribution in the biosphere. The methodology is presently being applied to idealized test cases based on the following assumptions: waste are generated during 30 years of operations in a nuclear park (reprocessing + refabrication plant) capable of treating 1000 ton/yr of LWR fuel. High activity waste is conditioned as borosilicate glass (HAW) while low- and medium-level wastes are bituminized (BIP). All waste is disposed off into a salt formation. Transport to the biosphere, following the containment failure occurs by groundwater, with no delay due to retention on adsorbing media. Distribution into the biosphere occurs according to the terrestrial model indicated. Under these assumptions, information was drawn concerning environmental contamination, its levels, contributing elements and pathways to man

  12. Status of long term operation of nuclear power plants in the US

    Energy Technology Data Exchange (ETDEWEB)

    Young, G., E-mail: gyoung4@entergy.com [Entergy Nuclear, License Renewal, New Orleans, LA (United States)

    2014-07-01

    As of early-2014, the U.S. Nuclear Regulatory Commission (NRC) has renewed the operating licenses for 73 of the 100 U.S. operating nuclear units, allowing for up to 60 years of safe operation. In addition, the NRC has license renewal applications under review for 18 more units and up to 8 additional units have announced plans to submit applications by 2018. This brings the total of renewed licenses and announced plans for renewal to 99% of the operating nuclear units in the U.S. In addition, by the end of 2014, there will be 38 nuclear plants that will have operated for more than 40 years and will be eligible to seek a subsequent license renewal to allow operation up to 80 years. Although some of the operating nuclear units are expected to shutdown due to economic issues, most of the remaining operating plant owners are keeping the option open for long term operation beyond 60 years. NRC and the U.S. nuclear industry have made significant progress in preparing the way for subsequent license renewal applications. This presentation covers the status of the U.S. license renewal process and issues being addressed for possible applications for subsequent renewals for up to 80 years of operation. (author)

  13. Long-term leach rates of glasses containing actual waste

    International Nuclear Information System (INIS)

    Wiley, J.R.; LeRoy, J.H.

    1979-01-01

    Leach rates of borosilicate glasses that contained actual Savannah River Plant waste were measured. Leaching was done by water and by buffer solutions of pH 4, 7, and 9. Leach rates were then determined from the amount of 137 Cs, 90 Sr, and Pu released into the leach solutions. The cumulative fractions leached were fit to a mathematical model that included leaching by diffusion and glass dissolution

  14. Evaluation of nuclear power development scenarios in romania envisaging the long-term national energy sustainability

    International Nuclear Information System (INIS)

    Margeanu, C.; Apostol, M.; Visan, I.; Prodea, I.

    2015-01-01

    The paper summarizes the results of RATEN ICN Pitesti experts' activities in the IAEA's Collaborative Project INPRO-SYNERGIES. Romanian study proposes to evaluate and analyze development of the nuclear capacity and increasing of its share in national energy sector, envisaging the long term national and regional energy sustainability by keeping options open for the future while bringing solutions to short/medium-term challenges. The study focused on the modelling of national NES (Nuclear Energy System) development on short and medium-term (time horizon 2050), considering the existing NFC (Nuclear Fuel Cycle) infrastructure and legislation, provisions of strategic documents in force and including also the possibility of regional collaboration regarding U/fresh fuel supply and SF (Spent Fuel) storage, as services provided at international market prices. The energy system modelling was realized by using the IAEA's MESSAGE program. The study results offer a clear image and also the possible answer to several key questions regarding: potential of nuclear energy to participate with an important share in national energy mix, in conditions of cost competitiveness, safety and security of supply; impact on national energy mix portfolio of capacities and electricity production; impact on Uranium domestic resources; economic projection/investments needed for new nuclear capacities addition; fresh fuel requirements for nuclear capacities; SF annually discharged and transferred to interim wet storage for cooling; SF volume in interim dry storage, etc. (authors)

  15. Long term aging of selenide glasses: evidence of sub-Tg endotherms and pre-Tg exotherms

    Science.gov (United States)

    Chen, Ping; Boolchand, P.; Georgiev, D. G.

    2010-02-01

    Long term aging, extending from months to several years, is studied on several families of chalcogenide glasses including the Ge-Se, As-Se, and Ge-As-Se systems. Special attention is given to the As-Se binary, a system that displays a rich variety of aging behavior intimately tied to sample synthesis conditions and the ambient environment in which samples are aged. Calorimetric (modulated DSC) and Raman scattering experiments are undertaken. Our results show all samples display a sub-Tg endotherm typically 10-70 °C below Tg in glassy networks possessing a mean coordination number r in the 2.25 < r < 2.45 range. Two sets of AsxSe100-x samples aged for eight years were compared, set A consisted of slow cooled samples aged in the dark, and set B consisted of melt-quenched samples aged at laboratory environment. Samples of set B in the As concentration range, 35% < x < 60%, display a pre-Tg exotherm, but the feature is not observed in samples of set A. The aging behavior of set A presumably represents intrinsic aging in these glasses, while that of set B is extrinsic due to the presence of light. The reversibility window persists in both sets of samples, but is less well defined in set B. These findings contrast with a recent study by Golovchak et al (2008 Phys. Rev. B 78 014202), which finds the onset of the reversibility window moved up to the stoichiometric composition (x = 40%). Here we show that the up-shifted window is better understood as resulting due to demixing of As4Se4 and As4Se3 molecules from the backbone, i.e., nanoscale phase separation (NSPS). We attribute sub-Tg endotherms to compaction of the flexible part of the networks upon long term aging, while the pre-Tg exotherm is to NSPS. The narrowing and sharpening of the reversibility window upon aging is interpreted as the slow 'self-organizing' stress relaxation of the phases just outside the intermediate phase, which itself is stress free and displays little aging.

  16. On the pathway towards disposal. The need for long-term interim storage of high-level nuclear waste

    International Nuclear Information System (INIS)

    Budelmann, Harald; Koehnke, Dennis; Reichardt, Manuel

    2017-01-01

    The disposal of spent nuclear fuel is a still unsolved problem with social, ethical, economical, ecological and political dimensions. The stagnating decision process on the final repository concept in several countries has the consequence of the inclusion of long-term interim storage into the disposal concept. The contribution discusses several approaches. This opens the question whether the long-term interim storage is a matter of delaying tactic or a pragmatic solution on the way to a final repository.

  17. Investigation of metastable immiscibility in nuclear-waste-glasses. I-III

    International Nuclear Information System (INIS)

    Egnell, J.; Larsen, J.G.; Moeller, L.; Roed, G.

    1981-12-01

    Metastable liquid-liquid separation in glasses can often cause significant changes in physical and chemical properties of the original homogeneous glass. In some technical borosilicate glasses this phenomenon is used to change the chemical durability of the glass. For potential nuclear-waste-glasses the slow cooling through the temperature range 550 0 C - 700 0 C may lead to such a liquid-liquid phase separation. In order to investigate the susceptibility of phase separation of nuclear-waste-glasses, two KBS model glasses, ABS-39 and ABS-41, were investigated. Two of the subsequent reports are concerned with this problem. The third report also takes into consideration the effects of MoO 3 on the immiscibility gap. The maximum amount of MoO 3 that can be dissolved in ABS-39 and ABS 41 is also determined. (Auth.)

  18. Cost tradeoffs in consequence management at nuclear power plants: A risk based approach to setting optimal long-term interdiction limits for regulatory analyses

    International Nuclear Information System (INIS)

    Mubayi, V.

    1995-05-01

    The consequences of severe accidents at nuclear power plants can be limited by various protective actions, including emergency responses and long-term measures, to reduce exposures of affected populations. Each of these protective actions involve costs to society. The costs of the long-term protective actions depend on the criterion adopted for the allowable level of long-term exposure. This criterion, called the ''long term interdiction limit,'' is expressed in terms of the projected dose to an individual over a certain time period from the long-term exposure pathways. The two measures of offsite consequences, latent cancers and costs, are inversely related and the choice of an interdiction limit is, in effect, a trade-off between these two measures. By monetizing the health effects (through ascribing a monetary value to life lost), the costs of the two consequence measures vary with the interdiction limit, the health effect costs increasing as the limit is relaxed and the protective action costs decreasing. The minimum of the total cost curve can be used to calculate an optimal long term interdiction limit. The calculation of such an optimal limit is presented for each of five US nuclear power plants which were analyzed for severe accident risk in the NUREG-1150 program by the Nuclear Regulatory Commission

  19. The long-term corrosion of glass by ground-water

    International Nuclear Information System (INIS)

    Cox, G.A.; Ford, B.A.

    1993-01-01

    Specimens of corroded soda and potash glasses, which had been exposed to groundwater for periods of up to about 1650 years, have been physically and chemically analysed. The morphology and compositional profiles of their finely laminated weathering crusts were determined by scanning electron microscopy and electron-probe microanalysis. It is shown that the surface layers on all specimens are depleted, to varying extents, of their principal constituents, with the exception of Si, Al and Fe. X-ray and electron diffraction studies have revealed the (tentative) identities of complex, poorly crystalline silicates and aluminosilicates within the largely amorphous crusts on potash glasses. The mean thickness of the crusts was found to correlate well with the free energy of hydration, ΔG o , of the pristine glasses. The rate of layer formation on the most durable specimens (ΔG o ∼ -15 kJ mol -1 ) was about 4 x 10 -3 μm year -1 . Deposits of calcite, calcium phosphate and manganese rich minerals occurred within the crusts; they were largely of external origin. Thus, in addition to the composition of the glass, the geochemistry of the local groundwater plays a decisive role in determining the identity of the compounds present within the weathering crusts. (author)

  20. Silicate glasses. Chapter 1

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e. borosilicate glass. A historical overview of waste form development programs in nine countries is followed by a summary of the design criteria for borosilicate glass compositions glass compositions. In the sections on glass properties the waste form is characterized in terms of potential alterations under the influence of heat, thermal gradients, radiation, aqueous solutions and combinations thereof. The topics are phase transformations, mechanical properties, radiation effects and chemical durability. The results from studies of volcanic glasses, as natural analogues for borosilicate nuclear waste glasses in order to verify predictions obtained from short-term tests in the laboratory, have been compiled in a special section on natural analogues. A special section on advanced vitrification techniques summarizes the various actual and potential processing schemes and describes the facilities. The literature has been considered until 1985. (author). 430 refs.; 68 figs.; 29 tabs

  1. OECD/NEA study on the economics of the long-term operation of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lokhov, A.; Cameron, R. [OECD Nuclear Energy Agency, 12, boulevard des Iles, 92130 Issy-les-Moulineaux (France)

    2012-07-01

    The OECD Nuclear Energy Agency (NEA) established the Ad hoc expert group on the Economics of Long-term Operation (LTO) of Nuclear Power Plants. The primary aim of this group is to collect and analyse technical and economic data on the upgrade and lifetime extension experience in OECD countries, and to assess the likely applications for future extensions. This paper describes the key elements of the methodology of economic assessment of LTO and initial findings for selected NEA member countries. (authors)

  2. Long-term leach rates of glasses containing actual waste

    International Nuclear Information System (INIS)

    Wiley, J.R.; LeRoy, J.H.

    1979-01-01

    Leach rates of borosilicate glasses that contained actual Savannah River Plant waste were measured. Leaching was done by water and by buffer solutions of pH 4, 7, and 9. Leach rates were then determined from the amount of 137 Cs, 90 Sr, and plutonium released into the leach solutions. The cumulative fractions leached were fit to a mathematical model that included leaching by diffusion and glass dissolution. 5 figures, 3 tables

  3. New long-term plan of nuclear development and perspectives of nuclear fuel cycle policy

    International Nuclear Information System (INIS)

    Uchiyama, Yohji

    2005-01-01

    Japan's nuclear fuel cycle policy, recently issued as an interim report of the Council to Formulate the New Long-Term Nuclear Program of the Atomic Energy Commission, is summarized and briefly explained together with the concluding remarks from the sub-committee for discussing technical and economical problems on the spent nuclear fuels with the present state of the Rokkasho reprocessing plant in mind. As for the nuclear fuel treatment, the panel considered four scenarios: (1) total reprocessing (the reprocessing for spent fuel after an appropriate period of storage); (2) partial reprocessing (spent fuel is reprocessed, with direct disposal of any spent fuel in excess of reprocessing capacity); (3) total direct disposal (direct disposal of all spent fuel); and (4) temporary storage (spent fuel is temporarily stored, and in about 2060 a choice will be made about whether to reprocess it or directly dispose of it). These four scenarios were studied from various perspectives, namely: (1) ensuring safety; (2) energy security; (3) environmental compatibility; (4) economic efficiency; (5) nuclear nonproliferation; (6) technical feasibility; (7) social acceptance; (8) securing choices; (9) issues concerning change in policy; and (10) overseas trends. Regarding economic efficiency, the council in particular conducted detailed studies and reassessment of nuclear fuel cycle costs. Scenario 1 (total reprocessing) is about 0.5-0.7 yen/kWh higher than scenario 3 (total direct disposal). However, looking at the situation from the perspectives of energy security, that is the stable supply and moderate use of resources, and environmental compatibility, scenario 1 (total reprocessing) can be evaluated as superior to the other scenarios. And more importantly, if the fast-breeder reactor cycle is commercialized, this superiority increases considerably. (S. Ohno)

  4. Long-term management of Canada's spent nuclear fuel: the nuclear waste management organizations recommendation to government

    International Nuclear Information System (INIS)

    Shaver, K.

    2006-01-01

    Full text: Like many countries with nuclear power programs, Canada is in the process of addressing the long-term management of its spent fuel. The Nuclear Waste Management Organization (NWMO) was tasked through federal legislation to conduct a three-year study of approaches for the long-term management of spent fuel, and to recommend a preferred approach to the Government of Canada. Legislation required NWMO to compare at least three approaches -approaches based on deep geological disposal in the Canadian Shield, storage at nuclear reactor sites, and centralized storage either above or below ground. In assessing the options, NWMO sought a recommendation that would be socially acceptable, technically sound, environmentally responsible and economically feasible. The study drew on a vast base of social, technical, engineering, and financial research, and included an extensive engagement program with the public and Aboriginal peoples. The recommendation emerged from a collaborative dialogue with specialists and citizens, for an approach that is built on sound science and technology and responsive to citizen values. NWMO submitted its completed options study, with recommendation, to the Government in November 2005. NWMO has proposed an alternative approach, Adaptive Phased Management, which has as its key attributes: central containment and isolation of spent fuel in a deep repository, in an appropriate geological formation; contingency provision for central shallow storage; monitoring and retrievability; and a staged, adaptive process of concept implementation, reflecting the complex nature of the task and the desire of citizens to proceed through cautious, deliberate steps of technical demonstration and social acceptance. This paper will review: 1) the development of the assessment framework for comparing the technical options, which incorporated social and ethical considerations expressed by citizens; 2) findings of the assessment; and 3) features of the proposed

  5. Foresight of nuclear generation at long term in Mexico

    International Nuclear Information System (INIS)

    Guadarrama L, R.; Sanchez R, O. E.; Martin del Campo M, C.

    2009-10-01

    This paper presents an analysis of the nuclear generation expansion for the period 2008-2030. The main objective is to plan the expansion of electrical generation system at long term taking into account four decision criteria. These are, the total cost of generation, the risk associated whit changes in fuel prices, the diversity of the generation park and polluting emissions of global impact (greenhouse effect gases) and local effects (acid rain and suspended particles). The analyzed expansion plans were developed using a model of uni nodal planning called WASP-IV. The analysis methodology was based on four steps. The first consisted in developing, with model WASP-IV, different expansion plans of the electrical generation system that fulfill the energy demand and certain conditions of the study in which was optimized the additions program of generator units searching the minimal cost of electrical generation. The second step was to calculate the generation costs of each plan for two scenarios of fuel prices, also with model WASP-IV. Later was calculated the diversity index and the accumulated emissions during the expansion and the avoided emission of CO 2 when units of combined cycle that burn natural gas are replaced by nuclear power units. (Author)

  6. Hydrogen speciation in hydrated layers on nuclear waste glass

    International Nuclear Information System (INIS)

    Aines, R.D.; Weed, H.C.; Bates, J.K.

    1987-01-01

    The hydration of an outer layer on nuclear waste glasses is known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 and 165, and PNL 76-68), which were leached at 90 0 C (all glasses) or hydrated in a vapor-saturated atmosphere at 202 0 C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. Molecular water was found in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. Using the known molar absorptivities of water and hydroxyl in silica-rich glass the vapor-phase layer contained 4.8 moles/liter of molecular water, and 0.6 moles water in the form hydroxyl. A 15 μm layer on SRL-131 glass formed by leaching at 90 0 C contained a total of 4.9 moles/liter of water, 2/3 of which was as hydroxyl. The unreacted bulk glass contains about 0.018 moles/liter water, all as hydroxyl. The amount of hydrogen added to the SRL-131 glass was about 70% of the original Na + Li content, not the 300% that would result from alkali=hydronium ion interdiffusion. If all the hydrogen is then assumed to be added as the result of alkali-H + interdiffusion, the molecular water observed may have formed from condensation of the original hydroxyl groups

  7. The uranium industry: long term planning for short term competition

    International Nuclear Information System (INIS)

    Vottero, X.

    2000-01-01

    Today, uranium producers face new challenges in terms of both production (new regulatory, environmental and social constraints) and market conditions (new sources of uranium supply, very low prices and tough competition). In such a context, long-term planning is not just a prerequisite to survive in the nuclear fuel cycle industry. In fact, it also contributes to sustaining nuclear electricity generation facing fierce competition from other energy sources in increasingly deregulated markets. (authors)

  8. Nuclear energy contribution to restraining greenhouse gas emissions and long-term energy production

    International Nuclear Information System (INIS)

    Khoda-Bakhsh, R.

    2004-01-01

    An important source of greenhouse gases, in particular Co 2 , is fossil fuel combustion for energy applications. Since nuclear power is an energy source that does not produce Co 2 , nuclear energy is already making a contribution to restraining greenhouse gas emissions. Because it has been internationally decided to reduce carbon dioxide emission before the year 2005 in order to avoid the green house catastrophy of the earth's atmosphere, and since there is an urgent need of energy especially in the developing countries, there is now a strong demand for alternative energy sources. While the established low cost energy production by light water nuclear fission reactors could be a solution for a period of transition (limited by resources of the light Uranium isotope), fusion energy is of interest for long- term and large scale energy production to provide the increased energy demand

  9. Long term operation of nuclear power plants in Spain: preparing for the future

    Energy Technology Data Exchange (ETDEWEB)

    Marcelles, I.; Frutos, E.; Jardi, X.; Cosgaya, F., E-mail: imarcelles@tecnatom.es [Tecnatom, S. A., Av. Montes de Oca 1, 28703 San Sebastian de los Reyes, Madrid (Spain)

    2017-09-15

    The Spanish nuclear industry is preparing for the Long Term Operation (LTO) of its complete fleet. Therefore, an important number of activities are being currently developed in order to achieve the safe and economical life extension of the operational life of the Spanish nuclear power plants. This paper describes the main activities that will be performed to meet the licensing requirements, in order to be granted and operating license for LTO, such as the development of Ageing Management Plans (Amp), Time Limited Ageing Analysis (TLAA) as well as databases and software tools to support LTO. In addition to this, this paper will describe the implementation of the NDE activities included in the AMPs and some of the research and development programs that the Spanish nuclear industry research is working on related to LTO (e.g. cable ageing, concrete degradation, etc.) (Author)

  10. Long term operation of nuclear power plants in Spain: preparing for the future

    International Nuclear Information System (INIS)

    Marcelles, I.; Frutos, E.; Jardi, X.; Cosgaya, F.

    2017-09-01

    The Spanish nuclear industry is preparing for the Long Term Operation (LTO) of its complete fleet. Therefore, an important number of activities are being currently developed in order to achieve the safe and economical life extension of the operational life of the Spanish nuclear power plants. This paper describes the main activities that will be performed to meet the licensing requirements, in order to be granted and operating license for LTO, such as the development of Ageing Management Plans (Amp), Time Limited Ageing Analysis (TLAA) as well as databases and software tools to support LTO. In addition to this, this paper will describe the implementation of the NDE activities included in the AMPs and some of the research and development programs that the Spanish nuclear industry research is working on related to LTO (e.g. cable ageing, concrete degradation, etc.) (Author)

  11. Report on the possibilities of long-term storage of irradiated nuclear fuels; Rapport sur les possibilites d'entreposage a long terme de combustibles nucleaires irradies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report aims at giving a legislative aspect to the many rules that govern the activities of the back-end of the fuel cycle in France. These activities concern the unloading of spent nuclear fuels, their reprocessing, storage, recycling and definitive disposal. The following points are reviewed and commented: the management of non-immediately reprocessed fuels (historical reasons of the 'all wastes reprocessing' initial choice, evolution of the economic and political context, the future reprocessing or the definitive disposal of spent fuels in excess); the inevitable long-term storage of part of the spent fuels (quantities and required properties of long-term stored fuels, the eventuality of a definitive disposal of spent fuels); the criteria that long-term storage facilities must fulfill (confinement measures, reversibility, surveillance and control during the whole duration of the storage); storage concept to be retained (increase of storage pools capacity, long-term storage in pools of reprocessing plants, centralized storage in pools, surface dry-storage on power plant sites, reversible underground storage, subsurface storage and storage/disposal in galleries, surface dry-storage facilities); the preliminary studies for the creation of long-term storage facilities (public information, management by a public French organization, clarifying of the conditions of international circulation of spent fuels); problems linked with the presence of foreign spent fuels in France (downstream of the reprocessing cycle, foreign plutonium and wastes re-shipment); conclusions and recommendations. (J.S.)

  12. Long term corrosion behavior of the WAK-HLW glass in salt solutions

    International Nuclear Information System (INIS)

    Luckscheiter, B.; Nesovic, M.

    1998-01-01

    The corrosion behavior of the HLW glass GP WAK1 containing simulated HLW oxides from the WAK reprocessing plant in Karlsruhe is investigated in long-term corrosion experiments at high S/V ratios in two reference brines at 110 and 190 C. In case of the MgCl 2 -rich solution the leachate becomes increasingly acid with reaction time up to a final pH of about 3.5 at 190 C. In the NaCl-rich solution the pH rises to about 8.5 after one year of reaction. The release of soluble elements in MgCl 2 solution, under Si-saturated conditions, is proportional to the surface area of the sample and the release increases at 190 C according to a t 1/2 rate law. This time dependence may be an indication of diffusion controlled matrix dissolution. However, at 110 C the release of the mobile elements cannot be described by a t 1/2 rate law as the time exponents are much lower than 0.5. This difference in corrosion behavior may be explained by the higher pH of about 5 at 110 C. In case of NaCl solution under alkaline conditions, the release of soluble elements is not proportional to the surface area of the sample and it increases with time exponents much lower than 0.5. After one year of reaction at 190 C a sharp increase of the release values of some elements was observed. This increase might be explained by the high pH of the solution attained after one year. The corrosion mechanism in NaCl solution, as well as in MgCl 2 solution at 110 C, has not yet been explained. By corrosion experiments in water at constant pH values between 2 and 10, it could be shown that the time exponents of the release of Li and B decrease with increasing pH of the solution. This result can explain qualitatively the differences found in the corrosion behavior of the glass under the various conditions

  13. Glass and vitrification

    International Nuclear Information System (INIS)

    Barton, J.L.; Vacher, R.; Moncouyoux, J.P.; Vernaz, E.

    1997-01-01

    Most glasses used as materials are oxides glasses that are produced by a quick quench of a liquid. Glasses are characterized by the absence of periodicity in the atomic arrangements, they do not have symmetries and do not present order over a long distance. This series of 4 short articles present: 1) the properties of glass and its industrial story, 2) the glass structure, 3) a forty years long story of glass as dies used to confine wastes and 4) the methodology used to study the behaviour of glass over very long periods of time. This methodology is based on 5 steps: 1) define and specify the material to study (the prediction of long term alteration of a material is nonsense unless you know well its initial properties), 2) identify all the alteration processes that are likely to happen, determine their kinetics and the influence of environmental parameters, 3) develop mathematical models in order to simulate long-term behaviour of glasses, 4) determine the release rates of the radionuclides confined in the glass, and 5) validate data and models, it is not possible to expect a complete validation of a model that will be extrapolated over tens of thousands of years, nevertheless some ways of validation can lead to a satisfactory level of confidence taking into account reasonable uncertainties. (A.C.)

  14. Advanced Nuclear Fuel Cycle Effects on the Treatment of Uncertainty in the Long-Term Assessment of Geologic Disposal Systems - EBS Input

    International Nuclear Information System (INIS)

    Sutton, M.; Blink, J.A.; Greenberg, H.R.; Sharma, M.

    2012-01-01

    The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of waste forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were encapsulated

  15. ADVANCED NUCLEAR FUEL CYCLE EFFECTS ON THE TREATMENT OF UNCERTAINTY IN THE LONG-TERM ASSESSMENT OF GEOLOGIC DISPOSAL SYSTEMS - EBS INPUT

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M; Blink, J A; Greenberg, H R; Sharma, M

    2012-04-25

    The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of waste forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were

  16. From glass structure to its chemical durability

    International Nuclear Information System (INIS)

    Angeli, F.

    2009-01-01

    The author gives an overview of his research activities. He more precisely reports studies related to glass structure based on nuclei observed by NMR and present in glasses of interest for nuclear activities. He discusses the influence of chemical composition on structure, and discusses information which can be extracted from network formers (Al, B) and modifiers (Na, Ca), and from oxygen present in the network linkages of oxide glasses. He discusses the different experimental and modelling approaches which enable structural and morphological information to be obtained at a mesoscopic scale. The last part deals with the investigation of the long term behaviour of confinement matrices (glassy matrix for medium-activity wastes, ceramic matrix)

  17. Modelling aqueous corrosion of nuclear waste phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Poluektov, Pavel P.; Schmidt, Olga V.; Kascheev, Vladimir A. [Bochvar All-Russian Scientific Research Institute for Inorganic Materials (VNIINM), Moscow (Russian Federation); Ojovan, Michael I., E-mail: m.ojovan@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2017-02-15

    A model is presented on nuclear sodium alumina phosphate (NAP) glass aqueous corrosion accounting for dissolution of radioactive glass and formation of corrosion products surface layer on the glass contacting ground water of a disposal environment. Modelling is used to process available experimental data demonstrating the generic inhibiting role of corrosion products on the NAP glass surface. - Highlights: • The radionuclides yield is determined by the transport from the glass through the surface corrosion layer. • Formation of the surface layer is due to the dissolution of the glass network and the formation of insoluble compounds. • The model proposed accounts for glass dissolution, formation of corrosion layer, specie diffusion and chemical reactions. • Analytical solutions are found for corrosion layer growth rate and glass components component leaching rates.

  18. Transmutation technologies to solve the problem of long-term spent nuclear fuel storage

    International Nuclear Information System (INIS)

    Hosnedl, P.; Valenta, V.; Blahut, O.

    2000-01-01

    The paper gives a brief description of the transmutation process for actinides and long-lived fission products which are present in spent nuclear fuel. Transmutation technologies can solve the problem of long-term spent nuclear fuel storage and reduce the requirements for storage time and conditions. The basic data and requirements for the detailed design of the transmutor are summarized, and the views upon how to address the fuel purification and dry reprocessing issues are discussed. The results of activities of SKODA JS are highlighted; these include, for instance, the fluoride salt-resistant material MONICR, test loops, and electrowinners. The preliminary design of the transmutor is also outlined. Brief information regarding activities in the field of transmutation technologies in the Czech Republic and worldwide is also presented. The research and design activities to be developed for the whole design of the demonstration and basic units are summarized. It is emphasized that SKODA JS can join in international cooperation without constraints. The Attachment presents a simple assessment of how the radioactivity balance can be reduced, based on the actinide and long-lived fission product transmutation half-lives, is presented in the Attachment. (author)

  19. Simulation of Self-Irradiation of High-Sodium Content Nuclear Waste Glasses

    International Nuclear Information System (INIS)

    Pankov, Alexey S.; Ojovan, Michael I.; Batyukhnova, Olga G.; Lee, William E.

    2007-01-01

    Alkali-borosilicate glasses are widely used in nuclear industry as a matrix for immobilisation of hazardous radioactive wastes. Durability or corrosion resistance of these glasses is one of key parameters in waste storage and disposal safety. It is influenced by many factors such as composition of glass and surrounding media, temperature, time and so on. As these glasses contain radioactive elements most of their properties including corrosion resistance are also impacted by self-irradiation. The effect of external gamma-irradiation on the short-term (up to 27 days) dissolution of waste borosilicate glasses at moderate temperatures (30 deg. to 60 deg. C) was studied. The glasses studied were Magnox Waste glass used for immobilisation of HLW in UK, and K-26 glass used in Russia for ILW immobilisation. Glass samples were irradiated under γ-source (Co-60) up to doses 1 and 11 MGy. Normalised rates of elemental release and activation energy of release were measured for Na, Li, Ca, Mg, B, Si and Mo before and after irradiation. Irradiation up to 1 MGy results in increase of leaching rate of almost all elements from both MW and K-26 with the exception of Na release from MW glass. Further irradiation up to a dose of 11 MGy leads to the decrease of elemental release rates to nearly initial value. Another effect of irradiation is increase of activation energies of elemental release. (authors)

  20. Economic aspects of long term operation (LTO) of nuclear power plants

    International Nuclear Information System (INIS)

    Lokhov, A.

    2015-01-01

    In 2011, 289 reactors in the world were older than 25 years, and only 45 new units were connected to the grid in 2000-2011. Without life extensions, nuclear capacity would thus fall dramatically in the next decade. In this series of slides the author reviews the legal limits and possibilities for long term operations (LTO) of nuclear reactors in the world. It appears 2 basic regulatory approaches to LTO: the license renewal and the periodic safety review. The typical investment in LTO is in the range of 500-1100 US dollar per kWe. The additional costs of post-Fukushima modifications are about 10 to 20% of initially projected LTO investment. It appears that life extension of more than 10 years is profitable. There are several uncertainties that can influence LTO programmes such as public acceptance, changes in national policies, changes in the prices of other energies and technological issues. The specific investment in LTO is detailed for Belgium, Hungary, the USA and Russia. (A.C.)

  1. Nuclear spin dominated relaxation of atomic tunneling systems in glasses

    Energy Technology Data Exchange (ETDEWEB)

    Luck, Annina

    2016-11-16

    The measurements performed in this thesis have revealed a non phononic relaxation channel for atomic tunneling systems in glasses at very low temperatures due to the presence of nuclear electric quadrupoles. Dielectric measurements on the multicomponent glasses N-KZFS11 and HY-1, containing {sup 181}Ta and {sup 165}Ho, respectively, that both carry very large nuclear electric quadrupole moments, show a relaxation rate in the kilohertz range, that is constant for temperatures exceeding the nuclear quadrupole splitting of the relevant isotopes. The results are compared to measurements performed on the glasses Herasil and N-BK7 that both contain no large nuclear quadrupole moments. Using three different setups to measure the complex dielectric function, the measurements cover almost eight orders of magnitude in frequency from 60 Hz to 1 GHz and temperatures down to 7.5 mK. This has allowed us a detailed study of the novel effects observed within this thesis and has led to a simplified model explaining the effects of nuclear electric quadrupoles on the behavior of glasses at low temperatures. Numeric calculations based on this model are compared to the measured data.

  2. Iron Phosphate Glasses: An Alternative for Vitrifying Certain Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delbert E. Day; Chandra S. Ray; Cheol-Woon Kim

    2004-12-28

    Vitrification of nuclear waste in a glass is currently the preferred process for waste disposal. DOE currently approves only borosilicate (BS) type glasses for such purposes. However, many nuclear wastes, presently awaiting disposal, have complex and diverse chemical compositions, and often contain components that are poorly soluble or chemically incompatible in BS glasses. Such problematic wastes can be pre-processed and/or diluted to compensate for their incompatibility with a BS glass matrix, but both of these solutions increases the wasteform volume and the overall cost for vitrification. Direct vitrification using alternative glasses that utilize the major components already present in the waste is preferable, since it avoids pre-treating or diluting the waste, and, thus, minimizes the wasteform volume and overall cost.

  3. Iron Phosphate Glasses: An Alternative for Vitrifying Certain Nuclear Wastes

    International Nuclear Information System (INIS)

    Day, Delbert E.; Ray, Chandra S.; Cheol-Woon Kim

    2004-01-01

    Vitrification of nuclear waste in a glass is currently the preferred process for waste disposal. DOE currently approves only borosilicate (BS) type glasses for such purposes. However, many nuclear wastes, presently awaiting disposal, have complex and diverse chemical compositions, and often contain components that are poorly soluble or chemically incompatible in BS glasses. Such problematic wastes can be pre-processed and/or diluted to compensate for their incompatibility with a BS glass matrix, but both of these solutions increases the wasteform volume and the overall cost for vitrification. Direct vitrification using alternative glasses that utilize the major components already present in the waste is preferable, since it avoids pre-treating or diluting the waste, and, thus, minimizes the wasteform volume and overall cost

  4. Nuclear non-proliferation and disarmament: A long-term perspective

    International Nuclear Information System (INIS)

    Haeckel, E.

    1990-01-01

    International nuclear policy has been determined for a long time by the exigencies of the status quo. The non-proliferation regime draws its legitimacy from the continuation of extant patterns of power in world politics. Such a static policy cannot succeed forever. Overcoming the threat of nuclear proliferation will require innovative strategy that reaches beyond the status quo. It calls for structural change in the international system to be accomodated instead of resisted. If the Non-Proliferation Treaty is to hold, nuclear weapon states will finally have to forgo their privileged status. This cannot, however, be accomplished simply through the abolition or renunciation of nuclear weapons since nuclear weapons themselves continue to be instrumental for war prevention and international stability. Rather, what is needed is a new approach to the management of the nuclear world system under international responsibility. Nonproliferation and disarmament objectives together call for a concept of global security in which multilateral institutions assume an increasingly important role of nuclear diplomacy. (orig.) [de

  5. Development Of Glass Matrices For HLW Radioactive Wastes

    International Nuclear Information System (INIS)

    Jantzen, C.

    2010-01-01

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc 99 , Cs 137 , and I 129 . Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  6. Understanding the origin of the fracture toughness evolution of nuclear glasses under irradiation

    International Nuclear Information System (INIS)

    Kieu, L.-H.

    2011-01-01

    In the nuclear industry, complex borosilicate glasses are used for the confinement of fission products and long-life minor actinides. Under irradiations, the structure and the mechanical properties of these glasses evolve. In this work, atomistic and multi-scale simulations of three simplified borosilicate glasses were run to understand the origin of their fracture behavior change under irradiation. Under the radiation effects, elasticity decreases and plasticity increases. Fracture happens due to the formation and coalescence of nano-cavities. The structural modifications under the radiation effects lead to a delay of the coalescence and of the irradiated glass rupture. Several phenomena overlay to explain this behavior, especially the cavities distribution modifications, the sodium mobility, and the borate and silicate entities organization in the glassy network. Depending on the nature of the more important mechanism, the fracture toughness can increase or decrease under radiation. (author) [fr

  7. Technology transfer on long-term radioactive waste management - a feasible option for small nuclear programmes?

    International Nuclear Information System (INIS)

    Mele, I.; Mathieson, J.

    2007-01-01

    The EU project CATT - Co-operation and technology transfer on long-term radioactive waste management for Member States with small nuclear programmes investigated the feasibility of countries with small nuclear programmes implementing long-term radioactive waste management solutions within their national borders, through collaboration on technology transfer with those countries with advanced disposal concepts. The main project objective was to analyse the existing capabilities of technology owning Member States and the corresponding requirements of potential technology acquiring Member States and, based on the findings, to develop a number of possible collaboration models and scenarios that could be used in a technology transfer scheme. The project CATT was performed as a specific support action under the EU sixth framework programme and it brought together waste management organisations from six EU Member States: UK, Bulgaria, Germany, Lithuania, Slovenia and Sweden. In addition, the EC Joint Research Centre from the Netherlands also participated as a full partner. The paper summarises the analyses performed and the results obtained within the project. (author)

  8. Prospective opportunities for using the innovative nuclear reactors in Armenian energy sector long-term programme development

    International Nuclear Information System (INIS)

    Gevorgyan, A.

    2003-01-01

    Full text: In the base of the long-term planning for the Armenian energy sector development there have been laid the principles of energy independence and energy security, and not only those of least-cost criteria. The concept of energy security for Armenia under the existing conditions can be formulated in the following way - the country should have guaranteed ability for the reliable energy supply for all requirements of society both under the sustainable development and in extreme conditions. Ensuring the energy security is the main task and responsibility of all the state institutions without exceptions. In order to ensure the country's energy security, it is necessary to guarantee its energy independence. It means that the country's energy sector should be minimum dependent on the imported fuels, that is, it should be achieved the maximum utilization of the domestic energy sources. Taking the above-mentioned principles as a basis, we have modeled the Armenian electric-energy sector long-term development taking into account the future needs to cover the electricity demand forecasted. Two options were considered: the energy sector development including the nuclear energy scenario, and the option without the nuclear way of electricity generation, called combined cycle scenario. Summarizing the experience of energy crisis, lasted in Armenia during 1992-1996, we can assert that, upon having 40% energy independence, the normal functioning of practically all the life-support systems of Armenia in wide range of emergency situations can be assured. And only restarting Unit 2 of the ANPP made it possible to stop that crisis evolution and enable the country to move toward the further economic development. Besides, the environmental aspects are also among the most important components of the energy security. The ecological factors were included into the study when modeling scenarios of long-term energy development. As it is known, while nuclear power plants do not produce

  9. Chemical durability of simulated nuclear glasses containing water

    International Nuclear Information System (INIS)

    Li, H.; Tomozawa, M.

    1995-04-01

    The chemical durability of simulated nuclear waste glasses having different water contents was studied. Results from the product consistency test (PCT) showed that glass dissolution increased with water content in the glass. This trend was not observed during MCC-1 testing. This difference was attributed to the differences in reactions between glass and water. In the PCT, the glass network dissolution controlled the elemental releases, and water in the glass accelerated the reaction rate. On the other hand, alkali ion exchange with hydronium played an important role in the MCC-1. For the latter, the amount of water introduced into a leached layer from ion-exchange was found to be much greater than that of initially incorporated water in the glass. Hence, the initial water content has no effect on glass dissolution as measured by the MCC-1 test

  10. Long-term damage to glass in Paris in a changing environment.

    Science.gov (United States)

    Ionescu, Anda; Lefèvre, Roger-Alexandre; Brimblecombe, Peter; Grossi, Carlota M

    2012-08-01

    Glass weathering depends mainly on its chemical composition: Si-Ca-K mediaeval glass is low durable, while Si-Ca-Na Roman as well as modern glass are very durable. Mediaeval glass is subject to the superficial leaching of K and Ca ions leading to the formation of a hydrated silica-gel layer. Both types of glass develop a superficial stratum of deposited atmospheric particles cemented by crystals of gypsum (and syngenite in the case of Si-Ca-K glass), leading to an impairment of the optical properties: decrease of transparency and increase of haze. Dose-response functions established for the two types of glass reveal that haze depends only on pollution parameters (PM, SO(2), NO(2)), while leaching depends both on pollution and climate parameters (RH, T, SO(2), NO(2)). Instrumental records are available for temperature in Paris from 1800. Air pollution in Paris was estimated from statistics of fuel use from 1875 to 1943, measurements that started in the 1950s and projections across the 21st century. The estimated annual rate of haze development indicates a gradual rise from the 16th century. The increasing importance of coal as a fuel through the 19th century and enhanced sulphur dioxide concentration make a rapid increase in haze formation, which reaches a peak about 1950. The likely damage to mediaeval glass follows a rather similar pattern. The period of damage from aggressive pollutants looks later and for a briefer time in Paris than in London. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1989-01-01

    This patent describes lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 0 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms

  12. Formation of secondary phases during the corrosion of vitrified nuclear waste

    International Nuclear Information System (INIS)

    Zimmer, P.

    2003-11-01

    The first aim of this work was the examination of the formation and long-term stability of secondary phases that form during an aquatic attack on simulated, vitrified nuclear waste. In the glasses used for the investigations actinides had been replaced by rare earth elements (chemical analogues), other radionuclides by inactive isotopes. For predictions about the long-term safety of nuclear waste disposals it is important to identify secondary phases that have formed during the glass corrosion process and to determine their stability. Two different saline solutions (rich in MgCl 2 and in NaCl, respectively) are relevant as a corrosion medium for waste disposals. It showed that in such an environment sulfates, silicates and molybdates represent the main new formations of minerals after 7.5 years of corrosion. However, the formation, long-term stability and sorption characteristics of those minerals regarding rare earth elements depend to a high degree on the corrosion medium as well as on changes in the geochemical environment in the course of the experiment. By means of SEM/EDX barytes of different morphology with up to 15% w/w Sr ((Ba,Sr)SO 4 ) were identified in both corrosion media; they were capable of binding long-term stable radionuclides like Sr. Furthermore, pure rare earth (RE) sulfates were observed in the saline solution rich in MgCl 2 . This formation of RE-sulfates has not been described in the literature so far. Depending on the saline solution, the secondary silicate and molybdate minerals that formed on the glass surfaces differed noticeably in their sorption characteristics and their stability. Another focus of the work was a more profound understanding of the glass corrosion mechanism in the presence of metallic iron since steel jackets are used as technical barriers for the vitrified nuclear waste in nuclear waste disposals. Another important point in connection with the mobilization and immobilization of radionuclides released during glass

  13. Compartment model for long-term contamination prediction in deciduous fruit trees after a nuclear accident

    International Nuclear Information System (INIS)

    Antonopoulos-Domis, M.; Clouvas, A.; Gagianas, A.

    1990-01-01

    Radiocesium contamination from the Chernobyl accident of different parts (fruits, leaves, and shoots) of selected apricot trees in North Greece was systematically measured in 1987 and 1988. The results are presented and discussed in the framework of a simple compartment model describing the long-term contamination uptake mechanism of deciduous fruit trees after a nuclear accident

  14. From Streams to Lumps: Transforming Long-Term Incentives into Up-Front Financing for New Nuclear Construction

    International Nuclear Information System (INIS)

    George, Glenn R.

    2006-01-01

    The Energy Policy Act of 2005 is an important development in the financing of new nuclear capacity in the near- to mid-term in the U.S.A. Key features of the Act, including production tax credits, loan guarantees, funding support, and 'standby support', are intended to provide significant incentives for new nuclear development, construction, and operation. There is a mismatch, however, between the nature and extent of incentives being offered and what is needed to spur nuclear plant deployment in light of power market uncertainty, utility investor wariness, and the need to raise significant capital before a nuclear construction project can be launched. In this paper, the author addresses these issues through the lens of financial tools and techniques. The paper considers various ways in which long-term streams of subsidies can be transformed into up-front financing for new nuclear capacity. Securing and related financial structures are among the mechanisms considered for potentially bridging the temporal gap between flows of financial benefits conferred legislatively and lumps of capital required by developers and investors in advance of a construction program. (authors)

  15. Durability testing with West Valley borosilicate glass composition- Phase II

    International Nuclear Information System (INIS)

    Macedo, P.B.; Finger, S.M.; Barkatt, A.A.; Pegg, I.L.; Feng, X.; Freeborn, W.P.

    1988-06-01

    This report presents the research performed by the Catholic University of America Vitreous State Laboratory (VSL) during FY 1987 in support of the West Valley Demonstration Project (WVDP) nuclear waste vitrification process. A principal objective of this work is the optimization of the glass composition be used for the vitrification of the liquid high-level waste generated at West Valley during nuclear fuel reprocessing. This report discusses (1) the experimental investigations to optimize the reference glass composition (the current leading candidates are WVCM-50 and ATM-10) for the WVDP vitrification process; (2) the systematic experimental investigation performed to determine the effects of compositional variations in WVCM-50 and WV-205 reference glasses on their viscosity and durability (including initial results of long-term leach tests of WVCM-50 under repository conditions); (3) the development of short-time and predictive leach tests; (4) the development of a process model for the West Valley vitrification process which predicts the range of glass compositions which may be encountered during normal operations and the effects of deviations in process control parameters; and (5) the development of product models for predicting the durability and viscosity of nuclear waste glasses

  16. Haw-glass dissolution and radionuclide release: mechanism - modelling - source term

    Energy Technology Data Exchange (ETDEWEB)

    Grambow, B [Forschungszentrum Karlsruhe, Institut fur Nukleare, Karlsruhe (Germany)

    1997-07-01

    Important release controlling processes are: 1) kinetics of glass matrix dissolution (leaching), 2) formation of secondary alteration products (controlling thermodynamic solubility), 3) sorption on surfaces in the engineered barrier system and 4) formation of mobile species. Quantification of these processes requires assessment of the energetics and dynamics of the various reversible and irreversible processes within an overall open non-equilibrium system. Corrosion/dissolution of the waste matrices is not necessarily associated with a proportional release of radionuclides. The formation of new secondary phases, such as silicates, molybdates, uranates, carbonates... establishes a new geochemical barrier for re-immobilization of radionuclides dissolved from the waste matrices. The presence of iron (corroding canisters during glass alteration) reduces the solution concentration of redox sensitive radionuclides. Consequently, the container, after being corroded, constitutes an important geochemical barrier for radionuclide re-immobilization. Geochemical modelling of the long-term behaviour of glasses must be performed in an integrated way, considering simultaneous reactions of the glass, of container corrosion, of repository rock and of backfill material. Until now, only few attempts were made for integral systems modelling. (A.C.)

  17. Long term corrosion of iron at the water logged site Nydam in Denmark

    DEFF Research Database (Denmark)

    Matthiesen, Henning; Hilbert, Lisbeth Rischel; Gregory, David

    2005-01-01

    Long term corrosion of iron at the water logged site Nydam in Denmark; studies of enviroment, archaeological artefacts, and modern analogues, Prediction of long term corrosion behaviour in nuclear waste systems.......Long term corrosion of iron at the water logged site Nydam in Denmark; studies of enviroment, archaeological artefacts, and modern analogues, Prediction of long term corrosion behaviour in nuclear waste systems....

  18. Environmental radioactivity. Global transport, distribution and its long-term variation

    International Nuclear Information System (INIS)

    Hirose, Katsumi

    2015-01-01

    Fukushima Dai-ichi Nuclear Power Plant (F1NPP) accident, which occurred as a result of huge earthquake and resulting tsunami, had a severe impact on world communities as did Japanese, because of cause of serious radioactivity contamination in the environment. Long-term effects of radioactivity contamination from F1NPP are concerned. To assess the long-term environmental effects of the F1NPP accident, it is important to review the history of global radioactivity contamination, which started from Hiroshima and Nagasaki nuclear explosions in Aug. 1945. Radionuclides released in the environment as a result of atmospheric nuclear explosions, nuclear reactor accident and others are migrated between atmosphere, hydrosphere, biosphere and lithosphere according to natural processes. We describe long-term environmental behaviors of anthropogenic radionuclides derived from the atmospheric nuclear explosions and others, which is useful to predict the behaviors and fate of the F1NPP-derived radionuclides. (author)

  19. Molecular glasses for nuclear waste encapsulation

    International Nuclear Information System (INIS)

    Ropp, R.C.

    1982-01-01

    The use of a molecular glass based upon a polymerized phosphate of aluminum (PAP), indium or gallium overcomes all of the prior objections to use of glass as a high-level nuclear waste (HLW) encapsulation agent. This HLW glass product could not be made to devitrify, dissolved all of the oxides found in calcine, including the difficultly soluble ones, did not form microcrystallites in the melt or subsequent glass-casting, and possessed a hydrolytic etching rate to boiling water even lower than that of HLW-ZBS glass. A precursor compound, M(H 2 PO 4 ) 3 , is prepared, where M is a trivalent metal selected from the group consisting of aluminum, indium and gallium. The impurity level is carefully controlled so as not to exceed 300 ppm total. The precursor crystals may be washed to remove excess phosphoric acid as desired. HLW is added to the crystals and the mixture is then heated at a controlled heating rate to induce solid state polymerization and to form a melt at 1350 degrees C in which the HLW oxides dissolve rapidly

  20. Exploration and Modeling of Structural changes in Waste Glass Under Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Pantano, Carlos; Ryan, Joseph; Strachan, Denis

    2013-11-10

    Vitrification is currently the world-wide treatment of choice for the disposition of high-level nuclear wastes. In glasses, radionuclides are atomistically bonded into the solid, resulting in a highly durable product, with borosilicate glasses exhibiting particularly excellent durability in water. Considering that waste glass is designed to retain the radionuclides within the waste form for long periods, it is important to understand the long-term stability of these materials when they react in the environment, especially in the presence of water. Based on a number of previous studies, there is general consensus regarding the mechanisms controlling the initial rate of nuclear waste glass dissolution. Agreement regarding the cause of the observed decrease in dissolution rate at extended times, however, has been elusive. Two general models have been proposed to explain this behavior, and it has been concluded that both concepts are valid and must be taken into account when considering the decrease in dissolution rate. Furthermore, other processes such as water diffusion, ion exchange, and precipitation of mineral phases onto the glass surface may occur in parallel with dissolution of the glass and can influence long-term performance. Our proposed research will address these issues through a combination of aqueous-phase dissolution/reaction experiments and probing of the resulting surface layers with state-of-the-art analytical methods. These methods include solid-state nuclear magnetic resonance (SSNMR) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The resulting datasets will then be coupled with computational chemistry and reaction-rate modeling to address the most persistent uncertainties in the understanding of glass corrosion, which indeed have limited the performance of the best corrosion models to date. With an improved understanding of corrosion mechanisms, models can be developed and improved that, while still conservative, take advantage of

  1. The role of long-term geologic changes in the regulation of the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Flavelle, P.

    1996-01-01

    It is recognized that the geosphere is a dynamic system over the long time frames of nuclear fuel waste disposal. This paper describes how consideration of a dynamic geosphere has impacted upon the evolving regulatory environment in Canada, and how the approach taken to comply with the regulatory requirements can affect the evaluation of long-term geologic changes. AECB staff opinion is that if the maximum possible effect of geologic changes can be demonstrated to have negligible impact on the safety of a nuclear fuel waste repository, then further consideration of a dynamic geosphere is unnecessary for the current review of the Canadian Nuclear Fuel Waste Management Program. (authors). 7 refs., 4 figs

  2. RADIATION SAFETY JUSTIFICATION FOR THE LONG-TERM STORAGE OF GAS CONDENSATE IN THE UNDERGROUND RESERVOURS FORMED BY THE NUCLEAR EXPLOSION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    I. K. Romanovich

    2010-01-01

    Full Text Available The paper presents approaches to the safety justification of the gas condensate and brine long-term storage in the underground reservoirs formed by the nuclear explosion technology. Gas condensate and brine are the intermediate level liquid radioactive waste containing isotopes: 3Н, 137Cs and 90Sr, in traces - 239Pu, 235U, 241Am.Safety of the gas condensate and brine long-term storage in the underground reservoirs is assessed on the base of the multi-barrier principle implementation, used during radioactive waste disposal. It is shown that the gas condensate and brine long-term storage in the sealed underground reservoirs formed by nuclear explosion technologies in salt domes does not lead to the surface radioactive contamination and population exposure.

  3. Specialty glass development for radiation shielding windows and nuclear waste immobilization

    International Nuclear Information System (INIS)

    Mandal, S.; Ghorui, S.; Roy Chowdhury, A.; Sen, R.; Chakraborty, A.K.; Sen, S.; Maiti, H.S.

    2015-01-01

    The technology of two important varieties of specialty glasses, namely high density Radiation Shielding Window (RSW) glass and specialty glass beads of borosilicate composition have been successfully developed in CGCRI with an aim to meet the countries requirement. Radiation Shielding Windows used in nuclear installations, are viewing devices, which allow direct viewing into radioactive areas while still providing adequate protection to the operating personnel. The glass blocks are stabilized against damage from radiation by introducing cerium in definite proportions. Considering the essentially of developing an indigenous technology to make the country self-sufficient for this critical item, CGCRI has taken up a major programme to develop high lead containing glasses required for RSWs under a MoD with BARC. On the other hand, the specialty glass bead of specific composition and properties is a critical material required for management of radioactive waste in a closed nuclear fuel cycle that is followed by India. During reprocessing of the spent nuclear fuel, high level radio-active liquid waste (HLW) is produced containing unwanted radio isotopes some of which remain radioactive for thousands of years. The need is to immobilize them within a molecular structure so that they will not come out and be released to the ambience and thereby needs to be resolved if nuclear power is to make a significant contribution to the country's power requirement. Borosilicate glass has emerged as the material of choice for immobilization due to its unique random network structure

  4. Lead-iron phosophate glass

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.

    1988-01-01

    The lead-iron phosphate nuclear waste glasses (LIPNWG) are the subject of the present chapter. They were discovered in 1984 while the authors were attempting to find a sintering aid for certain types of crystalline monazite ceramic high-level nuclear waste forms. In the present chapter, the term waste glass is synonymous with nuclear waste glass (NWG), and the acronym LIP is often used for lead-iron phosphate. Lead-iron phosphate glasses, like many of the previously studied phosphate glasses, are corrosion resistant in aqueous solutions at temperatures below 100 degrees C, and they can be melted and poured at temperatures that are relatively low in comparison with the processing temperatures required for current silicate glass compositions. Unlike the phosphate glasses investigated previously, however, LIPNWGs do not suffer from alteration due to devitrification during realistic and readily, achievable cooling periods. Additionally, lead-iron phosphate glass melts are not nearly as corrosive as the sodium phosphate melts investigated during the 1960s; and, therefore, they can be melted and processed using crucibles made from a variety of materials

  5. An introduction to nuclear waste immobilisation

    International Nuclear Information System (INIS)

    Ojovan, M.I.; Lee, W.E.

    2005-08-01

    Safety and environmental impact is of uppermost concern when dealing with the movement and storage of nuclear waste. The 20 chapters in this book cover all important aspects of immobilisation, from nuclear decay, to regulations, to new technologies and methods. Significant focus is given to the analysis of the various matrices used in transport: cement, bitumen and glass, with the greatest attention being given to glass. The last chapter concentrates on the performance assessment of each matrix, and on new developments of ceramics and glass composite materials, thermochemical methods and in-situ metal matrix immobilisation. The book thoroughly covers all issues surrounding nuclear waste: from where to locate nuclear waste in the environment, through nuclear waste generation and sources, treatment schemes and technologies, immobilisation technologies and waste forms, disposal and long term behaviour. Particular attention is paid to internationally approved and worldwide-applied approaches and technologies

  6. Dissolution of basaltic glass in seawater: Mechanism and rate

    International Nuclear Information System (INIS)

    Crovisier, J.L.; Honnorez, J.; Eberhart, J.P.

    1987-01-01

    Basaltic glasses are considered as natural analogues for nuclear waste glasses. Thermodynamic computer codes used to evaluate long term behavior of both nuclear waste and basaltic glasses require the knowledge of the dissolution mechanism of the glass network. The paper presents the results of a series of experiments designed to study the structure and chemical composition of alteration layers formed on the surface of artificial tholeiitic glass altered in artificial seawater. Experiments were performed at 60 degree C, 1 bar and 350 bars in non-renewed conditions. A natural sample from Palagonia (Sicily) has been studied by electron microscopy and comparison between natural and experimental palagonitic layers is made. The behavior of dissolved silica during experiments, and both the structure and the chemical composition of the palagonitic layers, indicate that they form by precipitation of secondary minerals from solution after a total breakdown of the glassy network, i.e., congruent dissolution of the glass. Hence the dissolution equation necessary for thermodynamic modelling of basaltic glass dissolution in seawater at low temperature must be written as a simple stoichiometric process. These experiments indicate that the transformation of glass to palagonitic material is not isovolumetric. Hence it is preferable to use Fe or Ti as conservative elements for chemical budget calculations

  7. Effect of Callovo-Oxfordian clay rock on the dissolution rate of the SON68 simulated nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J., E-mail: James.Neeway@pnnl.gov [SUBATECH, Unité Mixte de Recherche 6457, École des Mines de Nantes, CNRS/IN2P3, Université de Nantes, BP 20722, 44307 Nantes cedex 3 (France); Abdelouas, Abdesselam; Ribet, Solange; El Mendili, Yassine [SUBATECH, Unité Mixte de Recherche 6457, École des Mines de Nantes, CNRS/IN2P3, Université de Nantes, BP 20722, 44307 Nantes cedex 3 (France); Schumacher, Stéphan [ANDRA, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry (France); Grambow, Bernd [SUBATECH, Unité Mixte de Recherche 6457, École des Mines de Nantes, CNRS/IN2P3, Université de Nantes, BP 20722, 44307 Nantes cedex 3 (France)

    2015-04-15

    Long-term storage of high-level nuclear waste glass in France is expected to occur in an engineered barrier system (EBS) located in a subsurface Callovo-Oxfordian (COx) clay rock formation in the Paris Basin in northeastern France. Understanding the behavior of glass dissolution in the complex system is critical to be able to reliably model the performance of the glass in this complex environment. To simulate this multi-barrier repository scenario in the laboratory, several tests have been performed to measure glass dissolution rates of the simulated high-level nuclear waste glass, SON68, in the presence of COx claystone at 90 °C. Experiments utilized a High-Performance Liquid Chromatography (HPLC) pump to pass simulated Bure site COx pore water through a reaction cell containing SON68 placed between two COx claystone cores for durations up to 200 days. Silicon concentrations at the outlet were similar in all experiments, even the blank experiment with only the COx claystone (∼4 mg/L at 25 °C and ∼15 mg/L at 90 °C). The steady-state pH of the effluent, measured at room temperature, was roughly 7.1 for the blank and 7.3–7.6 for the glass-containing experiments demonstrating the pH buffering capacity of the COx claystone. Dissolution rates for SON68 in the presence of the claystone were elevated compared to those obtained from flow-through experiments conducted with SON68 without claystone in silica-saturated solutions at the same temperature and similar pH values. Additionally, through surface examination of the monoliths, the side of the monolith in direct contact with the claystone was seen to have a corrosion thickness 2.5× greater than the side in contact with the bulk glass powder. Results from one experiment containing {sup 32}Si-doped SON68 also suggest that the movement of Si through the claystone is controlled by a chemically coupled transport with a Si retention factor, K{sub d}, of 900 mL/g.

  8. The understanding of the R7T7 glass blocks long term behavior: chemical and transport coupling in fractured media; Comprehension de l'alteration a long terme des colis de verre R7T7: etude du couplage chimie transport dans un milieu fissure

    Energy Technology Data Exchange (ETDEWEB)

    Chomat, L

    2008-04-15

    The long term behavior of nuclear waste glass blocks depends highly on chemical reactions which occur at the surface in contact with water. Studies carried out on inactive fractured glass blocks show that fracture networks play a significant part in reactive surface area. Nevertheless, the complexity of results interpretation, due to a weak knowledge of fracture networks and local lixiviation conditions, does not allow us to comprehend the physical and chemical mechanisms involved. Model cracks are a key step to study chemical and transport coupling in fractured media. Crack lixiviation in aggressive conditions (pH{>=}11) show that the crack's position (horizontal or vertical) determines the dominant transport mechanism (respectively diffusion or convection induced by gravity). This gravity driven flow seems to be negligible in lower pH conditions. The convective velocity is estimated by a 1D model of reactive transport. Two other parameters are studied: the influence of thermal gradient and the influence of interconnected cracks on alteration. A strong retroactive effect of convection, due to thermal gradient, on the alteration kinetic is observed inside the crack. These works lead to a complete alteration experiment of a 163 crack network subject to a thermal gradient. The use of the geochemical software, HYTEC, within the framework of this study shows the potential of the software which is however limited by the kinetics law used. (author)

  9. The understanding of the R7T7 glass blocks long term behavior: chemical and transport coupling in fractured media; Comprehension de l'alteration a long terme des colis de verre R7T7: etude du couplage chimie transport dans un milieu fissure

    Energy Technology Data Exchange (ETDEWEB)

    Chomat, L

    2008-04-15

    The long term behavior of nuclear waste glass blocks depends highly on chemical reactions which occur at the surface in contact with water. Studies carried out on inactive fractured glass blocks show that fracture networks play a significant part in reactive surface area. Nevertheless, the complexity of results interpretation, due to a weak knowledge of fracture networks and local lixiviation conditions, does not allow us to comprehend the physical and chemical mechanisms involved. Model cracks are a key step to study chemical and transport coupling in fractured media. Crack lixiviation in aggressive conditions (pH{>=}11) show that the crack's position (horizontal or vertical) determines the dominant transport mechanism (respectively diffusion or convection induced by gravity). This gravity driven flow seems to be negligible in lower pH conditions. The convective velocity is estimated by a 1D model of reactive transport. Two other parameters are studied: the influence of thermal gradient and the influence of interconnected cracks on alteration. A strong retroactive effect of convection, due to thermal gradient, on the alteration kinetic is observed inside the crack. These works lead to a complete alteration experiment of a 163 crack network subject to a thermal gradient. The use of the geochemical software, HYTEC, within the framework of this study shows the potential of the software which is however limited by the kinetics law used. (author)

  10. Leaching of actinides from simulated nuclear waste glass

    International Nuclear Information System (INIS)

    Pickering, S.; Walker, C.T.; Offermann, P.

    1982-01-01

    Two types of simulated nuclear waste glass doped with actinides were leached at 200 0 C in distilled water and salt solutions. Am, Np, Pu and U were all preferentially retained in the surface layer on the glass. Leaching ratios of 0.1 to 0.2 for Np and approx. 0.02 for Am were measured. The losses of Am and Np to the leachant were proportional to the total weight loss of the glass and were larger at 10 ml leachant/cm 2 glass than at 5 ml/cm 2 . Weight loss from the glass occurred only at the start of the experiments for periods ranging from 10 h to 10 days according to leachant composition and volume. Wt losses from the C31-3-EC glass were much greater in saturated NaCl solution than in distilled water. Enrichment in the outer surface layer of Al or Ca according to glass type could be correlated with leachant pH, glass composition and weight loss measurements

  11. Durable Glass For Thousands Of Years

    International Nuclear Information System (INIS)

    Jantzen, C.

    2009-01-01

    The durability of natural glasses on geological time scales and ancient glasses for thousands of years is well documented. The necessity to predict the durability of high level nuclear waste (HLW) glasses on extended time scales has led to various thermodynamic and kinetic approaches. Advances in the measurement of medium range order (MRO) in glasses has led to the understanding that the molecular structure of a glass, and thus the glass composition, controls the glass durability by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. During the early stages of glass dissolution, a 'gel' layer resembling a membrane forms through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer ages into clay or zeolite minerals by Ostwald ripening. Zeolite mineral assemblages (higher pH and Al 3+ rich glasses) may cause the dissolution rate to increase which is undesirable for long-term performance of glass in the environment. Thermodynamic and structural approaches to the prediction of glass durability are compared versus Ostwald ripening.

  12. DURABLE GLASS FOR THOUSANDS OF YEARS

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.

    2009-12-04

    The durability of natural glasses on geological time scales and ancient glasses for thousands of years is well documented. The necessity to predict the durability of high level nuclear waste (HLW) glasses on extended time scales has led to various thermodynamic and kinetic approaches. Advances in the measurement of medium range order (MRO) in glasses has led to the understanding that the molecular structure of a glass, and thus the glass composition, controls the glass durability by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. During the early stages of glass dissolution, a 'gel' layer resembling a membrane forms through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer ages into clay or zeolite minerals by Ostwald ripening. Zeolite mineral assemblages (higher pH and Al{sup 3+} rich glasses) may cause the dissolution rate to increase which is undesirable for long-term performance of glass in the environment. Thermodynamic and structural approaches to the prediction of glass durability are compared versus Ostwald ripening.

  13. Corrosion of glass-bonded sodalite as a function of pH and temperature

    International Nuclear Information System (INIS)

    Morss, L. R.; Stanley, M.; Tatko, C.; Ebert, W. L.

    1999-01-01

    This paper reports the results of corrosion tests with monoliths of sodalite, binder glass, and glass-bonded sodalite, a ceramic waste form (CWF) that is being developed to immobilize radioactive electrorefiner salt used to condition spent sodium-bonded nuclear fuel. These tests were performed with dilute pH-buffered solutions in the pH range of 5-10 at temperatures of 70 and 90 C. The pH dependence of the forward dissolution rates of the CWF and its components have been determined. The pH dependence of the dissolution rates of sodalite, binder glass, and glass-bonded sodalite are similar to the pH dependence of dissolution rate of borosilicate nuclear waste glasses, with a negative pH dependence in the acidic region and a positive pH dependence in the basic region. Our results on the forward dissolution rates and their temperature and pH dependence will be used as components of a waste form degradation model to predict the long-term behavior of the CWF in a nuclear waste repository

  14. DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.

    2010-03-18

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  15. Fabrication and Characterization of Surrogate Glasses Aimed to Validate Nuclear Forensic Techniques

    Science.gov (United States)

    2017-12-01

    the glass formed during a nuclear event, trinitite [14]. The SiO2 composition is generally greater than 50% for trinitite and can vary appreciably...CHARACTERIZATION OF SURROGATE GLASSES AIMED TO VALIDATE NUCLEAR FORENSIC TECHNIQUES by Ken G. Foos December 2017 Thesis Advisor: Claudia...December 2017 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE FABRICATION AND CHARACTERIZATION OF SURROGATE GLASSES AIMED TO

  16. Accelerated Leach Testing of GLASS: ALTGLASS Version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Trivelpiece, Cory L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, Carol M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-31

    The Accelerated Leach Testing of GLASS (ALTGLASS) database is a collection of data from short- and long-term product consistency tests (PCT, ASTM C1285 A and B) on high level waste (HLW) as well as low activity waste (LAW) glasses. The database provides both U.S. and international researchers with an archive of experimental data for the purpose of studying, modeling, or validating existing models of nuclear waste glass corrosion. The ALTGLASS database is maintained and updated by researchers at the Savannah River National Laboratory (SRNL). This newest version, ALTGLASS Version 3.0, has been updated with an additional 503 rows of data representing PCT results from corrosion experiments conducted in the United States by the Savannah River National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and the Vitreous State Laboratory (SRNL, PNNL, ANL, VSL, respectively) as well as the National Nuclear Laboratory (NNL) in the United Kingdom.

  17. Accelerated Leach Testing of GLASS: ALTGLASS Version 3.0

    International Nuclear Information System (INIS)

    Trivelpiece, Cory L.; Jantzen, Carol M.; Crawford, Charles L.

    2016-01-01

    The Accelerated Leach Testing of GLASS (ALTGLASS) database is a collection of data from short- and long-term product consistency tests (PCT, ASTM C1285 A and B) on high level waste (HLW) as well as low activity waste (LAW) glasses. The database provides both U.S. and international researchers with an archive of experimental data for the purpose of studying, modeling, or validating existing models of nuclear waste glass corrosion. The ALTGLASS database is maintained and updated by researchers at the Savannah River National Laboratory (SRNL). This newest version, ALTGLASS Version 3.0, has been updated with an additional 503 rows of data representing PCT results from corrosion experiments conducted in the United States by the Savannah River National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and the Vitreous State Laboratory (SRNL, PNNL, ANL, VSL, respectively) as well as the National Nuclear Laboratory (NNL) in the United Kingdom.

  18. Nuclear waste glass melter design including the power and control systems

    International Nuclear Information System (INIS)

    Chapman, C.C.

    1982-01-01

    An energy balance of a joule-heated nuclear waste glass melter is used to discuss the problems in the design of the melter geometry and in the specifications of the power and control systems. The relationships between geometry, electrode current density, production rate, load voltage, and load power are presented graphically. The influence of liquid feeding on the surface of the glass and the variability of nuclear waste glass on the design and control during operation is discussed. 10 refs

  19. Nuclear power: renaissance or relapse? Global climate change and long-term Three Mile Island activists' narratives.

    Science.gov (United States)

    Culley, Marci R; Angelique, Holly

    2010-06-01

    Community narratives are increasingly important as people move towards an ecologically sustainable society. Global climate change is a multi-faceted problem with multiple stakeholders. The voices of affected communities must be heard as we make decisions of global significance. We document the narratives of long-term anti-nuclear activists near the Three Mile Island (TMI) nuclear power plant who speak out in the dawn of a nuclear renaissance/relapse. While nuclear power is marketed as a "green" solution to global warming, their narratives reveal three areas for consideration; (1) significant problems with nuclear technology, (2) lessons "not" learned from the TMI disaster, and (3) hopes for a sustainable future. Nuclear waste, untrustworthy officials and economic issues were among the problems cited. Deceptive shaping of public opinion, nuclear illiteracy, and an aging anti-nuclear movement were reasons cited for the lessons not learned. However, many remain optimistic and envision increased participation to create an ecologically-balanced world.

  20. Long-term governance for sustainability

    International Nuclear Information System (INIS)

    Martell, M.

    2007-01-01

    Meritxell Martell spoke of the long-term aspects of radioactive waste management. She pointed out that decision-making processes need to be framed within the context of sustainability, which means that a balance should be sought between scientific considerations, economic aspects and structural conditions. Focusing on structural aspects, Working Group 3 of COWAM-Spain came to the conclusion that the activity of the regulator is a key factor of long-term management. Another finding is that from a sustainability perspective multi-level governance is more effective for coping with the challenges of radioactive waste management than one tier of government-making decisions. The working group also felt that the current Local Information Committees need to evolve towards more institutionalized and legitimized mechanisms for long-term involvement. Ms. Martell introduced a study comparing the efficiency of economic instruments to advance sustainable development in nuclear communities vs. municipalities in mining areas. The study found that funds transferred to nuclear zones had become a means to facilitate local acceptance of nuclear facilities rather than a means to promote socio-economic development. Another finding is that economic instruments are not sufficient guarantees of sustainable development by themselves; additional preconditions include leadership, vision and entrepreneur-ship on the part of community leaders, private or public investments, among others. Finally, Ms. Martell summarised the challenges faced by the Spanish radioactive waste management programme, which include the need for strategic thinking, designing the future in a participatory fashion, and working with local and regional governments and citizens to devise mechanisms for social learning, economic development and environmental protection. (author)

  1. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    Science.gov (United States)

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  2. Performance of borosilicate glass, Synroc and spent fuel as nuclear waste forms

    International Nuclear Information System (INIS)

    Lutze, W.; Grambow, B.; Ewing, R.C.

    1990-01-01

    Presently, there are three prominent waste forms under consideration for the disposal of high-level waste: Borosilicate glass and Synroc for high-level radioactive waste from fuel reprocessing and spent fuel as the waste form for non-reprocessed fuel. Using the present experimental data base, one may compare the performance of these three waste forms under repository relevant conditions. In low water flow regimes and at temperatures less than 100 degree C, the fractional release rates of all three waste forms are low, on the order of 10-7/d or less and may decrease with time. Under these conditions the three waste forms behave similarly. At elevated temperatures or in high flow regimes, the durability of borosilicate glass will be much less than that of Synroc, and thus, for certain disposal schemes (e.g., deep burial) Synroc is preferable. All predictions of the long-term behavior are based on the extrapolation of short term experimental data, we point out that appropriate and useful natural analogues are available for each of these waste forms and should be used in the performance assessment of each waste form's long-term behavior. 14 refs

  3. Gamma radiation induced changes in nuclear waste glass containing Eu

    Science.gov (United States)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Kaushik, C. P.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Gamma radiation induced changes were investigated in sodium-barium borosilicate glasses containing Eu. The glass composition was similar to that of nuclear waste glasses used for vitrifying Trombay research reactor nuclear waste at Bhabha Atomic Research Centre, India. Photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques were used to study the speciation of the rare earth (RE) ion in the matrix before and after gamma irradiation. Judd-Ofelt ( J- O) analyses of the emission spectra were done before and after irradiation. The spin counting technique was employed to quantify the number of defect centres formed in the glass at the highest gamma dose studied. PL data suggested the stabilisation of the trivalent RE ion in the borosilicate glass matrix both before and after irradiation. It was also observed that, the RE ion distributes itself in two different environments in the irradiated glass. From the EPR data it was observed that, boron oxygen hole centre based radicals are the predominant defect centres produced in the glass after irradiation along with small amount of E’ centres. From the spin counting studies the concentration of defect centres in the glass was calculated to be 350 ppm at 900 kGy. This indicated the fact that bulk of the glass remained unaffected after gamma irradiation up to 900 kGy.

  4. Thermokinetic model of borosilicate glass dissolution: contextual affinity

    International Nuclear Information System (INIS)

    Advocat, T.; Vernaz, E.; Crovisier, J.L.; Fritz, B.

    1989-01-01

    Short and long-term geochemical interactions of R7T7 nuclear glass with water at 100 0 C were simulated with the DISSOL thermokinetic computer code. Both the dissolved glass quantity and the resulting water composition, saturation states and mineral quantities produced were calculated as a function of time. The rate equation used in the simulation was first proposed by Aagaard and Helgeson. It simulates a gradually diminishing dissolution rate as the reaction affinity diminishes. The best agreement with 1-year experimental data was obtained with a reaction affinity calculated from silica activity (Grambow's hypothesis) rather than taking into account the activity of all the glass components as proposed by Jantzen and Plodinec. The concept of residual affinity was introduced by Grambow to express the fact that the glass dissolution rate does not cease. We prefer to replace the term residual affinity by contextual affinity, which expresses the influence on the dissolution rate of three factors: the solution chemistry, the metastability of SiO 2 (m), and the possible precipitation of certain aluminosilicates such as zeolites. 19 refs

  5. The value and need for long term conservation of information regarding nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Eng, T. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Jensen, M. [Swedish Radiation Protection Inst., Stockholm (Sweden)

    1993-12-31

    An important question in safety assessment of all repositories where toxic waste is disposed is how long should information be available to society about the repository and its content? Future societies right to knowledge must be considered and actions must already today be taken to ensure that proper information conservation, transfer and retrieval are provided. Collection of relevant information must be planned for at the research, construction and the operational phase of a repository. One of the main areas for information conservation and transfer is to mitigate future human intrusion. A system for best possible mitigation of human intrusion should with the present knowledge comprise the following parts: (a) development of planning procedures for long-term conservation of gathered information (present and future national and international archives, markers etc.); (b) continuous follow up of the state-of-the-art of information media; (c) preparations for national rules and regulations on nuclear waste information; (d) participation in international cooperation on issues concerning nuclear waste information keeping, transfer and retrieval.

  6. SOURCE TERMS FOR HLW GLASS CANISTERS

    International Nuclear Information System (INIS)

    J.S. Tang

    2000-01-01

    This calculation is prepared by the Monitored Geologic Repository (MGR) Waste Package Design Section. The objective of this calculation is to determine the source terms that include radionuclide inventory, decay heat, and radiation sources due to gamma rays and neutrons for the high-level radioactive waste (HLW) from the, West Valley Demonstration Project (WVDP), Savannah River Site (SRS), Hanford Site (HS), and Idaho National Engineering and Environmental Laboratory (INEEL). This calculation also determines the source terms of the canister containing the SRS HLW glass and immobilized plutonium. The scope of this calculation is limited to source terms for a time period out to one million years. The results of this calculation may be used to carry out performance assessment of the potential repository and to evaluate radiation environments surrounding the waste packages (WPs). This calculation was performed in accordance with the Development Plan ''Source Terms for HLW Glass Canisters'' (Ref. 7.24)

  7. Solubility of actinides and surrogates in nuclear glasses

    International Nuclear Information System (INIS)

    Lopez, Ch.

    2003-01-01

    The nuclear wastes are currently incorporated in borosilicate glass matrices. The resulting glass must be perfectly homogeneous. The work discussed here is a study of actinide (thorium and plutonium) solubility in borosilicate glass, undertaken to assess the extent of actinide solubility in the glass and to understand the mechanisms controlling actinide solubilization. Glass specimens containing; actinide surrogates were used to prepare and optimize the fabrication of radioactive glass samples. These preliminary studies revealed that actinide Surrogates solubility in the glass was enhanced by controlling the processing temperature, the dissolution kinetic of the surrogate precursors, the glass composition and the oxidizing versus reducing conditions. The actinide solubility was investigated in the borosilicate glass. The evolution of thorium solubility in borosilicate glass was determined for temperatures ranging from 1200 deg C to 1400 deg C.Borosilicate glass specimens containing plutonium were fabricated. The experimental result showed that the plutonium solubility limit ranged from 1 to 2.5 wt% PuO 2 at 1200 deg C. A structural approach based on the determination of the local structure around actinides and their surrogates by EXAFS spectroscopy was used to determine their structural role in the glass and the nature of their bonding with the vitreous network. This approach revealed a correlation between the length of these bonds and the solubility of the actinides and their surrogates. (author)

  8. Contribution to a proposition for a long term development of nuclear energy: the TASSE concept (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production)

    International Nuclear Information System (INIS)

    Berthou, V.

    2000-01-01

    Nuclear industry creates waste which are in the middle of the discussion concerning the Nuclear Energy future. At this time, important decisions for the Energy production must be taken, so numerous researches are conducted within the framework of the Bataille law. The goal of these studies is to find a range of solutions concerning the waste management. An innovative system, called TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production), is studied in this thesis. This reactor is included in a long term strategy, and is destined for the renewal of the reactor park. In the first part of this work, the main characteristics of TASSE have been defined. They are commensurate with some specific requirements such as: to insure a large time to the Nuclear Energy, to reduce the waste production in an important way, to eliminate waste already stocked in the present park, to insure the non proliferation, and to be economically competitive. Neutronics studies of TASSE have been done. A calculation procedure has been developed to reach the system equilibrium state. Several types of molten salts as well as a pebble-bed fuel have been studied. Thus, an optimal fuel has been brought out in regard to some parameters such as the burn up level, the spectrum, the waste toxicity, the cycle type. Eventually, various TASSE core layout have been envisaged. (author)

  9. Long-term prediction of corrosion damage in nuclear waste systems

    International Nuclear Information System (INIS)

    Hidekazu Asano; Feron, Damien; Gens, Robert; Padovani, Cristiano; Naoki Taniguchi

    2014-01-01

    Complete text of publication follows: The Fifth International Workshop on Long-Term Prediction of Corrosion Damage in Nuclear Waste Systems was held at the Taisetsu Crystal Hall in Asahikawa, Hokkaido, Japan from October 6 to 10, 2013, following the four previous successful workshops (Cadarache, France, 2001; Nice, France, 2004; Pennsylvania State University, USA, 2007 and Bruges, Belgium, 2010). It was organised by the Japan Society of Corrosion Engineering (JSCE) and supported by the European Federation of Corrosion (EFC): Nuclear Corrosion Working Party (WP4) as of EFC event No.360. Furthermore, it was supported by the Division of Nuclear Fuel Cycle and Environment (NUCE) of the Atomic Energy Society of Japan (AESJ) and The Japan Society of Mechanical Engineers (JSME). Twenty nine (29) oral presentations were distributed among eleven (11) sessions covering a broad range of subjects. Another twenty eight (28) studies were presented at a poster session. A total of sixty seven (67) participants from twelve (12) countries attended the event. The presentations and the following discussion provided contextual information about the state of some national programmes and covered in detail a range of experimental and modelling studies aimed at evaluating the corrosion behaviour of a range of candidate materials and designs for the storage and disposal of radioactive wastes considered across the globe. These included modelling studies aimed at evaluating the durability of container designs for high level waste (HLW), spent nuclear fuel (SNF) and intermediate level waste (ILW), experimental studies of the corrosion behaviour of copper, carbon steel, and stainless steel in conditions relevant to storage (atmospheric) or disposal (near neutral or alkaline), as well as studies of archaeological artifacts and natural analogues aimed at supporting long-term predictions. Specific sessions were dedicated to microbial induced corrosion (MIC) and to the corrosion properties of

  10. Surface layer effects on waste glass corrosion

    International Nuclear Information System (INIS)

    Feng, X.

    1993-01-01

    Water contact subjects waste glass to chemical attack that results in the formation of surface alteration layers. Two principal hypotheses have been advanced concerning the effect of surface alteration layers on continued glass corrosion: (1) they act as a mass transport barrier and (2) they influence the chemical affinity of the glass reaction. In general, transport barrier effects have been found to be less important than affinity effects in the corrosion of most high-level nuclear waste glasses. However, they can be important under some circumstances, for example, in a very alkaline solution, in leachants containing Mg ions, or under conditions where the matrix dissolution rate is very low. The latter suggests that physical barrier effect may affect the long-term glass dissolution rate. Surface layers influence glass reaction affinity through the effects of the altered glass and secondary phases on the solution chemistry. The reaction affinity may be controlled by various precipitates and crystalline phases, amorphous silica phases, gel layer, or all the components of the glass. The surface alteration layers influence radionuclide release mainly through colloid formation, crystalline phase incorporation, and gel layer retention. This paper reviews current understanding and uncertainties

  11. Effect of lead species on the durability of simulated nuclear waste glass

    International Nuclear Information System (INIS)

    Kuchinski, F.A.

    1987-01-01

    It has been shown that the incorporation of lead metal into the corrosion environment reduces the leaching rate of nuclear waste glasses. The present study evaluated the effects of lead metal, oxides, alloys, glasses and soluble species on the corrosion rate of a waste glass. The inherent durability of nuclear waste glasses comes from the about due to the insoluble surface film developed during corrosion. This surface film, enriched with iron, aluminum and calcium acts as a diffusion barrier to further corrosion. Except for PbO 2 , all lead species inhibited glass corrosion due to the formation of a surface film enriched in lead. No corroded glass layer was observed below the lead surface layer. Also, no glass corrosion products were found on the lead surface, except for small amounts of silicon. The transport and deposition of lead on the glass surface appears to be the key factors in preventing glass corrosion. At high glass surface area to volume ratios, the glass corroded considerably at short times since the dissolved lead source could not coat the entire glass surface rapidly enough to prevent continued corrosion. Also, experimental solution values did not agree with thermodynamics model predictions. This suggests that kinetic factors, namely diffusion barriers, are controlling the glass corrosion rate

  12. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    BP McGrail, WL Ebert, DH Bacon, DM Strachan

    1998-02-18

    Privatized services are being procured to vitrify low-activity tank wastes for eventual disposal in a shallow subsurface facility at the Hanford Site. Over 500,000 metric tons of low-activity waste glass will be generated, which is among the largest volumes of waste within the U.S. Department of Energy (DOE) complex and is one of the largest inventories of long-lived radionuclides planned for disposal in a low-level waste facility. Before immobilized waste can be disposed, DOE must approve a "performance assessment," which is a document that describes the impacts of the disposal facility on public health and environmental resources. Because the release rate of radionuclides from the glass waste form is a key factor determining these impacts, a sound scientific basis for determining their long-term release rates must be developed if this disposal action is to be accepted by regulatory agencies, stakeholders, and the public. In part, the scientific basis is determined from a sound testing strategy. The foundation of the proposed testing strategy is a well accepted mechanistic model that is being used to calculate the glass corrosion behavior over the geologic time scales required for performance assessment. This model requires that six parameters be determined, and the testing program is defined by an appropriate set of laboratory experiments to determine these parameters, and is combined with a set of field experiments to validate the model as a whole. Three general classes of laboratory tests are proposed in this strategy: 1) characterization, 2) accelerated, and 3) service condition. Characterization tests isolate and provide specific information about processes or parameters in theoretical models. Accelerated tests investigate corrosion behavior that will be important over the regulated service life of a disposal system within a laboratory time frame of a few years or less. Service condition tests verify that the techniques used in accelerated tests do not change

  13. Long term plan of atomic energy development and utilization

    International Nuclear Information System (INIS)

    1982-01-01

    The atomic energy utilization and development in Japan have progressed remarkably, and already nuclear power generation has borne an important part in electric power supply, while radiation has been utilized in the fields of industry, agriculture, medicine and so on. Now, atomic energy is indispensable for national life and industrial activity. The former long term plan was decided in September, 1978, and the new long term plan should be established since the situation has changed largely. The energy substituting for petroleum has been demanded, and the expectation to nuclear power generation has heightened because it enables stable and economical power supply. The independently developed technology related to atomic energy must be put in practical use. The peaceful utilization of atomic energy must be promoted, while contributing to the nuclear non-proliferation policy. The Atomic Energy Commission of Japan decided the new long term plan to clearly show the outline of the important measures related to atomic energy development and utilization in 10 years hereafter, and the method of its promotion. The basic concept of atomic energy development and utilization, the long term prospect and the concept on the promotion, the method of promoting the development and utilization, and the problems of funds, engineers and location are described. (kako, I.)

  14. Study of the alteration of the Vatnajokull volcanic glasses (Iceland). Mechanisms and situation at low temperature

    International Nuclear Information System (INIS)

    Le Gal, X.

    1999-01-01

    Volcanic glasses have been considered for several years to be good analogues of nuclear glasses. The main objective of this study is to look at the long term behaviour of natural glasses subjected to meteoric alteration. Basaltic hyalo-clasts, essentially from Hengill, Husafell and Vatnajokull, in Iceland, were studied. These glasses, ranging from 0.09 to 4 My in age, and altered by meteoric water, are surrounded by alteration layers. In the youngest samples ( 18 O measurements indicate, major modification of the initial glass structure during gel formation. Chemical budgets show that elements are not completely retained by alteration products in such geological environments. (author)

  15. Dungeness 'A' Nuclear Power Station. The findings of NII's assessment of Nuclear Electric's long term safety review

    International Nuclear Information System (INIS)

    1994-01-01

    The assessment is reported of Nuclear Electrics' Long Term Safety Reviews (LTSR) of the Dungeness A magnox reactors. The assessment was undertaken by the Health and Safety Executive's Nuclear Installations Inspectorate (NII) which is responsible for regulating the safety of nuclear installations in the United Kingdom. This was one of a programme of LTSRs for all the UK magnox reactors. The LTSR for each plant was proceeded by a Generic Issues programme. The results of both the LTSR and the Generic Issues programme have been used by NII in forming the conclusions of this assessment. Overall the safety case for Dungeness A is satisfactory for continued operation. A programme of additional modifications and inspections has been put in place which further enhances the safety justification. Reactor operations will continue to be monitored and regulated in accordance with the inspections required under the licensing arrangements. Provided these requirements and the agreed further analysis, improvements and inspections give satisfactory results it is expected that the station will be able to operate safely till each reactor is at least 30 years old. Beyond this point a further Periodic Safety Review will be required. (UK)

  16. Qualitative and, as far as possible, quantitative assessment of the short-term and long-term effect of a nuclear phase-out

    International Nuclear Information System (INIS)

    Jaenicke, M.; Mez, L.; Spelthahn, S.; Springmann, F.; Theissen, A.; Ullrich, O.; Leuchtner, J.; Seifried, D.

    1986-08-01

    This survey starts from a series of scenarios or comments on the question of West Germany, leaving the field of nuclear power. These were submitted after the accident at Chernobyl and have gained particular importance in this context. The possibilities of leaving in the short, medium and long term were examined. In a further section, the connection between operation of powerstations and the resulting environmental effects is treated. Economic aspects of leaving the field of nuclear power are examined and the possibilities and potentials of rational energy use (potential saving of electricity, potential of combined heat and power plants and potential from regenerative sources of energy) are estimated. (orig./UA) [de

  17. Long term radioactive waste management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    In France, waste management, a sensitive issue in term of public opinion, is developing quickly, and due to twenty years of experience, is now reaching maturity. With the launching of the French nuclear programme, the use of radioactive sources in radiotherapy and industry, waste management has become an industrial activity. Waste management is an integrated system dealing with the wastes from their production to the long term disposal, including their identification, sortage, treatment, packaging, collection and transport. This system aims at guaranteing the protection of present and future populations with an available technology. In regard to their long term management, and the design of disposals, radioactive wastes are divided in three categories. This classification takes into account the different radioisotopes contained, their half life and their total activity. Presently short-lived wastes are stored in the shallowland disposal of the ''Centre de la Manche''. Set up within the French Atomic Energy Commission (CEA), the National Agency for waste management (ANDRA) is responsible within the framework of legislative and regulatory provisions for long term waste management in France [fr

  18. Strategic Planning and the Long-term R&D Plan

    International Nuclear Information System (INIS)

    Cooley, J.

    2015-01-01

    The Department of Safeguards of the International Atomic Energy Agency implements a structured strategic planning process to ensure that safeguards will continue to be both effective and efficient in the future. This process provides the Department with a comprehensive and coherent planning framework for the short (2 years), medium (6 years) and long (12 years) term. The Department's suite of planning documents includes a long-term strategic plan and an associated long-term research and development plan as well as a biennial development and implementation support programme. The Department's Long-Term Strategic Plan 2012-2023 addresses the conceptual framework for safeguards implementation, legal authority, technical capabilities (expertise, equipment and infrastructure) and the human and financial resources necessary for Agency verification activities. As research and development (R&D) are essential to meet the safeguards needs of the future, the Department-s Long-Term R&D Plan 2012-2023 is designed to support the Long-Term Strategic Plan 2012-2023 by setting out the capabilities that the Department needs to achieve its strategic objectives, and key milestones towards achieving those capabilities for which Member State R&D support is needed. The Long-Term R&D Plan 2012-2023 addresses the Department's R&D requirements in areas such as safeguards concepts and approaches; detection of undeclared nuclear material and activities; safeguards equipment and communication; information technology, collection, analysis and security; analytical services; new mandates; and training. Long-term capabilities discussed in the presentation include deployed systems (e.g., equipment at facilities); analytical (e.g., sample analysis), operational (e.g., staff expertise and skills) and readiness (e.g., safeguarding new types of facilities) capabilities. To address near-term development objectives and support the implementation of its verification activities as well as to

  19. SON68 nuclear glass dissolution kinetics: Current state of knowledge and basis of the new GRAAL model

    Energy Technology Data Exchange (ETDEWEB)

    Frugier, P. [CEA Marcoule, DTCD/SECM/LCLT, BP 17171, 30207 Bagnols-sur-Ceze cedex (France)], E-mail: pierre.frugier@cea.fr; Gin, S.; Minet, Y.; Chave, T. [CEA Marcoule, DTCD/SECM/LCLT, BP 17171, 30207 Bagnols-sur-Ceze cedex (France); Bonin, B. [CEA Saclay, DEN/DIR/DS, 91191 Gif-sur-Yvette cedex (France); Godon, N.; Lartigue, J.-E.; Jollivet, P. [CEA Marcoule, DTCD/SECM/LCLT, BP 17171, 30207 Bagnols-sur-Ceze cedex (France); Ayral, A. [IEM/CNRS-ENSCM Universite Montpellier 2, CC 047, Place Eugene Bataillon, 34095 Montpellier cedex 5 (France); De Windt, L. [ENSMP, CG, 35 rue St Honore, 77305 Fontainebleau cedex (France); Santarini, G. [CEA Saclay HC/CAB, 91191 Gif-sur-Yvette cedex (France)

    2008-10-15

    This article summarizes the present state of knowledge concerning aqueous alteration of R7T7-type nuclear containment glasses, represented mainly by the inactive reference glass designated SON68. Based on this review, we propose to describe the glass alteration kinetics up to and including the final residual rate regime by means of a new mechanistic model known as GRAAL (glassreactivitywithallowanceforthealterationlayer). Phenomenological analysis findings are reviewed for the various glass alteration regimes: interdiffusion, initial rate, rate drop, residual rate and, under very particular circumstances, resumption of alteration. These alteration regimes are associated with predominant mechanisms. Published work interpreting and modeling these mechanisms was examined in detail. There is a broad consensus on the general mechanisms of the initial rate and even the interdiffusion regime, whereas the mechanisms controlling the rate drop remain a subject of dispute not only with regard to nuclear glasses but also for the dissolution of silicate minerals. The reaction affinity responsible for the rate drop is expressed differently by different authors and depending on the underlying theories. The disagreement concerns the nature of the phase (glass or gel) or the activated complex controlling the rate drop, which in turn determines the elements that must be taken into account in the overall affinity term. Progress in recent years, especially in identifying the mechanisms responsible for the residual rate, has shed new light on these issues, allowing us to propose new theoretical foundations for modeling the different kinetic regimes of SON68 nuclear glass dissolution. The GRAAL model considers that water diffusion in the passivating reaction zone (the gel formed under saturation conditions) is a rate-limiting step in the overall glass dissolution kinetics. Moreover, this passivation zone is a soluble phase whose stability is directly dependent on the nature of the

  20. The 2013 Long-Term Budget Outlook

    Science.gov (United States)

    2013-09-01

    number of years, leading to substantial additional federal spending. For example, the nation could experience a massive earthquake, a nuclear meltdown...budget surpluses remaining after paying down publicly held debt available for redemption . a. For comparison with the current long-term projections, CBO

  1. Transport and reaction kinetics at the glass:solution interface region: results of repository-oriented leaching experiments

    International Nuclear Information System (INIS)

    Abrajano, T.A. Jr.; Bates, J.K.

    1987-01-01

    Repository-oriented leaching experiments involving Savannah River Laboratory (SRL) 165 type glass under a γ-radiation field (1 +/- 0.2 x 10 4 R/h) have been performed by the Nevada Nuclear Waste Storage Investigations (NNWSI) project. In this communication, they discuss glass surface analyses obtained by SEM, nuclear resonance profiling, and SIMS together with leachate solution data in relation to a mechanism that couples diffusion, hydrolysis (etching and gelation), and precipitation to qualitatively describe the release of different glass components to the leachant solutions. The release of mobile (e.g., Li) and partly mobile (e.g., B) species is controlled primarily by interdiffusion with water species across the interdiffusion zone. Glass components that are immobile in the interdiffusion zone are released to the solution by etching. For prediction of long-term steady-state concentrations of glass components with low solubility, the relative rates of release from the glass and secondary mineral precipitation must be taken into account. 20 references, 5 figures, 1 table

  2. 3. International Conference on Nuclear Power Plant Life Management (PLiM) for Long Term Operations (LTO). Keynotes, papers, presentations, posters

    International Nuclear Information System (INIS)

    2012-01-01

    The world's fleet of nuclear power plants is, on average, more than 20 years old. Even though the design life of a nuclear power plant is typically 30-40 years, many plants will operate in excess of their design lives, provided that nuclear power plant engineers demonstrate by analysis, equipment and system upgrades, increased vigilance, testing and ageing management that the plant will operate safely. In the operation of nuclear power plants, safety should always be the prime consideration. Plant operators and regulators must always ensure that plant safety is maintained and, where possible, enhanced during its operating lifetime. Nuclear power plant life management (PLiM) has gained increased attention over the past decade, and effective ageing management of systems, structures and components (SSCs) is a key element in PLiM for the safe and reliable long term operation of nuclear power plants. A PLiM programme is an effective tool that allows an operator to safely and cost effectively manage ageing effects in SSCs for long term operation (LTO). A PLiM programme helps facilitate decisions concerning when and how to repair, replace or modify SSCs in an economically optimized way, while assuring that a high level of safety is maintained. The option for extended nuclear power plant operation has been recognized by operators and regulators alike, as evidenced in the number of licence renewal programmes that are being developed by Member States. After the severe accident at the Fukushima Daiichi nuclear power plant, the safe operation of nuclear power plants has become even more important; not only in terms of technical or ageing issues, but also in terms of management system and qualified workforce related issues. Application of an integrated management system and structured workforce planning are needed throughout the plant life in order to ensure effective plant organization and management. The IAEA organized the first and second International Conference on Nuclear

  3. Characterization of Analytical Reference Glass-1 (ARG-1)

    International Nuclear Information System (INIS)

    Smith, G.L.

    1993-12-01

    High-level radioactive waste may be immobilized in borosilicate glass at the West Valley Demonstration Project, West Valley, New York, the Defense Waste Processing Facility (DWPF), Aiken, South Carolina, and the Hanford Waste Vitrification Project (HWVP), Richland, Washington. The vitrified waste form will be stored in stainless steel canisters before its eventual transfer to a geologic repository for long-term disposal. Waste Acceptance Product Specifications (WAPS) (DOE 1993), Section 1.1.2 requires that the waste form producers must report the measured chemical composition of the vitrified waste in their production records before disposal. Chemical analysis of glass waste forms is receiving increased attention due to qualification requirements of vitrified waste forms. The Pacific Northwest Laboratory (PNL) has been supporting the glass producers' analytical laboratories by a continuing program of multilaboratory analytical testing using interlaboratory ''round robin'' methods. At the PNL Materials Characterization Center Analytical Round Robin 4 workshop ''Analysis of Nuclear Waste Glass and Related Materials,'' January 16--17, 1990, Pleasanton, California, the meeting attendees decided that simulated nuclear waste analytical reference glasses were needed for use as analytical standards. Use of common standard analytical reference materials would allow the glass producers' analytical laboratories to calibrate procedures and instrumentation, to control laboratory performance and conduct self-appraisals, and to help qualify their various waste forms

  4. Glass Dissolution Parameters: Update for Entsorgungsnachweis

    International Nuclear Information System (INIS)

    Curti, E.

    2003-11-01

    This document provides updated long-term corrosion rates for borosilicate glasses used in Switzerland as a matrix for high-level radioactive waste. The new rates are based on long-term leaching experiments conducted at PSI and are corroborated by recent investigations. The asymptotic rates have been determined through weighted linear regressions of the normalised mass losses, directly calculated from B and Li concentrations in the leaching solutions. Special attention was given to the determination of the analytical uncertainty of the mass losses. The sensitivity of the corrosion rates to analytical uncertainties and to other criteria (e.g. the choice of data points for the regressions) was also studied. A major finding was that the uncertainty of the corrosion rate mainly depends on the uncertainty of the specific glass surface area. The reference rates proposed for safety assessment calculations are 1.5 mg m -2 d -1 for BNFL glasses and 0.2 mg m -2 d -1 for Cogema glasses. The relevance of the proposed corrosion rates for repository conditions is shown based on the analysis of processes and parameters currently known to affect the long-term kinetics of silicate glasses. Specifically, recent studies indicate that potentially detrimental effects, notably the removal of silica from solution through adsorption on clay minerals, are transitory and will not affect the long-term corrosion rate of the Swiss reference glasses. Iron corrosion products are also known to bind silica, but present data are not sufficient to quantify their influence on the long-term rate. (author)

  5. Long-term uranium supply-demand analyses

    International Nuclear Information System (INIS)

    1986-12-01

    It is the intention of this study to investigate the long-term uranium supply demand situation using a number of supply and demand related assumptions. For supply, these assumptions as used in the Resources and Production Projection (RAPP) model include country economic development status, and consequent lead times for exploration and development, uranium development status, country infrastructure, and uranium resources including the Reasonably Assured (RAR), Estimated Additional, Categories I and II, (EAR-I and II) and Speculative Resource categories. The demand assumptions were based on the ''pure'' reactor strategies developed by the NEA Working Party on Nuclear Fuel Cycle Requirements for the 1986 OECD (NEA)/IAEA reports ''Nuclear Energy and its Fuel Cycle: Prospects to 2025''. In addition for this study, a mixed strategy case was computed using the averages of the Plutonium (Pu) burning LWR high, and the improved LWR low cases. It is understandable that such a long-term analysis cannot present hard facts, but it can show which variables may in fact influence the long-term supply-demand situation. It is hoped that results of this study will provide valuable information for planners in the uranium supply and demand fields. Periodical re-analyses with updated data bases will be needed from time to time

  6. Stained glasses under the nuclear microprobe: A window into history

    Energy Technology Data Exchange (ETDEWEB)

    Vilarigues, M. [Dep. de Conservacao e Restauro and R and D Unit Vidro e da Ceramica Para as Artes, FCT-UNL, Quinta da Torre, 2829-516 Caparica (Portugal)], E-mail: mgv@fct.unl.pt; Fernandes, P. [Dep. de Conservacao e Restauro and R and D Unit Vidro e da Ceramica Para as Artes, FCT-UNL, Quinta da Torre, 2829-516 Caparica (Portugal); Alves, L.C.; Silva, R.C. da [Dep. Fisica, LFI, ITN, E.N.10, 2686-953 Sacavem (Portugal)

    2009-06-15

    Stained glass fragments from the 15th, 16th and 20th centuries, belonging to Mosteiro de Santa Maria da Vitoria, Batalha (Portugal), were characterised non-destructively in a nuclear microprobe. The work aimed at finding the composition of the glasses and glass paintings and relating these with the corresponding production periods. The elemental compositions of the glass fragments were obtained by means of scanning micro-beam Particle Induced X-ray Emission ({mu}-PIXE) spectrometry in selected cross-sections. These were complemented by micro X-Ray fluorescence spectrometry. Characterisation of colour was performed by optical absorption spectroscopy in the UV-vis range, while the corrosion products were identified by optical microscopy and {mu}-FTIR (Fourier Transform Infra Red) spectroscopy in combination with the data generated by {mu}-PIXE. Nuclear microprobe analysis allowed unveiling the compositions and structures, in particular of glass paintings and corrosion products. While it is not surprising that Fe, Cu and Pb were the main elements identified in the grisaille paintings of all studied periods, as well as Ag and Cu found in the glasses decorated with yellow silver painting, their distribution gave important clues on the materials and techniques used to manufacture these stained glasses. Furthermore, it allowed establishing a definite relation between the compositions found and the periods of production, with the added bonus of correctly reassigning the manufacturing period of some samples.

  7. Effects of MgO on short and long term stabilities in water of R7T7 and M7 nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Advocat, T; Vernaz, E; Dussossoy, J [CEA Centre d` Etudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. des Procedes de Retraitement; Crovisier, J L [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France)

    1993-12-31

    Magnesium oxide was added to the standard R7T7 and M7 glass compositions developed for containment of fission product solutions. M7 differs from the R7T7 reference glass mainly by a larger proportion of network modifier elements and a correspondingly lower proportion of glass network forming elements. The percentage of fission products, simulated in this study by inactive elements, was the same in both cases. Increasing the MgO content of the glass compositions by 2 to 5 wt% resulted in significant variations in the aqueous leaching resistance at 90 and 100 deg C. Experimental findings demonstrated that the initial dissolution rate measured at 100 deg C in a Soxhlet apparatus was proportional to the MgO content and inversely proportional to the network former content (mainly SiO2). This was confirmed by a glass hydration model based on the thermodynamic stability of the glass matrix components. Aqueous corrosion tests were also conducted at 90 deg C under static conditions at various SA/V ratios to simulate the progress of the reaction. Under these conditions, the glass dissolution rate diminished more slowly in time when the initial magnesium content was high and the network former content was low. This may be due primarily to a variation in the glass silica solubility limit related to the glass composition; it may also be related to the formation of secondary silica and magnesia alteration products controlling the glass dissolution reaction affinity.

  8. The effect of clay on the dissolution of nuclear waste glass

    Science.gov (United States)

    Lemmens, K.

    2001-09-01

    In a nuclear waste repository, the waste glass can interact with metals, backfill materials (if present) and natural host rock. Of the various host rocks considered, clays are often reported to delay the onset of the apparent glass saturation, where the glass dissolution rate becomes very small. This effect is ascribed to the sorption of silica or other glass components on the clay. This can have two consequences: (1) the decrease of the silica concentration in solution increases the driving force for further dissolution of glass silica, and (2) the transfer of relatively insoluble glass components (mainly silica) from the glass surface to the clay makes the alteration layer less protective. In recent literature, the latter explanation has gained credibility. The impact of the environmental materials on the glass surface layers is however not well understood. Although the glass dissolution can initially be enhanced by clay, there are arguments to assume that it will decrease to very low values after a long time. Whether this will indeed be the case, depends on the fate of the released glass components in the clay. If they are sorbed on specific sites, it is likely that saturation of the clay will occur. If however the released glass components are removed by precipitation (growth of pre-existing or new secondary phases), saturation of the clay is less likely, and the process can continue until exhaustion of one of the system components. There are indications that the latter mechanism can occur for varying glass compositions in Boom Clay and FoCa clay. If sorption or precipitation prevents the formation of protective surface layers, the glass dissolution can in principle proceed at a high rate. High silica concentrations are assumed to decrease the dissolution rate (by a solution saturation effect or by the impact on the properties of the glass alteration layer). In glass corrosion tests at high clay concentrations, silica concentrations are, however, often higher

  9. The effect of clay on the dissolution of nuclear waste glass

    International Nuclear Information System (INIS)

    Lemmens, K.

    2001-01-01

    In a nuclear waste repository, the waste glass can interact with metals, backfill materials (if present) and natural host rock. Of the various host rocks considered, clays are often reported to delay the onset of the apparent glass saturation, where the glass dissolution rate becomes very small. This effect is ascribed to the sorption of silica or other glass components on the clay. This can have two consequences: (1) the decrease of the silica concentration in solution increases the driving force for further dissolution of glass silica, and (2) the transfer of relatively insoluble glass components (mainly silica) from the glass surface to the clay makes the alteration layer less protective. In recent literature, the latter explanation has gained credibility. The impact of the environmental materials on the glass surface layers is however not well understood. Although the glass dissolution can initially be enhanced by clay, there are arguments to assume that it will decrease to very low values after a long time. Whether this will indeed be the case, depends on the fate of the released glass components in the clay. If they are sorbed on specific sites, it is likely that saturation of the clay will occur. If however the released glass components are removed by precipitation (growth of pre-existing or new secondary phases), saturation of the clay is less likely, and the process can continue until exhaustion of one of the system components. There are indications that the latter mechanism can occur for varying glass compositions in Boom Clay and FoCa clay. If sorption or precipitation prevents the formation of protective surface layers, the glass dissolution can in principle proceed at a high rate. High silica concentrations are assumed to decrease the dissolution rate (by a solution saturation effect or by the impact on the properties of the glass alteration layer). In glass corrosion tests at high clay concentrations, silica concentrations are, however, often higher

  10. Resin-modified and conventional glass ionomer restorations in primary teeth: 8-year results

    DEFF Research Database (Denmark)

    Qvist, V.; Manscher, E.; Teglers, P.T.

    2004-01-01

    clinical trial, cariostatic effects, dental restorations, glass ionomer cement, long-term behaviour, pedodontics, resin-modified glass ionomer......clinical trial, cariostatic effects, dental restorations, glass ionomer cement, long-term behaviour, pedodontics, resin-modified glass ionomer...

  11. Analysis of long-term behaviour of nuclear reactor containment

    Energy Technology Data Exchange (ETDEWEB)

    Hora, Z. [Czech Technical University in Prague, Faculty of Civil Engineering, Department of Mechanics, Thakurova 7, 166 29 Prague 6 (Czech Republic)]. E-mail: Zbynek.Hora@fsv.cvut.cz; Patzak, B. [Czech Technical University in Prague, Faculty of Civil Engineering, Department of Mechanics, Thakurova 7, 166 29 Prague 6 (Czech Republic)

    2007-02-15

    For assessment of safety and durability of a nuclear power plant (NPP), knowledge of the containment behaviour under various service and extreme conditions is crucial. To perform reliable analysis of such a large-scale structure, a sufficiently realistic but still feasible numerical model must be used, in which the relevant physical phenomena are reflected. Therefore, a constitutive model for concrete including effects of moisture and heat transfer, cement hydration, creep, shrinkage and optionally microcracking of concrete should be chosen. The present paper focuses on the simulation of the service life of NPP containment, aiming to determine the material and model parameters to enable reliable prediction of structural behaviour under various conditions. The purpose of the work is to provide a numerical model calibrated using existing measurements to predict the long-term behaviour reliably. Extensive in situ measurements are used to calibrate the model and to check the validity of the model hypotheses. Moreover, the material model parameters are systematically re-calibrated based on the continuous monitoring of the structure. The structural integrity test is reanalysed numerically to show the model capability of predicting behaviour of the structure under given loading and climate conditions.

  12. Outlook for world nuclear power generation and long-term energy supply and demand situations

    International Nuclear Information System (INIS)

    Matsuo, Yuhji

    2012-01-01

    In this article, the author presents a long-term outlook for the world's nuclear generating capacity, taking into account the nuclear policy changes after Fukushima Daiichi nuclear power plant accident. World primary energy demand will grow from 11.2 billion tons of oil equivalent (toe) in 2009 to 17.3 billion toe in 2035. Along with this rapid increase in global energy consumption, the world's nuclear generating capacity will grow from 392 GW in 2010 to 484 GW in 2020 and 574 GW in 2035 in the 'Reference scenario'. Even in the 'Low nuclear scenario', where the maximum impact of Fukushima accident to the nuclear policies of each government is assumed, it will continue to grow in the future, exceeding 500 GW in 2035. In particular, Asian countries such as China and India will lead the growth both in the energy demand and in the nuclear power capacity. Therefore, it is essential to better ensure the safety of nuclear power generation. It is important for technologically developed countries, including Japan, to make active contributions to the establishment of a global nuclear safety control system. On the other hand, energy security and global warming will continue to be major issues, which will make it indispensable to make the best effort to save energy and expand renewable energy utilization. Japan is competitive in energy-saving and environmental conservation technologies, thus further development and utilization of there technologies should be a key option of Japan's growth growth strategy in the future. (author)

  13. Comprehensive data base of high-level nuclear waste glasses: September 1987 status report: Volume 1, Discussion and glass durability data

    International Nuclear Information System (INIS)

    Kindle, C.H.; Kreiter, M.R.

    1987-12-01

    The Materials Characterization Center (MCC) at Pacific Northwest Laboratory is assembling a comprehensive data base (CDB) of experimental data collected for high-level nuclear waste package components. Data collected throughout the world are included in the data base; current emphasis is on waste glasses and their properties. The goal is to provide a data base of properties and compositions and an analysis of dominant property trends as a function of composition. This data base is a resource that nuclear waste producers, disposers, and regulators can use to compare properties of a particular high-level nuclear waste glass product with the properties of other glasses of similar compositions. Researchers may use the data base to guide experimental tests to fill gaps in the available knowledge or to refine empirical models. The data are incorporated into a computerized data base that will allow the data to be extracted based on, for example, glass composition or test duration. 3 figs

  14. The role of nuclear techniques in the long-term prediction of radionuclide transport

    International Nuclear Information System (INIS)

    Airey, P.L.; Duerden, P.

    1985-01-01

    Problems associated with the long-term prediction of the migration of radionuclides, and the role of natural analogues in reducing the inherent uncertainties are discussed. Particular reference is made to the evaluation of uranium ore bodies in the Alligator Rivers region, Northern Territory, as analogues of high-level radioactive waste repositories. A range of nuclear techniques has been used to identify the role of colloids, of alpha recoil and of mineralogy in transport. Specific mention is made of a method being developed which enables models of the migration of solute through fractured rock to be assessed via a combination of alpha track, fission track and PIXE/PIGME techniques

  15. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  16. Glass produced by underground nuclear explosions

    International Nuclear Information System (INIS)

    Schwartz, L.; Piwinskii, A.; Ryerson, F.; Tewes, H.; Beiriger, W.

    1983-01-01

    Detonation of an underground nuclear explosive produces a strong shock wave which propagates spherically outward, vaporizing the explosive and nearby rock and melting, the surrounding rock. The vaporized material expands adiabatically, forming a cavity. As the energy is dissipated during the cavity formation process, the explosive and rock debris condense and mix with the melted rock. The melt flows to the bottom of the cavity where it is quenched by fractured rock fragments falling from above as the cavity collapses. Measurements indicate that about 740 tonnes of rock and/or soil are melted for every kiloton (10 12 calories) of explosive energy, or about 25% of the explosive energy goes to melting rock. The resulting glass composition reflects the composition of the unaltered rock with explosive debris. The appearance ranges from white pumice to dense, dark lava. The bulk composition and color vary with the amount of explosive iron incorporated into the glass. The refractory explosion products are mixed with the solidified melt, although the degree of mixing is variable. Electron microprobe studies of glasses produced by Rainier in welded tuff have produced the following results: glasses are dehydrated relative to the host media, glasses are extremely heterogeneous on a 20 μm scale, a ubiquitous feature is the presence of dark marble-cake regions in the glass, which were locally enriched in iron and may be related to the debris, optically amorphous regions provide evidence of shock melting, only limited major element redistribution and homogenization occur within the cavity

  17. Long-term leach testing of solidified radioactive waste forms (International Standard Publication ISO 6961:1982)

    International Nuclear Information System (INIS)

    Stefanik, J.

    2001-01-01

    Processes are developed for the immobilization of radionuclides by solidification of radioactive wastes. The resulting solidification products are characterized by strong resistance to leaching aimed at low release rates of the radionuclides to the environment. To measure this resistance to leaching of the solidified materials: glass, glass-ceramics, bitumen, cement, concrete, plastics, a long-term leach test is presented. The long-term leach test is aimed at: a) the comparison of different kinds or compositions of solidified waste forms; b) the intercomparison between leach test results from different laboratories on one product; c) the intercomparison between leach test results on products from different processes

  18. Is it possible long-tern operation of Spanish nuclear power plants?

    International Nuclear Information System (INIS)

    Regano, M.

    2004-01-01

    The long term operation of nuclear power plants beyond 40 years is a reality. Worlswide accumulated operating experience, national and international R and D projects related with the ageing of materials and the specific studies presented to the NRC by more than thirty American plant guarantee that the operation of nuclear power plants beyond 40 years will be carried out with the same or greater safety and reliability factors. The advantages of the long term operation of Spain nuclear power plants are obvious. The implementation of this option will play an important role in complying with the Kyoto compromises, avoiding the emission of 50 million tons of CO2 will contribute to guaranteeing the supply of electricity by generating an additional 600,000 GWh and will contribute to keeping electricity prices down. The total generating cost for the long term operation of nuclear power plants is approximately half that of a new coal or combined cycle plant. Spain is hugely dependent on energy. In this situation, all energies are necessary and the long term operation of nuclear power plants can of course play an important role in covering the gap between offer and demand, guaranteeing supply in the most economic way possible and with the greatest respect for the environment. (Author)

  19. Morphologies of CaMoO sub 4 crystals in simulated nuclear waste disposal glass

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Sengers, E.G.F.; Janssen, F.J.J.G. (KEMA, Arnhem (Netherlands). Chemical Technology and Material Research Dept.); Waal, H. de (TPO-TNO Glass Technology, Eindhoven (Netherlands))

    1992-07-01

    Fission products can diffuse through nuclear waste disposal glass due to the action of the temperature gradient caused by radioactive decay and the small thermal conductivity of the glass. Diffusion may eventually lead to crystallization. Because the densities of the products of glass crystallization may differ from that of the parent glass, crystallization causes stresses to develop, which can lead to fracture and exposure of increased surface area to environmental attack. Several kinds of crystals including, CaMoO{sub 4}, in the simulated nuclear waste disposal glass K{sub 3}, which consists of Na{sub 2}O, B{sub 2}O{sub 3}, SiO{sub 2} and other oxides, were identified previously after heat treatment. Recently it was found that CaMoO{sub 4} crystals have two kinds of morphologies in glass K{sub 3} heat-treated at temperatures between 870 and 1120 K. One kind of morphology, which is rather special, has not previously been reported. In this letter the morphologies of CaMoO{sub 4} crystals in this simulated nuclear waste disposal glass are discussed. (author).

  20. Influence of nuclear glasses composition on their liability to deterioration

    International Nuclear Information System (INIS)

    Tovena, I.

    1995-01-01

    The aim of this thesis is to contribute to the study of the nuclear glasses composition influence on their liability to deterioration. The methodology of the experimental research used has lead to define between the thirty oxides which form the reference glass light water, six oxides of interest. For each of these oxides, a composition variation area has been defined. A matrix of twenty glass compositions has then been defined. The preparation of materials of these compositions has sometimes lead to materials weakly heterogeneous which have been characterized before deterioration. This study has been completed by those of three glasses in a composition variation area narrower of the light water nuclear glass : the R7T7 and two glasses at limits having respectively an initial dissolution velocity at 100 degrees Celsius theoretically maximum and minimum. Some deterioration parameters in pure water have been experimentally measured on the twenty three glasses : 1) an initial dissolution velocity at 100 degrees (Vo 1 00) Celsius and another one at 90 degrees Celsius (Vo 9 0) 2) a dissolution velocity in conditions near the saturation at 90 degrees Celsius 3) an apparent solubility of glass based on the ortho silicic acid activity 4) the evolution of the dissolution kinetics at 90 degrees Celsius in sub-saturated medium towards saturated medium 5) the alteration films nature developed at the glasses surface during these last alteration tests. Some thermodynamic and structural models have been studied in order to predict Vo 9 0 and Vo 1 00. The dissolution kinetic law developed from reference glass dissolution results has been studied with the calculation code LIXIVER. It has not been able to be used for most of the glasses compositions studied. As a consequence, the glasses dissolution control by a surface reaction which are itself controlled by the only dissolved silica is an hypothesis which is not verified for the greater part of the glasses. (O.L.). refs., figs

  1. Fracture toughness in nuclear waste glasses and ceramics: environmental and radiation effects

    International Nuclear Information System (INIS)

    Weber, W.J.; Matzke, H.J.

    1986-03-01

    The effects of atmospheric moisture and radiation damage on fracture properties of nuclear waste glasses and ceramics was investigated by indentation techniques. In nuclear waste glasses, atmospheric moisture has no measurable effect on hardness but decreases the fracture toughness; radiation damage, on the other hand, decreased the hardness and increased the fracture toughness. In nuclear ceramics, self-radiation damage from alpha decay decreased the hardness and elastic modules; the fracture toughness increased with dose to a broad maximum and then decreased slightly with further increases in dose

  2. Feasibility Study for Preparation and Use of Glass Grains as an Alternative to Glass Nodules for Vitrification of Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Sonavane, M S; Mishra, P.K., E-mail: maheshss@barc.gov.in [Nuclear Recycle Board, Bhabha Atomic Research Centre, Mumbai (India); Mandal, S; Barik, S; Roy Chowdhury, A; Sen, R [Central Glass and Ceramic Institute, Kolkata (India)

    2012-10-15

    High level nuclear liquid waste (HLW) is immobilized using borosilicate glass matrix. Presently joule heated ceramic melter is being employed for vitrification of HLW in India. Preformed nodules of base glass are fed to melter along with liquid waste in predetermined ratio. In order to reduce the cost incurred for production of glass nodules of base glass, an alternative option of using glass grains was evaluated for its preparation and its suitability for the melter operation. (author)

  3. Feasibility Study for Preparation and Use of Glass Grains as an Alternative to Glass Nodules for Vitrification of Nuclear Waste

    International Nuclear Information System (INIS)

    Sonavane, M.S.; Mishra, P.K.; Mandal, S.; Barik, S.; Roy Chowdhury, A.; Sen, R.

    2012-01-01

    High level nuclear liquid waste (HLW) is immobilized using borosilicate glass matrix. Presently joule heated ceramic melter is being employed for vitrification of HLW in India. Preformed nodules of base glass are fed to melter along with liquid waste in predetermined ratio. In order to reduce the cost incurred for production of glass nodules of base glass, an alternative option of using glass grains was evaluated for its preparation and its suitability for the melter operation. (author)

  4. R7T7 glass alteration mechanism in an aqueous closed system: understanding and modelling the long term alteration kinetic; Etude des mecanismes d'alteration par l'eau du verre R7T7 en milieu confine: comprehension et modelisation de la cinetique residuelle

    Energy Technology Data Exchange (ETDEWEB)

    Chave, T

    2007-10-15

    The long term alteration rate of the French R7T7 nuclear glass has been investigated since many years because it will define the overall resistance of the radionuclide containment matrix. Recent studies have shown that the final rate remains constant or is slightly decreasing with time. It never reaches zero. Though this residual rate is very low, only 5 nm per year at 50 C, it would be the dominant alteration phenomenon in a geological repository. Two mechanisms are suggested for explaining such behaviour: diffusion in solution of elements from glass through an amorphous altered layer and precipitation of neo-formed phases. The diffusion processes are in agreement with a solid state diffusion mechanism and can lead to secondary phase precipitation due to solution concentration increases. Observed phases are mainly phyllosilicates and zeolites, in specific conditions. Phyllosilicates are expected to maintain the residual kinetic rate whereas alteration resumption could be observed in presence of zeolites at very high pH or temperature (10.5 at 90 C or temperature above 150 C). Both diffusion and neo-formed phase precipitation have been investigated in order to better understand their impact on the residual alteration rate and have then been modelled by a calculation code, coupling chemistry and transport, in order to be able to better anticipate the long term behaviour of the glass R7T7 in an aqueous closed system. (author)

  5. Investigation on polyetheretherketone composite for long term storage of nuclear waste

    Science.gov (United States)

    Ajeesh, G.; Bhowmik, Shantanu; Sivakumar, Venugopal; Varshney, Lalit; Kumar, Virendra; Abraham, Mathew

    2015-12-01

    This investigation highlights the effect of radiation, chemical and thermal environments on mechanical and thermal properties of Polyetheretherketone (PEEK) composites, which could prove to be an alternative material for long term storage of nuclear wastes. The tests are conducted on specimens made from PEEK and PEEK reinforced with carbon short fiber. The specimens are subjected to radiation doses, equivalent to the cumulative dosage for 500 years followed by exposure under highly corrosive and thermal environments. Studies under optical microscopy reveal that the dispersion of carbon short fiber in the PEEK Composites is significantly uniform. Differential scanning calorimeter (DSC) and thermo gravimetric analysis (TGA) indicates that there are no significant changes in thermal properties of PEEK composite when exposed to aggressive environments. It is further observed that there are no significant changes in mechanical properties of the composite after exposure to radiation and thermo-chemical environment.

  6. Investigation on polyetheretherketone composite for long term storage of nuclear waste

    International Nuclear Information System (INIS)

    Ajeesh, G.; Bhowmik, Shantanu; Sivakumar, Venugopal; Varshney, Lalit; Kumar, Virendra; Abraham, Mathew

    2015-01-01

    This investigation highlights the effect of radiation, chemical and thermal environments on mechanical and thermal properties of Polyetheretherketone (PEEK) composites, which could prove to be an alternative material for long term storage of nuclear wastes. The tests are conducted on specimens made from PEEK and PEEK reinforced with carbon short fiber. The specimens are subjected to radiation doses, equivalent to the cumulative dosage for 500 years followed by exposure under highly corrosive and thermal environments. Studies under optical microscopy reveal that the dispersion of carbon short fiber in the PEEK Composites is significantly uniform. Differential scanning calorimeter (DSC) and thermo gravimetric analysis (TGA) indicates that there are no significant changes in thermal properties of PEEK composite when exposed to aggressive environments. It is further observed that there are no significant changes in mechanical properties of the composite after exposure to radiation and thermo-chemical environment.

  7. Thermokinetic model of borosilicate glass dissolution: Contextual affinity

    International Nuclear Information System (INIS)

    Advocat, T.; Vernaz, E.; Crovisier, J.L.; Fritz, B.

    1990-01-01

    Short and long-term geochemical interactions of R7T7 nuclear glass with water at 100C were simulated with the DISSOL thermokinetic computer code. Both the dissolved glass quantity and the resulting water composition, saturation states and mineral quantities produced were calculated as a function of time. The rate equation used in the simulation was first proposed by Aagaard and Hegelson: v = k + · S · a( H + ) -n · (1 - e -(A/RT) ). It simulates a gradually diminishing dissolution rate as the reaction affinity diminishes. The best agreement with 1-year experimental data was obtained with a reaction affinity calculated from silica activity (Grambow's hypothesis) rather than taking into account the activity of all the glass components as proposed by Jantzen and Plodinec. The concept of residual affinity was introduced by Grambow to express the fact that the glass dissolution rate does not cease. The authors prefer to replace the term residual affinity by contextual affinity, which expresses the influence on the dissolution rate of three factors: the solution chemistry, the metastability of SiO 2 (m), and the possible precipitation of certain aluminosilicates such as zeolites

  8. Devitrification of defense nuclear waste glasses: role of melt insolubles

    International Nuclear Information System (INIS)

    Bickford, D.F.; Jantzen, C.M.

    1985-01-01

    Time-temperature-transformation (TTT) curves have been determined for simulated nuclear waste glasses bounding the compositional range in the Defense Waste Processing Facility (DWPF). Formulations include all of the minor chemical elements such as ruthenium and chromium which have limited solubility in borosilicate glasses. Heterogeneous nucleation of spinel on ruthenium dioxide, and subsequent nucleation of acmite on spinel is the major devitrification path. Heterogeneous nucleation on melt insolubles causes more rapid growth of crystalline devitrification phases, than in glass free of melt insolubles. These studies point out the importance of simulating waste glass composition and processing as accurately as possible to obtain reliable estimates of glass performance. 11 refs., 8 figs., 1 tab

  9. Qualitative and quantitative assessment of the short- and long-term consequences of opting out of nuclear energy

    International Nuclear Information System (INIS)

    Briem, G.; Halstrick, M.; Heilemann, U.; Hillebrand, B.; Kiy, M.; Neuhaus, R.; Knieper, O.; Schmidt, H.W.; Weiss, T.

    1986-08-01

    A reference scenario establishes the prospective development of the energy and overall economy under status-quo conditions, i.e. assuming especially the continued use of nuclear energy, while two scenarios (alternative I: 'immediate opting out' and alternative II: 'opting out in the long term') try to assess the consequences of a shutdown of nuclear energy for the economic development of the Federal Republic of Germany. Especially, the study deals with the effects on the power industry, the ecological consequences, and the overall economic effects both in the short and long run. In all three scenarios, the development of the home consumption of electric power is first of all determined by a structure model of the entire economy. The capacity required to meet that demand and its use are calculated with the aid of a power plant model; short- and long-term cost-minimization programmes making allowance especially for fuel and capital costs from the elements from which these quantities are derived. Fuel and capital costs operate as variables in the structure model to determine the sectoral and overall economic development. The report in addition investigates separately, in partial models, the effects on the chemical industry and the branches of industry processing iron, steel, and non-ferrous metals, all of which are greatly in demand of electric power. (orig./UA) [de

  10. Immobilization of radioactive waste in glass matrices

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1978-01-01

    A promising process for long-term management of high-level radioactive waste is to immobilize the waste in a borosilicate glass matrix. Among the most important criteria characterizing the integrity of the large-scale glass-waste forms are that they possess good chemical stability (including low leachability), thermal stability, mechanical integrity, and high radiation stability. Fulfillment of these criteria ensures the maximum margin of safety of glass-waste products, following solidification, handling, transportation, and long-term storage

  11. Safety aspects in the dry storage of spent nuclear fuel in long term operation

    Energy Technology Data Exchange (ETDEWEB)

    Nodarim, Claudir J.; Silva, Viviane B. da; Fontes, Gladson S. [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Saldanha, Pedro L.C., E-mail: claudirnodari@gmail.com, E-mail: vivisborges@gmail.com, E-mail: gsfontes@hotmail.com, E-mail: Saldanha@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The purpose of the present paper is to discuss the safety assessment of the Dry Storage Unit (DSU), taking into account the long term operation and the operational experience already evidenced in similar facilities. In this sense, the RIDM (Risk-Informed Decision-Making) concept will be adopted for the regulatory decision-making process. Potential technical issues associated with the aging of materials from the dry storage unit will be considered. The work will be done using the rules and requirements of 10 CFR Part 72 and the U.S. NRC (United States Nuclear Regulatory Commission) regulatory guides. (author)

  12. Dissimilar behavior of technetium and rhenium in borosilicatewaste glass as determined by X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lukens, Wayne W.; McKeown, David A.; Buechele, Andrew C.; Muller,Isabelle S.; Shuh, David K.; Pegg, Ian L.

    2006-11-09

    Technetium-99 is an abundant, long-lived (t1/2 = 213,000 yr)fission product that creates challenges for the safe, long-term disposalof nuclear waste. While 99Tc receives attention largely due to its highenvironmental mobility, it also causes problems during its incorporationinto nuclear waste glass due to the volatility of Tc(VII) compounds. Thisvolatility decreases the amount of 99Tc stabilized in the waste glass andcauses contamination of the waste glass melter and off-gas system. Theapproach to decrease the volatility of 99Tc that has received the mostattention is reduction of the volatile Tc(VII) species to less volatileTc(IV) species in the glass melt. On engineering scale experiments,rhenium is often used as a non-radioactive surrogate for 99Tc to avoidthe radioactive contamination problems caused by volatile 99Tc compounds.However, Re(VII) is more stable towards reduction than Tc(VII), so morereducing conditions would be required in the glass melt to produceRe(IV). To better understand the redox behavior of Tc and Re in nuclearwaste glass, a series of glasses were prepared under different redoxconditions. The speciation of Tc and Re in the resulting glasses wasdetermined by X-ray absorption fine structure spectroscopy. Surprisingly,Re and Tc do not behave similarly in the glass melt. Although Tc(0),Tc(IV), and Tc(VII) were observed in these samples, only Re(0) andRe(VII) were found. In no case was Re(IV) (or Re(VI))observed.

  13. Long-Term Nuclear Industry Outlook - 2004

    Energy Technology Data Exchange (ETDEWEB)

    Reichmuth, Barbara A.; Wood, Thomas W.; Johnson, Wayne L.

    2004-09-30

    The nuclear industry has become increasingly efficient and global in nature, but may now be poised at a crossroads between graceful decline and profound growth as a viable provider of electrical energy. Predicted population and energy-demand growth, an increased interest in global climate change, the desire to reduce the international dependence on oil as an energy source, the potential for hydrogen co-generation using nuclear power reactors, and the improved performance in the nuclear power industry have raised the prospect of a “nuclear renaissance” in which nuclear power would play an increasingly more important role in both domestic and international energy market. This report provides an assessment of the role nuclear-generated power will plan in the global energy future and explores the impact of that role on export controls.

  14. Plutonium dioxide dissolution in glass

    International Nuclear Information System (INIS)

    Vienna, J.D.; Alexander, D.L.; Li, Hong

    1996-09-01

    In the aftermath of the Cold War, the U.S. Department of Energy's (DOE) Office of Fissile Materials Disposition (OFMD) is charged with providing technical support for evaluation of disposition options for excess fissile materials manufactured for the nation's defense. One option being considered for the disposition of excess plutonium (Pu) is immobilization by vitrification. The vitrification option entails immobilizing Pu in a host glass and waste package that are criticality-safe (immune to nuclear criticality), proliferation-resistant, and environmentally acceptable for long-term storage or disposal. To prove the technical and economic feasibility of candidate vitrification options it is necessary to demonstrate that PuO 2 feedstock can be dissolved in glass in sufficient quantity. The OFMD immobilization program has set a Pu solubility goal of 10 wt% in glass. The life cycle cost of the vitrification options are strongly influenced by the rate at which PUO 2 dissolves in glass. The total number of process lines needed for vitrification of 50 t of Pu in 10 years is directly dependent upon the time required for Pu dissolution in glass. The objective of this joint Pacific Northwest National Laboratory (PNNL) - Savannah River Technology Center (SRTC) study was to demonstrate a high Pu solubility in glass and to identify on a rough scale the time required for Pu dissolution in the glass. This study was conducted using a lanthanide borosilicate (LaBS) glass composition designed at the SRTC for the vitrification of actinides

  15. Plutonium dioxide dissolution in glass

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J.D.; Alexander, D.L.; Li, Hong [and others

    1996-09-01

    In the aftermath of the Cold War, the U.S. Department of Energy`s (DOE) Office of Fissile Materials Disposition (OFMD) is charged with providing technical support for evaluation of disposition options for excess fissile materials manufactured for the nation`s defense. One option being considered for the disposition of excess plutonium (Pu) is immobilization by vitrification. The vitrification option entails immobilizing Pu in a host glass and waste package that are criticality-safe (immune to nuclear criticality), proliferation-resistant, and environmentally acceptable for long-term storage or disposal. To prove the technical and economic feasibility of candidate vitrification options it is necessary to demonstrate that PuO{sub 2} feedstock can be dissolved in glass in sufficient quantity. The OFMD immobilization program has set a Pu solubility goal of 10 wt% in glass. The life cycle cost of the vitrification options are strongly influenced by the rate at which PUO{sub 2} dissolves in glass. The total number of process lines needed for vitrification of 50 t of Pu in 10 years is directly dependent upon the time required for Pu dissolution in glass. The objective of this joint Pacific Northwest National Laboratory (PNNL) - Savannah River Technology Center (SRTC) study was to demonstrate a high Pu solubility in glass and to identify on a rough scale the time required for Pu dissolution in the glass. This study was conducted using a lanthanide borosilicate (LaBS) glass composition designed at the SRTC for the vitrification of actinides.

  16. Short term and long term radiation protection aspects of a nuclear accident: a Cd-Rom for a better stake holders' involvement

    International Nuclear Information System (INIS)

    Oudiz, A.; Badie, M.; Brenot, J.

    2002-01-01

    Many players are involved in managing a nuclear accident apart from radiation protection and nuclear safety experts. In an emergency response situation, the decision making process involves many non-technical players who nonetheless have a major role to play: in France these may include the Prefet, the emergency and civil defence services, the health services, the police, the gendarmerie and local councillors, with advice from the safety and radiological protection authorities and expert evaluation organisations. Within the post-accident response, other players will be involved alongside those already described: professional bodies, particularly farming organisations, residents' associations, those responsible for environmental decontamination, agencies responsible for compensating victims, etc., etc. In both the short and the long-term phases of the crisis management process, it is essential to enable participants who may have very different backgrounds and professional experience to work together with co-operation and mutual understanding. If non-technical players are to contribute effectively, there needs to be a minimum level of mutual understanding between them and the technical players on what the nuclear risk really is and what is the rationale of the short and long term counter-measures aimed at protecting the public and restoring the contaminated environment. Local communities also need to share this basic understanding because their cooperation is required in order to implement the counter-measures properly. Conversely, if the experts are to advise the local authorities properly, they need to understand the criteria on which these local authorities and communities base their decisions: what psycho-sociological factors apply, what logistical support is needed, what are the concerns of the local communities?

  17. Radiation effects on transport and bubble formation in silicate glasses. 1998 annual progress report

    International Nuclear Information System (INIS)

    Trifunac, A.D.

    1998-01-01

    'To study the fundamental chemistry of radiation damage in silicate/borosilicate glasses and simulated high-level nuclear waste (HLW) forms. Special emphasis is on delineating molecular processes crucial for understanding the aggregation of defects and formation of oxygen bubbles. The knowledge obtained will provide the needed scientific basis for extrapolating long-term behavior of stored radiative waste glass forms. This report summarizes the first 6 months of a 3-year project. The following issues have been addressed: (i) the production of radiolytic oxygen, (ii) the chemistry of hydrogenous species, and (iii) the effect of glass composition and microstructure on the formation and accumulation of metastable point defects.'

  18. The glass model of Muelheim-Kaerlich nuclear power station

    International Nuclear Information System (INIS)

    Kuttruf, H.; Lemke, W.

    1986-01-01

    The glass model represents the nuclear steam generator system of Muelheim-Kaerlich nuclear power station on a scale of 1:25 and in simplified form, so that the thermohydraulic behaviour in both normal operational and fault conditions can be represented. A set-up time of about one hour results in a helpful aid to instruction. (orig.) [de

  19. The role of nuclear analytical techniques in the study of aqueous corrosion of glasses

    International Nuclear Information System (INIS)

    Trocellier, P.

    1984-01-01

    Direct observation of resonant nuclear reactions, backscattering spectrometry and X ray microanalysis with a nuclear microprobe were used to determine elementary depth profiles in the near surface region of leached glasses. Some computing programs required to interpretate the analytical information detected were built. Experimental conditions to characterize glass samples without secondary effects were defined; and the influence of some leaching parameters was studied to describe the first stages of aqueous corrosion of borosilicate glasses [fr

  20. A kinetic model for borosilicate glass dissolution based on the dissolution affinity of a surface alteration layer

    International Nuclear Information System (INIS)

    Bourcier, W.L.; Peiffer, D.W.; Knauss, K.G.; McKeegan, K.D.; Smith, D.K.

    1989-11-01

    A kinetic model for the dissolution of borosilicate glass is used to predict the dissolution rate of a nuclear waste glass. In the model, the glass dissolution rate is controlled by the rate of dissolution of an alkali-depleted amorphous surface (gel) layer. Our model predicts that all components concentrated in the surface layer, affect glass dissolution rates. The good agreement between predicted and observed elemental dissolution rates suggests that the dissolution rate of the gel layer limits the overall rate of glass dissolution. The model predicts that the long-term rate of glass dissolution will depend mainly on ion concentrations in solution, and therefore on the secondary phases which precipitate and control ion concentrations. 10 refs., 5 figs., 1 tab

  1. Tc and Re Behavior in Borosilicate Waste Glass Vapor Hydration Tests

    International Nuclear Information System (INIS)

    McKeown, David A.; Buechele, Andrew C.; Pegg, Ian L.; Lukens, Wayne W.; Shuh, David K.

    2007-01-01

    Technetium (Tc), found in some nuclear wastes, is of particular concern with regard to long-term storage, because of its long-lived radioactivity and high mobility in the environment. Tc and rhenium (Re), commonly used as a non-radioactive surrogate for Tc, were studied to assess their behavior in borosilicate glass under hydrothermal conditions in the Vapor Hydration Test (VHT). X-ray absorption spectroscopy (XAS) and scanning electron microscopy (SEM) measurements were made on the original Tc- and Re-containing glasses and their corresponding VHT samples, and show different behavior for Tc and Re under VHT conditions. XAS indicates that, despite starting with different Tc(IV) and Tc(VII) distributions in each glass, the VHT samples have 100% Tc(IV)O 6 environments. SEM shows complete alteration of the original glass, Tc enrichment near the sample surface, and Tc depletion in the center. Perrhenate (Re(VII)O 4 - ) is dominant in both Re-containing samples before and after the VHT, where Re is depleted near the VHT sample surface and more concentrated toward the center. (authors)

  2. Plant life management for long term operation of nuclear power plants

    International Nuclear Information System (INIS)

    2005-01-01

    The world's fleet of Nuclear Power Plants (NPPs) is approximately 20 years old on average, and most plants are believed to be able to operate for 60 years or more. The design life of a NPP is typically 30 to 40 years. This may be extended by 10 to 20 years, or more, provided that the plant can demonstrate by analysis, trending, equipment and system upgrades, increased vigilance, testing, ageing management, and other means that license renewal presents no threat to public health and safety. The basic goal of Plant Life Management (PLiM) is to satisfy requirements for safe long-term supplies of electricity in an economically competitive way. The basic goal of the operating company and the owners to operate as long as economically reasonable and possible from safety point of view. PLiM is a management tool for doing that. PLiM is a system of programmes and procedures to satisfy safety requirements for safe operation and for power production in a competitive way and for time which is rational from technical and economical point of view. PLiM is not only a technical system, it is also an attitude of the operational company to keep the plant in operation as long as possible from safety and business point of view. The common objectives of PLiM assessment is to help and review the pre-conditions for PLiM and long-term operation approaches. PLiM should not be associated with extension of operational life-time of the NPP only. It is an owner's attitude and rational approach of the operating company to run the business economically and safely. The effectiveness of PLiM Programme can be assessed by three complementary kinds of assessment: self-assessment, peer review and comprehensive programme review by the plant owner/ operator. IAEA will provide the assessment service for peer review of PLiM. Preparation for a PLiM Assessment service will be initiated only after the IAEA has been formally approached by a MS and funding (e.g. an existing Technical cooperation project) has

  3. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    Energy Technology Data Exchange (ETDEWEB)

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.; Shuh, D. K. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Knight, K. B.; Eppich, G. R. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Holliday, K. S. [Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-05-21

    Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.

  4. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    Science.gov (United States)

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.; Shuh, D. K.; Knight, K. B.; Eppich, G. R.; Holliday, K. S.

    2016-05-01

    Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.

  5. Long-term modeling of glass waste in portland cement- and clay-based matrices

    International Nuclear Information System (INIS)

    Stockman, H.W.; Nagy, K.L.; Morris, C.E.

    1995-12-01

    A set of ''templates'' was developed for modeling waste glass interactions with cement-based and clay-based matrices. The templates consist of a modified thermodynamic database, and input files for the EQ3/6 reaction path code, containing embedded rate models and compositions for waste glass, cement, and several pozzolanic materials. Significant modifications were made in the thermodynamic data for Th, Pb, Ra, Ba, cement phases, and aqueous silica species. It was found that the cement-containing matrices could increase glass corrosion rates by several orders of magnitude (over matrixless or clay matrix systems), but they also offered the lowest overall solubility for Pb, Ra, Th and U. Addition of pozzolans to cement decreased calculated glass corrosion rates by up to a factor of 30. It is shown that with current modeling capabilities, the ''affinity effect'' cannot be trusted to passivate glass if nuclei are available for precipitation of secondary phases that reduce silica activity

  6. Review of radiation effects in solid-nuclear-waste forms

    International Nuclear Information System (INIS)

    Weber, W.J.

    1981-09-01

    Radiation effects on the stability of high-level nuclear waste (HLW) forms are an important consideration in the development of technology to immobilize high-level radioactive waste because such effects may significantly affect the containment of the radioactive waste. Since the required containment times are long (10 3 to 10 6 years), an understanding of the long-term cumulative effects of radiation damage on the waste forms is essential. Radiation damage of nuclear waste forms can result in changes in volume, leach rate, stored energy, structure/microstructure, and mechanical properties. Any one or combination of these changes might significantly affect the long-term stability of the nuclear waste forms. This report defines the general radiation damage problem in nuclear waste forms, describes the simulation techniques currently available for accelerated testing of nuclear waste forms, and reviews the available data on radiation effects in both glass and ceramic (primarily crystalline) waste forms. 76 references

  7. Long-term elevated temperature leaching of solid waste forms

    International Nuclear Information System (INIS)

    Kenna, B.T.; Murphy, K.D.; Levine, H.S.

    1978-01-01

    Long-term soxhlet leaching of simulated waste glass and ceramic materials was initiated to elucidate leaching behavior of complex wasteforms. A cyclic leaching pattern was found in all systems over a 20 month period. Maxima and minima were observed in the leaching rates of all components studied with the minima coinciding. The data suggested several mechanistic features which are described, but they did not conform with reported simple leaching mechanisms

  8. Chemical decomposition of high-level nuclear waste storage/disposal glasses under irradiation. 1997 annual progress report

    International Nuclear Information System (INIS)

    Griscom, D.L.; Merzbacher, C.I.

    1997-01-01

    'The objective of this research is to use the sensitive technique of electron spin resonance (ESR) to look for evidence of radiation-induced chemical decomposition of vitreous forms contemplated for immobilization of plutonium and/or high-level nuclear wastes, to interpret this evidence in terms of existing knowledge of glass structure, and to recommend certain materials for further study by other techniques, particularly electron microscopy and measurements of gas evolution by high-vacuum mass spectroscopy. Previous ESR studies had demonstrated that an effect of y rays on a simple binary potassium silicate glass was to induce superoxide (O 2 - ) and ozonide (O 3 - ) as relatively stable product of long-term irradiation Accordingly, some of the first experiments performed as a part of the present effort involved repeating this work. A glass of composition 44 K 2 O: 56 SiO 2 was prepared from reagent grade K 2 CO3 and SiO 2 powders melted in a Pt crucible in air at 1,200 C for 1.5 hr. A sample irradiated to a dose of 1 MGy (1 MGy = 10 8 rad) indeed yielded the same ESR results as before. To test the notion that the complex oxygen ions detected may be harbingers of radiation-induced phase separation or bubble formation, a small-angle neutron scattering (SANS) experiment was performed. SANS is theoretically capable of detecting voids or bubbles as small as 10 305 in diameter. A preliminary experiment was carried out with the collaboration of Dr. John Barker (NIST). The SANS spectra for the irradiated and unirradiated samples were indistiguishable. A relatively high incoherent background (probably due to the presence of protons) may obscure scattering from small gas bubbles and therefore decrease the effective resolution of this technique. No further SANS experiments are planned at this time.'

  9. Study of film semiconductor glass-metal interfaces by nuclear methods

    International Nuclear Information System (INIS)

    Wehr, Muryel.

    1979-01-01

    The use of nuclear method analysis, particularly α particles and Li + ions elastic backscattering permitted to study the glass chalcogenide-metal interdiffusion submitted to thermal and electric stresses. The 8 MeV alpha particles are of a great interest, they increase five times the depth of the gold analysis in glasses compared with the 3,5 MeV alpha particles [fr

  10. Long-Term Surveillance and Maintenance Plan for the Gnome-Coach, New Mexico, Site

    Energy Technology Data Exchange (ETDEWEB)

    Kreie, Ken [USDOE Office of Legacy Management, Grand Junction, CO (United States); Findlay, Rick [Navarro Research and Engineering, Inc., Grand Junction, CO (United States)

    2016-06-08

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) prepared this Long-Term Surveillance and Maintenance Plan (LTSMP) for the Gnome-Coach, New Mexico, Site (the Gnome site). The Gnome site is approximately 25 miles east of Carlsbad in Eddy County, New Mexico (Figure 1). The site was the location of a 3-kiloton-yield underground nuclear test and radioisotope groundwater tracer test. The tests resulted in residual contamination and post-detonation features that require long-term oversight. Long-term responsibility for the site was transferred from the DOE National Nuclear Security Administration Nevada Site Office to LM on October 1, 2006. Responsibilities include surveillance, monitoring, and maintenance of institutional controls (ICs) as part of the long-term stewardship of the site. Long-term stewardship is designed to ensure protection of human health and the environment.

  11. Long-term environmental behaviour of radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Brechignac, F.; Moberg, L.; Suomela, M

    2000-04-01

    The radioactive pollution of the environment results from the atmospheric nuclear weapons testing (during the mid-years of twentieth century), from the development of the civilian nuclear industry and from accidents such as Chernobyl. Assessing the resulting radiation that humans might receive requires a good understanding of the long-term behaviour of radionuclides in the environment. This document reports on a joint European effort to advance this understanding, 3 multinational projects have been coordinated: PEACE, EPORA and LANDSCAPE. This report proposes an overview of the results obtained and they are presented in 6 different themes: (i) redistribution in the soil-plant system, (ii) modelling, (iii) countermeasures, (iv) runoff (v) spatial variations, and (vi) dose assessment. The long term behaviour of the radionuclides {sup 137}Cs, {sup 90}Sr and {sup 239-240}Pu is studied through various approaches, these approaches range from in-situ experiments designed to exploit past contamination events to laboratory simulations. A broad scope of different ecosystems ranging from arctic and boreal regions down to mediterranean ones has been considered. (A.C.)

  12. Long-term environmental behaviour of radionuclides

    International Nuclear Information System (INIS)

    Brechignac, F.; Moberg, L.; Suomela, M.

    2000-04-01

    The radioactive pollution of the environment results from the atmospheric nuclear weapons testing (during the mid-years of twentieth century), from the development of the civilian nuclear industry and from accidents such as Chernobyl. Assessing the resulting radiation that humans might receive requires a good understanding of the long-term behaviour of radionuclides in the environment. This document reports on a joint European effort to advance this understanding, 3 multinational projects have been coordinated: PEACE, EPORA and LANDSCAPE. This report proposes an overview of the results obtained and they are presented in 6 different themes: i) redistribution in the soil-plant system, ii) modelling, iii) countermeasures, iv) runoff v) spatial variations, and vi) dose assessment. The long term behaviour of the radionuclides 137 Cs, 90 Sr and 239-240 Pu is studied through various approaches, these approaches range from in-situ experiments designed to exploit past contamination events to laboratory simulations. A broad scope of different ecosystems ranging from arctic and boreal regions down to mediterranean ones has been considered. (A.C.)

  13. Composition models for the viscosity and chemical durability of West Valley related nuclear waste glasses

    International Nuclear Information System (INIS)

    Feng, X.; Saad, E.E.; Freeborn, W.P.; Macedo, P.B.; Pegg, I.L.; Sassoon, R.E.; Barkatt, A.; Finger, S.M.

    1988-01-01

    There are two important criteria that must be satisfied by a nuclear waste glass durability and processability. The chemical composition of the glass must be such that it does not dissolve or erode appreciably faster than the decay of the radioactive materials embedded in it. The second criterion, processability, means that the glass must melt with ease, must be easily pourable, and must not crystallize appreciably. This paper summarizes the development of simple models for predicting the durability and viscosity of nuclear waste glasses from their composition

  14. Redox reaction and foaming in nuclear waste glass melting

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, J.L.

    1995-08-01

    This document was prepared by Pacific Northwest Laboratory (PNL) and is an attempt to analyze and estimate the effects of feed composition variables and reducing agent variables on the expected chemistry of reactions occurring in the cold cap and in the glass melt in the nuclear waste glass Slurry-fed, joule-heated melters as they might affect foaming during the glass-making process. Numerous redox reactions of waste glass components and potential feed additives, and the effects of other feed variables on these reactions are reviewed with regard to their potential effect on glass foaming. A major emphasis of this report is to examine the potential positive or negative aspects of adjusting feed with formic acid as opposed to other feed modification techniques including but not limited to use of other reducing agents. Feed modification techniques other than the use of reductants that should influence foaming behavior include control of glass melter feed pH through use of nitric acid. They also include partial replacement of sodium salts by lithium salts. This latter action (b) apparently lowers glass viscosity and raises surface tension. This replacement should decrease foaming by decreasing foam stability.

  15. Long term needs for nuclear data development. Texts of papers presented at the advisory group meeting

    International Nuclear Information System (INIS)

    Herman, M.

    2001-08-01

    This report contains the texts of the invited presentations delivered at the Advisory Group Meeting on Long Term Needs for Nuclear Data Development. The meeting was organized by the International Atomic Energy Agency (IAEA) and held at IAEA Headquarters, Vienna, Austria, 28 November - 1 December 2000. The texts are reproduced here, directly from the author's manuscripts with little or no editing, in the order in which the presentations were made at the meeting. For the main conclusions refer to the Summary Report, published as INDC(NDS)-423. The contributed papers deal with cross section data needed for production of radionuclides; for internal radiation dosimetry; for ion beam analysis; neutron data needs in astrophysics; nuclear data for advanced fast reactors; lead cooled reactors; accelerator driven subcritical assemblies

  16. Post-LOCA long term cooling performance in Korean standard nuclear power plants

    International Nuclear Information System (INIS)

    Bang, Young Seok; Jung, Jae Won; Seul, Kwang Won; Kim, Hho Jung

    1999-01-01

    The post-LOCA long term cooling (LTC) performance of the Korean Standard Nuclear Power Plant (KSNPP) is analyzed for both small break LOCA and large break LOCA. The RELAP5/MOD3.2.2 code is used to calculate the LTC sequences based on the LTC plan of the KSNPP. A standard input model is developed such that LOCA and the followed LTC sequence can be calculated in a single run for both small break LOCA and large break LOCA. A spectrum of small break LOCA ranging from 0.02 to 0.5 ft 2 of break area and a double-ended guillotine break are analyzed. Through the code calculations, the thermal-hydraulic behavior and the boron behavior are evaluated and the effect of the important manual action including the safety injection tank isolation in LTC procedure is investigated

  17. Long-Term Information Management (LTIM) of Safeguards Data at Geological Repositories

    International Nuclear Information System (INIS)

    Haddal, R.; Finch, R.; Baldwin, G.

    2016-01-01

    Full text: The International Atomic Energy Agency (IAEA) has noted that long-term information management (LTIM) of safeguards data at geological repositories will be a significant challenge in the future as information and records management systems evolve and permanent disposal of nuclear materials becomes a high-priority in many countries. Identifying approaches to how information on buried high-level nuclear waste will be managed, handled, organized, archived, read, interpreted, and secured for the long-term (1000 years after repository closure and beyond) will be key to safeguards at repositories). The purpose of this study is to explore various long-term information management systems and how they may or may not be adapted for geological repositories for high-level waste. The study will also examine what types of safeguards-related data should be included in such a system. The study will also consider hypotheses about future needs and analyze the pros and cons of very long-term information management. (author

  18. Long term storage techniques for 85Kr

    International Nuclear Information System (INIS)

    Foster, B.A.; Pence, D.T.; Staples, B.A.

    1975-01-01

    As new nuclear fuel reprocessing plants go on stream, the collection of fission product 85 Kr will be required to avoid potential local release problems and long-term atmospheric buildup. Storage of the collected 85 Kr for a period of at least 100 years will be necessary to allow approximately 99.9 percent decay before it is released. A program designed to develop and evaluate proposed methods for long-term storage of 85 Kr is discussed, and the results of a preliminary evaluation of three methods, high pressure steel cylinders, zeolite encapsulation, and clathrate inclusion are presented. (U.S.)

  19. Development of Models to Predict the Redox State of Nuclear Waste Containment Glass

    Energy Technology Data Exchange (ETDEWEB)

    Pinet, O.; Guirat, R.; Advocat, T. [Commissariat a l' Energie Atomique (CEA), Departement de Traitement et de Conditionnement des Dechets, Marcoule, BP 71171, 30207 Bagnols-sur-Ceze Cedex (France); Phalippou, J. [Universite de Montpellier II, Laboratoire des Colloides, Verres et Nanomateriaux, 34095 Montpellier Cedex 5 (France)

    2008-07-01

    Vitrification is one of the recommended immobilization routes for nuclear waste, and is currently implemented at industrial scale in several countries, notably for high-level waste. To optimize nuclear waste vitrification, research is conducted to specify suitable glass formulations and develop more effective processes. This research is based not only on experiments at laboratory or technological scale, but also on computer models. Vitrified nuclear waste often contains several multi-valent species whose oxidation state can impact the properties of the melt and of the final glass; these include iron, cerium, ruthenium, manganese, chromium and nickel. Cea is therefore also developing models to predict the final glass redox state. Given the raw materials and production conditions, the model predicts the oxygen fugacity at equilibrium in the melt. It can also estimate the ratios between the oxidation states of the multi-valent species contained in the molten glass. The oxidizing or reductive nature of the atmosphere above the glass melt is also taken into account. Unlike the models used in the conventional glass industry based on empirical methods with a limited range of application, the models proposed are based on the thermodynamic properties of the redox species contained in the waste vitrification feed stream. The thermodynamic data on which the model is based concern the relationship between the glass redox state and the oxygen fugacity in the molten glass. The model predictions were compared with oxygen fugacity measurements for some fifty glasses. The experiments carried out at laboratory and industrial scale with a cold crucible melter. The oxygen fugacity of the glass samples was measured by electrochemical methods and compared with the predicted value. The differences between the predicted and measured oxygen fugacity values were generally less than 0.5 Log unit. (authors)

  20. Characteristics of colloids generated during the corrosion of nuclear waste glasses in groundwater

    International Nuclear Information System (INIS)

    Feng, X.; Buck, E.C.; Mertz, C.; Bates, J.K.; Cunnane, J.C.; Chaiko, D.

    1993-10-01

    Aqueous colloidal suspensions were generated by reacting nuclear waste glasses with groundwater at 90 degrees C at different ratios of the glass surface area to solution volume (S/V). The colloids have been characterized in terms of size, charge, identity, and stability with respect to salt concentration, pH, and time, by examination using dynamic light scattering, electrophoretic mobility, and transmission electron microscopy. The colloids are predominately produced by precipitation from solution, possibly with contribution from reacted layers that have spallated from the glass. These colloids are silicon-rich minerals. The colloidal suspensions agglomerate when the salinity of the solutions increase. The following implications for modeling the colloidal transport of contaminants have been derived from this study: (1) The sources of the colloids are not only solubility-limited real colloids and the pseudo colloids formed by adsorption of radionuclides onto a groundwater colloid, but also from the spalled surface layers of reacted waste glasses. (2) In a repository, the local environment is likely to be glass-reaction dominated and the salt concentration is likely to be high, leading to rapid colloid agglomeration and settling; thus, colloid transport may be insignificant. (3) If large volumes of groundwater contact the glass reaction site, the precipitated colloids may become resuspended, and colloid transport may become important. (4) Under most conditions, the colloids are negatively charged and will deposit readily on positively charged surfaces. Negatively charged surfaces will, in general, facilitate colloid stability and transport

  1. Dormancy effects on the reliability of nuclear thermal propulsion systems for long-term manned space missions

    International Nuclear Information System (INIS)

    Shooman, M.L.; Sforza, P.M.

    1993-01-01

    This paper explores the effects of dormancy on the reliability of a Nuclear Thermal Propulsion (NTP) system for long-term manned space missions, such as Mars exploration. Dormancy refers to the portion of space systems operation where the power and stress levels are significantly reduced from nominal values and the authors have identified dormancy as a significant effect. Three approaches are used to evaluate the relative importance of failure rates during dormant operation: use of failure rate models involving dormancy, power cycling and fully energized operation; study of data bases which include both dormant and energized failure rates; predictions based on an Arrhenius rate process formulation. The results of these approaches suggest that for a long term manned mission the dormancy, cycle, and energized failure rates will all be important. Reliability in the energized state normally receives utmost attention and care during design, however, unless equal attention is directed to dormancy, the mission reliability may be severely compromised

  2. Nuclear power from a long term global perspective

    International Nuclear Information System (INIS)

    Davis, D.A.

    1994-01-01

    The global problem with energy, now and into the longer term, is the same as the global problem with food. There is no absolute shortage of either and nor is there likely to be. But the pattern of availability is such that large numbers of people have inadequate supplies of one or the other, or of both. Thus, in considering global energy futures the problems are more about energy distribution than about its absolute availability: it is important that in arguing its case for expansion the nuclear industry bears that fact in mind. (Author)

  3. Nanoporous Glasses for Nuclear Waste Containment

    OpenAIRE

    Woignier, Thierry; Primera, Juan; Reynes, Jerôme

    2016-01-01

    Research is in progress to incorporate nuclear waste in new matrices with high structural stability, resistance to thermal shock, and high chemical durability. Interactions with water are important for materials used as a containment matrix for the radio nuclides. It is indispensable to improve their chemical durability to limit the possible release of radioactive chemical species, if the glass structure is attacked by corrosion. By associating high structural stability and high chemical dura...

  4. Radiation characteristics of spent nuclear fuel at accumulation in long-term storage

    International Nuclear Information System (INIS)

    Bergelson, Boris R.; Gerasimov, Aleksander S.

    1999-01-01

    Time dependence of a decay heat power and radiotoxicity of a single spent nuclear fuel unloading of VVER-1000 reactors at its storage or the same characteristics in accumulation mode with annual addition of spent nuclear fuel in long-term storage are investigated. At calculations of decay heat power, the contributions of alpha-, beta-, and gamma- irradiations were taken into account, at calculations of a radiotoxicity - maximum permissible activity of nuclides in air and in water were taken into account. It is determined that at accumulation less than 100 years, the main contribution to decay heat power is given by fission products, at further storage the power is determined in greater degree by actinides. The radiotoxicity of actinides by air is rich greater than that of fission products - more than 50 times in beginning of a storage and by 2-3 orders of magnitude after 100 and more years. A radiotoxicity of fission products by water at accumulation less than 20 years is a little bit more than actinides, at further accumulation the contribution of fission products decreases. At time of accumulation 100 years, the fission products give the contribution in total radiotoxicity about 40%, at time 1000 years - about 7%. (author)

  5. Long Term Storage with Surveillance of Canadian Prototype Nuclear Power Reactors

    International Nuclear Information System (INIS)

    Janzen, Rick

    2008-01-01

    Atomic Energy of Canada (AECL) was originally formed by the government of Canada in 1952 to perform research in radiation and nuclear areas. In the mid 1950's Canada decided to limit itself to peaceful uses of nuclear energy and AECL embarked on several research and development programs, one of them being the development of nuclear power plants. This led to the development of the CANDU TM design of heavy water power reactors, of which there are now 29 operating around the world. This presentation discusses the present state of the first two CANDU TM prototype reactors and a prototype boiling light water reactor and lessons learnt after being in a long-term storage with surveillance state for more than 20 years. AECL facilities undergo decommissioning by either a prompt or a deferred removal approach. Both approaches are initiated after an operating facility has been declared redundant and gone through final operational shutdown. For the deferred approach, initial decommissioning activities are performed to put the facility into a sustainable, safe, shutdown state to minimize the hazards and costs of the ensuing extended storage with surveillance (SWS) or Safestor phase. At the appropriate time, the facility is dismantled and removed, or put into a suitable condition for re-use. AECL has a number of facilities that were built during its history, and some of these are now redundant or will become redundant in the near future. The deferred removal approach is part of AECL's decommissioning strategy for several reasons: 1. Reduction in radiation doses to workers during the final dismantling, 2. No facilities are available yet in Canada for the management of quantity of wastes arising from decommissioning, 3. Financial constraints presented by the number of facilities that will undergo decommissioning, compared to the availability of funds to carry out the work. This has led to the development of a comprehensive decommissioning plan that includes all of AECL's redundant

  6. Main corrective measures in an early phase of nuclear power plants’ preparation for safe long term operation

    Energy Technology Data Exchange (ETDEWEB)

    Krivanek, Robert, E-mail: r.krivanek@iaea.org [International Atomic Energy Agency (IAEA), Department of Nuclear Safety and Security, Operational Safety Section, Vienna 1400 (Austria); Fiedler, Jan, E-mail: fiedler@fme.vutbr.cz [University of Technology Brno, Faculty of Mechanical Engineering, Energy Institute, Technická 2896/2, 616 69 Brno (Czech Republic)

    2017-05-15

    Highlights: • Results of SALTO missions provide the most important issues for safe long term operation (LTO) of nuclear power plants. • The most important technical corrective measures in an early phase of preparation for safe LTO are described. • Their satisfactory resolution creates a basis for further activities to demonstrate preparedness for safe LTO. - Abstract: This paper presents the analysis of main technical deficiencies of nuclear power plants (NPPs) in preparedness for safe long term operation (LTO) and the main corrective measures in an early phase of preparation for safe LTO of NPPs. It focuses on technical aspects connected with management of physical ageing of NPP structures, systems and components (SSCs). It uses as a basis results of IAEA SALTO missions performed between 2005 and 2016 (see also paper NED8805 in Nuclear Engineering and Design in May 2016) and the personal experiences of the authors with preparation of NPPs for safe LTO. This paper does not discuss other important aspects of safe LTO of NPPs, e.g. national nuclear energy policies, compliance of NPPs with the latest international requirements on design, obsolescence, environmental impact and economic aspects of LTO. Chapter 1 provides a brief introduction of the current status of the NPP’ fleet in connection with LTO. Chapter 2 provides an overview of SALTO peer review service results with a focus on deficiencies related to physical ageing of safety SSCs and a demonstration that SSCs will perform their safety function during the intended period of LTO. Chapter 3 discusses the main corrective measures which NPPs typically face during the preparation for demonstration of safe LTO. Chapter 4 summarizes the current status of the NPP’ fleet in connection with LTO and outlines further steps needed in preparation for safe LTO.

  7. Nuclear protein phosphatase-1: an epigenetic regulator of fear memory and amygdala long-term potentiation.

    Science.gov (United States)

    Koshibu, K; Gräff, J; Mansuy, I M

    2011-01-26

    Complex brain diseases and neurological disorders in human generally result from the disturbance of multiple genes and signaling pathways. These disturbances may derive from mutations, deletions, translocations or rearrangements of specific gene(s). However, over the past years, it has become clear that such disturbances may also derive from alterations in the epigenome affecting several genes simultaneously. Our work recently demonstrated that epigenetic mechanisms in the adult brain are in part regulated by protein phosphatase 1 (PP1), a protein Ser/Thr phosphatase that negatively regulates hippocampus-dependent long-term memory (LTM) and synaptic plasticity. PP1 is abundant in brain structures involved in emotional processing like the amygdala, it may therefore be involved in the regulation of fear memory, a form of memory related to post-traumatic stress disorder (PTSD) in human. Here, we demonstrate that PP1 is a molecular suppressor of fear memory and synaptic plasticity in the amygdala that can control chromatin remodeling in neurons. We show that the selective inhibition of the nuclear pool of PP1 in amygdala neurons significantly alters posttranslational modifications (PTMs) of histones and the expression of several memory-associated genes. These alterations correlate with enhanced fear memory, and with an increase in long-term potentiation (LTP) that is transcription-dependent. Our results underscore the importance of nuclear PP1 in the amygdala as an epigenetic regulator of emotional memory, and the relevance of protein phosphatases as potential targets for therapeutic treatment of brain disorders like PTSD. © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Hydration of high-silica glasses in the deep sea

    International Nuclear Information System (INIS)

    Federman, A.N.

    1986-01-01

    Natural analogs of nuclear waste glasses are important because they provide information of the one variable that is not controllable in the laboratory - long intervals of time in the actual environment of storage. Some natural glasses have persisted for millions of years in deep-sea sediments in the form of disseminated particles and distinct tephra layers, while other apparently similar specimens have been completely altered to clay assemblages relatively quickly. Geologists have reached no firm conclusions as to why these differences exist, and more research is certainly warranted. These glasses vary in age, composition, and in the in-situ conditions they have experienced. They may provide important information for two different aspects of nuclear waste glass research: First, the chemical composition and especially the water content of these glasses as a function of time may give an understanding of the mechanisms and rates of diffusion in glasses in the natural environment. Second, the apparent differing durability of these glasses in different environmental conditions may suggest the optimal characteristics of a nuclear waste glass depository

  9. The long-term problems of contaminated land: Sources, impacts and countermeasures

    International Nuclear Information System (INIS)

    Baes, C.F. III.

    1986-11-01

    This report examines the various sources of radiological land contamination; its extent; its impacts on man, agriculture, and the environment; countermeasures for mitigating exposures; radiological standards; alternatives for achieving land decontamination and cleanup; and possible alternatives for utilizing the land. The major potential sources of extensive long-term land contamination with radionuclides, in order of decreasing extent, are nuclear war, detonation of a single nuclear weapon (e.g., a terrorist act), serious reactor accidents, and nonfission nuclear weapons accidents that disperse the nuclear fuels (termed ''broken arrows'')

  10. Long-range goal setting in the nuclear utility industry

    International Nuclear Information System (INIS)

    Beard, P.M.

    1986-01-01

    The Institute of Nuclear Power Operation's (INPO's) programs support the industry's efforts to improve performance in nuclear plant safety and reliability. The success of these programs can best be measured by the progress of the industry. As utilities focused their attention on nuclear plant performance, the Institute's goal was to make sure its programs and activities provided the best possible support for these efforts. INPO continues to coordinate an industry-wide plant performance indicator program to assist member utilities in assessing station performance. Closely related to this effort is the nuclear industry's establishment of long-range plant performance goals. The US nuclear utility industry currently sends INPO quarterly data on 28 key performance indicators. INPO analyzes these data and provides periodic reports to its members and participants. Selected highlights of INPO's Performance Indicators for the US Nuclear Utility, dated June 1986, are discussed. Throughout 1985, INPO interacted with members, participants, and three external ad hoc review groups to refine the overall performance indicators and to develop background for each unit. By April 1986, each utility had developed long-term goals for each unit. By April 1986, each utility had developed long-term goals for most of the overall indicators. These goals represent a commitment to achievement of excellence when applied to the day-to-day conduct of plant operations, and provide a framework for action

  11. Studies on the long-term characteristics of HLW glass under ultimate storage conditions

    International Nuclear Information System (INIS)

    Roggendorf, H.; Conradt, R.; Ostertag, R.

    1987-01-01

    This interim report deals with first results of corrosion investigations of HLW simulation glass (COGEMA glass SON 68) in quinary salt solutions of different concentrations; the aim of these investigations was to find out about the corrosion mechanism at the surface of the glass and the quantitative registration of the corrosion products. It became obvious that the surface layers developed can be easily removed and that a determination of weight losses becomes possible thereby. The corrosion rates for a test period of 30 days were determined. (RB) [de

  12. Thermo-chemistry of nuclear waste glasses: a new approach

    International Nuclear Information System (INIS)

    Linard, Y.; Neuville, D.R.; Richet, P.

    1997-01-01

    Understanding of the stability and weathering of glasses used for storing fission products is hampered by a general lack of basic thermochemical information. Models have been setup to predict Gibbs free energies of dissolution of glasses, but ascertaining their accuracy is made difficult by the very lack of reliable experimental data with which model results should be compared. As enthalpies of formation can in principle be determined from usual solution calorimetry experiments, the lack of Gibbs-free energy data for glasses mainly stems from the fact that, as disordered substances, glasses do not obey the third principle and have indeed large configurational entropies. These entropies can be determined from thermochemical measurements only when there exist a congruently melting crystalline compound with the same composition. Using available data, we have calculated the Gibbs-free energies of formation of a series of silicate glasses for which such a calorimetric determination is possible. With these results, we assess the predictions of Paul's model (1977) for calculating Gibbs-free energies of dissolution. As the complex compositions of the borosilicate glasses used for nuclear waste storage prevent determining configurational entropies by calorimetric methods, we point out how these can be determined instead from viscosity measurements. We finally discuss the implications of this approach for modeling of water-glass interactions. (authors)

  13. Secondary phases formed during nuclear waste glass-water interactions: Thermodynamic and derived properties

    International Nuclear Information System (INIS)

    McKenzie, W.F.

    1992-08-01

    The thermodynamic properties of secondary phases observed to form during nuclear waste glass-water interactions are of particular interest as it is with the application of these properties together with the thermodynamic properties of other solid phases, fluid phases, and aqueous species that one may predict the environmental consequences of introducing radionuclides contained in the glass into groundwater at a high-level nuclear waste repository. The validation of these predicted consequences can be obtained from laboratory experiments and field observations at natural analogue sites. The purpose of this report is to update and expand the previous compilation (McKenzie, 1991) of thermodynamic data retrieved from the literature and/or estimated for secondary phases observed to form (and candidate phases from observed chemical compositions) during nuclear waste glass-water interactions. In addition, this report includes provisionally recommended thermodynamic data of secondary phases

  14. HLW Long-term Management Technology Development

    International Nuclear Information System (INIS)

    Choi, Jong Won; Kang, C. H.; Ko, Y. K.

    2010-02-01

    Permanent disposal of spent nuclear fuels from the power generation is considered to be the unique method for the conservation of human being and nature in the present and future. In spite of spent nuclear fuels produced from power generation, based on the recent trends on the gap between supply and demand of energy, the advance on energy price and reduction of carbon dioxide, nuclear energy is expected to play a role continuously in Korea. It means that a new concept of nuclear fuel cycle is needed to solve problems on spent nuclear fuels. The concept of the advanced nuclear fuel cycle including PYRO processing and SFR was presented at the 255th meeting of the Atomic Energy Commission. According to the concept of the advanced nuclear fuel cycle, actinides and long-term fissile nuclides may go out of existence in SFR. And then it is possible to dispose of short term decay wastes without a great risk bearing. Many efforts had been made to develop the KRS for the direct disposal of spent nuclear fuels in the representative geology of Korea. But in the case of the adoption of Advanced nuclear fuel cycle, the disposal of PYRO wastes should be considered. For this, we carried out the Safety Analysis on HLW Disposal Project with 5 sub-projects such as Development of HLW Disposal System, Radwaste Disposal Safety Analysis, Feasibility study on the deep repository condition, A study on the Nuclide Migration and Retardation Using Natural Barrier, and In-situ Study on the Performance of Engineered Barriers

  15. The long-term problems of contaminated land: Sources, impacts and countermeasures

    Energy Technology Data Exchange (ETDEWEB)

    Baes, C.F. III

    1986-11-01

    This report examines the various sources of radiological land contamination; its extent; its impacts on man, agriculture, and the environment; countermeasures for mitigating exposures; radiological standards; alternatives for achieving land decontamination and cleanup; and possible alternatives for utilizing the land. The major potential sources of extensive long-term land contamination with radionuclides, in order of decreasing extent, are nuclear war, detonation of a single nuclear weapon (e.g., a terrorist act), serious reactor accidents, and nonfission nuclear weapons accidents that disperse the nuclear fuels (termed ''broken arrows'').

  16. New maintenance strategy of Tokyo Electric Power Company and Fukushima Dai-ichi Nuclear Power Plant for effective ageing management and safe long-term operation

    International Nuclear Information System (INIS)

    Inagaki, Takeyuki; Yamashita, Norimichi

    2009-01-01

    Fukushima Dai-ichi Nuclear Power Plant is the oldest among three nuclear power plants owned and operated by Tokyo Electric Power Company, which consists of six boiling water reactor units. The commercial operation of Unit 1 was commenced in 1971 (37 years old) and Unit 6 in 1978 (29 years old). Currently ageing degradations of systems, structures and components are managed through maintenance programs, component replacement/refurbishment programs and long-term maintenance plans. The long-term maintenance plans are established through ageing management component replacement/refurbishment programs reviews performed before the 30th year of operation and they are for safe and reliable operation after 30 years (long-term operation). However the past maintenance actions and past component replacement/refurbishment programs were not always proactive and past operational experience and maintenance practices suggest that effective/proactive ageing management programs be introduced in earlier stage of the plant operation. In this circumstance, Tokyo Electric Power Company and Fukushima Dai-ichi Nuclear Power Plant are setting up a new maintenance strategy that includes 1) improving the normal maintenance programs by using ageing degradation data, 2) effective use of information on internal/external operational experience and maintenance practices related to ageing, and 3) proactive component/equipment refurbishment programs during a refreshment outage for safe and reliable long-term operation. To accomplish the goal of this strategy, strengthening engineering capability of plant staff members is a crucial required for the plant. The objective of this paper is to briefly explain main results ageing management reviews, past and current significant ageing issues and management programs against them, and the new maintenance strategy established by Tokyo Electric Power Company and Fukushima Dai-ichi Nuclear Power Plant. (author)

  17. West Valley high-level nuclear waste glass development: a statistically designed mixture study

    Energy Technology Data Exchange (ETDEWEB)

    Chick, L.A.; Bowen, W.M.; Lokken, R.O.; Wald, J.W.; Bunnell, L.R.; Strachan, D.M.

    1984-10-01

    The first full-scale conversion of high-level commercial nuclear wastes to glass in the United States will be conducted at West Valley, New York, by West Valley Nuclear Services Company, Inc. (WVNS), for the US Department of Energy. Pacific Northwest Laboratory (PNL) is supporting WVNS in the design of the glass-making process and the chemical formulation of the glass. This report describes the statistically designed study performed by PNL to develop the glass composition recommended for use at West Valley. The recommended glass contains 28 wt% waste, as limited by process requirements. The waste loading and the silica content (45 wt%) are similar to those in previously developed waste glasses; however, the new formulation contains more calcium and less boron. A series of tests verified that the increased calcium results in improved chemical durability and does not adversely affect the other modeled properties. The optimization study assessed the effects of seven oxide components on glass properties. Over 100 melts combining the seven components into a wide variety of statistically chosen compositions were tested. Viscosity, electrical conductivity, thermal expansion, crystallinity, and chemical durability were measured and empirically modeled as a function of the glass composition. The mathematical models were then used to predict the optimum formulation. This glass was tested and adjusted to arrive at the final composition recommended for use at West Valley. 56 references, 49 figures, 18 tables.

  18. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.; Ryan, Joseph V.; Qafoku, Nikolla

    2014-08-04

    The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans to immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).

  19. Specific outcomes of the research on the radiation stability of the French nuclear glass towards alpha decay accumulation

    Science.gov (United States)

    Peuget, S.; Delaye, J.-M.; Jégou, C.

    2014-01-01

    This paper presents an overview of the main results of the French research on the long-term behavior of SON68 nuclear glass towards alpha decay accumulation. The effect of the radiation damage induced by alpha decay and also helium build-up were investigated by examining glass specimens, doped with a short-lived actinide 244Cm, irradiated by light and heavy ions. Additionally, atomistic simulations by molecular dynamics have provided further information on the atomic-scale effects of the macroscopic phenomena observed. These studies have shown that some macroscopic properties vary with the accumulation of alpha decay, but then stabilize after integrated doses of the order of 4 × 1018 α g-1. For example, the glass density diminishes by about 0.6%, its Young's modulus by about 15%, and its hardness by about 30%, while its fracture toughness increases by around 50%. The SEM and TEM characterization showed that the glass is still homogeneous. No phase separation, crystallization or bubbles formation was noticed up to an alpha decay dose corresponding to several thousand years of disposal of nuclear glass canister. Moreover the initial alteration rate of the glass is not significantly affected by the glass damage induced by alpha decays or heavy ions irradiations. The comparison of the macroscopic evolutions of the Cm doped glass with those obtained for glasses irradiated with light or heavy ions (from either experimental and molecular dynamic studies) suggests that the macroscopic evolutions are induced by the nuclear interactions induced by the recoil nuclei of alpha decay. The analysis of the behavior of the glass structure subjected to ballistic effects with various spectroscopic studies, together with the results of atomistic modeling by molecular dynamics, have identified some slight changes in the local order around some cations. Moreover a modification of the medium-range order has also been demonstrated through changes in the bond angles between network

  20. Specific outcomes of the research on the radiation stability of the French nuclear glass towards alpha decay accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Peuget, S., E-mail: sylvain.peuget@cea.fr; Delaye, J.-M.; Jégou, C.

    2014-01-15

    This paper presents an overview of the main results of the French research on the long-term behavior of SON68 nuclear glass towards alpha decay accumulation. The effect of the radiation damage induced by alpha decay and also helium build-up were investigated by examining glass specimens, doped with a short-lived actinide {sup 244}Cm, irradiated by light and heavy ions. Additionally, atomistic simulations by molecular dynamics have provided further information on the atomic-scale effects of the macroscopic phenomena observed. These studies have shown that some macroscopic properties vary with the accumulation of alpha decay, but then stabilize after integrated doses of the order of 4 × 10{sup 18} α g{sup −1}. For example, the glass density diminishes by about 0.6%, its Young’s modulus by about 15%, and its hardness by about 30%, while its fracture toughness increases by around 50%. The SEM and TEM characterization showed that the glass is still homogeneous. No phase separation, crystallization or bubbles formation was noticed up to an alpha decay dose corresponding to several thousand years of disposal of nuclear glass canister. Moreover the initial alteration rate of the glass is not significantly affected by the glass damage induced by alpha decays or heavy ions irradiations. The comparison of the macroscopic evolutions of the Cm doped glass with those obtained for glasses irradiated with light or heavy ions (from either experimental and molecular dynamic studies) suggests that the macroscopic evolutions are induced by the nuclear interactions induced by the recoil nuclei of alpha decay. The analysis of the behavior of the glass structure subjected to ballistic effects with various spectroscopic studies, together with the results of atomistic modeling by molecular dynamics, have identified some slight changes in the local order around some cations. Moreover a modification of the medium-range order has also been demonstrated through changes in the bond angles

  1. A study on shear behavior of R/C beams subjected to long-term heating

    International Nuclear Information System (INIS)

    Maruta, M.; Yamazaki, M.

    1993-01-01

    In nuclear power plants, many structural members are subjected to long term heating. There are few experimental data available on the behavior especially in shear of reinforced concrete (R/C) members subjected to long term heating. This paper describes a study aimed at experimentally determining the shear behavior of R/C members in nuclear power plant facilities following sustained heating at high temperatures

  2. Long-term biodosimetry Redux

    International Nuclear Information System (INIS)

    Simon, Steven L.; Bouville, Andre

    2016-01-01

    This paper revisits and reiterates the needs, purposes and requirements of bio-dosimetric assays for long-term dose and health risk assessments. While the most crucial need for bio-dosimetric assays is to guide medical response for radiation accidents, the value of such techniques for improving our understanding of radiation health risk by supporting epidemiological (long-term health risk) studies is significant. As new cohorts of exposed persons are identified and new health risk studies are undertaken with the hopes that studying the exposed will result in a deeper understanding of radiation risk, the value of reliable dose reconstruction is underscored. The ultimate application of biodosimetry in long-term health risk studies would be to completely replace model-based dose reconstruction-a complex suite of methods for retrospectively estimating dose that is commonly fraught with large uncertainties due to the absence of important exposure-related information, as well as imperfect models. While biodosimetry could potentially supplant model-based doses, there are numerous limitations of presently available techniques that constrain their widespread application in health risk research, including limited ability to assess doses received far in the past, high cost, great inter-individual variability, invasiveness, higher than preferred detection limits and the inability to assess internal dose (for the most part). These limitations prevent the extensive application of biodosimetry to large cohorts and should be considered a challenge to researchers to develop new and more flexible techniques that meet the demands of long-term health risk research. Events in recent years, e.g. the Fukushima reactor accident and the increased threat of nuclear terrorism, underscore that any event that results in significant radiation exposures of a group of people will also produce a much larger population, exposed at lower levels, but that likewise needs (or demands) an exposure

  3. A study on the establishment of the national mid and long-term R and D plan for the nuclear technology

    International Nuclear Information System (INIS)

    Lee, Kang il; Oh, K. B.; Kim, S. W.; Won, B. C.; Park, S. G.; Kim, S. K.; Cho, S. G.; Kim, M. Y.; Jung, Y. H.

    1993-01-01

    The main objective of this study is to establish practice plan of them and to propose main R and D projects achieving the National Nuclear R and D target - becoming one of an advanced nuclear countries in the early 2000s. With this point of view, this study especially carried out the analysis of the Japanese long-term plans for nuclear power utilization and development. And we tried to propose main R and D projects with Nuclear Power Technology Relevance Tree. Also, the budget essential to the R and D plan for nuclear technology is estimated and the method to finance the budget for the next 10 years (1992-2001) has been considered in this study so as to make the national R and D plan more realistic. (Author)

  4. Long term behaviour of glass and steel in interaction with argillites in deep geological conditions

    International Nuclear Information System (INIS)

    Bildstein, O.; Lartigue, J.E.; Devallois, V.; Pointeau, V.; Trotignon, L.; Michau, N.; Cochepin, B.; Munier, I.

    2010-01-01

    . C) was conducted in order to identify the parameters controlling the overall reactivity of the system. This sensitivity analysis included kinetic parameters for selected minerals, diffusion coefficient, corrosion rate, and gas partial pressure. Another set of calculations was also performed in non-isothermal conditions using the variable temperature field resulting from the heat produced by the waste packages. Modeling results in the reference case show that the glass alteration products mainly consist of zeolites (gyrolite, natrolite) and pure silica minerals (chalcedony). Steel corrosion products are distributed as follows: iron oxides (magnetite or goethite) at the core of the canister; iron silicates (cronstedtite), aluminosilicates (chamosite, Fe-saponite), and sulphide (pyrrhotite) precipitate at the interface between glass and argillites. In the argillites, primary minerals such as dolomite, smectites and calcite are destabilized close to the canister surface. These minerals disappear in favour of gyrolite, natrolite, chalcedony and philippsite-K. The sensitivity analysis shows that the relative amount and evolution in space and time of these secondary minerals strongly depend on the corrosion rate and the release of gas (H 2 and possibly CH 4 ) in the system. The relative intensity of the transport process (diffusion coefficient) and mineral reaction rates (kinetic rate and reactive surface area) also strongly influence the evolution of the system (nature of secondary phases, porosity, gas pressure...). These reaction pathways and para-genesis predicted by the calculations are qualitatively supported by 'short-term' (∼1 year) experiments. A significant reduction of porosity is systematically predicted at the interface between the different materials and is also locally observed in the different materials depending on the simulation conditions, e.g. depending on the corrosion rate. An overall decrease of the reactivity of the system is also

  5. A comparative physics study of alternative long-term strategies for closure of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Cometto, M.; Wydler, P.; Chawla, R.

    2004-01-01

    The appropriate management of radioactive waste arising from the nuclear fuel cycle is considered to be a key issue in the development of future, more sustainable nuclear energy systems. In this context, the partitioning and transmutation of actinides could play an important role through the achievement of very significant reductions in the actinide content and radiotoxicity of the high-level waste requiring geological disposal. The current paper reports on the results of a detailed physics study carried out to compare the pros and cons of alternative strategies for closure of the nuclear fuel cycle. Different long-term 'steady-state' scenarios have been considered, involving the deployment, to varying degrees, of light water reactors (LWRs) and advanced fast-spectrum systems. The same nuclear data and calculation methods have been used throughout, so that a consistent and reliable comparison of the relative performance of the three basic fuel cycle options (once-through, plutonium recycle, and recycling of all actinides) has been made possible. In addition, with transmutation having been considered employing both critical and accelerator-driven fast-spectrum systems, the study has provided an evaluation of the advantages and disadvantages of these two different advanced system types

  6. The strategy of the long-term back-end nuclear fuel cycle in the Czech Republic

    International Nuclear Information System (INIS)

    Palagyi, S.; Fajman, V.

    2002-01-01

    The present status of the strategy of the long-term back-end nuclear fuel cycle in the Czech Republic is briefly outlined in this paper. This strategy is based on the once-through option in the use of the nuclear fuel with subsequent interim storage of the spent fuel and its final disposal as a declared high level waste. However, other technologies for the management of the back-end of the nuclear fuel cycle are not excluded at all. Besides the first already existing and the second interim spent fuel storage facility being sited at Dukovany Nuclear Power Plant, an interim spent fuel storage facility at Temelin Nuclear Power Plant is also under the siting process. To cover the total storing needs a central spent nuclear fuel interim storage facility at Skalka in the Czech-Moravian Highlands is also under consideration. These facilities are or will be equipped with dry-storage containers of cask-type placed in the concrete building and cooled by natural air ventilation. Since 1993 there is a joint effort of several governmental organisations and institutions and private companies to study the scientific, technical and economical possibilities of the construction of the deep geological repository for spent nuclear fuel disposal. A horizontal repository facility with vertical access was selected and a reference project has been accepted. A time horizon for construction in about the year of 2035 was scheduled. The necessary legal and administrative basis of the spent fuel and radioactive waste management was laid down by the law No. 18/1997 (Atomic Act) passed in 1997. This basic law with its implementing regulations fully reflects the internationally accepted principles of the provision of nuclear safety and radiation protection in this respect and it also strongly supports the policy and strategy of the back-end of the nuclear fuel cycle. (author)

  7. Contribution to a proposition for a long term development of nuclear energy: the TASSE concept (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production); Contribution a une proposition d'un developpement a long terme de l'energie nucleaire: le concept TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production)

    Energy Technology Data Exchange (ETDEWEB)

    Berthou, V

    2000-10-30

    Nuclear industry creates waste which are in the middle of the discussion concerning the Nuclear Energy future. At this time, important decisions for the Energy production must be taken, so numerous researches are conducted within the framework of the Bataille law. The goal of these studies is to find a range of solutions concerning the waste management. An innovative system, called TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production), is studied in this thesis. This reactor is included in a long term strategy, and is destined for the renewal of the reactor park. In the first part of this work, the main characteristics of TASSE have been defined. They are commensurate with some specific requirements such as: to insure a large time to the Nuclear Energy, to reduce the waste production in an important way, to eliminate waste already stocked in the present park, to insure the non proliferation, and to be economically competitive. Neutronics studies of TASSE have been done. A calculation procedure has been developed to reach the system equilibrium state. Several types of molten salts as well as a pebble-bed fuel have been studied. Thus, an optimal fuel has been brought out in regard to some parameters such as the burn up level, the spectrum, the waste toxicity, the cycle type. Eventually, various TASSE core layout have been envisaged. (author)

  8. Contribution to a proposition for a long term development of nuclear energy: the TASSE concept (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production); Contribution a une proposition d'un developpement a long terme de l'energie nucleaire: le concept TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production)

    Energy Technology Data Exchange (ETDEWEB)

    Berthou, V

    2000-10-30

    Nuclear industry creates waste which are in the middle of the discussion concerning the Nuclear Energy future. At this time, important decisions for the Energy production must be taken, so numerous researches are conducted within the framework of the Bataille law. The goal of these studies is to find a range of solutions concerning the waste management. An innovative system, called TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production), is studied in this thesis. This reactor is included in a long term strategy, and is destined for the renewal of the reactor park. In the first part of this work, the main characteristics of TASSE have been defined. They are commensurate with some specific requirements such as: to insure a large time to the Nuclear Energy, to reduce the waste production in an important way, to eliminate waste already stocked in the present park, to insure the non proliferation, and to be economically competitive. Neutronics studies of TASSE have been done. A calculation procedure has been developed to reach the system equilibrium state. Several types of molten salts as well as a pebble-bed fuel have been studied. Thus, an optimal fuel has been brought out in regard to some parameters such as the burn up level, the spectrum, the waste toxicity, the cycle type. Eventually, various TASSE core layout have been envisaged. (author)

  9. Nano-Continuum Modeling of a Nuclear Glass Specimen Altered for 25 Years

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl

    2014-01-06

    The purpose of this contribution is to report on preliminary nano-continuum scale modeling of nuclear waste glass corrosion. The focus of the modeling is an experiment involving a French glass SON68 specimen leached for 25 years in a granitic environment. In this report, we focus on capturing the nano-scale concentration profiles. We use a high resolution continuum model with a constant grid spacing of 1 nanometer to investigate the glass corrosion mechanisms.

  10. Contribution to the study of the effects of α-irradiation in nuclear glasses

    International Nuclear Information System (INIS)

    Abbas, A.

    2001-01-01

    The main topic of this work is to characterise the effects of α-disintegration in nuclear waste glasses. Experimental and numerical approaches have been considered. The structure of the French nuclear waste glass (R7T7) has been simulated using four- and six-oxides simplified glasses which contain the main elements of the R7T7 glass: SiO 2 , B 2 O 3 , Na 2 O, ZrO 2 , Al 2 O 3 and CaO. Four- and six-oxides glasses have been irradiated with 1 MeV-He + (ionisation) and 2.1 MeV-Kr 3+ (ionisation and atomic collisions) ions in order to reproduce the effects of the α-particle and of the recoil nucleus emitted during α-disintegration of actinides, and also to differentiate electronic and ballistic effects. Irradiated glasses have been characterised using several techniques, which have been adapted to the peculiarities of our samples (isolated material, small irradiated depth). The results point out the salient role of sodium in the observed modifications: depth concentration profiles obtained with RBS show an accumulation of sodium at the irradiated surface. We found a apparent acceleration of sodium release in leaching experiments which confirm that point. Modifications observed in Raman spectra of irradiated glasses show an increase of the polymerisation (increase of Q 3 /Q 2 ratio) due to sodium migration. In simplified glasses we have found that the modifications of mechanical properties by external irradiations reproduce the modifications observed in actinide doped nuclear glass (decrease of hardness and increase of fracture toughness). At the same time, we performed Molecular Dynamics simulations of a six-oxides glass. We have shown that the surface modifies the glass structure down to a depth of 10 Angstrom: modification of depth concentration profiles, decrease of the atomic coordination number (A1, B and Si). During cascades, we found that atomic displacements are easier near the surface. This behaviour is also observed when the glass is submitted to an

  11. Corrosion behaviors of a glass-bonded sodalite ceramic waste form and its constituents

    International Nuclear Information System (INIS)

    Lewis, M. A.; Ebert, W. L.; Morss, L.

    1999-01-01

    A ceramic waste form (CWF) of glass bonded sodalite is being developed as a waste form for the long-term immobilization of fission products and transuranic elements from the U.S. Department of Energy's activities on spent nuclear fuel conditioning. A durable waste form was prepared by hot isostatic pressing (HIP) a mixture of salt-loaded zeolite powders and glass frit. During HIP the zeolite is converted to sodalite, and the resultant CWF is been completed for durations of up to 182 days. Four dissolution modes were identified: dissolution of free salt, dissolution of the aluminosilicate matrix of sodalite and the accompanying dissolution of occluded salt, dissolution of the boroaluminosilicate matrix of the glass, and ion exchange. Synergies inherent to the CWF were identified by comparing the results of the tests with pure glass and sodalite with those of the composite CWF

  12. Long term bleaching of optical glasses darkened by Co60 ionizing radiation

    International Nuclear Information System (INIS)

    Wirtenson, G.R.; White, R.H.

    1997-01-01

    Typical camera designs include optical glass elements that may be affected by the ionizing radiation present in the natural space environment. Ordinary optical glasses darken at low (10(to the 3rd power) rad) dose levels when exposed to ionizing radiation. This darkening decreases the sensitivity of optical sensors. Optical glass flats of FK 51, LaK 0, PK 51A, and ZK Ny were exposed to a 10.6 krad dose of ionizing radiation. Spectrophotometer traces determined the transmittance of the samples as a function of wavelength in the range 350 to 850 nm before and at various time intervals after the irradiation. These measured values were then use to evaluate the rate of recovery or ''bleaching'' of the exposed samples. To prevent accelerated bleaching, the samples were kept at room temperature and away from light, except during measurement. Tables of the measured data and plots of the transmissivity vs. wavelength at various times after irradiation are presented

  13. Effects of alteration product precipitation on glass dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Neeway, James J.

    2014-06-01

    formation of the zeolitic phase. Therefore, the kinetics of secondary phase formation is an important parameter that should be taken into account in future glass dissolution modeling efforts. Secondly, the results indicate that, in the absence of a gel layer, the glass dissolution rate controls the rate of analcime precipitation in the long term. Finally, the meaning of these results pertinent to long-term glass durability is discussed.

  14. Design and test of the borosilicate glass burnable poison rod for Qinshan nuclear power plant core

    International Nuclear Information System (INIS)

    Huang Jinhua; Sun Hanhong

    1988-08-01

    Material for the burnable poison of Qinshan Nuclear Power Plant core is GG-17 borosilicate glass. The chemical composition and physico-chemical properties of GG-17 is very close to Pyrex-7740 glass used by Westinghouse. It is expected from the results of the experiments that the borosilicate glass burnable poison rod can be successfully used in Qinshan Nuclear Power Plant due to good physical, mechanical, corrosion-resistant and irradiaton properties for both GG-17 glass and cold-worked stainless steel cladding. Change of material for burnable poison from boron-bearing stainless steel to borosilicate glass will bring about much more economic benefit to Qinshan Naclear Power Plant

  15. Calculation of the viscosity of nuclear waste glass systems

    International Nuclear Information System (INIS)

    Shah, R.; Behrman, E.C.; Oksoy, D.

    1990-01-01

    Viscosity is one of the most important processing parameters and one of the most difficult to calculate theoretically, particularly for multicomponent systems like nuclear waste glasses. Here, the authors propose a semi-empirical approach based on the Fulcher equation, involving identification of key variables, for which coefficients are then determined by regression analysis. Results are presented for two glass systems, and compared to results of previous workers and to experiment. The authors also sketch a first-order statistical mechanical perturbation theory calculation for the effects on viscosity of a change in composition of the melt

  16. Factors determining the long term back end nuclear fuel cycle strategy and future nuclear systems. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2002-05-01

    The Technical Committee Meeting (TCM) was held in Vienna on 8-10 November 1999; it was organized by the International Atomic Energy Agency and attended by 26 participants from 16 Member States. The purpose of the meeting was to exchange information among experts on the back end fuel cycle strategies adopted by Member States; to identify key factors determining the long-term back end fuel cycle strategies; and to assess the applicability of these factors to future nuclear systems. Issues associated with the back end fuel cycle supporting a country's nuclear power programme are technical, economic, institutional and political. This TCM provided an opportunity to address these issues and their impacts to the back end fuel cycles, as well as to identify and assess factors affecting the back end fuel cycle strategies. The discussion was organized ib the following topical sessions: the nuclear fuel cycle; spent fuel management; waste management and repository; plutonium management. This document contains a summary of the meeting and 22 individual papers presented by participants. Each of the papers was indexed separately

  17. Factors determining the long term back end nuclear fuel cycle strategy and future nuclear systems. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    The Technical Committee Meeting (TCM) was held in Vienna on 8-10 November 1999; it was organized by the International Atomic Energy Agency and attended by 26 participants from 16 Member States. The purpose of the meeting was to exchange information among experts on the back end fuel cycle strategies adopted by Member States; to identify key factors determining the long-term back end fuel cycle strategies; and to assess the applicability of these factors to future nuclear systems. Issues associated with the back end fuel cycle supporting a country's nuclear power programme are technical, economic, institutional and political. This TCM provided an opportunity to address these issues and their impacts to the back end fuel cycles, as well as to identify and assess factors affecting the back end fuel cycle strategies. The discussion was organized ib the following topical sessions: the nuclear fuel cycle; spent fuel management; waste management and repository; plutonium management. This document contains a summary of the meeting and 22 individual papers presented by participants. Each of the papers was indexed separately.

  18. JSS project phase 4: Experimental and modelling studies of HLW glass dissolution in repository environments

    International Nuclear Information System (INIS)

    1987-10-01

    A goal of the JSS project was to develop a scientific basis for understanding the effects of waste package components, groundwater chemistry, and other repository conditions on glass dissolution behaviour, and to develop and refine a model for the processes governing glass dissolution. The fourth phase of the project, which was performed by the Hahn-Meitner-Institut, Berlin, FRG, dealt specifically with model development and application. Phase 4 also adressed whether basaltic glasses could serve as natural analogues for nuclear waste glasses, thus providing a means to test the capability of the model for long-term predictions. Additional experiments were performed in order to complete the data base necessary to model interactions between the glass and bentonite and between glass and steel corrosion products. More data on temperature, S/V, and pH dependence of the glass/water reaction were also collected. In this report, the data acquired during phase 4 are presented and discussed. (orig./DG)

  19. Introduction: Long term prediction

    International Nuclear Information System (INIS)

    Beranger, G.

    2003-01-01

    Making a decision upon the right choice of a material appropriate to a given application should be based on taking into account several parameters as follows: cost, standards, regulations, safety, recycling, chemical properties, supplying, transformation, forming, assembly, mechanical and physical properties as well as the behaviour in practical conditions. Data taken from a private communication (J.H.Davidson) are reproduced presenting the life time range of materials from a couple of minutes to half a million hours corresponding to applications from missile technology up to high-temperature nuclear reactors or steam turbines. In the case of deep storage of nuclear waste the time required is completely different from these values since we have to ensure the integrity of the storage system for several thousand years. The vitrified nuclear wastes should be stored in metallic canisters made of iron and carbon steels, stainless steels, copper and copper alloys, nickel alloys or titanium alloys. Some of these materials are passivating metals, i.e. they develop a thin protective film, 2 or 3 nm thick - the so-called passive films. These films prevent general corrosion of the metal in a large range of chemical condition of the environment. In some specific condition, localized corrosion such as the phenomenon of pitting, occurs. Consequently, it is absolutely necessary to determine these chemical condition and their stability in time to understand the behavior of a given material. In other words the corrosion system is constituted by the complex material/surface/medium. For high level nuclear wastes the main features for resolving problem are concerned with: geological disposal; deep storage in clay; waste metallic canister; backfill mixture (clay-gypsum) or concrete; long term behavior; data needed for modelling and for predicting; choice of appropriate solution among several metallic candidates. The analysis of the complex material/surface/medium is of great importance

  20. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    Science.gov (United States)

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  1. Studies on the accelerated chemical durability test and its impact on structural changes in borosilicate glass matrix

    International Nuclear Information System (INIS)

    Thorat, Vidya S.; Kadam, P.S.; Mishra, R.K.; Kumar, Amar; Kaushik, C.P.; Sudarsan, V.; Tyagi, A.K.

    2015-01-01

    Sodium borosilicate glass used for the immobilisation of high level nuclear waste with tentative compositions (SiO 2 ) 0.477 (B 2 O 3 ) 0.239 (Na 2 O) 0.170 (TiO 2 ) 0.02 )3 (CaO) 0.068 (Al 2 O 3 ) 0.023 was evaluated for its long term stability in the repository conditions where it may be exposed to high temperature and pressure. 29 Si MAS NMR studies have confirmed that, upon leaching, sodium borosilicate glass undergoes congruent crystallization leading to the formation of an aluminosilicate phase, Na 6 Al 6 Si 10 O 32 . Further the residual glass structure in the composite sample is identical with that of the un-leached glass. Boron structural units are unaffected in the glass compositions upon leaching

  2. Economical comparison of imported energy sources in terms of long-term production planning

    International Nuclear Information System (INIS)

    Gungor, Z.

    1999-01-01

    In this paper, the Turkish energy production sector is studied and power plants fueled by natural gas, imported coal and nuclear power are compared in terms of long-term (1996-2010) production economy. A net present value is used for comparing nuclear, coal and natural gas power plants. A scenario approach is utilized in establishing the effects of different factors, such as inflation rate, unit of investment costs, load factor change, discount rate and fuel price changes. Six different scenarios of interest are developed and discussed. The study ends with conclusions and recommendations based on a study of a reference scenario and alternative scenarios. (author)

  3. On the very long term delayed behavior of concrete

    International Nuclear Information System (INIS)

    Torrenti, J.M.; Benboudjema, F.; Barre, F.; Gallitre, E.

    2015-01-01

    The prediction of very long-term deformation of prestressed concrete structures is a major challenge considering the service life of these structures. It is therefore necessary to correctly model the delayed behavior of these structures. Using a review of laboratory tests and observations of the delayed behavior of structures (bridges and nuclear power plants), the main conclusions of this work are the following ones. First, very long term creep in laboratory or of real structures seems to be non asymptotic. In the actual Eurocode-2, creep is calculated by means of an asymptotic hyperbolic function while in the recent Model Code 2010 creep is expressed as a combination of an asymptotic and a logarithmic functions. In the latter case the logarithmic function corresponds to basic creep while drying creep is asymptotic. Secondly, using a long test (3 years) in a laboratory is not enough to assess the long term behaviour of a massive structure. We need physical relations for creep in codes in order to predict the delayed behavior of massive structures. Thirdly, the biaxial creep of nuclear power plant could be modelled but using data of the structure itself. This would allow to predict the delayed behavior of these structures. Further work is needed to improve the prediction in the design phase

  4. The effects of the glass surface area/solution volume ratio on glass corrosion: A critical review

    International Nuclear Information System (INIS)

    Ebert, W.L.

    1995-03-01

    This report reviews and summarizes the present state of knowledge regarding the effects of the glass surface area/solution volume (SA/V) ratio on the corrosion behavior of borosilicate waste glasses. The SA/V ratio affects the rate of glass corrosion through the extent of dilution of corrosion products released from the glass into the leachate solution: glass corrosion products are diluted more in tests conducted at low SA/V ratios than they are in tests conducted at high SA/V ratios. Differences in the solution chemistries generated in tests conducted at different SA/V ratios then affect the observed glass corrosion behavior. Therefore, any testing parameter that affects the solution chemistry will also affect the glass corrosion rate. The results of static leach tests conducted to assess the effects of the SA/V are discussed with regard to the effects of SA/V on the solution chemistry. Test results show several remaining issues with regard to the long-term glass corrosion behavior: can the SA/V ratio be used as an accelerating parameter to characterize the advanced stages of glass corrosion relevant to long disposal times; is the alteration of the glass surface the same in tests conducted at different SA/V, and in tests conducted with monolithic and crushed glass samples; what are the effects of the SA/V and the extent of glass corrosion on the disposition of released radionuclides? These issues will bear on the prediction of the long-term performance of waste glasses during storage. The results of an experimental program conducted at ANL to address these and other remaining issues regarding the effects of SA/V on glass corrosion are described. 288 refs., 59 figs., 16 tabs

  5. The effects of the glass surface area/solution volume ratio on glass corrosion: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W.L. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1995-03-01

    This report reviews and summarizes the present state of knowledge regarding the effects of the glass surface area/solution volume (SA/V) ratio on the corrosion behavior of borosilicate waste glasses. The SA/V ratio affects the rate of glass corrosion through the extent of dilution of corrosion products released from the glass into the leachate solution: glass corrosion products are diluted more in tests conducted at low SA/V ratios than they are in tests conducted at high SA/V ratios. Differences in the solution chemistries generated in tests conducted at different SA/V ratios then affect the observed glass corrosion behavior. Therefore, any testing parameter that affects the solution chemistry will also affect the glass corrosion rate. The results of static leach tests conducted to assess the effects of the SA/V are discussed with regard to the effects of SA/V on the solution chemistry. Test results show several remaining issues with regard to the long-term glass corrosion behavior: can the SA/V ratio be used as an accelerating parameter to characterize the advanced stages of glass corrosion relevant to long disposal times; is the alteration of the glass surface the same in tests conducted at different SA/V, and in tests conducted with monolithic and crushed glass samples; what are the effects of the SA/V and the extent of glass corrosion on the disposition of released radionuclides? These issues will bear on the prediction of the long-term performance of waste glasses during storage. The results of an experimental program conducted at ANL to address these and other remaining issues regarding the effects of SA/V on glass corrosion are described. 288 refs., 59 figs., 16 tabs.

  6. Comparative study of seven glasses for solidification of nuclear wastes

    International Nuclear Information System (INIS)

    Nogues, J.L.; Hench, L.L.; Zarzycki, J.

    1982-06-01

    The relative leaching behavior of seven alkali borosilicate glasses considered for immobilization of high level radioactive wastes was compared using a static 90 0 C leach test. Leaching times studied were 1, 3, 7, 14 and 28 days with ratios of glass surface area (SA) to solution volume (V) being SA/V = 1.0 cm -1 and 0.1 cm -1 . With the range of glass compositions studied, it was not possible to determine the effect of each element on leaching behavior, however some conclusions regarding the general influence of the glass network formers can be made: the addition of Al 2 O 3 , results in a large increase in the chemical durability of the glass. The presence of Fe 2 O 3 , is necessary to develop with Al 2 O 3 a second protective layer on top of the silica-rich film that results from rapid dealkalization. The difference between the results obtained at SA/V = 1.0 cm -1 and 0.1 cm -1 shows the importance of understanding both the effects of glass composition and solution concentrations on the behavior of nuclear waste glasses

  7. Calcium titanium silicate based glass-ceramic for nuclear waste immobilisation

    Science.gov (United States)

    Sharma, K.; Srivastav, A. P.; Goswami, M.; Krishnan, Madangopal

    2018-04-01

    Titanate based ceramics (synroc) have been studied for immobilisation of nuclear wastes due to their high radiation and thermal stability. The aim of this study is to synthesis glass-ceramic with stable phases from alumino silicate glass composition and study the loading behavior of actinides in glass-ceramics. The effects of CaO and TiO2 addition on phase evolution and structural properties of alumino silicate based glasses with nominal composition x(10CaO-9TiO2)-y(10Na2O-5 Al2O3-56SiO2-10B2O3); where z = x/y = 1.4-1.8 are reported. The glasses are prepared by melt-quench technique and characterized for thermal and structural properties using DTA and Raman Spectroscopy. Glass transition and peak crystallization temperatures decrease with increase of CaO and TiO2 content, which implies the weakening of glass network and increased tendency of glasses towards crystallization. Sphene (CaTiSiO5) and perovskite (CaTiO3) crystalline phases are confirmed from XRD which are well known stable phase for conditioning of actinides. The microsturcture and elemental analysis indicate the presence of actinide in stable crystalline phases.

  8. Study of nuclear glasses alteration gel and synthesis of some model gels; Etude du gel d`alteration des verres nucleaires et synthese de gels modeles

    Energy Technology Data Exchange (ETDEWEB)

    Ricol, S

    1995-10-05

    This work deals with the general problem of alteration of the reference nuclear glass R7T7. Attention is paid particularly to the altered layer formed at the glass surface during alteration process. In opposition to previous works, related essentially to glass dissolution kinetics based on chemical analyses of lixiviated elements, this thesis deals with alteration problems through structural studies of the reference glass and derived gel. This approach allows the determination of mechanisms for the gel formation and a better understanding of the behaviour of glasses towards lixiviation. Both approaches appeared complementary. Based on several spectroscopic techniques, this work showed the particular role of cations such as calcium, zirconium and iron. Studies of silica-based synthetic gels showed the synergic effect of formers cation and of one highly coordinated cation. The variation of the wavenumber related to Si-O-Si asymmetric stretching vibration can be correlated to O/Si ratio for ternary systems Si/Na/Zr. On the contrary, the Si losses of the materials depend on the number of non-bridging oxygen atoms. In the perspective of long-term behaviour, the alteration gel presents better characteristics than initial glass. It is therefore a highly stable material in static conditions. In the same way, synthetic gels are materials with very low solubilities (much lower than the alteration gel) and could be used as confining matrices. (authors). refs., 71 figs., 37 tabs.

  9. Projection of primary energy in electricity generation with evaluation of demand and supply of energy in the medium-term horizon (2020), long-term (2035) and very long term (2060)

    International Nuclear Information System (INIS)

    Mafra, Olga Y.; Alvim, Carlos Feu; Eidelman, Frida; Guimaraes, Leonam dos Santos

    2013-01-01

    The Global Energy demand and the participation of electricity in scenarios of medium (2020), long (2035) and very long (2060) terms are estimated. It is also evaluated the share of different primary energies in electricity generation and their availability in the country. Three economic scenarios were considered and different hypothesis regarding the participation of nuclear energy were analyzed. (author)

  10. Long-term surveillance plan for the South Clive disposal site Clive, Utah

    International Nuclear Information System (INIS)

    1997-09-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. This LSTP describes the long-term surveillance program the DOE will implement to ensure the South Clive disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  11. Vapor hydration and subsequent leaching of transuranic-containing SRL and WV glasses

    International Nuclear Information System (INIS)

    Bates, J.K.; Ebert, W.L.; Gerding, T.J.

    1989-09-01

    Prior to contact by liquid water and subsequent leaching, high-level nuclear waste glass subject to disposal in the unsaturated environment at Yucca Mountain, Nevada, will be altered through contact with humid air. Conditions could range from temperatures as high as 200 degree C to ambient repository temperature after cooling and relative humidities up to 100% depending on the air flow and heat transport dynamics of the waste package and near field environments. However, under any potential set of temperature/humidity conditions, the glass will undergo alteration via well-established vapor phase hydration processes. In the present paper, the results of a set of parametric experiments are described, whereby vapor phase hydrated glasses were subjected to leaching under static conditions. The purpose of the experiments was to (1) compare the leaching of vapor phase altered glass to that of fresh glass, (2) to develop techniques for determining the radionuclide content of secondary phases that formed during the hydration reaction, and (3) to provide a basis for performing long-term saturated and unsaturated testing of vapor hydrated glass. 3 refs., 2 figs., 2 tabs

  12. Effect of long-term physical aging on the kinetic parameters in a common pharmaceutical drug: Flutab

    International Nuclear Information System (INIS)

    Abu-Sehly, A.A.; Elabbar, A.A.

    2011-01-01

    Differential scanning calorimetry (DSC) measurements were performed to investigate the effects of long-term physical aging on kinetic parameters of the pharmaceutical drug (Flutab). Kinetics parameters such as activation energy (E) and fragility parameter (m) of the glass transition for aged and rejuvenated glasses were determined using different kinetic models. Evidence of variation of E with temperature is presented. It is shown in this work that natural storage of the drug introduced significant physical aging as indicated by changes in the glass transition temperature, activation energy and fragility parameter.

  13. Glass-Metal Joining in Nuclear Environment: the State of the Art

    International Nuclear Information System (INIS)

    Jacobs, M.

    2007-01-01

    Full text of publication follows: In the ITER fusion machine and in material testing fission reactors, it is not possible to avoid the use of non-metallic materials like glass for example. There is therefore a need to apply metal to glass joints. This problem arose already at the beginning of the 19. century when the electric light bulb was invented. Nowadays this type of glass-metal joint is very successful and widely used in the electronic industry. In the case of ITER and material testing reactors, glass-metal joints are necessary for the fixation of the optical windows and optical fibres to a metal structure to perform diagnostics. These types of joints are still difficult to make and their behaviour is not fully understood. A joint between glass and metal for a nuclear or fusion application has indeed to resist high temperatures and high neutron fluences, while keeping a good mechanical strength and remaining leak tight. These characteristics are difficult to obtain under these severe conditions. This paper presents an overview of the different joining technologies that can be used to join glass to metal in a severe nuclear environment. The working mechanism of the technologies are explained, together with their respective advantages and drawbacks. Three different types of joining are discussed: fastening, liquid phase joining and solid phase joining. Fastening is a mechanical attachment technique, not achieving easily hermetic seals. Liquid and solid phase joining on the other hand form a real bond, what makes the joint much stronger. The most important technologies using liquid phase joining are adhesive bonding, fusion welding and brazing. In the case of the solid phase joining the choices are ultrasonic torsion welding, diffusion bonding and electrostatic bonding. If it is usually not possible to join the glass directly to the metal, an interlayer must be used. One speaks then of indirect joining. The paper will conclude with a discussion on the best

  14. An optimized cask technology for conditioning, transportation and long term interim storage of 'End of Life' nuclear waste

    International Nuclear Information System (INIS)

    Lefort-Mary, Florence; Clement, Gilles; Lamouroux, Christine; Dumont, Bruno

    2016-01-01

    When preparing for the decommissioning of a nuclear facility, during its 'end of life' management and while performing the actual dismantling operations, one has to consider a large diversity of nuclear waste in term of types, volumes and activities. Customers are frequently faced with the obligation to undertake multiple and costly waste management operations including handling, reconditioning or re-transferring from one package to another, for example when moving from on-site storage to transportation. To address this issue, a new - highly flexible - cask system named TN R MW is being developed. This cask has a total weight of 10 T and is compliant with the 2012 IAEA regulations. It is developed on a flexible concept basis, adaptable to the various nuclear needs, including: from IP2 to B(U) / B(U)F; on-site/ international transportation; long term interim storage. Licensing and manufacturing of number of items of this TN R MW family is underway. (authors)

  15. From glass structure to its chemical durability; De la structure du verre a sa durabilite chimique

    Energy Technology Data Exchange (ETDEWEB)

    Angeli, F.

    2009-07-01

    The author gives an overview of his research activities. He more precisely reports studies related to glass structure based on nuclei observed by NMR and present in glasses of interest for nuclear activities. He discusses the influence of chemical composition on structure, and discusses information which can be extracted from network formers (Al, B) and modifiers (Na, Ca), and from oxygen present in the network linkages of oxide glasses. He discusses the different experimental and modelling approaches which enable structural and morphological information to be obtained at a mesoscopic scale. The last part deals with the investigation of the long term behaviour of confinement matrices (glassy matrix for medium-activity wastes, ceramic matrix)

  16. SKI and SSI's recommendations to the government concerning long-term responsibility after closure of a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Paeivioe Jonsson, Josefin

    2008-01-01

    Many activities will cease at the closure of a repository, but not responsibilities. The candidate municipalities in Sweden expressed concern about who will take over after the implementer is released from responsibility for the facility. The government thus commissioned SKI (Swedish Nuclear Power Inspectorate) and SSI (Swedish Radiation Protection Authority) to review the legal obligations of institutional players as laid out today in legislation in Sweden. After closure of the repository in about 100 years there will be post-closure monitoring, possibly for a few hundred years. This will be a part of the conditions on SKB (Swedish Nuclear Fuel and Waste Management Company) which will be set out at the time. Some activities will end at the closure of the facility but monitoring and safeguards obligations may continue. The exact nature of this monitoring and safeguard work needs to be discussed and agreed upon. With the proposed approach most of the liabilities rest with the state in the long term, the waste producers only have liabilities in the short term but their decisions could have big impacts on long term liabilities

  17. Processing glass-pyrochlore composites for nuclear waste encapsulation

    International Nuclear Information System (INIS)

    Pace, S.; Cannillo, V.; Wu, J.; Boccaccini, D.N.; Seglem, S.; Boccaccini, A.R.

    2005-01-01

    Glass matrix composites have been developed as alternative materials to immobilize nuclear solid waste, in particular actinides. These composites are made of soda borosilicate glass matrix, into which particles of lanthanum zirconate pyrochlore are encapsulated in concentrations of 30 vol.%. The fabrication process involves powder mixing followed by hot-pressing. At the relatively low processing temperature used (620 deg. C), the pyrochlore crystalline structure of the zirconate, which is relevant for containment of radioactive nuclei, remains unaltered. The microstructure of the composites exhibits a homogeneous distribution of isolated pyrochlore particles in the glass matrix and strong bonding at the matrix-particle interfaces. Hot-pressing was found to lead to high densification (95% th.d.) of the composite. The materials are characterized by relatively high elastic modulus, flexural strength, hardness and fracture toughness. A numerical approach using a microstructure-based finite element solver was used in order to investigate the mechanical properties of the composites

  18. Long-term follow-up of bronchus-associated lymphoid tissue lymphomas (BALTOMA)

    International Nuclear Information System (INIS)

    Gaffke, G.; Jost, D.; Stroszcynski, C.; Puls, R.; Schlecht, I.; Felix, R.; Ludwig, W.D.; Hosten, N.

    2002-01-01

    Purpose: The purpose of this work was to describe the findings and the long term follow up of pathologically confirmed bronchus-associated lymphoid tissue lymphoma (BALTOMA) in 6 patients. Methods: CT examinations and conventional radiological examinations were reviewed and compared to describe typical radiological findings and patterns of pulmonary manifestations. It were described the number of lesions and characteristics like presence of airspace consolidation, ground-glass attenuation, bubble-like radio-lucencies, air bronchogram, bronchial dilatation, Infiltration and the long term behaviour of the manifestations. Results: Lesions with a positive air bronchogram, no infiltration of extrapulmonary tissue or extrapulmonary manifestations were revealed as typical findings. Only a slow or no progression of disease was shown in most patients over a term of up to twelve years. Conclusions: The lymphoma of the bronchus-associated lymphoid tissue of the lung is a rare tumor. A positive air bronchogram, a multiplicity of disease, bilateral lesions, a fibrotic transformation of the lung tissue and no growth or only a slow groth over al long term of observation are typical radiological findings. (orig.) [de

  19. Long-term surveillance plan for the Lowman, Idaho, disposal site

    International Nuclear Information System (INIS)

    1993-09-01

    The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This preliminary final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992)

  20. Natural glass analogues to alteration of nuclear waste glass: A review and recommendations for further study

    International Nuclear Information System (INIS)

    McKenzie, W.F.

    1990-01-01

    The purpose of this report is to review previous work on the weathering of natural glasses; and to make recommendations for further work with respect to studying the alteration of natural glasses as it relates quantifying rates of dissolution. the first task was greatly simplified by the published papers of Jercinovic and Ewing (1987) and Byers, Jercinovic, and Ewing (1987). The second task is obviously the more difficult of the two and the author makes no claim of completeness in this regard. Glasses weather in the natural environment by reacting with aqueous solutions producing a rind of secondary solid phases. It had been proposed by some workers that the thickness of this rind is a function of the age of the glass and thus could be used to estimate glass dissolution rates. However, Jercinovic and Ewing (1987) point out that in general the rind thickness does not correlate with the age of the glass owing to the differences in time of contact with the solution compared to the actual age of the sample. It should be noted that the rate of glass dissolution is also a function of the composition of both the glass and the solution, and the temperature. Quantification of the effects of these parameters (as well as time of contact with the aqueous phase and flow rates) would thus permit a prediction of the consequences of glass-fluid interactions under varying environmental conditions. Defense high- level nuclear waste (DHLW), consisting primarily of liquid and sludge, will be encapsulated by and dispersed in a borosilicate glass before permanent storage in a HLW repository. This glass containing the DHLW serves to dilute the radionuclides and to retard their dispersion into the environment. 318 refs

  1. Natural glass analogues to alteration of nuclear waste glass: A review and recommendations for further study

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, W.F.

    1990-01-01

    The purpose of this report is to review previous work on the weathering of natural glasses; and to make recommendations for further work with respect to studying the alteration of natural glasses as it relates quantifying rates of dissolution. the first task was greatly simplified by the published papers of Jercinovic and Ewing (1987) and Byers, Jercinovic, and Ewing (1987). The second task is obviously the more difficult of the two and the author makes no claim of completeness in this regard. Glasses weather in the natural environment by reacting with aqueous solutions producing a rind of secondary solid phases. It had been proposed by some workers that the thickness of this rind is a function of the age of the glass and thus could be used to estimate glass dissolution rates. However, Jercinovic and Ewing (1987) point out that in general the rind thickness does not correlate with the age of the glass owing to the differences in time of contact with the solution compared to the actual age of the sample. It should be noted that the rate of glass dissolution is also a function of the composition of both the glass and the solution, and the temperature. Quantification of the effects of these parameters (as well as time of contact with the aqueous phase and flow rates) would thus permit a prediction of the consequences of glass-fluid interactions under varying environmental conditions. Defense high- level nuclear waste (DHLW), consisting primarily of liquid and sludge, will be encapsulated by and dispersed in a borosilicate glass before permanent storage in a HLW repository. This glass containing the DHLW serves to dilute the radionuclides and to retard their dispersion into the environment. 318 refs.

  2. Key Performance Criteria Affecting the Most the Safety of a Nuclear Waste Long Term Storage : A Case Study Commissioned by CEA

    Energy Technology Data Exchange (ETDEWEB)

    Marvy, A.; Lioure, A; Heriard-Dubreuil, G.; Gadbois, S.; Schneider, T.; Schieber, C.

    2003-02-24

    As part of the work scope set in the French law on high level long lived waste R&D passed in 1991, CEA is conducting a research program to establish the scientific basis and assess the feasibility of long term storage as an option for the safe management of nuclear waste for periods as long as centuries. This goal is a significant departure from the current industrial practice where storage facilities are usually built to last only a few decades. From a technical viewpoint such an extension in time seems feasible provided care and maintenance is exercised. Considering such long periods of time, the risk for Society of loosing oversight and control of such a facility is real, which triggers the question of whether and how long term storage safety can be actually achieved. Therefore CEA commissioned a study (1) in which MUTADIS Consultants (2) and CEPN (3) were both involved. The case study looks into several past and actual human enterprises conducted over significant periods o f time, one of them dating back to the end of the 18th century, and all identified out of the nuclear field. Then-prevailing societal behavior and organizational structures are screened out to show how they were or are still able to cope with similar oversight and control goals. As a result, the study group formulated a set of performance criteria relating to issues like responsibility, securing funds, legal and legislative implications, economic sustainable development, all being areas which are not traditionally considered as far as technical studies are concerned. These criteria can be most useful from the design stage onward, first in an attempt to define the facility construction and operating guiding principles, and thereafter to substantiate the safety case for long term storage and get geared to the public dialogue on that undertaking should it become a reality.

  3. Key Performance Criteria Affecting the Most the Safety of a Nuclear Waste Long Term Storage : A Case Study Commissioned by CEA

    International Nuclear Information System (INIS)

    Marvy, A.; Lioure, A; Heriard-Dubreuil, G.; Gadbois, S.; Schneider, T.; Schieber, C.

    2003-01-01

    As part of the work scope set in the French law on high level long lived waste R and D passed in 1991, CEA is conducting a research program to establish the scientific basis and assess the feasibility of long term storage as an option for the safe management of nuclear waste for periods as long as centuries. This goal is a significant departure from the current industrial practice where storage facilities are usually built to last only a few decades. From a technical viewpoint such an extension in time seems feasible provided care and maintenance is exercised. Considering such long periods of time, the risk for Society of loosing oversight and control of such a facility is real, which triggers the question of whether and how long term storage safety can be actually achieved. Therefore CEA commissioned a study (1) in which MUTADIS Consultants (2) and CEPN (3) were both involved. The case study looks into several past and actual human enterprises conducted over significant periods o f time, one of them dating back to the end of the 18th century, and all identified out of the nuclear field. Then-prevailing societal behavior and organizational structures are screened out to show how they were or are still able to cope with similar oversight and control goals. As a result, the study group formulated a set of performance criteria relating to issues like responsibility, securing funds, legal and legislative implications, economic sustainable development, all being areas which are not traditionally considered as far as technical studies are concerned. These criteria can be most useful from the design stage onward, first in an attempt to define the facility construction and operating guiding principles, and thereafter to substantiate the safety case for long term storage and get geared to the public dialogue on that undertaking should it become a reality

  4. The long-term impact of a man-made disaster: An examination of a small town in the aftermath of the Three Mile Island Nuclear Reactor Accident.

    Science.gov (United States)

    Goldsteen, R; Schorr, J K

    1982-03-01

    This paper explores the long-term effects of a nuclear accident on residents' perceptions of their physical and mental health, their trust of public officials, and their attitudes toward the future risks of nuclear power generation In their community. We find that in the period after the accident at Three Mile Island that there are constant or Increasing levels of distress reported by community residents. We conclude that the effects of a technological disaster may often be more enduring than those natural disaster and that greater research efforts should be made to Investigate the long-term consequences of man-made catastrophies of all types.

  5. Laboratory testing of LITCO glasses

    International Nuclear Information System (INIS)

    Ellison, A.; Wolf, S.; Buck, E.; Luo, J.S.; Dietz, N.; Bates, J.K.; Ebert, W.L.

    1995-01-01

    The purpose of this program is to measure, the intermediate and long-term durability of glasses developed by Lockheed Idaho Technology Co. (LITCO) for the immobilization of calcined radioactive wastes. The objective is to use accelerated corrosion tests as an aid in developing durable waste form compositions. This is a report of tests performed on two LITCO glass compositions, Formula 127 and Formula 532. The main avenue for release of radionuclides into the environment in a geologic repository is the reaction of a waste glass with ground water, which alters the glass and releases its components into solution. These stages in glass corrosion are analyzed by using accelerated laboratory tests in which the ratio of sample surface area to solution volume, SA/V, is varied. At low SA/V, the solution concentrations of glass corrosion products remain low and the reaction approaches the forward rate. At higher SA/V the solution approaches saturation levels for glass corrosion products. At very high SA/V the solution is rapidly saturated in glass corrosion products and secondary crystalline phases precipitate. Tests at very high SA/V provide information about the composition of the solution at saturation or, when no solution is recovered, the identities and the order of appearance of secondary crystalline phases. Tests were applied to Formula 127 and Formula 532 glasses to provide information about the interim and long-term stages in glass corrosion

  6. Analysis on long-term strategy for radwaste management in China

    Energy Technology Data Exchange (ETDEWEB)

    Chen Haicheng [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-08-01

    Radwaste presents a worldwide issue in the management of environmental protection. Most countries carrying out nuclear programs have developed strategies for their radwastes management. China has been executing its strategy, but the development of nuclear power is representing new challenges for the national radwastes management. This paper tries an analysis on the long-term management of radwastes in China. The exiting system of China`s radwastes management is explained. Two important issues on radwastes management i.e. economics and social issues are analyzed. The future issues that will affect China`s radwastes management are discussed. A short summary of the national radwastes management in NEA countries is involved in the paper. The analysis indicates that in China the exiting system of radwastes management is comprehensive but remains to be perfected. Improvements of long-term management need to be made in the aspects of economics and social issue. A financing system for long-term management, as a supplement for the exiting system of radwastes management, is expected to be created. (author)

  7. Analysis on long-term strategy for radwaste management in China

    International Nuclear Information System (INIS)

    Chen Haicheng

    1998-08-01

    Radwaste presents a worldwide issue in the management of environmental protection. Most countries carrying out nuclear programs have developed strategies for their radwastes management. China has been executing its strategy, but the development of nuclear power is representing new challenges for the national radwastes management. This paper tries an analysis on the long-term management of radwastes in China. The exiting system of China's radwastes management is explained. Two important issues on radwastes management i.e. economics and social issues are analyzed. The future issues that will affect China's radwastes management are discussed. A short summary of the national radwastes management in NEA countries is involved in the paper. The analysis indicates that in China the exiting system of radwastes management is comprehensive but remains to be perfected. Improvements of long-term management need to be made in the aspects of economics and social issue. A financing system for long-term management, as a supplement for the exiting system of radwastes management, is expected to be created. (author)

  8. Spent Fuel Long Term Interim Storage: The Spanish Policy

    International Nuclear Information System (INIS)

    Fernandez-Lopez, Javier

    2014-01-01

    ENRESA is the Spanish organization responsible for long-term management of all categories of radioactive waste and nuclear spent fuel and for decommissioning nuclear installations. It is also in charge of the management of the funds collected from waste producers and electricity consumers. The national policy about radioactive waste management is established at the General Radioactive Waste Plan by the Government upon proposal of the Ministry of Industry, Energy and Tourism. Now the Plan in force is the Sixth Plan approved in 2006. The policy on spent nuclear fuel, after description of the current available options, is set up as a long term interim storage at a Centralized Temporary Storage facility (CTS, or ATC in Spanish acronym) followed by geologic disposal, pending technological development on other options being eligible in the future. After a site selection process launched in 2009, the site for the ATC has been chosen at the end of 2011. The first steps for the implementation of the facility are described in the present paper. (authors)

  9. Toward a consistent model for glass dissolution

    International Nuclear Information System (INIS)

    Strachan, D.M.; McGrail, B.P.; Bourcier, W.L.

    1994-01-01

    Understanding the process of glass dissolution in aqueous media has advanced significantly over the last 10 years through the efforts of many scientists around the world. Mathematical models describing the glass dissolution process have also advanced from simple empirical functions to structured models based on fundamental principles of physics, chemistry, and thermodynamics. Although borosilicate glass has been selected as the waste form for disposal of high-level wastes in at least 5 countries, there is no international consensus on the fundamental methodology for modeling glass dissolution that could be used in assessing the long term performance of waste glasses in a geologic repository setting. Each repository program is developing their own model and supporting experimental data. In this paper, we critically evaluate a selected set of these structured models and show that a consistent methodology for modeling glass dissolution processes is available. We also propose a strategy for a future coordinated effort to obtain the model input parameters that are needed for long-term performance assessments of glass in a geologic repository. (author) 4 figs., tabs., 75 refs

  10. Nuclear waste geochemistry: natural and anthropic analogues

    International Nuclear Information System (INIS)

    Petit, J.C.

    1997-01-01

    The geochemical evolution of nuclear waste storage is difficult to describe, due to the long time scales involved, the radioactivity confinement complexity and the un-natural radionuclides which evolution is not known. In order to carry out a long term prediction, a special approach is used, based on a combination of experiments conducted in laboratories and in situ, modelizations and comparisons with process and material analogues (natural or man-made, such as basaltic and rhyolitic volcanic glasses, plutonium, historical and archaeological artefacts)

  11. A comparison of the performance of nuclear waste glasses by modeling

    International Nuclear Information System (INIS)

    Grambow, B.; Strachan, D.M.

    1988-01-01

    A model selected for the licensing process must be based on a physical and chemical understanding of the glass corrosion mechanism. The purpose of this paper is to show that a dissolution/precipitation model can be used to better understand the effects of various system variables on glass dissolution. The application and validation of this model are also discussed. A dissolution/precipitation model developed appears applicable to experiments with a wide range of solution compositions as well as to more complex systems, such as the bentonite/glass/water system the steel corrosion product/glass/water system, or the dissolution of natural basalt glass in a geologic environment. This model is based on solution chemistry and transition state theory. The theoretical background of this model is discussed elsewhere and is used to describe the dissolution behavior of three nuclear waste glasses. These glasses were selected because they represent a wide range of behavior and, therefore, could be used to illustrate the capabilities of the dissolution/precipitation model. The effects of parameters, such as temperature and starting solution composition, on the dissolution behavior of glass are also discussed. 27 refs., 10 figs., 1 tab

  12. Hydrolysis of R7T7 nuclear waste glass in dilute media: mechanisms and rate as a function of pH

    International Nuclear Information System (INIS)

    Advocat, T.; Vernaz, E.; Charpentier, H.; Crovisier, J.L.; Ehret, G.

    1990-01-01

    R7T7 nuclear waste glass dissolution in highly dilute aqueous media under static conditions at 90 0 C occurs according to two different mechanisms depending on the solution acidity. In acid media (pH 4.8 and 5.5), preferential extraction of glass network modifiers results in the formation of an alkali metal-depleted surface region on which amorphous and crystallized (phosphate) compounds rich in transition elements precipitate. Steady-state dissolution conditions are not reached, as attested by variable normalized Si, B and Na mass losses. Glass dissolution is stoichiometric in basic media (pH 7 to 10): the strong bonds of the silicated network are broken at a rate that increases with the pH: the glass dissolution rate increases by a factor of 15 between pH 7 and 10. Under these conditions, alteration products at the glass/solution interface do not constitute a short-term kinetic barrier against the release of the major glass components

  13. XAFS study on silica glasses irradiated in a nuclear reactor

    International Nuclear Information System (INIS)

    Yoshida, Tomoko; Yoshida, Hisao; Hara, Takanobu; Ii, Tatsuya; Okada, Tomohisa; Tanabe, Tetsuo

    2000-01-01

    X-ray absorption technique (XANES and EXAFS) was applied to study the local structures of silica glasses before and after the irradiation in a nuclear reactor. Although our separate photoluminescence (PL) measurements clearly showed the different aspects about oxygen vacancies in these samples, i.e., at least the B 2β type oxygen-deficient center exists as an intrinsic defect in the fused silica glass while another type B 2α center is formed in the synthesized silica glass, such differences did not directly reflect on the X-ray absorption spectra (XANES and EXAFS). However, the curve-fitting analysis of EXAFS showed that the number of oxygen atoms coordinated to Si relatively increased after the irradiation. This result may indicate the occurrence of the structural relaxation in the irradiated samples, that is, a slightly distorted SiO 4 tetrahedra in silica glasses relaxed to the regular SiO 4 tetrahedra due to the break of some connections between SiO 4 units in the silica glasses. Thus, the X-ray absorption technique gave the important information of the in-reactor irradiated silica glasses which complements the results obtained from PL measurements

  14. Birth Outcomes after the Fukushima Daiichi Nuclear Power Plant Disaster: A Long-Term Retrospective Study.

    Science.gov (United States)

    Leppold, Claire; Nomura, Shuhei; Sawano, Toyoaki; Ozaki, Akihiko; Tsubokura, Masaharu; Hill, Sarah; Kanazawa, Yukio; Anbe, Hiroshi

    2017-05-19

    Changes in population birth outcomes, including increases in low birthweight or preterm births, have been documented after natural and manmade disasters. However, information is limited following the 2011 Fukushima Daiichi Nuclear Power Plant Disaster. In this study, we assessed whether there were long-term changes in birth outcomes post-disaster, compared to pre-disaster data, and whether residential area and food purchasing patterns, as proxy measurements of evacuation and radiation-related anxiety, were associated with post-disaster birth outcomes. Maternal and perinatal data were retrospectively collected for all live singleton births at a public hospital, located 23 km from the power plant, from 2008 to 2015. Proportions of low birthweight (effects on maternal and perinatal health.

  15. Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution.

    Energy Technology Data Exchange (ETDEWEB)

    Zapol, Peter (Argonne National Laboratory, Argonne, IL); Bourg, Ian (Lawrence Berkeley National Laboratories, Berkeley, CA); Criscenti, Louise Jacqueline; Steefel, Carl I. (Lawrence Berkeley National Laboratories, Berkeley, CA); Schultz, Peter Andrew

    2011-10-01

    This report summarizes research performed for the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Subcontinuum and Upscaling Task. The work conducted focused on developing a roadmap to include molecular scale, mechanistic information in continuum-scale models of nuclear waste glass dissolution. This information is derived from molecular-scale modeling efforts that are validated through comparison with experimental data. In addition to developing a master plan to incorporate a subcontinuum mechanistic understanding of glass dissolution into continuum models, methods were developed to generate constitutive dissolution rate expressions from quantum calculations, force field models were selected to generate multicomponent glass structures and gel layers, classical molecular modeling was used to study diffusion through nanopores analogous to those in the interfacial gel layer, and a micro-continuum model (K{mu}C) was developed to study coupled diffusion and reaction at the glass-gel-solution interface.

  16. Inventory extension considerations for long-term storage at the nuclear materials storage facility

    International Nuclear Information System (INIS)

    Olinger, C.T.; Stanbro, W.D.; Longmire, V.; Argo, P.E.; Nielson, S.M.

    1996-01-01

    Los Alamos National Laboratory is in the process of modifying its nuclear materials storage facility to a long-term storage configuration. In support of this effort, we examined technical and administrative means to extend periods between physical inventories. Both the frequency and sample size during a physical inventory could significantly impact required sizing of the non-destructive assay (NDA) laboratory as well as material handling capabilities. Several options are being considered, including (1) treating each storage location as a separate vault, (2) minimizing the number of items returned for quantitative analysis by optimizing the use of in situ confirmatory measurements, and (3) utilizing advanced monitoring technologies. Careful consideration of these parameters should allow us to achieve and demonstrate safe and secure storage while minimizing the impact on facility operations and without having to increase the size of the NDA laboratory beyond that required for anticipated shipping and receiving activities

  17. Study of powellite-rich glass-ceramics for nuclear waste immobilization

    International Nuclear Information System (INIS)

    Taurines, T.

    2012-01-01

    MoO 3 is poorly soluble in borosilicate glasses which can lead to the crystallization of undesired phases when its concentration or the charge load (minor actinides and fission products concentration) is too high. Crystallization control is needed to guarantee good immobilization properties. We studied powellite-rich glass-ceramics obtained from a simplified nuclear glass in the system SiO 2 - B 2 O 3 - Na 2 O - CaO - Al 2 O 3 - MoO 3 - RE 2 O 3 (RE = Gd, Eu, Nd) by various heat treatments. Rare earth elements (REE) were added as minor actinides surrogates and as spectroscopic probes. The influence of MoO 3 and RE 2 O 3 content on powellite (CaMoO 4 ) crystallization was investigated. Various glass-ceramics (similar residual glass + powellite) were obtained with large crystal size distributions. Phase separation due to molybdenum occurs during quenching when [MoO 3 ] ≥ 2.5 mol%. We showed that increasing the rare earth content can suppress the phase separation due to molybdenum but it leads to spinodal decomposition of the residual glass. Furthermore, we studied the effects of parent glass complexifying and the insertion of Gd 3+ ions into the powellite structure. In order to understand the influence of microstructure on evolutions under β-irradiation, we studied point defects creation and structural changes. We showed that the damage induced by electronic excitations in the glass-ceramics is driven by the damage in the residual glass. (author) [fr

  18. Minerals and design of new waste forms for conditioning nuclear waste

    Science.gov (United States)

    Montel, Jean-Marc

    2011-02-01

    Safe storage of radioactive waste is a major challenge for the nuclear industry. Mineralogy is a good basis for designing ceramics, which could eventually replace nuclear glasses. This requires a new storage concept: separation-conditioning. Basic rules of crystal chemistry allow one to select the most suitable structures and natural occurrences allow assessing the long-term performance of ceramics in a geological environment. Three criteria are of special interest: compatibility with geological environment, resistance to natural fluids, and effects of self-irradiation. If mineralogical information is efficient for predicting the behaviour of common, well-known minerals, such as zircon, monazite or apatite, more research is needed to rationalize the long-term behaviour of uncommon waste form analogs.

  19. Application of a Long Term Asset Management Strategy for HP Feedwater Heaters

    International Nuclear Information System (INIS)

    Won, Se Youl; Yun, Eun Sub; Park, Young Sheop

    2008-01-01

    As the commercial operating year of nuclear power plants is increased, it becomes imperative to develop integrated cost-effective asset management and to improve plans for degraded Structures, Systems, and Components (SSCs) in terms of safety and economical consideration. A long-term asset management (LTAM) strategy can improve the condition of nuclear plants, maximize their value, and optimize their operational life by maintaining their safety. This paper presents an optimized LTAM plan for HP feedwater heaters at a specific nuclear power plant

  20. Role of structure in ion movement of glasses. Final report, July 1, 1990--December 31, 1995

    International Nuclear Information System (INIS)

    Jain, H.

    1996-05-01

    The ion movement in inorganic glasses is key to their optimum use in various applications such as solid electrolytes, durable nuclear waste form, stable insulation in electronic devices etc. The primary objective of this project was to understand ion movement in relation to the physical structure of inorganic glasses. Five different glass forming systems were selected for systematically varying different aspects of the structure and determining their influence on ion dynamics: (1) binary Rb and K germanate glass series; (2) mixed (Rb, Ag) and (Rb, K) germanate glass series (3) high purity quartz amorphized by neutron irradiation (4) sodium triborate glasses with different melt conditions and (5) heavy metal fluoride glasses. A two-pronged research program was developed: on the one hand dc ionic conductivity and ac relaxation were measured for a variety of oxide and fluoride glasses as a function of composition, temperature and frequency to characterize long and short range ion transport phenomena. The ion movement was also observed in terms of nuclear spin relaxation rate at University of Dortmund, Germany. On the other hand, the structure was characterized by high resolution x-ray photoelectron spectroscopy (XPS) at Lehigh, infra-red (IR) and Raman spectroscopy at National Hellenic Research Foundation, Athens, Greece, and extended x-ray absorption fine structure (EXAFS) experiments at National Synchrotron Light Source, Brookhaven National Laboratory. The most significant results of the project are briefly summarized

  1. A review of phase separation in borosilicate glasses, with reference to nuclear fuel waste immobilization

    International Nuclear Information System (INIS)

    Taylor, P.

    1990-08-01

    This report reviews information on miscibility limits in borosilicate glass-forming systems. It includes both a literature survey and an account of experimental work performed within the Canadian Nuclear Fuel Waste Management Program. Emphasis is placed on the measurement and depiction of miscibility limits in multicomponent (mainly quaternary) systems, and the effects of individual components on the occurrence of phase separation. The behaviour of the multicomponent system is related to that of simpler (binary and ternary) glass systems. The possible occurrence of phase separation, as well as its avoidance, during processing of nuclear waste glasses is discussed

  2. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    International Nuclear Information System (INIS)

    1995-11-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the US Department of Energy's (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear