WorldWideScience

Sample records for nuclear fusion research

  1. Nuclear Fusion Fuel Cycle Research Perspectives

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin; Yun, Sei-Hun

    2015-01-01

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants

  2. Nuclear fusion research in Australia

    International Nuclear Information System (INIS)

    Cheetham, A.D.

    1997-01-01

    In this paper the recently formed National Plasma Fusion Research Facility centred around the H-1NF Heliac, located at the Australian National University, the Institute of Advanced Studies is described in the context of the international Stellarator program and the national collaboration with the Australian Fusion Research Group. The objectives of the facility and the planned physics research program over the next five years are discussed and some recent results will be presented. The facility will support investigations in the following research areas: finite pressure equilibrium and stability, transport in high temperature plasmas, plasma heating and formation, instabilities and turbulence, edge plasma physics and advanced diagnostic development

  3. Focus on nuclear fusion research

    Czech Academy of Sciences Publication Activity Database

    Křenek, Petr; Mlynář, Jan

    2011-01-01

    Roč. 61, - (2011), s. 62-63 ISSN 0375-8842 Institutional research plan: CEZ:AV0Z20430508 Keywords : ITER * COMPASS * fusion energy * tokamak * EURATOM Subject RIV: BL - Plasma and Gas Discharge Physics http://www.ipp.cas.cz/Tokamak/clanky/energetika_COMPASS.pdf

  4. Progress of laser nuclear fusion research

    International Nuclear Information System (INIS)

    Shiraga, Hiroyuki

    2017-01-01

    This paper describes the principle and features of nuclear fusion using laser, as well as its basic concepts such as high-temperature / high-density implosion system and fast ignition of fuel. At present, researches aiming at nuclear fusion ignition have been developing. As the current state of researches, this paper reviews the situations of FIREX (Fast Ignition Realization Experiment) project of Japan focusing on direct irradiation implosion and fast ignition system, as well as NIF (National Ignition Facility) project of the U.S. aiming at ignition combustion based on indirect irradiation implosion and central ignition system. In collaboration with the National Institute for Fusion Science, Osaka University started FIREX-1 project in 2003. It built a heating laser LFEX of 10 kJ/1 to 10ps, and started an implosion/heating integration experiment in 2009. Currently, it is developing experiment to achieve heating to 5 keV. At NIF, the self-heating of central sparks via energy of α particles generated in the nuclear fusion reaction has been realized. This paper also overviews R and D issues surrounding the lasers for reactors for use in laser nuclear fusion power generators. (A.O.)

  5. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  6. Portuguese research program on nuclear fusion

    International Nuclear Information System (INIS)

    Varandas, C.A.F.; Cabral, J.A.C.; Manso, M.E.

    1994-01-01

    The Portuguese research program on nuclear fusion is presented. The experimental activity associated with the tokamak ISTTOK as well as the work carried out in the frame of international collaboration are summarized. The main technological features of ISTTOK are described along with studies on microwave reflectometry. Future plans are briefly described

  7. Current state of nuclear fusion research

    International Nuclear Information System (INIS)

    Naraghi, M.

    1985-01-01

    During the past quarter century, plasma physics and nuclear fusion research have gone through impressive development. Tokamak, is realized to be the number one candidate for nuclear fusion reactor. Two large experiments, one called Joint European Torus (JET) at Culham, England, and the other JT-60 project in Japan have been completed and have reported preliminary results. In JET an average electron density of 4x10 13 pcls/ cm 3 , ion temperatures of 3Kev and energy confinement of 0.8 sec have been achieved. However, the Zeff has been even equal to 10 which unfortunately is a source of plasma energy loss. JT-60 has not offered any appreciable results yet, however, the objectives and initial tests promise long pulse duration, with very high ion and plasma densities. Both experiments have promised to achieve conditions approaching those needed in a fusion reactor. Other important experiments will be discussed and the role of third world countries will be emphasized. (Author)

  8. Nuclear fusion research at Tokamak Energy Ltd

    International Nuclear Information System (INIS)

    Windridge, Melanie J.; Gryaznevich, Mikhail; Kingham, David

    2017-01-01

    Tokamak Energy's approach is close to the mainstream of nuclear fusion, and chooses a spherical tokamak, which is an economically developed form of Tokamak reactor design, as research subjects together with a high-temperature superconducting magnet. In the theoretical prediction, it is said that spherical tokamak can make tokamak reactor's scale compact compared with ITER or DEMO. The dependence of fusion energy multiplication factor on reactor size is small. According to model studies, it has been found that the center coil can be protected from heat and radiation damage even if the neutron shielding is optimized to 35 cm instead of 1 m. As a small tokamak with a high-temperature superconducting magnet, ST25 HTS, it demonstrated in 2015 continuous operation for more than 24 hours as a world record. Currently, this company is constructing a slightly larger ST40 type, and it is scheduled to start operation in 2017. ST40 is designed to demonstrate that it can realize a high magnetic field with a compact size and aims at attaining 8-10 keV (reaching the nuclear fusion reaction temperature at about 100 million degrees). This company will verify the startup and heating technology by the coalescence of spherical tokamak expected to have plasma current of 2 MA, and will also use 2 MW of neutral particle beam heating. In parallel with ST40, it is promoting a development program for high-temperature superconducting magnet. (A.O.)

  9. State of controlled nuclear fusion research

    International Nuclear Information System (INIS)

    Rodrigo, A.B.

    1978-04-01

    The development of a commercial fusion reactor requires an adequate solution to the problems of heating and confinement of the nuclear fuel, as well as a considerable effort in materials technology and reactor engineering. A general discussion is presented of the status of the research connected with the most advanced concepts, indicating in each case the present situation and the main problems that must be solved to meet the requeriments estimated for power reactors. In particular, the laser-inertial concept is reviewed in detail. (author) [es

  10. Present status of nuclear fusion research and development

    International Nuclear Information System (INIS)

    Discussions are included on the following topics: (1) plasma confinement theoretical research, (2) torus plasma research, (3) plasma measurement research, (4) technical development of equipment, (5) plasma heating, (6) vacuum wall surface phenomena, (7) critical plasma test equipment design, (8) noncircular cross-sectional torus test equipment design, (9) nuclear fusion reactor design, (10) nuclear fusion reactor engineering, (11) summary of nuclear fusion research in foreign countries, and (12) long range plan in Japan

  11. Progress of research and development of nuclear fusion and development of large nuclear fusion device technology

    International Nuclear Information System (INIS)

    1994-01-01

    In the last several years, the results of tokamak experiments were conspicuous, and the progress of plasma confinement performance, transport mechanism, divertors and impurities, helium transport and exhaust, electric current drive, magnetic field ripple effect and high speed particle transport and DT experiment are reported. The other confinement methods than tokamak, the related theories and reactor technology are described. The conceptual design of ITER was carried out by the cooperation of Japan, USA, EC and the former USSR. The projects of developing nuclear fusion in various countries, the design and the required research and development of ITER, the reconstruction and the required research and development of JT-60, JET and TFTR, the design and the required research and development of large helical device, the state of research and development of laser nuclear fusion and inversion magnetic field pinch nuclear fusion, the activities and roles of industrial circles in large nuclear fusion device technology, and the long term perspective of the technical development of nuclear fusion are described. (K.I.)

  12. Plasma physics and controlled nuclear fusion research

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: During the last decade, growing efforts have been devoted to studying the possible forms an electricity-producing thermonuclear reactor might take and the various technical problems that will have to be overcome. Previous IAEA Conferences took place in Salzburg (1961), Culham (1965), Novosibirsk (1968), Madison (1971), Tokyo (1974), Berchtesgaden (1976) and Innsbruck (1978) The exchange of information that has characterized this series of meetings is an important example of international co-operation and has contributed substantially to progress in controlled fusion research. The results of experiments in major research establishments, as well as the growing scientific insights in the field of plasma physics, give hope that the realization of nuclear fusion will be made possible on a larger scale and beyond the laboratory stage by the end of this century. The increase of the duration of existing tokamak discharges requires solution of the impurity control problem. First results from the new big machines equipped with the poloidal divertor recently came into operation. PDX (USA) and ASDEX (F.R. of Germany) show that various divertor configurations can be established and maintained and that the divertors function in the predicted manner. The reduction of high-Z impurities on these machines by a factor 10 was achieved. As a result of extensive research on radio-frequency (RF) plasma heating on tokamaks: PLT (USA), TFR (France), JFT-2 (Japan), the efficiency of this attractive method of plasma heating comparable to neutral beam heating was demonstrated. It was shown that the density of the input power of about 5-10 kW/cm 2 is achievable and this limit is high enough for application to reactor-like machines. One of the inspiring results reported at the conference was the achievement of value (the ratio of plasma pressure to magnetic field pressure) of ∼ 3% on tokamaks T-11 (USSR) and ISX-B (USA). It is important to note that this value exceeds the

  13. Nuclear Fusion Research Understanding Plasma-Surface Interactions

    CERN Document Server

    Clark, Robert E.H

    2005-01-01

    It became clear in the early days of fusion research that the effects of the containment vessel (erosion of "impurities") degrade the overall fusion plasma performance. Progress in controlled nuclear fusion research over the last decade has led to magnetically confined plasmas that, in turn, are sufficiently powerful to damage the vessel structures over its lifetime. This book reviews current understanding and concepts to deal with this remaining critical design issue for fusion reactors. It reviews both progress and open questions, largely in terms of available and sought-after plasma-surface interaction data and atomic/molecular data related to these "plasma edge" issues.

  14. Nuclear fusion

    International Nuclear Information System (INIS)

    Al-zaelic, M.M.

    2013-01-01

    Nuclear fusion can be relied on to solve the global energy crisis if the process of limiting the heat produced by the fusion reaction (Plasma) is successful. Currently scientists are progressively working on this aspect whereas there are two methods to limit the heat produced by fusion reaction, the two methods are auto-restriction using laser beam and magnetic restriction through the use of magnetic fields and research is carried out to improve these two methods. It is expected that at the end of this century the nuclear fusion energy will play a vital role in overcoming the global energy crisis and for these reasons, acquiring energy through the use of nuclear fusion reactors is one of the most urge nt demands of all mankind at this time. The conclusion given is that the source of fuel for energy production is readily available and inexpensive ( hydrogen atoms) and whole process is free of risks and hazards, especially to general health and the environment . Nuclear fusion importance lies in the fact that energy produced by the process is estimated to be about four to five times the energy produced by nuclear fission. (author)

  15. Outline of research project on nuclear fusion, 1985

    International Nuclear Information System (INIS)

    Uchida, Taijiro

    1985-08-01

    When the advance of nuclear fusion research during 10 years hereafter is predicted, the next project should start the research toward nuclear burning, adopt the diversified ways, and develop the research in wide related fields. The central subject such as the containment of plasma is studies with large experimental facilities, but in the related fields, the research subsidies must be utilized positively. The organization to perform the research compries 6 groups, 1) reactor materials and plasma-wall interactions 2) science and engineering of tritium, and influence on living things, 4) development of superconducting magnets, 5) fusion blanket engineering, and 6) design and assessment of thermonuclear reactors. The distribution and management of the scientific research subsidy are explained. All of the subjects of planned and publicly invited research a listed, and the researchers concerned, the amount of subsidy, the objective and the plan of execution in fiscal year 1984 of each research are outlined. (J.P.N.)

  16. Outline of research project on nuclear fusion, 1984

    International Nuclear Information System (INIS)

    Uchida, Taijiro

    1984-08-01

    When the advance of nuclear fusion research during 10 years hereafter is predicted, the next project should start the research toward nuclear burning, adopt the diversified ways, a nd develop the research in wide related fields. The central subject such as the containment of plasma is studies with large experimental facilities, but in the related fields, the research subsidies must be utilized positively. The organization to perform the research compries 6 groups, 1) reactor materials and plasma-wall interaction, 2) science and engineering of tritium and influence on living things, 3) fundamentals of core control, 4) development of superconducting magnets, 5) fusion blanket engineering, and 6) design and assessment of thermonuclear reactors. The distribution and management of the scientific research subsidy are explained. All of the subjects of planned and publicly invited research a listed, and the researchers concerned, the amount of subsidy, the objective and the plan of execution in fiscal 1983 of each research are outlined. (J.P.N.)

  17. Summaries of special research project on nuclear fusion 1980

    International Nuclear Information System (INIS)

    Uchida, Taijiro

    1981-09-01

    This is a report of the research project entitled ''Nuclear fusion'', supported by the grant in aid for fusion research from the Ministry of Education in the fiscal year 1980. The research project was started in April, 1980, and comprises the following seventeen subjects of nuclear fusion research. 1) Heavy irradiation effects, 2) plasma-wall interaction, 3) neutronics, 4) welding engineering, 5) science and technology of tritium, 6) biological effects of tritium, 7) diagnostics of high temperature plasma, 8) new lasers, 9) fundamentals of plasma heating, 10) high efficiency energy conversion, 11) theory and computer simulation, 12) superconducting materials, 13) fundamental phenomena of superconductivity, 14) magnet technology, 15) heat transfer and structural engineering, 16) system design, and 17) resources and assessment of fusion energy. 43 summaries concerning reactor materials and plasma-wall interaction, 29 summaries concerning the science, technology and biological effects of tritium, 41 summaries concerning the fundamentals of reactor plasma control, 15 summaries concerning the technology of superconducting magnets, and 14 summaries concerning the design of fusion reactors and its evaluation are collected in this report, and their results and progress can be known. (Kako, I.)

  18. Plasma physics and controlled nuclear fusion research 1990. V. 1

    International Nuclear Information System (INIS)

    1991-01-01

    Volume 1 of the Proceedings of the Thirteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research contains papers given in two of the sessions: A and E. Session A contains the Artsimovich Memorial Lecture and papers on tokamaks; session E papers on plasma heating and current drive. The titles and authors of each paper are listed in the Contents. Abstracts accompany each paper. Refs, figs and tabs

  19. Progress of nuclear fusion research and review on development of fusion reactors

    International Nuclear Information System (INIS)

    1976-01-01

    Set up in October 1971, the ad hoc Committee on Survey of Nuclear Fusion Reactors has worked on overall fusion reactor aspects and definition of the future problems under four working groups of core, nuclear heat, materials and system. The presect volume is intended to provide reference materials in the field of fusion reactor engineering, prepared by members of the committee. Contents are broadly the following: concept of the nuclear fusion reactor, fusion core engineering, fusion reactor blanket engineering, fusion reactor materials engineering, and system problems in development of fusion reactors. (Mori, K.)

  20. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I

    International Nuclear Information System (INIS)

    Abdou, M.

    1984-10-01

    The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios

  1. Plasma physics and controlled nuclear fusion research 1988. V.3

    International Nuclear Information System (INIS)

    1989-01-01

    Volume 3 of the proceedings of the twelfth international conference on plasma physics and controlled nuclear fusion, held in Nice, France, 12-19 October, 1988, contains papers presented on inertial fusion. Direct and indirect laser implosion experiments, programs of laser construction, computer modelling of implosions and resulting plasmas, and light ion beam fusion experiments are discussed. Refs, figs and tabs

  2. Nuclear fusion

    International Nuclear Information System (INIS)

    Huber, H.

    1978-01-01

    A comprehensive survey is presented of the present state of knowledge in nuclear fusion research. In the first part, potential thermonuclear reactions, basic energy balances of the plasma (Lawson criterion), and the main criteria to be observed in the selection of appropriate thermonuclear reactions are dealt with. This is followed by a discussion of the problems encountered in plasma physics (plasma confinement and heating, transport processes, plasma impurities, plasma instabilities and plasma diagnostics) and by a consideration of the materials problems involved, such as material of the first wall, fuel inlet and outlet, magnetic field generation, as well as repair work and in-service inspections. Two main methods have been developed to tackle these problems: reactor concepts using the magnetic pinch (stellarator, Tokamak, High-Beta reactors, mirror machines) on the one hand, and the other concept using the inertial confinement (laser fusion reactor). These two approaches and their specific problems as well as past, present and future fusion experiments are treated in detail. The last part of the work is devoted to safety and environmental aspects of the potential thermonuclear aspects of the potential thermonuclear reactor, discussing such problems as fusion-specific hazards, normal operation and potential hazards, reactor incidents, environmental pollution by thermal effluents, radiological pollution, radioactive wastes and their disposal, and siting problems. (orig./GG) [de

  3. Towards nuclear fusion reactors

    International Nuclear Information System (INIS)

    1993-11-01

    The results of nuclear fusion researches in JAERI are summarized. In this report, following themes are collected: the concept of fusion reactor (including ITER), fusion reactor safety, plasma confinement, fusion reactor equipment, and so on. Includes glossary. (J.P.N.)

  4. Trends of plasma physics and nuclear fusion research life cycle and research effort curve

    International Nuclear Information System (INIS)

    Ohe, Takeru; Kanada, Yasumasa; Momota, Hiromu; Ichikawa, Y.H.

    1979-05-01

    This paper presents a quantitative analysis of research trends in the fields of plasma physics and nuclear fusion. This analysis is based on information retrieval from available data bases such as INSPEC tapes. The results indicate that plasma physics research is now in the maturation phase of its life cycle, and that nuclear fusion research is in its growth phase. This paper indicates that there is a correlation between the number of accumulated papers in the fields of plasma physics and nuclear fusion and the experimentally attained values of the plasma ignition parameter ntT. Using this correlation ''research effort curve'', we forecast that the scientific feasibility of controlled fusion using magnetic confinement systems will be proved around 1983. (author)

  5. Status and development plan of nuclear fusion research in the US

    International Nuclear Information System (INIS)

    Kang Weihong

    2012-01-01

    This paper presents the background of nuclear fusion research and current status of major devices with accomplishments in the US, as well as the national fusion plans and budgets for fusion energy development by the US government. As a fusion power in the world, the US has made significant contributions to the development of international fusion research. The strategy of fusion research developments and the accomplishments may exert a subtle influence on international fusion development situation. Withdrawing from the ITER partnership for 2 times, the US rejoined it subsequently. This paper gives a brief introduction of changes in the US fusion research policy, summarizes the implementation of ITER procurement packages undertaken by the US, and the overview of the US inertial confinement fusion re- search. The US future energy development plan is the development of magnetic confinement fusion approach in parallel with inertial confinement fusion approach. (author)

  6. Nuclear fusion research and plasma application technologies in SWIP (Southwestern Institute of Physics)

    International Nuclear Information System (INIS)

    Deng, X.W.

    1990-01-01

    A brief introduction of nuclear fusion research and plasma application technologies in SWIP is reported in this paper. The SWIP focuses its fusion efforts mainly on Tokamak with mirror as the supplemental experiments and fusion reactor conceptual design as preparation for future application of fusion energy. SWIP is making great efforts on fusion technology spin-off to make contribution towards national economic construction. (Author)

  7. Nuclear-fusion research. To bring the sun on the earh

    International Nuclear Information System (INIS)

    Zohm, Hartmut

    2009-01-01

    The course treats first the foundations of nuclear fusion. In the second part the concepts for the realization of nuclear fusion in the laboratory are described. Finally in the last part a survey on the present status of the research as well an outlook on future work is given

  8. Plasma Physics and Controlled Nuclear Fusion Research 1971. Vol. III. Proceedings of the Fourth International Conference on Plasma Physics and Controlled Nuclear Fusion Research

    International Nuclear Information System (INIS)

    1971-01-01

    The ultimate goal of controlled nuclear fusion research is to make a new energy source available to mankind, a source that will be virtually unlimited and that gives promise of being environmentally cleaner than the sources currently exploited. This goal has stimulated research in plasma physics over the past two decades, leading to significant advances in the understanding of matter in its most common state as well as to progress in the confinement and heating of plasma. An indication of this progress is that in several countries considerable effort is being devoted to design studies of fusion reactors and to the technological problems that will be encountered in realizing these reactors. This range of research, from plasma physics to fusion reactor engineering, is shown in the present three-volume publication of the Proceedings of the Fourth Conference on Plasma Physics and Controlled Nuclear Fusion Research. The Conference was sponsored by the International Atomic Energy Agency and was held in Madison, Wisconsin, USA from 17 to 23 June 1971. The enthusiastic co-operation of the University of Wisconsin and of the United States Atomic Energy Commission in the organization of the Conference is gratefully acknowledged. The Conference was attended by over 500 scientists from 24 countries and 3 international organizations, and 143 papers were presented. These papers are published here in the original language; English translations of the Russian papers will be published in a Special Supplement to the journal Nuclear Fusion. The series of conferences on Plasma Physics and Controlled Nuclear Fusion Research has become a major international forum for the presentation and discussion of results in this important and challenging field. In addition to sponsoring these conferences, the International Atomic Energy Agency supports controlled nuclear fusion research by publishing the journal Nuclear Fusion, and has recently established an International Fusion Research Council

  9. Advanced nuclear reactor and nuclear fusion power generation

    International Nuclear Information System (INIS)

    2000-04-01

    This book comprised of two issues. The first one is a advanced nuclear reactor which describes nuclear fuel cycle and advanced nuclear reactor like liquid-metal reactor, advanced converter, HTR and extra advanced nuclear reactors. The second one is nuclear fusion for generation energy, which explains practical conditions for nuclear fusion, principle of multiple magnetic field, current situation of research on nuclear fusion, conception for nuclear fusion reactor and economics on nuclear fusion reactor.

  10. International fusion research council

    International Nuclear Information System (INIS)

    Belozerov, A.N.

    1977-01-01

    A brief history of the International Fusion Research Council (IFRC) is given and the minutes of the 1976 meeting in Garching are summarized. At the Garching meeting, the IFRC evaluated the quality of papers presented at recent IAEA conferences on plasma physics and controlled thermonuclear research, and made recommendations on the organization and timing of future meetings on nuclear fusion

  11. Results of nuclear fusion development

    International Nuclear Information System (INIS)

    Yamamoto, Kenzo

    1975-01-01

    Compared with the nuclear fission research which followed that in advanced countries, Japan has treaded on its own track in nuclear fusion development; in the former, she had been far behind other leading countries. Characteristic of the efforts in Japan is the collaboration with educational institutions. Works are now carried out mainly in Tokamak plasma confinement, though other means being studied simultaneously. The nation's fusion research program is the realization of a fusion reactor at the turn of the present century, based on the world-level results attained with Tokamak. Past developments in the nuclear fusion research, the current status, and aspects for the future are discribed. (Mori, K.)

  12. Muon nuclear fusion and low temperature nuclear fusion

    International Nuclear Information System (INIS)

    Nagamine, Kanetada

    1990-01-01

    Low temperature (or normal temperature) nuclear fusion is one of the phenomena causing nuclear fusion without requiring high temperature. In thermal nuclear fusion, the Coulomb barrier is overcome with the help of thermal energy, but in the low temperature nuclear fusion, the Coulomb barrier is neutralized by the introduction of the particles having larger mass than electrons and negative charges, at this time, if two nuclei can approach to the distance of 10 -13 cm in the neutral state, the occurrence of nuclear fusion reaction is expected. As the mass of the particles is heavier, the neutral region is smaller, and nuclear fusion is easy to occur. The particles to meet this purpose are the electrons within substances and muons. The research on muon nuclear fusion became suddenly active in the latter half of 1970s, the cause of which was the discovery of the fact that the formation of muons occurs resonantly rapidly in D-T and D-D systems. Muons are the unstable elementary particles having the life of 2.2 μs, and they can have positive and negative charges. In the muon catalyzed fusion, the muons with negative charge take part. The principle of the muon catalyzed fusion, its present status and future perspective, and the present status of low temperature nuclear fusion are reported. (K.I.)

  13. Japanese fusion research

    International Nuclear Information System (INIS)

    Uchida, T.

    1987-01-01

    The Japan experience during thirty years in nuclear fusion research is reported, after attending the 1st Geneva Conference in 1955, Osaka University, immedeately began linear pinch study using capacitor bank discharge. Subsequently to his trial several groups were organized to ward fusion R and D at universities in Tokyo, Nagoya, Kyoto, Sendai and son on. Based upon the recommendation of Japan Science Council, Institut of Plasma Physics (IPP) was established at Nagoya University in 1961 When the 1st International Conference on Plasma Physics and Controlled Nuclear Fusion Research was held in Saltzburg. The gloomy Bohm barrier had stood in front of many of experiments at that time. (author) [pt

  14. Plasma physics and controlled nuclear fusion research 1994. V. 3. Proceedings of the fifteenth international conference

    International Nuclear Information System (INIS)

    1996-01-01

    This is the third volume of the proceedings of the 15th International Atomic Energy Agency Conference on Plasma Physics and Controlled Nuclear Fusion Research held in Seville, Spain, from 26 September - 1 October 1994. Contained in it are 29 papers on inertial confinement and 46 papers on magnetic confinement. Refs, figs, tabs

  15. Preparation of processed nuclear data libraries for thermal, fast and fusion research and power reactor applications

    International Nuclear Information System (INIS)

    Ganesan, S.

    1994-03-01

    A Consultants Meeting on ''Preparation of Processed Nuclear Data Libraries for Thermal, Fast and Fusion Research and Power Reactor Applications'' was convened by the International Atomic Energy Agency and held during December 13-16, 1993 December 8-10, 1993 at the IAEA Headquarters, Vienna. The detailed agenda, the complete list of participants and the recommendations are presented in this report. (author)

  16. Present status of design, research and development of nuclear fusion reactors and problems

    International Nuclear Information System (INIS)

    1983-04-01

    Seven years have elapsed since the publication of ''Progress of nuclear fusion research and perspective toward the development of power reactors'' by the Atomic Energy Society of Japan in August, 1976. During this period, the research and development of nuclear fusion have changed from plasma physics to reactor technology, being conscious of the realization of fusion reactors. There are the R project in the Institute of Plasma Physics, Nagoya University, and the design and construction of JT-60 in Japan Atomic Energy Research Institute, to put it concretely. Now the research and development taking the economical efficiency into account are adopted. However, the type of fusion reactors is not reduced to tokamak type, accordingly the research and development to meet the diverse possibilities are forwarded. The progress of tokamak reactor research, core plasma design, nuclear design and shielding design, thermal structure design, the design of superconducting magnets, disassembling and repair, safety, economical efficiency, the conceptual design of other types than tokamak and others are reported. (Kako, I.)

  17. Applications of Research Reactors Towards Research on Materials for Nuclear Fusion Technology. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2013-11-01

    Controlled nuclear fusion is widely considered to represent a nearly unlimited source of energy. Recent progress in the quest for fusion energy includes the design and current construction of the International Thermonuclear Experimental Reactor (ITER), for which a licence has recently been obtained as a first of its kind fusion nuclear installation. ITER is designed to demonstrate the scientific and technological feasibility of fusion energy production in excess of 500 MW for several consecutive minutes. ITER, however, will not be able to address all the nuclear fusion technology issues associated with the design, construction and operation of a commercial fusion power plant. The demonstration of an adequate tritium or fuel breeding ratio, as well as the development, characterization and testing of structural and functional materials in an integrated nuclear fusion environment, are examples of issues for which ITER is unable to deliver complete answers. To fill this knowledge gap, several facilities are being discussed, such as the International Fusion Materials Irradiation Facility and, eventually, a fusion demonstration power plant (DEMO). However, for these facilities, a vast body of preliminary research remains to be performed, for instance, concerning the preselection and testing of suitable materials able to withstand the high temperature and pressure, and intense radiation environment of a fusion reactor. Given their capacity for material testing in terms of available intense neutron fluxes, dedicated irradiation facilities and post-irradiation examination laboratories, high flux research reactors or material test reactors (MTRs) will play an indispensable role in the development of fusion technology. Moreover, research reactors have already achieved an esteemed legacy in the understanding of material properties and behaviour, and the knowledge gained from experiments in fission materials in certain cases can be applied to fusion systems, particularly those

  18. Research in the field of neutronics and nuclear data for fusion

    International Nuclear Information System (INIS)

    Batistoni, P.

    2001-01-01

    A reliable and validated nuclear database is required for the design of a fusion reactor. Neutrons produced by the fusion reactions between deuterium and tritium have a very peaked energy spectrum at 14 MeV, requiring a substantial extrapolation with respect to the database made available from fission studies. The correct evaluation of shielding properties, damage, nuclear heating and of tritium breeding performance in the blanket surrounding the reaction chamber is crucial to the correct reactor design. Moreover, the attractiveness of fusion relies in the low activation of the reactor components and in the minimal production of long-term radioactive waste that is pursued with development of low activation materials. Beside the materials development, Europe is carrying out a co-ordinated program for the development of adequate nuclear database and numerical tools, directed to evaluations, processing, application, and benchmarking of cross sections including uncertainty information. Experimental validation of data and of the relative uncertainties is also pursued, both on material samples and on more design-oriented experiments. A general view of the research work in the field of neutronics and nuclear data for fusion will be given in the presentation, with emphasis to the experimental validation activity.(author)

  19. Controlled Nuclear Fusion Research, September 1965: Review Of Experimental Results

    Energy Technology Data Exchange (ETDEWEB)

    Spitzer, Lyman Jr. [Princeton University, Princeton, NJ (United States)

    1966-04-15

    To my way of thinking the most significant milestone of the present meeting is the substantial body of evidence that has been presented on the hydromagnetic stabilization of open-ended systems. The success of minimum magnetic-field ('minimum-B') configurations in stabilizing a plasma marks one more area where theory and experiment in the field of plasma physics have been brought together with gratifying results. Let me go back a little into history and discuss the gradual growth of our information on hydromagnetic instabilities generally. Many of you will remember that hydromagnetic theory was applied to the self-pinched discharge in the early years of the controUed fusion programme. The predictions of this theory were very shortly fulfilled by the observations; the effects were so unmistakable that it was not difficult to compare the theory with the observations. On the streak pictures of the linear or toroidal discharges that were obtained in those early years one saw clearly the diffuse plasma column, which first contracted to a narrow filament and then started to distort and kink until finally it hit the wall. Under some conditions the plasma was observed to break up into a series of blobs like a string of sausages. Since the behaviour was exactly what the theory had predicted, it took no very great experimental wisdom to conclude that observations had confirmed theory.

  20. Development of high yield strength non-magnetic steels for the equipments of nuclear fusion research

    International Nuclear Information System (INIS)

    Matsuoka, Hidenori; Mukai, Tetsuya; Ohtani, Hiroo; Tsuruki, Takanori; Okada, Yasutaka

    1979-01-01

    Recently, activity of nuclear fusion research and so forth increase the demand of non-magnetic materials for various equipments and structures. For these usage, very low magnetic permeability as well as high strength are required under high magnetic field. Based on fundamental research, middle C-17% Cr-7% Ni-N non-magnetic steel has been developed. The developed steel shows more stable austenite phase and possesses higher yield strength and endurance limit of more than 10 kg/mm 2 , compared with 18% Cr-8% Ni austenitic steel. Also the developed steel has good ductility and toughness in spite of the high yield strength and shows better machinability than usual high Mn non- magnetic steels. The large forgings of this newly developed steel are manufactured in the works for the equipments of nuclear fusion research and confirmed good mechanical properties, high fatigue strength and low permeability. (author)

  1. Chemistry in and from nuclear fusion

    International Nuclear Information System (INIS)

    Okamoto, M.

    1989-01-01

    The time, of the realization of nuclear fusion reactor is not clear even now. However, it is generally believed that the nuclear fusion is only one candidate of the big power source for humanbeing. We may be not able to, but our children or grandchildren would be able to see the nuclear fusion reactors. The nuclear fusion development may be the last and biggest technology program for us, so it will take so long leading time. Now, we are in the first stage of this leading time, I think. As being found in the history of every technology, chemistry is essential to develop the fusion nuclear technology. To assure the safety of the nuclear fusion system, chemistry should play the main role. There have been already not a few advanced chemistry initiated by the connected technologies with the nuclear fusion researches. The nuclear fusion needs chemistry and the nuclear fusion leads some of the new phases of chemistry. (author)

  2. Recent developments in IFE safety and tritium research and considerations for future nuclear fusion facilities

    International Nuclear Information System (INIS)

    Reyes, Susana; Anklam, Tom; Meier, Wayne; Campbell, Patrick; Babineau, Dave; Becnel, James; Taylor, Craig; Coons, Jim

    2016-01-01

    Highlights: • The safety characteristics and at risk inventories in an IFE facility are discussed. • The primary nuclear hazard is the potential exposure of workers and/or the public to tritium and/or neutronically activated products. • Recent technology developments in tritium processing are key for minimization of inventories. • Initial safety studies indicate that hazards associated to the use of liquid lithium can be appropriately managed. • Simulation of worst-case scenarios indicate that the accident consequences are limited and below the limit for public evacuation. - Abstract: Over the past five years, the fusion energy group at Lawrence Livermore National Laboratory (LLNL) has made significant progress in the area of safety and tritium research for Inertial Fusion Energy (IFE). Focus has been driven towards the minimization of inventories, accident safety, development of safety guidelines and licensing considerations. Recent technology developments in tritium processing and target fill have had a major impact on reduction of tritium inventories in the facility. A safety advantage of inertial fusion energy using indirect-drive targets is that the structural materials surrounding the fusion reactions can be protected from target emissions by a low-pressure chamber fill gas, therefore eliminating plasma-material erosion as a source of activated dust production. An important inherent safety advantage of IFE when compared to other magnetic fusion energy (MFE) concepts that have been proposed to-date (including ITER), is that loss of plasma control events with the potential to damage the first wall, such as disruptions, are non-conceivable, therefore eliminating a number of potential accident initiators and radioactive in-vessel source term generation. In this paper, we present an overview of the safety assessments performed to-date, comparing results to the US DOE Fusion Safety Standards guidelines and the recent lessons-learnt from ITER safety and

  3. Recent developments in IFE safety and tritium research and considerations for future nuclear fusion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Susana, E-mail: reyes20@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA (United States); Anklam, Tom; Meier, Wayne; Campbell, Patrick [Lawrence Livermore National Laboratory, Livermore, CA (United States); Babineau, Dave; Becnel, James [Savannah River National Laboratory, Aiken, SC (United States); Taylor, Craig; Coons, Jim [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-11-01

    Highlights: • The safety characteristics and at risk inventories in an IFE facility are discussed. • The primary nuclear hazard is the potential exposure of workers and/or the public to tritium and/or neutronically activated products. • Recent technology developments in tritium processing are key for minimization of inventories. • Initial safety studies indicate that hazards associated to the use of liquid lithium can be appropriately managed. • Simulation of worst-case scenarios indicate that the accident consequences are limited and below the limit for public evacuation. - Abstract: Over the past five years, the fusion energy group at Lawrence Livermore National Laboratory (LLNL) has made significant progress in the area of safety and tritium research for Inertial Fusion Energy (IFE). Focus has been driven towards the minimization of inventories, accident safety, development of safety guidelines and licensing considerations. Recent technology developments in tritium processing and target fill have had a major impact on reduction of tritium inventories in the facility. A safety advantage of inertial fusion energy using indirect-drive targets is that the structural materials surrounding the fusion reactions can be protected from target emissions by a low-pressure chamber fill gas, therefore eliminating plasma-material erosion as a source of activated dust production. An important inherent safety advantage of IFE when compared to other magnetic fusion energy (MFE) concepts that have been proposed to-date (including ITER), is that loss of plasma control events with the potential to damage the first wall, such as disruptions, are non-conceivable, therefore eliminating a number of potential accident initiators and radioactive in-vessel source term generation. In this paper, we present an overview of the safety assessments performed to-date, comparing results to the US DOE Fusion Safety Standards guidelines and the recent lessons-learnt from ITER safety and

  4. Nuclear physics for nuclear fusion

    International Nuclear Information System (INIS)

    Li Xingzhong; Liu Bin; Wei Qingming; Ren Xianzhe

    2004-01-01

    The D-T fusion cross-section is calculated using quantum mechanics with the model of square nuclear potential well and Coulomb potential barrier. The agreement between ENDF data and the theoretically calculated results is well in the range of 0.2-280 keV. It shows that the application of Breit-Wigner formula is not suitable for the case of the light nuclei fusion reaction. When this model is applied to the nuclear reaction between the charged particles confined in a lattice, it explains the 'abnormal phenomena'. It implies a prospect of nuclear fusion energy without strong nuclear radiations

  5. Discourse, Power, and Knowledge in the Management of "Big Science": The Production of Consensus in a Nuclear Fusion Research Laboratory.

    Science.gov (United States)

    Kinsella, William J.

    1999-01-01

    Extends a Foucauldian view of power/knowledge to the archetypical knowledge-intensive organization, the scientific research laboratory. Describes the discursive production of power/knowledge at the "big science" laboratory conducting nuclear fusion research and illuminates a critical incident in which the fusion research…

  6. Nuclear fusion - a strategic approach

    International Nuclear Information System (INIS)

    Colombo, U.

    1989-01-01

    Aspects of nuclear fusion research with particular reference to Europe are reviewed. The energy scenario with regard to nuclear fusion is considered including economic, political and scientific problems of energy policy in view of the long-term research effort required. Mention is also made of the need to phase out the use of fossil fuels for environmental reasons. Research into magnetic and inertial confinement fusion is considered. It is concluded that the development of thermonuclear reactors will eventually be brought to practical fruition. (UK)

  7. Fusion research in Hungary

    International Nuclear Information System (INIS)

    Zoletnik, S.

    2004-01-01

    Hungarian fusion research started in the 1970s, when the idea of installing a small tokamak experiment emerged. In return to computer equipment a soviet tokamak was indeed sent to Hungary and started to operate as MT-1 at the Central Research Institute for Physics (KFKI) in 1979. Major research topics included diagnostic development, edge plasma studies and investigation of disruptions. Following a major upgrade in 1992 (new vacuum vessel, active position control and PC network based data acquisition system) the MT-1M tokamak was used for the study of transport processes with trace impurity injection, micropellet ablation studies, X-ray tomography and laser blow-off diagnostic development. Although funding ceased in the middle of the 90's the group was held alive by collaborations with EU fusion labs: FZ -Juelich, IPP-Garching and CRPP-EPFL Lausanne. In 1998 the machine was dismantled due to reorganization of the Hungarian Academy of Sciences. New horizons opened to fusion research from 1999, when Hungary joined EURATOM and a fusion Association was formed. Since then fusion physics studies are done in collaboration with major EU fusion laboratories, Hungarian researchers also play an active role in JET diagnostics upgrade and ITER design. Major topics are pellet ablation studies, plasma turbulence diagnosis using Beam Emission Spectroscopy and other techniques, tomography and plasma diagnostics using various neutral beams. In fusion relevant technology R and D Hungary has less records. Before joining EURATOM some materials irradiation studies were done at the Budapest Research Reactor at KFKI-AEKI. The present day fusion technology programme focuses still on irradiation studies, nuclear material database and electromagnetic testing techniques. Increasing the fusion technology research activities is a difficult task, as the competition in Hungarian industry is very strong and the interest of organizations in long-term investments into R and D is rather weak and

  8. Papers presented at the fourteenth international conference on plasma physics and controlled nuclear fusion research

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains the contributions of the CIEMAT's Fusion Unit to the 14th International Conference on Plasma Physics and Controlled Nuclear Fusion Research that was held by the International Atomic Energy Agency in Wurzburg, Germany from 30 September to 7 October 1992. Three papers were presented that summarized the main lines of work done in the Unit during the previous two years: The first one on the theoretical advances in the understanding of the Flexible Heliac TJ-II under construction, the second on the confinement studies performed in the operating TJ-I Tokamak and the third one on the description of the physical properties of the soon to be started TJ-IU Torsatron. (Author) 25 refs

  9. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    Science.gov (United States)

    Rieth, M.; Dudarev, S. L.; Gonzalez de Vicente, S. M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D. E. J.; Balden, M.; Baluc, N.; Barthe, M.-F.; Basuki, W. W.; Battabyal, M.; Becquart, C. S.; Blagoeva, D.; Boldyryeva, H.; Brinkmann, J.; Celino, M.; Ciupinski, L.; Correia, J. B.; De Backer, A.; Domain, C.; Gaganidze, E.; García-Rosales, C.; Gibson, J.; Gilbert, M. R.; Giusepponi, S.; Gludovatz, B.; Greuner, H.; Heinola, K.; Höschen, T.; Hoffmann, A.; Holstein, N.; Koch, F.; Krauss, W.; Li, H.; Lindig, S.; Linke, J.; Linsmeier, Ch.; López-Ruiz, P.; Maier, H.; Matejicek, J.; Mishra, T. P.; Muhammed, M.; Muñoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Opschoor, J.; Ordás, N.; Palacios, T.; Pintsuk, G.; Pippan, R.; Reiser, J.; Riesch, J.; Roberts, S. G.; Romaner, L.; Rosiński, M.; Sanchez, M.; Schulmeyer, W.; Traxler, H.; Ureña, A.; van der Laan, J. G.; Veleva, L.; Wahlberg, S.; Walter, M.; Weber, T.; Weitkamp, T.; Wurster, S.; Yar, M. A.; You, J. H.; Zivelonghi, A.

    2013-01-01

    The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme's main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.

  10. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    International Nuclear Information System (INIS)

    Rieth, M.; Dudarev, S.L.; Gonzalez de Vicente, S.M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D.E.J.; Balden, M.; Baluc, N.; Barthe, M.-F.; Basuki, W.W.; Battabyal, M.; Becquart, C.S.; Blagoeva, D.; Boldyryeva, H.

    2013-01-01

    The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme’s main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.

  11. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Rieth, M., E-mail: Michael.rieth@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Dudarev, S.L. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Gonzalez de Vicente, S.M. [EFDA-Close Support Unit, Garching (Germany); Aktaa, J. [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Ahlgren, T. [University of Helsinki, Department of Physics, Helsinki (Finland); Antusch, S. [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Armstrong, D.E.J. [Department of Materials, University of Oxford (United Kingdom); Balden, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Baluc, N. [Centre de Recherches en Physique des Plasmas, CRPP EPFL - Materials, 5232 Villigen/PSI (Switzerland); Barthe, M.-F. [CNRS, UPR3079 CEMHTI, 1D Avenue, de la Recherche Scientifique, 45071 Orleans cedex 2 (France); Universite d' Orleans, Polytech ou Faculte des Sciences, Avenue du Parc Floral, BP 6749, 45067 Orleans cedex 2 (France); Basuki, W.W. [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Battabyal, M. [Centre de Recherches en Physique des Plasmas, CRPP EPFL - Materials, 5232 Villigen/PSI (Switzerland); Becquart, C.S. [Unite Materiaux et Transformations, UMR 8207, 59655 Villeneuve d' Ascq (France); Blagoeva, D. [NRG, Nuclear Research and consultancy Group, Petten (Netherlands); Boldyryeva, H. [Institute of Plasma Physics, Za Slovankou 3, 18200 Praha (Czech Republic); and others

    2013-01-15

    The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme's main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.

  12. Controlled Nuclear Fusion.

    Science.gov (United States)

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  13. International fusion research

    International Nuclear Information System (INIS)

    Pease, R.S.

    1983-01-01

    Nuclear energy of the light elements deuterium and lithium can be released if the 100 MK degree temperature required for deuterium-tritium thermonuclear fusion reactions can be achieved together with sufficient thermal insulation for a net energy yield. Progress of world-wide research shows good prospect for these physical conditions being achieved by the use of magnetic field confinement and of rapidly developing heating methods. Tokamak systems, alternative magnetic systems and inertial confinement progress are described. International co-operation features a number of bilateral agreements between countries: the Euratom collaboration which includes the Joint European Torus, a joint undertaking of eleven Western European nations of Euratom, established to build and operate a major confinement experiment; the development of co-operative projects within the OECD/IEA framework; the INTOR workshop, a world-wide study under IAEA auspices of the next major step in fusion research which might be built co-operatively; and assessments of the potential of nuclear fusion by the IAEA and the International Fusion Research Council. The INTOR (International Tokamak Reactor) studies have outlined a major plant of the tokamak type to study the engineering and technology of fusion reactor systems, which might be constructed on a world-wide basis to tackle and share the investment risks of the developments which lie ahead. This paper summarizes the recent progress of research on controlled nuclear fusion, featuring those areas where international co-operation has played an important part, and describes the various arrangements by which this international co-operation is facilitated. (author)

  14. Future on the ITER program. On a branch of research on nuclear fusion

    International Nuclear Information System (INIS)

    Masaike, Akira

    2000-01-01

    As a huge cost for research and development of nuclear fusion is required, some international cooperative research such as ITER program have been intended to promote, to which Japanese response is required. As the program can be understood on its meaning at a viewpoint of promotion of basic science, concept on a key of energy problem is not insufficient yet And, its effect on technical problems and environment cannot be neglected Here was shown some proposals necessity for discussion on how the program had to be promoted under consideration of these problems. When a large scale program consuming national budget will be carried out, it is natural that agreement of national peoples must be obtained. Regretfully, in Japan discussion on science program above all nuclear policy has scarcely been experienced at citizens' levels, and some bitter experiences, where the concerned have promoted it in one side under a concept without any change once decided, have been pressured without any response to scientific advancements and social changes. Therefore, future plan on the nuclear fusion must be carried out a number of thorough discussion at a wide range from various viewpoints such as its realizing feasibility, safety, economics, and so forth, to promote careful adaptabilities. And, the concerned under promotion of the program and the relatives in the academic community seem to have a responsibility to easily explain present condition and scope of the plan to not only scientists but also citizens to awake them to promote its discussion with them. (G.K.)

  15. Developement of technologies for nuclear fusion at the Karlsruhe Research Center. Pt. 1

    International Nuclear Information System (INIS)

    Bahm, W.; Dammertz, G.; Glugla, M.; Janeschitz, G.; Komarek, P.; Mack, A.

    2002-01-01

    The planned ITER plant needs plasma heating powers of approx. 70-150 MW. Work performed at the Karlsruhe Research Center under this heading mainly comprises the development of microwave oscillators (gyrotrons) and their use for an electron cyclotron resonance heating system and for non-inductive plasma current operation. The plasma, which is approx. 100 million C hot, is confined in a 'magnetic cage' so as to avoid any contact with the wall structures of the vacuum vessel. Building up a magnetic field of this magnitude requires field strengths of at least 2-5 tesla in the plasma; field strengths of 11-13 tesla at the magnet coils are required for future fusion plants, such as ITER. Consequently, the development of the required future superconducting magnet coils enjoys high priority. The blanket, i.e. the enclosure around the combustion chamber of a fusion reactor, plays a major role in the design of a future fusion power plant. Blanket concepts meeting technical requirements are being developed and studied. A blanket must meet three requirements: It must convert the neutron energy into heat, breed the tritium fuel by nuclear reactions, and shield the magnets from neutron and gamma radiations. The fuel cycle of fusion reactors is determined by the gaseous phase of the two hydrogen isotopes, deuterium and tritium. In general, hydrogen handling technologies have been developed to a high level, but can be transferred to the handling of deuterium and radioactive tritium only to a very limited extent. Consequently, the necessary development work is carried out. The state of the plasma, also with respect to its purity, is a factor of special importance, as impurities will cause the plasma to dissolve and thus the fusion reaction to break down. Primary vacuum pumps, another area of activity of the Karlsruhe Research Center, first must evacuate the reactor vessel and then, during operation, maintain the necessary atmosphere. (orig.) [de

  16. Cold nuclear fusion device

    International Nuclear Information System (INIS)

    Ogino, Shinji.

    1991-01-01

    Selection of cathode material is a key to the attainment of cold nuclear fusion. However, there are only few reports on the cathode material at present and an effective development has been demanded. The device comprises an anode and a cathode and an electrolytic bath having metal salts dissolved therein and containing heavy water in a glass container. The anode is made of gold or platinum and the cathode is made of metals of V, Sr, Y, Nb, Hf or Ta, and a voltage of 3-25V is applied by way of a DC power source between them. The metal comprising V, Sr, Y, Nb, Hf or Ta absorbs deuterium formed by electrolysis of heavy water effectively to cause nuclear fusion reaction at substantially the same frequency and energy efficiency as palladium and titanium. Accordingly, a cold nuclear fusion device having high nuclear fusion generation frequency can be obtained. (N.H.)

  17. RO5: proposal of a relevant facility in nuclear fusion research

    International Nuclear Information System (INIS)

    Pouzo, J.

    1987-01-01

    The RO5 project is a proposal of an experiment in nuclear fusion research based in a plasma focus device. The main research scopes of the experiment, with respect to the scaling law foundations and the identification of the main nuclear reaction mechanisms, are discussed. A practical aim of the experiment is to reach 10 14 - 10 15 neutrons/pulse from D-D reactions in the plasma focus using a 3 MJ capacitor bank. It represents an energy efficience of around a 5% when D-T mixture is used as filling gas in the reactor (RO5 = Reactor of 5% in energy efficience). A first RO5 design obtained with a 2D snowplow model and taken into account the operation limits recently found, is presented. (author) [pt

  18. Plasma Physics and Controlled Nuclear Fusion Research. Vol. II. Proceedings of a Conference on Plasma Physics and Controlled Physics Research

    International Nuclear Information System (INIS)

    1966-01-01

    Research on controlled nuclear fusion was first disclosed at the Second United Nations Conference on the Peaceful Uses of Atomic Energy, held at Geneva in 1958. From the information given, it was evident that a better understanding of the behaviour of hot dense plasmas was needed before the goal of economic energy release from nuclear fusion could be reached. The fact that research since then has been most complex and costly has enhanced the desirability of international co-operation and exchange of information and experience. Having organized its First Conference on Plasma Physics and Controlled Nuclear Fusion Research at Salzburg in 1961, the International Atomic Energy Agency again provided the means for such cooperation in organizing its Second Conference on this subject on 6-10 September, 1965, at Culham, Abingdon, Berks, England. The meeting was arranged with the generous help of the United Kingdom Atomic Energy Authority at their Culham Laboratory, where the facilities and assistance of the staff were greatly appreciated. At the meeting, which was attended by 268 participants from 26 member states and three international organizations, significant results from many experiments, including those from the new and larger machines, became available. It has now become feasible to intercorrelate data obtained from a number of similar machines; this has led to a more complete understanding of plasma behaviour. No breakthrough was reported nor had been expected towards the economical release of the energy from fusion, but there was increased understanding of the problems of production, control and containment of high-density and high-temperature plasmas

  19. Fusion energy and nuclear liability considerations

    International Nuclear Information System (INIS)

    Fork, William E.; Peterson, Charles H.

    2014-01-01

    For over 60 years, fusion energy has been recognised as a promising technology for safe, secure and environmentally-sustainable commercial electrical power generation. Over the past decade, research and development programmes across the globe have shown progress in developing critical underlying technologies. Approaches ranging from high-temperature plasma magnetic confinement fusion to inertial confinement fusion are increasingly better understood. As scientific research progresses in its aim to achieve fusion 'ignition', where nuclear fusion becomes self-sustaining, the international legal community should consider how fusion power technologies fit within the current nuclear liability legal framework. An understanding of the history of the civil nuclear liability regimes, along with the different risks associated with fusion power, will enable nations to consider the proper legal conditions needed to deploy and commercialise fusion technologies for civil power generation. This note is divided into three substantive parts. It first provides background regarding fusion power and describes the relatively limited risks of fusion technologies when compared with traditional nuclear fission technologies. It then describes the international nuclear liability regime and analyses how fusion power fits within the text of the three leading conventions. Finally, it examines how fusion power may fall within the international nuclear liability framework in the future, a discussion that includes possible amendments to the relevant international liability conventions. It concludes that the unique nature of the current civil nuclear liability regime points towards the development of a more tailored liability solution because of the reduced risks associated with fusion power. (authors)

  20. Fusion research activities in China

    International Nuclear Information System (INIS)

    Deng Xiwen

    1998-01-01

    The fusion program in China has been executed in most areas of magnetic confinement fusion for more than 30 years. Basing on the situation of the power supply requirements of China, the fusion program is becoming an important and vital component of the nuclear power program in China. This paper reviews the status of fusion research and next step plans in China. The motivation and goal of the Chinese fusion program is explained. Research and development on tokamak physics and engineering in the southwestern institute of physics (SWIP) and the institute of plasma physics of Academic Sinica (ASIPP) are introduced. A fusion breeder program and a pure fusion reactor design program have been supported by the state science and technology commission (SSTC) and the China national nuclear corporation (CNNC), respectively. Some features and progress of fusion reactor R and D activities are reviewed. Non fusion applications of plasma science are an important part of China fusion research; a brief introduction about this area is given. Finally, an introductional collaboration network on fusion research activities in China is reported. (orig.)

  1. Present status of nuclear fusion research and development in JAERI. 1984 ed.

    International Nuclear Information System (INIS)

    1984-01-01

    This year is the 10th year in the ''Second stage nuclear fusion research and development project'', and the main plan to construct a critical plasma testing apparatus, JT-60, is about to be completed. The test of the power source and control system, and the assembling of the main body were finished, and the final general test is about to be started. In foreign countries, already experiment was begun with the TFTR and the JET, and the formation of the plasma at 20 million deg with the containment time of about 0.3 sec was accomplished. The results of heating experiment by incorporating heating devices are anxiously waited for. As the next generation projects, the conceptual design of the burning core experiment aiming at the attainment of self ignition condition was started in USA, and the next European torus is to be developed in EC before reaching the prototype DEMO. In Japan, it is intended to advanced to the attainment of self ignition condition and an experimental reactor for verifying nuclear fusion technology. In USSR, the construction of a superconducting tokamak T-15 is likely to be completed in 1986. The international cooperation is expected because of the financial condition of respective countries. (Kako, I.)

  2. Nuclear fusion power

    International Nuclear Information System (INIS)

    Dinghee, D.A.

    1983-01-01

    In this chapter, fusion is compared with other inexhaustible energy sources. Research is currently being conducted both within and outside the USA. The current confinement principles of thermonuclear reactions are reveiwed with the discussion of economics mainly focusing on the magnetic confinement concepts. Environmental, health and safety factors are of great concern to the public and measures are being taken to address them. The magnetic fusion program logic and the inertial fusion program logic are compared

  3. Integrated Approach to Dense Magnetized Plasmas Applications in Nuclear Fusion Technology. Report of a Coordinated Research Project 2007-2011

    International Nuclear Information System (INIS)

    2013-04-01

    Through its coordinated research activities, the IAEA promotes the development and application of nuclear technologies in Member States. The scientific and technical knowledge required for the construction and operation of large nuclear fusion research facilities, including ITER and the Laser Megajoule in France, and the Z machine and the National Ignition Facility in the United States of America, necessitates several accompanying research and development programmes in physics and technology. This is particularly true in the areas of materials science and fusion technology. Hence, the long standing IAEA effort to conduct coordinated research projects (CRPs) in these areas is aimed at: (i) the development of appropriate technical tools to investigate the issue of materials damage and degradation in a fusion plasma environment; and (ii) the emergence of a knowledge based understanding of the various processes underlying materials damage and degradation, thereby leading to the identification of suitable candidate materials fulfilling the stringent requirements of a fusion environment in any next step facility. Dense magnetized plasma (DMP) devices serve as a first test bench for testing of fusion relevant plasma facing materials, diagnostic development and calibration, technologies and scaling to conceptual principles of larger devices while sophisticated testing facilities such as the International Fusion Materials Irradiation Facility (IFMIF) are being designed. The CRP on Integrated Approach to Dense Magnetized Plasmas Applications in Nuclear Fusion Technology described herein was initiated in 2007 with the participation of 12 research institutions in 8 Member States and was concluded in 2011. It was designed with specific research objectives falling into two main categories: support to mainstream fusion research and development of DMP technology. This publication is a compilation of the individual reports submitted by the 12 CRP participants. These reports discuss

  4. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume II

    International Nuclear Information System (INIS)

    Abdou, M.

    1984-10-01

    The Nuclear Fusion Issues chapter contains a comprehensive list of engineering issues for fusion reactor nuclear components. The list explicitly defines the uncertainties associated with the engineering option of a fusion reactor and addresses the potential consequences resulting from each issue. The next chapter identifies the fusion nuclear technology testing needs up to the engineering demonstration stage

  5. Report of 6th research meeting on basic process of fuel cycle for nuclear fusion reactors, Yayoi Research Group; 3rd expert committee on research of nuclear fusion fuel material correlation basis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In this report, the lecture materials of Yayoi Research Group, 6th research meeting on basic process of fuel cycle for nuclear fusion reactors which was held at the University of Tokyo on March 25, 1996, are collected. This workshop was held also as 3rd expert committee on research of nuclear fusion fuel material correlation basis of Atomic Energy Society of Japan. This workshop has the character of the preparatory meeting for the session on `Interface effect in nuclear fusion energy system` of the international workshop `Interface effect in quantum energy system`, and 6 lectures and one comment were given. The topics were deuterium transport in Mo under deuterium ion implantation, the change of the stratum structure of graphite by hydrogen ion irradiation, the tritium behavior in opposing materials, the basic studies of the irradiation effects of solid breeding materials, the research on the behavior of hydroxyl group on the surface of solid breeding materials, the sweep gas effect on the surface of solid breeding materials, and the dynamic behavior of ion-implanted deuterium in proton-conductive oxides. (K.I.)

  6. Outline of Summary Meeting on Nuclear Fusion Research by Grant-in-Aid (1986-1989) by Monbusho

    International Nuclear Information System (INIS)

    Ishino, Shiori; Nakazawa, Masaharu; Iguchi, Tetsuo

    1990-01-01

    The Summary Meeting on Nuclear Fusion Research by Grant-in-Aid (1986∼1989) of Monbusho was held on Jan. 30∼Feb. 1, 1989 at Gakushi-kaikan in Tokyo. About 300 papers were presented on the research activities as well as some special topics. (author)

  7. Plasma nuclear fusion method

    International Nuclear Information System (INIS)

    Yamazaki, Shunpei; Miyanaga, Shoji; Wakaizumi, Kazuhiro; Takemura, Yasuhiko.

    1990-01-01

    Nuclear fusion reactions are attained by plasma gas phase reactions using magnetic fields and microwaves, and the degree of the reactions is controlled. That is, deuterium (D 2 ) is introduced into a plasma container by utilizing the resonance of microwaves capable of generating plasmas at high density higher by more than 10 - 10 3 times as compared with the high frequency and magnetic fields, and an electric energy is applied to convert gaseous D 2 into plasmas and nuclear fusion is conducted. Further, the deuterium ions in the plasmas are attracted to a surface of a material causing nuclear fusion under a negatively biased electric field from the outside (typically represented by Pd or Ti). Then, deuterium nuclei (d) or deuterium ions collide to the surface of the cathode on the side of palladium to conduct nuclear reaction at the surface or the inside (vicinity) thereof. However, a DC bias is applied as an external bias with the side of the palladium being negative. The cold nuclear fusion was demonstrated by placing a neutron counter in the vicinity of the container and confirming neutrons generated there. (I.S.)

  8. Nuclear fusion: The issues

    International Nuclear Information System (INIS)

    Griffin, R.D.

    1993-01-01

    The taming of fusion energy, has proved one of the most elusive quests of modern science. For four decades, the United States has doggedly pursued energy's holy grail, pumping more than $9 billion into research and reactor prototypes. This year, the federal government is slated to spend $339 million on fusion, more than the combined amount the government will spend for research on oil, natural gas, solar power, wind power, geothermal energy, biofuels and conservation. This article summarizes the technical, political in terms of international cooperation, economic, planning, etc. issues surrounding the continued development of fusion as a possible power source for the next century. Brief descriptions of how fusion works and of the design of a tokamak fusion machine are included

  9. Catalogue of nuclear fusion codes - 1976

    International Nuclear Information System (INIS)

    1976-10-01

    A catalogue is presented of the computer codes in nuclear fusion research developed by JAERI, Division of Thermonuclear Fusion Research and Division of Large Tokamak Development in particular. It contains a total of about 100 codes under the categories: Atomic Process, Data Handling, Experimental Data Processing, Engineering, Input and Output, Special Languages and Their Application, Mathematical Programming, Miscellaneous, Numerical Analysis, Nuclear Physics, Plasma Physics and Fusion Research, Plasma Simulation and Numerical Technique, Reactor Design, Solid State Physics, Statistics, and System Program. (auth.)

  10. Energy by nuclear fusion

    International Nuclear Information System (INIS)

    Buende, R.; Daenner, W.; Herold, H.; Raeder, J.

    1976-12-01

    This report reviews the state of knowledge in a number of fields of fusion research up to autumn 1976. Section 1 gives a very brief presentation of the elementary fusion reactions, the energies delivered by them and the most basic energy balances leading to Lawson-type diagrams. Section 2 outlines the reserves and cost of lithium and deuterium, gives estimates of the total energy available from DT fusion and comments on production technology, availlability and handling of the fuels. In section 3 a survey is given of the different concepts of magnetic confinement (stellarators, tokamaks, toroidal pinches, mirror machines, two-component plasmas), of confinement by walls, gas blankets and imploding liners and, finally, of the concepts of interial confinement (laser fusion, beam fusion). The reactors designed or outlined on the basis of the tokamak, high-β, mirror, and laser fusion concepts are presented in section 4, which is followed in section 5 by a discussion of the key problems of fusion power plants. The present-day knowledge of the cost structure of fusion power plants and the sensitivity of this structure with respect to the physical and technical assumptions made is analysed in section 6. Section 7 and 8 treat the aspects of safety and environment. The problems discussed include the hazard potentials of different designs (radiological, toxicological, and with respect to stored energies), release of radioactivity, possible kinds of malfunctioning, and the environmental impact of waste heat, radiation and radioactive waste (orig.) [de

  11. An archival study on the nuclear fusion research in Japan later half of 1980's. An interview with SEKIGUCHI Tadashi, Professor Emeritus at the University of Tokyo

    International Nuclear Information System (INIS)

    Nisio, Sigeko; Uematsu, Eisui; Obayashi, Haruo

    2003-05-01

    An interview record with SEKIGUCHI Tadashi, Professor Emeritus at The University of Tokyo, on the nuclear fusion researches in Japan later half of 1980's is given. The major topics concerned are: activities of Science Council of Japan, the establishment of the Japan Society of Plasma Science and Nuclear Fusion Research, the history of establishing National Institute for Fusion Science, and effects of Grant-in-Aid for Scientific Research, and others. (author)

  12. Progress report on research and development work 1983 of the nuclear fusion project

    International Nuclear Information System (INIS)

    Finken, D.

    1984-02-01

    The studies of the Kernforschungszentrum Karlsruhe on fusion using magnetic confinement are included in the nuclear fusion project and embedded into the European Fusion Technology Programme. The studies are promoted via an association contract between KfK and Euratom by the European Commission. Some of the studies exceed the volume defined in the technology programme. These contributions, most of them studies, help to connect the various sectors and prepare new tasks, with regard to the extension of the technology programme to be expected in the coming years and the planning activities for NET. The reports summarized here are contributions of the institutes and thus arranged according to organization units. The tasks which the KfK has taken over from the Fusion Technology Programme of the EC are compiled in the appendix. (orig./GG) [de

  13. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    Czech Academy of Sciences Publication Activity Database

    Rieth, M.; Dudarev, S.L.; Gonzalez de Vicente, S.M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D.E.J.; Balden, M.; Baluc, N.; Barthe, M.-F.; Basuki, W.W.; Battabyal, M.; Becquart, C.S.; Blagoeva, N.; Boldyryeva, Hanna; Brinkmann, J.; Celino, M.; Ciupinski, L.; Correia, J.B.; De Backer, A.; Domain, C.; Gaganidze, E.; García-Rosales, C.; Gibson, J.; Gilbert, M.R.; Giusepponi, S.; Gludovatz, B.; Greuner, H.; Heinola, K.; Höschen, T.; Hoffmann, A.; Holstein, A.; Koch, F.; Krauss, W.; Li, H.; Lindig, S.; Linke, J.; Linsmeier, Ch.; López-Ruiz, P.; Maier, H.; Matějíček, Jiří; Mishra, T.P.; Muhammed, M.; Muñoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Opschoor, J.; Ordás, N.; Palacios, Y.; Pintsuk, G.; Pippan, R.; Reiser, J.; Riesch, J.; Roberts, S. G.; Romaner, L.; Rosiński, M.; Sanchez, M.; Schulmeyer, W.; Traxler, H.; Ureña, G.; van der Laan, J.G.; Veleva, L.; Wahlberg, S.; Walter, M.; Weber, T.; Weitkamp, T.; Wurster, S.; Yar, M.A.; You, J.H.; Zivelonghi, A.

    2013-01-01

    Roč. 432, 1-3 (2013), s. 482-500 ISSN 0022-3115 Institutional support: RVO:61389021 Keywords : tungsten * joining * composites * graded materials * fusion materials Subject RIV: JF - Nuclear Energetics Impact factor: 2.016, year: 2013 http://www.sciencedirect.com/science/article/pii/S0022311512004278

  14. Collection of summaries of reports on result of research at basic experiment device for nuclear fusion reactor blanket design, 1995

    International Nuclear Information System (INIS)

    1996-07-01

    This report meeting was held on May 22, 1995 at University of Tokyo by about 40 participants. As the topics on the fusion reactor engineering research in Japan, lectures were given on the present state and future of nuclear fusion networks and on the strong magnetic field tokamak using electromagnetic force-balanced coils being planned. Thereafter, the reports of the results of the researches which were carried out by using this experimental facility were made, centering around the subject related to the future conception 'The interface properties of fusion reactor materials and particle transport control'. The publication was made on the future conception of the basic experiment setup for fusion reactor blanket design, the application of high temperature superconductors to the advancement of nuclear fusion reactors, the modeling of the dynamic irradiation behavior of fusion reactor materials, the interface particle behavior in plasma-wall interaction, the behavior of tritium on the surface of breeding materials, and breeding materials and the behavior of tritium in plasma-wall interaction. (K.I.)

  15. Progress of laser fusion research

    International Nuclear Information System (INIS)

    Yamanaka, Chiyoe

    1988-01-01

    The history of the research on nuclear fusion utilizing laser is described. It started in USSR in 1968, but the full scale start of laser implosion nuclear fusion was in 1972. In Osaka University, nuclear fusion neutrons were detected with a solid deuterium target and the phenomenon of parametric abnormal absorption in laser plasma was found in 1971. The new type target for implosion nuclear fusion ''Canon ball'' was devised in 1975. The phenomenon of the abnormal transmission of laser beam through a thin metal film in a multiple film target was found in 1976, and named ''Osaka effect''. Also the development of lasers has been advanced, and in 1983, a largest glass laser in the world, Gekko 12, with 12 beams, 30 kJ output, 55 TW, was completed. The new target LHART was devised, which enabled the generation of 10 trillion D-T reaction neutrons. Due to the development of high power laser technology, the realization of the new design of fuel pellets, the evaluation of the data by computer simulation, and the realization of new plasma diagnostic method, the research on laser nuclear fusion has developed rapidly, and the attainment of break-even is expected in 1990s. The features of inertial nuclear fusion are enumerated. (Kako, I.)

  16. Economics of fusion research

    International Nuclear Information System (INIS)

    1977-01-01

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics

  17. Economics of fusion research

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1977-10-15

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics.

  18. Application of neural networks and its prospect. 1. General comment on application to nuclear fusion and plasma researches

    International Nuclear Information System (INIS)

    Takeda, Tatsuoki

    2006-01-01

    The back ground of application of neutral networks to R and D of scientific field and increasing of application fields are stated. A definition of neural networks, the kinds of neural networks and functions, error back propagation, and generalization are explained. An application of multi-layer neural networks to nuclear fusion and plasma researches are described by inverse problem, interpolation, time series prediction, and computerized tomography. Some examples of researches such as MHD of plasma from magnetic probe data of fusion reactor systems, parameter prediction of distribution of the impurity spectra and the charge exchange neutral particle energy spectra, disruption prediction, and residual minimization training neural network are commented. (S.Y.)

  19. Nuclear fusion, an energy source of the future

    International Nuclear Information System (INIS)

    Koeppendoerfer, W.

    1994-01-01

    The paper discusses the possibility to obtain energy by nuclear fusion. It deals successively with: The physical bases of nuclear fusion, research and development with a view to harnessing nuclear fusion, properties of a fusion reactor, and programme and timetable to economic exploitation. (orig./UA) [de

  20. Nuclear fusion system

    International Nuclear Information System (INIS)

    Dow, W.G.

    1981-01-01

    The invention pertains to the method and apparatus for the confining of a stream of fusible positive ions at values of density and high average kinetic energy, primarily of tightly looping motions, to produce nuclear fusion at a useful rate; more or less intimately mixed with the fusible ions will be lowerenergy electrons at about equal density, introduced solely for the purpose of neutralizing the positive space charge of the ions

  1. JSPS-CAS Core University Program seminar on summary of 10-year collaborations in plasma and nuclear fusion research area

    International Nuclear Information System (INIS)

    Toi, Kazuo; Wang Kongjia

    2011-07-01

    The JSPS-CAS Core University Program (CUP) seminar on “Summary of 10-year Collaborations in Plasma and Nuclear Fusion Research Area” was held from March 9 to March 11, 2011 in the Okinawa Prefectural Art Museum, Naha city, Okinawa, Japan. The collaboration program on plasma and nuclear fusion started from 2001 under the auspices of Japanese Society of Promotion of Science (JSPS) and Chinese Academy of Sciences (CAS). This year is the last year of the CUP. This seminar was organized in the framework of the CUP. In the seminar, 29 oral talks were presented, having 14 Chinese and 30 Japanese participants. These presentations covered key topics related to the collaboration categories: (1) improvement of core plasma properties, (2) basic research on fusion reactor technologies, and (3) theory and numerical simulation. This seminar aims at summarizing the results obtained through the collaborations for 10 years, and discussing future prospects of China-Japan collaboration in plasma and nuclear fusion research areas. (author)

  2. Outline of cold nuclear fusion reaction

    International Nuclear Information System (INIS)

    Tachikawa, Enzo

    1991-01-01

    In 2010, as the total supply capacity of primary energy, 666 million liter is anticipated under the measures of thorough energy conservation. The development of energy sources along the energy policy based on environment preservation, safety, the quantity of resources and economy is strongly demanded. The nuclear power generation utilizing nuclear fission has been successfully carried out. As the third means of energy production, the basic research and technical development have been actively advanced on the energy production utilizing nuclear fusion reaction. The main object of the nuclear fusion research being advanced now is D-D reaction and D-T reaction. In order to realize low temperature nuclear fusion reaction, muon nuclear fusion has been studied so far. The cold nuclear fusion reaction by the electrolysis of heavy water has been reported in 1989, and its outline is ixplained in this report. The trend of the research on cold nuclear fusion is described. But the possibility of cold nuclear fusion as an energy source is almost denied. (K.I.)

  3. Fusion research at Culham site

    International Nuclear Information System (INIS)

    Tolonen, P.; Toppila, T.

    1998-01-01

    One of the many targets on the Finnish Nuclear Society (ATS) excursion to England was the Culham fusion research site. The site has divided into two parts. One of them is UKAEA Fusion with small scale fusion reactors and 200 employees. UKAEA has 3 fusion reactors at Culham site. One of is the START (Small Tight Aspect Ratio Tokamak) which was operational since 1991 but is today already out of operation. UKAEA has been operating a JET-like tokamak fusion reactor COMPASS-D since 1989. The latest of three reactors is MAST (Mega Amp Spherical Tokamak), which is still under construction. The first plasma will take place in the end of 1998. Another part of Culham site is JET (Joint European Torus), an all-European fusion undertaking with 350 employees. 150 of them are from various European countries and the rest 200 are employed by UKAEA. JET is the biggest fusion reactor ever and it represents the latest step in world wide fusion programme. In October 1997 JET achieved a world record in fusion power and energy. JET produced 16,1 MW power for 1 s and totally 21,7 MJ energy. This is the closest attempt to achieve break-even conditions. The next step in world wide fusion programme will be international ITER-reactor. This undertaking has some financial problems, since United States has taken distance to magnetic fusion research and moved closer to inertial fusion with funding of US Department of Defence. The planned reactor, however, is physically twice as big as JET. The step after this phase will be DEMO, which is purposed to produce fusion energy. According to our hosts in Culham this phase is 40 years ahead. (author)

  4. Challenges of nuclear fusion

    International Nuclear Information System (INIS)

    Kunkel, W.B.

    1987-01-01

    After 30 years of research and development in many countries, the magnetic confinement fusion experiments finally seem to be getting close to the original first goal: the point of ''scientific break-even''. Plans are being made for a generation of experiments and tests with actual controlled thermonuclear fusion conditions. Therefore engineers and material scientists are hard at work to develop the required technology. In this paper the principal elements of a generic fusion reactor are described briefly to introduce the reader to the nature of the problems at hand. The main portion of the presentation summarises the recent advances made in this field and discusses the major issues that still need to be addressed in regard to materials and technology for fusion power. Specific examples are the problems of the first wall and other components that come into direct contact with the plasma, where both lifetime and plasma contamination are matters of concern. Equally challenging are the demands on structural materials and on the magnetic-field coils, particularly in connection with the neutron-radiation environment of fusion reactors. Finally, the role of ceramics must be considered, both for insulators and for fuel breeding purposes. It is evident that we still have a formidable task before us, but at this point none of the problems seem to be insoluble. (author)

  5. ITER, an artificial sun at the hand? Myths and realities on researches in the field of nuclear fusion

    International Nuclear Information System (INIS)

    2007-01-01

    This document, published by the French association 'Sortir du nucleaire' (Get out of nuclear), gives some information on what is the nuclear fusion, the obstacles to produce nuclear fusion on Earth (why reinventing the sun?), the false promises of the experimental reactor ITER (it will not produce electricity, it will cost 10 billion euros, it will use tritium and will not be safe, it will produce 30 000 tonnes of radioactive wastes), the installation of ITER in Provence (it will cause new damages to the environment, will create jobs at a high cost and to the detriment of clean energies), the vision of ITER as a prestigious project for France with essentially military goals, a research program that is contested by several high profile physicists and is extremely expensive, etc. The paper reviews 20 years of negotiations for the ITER project, and recommends other ways to take up the energy challenge

  6. Nuclear Fusion prize laudation Nuclear Fusion prize laudation

    Science.gov (United States)

    Burkart, W.

    2011-01-01

    Clean energy in abundance will be of critical importance to the pursuit of world peace and development. As part of the IAEA's activities to facilitate the dissemination of fusion related science and technology, the journal Nuclear Fusion is intended to contribute to the realization of such energy from fusion. In 2010, we celebrated the 50th anniversary of the IAEA journal. The excellence of research published in the journal is attested to by its high citation index. The IAEA recognizes excellence by means of an annual prize awarded to the authors of papers judged to have made the greatest impact. On the occasion of the 2010 IAEA Fusion Energy Conference in Daejeon, Republic of Korea at the welcome dinner hosted by the city of Daejeon, we celebrated the achievements of the 2009 and 2010 Nuclear Fusion prize winners. Steve Sabbagh, from the Department of Applied Physics and Applied Mathematics, Columbia University, New York is the winner of the 2009 award for his paper: 'Resistive wall stabilized operation in rotating high beta NSTX plasmas' [1]. This is a landmark paper which reports record parameters of beta in a large spherical torus plasma and presents a thorough investigation of the physics of resistive wall mode (RWM) instability. The paper makes a significant contribution to the critical topic of RWM stabilization. John Rice, from the Plasma Science and Fusion Center, MIT, Cambridge is the winner of the 2010 award for his paper: 'Inter-machine comparison of intrinsic toroidal rotation in tokamaks' [2]. The 2010 award is for a seminal paper that analyzes results across a range of machines in order to develop a universal scaling that can be used to predict intrinsic rotation. This paper has already triggered a wealth of experimental and theoretical work. I congratulate both authors and their colleagues on these exceptional papers. W. Burkart Deputy Director General Department of Nuclear Sciences and Applications International Atomic Energy Agency, Vienna

  7. Frontiers in fusion research

    CERN Document Server

    Kikuchi, Mitsuru

    2011-01-01

    Frontiers in Fusion Research provides a systematic overview of the latest physical principles of fusion and plasma confinement. It is primarily devoted to the principle of magnetic plasma confinement, that has been systematized through 50 years of fusion research. Frontiers in Fusion Research begins with an introduction to the study of plasma, discussing the astronomical birth of hydrogen energy and the beginnings of human attempts to harness the Sun's energy for use on Earth. It moves on to chapters that cover a variety of topics such as: * charged particle motion, * plasma kinetic theory, *

  8. Fusion research principles

    CERN Document Server

    Dolan, Thomas James

    2013-01-01

    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  9. Future directions in fusion research

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1987-01-01

    The author discusses his analysis to quantify the priority of fusion R and D in the United States. The conclusion is that this priority has been essentially constant for 35 years with only two exceptions. He identifies four basic problems that must be solved. These problems are: to improve the scientific understanding of confinement concepts if we are going to have an energy source that can be utilized some day; to understand the physics of burning plasmas; to develop the materials for fusion use to realize the environmental potential of fusion; and to develop fusion nuclear technology. A response to these problems is given, based on the author's argument for international collaboration in fusion research

  10. Nuclear fusion and international cooperation

    International Nuclear Information System (INIS)

    Uchida, Taijiro

    1987-01-01

    Work for design, research and development is expected to start in 1988 for a new nuclear fusion reactor called ITER (international thermonuclear experimental reactor), which is to be constructed and operated through cooperation among Japan, U.S., Soviet Union and EC. Many talks and discussions concerning the work have been made on various occasions, including the Reagan-Gorbachev talks at Geneva in November 1985, 5th Fusion Working Group meeting in Germany in January 1986, extraordinary FWG meeting at Tokyo in February-March 1986, 11th International Conference on Plasma Physics and Nuclear Fusion Control held under IAEA at Kyoto in November 1986, and first formal four-party (Japan, U.S., Soviet Union, EC) meeting at the IAEA headquarters in March this year. The ITER Technical Working Group was established and its first meeting was held on May 21 - 23, 1987. It was concluded in the meeting that the operation of ITER will be performed in two phases intended for nuclear combustion plasma physics studies and stationary operation, respectively. Major research and development activities carried out in the U.S., Europe, the Soviet Union, Japan and IAEA in connection with the development of ITER are outlined. (Nogami, K.)

  11. Cell fusion and nuclear fusion in plants.

    Science.gov (United States)

    Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya

    2016-12-01

    Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Nuclear Data Libraries for Advanced Systems - Fusion Devices (FENDL 3.0). Summary report of the Third Research Coordination Meeting

    International Nuclear Information System (INIS)

    Sawan, Mohamed E.

    2012-03-01

    The third Research Co-ordination Meeting of the Nuclear Data Libraries for Advanced Systems - Fusion Devices (FENDL-3) was held at IAEA Headquarters in Vienna from 6 to 9 December 2011. A summary of the presentations given during meeting is given in this report along with the discussions that took place. A list of actions necessary to complete the library production, processing and testing are given. Details of the documents arising from the CRP were agreed. (author)

  13. Controlled Nuclear Fusion: Status and Outlook

    Science.gov (United States)

    Rose, David J.

    1971-01-01

    Presents the history, current concerns and potential developments of nuclear fusion as a major energy source. Controlled fusion research is summarized, technological feasibility is discussed and environmental factors are examined. Relationships of alternative energy sources as well as energy utilization are considered. (JM)

  14. Cold nuclear fusion

    Energy Technology Data Exchange (ETDEWEB)

    Tsyganov, E.N., E-mail: edward.tsyganov@coldfusion-power.com [Cold Fusion Power, International (United States); Bavizhev, M.D. [LLC “Radium”, Moscow (Russian Federation); Buryakov, M.G. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation); Dabagov, S.B. [RAS P.N. Lebedev Physical Institute, Leninsky pr. 53, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI, Kashirskoe shosse 31, 115409 Moscow (Russian Federation); Golovatyuk, V.M.; Lobastov, S.P. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation)

    2015-07-15

    If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction’s theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300–700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of {sup 4}He{sup ∗}.

  15. Controlled thermonuclear fusion: research on magnetic fusion

    International Nuclear Information System (INIS)

    Paris, P.J.

    1988-12-01

    Recent progress in thermonuclear fusion research indicates that the scientists' schedule for the demonstration of the scientific feasibility will be kept and that break-even will be attained in the course of the next decade. To see the implementation of ignition, however, the generation of future experiments must be awaited. These projects are currently under study. With technological research going on in parallel, they should at the same time contribute to the design of a reactor. Fusion reactors will be quite different from the fission nuclear reactors we know, and the waste of the plants will also be of a different nature. It is still too early to define the precise design of a fusion reactor. On the basis of a toric machine concept like that of the tokamak, we can, however, envisage that the problems with which we are confronted will be solved one after the other. As we have just seen, these will be the objectives of the future experimental installations where ignition will be possible and where the flux of fast neutrons will be so strong that they will allow the study of low-activation materials which will be used in the structure of the reactor. But this is also a task in which from now onwards numerous laboratories in Europe and in the world participate. The works are in fact punctiform, and often the mutual incidences can only be determined by an approach simulated by numerical codes. (author) 19 figs., 6 tabs., 8 refs

  16. Nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Takizawa, Teruhiro.

    1975-01-01

    Object: To provide a nuclear fusion apparatus which can make a disorderly magnetic field due to shell current as small as possible, thereby enhancing efficiency. Structure: On each divided end of each shell is integrally projected an auxiliary shell which has thick greater than the other portion of shell. These auxiliary shells are made of a material of high electric conductivity, and the shape of the auxiliary shells may properly be selected so that electric resistance of the auxiliary shell at the divided end of the shell to the shell current may be made smaller than the electric resistance of intermediate of the shell to the shell current. With this, the shell current is concentrated on the auxiliary shell at the divided end of the shell to form an adjacent reciprocating current between it and the shell current opposite the auxiliary shell, thus reducing the disorderly magnetic field. (Yoshihara, H.)

  17. Fusion Nuclear Data activities at FNL, IPR

    OpenAIRE

    P. M. Prajapati; B. Pandey; S. Jakhar; C.V. S. Rao; T. K. Basu; B. K. Nayak; S. V. Suryanarayana; A. Saxena

    2015-01-01

    This paper briefly describes the current fusion nuclear data activities at Fusion Neutronics Laboratory, Institute for Plasma Research. It consist of infrastructure development for the cross-section measurements of structural materials with an accelerator based 14 MeV neutron generator and theoretical study of the cross-section using advanced nuclear reaction modular codes EMPIRE and TALYS. It will also cover the proposed surrogate experiment to measure 55Fe (n, p) 55Mn using BARC-TIFR Pel...

  18. Nuclear Fusion Award 2009 speech Nuclear Fusion Award 2009 speech

    Science.gov (United States)

    Sabbagh, Steven Anthony

    2011-01-01

    This is an exceptional moment in my career, and so I want to thank all of my teachers, colleagues and mentors who have made this possible. From my co-authors and myself, many thanks to the International Atomic Energy Agency, IOP Publishing, the Nuclear Fusion journal team, and the selection committee for the great honor of receiving this award. Also gratitude to Kikuchi-sensei, not only for the inventive and visionary creation of this award, but also for being a key mentor dating back to his efforts in producing high neutron output in JT-60U. It was also a great honor to receive the award directly from IAEA Deputy Director General Burkart during the 23rd IAEA Fusion Energy Conference in Daejeon. Receiving the award at this venue is particularly exciting as Daejeon is home to the new, next-generation KSTAR tokamak device that will lead key magnetic fusion research areas going forward. I would also like to thank the mayor of Daejeon, Dr Yum Hong-Chul, and all of the meeting organizers for giving us all a truly spectacular and singular welcoming event during which the award was presented. The research leading to the award would not have been possible without the support of the US Department of Energy, and I thank the Department for the continued funding of this research. Special mention must be made to a valuable co-author who is no longer with us, Professor A. Bondeson, who was a significant pioneer in resistive wall mode (RWM) research. I would like to thank my wife, Mary, for her infinite patience and encouragement. Finally, I would like to personally thank all of you that have approached and congratulated me directly. There are no units to measure how important your words have been in this regard. When notified that our paper had been shortlisted for the 2009 Nuclear Fusion Award, my co-authors responded echoing how I felt—honored to be included in such a fine collection of research by colleagues. It was unfathomable—would this paper follow the brilliant work

  19. Safe handling and monitoring of tritium in research on nuclear fusion

    International Nuclear Information System (INIS)

    Yoshida, Yoshikazu; Naruse, Yuji

    1978-01-01

    An actual condition of technique of safety handling and monitoring of tritium in the laboratory which treated a great quantity of tritium in relation to nuclear fusion, was described. With respect to the technique of safety handling of tritium, an actual condition of the technique in the U.S.A. which had wide experience in treating a great quantity of 3 H was mainly introduced, and it was helpful to a safety measure and a reduction of tritium effluence. Glovebox, hood, and other component machinery and tools for treating 3 H were also introduced briefly. As a monitoring technique, monitoring of indoor air and air exhaust by ionization chamber-type monitor for continuous monitoring of a great quantity of gaseous tritium was mentioned. Next, monitoring of a room, the surfaces of equipments, and draining, internal exposure of the individual, and monitoring of the environment were introduced. (Kanao, N.)

  20. Nuclear fusion: power for the next century

    International Nuclear Information System (INIS)

    1980-05-01

    The basis of fusion reactions is outlined, with special reference to deuterium and tritium (from lithium, by neutron reaction) as reactants, and the state of research worldwide is indicated. The problems inherent in fusion reactions are discussed, plasma is defined, and the steps to be taken to generate electricity from controlled nuclear fusion are stated. Methods of plasma heating and plasma confinement are considered, leading to a description of the tokamak plasma confinement system. Devices under construction include the JET (Joint European Torus) Undertaking in the UK. Plans and possibilities for fusion reactors are discussed. (U.K.)

  1. Bringing together fusion research

    International Nuclear Information System (INIS)

    Leiser, M.

    1982-01-01

    The increasing involvement of the IAEA in fusion, together with the growing efforts devoted to this area, are described. The author puts forward the idea that one of the most important aspects of this involvement is in providing a world-wide forum for scientists. The functions of the IFRC (International Fusion Research Council) as an advisory group are outlined, and the role played by IFRC in the definition and objectives of INTOR (International Tokamak Reactor) are briefly described

  2. Summary report from 1. research coordination meeting on nuclear data libraries for advance systems - fusion devices (FENDL - 3)

    International Nuclear Information System (INIS)

    Trkov, A.; Forrest, R.; Mengoni, A.

    2009-03-01

    The first Research Co-ordination Meeting of the Nuclear Data Libraries for Advance Systems - Fusion Devices (FENDL - 3) was held at the IAEA Headquarters in Vienna from 2 to 5 December 2008. A summary of the meeting is given in this report along with discussions which took place. An important outcome of the meeting was the agreement to create a new FENDL-3.0 Starter Library. Finally, a list of task assignments was prepared together with the plan for future CRP activities. (author)

  3. Nuclear Data Libraries for Advanced Systems - Fusion Devices (FENDL-3). Summary report from the Second Research Coordination Meeting

    International Nuclear Information System (INIS)

    Sawan, Mohamed E.

    2010-06-01

    The second Research Co-ordination Meeting of the Nuclear Data Libraries for Advanced Systems - Fusion Devices (FENDL - 3) was held at the IAEA Headquarters in Vienna from 23 to 26 March 2010. A summary of the meeting is given in this report along with the discussions which took place. An important outcome of the meeting was the decision to provide ENDF data libraries (FENDL-3/T) by April 2011. Finally, a list of task assignments was prepared together with the plan for future CRP activities. (author)

  4. Nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Nagata, Daizaburo; Yamada, Masao.

    1974-01-01

    Object: To provide a nuclear fusion apparatus in which a magnetic limiter is disposed within a vacuum vessel, said magnetic limiter being supported in such a manner so as to not to exert mechanical action upon said vacuum vessel, thereby minimizing a force applied to the vacuum vessel to easily manufacture the vacuum vessel. Structure: The magnetic limiter disposed within the vacuum vessel is connected to one end of a supporting post which extends through the wall of the vacuum vessel through a seal portion, the other end of the supporting post being secured to a structure such as a house outside the vacuum vessel. The seal portion comprises a bellows of high spring elasticity mounted on the vacuum vessel and a seal element comprised of an electric insulator such as ceramic for connecting the bellows to the supporting post, the supporting post extending through the wall of the vacuum vessel in vacuum-tight fashion, the force applied to the magnetic limiter exerting no influence upon the vacuum vessel. (Kamimura, M.)

  5. Prospect of realizing nuclear fusion reactors

    International Nuclear Information System (INIS)

    1989-01-01

    This Report describes the results of the research work on nuclear fusion, which CRIEPI has carried out for about ten years from the standpoint of electric power utilities, potential user of its energy. The principal points are; (a) economic analysis (calculation of costs) based on Japanese analysis procedures and database of commercial fusion reactors, including fusion-fission hybrid reactors, and (b) conceptual design of two types of hybrid reactors, that is, fission-fuel producing DMHR (Demonstration Molten-Salt Hybrid Reactor) and electric-power producing THPR (Tokamak Hybrid Power Reactor). The Report consists of the following chapters: 1. Introduction. 2. Conceptual Design of Hybrid Reactors. 3. Economic Analysis of Commercial Fusion Reactors. 4. Basic Studies Applicable Also to Nuclear Fusion Technology. 5. List of Published Reports and Papers; 6. Conclusion. Appendices. (author)

  6. Conference on Norwegian fusion research

    International Nuclear Information System (INIS)

    The question of instituting a systematic research programme in Norway on aspects of thermonuclear and plasma physics has been raised. The conference here reported was intended to provide basic information on the status of fusion research internationally and to discuss a possible Norwegian programme. The main contributions covered the present status of fusion research, international cooperation, fusion research in small countries and minor laboratories, fusion research in Denmark and Sweden, and a proposed fusion experiment in Bergen. (JIW)

  7. Cold nuclear fusion. Germany 2012

    Energy Technology Data Exchange (ETDEWEB)

    Petrescu, Florian Ion

    2012-07-01

    Nuclear fusion is the process by which two or more atomic nuclei join together, or ''fuse'', to form a single heavier nucleus. During this process, matter is not conserved because some of the mass of the fusing nuclei is converted to energy which is released. The binding energy of the resulting nucleus is greater than the binding energy of each of the nuclei that fused to produce it. Fusion is the process that powers active stars. Creating the required conditions for fusion on Earth is very difficult, to the point that it has not been accomplished at any scale for protium, the common light isotope of hydrogen that undergoes natural fusion in stars. In nuclear weapons, some of the energy released by an atomic bomb (fission bomb) is used for compressing and heating a fusion fuel containing heavier isotopes of hydrogen, and also sometimes lithium, to the point of ''ignition''. At this point, the energy released in the fusion reactions is enough to briefly maintain the reaction. Fusion-based nuclear power experiments attempt to create similar conditions using far lesser means, although to date these experiments have failed to maintain conditions needed for ignition long enough for fusion to be a viable commercial power source.

  8. Fusion Nuclear Science Pathways Assessment

    Energy Technology Data Exchange (ETDEWEB)

    C.E. Kessel, et. al.

    2012-02-23

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  9. X-ray spectroscopy of highly ionized heavy ions as an advanced research for controlled nuclear fusion power

    International Nuclear Information System (INIS)

    Zschornack, G.; Musiol, G.

    1988-01-01

    Diagnostics and modelling of nuclear fusion plasmas require a detailed knowledge of atomic and molecular data for highly ionized heavy ions. Experimental verification of atomic data is made on the basis of IAEA recommendations using the method of high-resolution wavelength-dispersive X-ray spectroscopy in order to obtain contributions extensioning the available atomic data lists. Basic facilities for producing highly charged heavy ions are the electron-ion rings of the heavy ion collective accelerator and the electron beam ion source KRYON-2 at the Joint Institute for Nuclear Research at Dubna. For high-resolution X-ray spectroscopy with these sources a computer-aided crystal diffraction spectrometer has been developed the precision of which is achieved by using advanced principles of measurement and control. Relativistic atomic structure calculations have been carried out for a great number of elements and configurations to obtain data in ionization regions heavily accessible to the experiment. (author)

  10. Nuclear fusion systems analysis research. FY 1975 annual report, 1 July 1974--30 June 1975

    Energy Technology Data Exchange (ETDEWEB)

    Weatherwax, R.K. (ed.)

    1975-12-31

    This report summarizes research conducted during FY 1975 on the parametric systems analysis of fusion central power stations. As described in the report the methodology being pursued provides for a phased analysis starting with simple ''nominal'' parameters and associated computer codes and progressing to more complex functional models and then to physically based mathematical models for the systems of major significance in future power station viability. The nominal parameter analysis for preliminary screening only derives from consideration of extant reactor point designs and defines a nominal 5000 MWt reactor with either a 900 or 1250 K peak blanket coolant temperature. Functionalized performance and cost models are described for helium Brayton cycle, steam Rankine cycle and binary cycle electric power generation systems.

  11. Nuclear fusion systems analysis research. FY 1975 annual report, 1 July 1974--30 June 1975

    International Nuclear Information System (INIS)

    Weatherwax, R.K.

    1975-01-01

    This report summarizes research conducted during FY 1975 on the parametric systems analysis of fusion central power stations. As described in the report the methodology being pursued provides for a phased analysis starting with simple ''nominal'' parameters and associated computer codes and progressing to more complex functional models and then to physically based mathematical models for the systems of major significance in future power station viability. The nominal parameter analysis for preliminary screening only derives from consideration of extant reactor point designs and defines a nominal 5000 MWt reactor with either a 900 or 1250 K peak blanket coolant temperature. Functionalized performance and cost models are described for helium Brayton cycle, steam Rankine cycle and binary cycle electric power generation systems

  12. Report on research and development work 1985 on the nuclear fusion project. Annual report of the Association KfK-Euratom

    International Nuclear Information System (INIS)

    Finken, D.

    1986-05-01

    The Nuclear Research Centre Karlsruhe and the Max Planck Institute for Plasma Physics together form the Nuclear Fusion Development Association. The partners collaborate with the aim of creating the physical and technical preconditions for the use of the energy released by nuclear fusion and to plan and carry out future large-scale experiments. The work of the Nuclear Research Centre Karlsruhe on fusion with magnetic containment is included in the nuclear fusion project and is part of the European fusion technology programme. The work is supported by an association contract between KfK and Euratom by the European Commission. Connections are built up between areas of work and new projects are prepared by supplementary KfK contributions, mostly studies. This is done with regard to the expansion of the technology programme to be expected for future years and the planning activities for NET. The reports collected here are contributions of the KfK institutes in 1985. The appendix contains a list of the tasks which KfK has taken over from the fusion technology programme of the EEC. References to the institutes' contributions make the assignment of textual contributions easier. (orig.) [de

  13. The European programme for controlled nuclear fusion

    International Nuclear Information System (INIS)

    This illustrated document is intended for information only and should not be used as a technical reference. The nuclear fusion reactors are presented with the two approaches: magnetic confinement and inertial confinement; are described: the place of fusion in the world energy scene and its importance for Europe, how research is at present organized, and the European programme with this next stage: the JET (Joint European Torus), the largest tokamak machine in Europe

  14. Collection of Summaries of reports on result of research at basic experiment device for nuclear fusion reactor blanket design, 1994

    International Nuclear Information System (INIS)

    1995-07-01

    The development of nuclear fusion reactors reached such stage that the generation of fusion power output comparable with the input power into core plasma is possible. At present, the engineering design of the international thermonuclear fusion experimental reactor, ITER, is advanced by the cooperation of Japan, USA, Europe and Russia, aiming at the start of operation at the beginning of 21st century. This meeting for reporting the results has been held every year, and this time, it was held on May 19, 1995 at University of Tokyo with the theme ''The interface properties of fusion reactor materials and the control of particle transport''. About 50 participants from academic, governmental and industrial circles discussed actively on the theme. Three lectures on the topics of fusion reactor engineering and materials and seven lectures on the basic experiment of fusion reactor blanket design related to the next period project were given at the meeting. (K.I.)

  15. History of controlled nuclear fusion in Japan

    International Nuclear Information System (INIS)

    Uematsu, Eisui; Nishio, Shigeko; Takeda, Tatsuoki

    2001-01-01

    A research development of nuclear fusion was divided four periods: the first period as prehistory (until about 1955), the second period as begin of research (1955 to 1969), the third as the growth period (1970 to 1985) and the forth as the large tokamak age. In this paper I explained the second period, because general physicists and young plasma and controlled nuclear fusion researcher did not know about this period. The controlled nuclear fusion research was begun by the experiment of hydrogen bomb by USA and USSR in 1952 and 1953. In Japan, on the basis of many societies, 'The Controlled Nuclear Fusion Meeting' was established as an independent system and KAKEA (Journal of Fusion Research) was published in 1958. Japan government began to make the system by the Nuclear Commission in 1957. The main research devices in 1962 were linear pinch, mirror device, toroidal pinch, helical system, plasma gun and plasma measurement. USSR showed the excellent results of tokamak device in 1968. Ookawa spoke the effect of the average minimum-B, the best report in this period, at the second IAEA meeting, 1965. JAERI constructed JFT-1 and JFT-2, the latter was the first class device in the world and made the first step of Japanese research into the world, for examples, to attain the equilibrium of divertor plasma and to control impurity. Many research centers of controlled fusion were established in many universities in Japan from 1966 to 1980. Cooperation researchs between Japan and USA, USSR and many countries has been carried out after 1978: JIFT (Joint Institute for Fusion Theory) and FPPC (Fusion Power Coordinating Committee). The important results increased in this period. After 1985, the research activities are processing and data increased very fast depend on the larger devices and system, good measurement system and development of information system. JT-60 in JAERI opened to the large tokamak period. It led controlled fusion researchs in the world the same as TFTR (US

  16. Confinement inertial fusion. Power reactors of nuclear fusion by lasers

    International Nuclear Information System (INIS)

    Velarde, G.; Ahnert, C.; Aragones, J.M.; Leira, G; Martinez-Val, J.M.

    1980-01-01

    The energy crisis and the need of the nuclear fusion energy are analized. The nuclear processes in the laser interation with the ablator material are studied, as well as the thermohydrodinamic processes in the implossion, and the neutronics of the fusion. The fusion reactor components are described and the economic and social impact of its introduction in the future energetic strategies.(author)

  17. Accelerator and fusion research division

    International Nuclear Information System (INIS)

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations

  18. Laser-induced nuclear fusion

    International Nuclear Information System (INIS)

    Jablon, Claude

    1977-01-01

    Research programs on laser-induced thermonuclear fusion in the United States, in Europe and in USSR are reviewed. The principle of the fusion reactions induced is explained, together with the theoretical effects of the following phenomena: power and type of laser beams, shape and size of the solid target, shock waves, and laser-hydrodynamics coupling problems [fr

  19. Controlled nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Bussard, R.W.; Coppi, B.

    1982-01-01

    A fusion power generating device is disclosed having a relatively small and inexpensive core region which may be contained within an energy absorbing blanket region. The fusion power core region contains apparatus of the toroidal type for confining a high density plasma. The fusion power core is removable from the blanket region and may be disposed and/or recycled for subsequent use within the same blanket region. Thermonuclear ignition of the plasma is obtained by feeding neutral fusible gas into the plasma in a controlled manner such that charged particle heating produced by the fusion reaction is utilized to bootstrap the device to a region of high temperatures and high densities wherein charged particle heating is sufficient to overcome radiation and thermal conductivity losses. The high density plasma produces a large radiation and particle flux on the first wall of the plasma core region thereby necessitating replacement of the core from the blanket region from time to time. A series of potentially disposable and replaceable central core regions are disclosed for a large-scale economical electrical power generating plant

  20. Final report on 'biological effects of tritium as a basis of research and development in nuclear fusion'

    International Nuclear Information System (INIS)

    1987-12-01

    The National Institute of Radiological Sciences, Japan, has undertaken a special study of ''biological effects of tritium as a basis of research and development in nuclear fusion'' over a 5-year period from April 1981 through March 1986. This is a final report, covering incorporation and metabolism of tritium, physical, chemical, and cellular effects of tritium, tritium damage to the mammalian tissue, and human exposure to tritium. The report is organized into five chapters, including ''Study of incorporation of tritium into the living body and its in vivo behavior''; ''Physical and chemical studies for the determination of relative biological effectiveness''; ''Analytical study on biological effects of tritium in cultured mammalian cells''; ''Study of tritium effects on the mammalian tissue, germ cells, and cell transformation''; and ''Changes in the hemopoietic stem cells and lymphocyte subsets in humans after exposure to some internal emitters''. (Namekawa, K.)

  1. West European magnetic confinement fusion research

    International Nuclear Information System (INIS)

    McKenney, B.L.; McGrain, M.; Hogan, J.T.; Porkolab, M.; Thomassen, K.I.

    1990-01-01

    This report presents a technical assessment and review of the West European program in magnetic confinement fusion by a panel of US scientists and engineers active in fusion research. Findings are based on the scientific and technical literature, on laboratory reports and preprints, and on the personal experiences and collaborations of the panel members. Concerned primarily with developments during the past 10 years, from 1979 to 1989, the report assesses West European fusion research in seven technical areas: tokamak experiments; magnetic confinement technology and engineering; fusion nuclear technology; alternate concepts; theory; fusion computations; and program organization. The main conclusion emerging from the analysis is that West European fusion research has attained a position of leadership in the international fusion program. This distinction reflects in large measure the remarkable achievements of the Joint European Torus (JET). However, West European fusion prominence extends beyond tokamak experimental physics: the program has demonstrated a breadth of skill in fusion science and technology that is not excelled in the international effort. It is expected that the West European primacy in central areas of confinement physics will be maintained or even increased during the early 1990s. The program's maturity and commitment kindle expectations of dramatic West European advances toward the fusion energy goal. For example, achievement of fusion breakeven is expected first in JET, before 1995

  2. An archival study on the nuclear fusion research in Japan later half of 1980's. An interview with SEKIGUCHI Tadashi, Professor Emeritus at the University of Tokyo

    Energy Technology Data Exchange (ETDEWEB)

    Nisio, Sigeko; Uematsu, Eisui [Nihon Univ., College of Science and Technology, Funabashi, Chiba (Japan); Obayashi, Haruo [National Inst. for Fusion Science, Toki, Gifu (Japan)] [and others

    2003-05-01

    An interview record with SEKIGUCHI Tadashi, Professor Emeritus at The University of Tokyo, on the nuclear fusion researches in Japan later half of 1980's is given. The major topics concerned are: activities of Science Council of Japan, the establishment of the Japan Society of Plasma Science and Nuclear Fusion Research, the history of establishing National Institute for Fusion Science, and effects of Grant-in-Aid for Scientific Research, and others. (author)

  3. Research Needs for Magnetic Fusion Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hutch

    2009-07-01

    Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)

  4. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume IV

    International Nuclear Information System (INIS)

    Abdou, M.

    1984-10-01

    This volume contains the following chapters (1) neutronics tests, (2) fluence considerations, (3) instrumentation and test matrix, (4) non-neutron test stands, (5) accelerator-based point neutron sources, (6) utilization of fission reactors, (7) tandem mirror test facilities, (8) tokamak fusion test facilities, (9) reliability development testing impacts on fusion reactor availability, and (10) fusion development scenarios. In addition, the following appendices are included: (1) evaluation of experience from fast breeder reactors, (2) observations of experts from the fission field, (3) evaluation of experience from the aerospace industry, (4) characterization of fusion nuclear systems operating environment, (5) modelling of MFTF-α+T high gamma mode performance, and (6) small-scale, multiple effects testing at US/DOE breeder reactor in-pile facilities

  5. Cold fusion research

    International Nuclear Information System (INIS)

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy

  6. Present knowledge of nuclear cold fusion

    International Nuclear Information System (INIS)

    Violante, V.; Tripodi, P.; Lombardi, C.

    2001-01-01

    The nuclear cold fusion, disclosed with clamour in 1989, was successively deemed by most people a blunder. However, the research activities went on, even if softly, and they have been producing more convincing and reproducible results, as well as theoretical models capable of explaining the noticeable anomalies of this phenomenon with respect to the hot fusion. Then, now the demonstration of the phenomenon may be considered valid and accepted. More time is needed to know whether and how this new process may be exploitable to produce energy on an industrial scale [it

  7. CORIANDER: Comparison of relevant issues and nuclear development for fusion energy research

    International Nuclear Information System (INIS)

    Arendt, F.; Boehme, G.; Haferkamp, B.; Heinz, W.; Hutter, E.; Klingelhoefer, R.; Komarek, P.; Kramer, W.; Kuechle, M.; Kuntze, M.; Malang, S.; Maurer, W.; Mueller, R.A.; Perinic, D.; Leppelmeier, G.; El-Guebaly, L.A.; Emmert, G.A.; Kulcinski, G.L.; Larsen, E.M.; Maynard, C.W.; Santarius, J.F.; Sawan, M.E.; Scharer, J.E.; Sviatoslavsky, I.N.; Vogelsang, W.F.; Wittenberg, L.J.

    1985-05-01

    This study compares two strategies to be followed on the way to a tokamak demonstration reactor (DEMO). The first is the present European conception of building an integrated physics and technology machine (NET) between the present large physics experiments (such as JET) and DEMO. In the Alternate Plan, NET woild be replaced by a combination of an advanced physics tokamak and a mirror based dedicated fusion technology device ('TASKA-class'). It appears that the Alternate Plan could provide the required physics and most of the engineering data for building DEMO with less risk, in a shorter time, and perhaps less cost than the present route. While it is highly desirable to increase the neutron fluence for material studies in either strategy, the Alternat Plan may require extrapolations in the combination of blanket geometry effects and high neutron fluence. (orig.) [de

  8. Nuclear fusion energy for the 21st century

    International Nuclear Information System (INIS)

    1983-01-01

    This film explains the principles of nuclear fusion and how it differs from nuclear fission. Culham Laboratory in Oxfordshire has been the UK centre for research into fusion power for over 20 years. In addition Britain and other European countries are working on JET -the Joint European Torus. The film explains how, since 1978, Culham has been the centre of this joint European research project on fusion and it traces the development of fusion research that has led to the construction of JET. (author)

  9. 50 years of fusion research

    Science.gov (United States)

    Meade, Dale

    2010-01-01

    Fusion energy research began in the early 1950s as scientists worked to harness the awesome power of the atom for peaceful purposes. There was early optimism for a quick solution for fusion energy as there had been for fission. However, this was soon tempered by reality as the difficulty of producing and confining fusion fuel at temperatures of 100 million °C in the laboratory was appreciated. Fusion research has followed two main paths—inertial confinement fusion and magnetic confinement fusion. Over the past 50 years, there has been remarkable progress with both approaches, and now each has a solid technical foundation that has led to the construction of major facilities that are aimed at demonstrating fusion energy producing plasmas.

  10. Nuclear structure and fusion at the barrier

    International Nuclear Information System (INIS)

    Reisdorf, W.

    1985-01-01

    A comparative study of measured fusion excitation functions in the vicinity of the barrier reveals nuclear structure effects, due in particular to the coupling of the fusion process to direct-reaction channels. (orig.)

  11. Japanese perspective of fusion nuclear technology from ITER to DEMO

    International Nuclear Information System (INIS)

    Tanaka, Satoru; Takatsu, Hideyuki

    2007-01-01

    The world fusion community is now launching construction of ITER, the first nuclear-grade fusion machine in the world. In parallel to the ITER program, Broader Approach (BA) activities are to be initiated in this year by EU and Japan, mainly at Rokkasho BA site in Japan, as complementary activities to ITER toward DEMO. The BA activities include IFMIFEVEDA (International Fusion Materials Irradiation Facility-Engineering Validation and Engineering Design Activities) and DEMO design activities with generic technology R and Ds, both of which are critical to the rapid development of DEMO and commercial fusion power plants. The Atomic Energy Commission of Japan reviewed on-going third phase fusion program and issued the results of the review, 'On the policy of Nuclear Fusion Research and Development' in November 2005. In this report, it is anticipated that the ITER will be made operational in a decade and the programmatic objective can be met in the succeeding seven or eight years. Under this condition, the report presents a roadmap toward the DEMO and beyond and R and D items on fusion nuclear technology, indispensable for fusion energy utilization, are re-aligned. In the present paper, Japanese view and policy on ITER and beyond is summarized mainly from the viewpoints of nuclear fusion technology, and a minimum set of R and D elements on fusion nuclear technology, essential for fusion energy utilization, is presented. (orig.)

  12. Diagnostic systems for the nuclear fusion and plasma research in the PF-24 plasma focus laboratory at the IFJ PAN

    Directory of Open Access Journals (Sweden)

    Marciniak Łukasz

    2016-12-01

    Full Text Available This paper presents a set of diagnostics dedicated to PF-24 - new medium size - plasma focus (PF device built and operated at the Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN. The PF-24 can operate at energy level up to 93 kJ and charging voltage up to 40 kV. Each condenser is connected with a specially designed spark gap with a very small jitter, which ensures a high effi ciency and a low current rise time. The working parameters of PF-24 generator make it a suitable tool for testing new detection systems to be used in fusion research. Four types of such detection systems are presented in this article: three diagnostic systems used to measure electric quantities (Rogowski coil, magnetic probe, capacitance probe, neutron counter based on beryllium activation, fast neutron pinhole camera based on small-area BCF-12 plastic scintillation detectors and high-speed four-frame soft X-ray camera with microchannel plate.

  13. The life test of a DC circuit breaker of tokamak device JT-60 for a nuclear fusion research

    International Nuclear Information System (INIS)

    Shimada, Ryuichi; Tani, Keiji; Kishimoto, Hiroshi; Tamura, Sanae; Yanabu, Satoru.

    1979-01-01

    In the Tokamak devices for nuclear fusion research, the construction of the current transformer circuits having plasma as the secondary circuit and the change of the primary circuit current are necessary for generating current in the plasma. This is considered to be fairly difficult in practice if conventional methods using capacitor discharge and iron core coils are employed. Considering such circumstances, it was decided for JT-60 to use an air-core current transformer coil and to employ the method of storing energy in the form of current in the coil inductance instead of a capacitor. For this reason, a DC circuit breaker is required to interrupt coil current. The authors improved an AV vacuum breaker, which had been developed as the vacuum breaker of longitudinal magnetic field type applying a magnetic field in parallel with an arc, to get the one for DC circuit for the purpose of applying it to JT-60. In this paper, the operational characteristic of the DC breaker is described, the construction and function of the life test circuit is explained, and the test results are reported. Finally, interruptions of 10,000 times at 20 kA were carried out. It is successful that the restrike of arc occurring during tens of milli-seconds after interruptions was improved to 0.05% or less for 10,000 times operations. Further, it was found that the generation of arc restrike can be reduced practically to zero with two breakers in series. (Wakatsuki, Y.)

  14. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume III

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.

    1984-10-01

    This chapter deals with the analysis and engineering scaling of solid breeded blankets. The limits under which full component behavior can be achieved under changed test conditions are explored. The characterization of these test requirements for integrated testing contributes to the overall test matrix and test plan for the understanding and development of fusion nuclear technology. The second chapter covers the analysis and engineering scaling of liquid metal blankets. The testing goals for a complete blanket program are described. (MOW)

  15. Nuclear fusion - Inexhaustible source of energy for tomorrow

    International Nuclear Information System (INIS)

    Leiser, M.; Demchenko, V.

    1989-09-01

    The purpose of this paper is to provide a general description of nuclear fusion as an energy option for the future and to clarify to some extent the various issues - scientific, technological, economic and environmental - which are likely to be relevant to controlled thermonuclear fusion. Section 1 describes the world energy problem and some advantages of nuclear fusion compared to other energy options. Sections 2 and 3 describe the fundamentals of fusion energy, plasma confinement, heating and technological aspects of fusion researches. Some plasma confinement schemes (tokamak, stellarator, inertial confinement fusion) are described. The main experimental results and parameter devices are cited to illustrate the state of the art as of 1989. Various engineering problems associated with reactor design, magnetic systems, materials, plasma purity, fueling, blankets, environment, economics and safety are discussed. A description of both bilateral and multilateral efforts in fusion research under the auspices of the IAEA is presented in Section 4. (author). 11 refs, 4 figs, 1 tab

  16. Neutrons and fusion nuclear technology

    International Nuclear Information System (INIS)

    Hirayama, Shoichi

    1991-01-01

    The strategy of the devolopment of the fusion reactor has been compared with the history of the development of the fission reactor. More than 50 neutron reactors (neutron sources for research and development of reactor components and materials, and for Pu production) have been constructed and operated before the introduction of demonstration power reactors. This fact suggests us to introduce a new path of neutron reactor in the strategy of the development of fusion power reactor in addition to the orthodox approach which goes through the break-even, self-ignition, ETR, and DEMO. One of the benefits of the introduction of such neutron reactor or into the strategy of the fusion reactor development has been studied numerically. The results demonstrate that the introduction of fission-fusion hybrid reactor in 2030, can save ∝20% of natural uranium by 2100 in Japan, in comparison with the case when the fast breeder reactor is introduced in 2030. This saving is recognized large enough to justify earlier construction of the fusion neutron reactor. (orig.)

  17. The development of laser fusion research

    International Nuclear Information System (INIS)

    Mima, Kunioki

    1998-01-01

    Laser fusion research started soon after the invention of laser. In 1972, the research was declassified and nuclear fusion by laser inplosion was proposed by J. Nuckolls. Since then, 26 years has passed and laser implosion experiments demonstrated 1000 times solid density compression. By the demonstration of 1000 times solid density, the mission of the laser fusion research shifted from 'implosion physics' to 'ignition and high gain', namely demonstration of fusion output of 100 times input laser energy. By the recent developments of laser technology, ultra intense laser became available and opened up a new ignition scheme which is called 'Fast Ignition'. The technology for the diode pumped solid state laser (DPSSL) is developed toward a laser driver for reactor. U.S. and France are constructing MJ lasers for demonstrating ignition and burn and Osaka University is investigating the fast ignition and the equivalent plasma of confinement (EPOC) toward high gain. (author)

  18. The development of laser fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Mima, Kunioki [Osaka Univ., Suita (Japan). Inst. of Laser Engineering

    1998-11-01

    Laser fusion research started soon after the invention of laser. In 1972, the research was declassified and nuclear fusion by laser inplosion was proposed by J. Nuckolls. Since then, 26 years has passed and laser implosion experiments demonstrated 1000 times solid density compression. By the demonstration of 1000 times solid density, the mission of the laser fusion research shifted from `implosion physics` to `ignition and high gain`, namely demonstration of fusion output of 100 times input laser energy. By the recent developments of laser technology, ultra intense laser became available and opened up a new ignition scheme which is called `Fast Ignition`. The technology for the diode pumped solid state laser (DPSSL) is developed toward a laser driver for reactor. U.S. and France are constructing MJ lasers for demonstrating ignition and burn and Osaka University is investigating the fast ignition and the equivalent plasma of confinement (EPOC) toward high gain. (author)

  19. Research on nuclear fusion reactor - Development of mm-wve (Electron cyclotron) heating device

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sae Young; Myung, Jung Su; Lee, Keun Ho; Lee, Myung Jae; Kim, Hyung Suk; Hur, Jin Woo; Song, Ho Young [Institute for Advanced Engineering, Seoul (Korea, Republic of)

    1996-08-01

    To establish cooperating system with foreign relevant research institutes, consultation has been given to IAE by Dr. T. V. George regarding ECRH and gyrotron development plan. Discussions with Prof. Temkin and Dr. Kreisher at MIT, who are working for ITER gyrotron development, were made and those helped IAE to collect necessary information for fundamental parameters of ECCD. Also, Prof. Vic Granatstein, U. of Maryland, and Dr. Baruch Levush, NRL, were consulted for computer codes of the gyrotron R and D. It will also be prepared for cooperation in ECCD and mm-wave heating with device research teams of General Atomics and Russia. By visiting various University labs and research institutes and investigating the up-to-date research results, the basic operating parameters of gyrotron for KSTAR project has been determined. By cooperation with MIT, a conceptual design has been made for the KSTAR gyrotron that should generate 1 MW and 110 GHz CW waves. The simulation result of EGUN using self-consistent theory shows that 1.2 MW power with the efficiency of 42.8% can be obtained for TE22,6,1 mode where the average ohmic loss is 0.54 kW/cm{sup 2} assuming 77 kV cathode voltage, 34 A beam current, velocity ratio of 1.62 and perpendicular velocity spread of 6.5%. 9 refs., 5 figs., 3 tabs. (author)

  20. Nuclear fusion: Pursuing the Soft [Symposium on fusion technology] option

    International Nuclear Information System (INIS)

    Kenward, M.

    1991-01-01

    Fusion research has come a long way since the fusion community held the first Symposium on fusion technology (Soft) in Britain 30 years ago. Some of the recent achievements of the Jet project are reported from this year's symposium, the 16th in the series, held in London at the beginning of September. (author)

  1. Nuclear Fusion Award 2010 speech Nuclear Fusion Award 2010 speech

    Science.gov (United States)

    Rice, John

    2011-01-01

    Following the suggestion of Earl Marmar in 1995, I installed a compact von Hamos type x-ray spectrometer (originally built with Elisabeth Rachlew and Jan Kallne) on a tangentially viewing port on the Alcator C-Mod tokamak. The spectrometer views the plasma through a 2 cm diameter hole, and is tuned to H-like argon, suitable for passive measurement of the core toroidal rotation velocity from the Doppler shift. It soon became evident that the rotation in Ohmic L-mode discharges, while for the most part directed counter-current, depends in a very complicated fashion on plasma parameters, notably the electron density, current and magnetic configuration. The rotation can even flip sign for almost no apparent reason! In Ohmic and ion cyclotron range of frequencies (ICRF) heated H-mode plasmas the rotation is in the co-current direction and has a relatively simple dependence on plasma parameters, proportional to the stored energy normalized to the current. Rotation velocities as high as 130 km s-1 have been observed without external momentum input. In dimensionless terms this intrinsic (or spontaneous rotation) depends on the normalized plasma pressure. The association of toroidal rotation with plasma pressure in ICRF H-modes was first observed by Lars-Goran Eriksson in JET discharges. Similar results were subsequently reported for Tore Supra enhanced confinement plasmas. In the early 2000s concerns began to surface about the lack of substantial neutral beam driven rotation in ITER, and intrinsic rotation became a topic of interest in the ITPA Transport Group. Through that connection, similar observations from DIII-D, TCV and JT-60U were added to the growing list. A database of intrinsic rotation observations was assembled with the goal of extrapolating to the expected values for ITER. Both dimensional and dimensionless scalings were developed and formed the backbone of the 2007 Nuclear Fusion paper. I gratefully acknowledge the important contributions to this paper from

  2. Nuclear data requirements for fusion reactor nucleonics

    International Nuclear Information System (INIS)

    Bhat, M.R.; Abdou, M.A.

    1980-01-01

    Nuclear data requirements for fusion reactor nucleonics are reviewed and the present status of data are assessed. The discussion is divided into broad categories dealing with data for Fusion Materials Irradiation Test Facility (FMIT), D-T Fusion Reactors, Alternate Fuel Cycles and the Evaluated Data Files that are available or would be available in the near future

  3. Will nuclear fusion be able to power the next century?

    International Nuclear Information System (INIS)

    Grad, P.

    1989-01-01

    Nuclear fusion is widely regarded as potentially the ultimate energy-generation concept. Although an enormous amount of work and resources has already been committed throughout the world on nuclear fusion research, controlled nuclear fusion has so far proved largely elusive and the difficulties to be overcome before the first commercial fusion reactor is put into operation remain daunting and formidable. In Australia there are three main nuclear fusion research efforts. Sydney University's School of Physics operates a tokamak and a team there has been studying plasma properties in general and in particular radio frequency wave heating of the plasma. At the Australian National University a group has pioneered the construction and operation of an advanced stellarator model called a heliac while at Flinders University in Adelaide a team has developed a rotamak model. The US, Europe, Japan and the USSR each has a frontline fusion research tokamak with Princeton University's TFTR and Culham's JET closest to reactor operation conditions. Although several questions remain to be answered about the safety of a fusion reactor, all experts agree that these problems would be easier to solve than those of conventional fission reactors and there would be no major radioactive waste disposal problem. Some argue that fusion would contribute to the greenhouse effect but most authorities have expressed optimism that fusion, once the technical hurdles are overcome, could economically provide virtually unlimited energy with minimal environmental hazards and at a high safety level

  4. Fusion research at ORNL

    International Nuclear Information System (INIS)

    1982-03-01

    The ORNL Fusion Program includes the experimental and theoretical study of two different classes of magnetic confinement schemes - systems with helical magnetic fields, such as the tokamak and stellarator, and the ELMO Bumpy Torus (EBT) class of toroidally linked mirror systems; the development of technologies, including superconducting magnets, neutral atomic beam and radio frequency (rf) heating systems, fueling systems, materials, and diagnostics; the development of databases for atomic physics and radiation effects; the assessment of the environmental impact of magnetic fusion; and the design of advanced demonstration fusion devices. The program involves wide collaboration, both within ORNL and with other institutions. The elements of this program are shown. This document illustrates the program's scope; and aims by reviewing recent progress

  5. Radio frequency system for nuclear fusion

    International Nuclear Information System (INIS)

    Kozeki, Shoichiro; Sagawa, Norimoto; Takizawa, Teruhiro

    1987-01-01

    The importance of radio frequency waves has been increasing in the area of nuclear fusion since they are indispensable for heating of plasma, etc. This report outlines radio frequency techniques used for nuclear fusion and describes the development of radio frequency systems (radio frequency plasma heating system and current drive system). Presently, in-depth studies are underway at various research institutes to achieve plasma heating by injection of radio frequency electric power. Three ranges of frequencies, ICRF (ion cyclotron range of frequency), LHRF (lower hybrid range of frequency) and ECRF (electron cyclotron range of frequency), are considered promissing for radio frequency heating. Candidate waves for plasma current driving include ECW (electron cyclotron wave), LHW (lower hybrid wave), MSW (magnetic sound wave), ICW (ion cyclotron wave) with minority component, and FW (fast wave). FW is the greatest in terms of current drive efficiency. In general, a radio frequency system for nuclear fusion consists of a radio frequency power source, transmission/matching circuit component and plasma connection component. (Nogami, K.)

  6. Fusion research at Imperial College

    International Nuclear Information System (INIS)

    Haines, M.G.

    1990-01-01

    The historical roots of fusion research at Imperial College can be traced back to 1946 with the pioneering work of G.P. Thomson. At present research in fusion is carried out in several research groups with interdisciplinary work managed by the Centre for Fusion Studies. The principal research activity will be centred on a newly funded 5 TW pulsed power facility allowing an experimental and theoretical study of radiation collapse and fusion conditions in the dense Z-pinch. Laser-plasma studies relevant to inertial confinement are carried out using the Rutherford-Appleton Laboratory's Central Laser Facility and the new ultra-short pulse (300 fs) laser facility at Imperial College. There is a significant collaboration on the Joint European Torus and the Next European Torus together with a continuation of a long association with Culham Laboratory. Several European collaborations funded by the Comission of the European Communities and other world-wide collaborations form an integral part of this university programme, which is by far the largest in the UK. After a sketch of the historical development of fusion activities, the current and future programme of fusion research at Imperial College is presented in each of the three broad areas: the Z-pinch, laser-driven inertial confinement fusion and tokamak and other conventional magnetic confinement schemes. A summary of the funding and collaborations is outlined. (author)

  7. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  8. Research into thermonuclear fusion

    International Nuclear Information System (INIS)

    Schumacher, U.

    1989-01-01

    The experimental and theoretical studies carried out in close international cooperation in the field of thermonuclear fusion by magnetic plasma confinement have achieved such progress towards higher plasma temperatures and densities, longer confinement times and, thus, increased fusion product, that emphasis now begins to be shifted from problems of physics to those of technology as a next major step is being prepared towards a large international project (ITER) to achieve thermonuclear burning. The generation and maintenance of a burning fusion plasma in an experimental physics phase will be followed by a phase of technical materials studies at high fluxes of fusion neutrons. These goals have been pursued since 1983 by an international study group at Garching working on the design of a Next European Torus (NET). Since May 1988, an international study group comprising ten experts each from the USSR, USA, Japan, and the European Community has begun to work on a design draft of ITER (International Thermonuclear Experimental Reactor) in Garching under the auspices of IAEA. (orig.) [de

  9. Fusion research program in Korea

    International Nuclear Information System (INIS)

    Hwang, Y.S.

    1996-01-01

    Fusion research in Korea is still premature, but it is a fast growing program. Groups in several universities and research institutes were working either in small experiments or in theoretical areas. Recently, couple of institutes who have small fusion-related experiments, proposed medium-size tokamak programs to jump into fusion research at the level of international recognition. Last year, Korean government finally approved to construct 'Superconducting Tokamak' as a national fusion program, and industries such as Korea Electric Power Corp. (KEPCO) and Samsung joined to support this program. Korea Basic Science Institute (KBSI) has organized national project teams including universities, research institutes and companies. National project teams are performing design works since this March. (author)

  10. Does cold nuclear fusion exist?

    International Nuclear Information System (INIS)

    Brudanin, V.B.; Bystritskij, V.M.; Egorov, V.G.; Shamsutdinov, S.G.; Shyshkin, A.L.; Stolupin, V.A.; Yutlandov, I.A.

    1989-01-01

    The results of investigation of cold nuclear fusion on palladium are given both for electrolysis of heavy water D 2 O and mixture D 2 O + H 2 O) (1:1) and for palladium saturation with gaseous deuterium. The possibility of existance of this phenomenon was examined by detection of neutrons and gamma quanta from reactions: d + d → 3 He + n + 3.27 MeV, p + d → 3 He + γ + 5.5 MeV. Besides these reactions were identified by measuring the characteristic X radiation of palladium due to effect of charged products 3 He, p, t. The upper limits of the intensities of hypothetical sources of neutrons and gamma quanta at the 95% confidence level were obtained to be Q n ≤ 2x10 -2 n/sxcm 3 Pd, Q γ ≤ 2x10 -3 γ/sxcm 3 Pd. 2 refs.; 4 figs.; 2 tabs

  11. (Fusion energy research)

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  12. [Fusion energy research

    International Nuclear Information System (INIS)

    Phillips, C.A.

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer

  13. Status report on fusion research

    International Nuclear Information System (INIS)

    Burkhart, Werner

    2005-01-01

    At the beginning of the twenty-first century mankind is faced with the serious problem of meeting the energy demands of a rapidly industrializing population around the globe. This, against the backdrop of fast diminishing fossil fuel resources (which have been the main source of energy of the last century) and the increasing realization that the use of fossil fuels has started to adversely affect our environment, has greatly intensified the quest for alternative energy sources. In this quest, fusion has the potential to play a very important role and we are today at the threshold of realizing net energy production from controlled fusion experiments. Fusion is, today, one of the most promising of all alternative energy sources because of the vast reserves of fuel, potentially lasting several thousands of years and the possibility of a relatively 'clean' form of energy, as required for use in concentrated urban industrial settings, with minimal long term environmental implications. The last decade and a half has seen unprecedented advances in controlled fusion experiments with the discovery of new regimes of operations in experiments, production of 16 MW of fusion power and operations close to and above the so-called 'break-even' conditions. A great deal of research has also been carried out in analysing various socio-economic aspects of fusion energy. This paper briefly reviews the various aspects and achievements of fusion research all over the world during this period

  14. New trends in fusion research

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The efforts of the international fusion community aim at demonstrating the scientific feasibility of thermonuclear fusion energy power plants. Understanding the behavior of burning plasmas, i.e. plasmas with strong self-heating, represents a primary scientific challenge for fusion research and a new science frontier. Although integrated studies will only be possible, in new, dedicated experimental facilities, such as the International Tokamak Experimental Reactor (ITER), present devices can address specific issues in regimes relevant to burning plasmas. Among these are an improvement of plasma performance via a reduction of the energy and particle transport, an optimization of the path to ignition or to sustained burn using additional heating and a control of plasma-wall interaction and energy and particle exhaust. These lectures address recent advances in plasma science and technology that are relevant to the development of fusion energy. Mention will be made of the inertial confinement line of research, but...

  15. Computer applications in controlled fusion research

    International Nuclear Information System (INIS)

    Killeen, J.

    1975-02-01

    The role of Nuclear Engineering Education in the application of computers to controlled fusion research can be a very important one. In the near future the use of computers in the numerical modelling of fusion systems should increase substantially. A recent study group has identified five categories of computational models to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are called for. The development and application of computer codes to implement these models is a vital step in reaching the goal of fusion power. In order to meet the needs of the fusion program the National CTR Computer Center has been established at the Lawrence Livermore Laboratory. A large central computing facility is linked to smaller computing centers at each of the major CTR laboratories by a communications network. The crucial element that is needed for success is trained personnel. The number of people with knowledge of plasma science and engineering that are trained in numerical methods and computer science is quite small, and must be increased substantially in the next few years. Nuclear Engineering departments should encourage students to enter this field and provide the necessary courses and research programs in fusion computing. (U.S.)

  16. Research on spherically converging ion-beam fusion neutron source for the fundamental research of atomic energy. JAERI's nuclear research promotion program, H10-050. Contract research

    International Nuclear Information System (INIS)

    Yoshikawa, Kiyoshi; Inoue, Nobuyuki; Yamazaki, Tetsuo

    2002-03-01

    Potential well formation due to space charge associated with spherically converging ion beams plays a key and essential role in the beam-beam colliding fusion, which is the major mechanism of the Inertial Electrostatic Confinement Fusion (IECF) devices. Many theoretical results so far predicted strongly localized potential well formation, and actually for the past 30 years, many experiments were dedicated to clarify this mechanism, but neither could provide definitive evidence. In this study, we succeeded for the first time in the world in observing the double-well potential profile by use of the laser-induced fluorescence method that makes use of Stark effects, which put a period to the controverse for 30 years on the existence of the double-well potential profile. Furthermore, aiming at demonstrating a numerical prediction of a strongly nonlinear dependence of the fusion reaction rate on the discharge current on negligence of the charge exchange processes, triple-grid auxiliary system was introduced in order to reduce the operating gas pressure, with a successful result of reducing the pressure down to 1/5 of the conventional one required for glow discharge with single-grid system. Also, we measured accelerated atoms' kinetic energies through Doppler shift spectroscopy, and found the maximum energy increases proportionally to the applied voltage, which implies an enhancement of the fusion reaction cross-section with an increasing applied voltage in the near future. (author)

  17. Collaborations in fusion research

    International Nuclear Information System (INIS)

    Barnes, D.; Davis, S.; Roney, P.

    1995-01-01

    This paper reviews current experimental collaborative efforts in the fusion community and extrapolates to operational scenarios for the Tokamak Physics Experiment (TPX) and the International Thermonuclear Experimental Reactor (ITER). Current requirements, available technologies and tools, and problems, issues and concerns are discussed. This paper specifically focuses on the issues that apply to experimental operational collaborations. Special requirements for other types of collaborations, such as theoretical or design and construction efforts, will not be addressed. Our current collaborative efforts have been highly successful, even though the tools in use will be viewed as primitive by tomorrow's standards. An overview of the tools and technologies in today's collaborations can be found in the first section of this paper. The next generation of fusion devices will not be primarily institutionally based, but will be national (TPX) and international (ITER) in funding, management, operation and in ownership of scientific results. The TPX will present the initial challenge of real-time remotely distributed experimental data analysis for a steady state device. The ITER will present new challenges with the possibility of several remote control rooms all participating in the real-time operation of the experimental device. A view to the future of remote collaborations is provided in the second section of this paper

  18. Papers presented at the Fourteenth International conference on Plasma Physics and Controlled Nuclear Fusion Research. Organization International de la Energia Atomica Wuerzberg, Alemania 30 September - 7 October 1992

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains the contributions of the CIEMAT's Fusion Unit to the 14th International Conference on Plasma Physics and Controlled Nuclear Fusion Research that was held by the International Atomic Energy Agency in Wuerzberg, Germany from 30 September to 7 October 1992. Three papers were presented that summarized the, main lines of work done in the Unit during the previous two years: The first one on the theoretical advances in the understanding of the Fexible Heliac TJ-II under construction, the second on the confinement studies performed in the operating TJ-I Tokamak and the third one on the description of the physical properties of the soon to be started TJ-IU Torsatron. (Author) 25 refs

  19. Fusion program research materials inventory

    International Nuclear Information System (INIS)

    Roche, T.K.; Wiffen, F.W.; Davis, J.W.; Lechtenberg, T.A.

    1984-01-01

    Oak Ridge National Laboratory maintains a central inventory of research materials to provide a common supply of materials for the Fusion Reactor Materials Program. This will minimize unintended material variations and provide for economy in procurement and for centralized record keeping. Initially this inventory is to focus on materials related to first-wall and structural applications and related research, but various special purpose materials may be added in the future. The use of materials from this inventory for research that is coordinated with or otherwise related technically to the Fusion Reactor Materials Program of DOE is encouraged

  20. The U.S. program for fusion nuclear technology development

    International Nuclear Information System (INIS)

    Clarke, J.F.; Haas, G.M.

    1989-01-01

    The Fusion Nuclear Technology (FNT) research and development program in the United States is shaped by a hierarchy of documents and by the environment for nuclear energy existing in the United States. The fission nuclear industry in the United States has suffered problems with public perception of safety, waste disposal issues, and economics as influenced by safety and environmental issues. For fusion to be a viable energy alternative, it must offer significant improvements in these areas. The hierarchy of documents defining objectives, plans, and strategy of the U.S. FNT program consists of the Magnetic Fusion Program Plan (MFPP) (February 1985), the Technical Planning Activity Final Report (January 1987), the Finesse Program Report (January 1987), and the Blanket Comparison and Selection Study Final Report (September 1984). In addition, two other documents are also significant in shaping FNT policy. These are the IEA report on Material for Fusion (December 1986) and the Summary of the Report of the Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (September 1987). The U.S. Magnetic Fusion Program Plan defines four key technical issues (magnetic confinement systems, properties of burning plasmas, fusion nuclear technology, and fusion materials). (orig./KP)

  1. [Two-nuclear neurons: sincitial fusion or amitotic division].

    Science.gov (United States)

    Sotnikov, O S; Frumkina, L E; Lactionova, A A; Paramonova, N M; Novakovskaia, S A

    2011-01-01

    In the review the history of research two-nuclear neurons is stated and two hypotheses about mechanisms of their formation are analysed: by sincitial fusion or amytotic divisions. The facts of discrepancy of the former orthodox cellular theory categorically denying possibility sincitial of communications in nervous system and of sincitial fusion neurons are mentioned. As an example results of ultrastructural researches of occurrence sincitium in a cortex of the big brain of rats, in autonomic ganglions, in hypocampus and a cerebellum of adult animals are presented. The video data of the sincitial fusion of live neurons and the mechanism of formation multinuclear neurons in tissue culture are analyzed. Existing data about amytotic a way of formation two-nuclear neurons are critically considered. The conclusion becomes, that the mechanism of formation two-nuclear neurons is cellular fusion. Simultaneously the review confirms our representations about existence in nervous system sincitial interneural communications.

  2. Mass Producing Targets for Nuclear Fusion

    Science.gov (United States)

    Wang, T. G.; Elleman, D. D.; Kendall, J. M.

    1983-01-01

    Metal-encapsulating technique advances prospects of controlling nuclear fusion. Prefilled fusion targets form at nozzle as molten metal such as tin flows through outer channel and pressurized deuterium/tritium gas flows through inner channel. Molten metal completely encloses gas charge as it drops off nozzle.

  3. Conceptual design of light ion beam inertia nuclear fusion reactors

    International Nuclear Information System (INIS)

    1983-07-01

    Light ion beam, inertia nuclear fusion system drew attention recently as one of the nuclear fusion systems for power reactors in the history of the research on nuclear fusion. Its beginning seemed to be the judgement that the implosion of fusion fuel pellets with light ions can be realized with the light ions which can be obtained in view of accelerator techniques. Of course, in order to generate practically usable nuclear fusion reaction by this system and maintain it, many technical difficulties must be overcome. This research was carried out for the purpose of discovering such technical problems and searching for their solution. At the time of doing the works, the following policy was adopted. Though their is the difference of fine and rough, the design of a whole reactor system is performed conformably. In order to make comparison with other reactor types and nuclear fusion systems, the design is carried out as the power plant of about one million kWe output. As the extent of the design, the works at conceptual design stage are performed to present the concept of design which satisfies the required function. Basically, the design is made from conservative standpoint. This research of design was started in 1981, and in fiscal 1982, the mutual adjustment among the design of respective parts was performed on the basis of the results in 1981, and the possible revision and new proposal were investigated. (Kako, I.)

  4. Overview on Fusion Nuclear Technology Experimental Testing

    Czech Academy of Sciences Publication Activity Database

    Entler, Slavomír; Kysela, J.

    2016-01-01

    Roč. 2, č. 2 (2016), č. článku 021018. ISSN 2332-8983 Institutional support: RVO:61389021 Keywords : fusion * corrosion * thermohydraulic * LiPb * HHF * ITER Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  5. Nuclear fusion power supply device

    International Nuclear Information System (INIS)

    Nakagawa, Satoshi.

    1975-01-01

    Object: To use a hybrid power supply device, which comprises a thyristor power supply and a diode power supply, to decrease cost of a nuclear fusion power supply device. Structure: The device comprises a thyristor power supply connected through a closing unit and a diode power supply connected in parallel through a breaker, input of each power supply being applied with an output voltage of a flywheel AC generator. When a current transformer is excited, a disconnecting switch is turned on to close the diode power supply and a current of the current transformer is increased by an automatic voltage regulator to a set value within a predetermined period of time. Next, the current is cut off by a breaker, and when the breaker is in on position, the disconnecting switch is opened to turn on the closing unit. Thus, when a plasma electric current reaches a predetermined value, the breaker is turned on, and the current of the current transformer is controlled by the thyristor power supply. (Kamimura, M.)

  6. Support of nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Watarai, Tetsuo; Ito, Yutaka.

    1975-01-01

    Object: To integrally form a bed for a body for supporting a vacuum container, coil and the like and a bed for a current transformer for supporting the current transformer prior to installation thereof on the floor thereby facilitating assembly and installation. Structure: To provide a base common to a current transformer bed and a body bed without direct installation thereof on the floor. Prior to installation of the current transformer bed and body bed, they are fastened to the base by means of bolts and welded integrally, and the thus formed base is fixed to the floor by means of anchor bolts. Since the current transformer bed and the body bed are formed integrally through the common base, apparatus may easily be carried in and disassembling and re-assembling of apparatus become unnecessary when installed. Further, since the positional relation of the current transformer bed and body bed does not depend on accuracy at the time of installation but depends on accuracy when apparatus manufactured, the toroidal type nuclear fusion apparatus of good accuracy may be obtained. (Yoshihara, H.)

  7. Nuclear data for fusion reactor technology

    International Nuclear Information System (INIS)

    1988-06-01

    The meeting was organized in four sessions and four working groups devoted to the following topics: Requirements of nuclear data for fusion reactor technology (6 papers); Status of experimental and theoretical investigations of microscopic nuclear data (10 papers); Status of existing libraries for fusion neutronic calculations (5 papers); and Status of integral experiments and benchmark tests (6 papers). A separate abstract was prepared for each of these papers

  8. The history of controlled fusion research

    International Nuclear Information System (INIS)

    Trocheris, M.

    1980-01-01

    The idea of using nuclear reaction between light elements to produce energy for peaceful objectives originated towards the mid-forties. In this work, the author traces the various stages of reserach undertaken in this field from the first fusion experiments to the projects now in course of production. Research scientists have travelled a long, hard road to reach a new development phase during which technological problems will play a prominent part [fr

  9. Report of the review committee on evaluation of the R and D subjects in the field of nuclear fusion research

    International Nuclear Information System (INIS)

    2000-10-01

    On the basis of the JAERI's Basic Guidelines for the Research Evaluation Methods and the Practices Manuals of the Institution Evaluation Committee, the Ad Hoc Review Committee composed of 12 experts was set up under the Research Evaluation Committee of the JAERI in order to review the whole R and D subjects in fusion research, including post-review for those completed in FY1998, intermediate-review for those started in FY1999, and pre-review for those to be implemented in FY2001. The Ad Hoc Review Committee meeting was held on March 9, 2000. According to the review methods including review items, points of review and review criteria, determined by the Research Evaluation Committee, the review was conducted based on the research result/plan documents submitted in advance and presentations by the Department Directors. The review report was submitted to the Research Evaluation Committee for further review and discussions in its meeting held on August 31, 2000. The Research Evaluation Committee recognized the review results as appropriate. This report describes the review results. (author)

  10. Nuclear Fusion with Polarized Nucleons & PolFusion

    CERN Document Server

    Engels, Ralf; Büscher, Markus; Vasilyev, Alexander

    2016-01-01

    This book offers a detailed examination of the latest work on the potential of polarized fuel to realize the vision of energy production by nuclear fusion. It brings together contributions from nuclear physicists and fusion physicists with the aims of fostering exchange of information between the two communities, describing the current status in the field, and examining new ideas and projects under development. It is evident that polarized fuel can offer huge improvements for the first generation of fusion reactors and open new technological possibilities for future generations, including neutron lean reactors, which could be the most popular and sustainable energy production option to avoid environmental problems. Nevertheless, many questions must be resolved before polarized fuel can be used for energy production in the different reactor types. Readers will find this book to be a stimulating source of information on the key issues. It is based on contributions from leading scientists delivered at the meetin...

  11. Overview of fusion nuclear technology in the US

    International Nuclear Information System (INIS)

    Morley, N.B.; Abdou, M.A.; Anderson, M.; Calderoni, P.; Kurtz, R.J.; Nygren, R.; Raffray, R.; Sawan, M.; Sharpe, P.; Smolentsev, S.; Willms, S.; Ying, A.Y.

    2006-01-01

    Fusion nuclear technology (FNT) research in the United States encompasses many activities and requires expertise and capabilities in many different disciplines. The US Enabling Technology program is divided into several task areas, with aspects of magnet fusion energy (MFE) fusion nuclear technology being addressed mainly in the Plasma Chamber, Neutronics, Safety, Materials, Tritium and Plasma Facing Component Programs. These various programs work together to address key FNT topics, including support for the ITER basic machine and the ITER Test Blanket Module, support for domestic plasma experiments, and development of DEMO relevant material and technological systems for blankets, shields, and plasma facing components. In addition, two inertial fusion energy (IFE) research programs conducting FNT-related research for IFE are also described. While it is difficult to describe all these activities in adequate detail, this paper gives an overview of critical FNT activities

  12. The European fusion nuclear technology effort

    International Nuclear Information System (INIS)

    Darvas, J.

    1989-01-01

    The role of fusion technology in the European fusion development strategy is outlined. The main thrust of the present fusion technology programme is responding to development needs of the Next European Torus. A smaller, but important and growing R and D effort is dealing with problems specific to the Demonstration, or Fusion Power, Reactor. The part of the programme falling under the somewhat arbitrarily defined category of 'fusion nuclear technology' is reviewed and an outlook to future activities is given. The review includes tritium technology, blanket technology and breeder materials development, technology and materials for the protection of the first wall and of other plasma facing components, remote handling technology, and safety and environmental impact studies. A few reflections are offered on the future long-term developments in fusion technology. (orig.)

  13. The Role of the JET Project in Global Fusion Research

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla

    1983-01-01

    The aim of nuclear fusion research is to make fusion energy available as a new energy source. Fusion processes occur naturally in the sun, where hydrogen nuclei release energy by combining to form helium. A fusion reactor on earth will require even higher temperatures than in the interior...... of the sun, and it will be based on deuterium and tritium reactions. JET (Joint European Torus) is a major fusion experiment now under construction near Abingdon in the UK It is aimed at producing conditions approximating those necessary in a fusion reactor. The results expected from JET should permit...... a realistic evaluation of the prospects for fusion power and serve as a basis for the design of the next major fusion experiment....

  14. The current state of the development of the supercomputer system in plasma science and nuclear fusion research in the case of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Azumi, Masafumi

    2004-01-01

    The progress of large scale scientific simulation environment in JAERI is briefly described. The expansion of fusion simulation science has been played a key role in the increasing performances of super computers and computer network system in JAERI. Both scalar parallel and vector parallel computer systems are now working at the Naka and Tokai sites respectively, and particle and fluid simulation codes developed under the fusion simulation project, NEXT, are running on each system. The storage grid system has been also successfully developed for effective visualization analysis by remote users. Fusion research is going to enter the new phase of ITER, and the need for the super computer system with higher performance are increasing more than as ever along with the development of reliable simulation models. (author)

  15. Nuclear diagnostics for inertial confinement fusion implosions

    International Nuclear Information System (INIS)

    Murphy, T.J.

    1997-01-01

    This abstract contains viewgraphs on nuclear diagnostic techniques for inertial confinement fusion implosions. The viewgraphs contain information on: reactions of interest in ICF; advantages and disadvantages of these methods; the properties nuclear techniques can measure; and some specifics on the detectors used

  16. Fusion of Nuclear and Emerging Technology

    International Nuclear Information System (INIS)

    Nahrul Khaer Alang Rashid

    2005-04-01

    The presentation discussed the following subjects: emerging technology; nuclear technology; fusion emerging and nuclear technology; progressive nature of knowledge; optically stimulated luminescence - application of luminescence technology to sediments; Biosystemics technology -convergence nanotechnology, ecological science, biotechnology, cognitive science and IT - prospective impact on materials science, the management of public system for bio-health, eco and food system integrity and disease mitigation

  17. Nuclear data needs for fusion reactors

    International Nuclear Information System (INIS)

    Gohar, Y.

    1986-01-01

    The nuclear design of fusion components (e.g., first wall, blanket, shield, magnet, limiter, divertor, etc.) requires an accurate prediction of the radiation field, the radiation damage parameters, and the activation analysis. The fusion nucleonics for these tasks are reviewed with special attention to point out nuclear data needs and deficiencies which effect the design process. The main areas included in this review are tritium breeding analyses, nuclear heating calculations, radiation damage in reactor components, shield designs, and results of uncertainty analyses as applied to fusion reactor studies. Design choices and reactor parameters that impact the neutronics performance of the blanket are discussed with emphasis on the tritium breeding ratio. Nuclear data required for kerma factors, shielding analysis, and radiation damage are discussed. Improvements in the evaluated data libraries are described to overcome the existing problems. 84 refs., 11 figs., 9 tabs

  18. New materials in nuclear fusion reactors

    International Nuclear Information System (INIS)

    Iwata, Shuichi

    1988-01-01

    In the autumn of 1987, the critical condition was attained in the JET in Europe and Japanese JT-60, thus the first subject in the physical verification of nuclear fusion reactors was resolved, and the challenge to the next attainment of self ignition condition started. As the development process of nuclear fusion reactors, there are the steps of engineering, economical and social verifications after this physical verification, and in respective steps, there are the critical problems related to materials, therefore the development of new materials must be advanced. The condition of using nuclear fusion reactors is characterized by high fluence, high thermal flux and strong magnetic field, and under such extreme condition, the microscopic structures of materials change, and they behave much differently from usual case. The subjects of material development for nuclear fusion reactors, the material data base being built up, the materials for facing plasma and high thermal flux, first walls, blanket structures, electric insulators and others are described. The serious effect of irradiation and the rate of defect inducement must be taken in consideration in the structural materials for nuclear fusion reactors. (Kako, I.)

  19. Computer applications in controlled fusion research

    International Nuclear Information System (INIS)

    Killeen, J.

    1975-01-01

    The application of computers to controlled thermonuclear research (CTR) is essential. In the near future the use of computers in the numerical modeling of fusion systems should increase substantially. A recent panel has identified five categories of computational models to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies is called for. The development and application of computer codes to implement these models is a vital step in reaching the goal of fusion power. To meet the needs of the fusion program the National CTR Computer Center has been established at the Lawrence Livermore Laboratory. A large central computing facility is linked to smaller computing centers at each of the major CTR Laboratories by a communication network. The crucial element needed for success is trained personnel. The number of people with knowledge of plasma science and engineering trained in numerical methods and computer science must be increased substantially in the next few years. Nuclear engineering departments should encourage students to enter this field and provide the necessary courses and research programs in fusion computing

  20. Controlled nuclear fusion, a challenging task with a big payoff

    International Nuclear Information System (INIS)

    Noterdaeme, Jean-Marie

    2003-01-01

    Controlled thermonuclear fusion carries the promise of providing the world with a new source of energy, the same energy that powers the stars. Research in this area has progressed steadily for several decades now, and is ready to move into a new phase. The probability is high that a new international experimental machine (ITER) which will prove the scientific and technological feasibility of fusion energy, will be built. This paper introduces nuclear fusion for people familiar with the fission process. It starts from the basic principles common to fusion and fission. It moves on to point out the differences, explains the reasons for those differences and the consequences. Controlled thermonuclear fusion can be obtained in several ways, which have led to different research lines. One line, on which this talk focuses, is by confining the reacting particles with magnetic fields. Another, which is the subject of a different talk, relies on the inertia of the particles to create the conditions necessary for fusion. The progress of the magnetic confinement research is shown, with examples of major hurdles, which have occurred and have been overcome. Recent results, which make us optimistic that the next machine can prove the feasibility of fusion energy, are highlighted. The talk also addresses the challenges that remain before us, and suggests that the promise of fusion energy opens up new perspectives and opportunities for the development and the use of fission energy. (author)

  1. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, T.

    1993-11-01

    This report describes the accomplishments in basic research in nuclear physics carried out by the theoretical nuclear physics group in the Department of Physics at the University of Texas at Austin, during the period of November 1, 1992 to October 31, 1993. The work done covers three separate areas, low-energy nuclear reactions, intermediate energy physics, and nuclear structure studies. Although the subjects are thus spread among different areas, they are based on two techniques developed in previous years. These techniques are a powerful method for continuum-random-phase-approximation (CRPA) calculations of nuclear response and the breakup-fusion (BF) approach to incomplete fusion reactions, which calculation on a single footing of various incomplete fusion reaction cross sections within the framework of direct reaction theories. The approach was developed as a part of a more general program for establishing an approach to describing all different types of nuclear reactions, i.e., complete fusion, incomplete fusion and direct reactions, in a systematic way based on single theoretical framework

  2. Institute for Fusion Research and Large Helical Device program

    International Nuclear Information System (INIS)

    Iiyoshi, Atsuo

    1989-01-01

    In the research on nuclear fusion, the final objective is to materialize nuclear fusion reactors, and for the purpose, it is necessary to cause nuclear combustion by making the plasma of higher than 100 million deg and confine it for a certain time. So far in various universities, the researches on diversified fusion processes have been advanced, but in February, 1986, the Science Council issued the report 'Nuclear fusion research in universities hereafter'. As the next large scale device, an external conductor system helical device was decided, and it is desirable to found the organization for joint utilization by national universities to promote the project. The researches on the other processes are continued by utilizing the existing facilitie. The reason of selecting a helical device is the data base of the researches carried out so far can be utilized sufficiently, it is sufficiently novel even after 10 years from now, and many researchers can be collected. The place of the research is Toki City, Gifu Prefecture, where the Institute of Plasma Physics, Nagoya University, is to be moved. The basic concept of the superconducting helical device project, the trend of nuclear fusion development in the world, the physical research using a helical system and so on are reported. (Kako, I.)

  3. Inertial fusion research: Annual technical report, 1985

    International Nuclear Information System (INIS)

    Larsen, J.T.; Terry, N.C.

    1986-03-01

    This report describes the inertial confinement fusion (ICF) research activities undertaken at KMS Fusion (KMSF) during 1985. It is organized into three main technical sections; the first covers fusion experiments and theoretical physics, the second is devoted to progress in materials development and target fabrication, and the third describes laser technology research. These three individual sections have been cataloged separately

  4. Hybrid fission-fusion nuclear reactors

    International Nuclear Information System (INIS)

    Zucchetti, Massimo

    2011-01-01

    A fusion-fission hybrid could contribute to all components of nuclear power - fuel supply, electricity production, and waste management. The idea of the fusion-fission hybrid is many decades old. Several ideas, both new and revisited, have been investigated by hybrid proponents. These ideas appear to have attractive features, but they require various levels of advances in plasma science and fusion and nuclear technology. As a first step towards the development of hybrid reactors, fusion neutron sources can be considered as an option. Compact high-field tokamaks can be a candidate for being the neutron source in a fission-fusion hybrid, essentially due to their design characteristics, such as compact dimensions, high magnetic field, flexibility of operation. This study presents the development of a tokamak neutron source for a material testing facility using an Ignitor-based concept. The computed values show the potential of this neutron-rich device for fusion materials testing. Some full-power months of operation are sufficient to obtain relevant radiation damage values in terms of dpa. (Author)

  5. Magnetic fusion research in developing countries

    International Nuclear Information System (INIS)

    Hassan, M.H.A.

    1990-01-01

    This article is a presentation prepared by the Third World Academy of Sciences on magnetic fusion research activity in the developing countries and its connection with the IAEA's own fusion programme. 6 figs, 1 tab

  6. G8 decision on fusion would herald nuclear future

    CERN Multimedia

    Starck, Peter

    2005-01-01

    Nuclear fusion as a future abundant energy source would receive a boost if G8 leaders agree next month on the site for the world's first fusion test reactor, two nuclear scientists said on Wednesday (1 page)

  7. Recent fusion research in the National Institute for Fusion Science

    International Nuclear Information System (INIS)

    Komori, Akio; Sakakibara, Satoru; Sagara, Akio; Horiuchi, Ritoku; Yamada, Hiroshi; Takeiri, Yasuhiko

    2011-01-01

    The National Institute for Fusion Science (NIFS), which was established in 1989, promotes academic approaches toward the exploration of fusion science for steady-state helical reactor and realizes the establishment of a comprehensive understanding of toroidal plasmas as an inter-university research organization and a key center of worldwide fusion research. The Large Helical Device (LHD) Project, the Numerical Simulation Science Project, and the Fusion Engineering Project are organized for early realization of net current free fusion reactor, and their recent activities are described in this paper. The LHD has been producing high-performance plasmas comparable to those of large tokamaks, and several new findings with regard to plasma physics have been obtained. The numerical simulation science project contributes understanding and systemization of the physical mechanisms of plasma confinement in fusion plasmas and explores complexity science of a plasma for realization of the numerical test reactor. In the fusion engineering project, the design of the helical fusion reactor has progressed based on the development of superconducting coils, the blanket, fusion materials and tritium handling. (author)

  8. Nuclear data requirements for fusion reactor shielding

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1979-01-01

    The nuclear data requirements for experimental, demonstration and commercial fusion reactors are reviewed. Particular emphasis is given to the shield as well as major reactor components of concern to the nuclear performance. The nuclear data requirements are defined as a result of analyzing four key areas. These are the most likely candidate materials, energy range, types of needed nuclear data, and the required accuracy in the data. Deducing the latter from the target goals for the accuracy in prediction is also discussed. A specific proposal of measurements is recommended. Priorities for acquisition of data are also assigned. (author)

  9. Nuclear fusion and neutron processes

    International Nuclear Information System (INIS)

    Orlov, V.V.; Shatalov, G.E.; Sherstnev, K.E.

    1984-01-01

    Problems of providing development of the design of an experimental fusion reactor with necessary neutron-physical data are discussed. Isotope composition of spent fuel in the blanket of a hybride fusion reactor (HFR) is given. Neutron balance of the reactor with Li-blanket and neutron balance of the reactor with Pb-multiplier are disclosed. A simplified scheme of neutron and energy balance in the HFR blanket is given. Development and construction of the experimental power reactor is shown to become the nearest problem of the UTS program. Alongside with other complex physical and technical problems solution of this problem requires realization of a wide program of neutron-physical investigations including measurements with required accuracy of neutron cross sections, development of methodical, program and constant basis of neutron calculations and macroscopic experiments on neutron sources

  10. The development of controlled nuclear fusion

    International Nuclear Information System (INIS)

    Pease, R.S.

    1978-01-01

    The high temperature conditions needed in a controlled nuclear fusion reactor are now being approached in experiments using magnetic fields to confine and isolate the plasma, especially in systems of the tokamak type. The underlying reasons for the successes are discussed and it is concluded that the remaining advances needed in temperature and thermal insulation may well be achieved in new large tokamak experiments now under construction. Comparable progress is being made also in inertial confinement systems; key experiments on achieving the required super-high densities with high-powered pulsed laser systems are about to commence. To achieve fusion reactors will require the combination of three major disciplines: plasma physics, electromechanical engineering and nuclear engineering. Proposals have been made for an international study group to be set up under the IAEA auspices to consider technical objectives and the nature of the next large fusion device which could be constructed internationally, and in which this synthesis could be attempted. (author)

  11. Comparative assessment of world research efforts on magnetic confinement fusion

    International Nuclear Information System (INIS)

    McKenney, B.L.; McGrain, M.; Rutherford, P.H.

    1990-02-01

    This report presents a comparative assessment of the world's four major research efforts on magnetic confinement fusion, including a comparison of the capabilities in the Soviet Union, the European Community (Western Europe), Japan, and the United States. A comparative evaluation is provided in six areas: tokamak confinement; alternate confinement approaches; plasma technology and engineering; and fusion computations. The panel members are involved actively in fusion-related research, and have extensive experience in previous assessments and reviews of the world's four major fusion programs. Although the world's four major fusion efforts are roughly comparable in overall capabilities, two conclusions of this report are inescapable. First, the Soviet fusion effort is presently the weakest of the four programs in most areas of the assessment. Second, if present trends continue, the United States, once unambiguously the world leader in fusion research, will soon lose its position of leadership to the West European and Japanese fusion programs. Indeed, before the middle 1990s, the upgraded large-tokamak facilities, JT-60U (Japan) and JET (Western Europe), are likely to explore plasma conditions and operating regimes well beyond the capabilities of the TFTR tokamak (United States). In addition, if present trends continue in the areas of fusion nuclear technology and materials, and plasma technology and materials, and plasma technology development, the capabilities of Japan and Western Europe in these areas (both with regard to test facilities and fusion-specific industrial capabilities) will surpass those of the United States by a substantial margin before the middle 1990s

  12. Japanese program of materials research for fusion reactors

    International Nuclear Information System (INIS)

    Hasiguti, R.R.

    1982-01-01

    The Japanese program of materials research for fusion reactors is described based on the report to the Nuclear Fusion Council, the project research program of the Ministry of Education, Science and Culture, and other official documents. The alloy development for the first wall and its radiation damage are the main topics discussed in this paper. Materials viewpoints for the Japanese Tokamak facilities and the problems of irradiation facilities are also discussed. (orig.)

  13. Karlsruhe Nuclear Research Center. Research and development program 1991

    International Nuclear Information System (INIS)

    1990-01-01

    The R and D activities of the KfK are classified in 8 main research activities: 1) project nuclear fusion; 2) project pollutant mitigation in the environment; 3) solid state and materials research; 4) nuclear and elementary particle physics; 5) microtechnics e.g. X-ray lithography; 6) materials handling; 7) project nuclear safety research; 8) radioactive waste management. (orig.) [de

  14. Confusion about nuclear fusion: a false report is laid bare

    International Nuclear Information System (INIS)

    Hintsches, E.

    1983-01-01

    The author discusses the inaccurate and precipitate news of alleged successful controlled nuclear fusion in the Tokamak Fusion Test Reactor at Princeton University. The later modified published report indicated that in a first test, fractional second operation had produced plasma gas temperature of 100,000 0 C whereas 100 million degrees C is necessary for hydrogen nuclear fusion. Also power generation from nuclear fusion is still a long term goal. Problems of nuclear fusion are very briefly mentioned, and an impression of the Tokamak Fusion Test Reactor is illustrated. (H.V.H.)

  15. Muon-catalyzed fusion: A new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  16. Muon-catalyzed fusion: a new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  17. Interim report of working group of Nuclear Fusion Committee

    International Nuclear Information System (INIS)

    Takuma, Hiroshi

    1986-01-01

    The conclusion of the working group was presented as an interim report to the general meeting of Nuclear Fusion Committee, which became the base for deciding the future plan. The report was the result of the hard work for about a half year by five Committee experts and 23 researchers, and has the rich contents. At present, the supply of petroleum relaxed, and the trend that a large amount of investment for a long period for nuclear fusion research is problematical has become strong. Of course, the importance of the nuclear fusion research never changes. The research projects of Heliotron E, Gekko 12, Gamma 10 and so on have advanced, and the base for synthetically promoting the research has been completed. It is indispensable to decide the most effective plan for the next stage. The working group discussed on the five year plan, especially on the research based on a large project. The policy of the works and problems, the progress of the works of respective subgroups, and the summarization are reported. The researches on nuclear burning simulation, no current plasma using an external conductor system and making an axisymmetrical high-beta torus steady were proposed. (Kako, I.)

  18. Nuclear structure and heavy-ion fusion

    International Nuclear Information System (INIS)

    Stokstad, R.G.

    1980-10-01

    A series of lectures is presented on experimental studies of heavy-ion fusion reactions with emphasis on the role of nuclear structure in the fusion mechanism. The experiments considered are of three types: the fusion of lighter heavy ions at subcoulomb energies is studied with in-beam γ-ray techniques; the subbarrier fusion of 16 O and 40 Ar with the isotopes of samarium is detected out of beam by x-radiation from delayed activity; and measurements at very high energies, again for the lighter ions, employ direct particle identification of evaporation residues. The experimental data are compared with predictions based on the fusion of two spheres with the only degree of freedom being the separation of the centers, and which interact via potentials that vary smoothly with changes in the mass and charge of the projectile and target. The data exhibit with the isotopes of samarium, a portion of these deviations can be understood in terms of the changing deformation of the target nucleus, but an additional degree of freedom such as neck formation appears necessary. The results on 10 B + 16 O and 12 C + 14 N → 26 Al at high bombarding energies indicate a maximum limiting angular momentum characteristic of the compound nucleus. At lower energies the nuclear structure of the colliding ion seems to affect strongly the cross section for fusion. Measurements made at subbarrier energies for a variety of projectile-target combinations in the 1p and 2s - 1d shell also indicate that the valence nucleons can affect the energy dependence for fusion. About half the systems studied so far have structureless excitation functions which follow a standard prediction. The other half exhibit large variations from this prediction. The possible importance of neutron transfer is discussed. The two-center shell model appears as a promising approach for gaining a qualitative understanding of these phenomena. 95 references, 52 figures, 1 table

  19. Controlled nuclear fusion. Theoretical and technical-physical aspects

    International Nuclear Information System (INIS)

    Donne, T.; Oomens, N.

    1995-01-01

    It is stated that the realization of controlled fusion is not only a matter of solving technical problems. Also theoretical research in the field of plasma physics is required. A brief state-of-the-art is given of theoretical and technical-physical aspects of nuclear fusion. Attention is paid to magnetic confinement, the importance of theoretical research, plasma heating, plasma diagnostics, and the control of plasma transport. Throughout the article special attention is paid to the International Thermonuclear Experimental Reactor (ITER) project. 5 figs., 1 tab., 3 refs

  20. Chemical engineering side of nuclear fusion power

    International Nuclear Information System (INIS)

    Johnson, E.F.

    1976-10-01

    It is widely recognized that chemical engineering has important roles to play in the development of national and world wide energy resources through optimal utilization of fossil fuel reserves. It is much less appreciated that there are crucial chemical engineering problems in the development of energy production from other sources. In particular the successful development of nuclear fusion power generating systems will require the solution of many problems that are uniquely suited to chemical engineers. This article presents a brief overview of the fusion development program and an identification of the major technological problems remaining to be solved

  1. Twenty years of ''Nuclear Fusion''. Inertial confinement

    International Nuclear Information System (INIS)

    Yamanaka, C.

    1980-01-01

    Inertial confinement (ICF) fusion research is directed towards demonstrating the feasibility of very rapidly heating and compressing small pellets of suitable fuel until conditions exist where thermonuclear fusion can occur and useful amounts of power can be produced. Major problems which have to be solved are the following: 1) pellet design based on driver-plasma coupling; 2) the technology of energy drivers; 3) feasibility of ICF reactor systems

  2. Inertial Confinement Fusion R and D and Nuclear Proliferation

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2011-01-01

    In a few months, or a few years, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory may achieve fusion gain using 192 powerful lasers to generate x-rays that will compress and heat a small target containing isotopes of hydrogen. This event would mark a major milestone after decades of research on inertial confinement fusion (ICF). It might also mark the beginning of an accelerated global effort to harness fusion energy based on this science and technology. Unlike magnetic confinement fusion (ITER, 2011), in which hot fusion fuel is confined continuously by strong magnetic fields, inertial confinement fusion involves repetitive fusion explosions, taking advantage of some aspects of the science learned from the design and testing of hydrogen bombs. The NIF was built primarily because of the information it would provide on weapons physics, helping the United States to steward its stockpile of nuclear weapons without further underground testing. The U.S. National Academies' National Research Council is now hosting a study to assess the prospects for energy from inertial confinement fusion. While this study has a classified sub-panel on target physics, it has not been charged with examining the potential nuclear proliferation risks associated with ICF R and D. We argue here that this question urgently requires direct and transparent examination, so that means to mitigate risks can be assessed, and the potential residual risks can be balanced against the potential benefits, now being assessed by the NRC. This concern is not new (Holdren, 1978), but its urgency is now higher than ever before.

  3. Accelerator and Fusion Research Division: summary of activities, 1983

    International Nuclear Information System (INIS)

    1984-08-01

    The activities described in this summary of the Accelerator and Fusion Research Division are diverse, yet united by a common theme: it is our purpose to explore technologically advanced techniques for the production, acceleration, or transport of high-energy beams. These beams may be the heavy ions of interest in nuclear science, medical research, and heavy-ion inertial-confinement fusion; they may be beams of deuterium and hydrogen atoms, used to heat and confine plasmas in magnetic fusion experiments; they may be ultrahigh-energy protons for the next high-energy hadron collider; or they may be high-brilliance, highly coherent, picosecond pulses of synchrotron radiation

  4. Fusion research and technology records in INIS database

    International Nuclear Information System (INIS)

    Hillebrand, C.D.

    1998-01-01

    This article is a summary of a survey study ''''A survey on publications in Fusion Research and Technology. Science and Technology Indicators in Fusion R and T'''' by the same author on Fusion R and T records in the International Nuclear Information System (INIS) bibliographic database. In that study, for the first time, all scientometric and bibliometric information contained in a bibliographic database, using INIS records, is analyzed and quantified, specific to a selected field of science and technology. A variety of new science and technology indicators which can be used for evaluating research and development activities is also presented in that study that study

  5. Fusion plasma research and education in Japan

    International Nuclear Information System (INIS)

    Inoue, N.

    1995-01-01

    Japanese fusion plasma research and education is reviewed by focusing on the activities promoted by the Ministry of Education, Science, Culture, and Sports (MOE). University fusion research is pursued by the academic interest and student education. A hierarchical structure of budget and manpower arrangement is observed. The small research groups of universities play the role of recruiting young students into the fusion and plasma society. After graduating the master course, most students are engaged by industries

  6. Electrochemically induced nuclear fusion of deuterium

    International Nuclear Information System (INIS)

    Jorne, J.

    1990-01-01

    In this paper cold fusion of deuterium by electrolysis of heavy water onto a palladium (or titanium) cathode is reported. Contrary to the assumption of Fleishmann and Pons that electrochemically compressed D + exists inside the palladium cathode, the observations of Jones et al. can be partially explained by the simultaneous presence of deuteride D - and the highly mobile positive deuterium ion D + . The opposite charges reduce the intranuclear distance and enhance the tunneling fusion rate. Furthermore, alloying of lithium with palladium can stabilize a negatively charged deuteride ion due to the salinelike character of lithium deuteride. The enormous pressure (or fugacity), achieved by the applied electrochemical potential (10 30 atm), is a virtual pressure that would have existed in equilibrium with palladium deuteride (PdD x ). It is speculated that nuclear fusion occurs at the surface, and the PdD x serves as a reservoir for the supply of deuteride ions

  7. Vacuum-brazed joints made from carbon-based materials and metals for the nuclear fusion research

    International Nuclear Information System (INIS)

    Koppitz, T.; Lison, R.; Bolt, H.; Hohenauer, W.

    1998-01-01

    The stationary operation of fusion plants may involve power fluxes of up to 5 MW/m2 in the region of the surfaces of plasma-facing components. In the case of disruptions, these power fluxes can reach 30 MW/m2 at exposed locations within a few milliseconds. Special materials with fusion capability are required to cope with loads arising at these locations due to thermal fatigue, physical and chemical erosion as well as thermal evaporation or sublimation. Such materials, so-called low-Z materials, include carbon-based materials such as graphites, carbon fibre reinforced carbon, boron carbides and others. The exposure of these materials to the above power fluxes for experimental purposes requires particular water-cooled components of different geometry with a materials-connected interface between the carbon-based material and the water-cooled component of TZM or copper. The application of high-temperature brazing for a largely defect-free fabrication of such components with different geometry will be presented in the following. (orig.)

  8. Project Icarus: Nuclear Fusion Propulsion Concept Comparison

    Science.gov (United States)

    Stanic, M.

    Project Icarus will use nuclear fusion as the primary propulsion, since achieving breakeven is imminent within the next decade. Therefore, fusion technology provides confidence in further development and fairly high technological maturity by the time the Icarus mission would be plausible. Currently there are numerous (over 2 dozen) different fusion approaches that are simultaneously being developed around the World and it is difficult to predict which of the concepts is going to be the most successful one. This study tried to estimate current technological maturity and possible technological extrapolation of fusion approaches for which appropriate data could be found. Figures of merit that were assessed include: current technological state, mass and volume estimates, possible gain values, main advantages and disadvantages of the concept and an attempt to extrapolate current technological state for the next decade or two. Analysis suggests that Magnetic Confinement Fusion (MCF) concepts are not likely to deliver sufficient performance due to size, mass, gain and large technological barriers of the concept. However, ICF and PJMIF did show potential for delivering necessary performance, assuming appropriate techno- logical advances. This paper is a submission of the Project Icarus Study Group.

  9. Fusion energy research for ITER and beyond

    International Nuclear Information System (INIS)

    Romanelli, Francesco; Laxaaback, Martin

    2011-01-01

    The achievement in the last two decades of controlled fusion in the laboratory environment is opening the way to the realization of fusion as a source of sustainable, safe and environmentally responsible energy. The next step towards this goal is the construction of the International Thermonuclear Experimental Reactor (ITER), which aims to demonstrate net fusion energy production on the reactor scale. This paper reviews the current status of magnetic confinement fusion research in view of the ITER project and provides an overview of the main remaining challenges on the way towards the realization of commercial fusion energy production in the second half of this century. (orig.)

  10. Towards abundant and pollution-free energy. Laser nuclear fusion

    International Nuclear Information System (INIS)

    Robieux, J.

    2008-01-01

    This book shows that it is now practically certain that by the year 2080 laser nuclear fusion will allow to produce an abundant and relatively cheap energy. Thanks to this energy, it will be possible to convert a mixture of CO 2 , H 2 and water into an automotive fuel or a food product. Laser nuclear fusion will use deuterium as fuel and thus oil and gas will become useless. Also, thanks to this new energy source, global warming and starvation will be overcome. The laser fusion concept was introduced by J. Robieux in 1962 just after the discovery of the laser. This idea was immediately accepted and sustained by the French President De Gaulle. The research on laser fusion was initially undertaken at the Marcoussis research centre from the Compagnie Generale d'Electricite (General Electricity Company - CGE). In 1967, the lasers built at Marcoussis were 30 times more powerful than any other laser in the rest of world. A cooperation with the USA started at that time and is still going on today. In 1969, the CEA centre of Limeil realized the world premiere experiments of laser fusion. This book presents the historical aspects and the state-of-the-art of this technology today. It is written in two parts, the first part does not require any scientific knowledge and is accessible to everybody, while the second part can be understood only by readers having a basic scientific background. (J.S.)

  11. Combined development of international nuclear fusion test reactors

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Ambassadors of the four most important partners (Common Market, Japan, USA and USSR) in the IAEA sponsored INTOR project, met on the 15 and 16 March 1987 in Vienna under the auspices of the IAEA. A press release was issued acknowledging the considerable technical progress made in magnetic nuclear fusion research. Future design concepts, assistance in research and development work and other activities towards the provision of an international experimental thermonuclear reactor were discussed. (G.T.H.)

  12. Once more about cold nuclear fusion

    International Nuclear Information System (INIS)

    Brudanin, V.B.; Bystritsky, V.M.; Egorov, V.G.

    1989-01-01

    The results of the experiments on the search for cold nuclear d-d fusion in chemically pure titanium are given both for electrolysis of heavy water D 2 O and for titanium saturation with gaseous deuterium. The saturation took place at the temperature of 77K and pressure of 50 and 150 atm. A round of experiments with temperature varying from 1 to 600 atm was carried out. The limiting values of the partial rate of the nuclear reaction of d-d fusion with neutron production were obtained per deuteron (at the 95% confidence level): λ f ≤4x10 -25 s -1 (experiment with electrolysis), λ f ≤7x10 -28 s -1 (experiment with gaseous deuterium). 7 refs.; 5 figs.; 2 tabs

  13. Virtual laboratory for fusion research in Japan

    International Nuclear Information System (INIS)

    Tsuda, K.; Nagayama, Y.; Yamamoto, T.; Horiuchi, R.; Ishiguro, S.; Takami, S.

    2008-01-01

    A virtual laboratory system for nuclear fusion research in Japan has been developed using SuperSINET, which is a super high-speed network operated by National Institute of Informatics. Sixteen sites including major Japanese universities, Japan Atomic Energy Agency and National Institute for Fusion Science (NIFS) are mutually connected to SuperSINET with the speed of 1 Gbps by the end of 2006 fiscal year. Collaboration categories in this virtual laboratory are as follows: the large helical device (LHD) remote participation; the remote use of supercomputer system; and the all Japan ST (Spherical Tokamak) research program. This virtual laboratory is a closed network system, and is connected to the Internet through the NIFS firewall in order to keep higher security. Collaborators in a remote station can control their diagnostic devices at LHD and analyze the LHD data as they were at the LHD control room. Researchers in a remote station can use the supercomputer of NIFS in the same environment as NIFS. In this paper, we will describe detail of technologies and the present status of the virtual laboratory. Furthermore, the items that should be developed in the near future are also described

  14. Verification of cold nuclear fusion reaction, (1)

    International Nuclear Information System (INIS)

    Yoshida, Zenko; Aratono, Yasuyuki; Hirabayashi, Takakuni

    1991-01-01

    Can cold nuclear fusion reaction occur as is expected? If it occurs, what extent is its reaction probability? At present after 2 years elapsed since its beginning, the clear solution of these questions is not yet obtained. In many reaction systems employing different means, the experiments to confirm the cold nuclear fusion reaction have been attempted. In order to confirm that the nuclear fusion reaction of deuterium mutually has occurred, the neutrons, He-3, protons, tritium or generated heat, which were formed by the reaction and released from the system, are measured. Since it is considered that the frequency of the occurrence at normal temperature of the reaction is very low, it is necessary to select the most suitable method upon evaluating the limit of detection peculiar to the measuring methods. The methods of measuring neutrons, protons, gamma ray and generated heat, and the reaction systems by electrolytic process and dry process are explained. The detection of plural kinds of the reaction products and the confirmation of synchronism of signals are important. (K.I.)

  15. Power source system for nuclear fusion

    International Nuclear Information System (INIS)

    Nakagawa, Satoshi.

    1975-01-01

    Object: When using an external system power source and an exclusive power source in a power source circuit for supplying power to the coils of a nuclear fusion apparatus, to minimize the capacity of the exclusive power source and provide an economical power source circuit construction. Structure: In the initial stage of the power supply, rectifying means provided in individual blocks are connected in parallel on the AC side, and power is supplied to the coils of the nuclear fusion apparatus from an external system power source with the exclusive power source held in the disconnected state. Further, at an instant when the limit of permissible input is reached, the afore-mentioned parallel circuit consisting of rectifying means is disconnected, while at the same time the exclusive power source is connected to the input side of the rectifying means provided in a block corresponding to the exclusive power source side, thereby supplying power to the coils of the nuclear fusion apparatus from both the external system power source and exclusive power source. (Kamimura, M.)

  16. Cold fusion research in Italy

    International Nuclear Information System (INIS)

    Scaramuzzi, F.

    1993-01-01

    This paper summarizes cold fusion (CF) research in Italy. In Italy, many Agencies and Universities are moderately funding research in CF, and the scientists have made a few attempts to coordinate each other, organizing meetings and conferences. However, the activity has been mostly the fruit of the scientists' initiative, and never a coordinated proposal of Agencies and Universities. No position on the scientific validity of the subject has been officially taken and the funds for CF have been rather modest. The investments in Italy on CF, the figure referring to 1992 amounts to about 0.5 million dollars, not including expenses for personnel. A number of about 70 scientists, mostly working part-time, is committed all around the Country in research on CF. The lack of offical commitment and effective support by the Research Agencies and the Universities has not prevented scientists from being quite active in performing research. On the other side, it has to be acknowledged that no formal vetoes have been interposed to the free initiative of scientists in this field: on the contrary, some of the Agencies and Universities have moderately funded such an effort. The quality of the experiments in Italy has been increasingly good, and the results obtained are rather out standing in the general panorama of CF. But it is time to perform a more coordinated effort, keeping in mind that material science aspects, such as the characteristics of the materials used, play a very important role in the development of this topic. Thus, a much more intense effort is required to obtain a more substantial progress in the field. The increasingly convincing results obtained by the whole CF community, and the example of the Japanese Government and Industry, which appear to be determined to promoting CF research, have changed the panorama of CF. These are now signs that also the Italian scientific authorities could consider favouring research in this field in the near future. (J.P.N.)

  17. 2014 Nuclear Fusion Prize Acceptance Speech 2014 Nuclear Fusion Prize Acceptance Speech

    Science.gov (United States)

    Snyder, P. B.

    2015-01-01

    It is a great honor to receive the 2014 Nuclear Fusion Prize, here at the 25th IAEA Fusion Energy Conference. On behalf of everyone involved in this work, I would like to thank the IAEA, the Nuclear Fusion journal team, the IOP, and specifically Mitsuru Kikuchi, for their support of this important award. I would also like to acknowledge the many important contributions made by the other ten papers nominated for this prize. Our paper investigates the physics of the H-mode pedestal in tokamaks, specifically the development of a predictive understanding of the pedestal structure based on electromagnetic instabilities which constrain it, and the testing of the resulting theoretical model (EPED) against detailed observations on multiple devices. In addition to making pedestal predictions for existing devices, the paper also presents predictions for ITER, including methods for optimizing its pedestal height and fusion performance. What made this work possible, and indeed a pleasure to be involved with, was an extensive set of collaborations, including theory-experiment, multi-institutional, and international collaborations. Many of these collaborations have gone on for over a decade, and have been fostered in part by the ITPA Pedestal Group. The eight authors of this paper, from five institutions, all made important contributions. Rich Groebner, Tom Osborne and Tony Leonard carried out dedicated experiments and data analysis on the DIII-D tokamak, testing the EPED model over a very wide range of parameters. Jerry Hughes led dedicated experiments on Alcator C-Mod which tested the model at high magnetic field and pedestal pressure. Marc Beurskens carried out experiments and data analysis on the JET tokamak, testing the model at large scale. Xueqiao Xu conducted two-fluid studies of diamagnetic stabilization, which enabled a more accurate treatment of this important effect. Finally, Howard Wilson and I have been working together for many years to develop analytic formalism

  18. Development and verification of remote research environment based on 'Fusion research grid'

    International Nuclear Information System (INIS)

    Iba, Katsuyuki; Ozeki, Takahisa; Totsuka, Toshiyuki; Suzuki, Yoshio; Oshima, Takayuki; Sakata, Shinya; Sato, Minoru; Suzuki, Mitsuhiro; Hamamatsu, Kiyotaka; Kiyono, Kimihiro

    2008-01-01

    'Fusion research grid' is a concept that unites scientists and let them collaborate effectively against their difference in time zone and location in a nuclear fusion research. Fundamental technologies of 'Fusion research grid' have been developed at JAEA in the VizGrid project under the e-Japan project at the Ministry of Education, Culture, Sports, Science and Technology (MEXT). We are conscious of needs to create new systems that assist researchers with their research activities because remote collaborations have been increasing in international projects. Therefore we have developed prototype remote research environments for experiments, diagnostics, analyses and communications based on 'Fusion research grid'. All users can access these environments from anywhere because 'Fusion research grid' does not require a closed network like Super SINET to maintain security. The prototype systems were verified in experiments at JT-60U and their availability was confirmed

  19. Construction and characterization of a new high current ion source for research of impact of hydrogen irradiation on wall materials for use in nuclear fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Arredondo Parra, Rodrigo; Neu, Rudolf [Max Planck Institute for Plasma Physics, Garching (Germany); Technische Universitaet Muenchen, Garching (Germany); Oberkofler, Martin; Schmid, Klaus; Weghorn, Arno [Max Planck Institute for Plasma Physics, Garching (Germany)

    2016-07-01

    The HSQ (HochStromQuelle) is a high current DuoPIGatron type ion source used for research in surface properties of wall materials for nuclear fusion reactors. The existing HSQ-I will be replaced by the conceptually identical HSQ-II, currently under construction. Varying the acceleration potential and optimizing gas inflow and beam focusing grid voltage, ion currents before the deflecting magnet between 10 and 875 μA were reached for acceleration voltages of 0.7 to 8 kV. The ion beam footprint will be characterized, and ion optics will be installed before and after the deflecting magnet, capable of bending 10 keV Ar. A monoenergetic beam of a single species (e.g. D{sub 3}{sup +}) will finally be used for irradiation of samples in the separate implantation chamber at a base pressure of 10{sup -8} mbar. The energy of the impinging particles ranges from 200 eV/D to several keV/D. Fluxes of 10{sup 15} D/cm{sup 2}/s to the target are expected. The temperature of the sample is varied via electron impact heating and the sample weight can be assessed in situ by means of a magnetic suspension balance.

  20. Advanced fuels for nuclear fusion reactors

    International Nuclear Information System (INIS)

    McNally, J.R. Jr.

    1974-01-01

    Should magnetic confinement of hot plasma prove satisfactory at high β (16 πnkT//sub B 2 / greater than 0.1), thermonuclear fusion fuels other than D.T may be contemplated for future fusion reactors. The prospect of the advanced fusion fuels D.D and 6 Li.D for fusion reactors is quite promising provided the system is large, well reflected and possesses a high β. The first generation reactions produce the very active, energy-rich fuels t and 3 He which exhibit a high burnup probability in very hot plasmas. Steady state burning of D.D can ensue in a 60 kG field, 5 m reactor for β approximately 0.2 and reflectivity R/sub mu/ = 0.9 provided the confinement time is about 38 sec. The feasibility of steady state burning of 6 Li.D has not yet been demonstrated but many important features of such systems still need to be incorporated in the reactivity code. In particular, there is a need for new and improved nuclear cross section data for over 80 reaction possibilities

  1. Spin-off produced by the fusion research and development

    International Nuclear Information System (INIS)

    Koizumi, Koichi; Konishi, T.; Tsuji, Hiroshi

    2001-03-01

    Nuclear fusion devices are constructed by the integration of many frontier technologies and fusion science based on a wide area of science such as physics, electromagnetics, thermodynamics, mechanics, electrical engineering, electronics, material engineering, heat transfer and heat flow, thermal engineering, neutronics, cryogenics, chemical engineering, control engineering, instrumentation engineering, vacuum engineering. For this, the research and development of elementary technology for fusion devices contributes to advance the technology level of each basic field. In addition, the mutual stimulus among various research fields contributes to increase the potential level of whole 'science and technology'. The spin-offs produced by the fusion technology development give much contribution not only to the general industrial technologies such as semiconductor technology, precision machining of large component, but also contribute to the progress of the accelerator technology, application technology of superconductivity, instrumentation and diagnostics, plasma application technology, heat-resistant and heavy radiation-resistant material technology, vacuum technology, and computer simulation technology. The spin-off produced by the fusion technology development expedite the development of frontier technology of other field and give much contribution to the progress of basic science on physics, space science, material science, medical science, communication, and environment. This report describes the current status of the spin-off effects of fusion research and development by focusing on the contribution of technology development for International Thermonuclear Experimental Reactor (ITER) to industrial technology. The possibilities of future application in the future are also included in this report from the view point of researchers working for nuclear fusion development. Although the nuclear fusion research has a characteristic to integrate the frontier technologies of

  2. Present status of fusion researches in USA, 4

    International Nuclear Information System (INIS)

    Yoshikawa, Shoichi; Okabayashi, Michio

    1983-01-01

    25 years have elapsed since nuclear fusion was published at the second Geneva conference in 1958. During this period, the Plasma Physics Laboratory of Princeton University has achieved the central role in the research on toroidal system nuclear fusion devices. Also the experiment of the large tokamak TFTR started from December, 1982, recorded the longest containment time of 200 ms as the initial data, and toroidal devices look to approach one step close to the scientific verification experiment (Q = 1) of reactors. In the PPPL, in order to perfect the basis required for the realization of nuclear fusion reactors, the experimental and theoretical developments have been carried out. Plasma containment experiment has been advanced successively from stellarater through internal conductor type to tokamak, and in plasma heating, ion cyclotron heating, fast neutral particle injection heating and low region hybrid heating were successfully carried out. As the experimental apparatuses, that for poloidal divertor experiment, Princeton large torus, tokamak fusion test reactor (TFTR) and S-1 spheromak are described. From the theories developed recently, bean type tokamak, heliac-stellarator and nuclear fusion reaction utilizing μ-mesons and nuclear spin are explained. (Kako, I.)

  3. Major achievements and challenges of fusion research

    International Nuclear Information System (INIS)

    Tendler, Michael

    2015-01-01

    The ITER project is truly at the frontier of knowledge, a collective effort to explore the tantalizing future of free, clean and inexhaustible energy offered by nuclear fusion. Where the Large Hadron Collider at CERN pushes the boundaries of physics to find the origins of matter, the ITER Project seeks to give humans an endless stream of power which could have potentially game-changing consequences for the entire planet. Seminal contributions to the general physics knowledge accomplished by the plasma physics research for the benefit of the ITER project will be brought to light. The legacy of Professor H Alfvén within the framework of the ITER project will be described. (invited comment)

  4. Experimental nuclear physics research in Hungary

    International Nuclear Information System (INIS)

    Koltay, Ede.

    1984-01-01

    The status and recent results of experimental nuclear physics in Hungary is reviewed. The basic nuclear sciences, instrumental background and international cooperation are discussed. Personal problems and the effects of the international scientific deconjuncture are described. The applied nuclear and interdisciplinary researches play an important role in Hungarian nuclear physics. Some problems of cooperation of Hungarian nuclear and other research institutes applying or producing nuclear analytical technology are reviewed. The new instrument, the Debrecen cyclotron under construction gives new possibilities to basic and applied researches. A new field of Hungarian nuclear physics is the fusion and plasma research using tokamak equipment, the main topics of which are plasma diagnostics and fusion control systems. Some practical applications of Hungarian nuclear physical results, e.g. establishment of new analytical techniques like PIXE, RBS, PIGE, ESCA, etc. are summarized. (D.Gy.)

  5. Heavy-Ion Fusion Accelerator Research, 1991

    International Nuclear Information System (INIS)

    1992-03-01

    This report discusses the following topics: research with multiple- beam experiment MBE-4; induction linac systems experiments; and long- range research and development of heavy-ion fusion accelerators

  6. Nuclear fusion in a solid body

    International Nuclear Information System (INIS)

    Romodanov, V.A.; Savin, V.I.; Shakhurin, M.V.; Chernyavskij, V.T.; Pustovit, A.E.

    1991-01-01

    The present work was aimed at investigating a possibility to have a fusion reaction during the interaction of gaseous deuterium with various metals under conditions of glow discharge. It is shown that neutron flux which presumably occurs due to the reaction of nuclear fusion exceeded the background level two times maximum for such materials as Cr, Pd, B, Li. A conclusion is made that for the recording of neutrons which can be generated under bombardment of material surfaces with accelerated ions an additional shielding of standard recorders is required against electromagnetic oscillations both in the input circuits and power supply circuits. A significant increase of tritium concentration in deuterium was recorded (by mass spectrometry and β activity measurement) during the passage of the latter through the metal being bombarded with accelerated ions from glow discharge plasma

  7. Who works with nuclear fusion technology

    International Nuclear Information System (INIS)

    Boettiger, H.

    1977-01-01

    Humanity today, and especially the youth in industrial nations, undergoes a trend towards a 'post-industrial society'. This may be due to the resignation of those who think themselves unable to meet the increasing demands made on social production. The paper draws up a concept to give humanity a new interest in life. First, the paradox educational situation in the FRG today is outlined. Nuclear fusion technology and the industrial development necessary for its implementation are offered as a way out of the paradox situation of the present educational system. The demands to be made on an educational system for fusion technology are discussed. This strategy for world-wide economic growth integrates the intelligence potential of the industrial nations and the potential labour force of the Third World. (GG) [de

  8. Controlled energy generation from nuclear fusion. 60th year atw

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Georg [Pintsch Bamag AG, Frankfurt am Main (Germany)

    2015-02-15

    Prospects increase, that with a controlled process of nuclear fusion one day an additional nuclear energy source will be commercially exploitable. In what follows, scientific principles according to the most recent research will be presented. Since approximately 30 years we are aware of the fact, that energy in form of light and heat provided by the sun and other fixed stars since over four billions years resulted from reactions of atomic nuclei. A series of such reactions became known which are considered for 'thermonuclear' processes, for example the carbon cycle by Bethe, where hydrogen is converted into helium. Most of the reflections and experiments dealt until 1938 with the reaction between nuclei of light elements. The possibility of splitting heavy nuclei was not anticipated. Its discovery by Hahn and Strassmann was a complete surprise - so to speak a rash reaction to release energy at the end of the element row. This 'way out' captured the interest of nuclear physicist for more than a decade. Only today, by starting to construct big nuclear power plants - only today, being able to assess the possibilities and limitations of this technology, the idea of energy generation through nuclear fusion steps into the foreground of nuclear research.

  9. Nuclear data for fusion technology – the European approach

    Directory of Open Access Journals (Sweden)

    Fischer Ulrich

    2017-01-01

    Full Text Available The European approach for the development of nuclear data for fusion technology applications is presented. Related R&D activities are conducted by the Consortium on Nuclear Data Development and Analysis for Fusion to satisfy the nuclear data needs of the major projects including ITER, the Early Neutron Source (ENS and DEMO. Recent achievements are presented in the area of nuclear data evaluations, benchmarking and validation, nuclear model improvements, and uncertainty assessments.

  10. Coil for a nuclear fusion device

    International Nuclear Information System (INIS)

    Kadotani, Kenzo.

    1975-01-01

    Object: To provide a thin nuclear fusion coil having good thermal insulation and insulating properties in which mica and glass materials are wound round conductors subjected to varnish treatment and hardened, which is then sealed into a metallic case along with negative gases of more than two atmospheric pressures. Structure: A plurality of conductors impregnated with varnish are hardened by a rare insulating layer, after which it is coated with a layer of mica not impregnated with varnish and a layer of glass substance and is then received into a metallic case and filled under pressure with negative gases at a pressure more than two atmospheric pressures. (Kamimura, M.)

  11. Protector in a nuclear fusion device

    International Nuclear Information System (INIS)

    Furukawa, Masayuki; Yamane, Katsumi; Niwa, Sadahiko; Ogata, Fumio; Masuda, Jun-ichi.

    1975-01-01

    Object: To block an abnormal voltage, which shifts from plasma to coil or power supply by means of action of mutual induction, by a circuit utilizing non-linear impedance elements. Structure: The nuclear fusion device includes a current transformer coil, a vertical field coil and a plasma circuit, with a non-linear impedance element disposed in parallel with at least the current transformer coil, said impedance element being disposed in parallel with a short-circuiting switch, relative to the abnormal voltage moving from the plasma by means of action of mutual induction. (Kamimura, M.)

  12. Sensor Fusion for Nuclear Proliferation Activity Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Adel Ghanem, Ph D

    2007-03-30

    The objective of Phase 1 of this STTR project is to demonstrate a Proof-of-Concept (PoC) of the Geo-Rad system that integrates a location-aware SmartTag (made by ZonTrak) and a radiation detector (developed by LLNL). It also includes the ability to transmit the collected radiation data and location information to the ZonTrak server (ZonService). The collected data is further transmitted to a central server at LLNL (the Fusion Server) to be processed in conjunction with overhead imagery to generate location estimates of nuclear proliferation and radiation sources.

  13. Introduction to Nuclear Fusion Power and the Design of Fusion Reactors. An Issue-Oriented Module.

    Science.gov (United States)

    Fillo, J. A.

    This three-part module focuses on the principles of nuclear fusion and on the likely nature and components of a controlled-fusion power reactor. The physical conditions for a net energy release from fusion and two approaches (magnetic and inertial confinement) which are being developed to achieve this goal are described. Safety issues associated…

  14. Fusion-supported decentralized nuclear energy system

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1979-04-01

    A decentralized nuclear energy system is proposed comprising mass-produced pressurized water reactors in the size range 10 to 300 MW (thermal), to be used for the production of process heat, space heat, and electricity in applications where petroleum and natural gas are presently used. Special attention is given to maximizing the refueling interval with no interim batch shuffling in order to minimize fuel transport, reactor downtime, and opportunity for fissile diversion. These objectives demand a substantial fissile enrichment (7 to 15%). The preferred fissile fuel is U-233, which offers an order of magnitude savings in ore requirements (compared with U-235 fuel), and whose higher conversion ratio in thermal reactors serves to extend the period of useful reactivity and relieve demand on the fissile breeding plants (compared with Pu-239 fuel). Application of the neutral-beam-driven tokamak fusion-neutron source to a U-233 breeding pilot plant is examined. This scheme can be extended in part to a decentralized fusion energy system, wherein remotely located large fusion reactors supply excess tritium to a distributed system of relatively small nonbreeding D-T reactors

  15. ITER, a major step toward nuclear fusion energy

    International Nuclear Information System (INIS)

    Ikeda, K.; Holtkamp, N.; Pick, M.; Gauche, F.; Garin, P.; Bigot, B.; Luciani, J.F.; Mougniot, J.C.; Watteau, J.P.; Saoutic, B.; Becoulet, A.; Libeyre, P.; Beaumont, B.; Simonin, A.; Giancarli, L.; Rosenvallon, S.; Gastaldi, O.; Marbach, G.; Boudot, C.; Ioki, K.; Mitchell, N.; Girard, J.Ph.; Giraud, B.; Lignini, F.; Giguet, E.; Bofusch, E.; Friconneau, J.P.; Di Pace, L.; Pampin, R.; Cook, I.; Maisonnier, D.; Campbell, D.; Hayward, J.; Li Puma, A.; Norajitra, P.; Sardain, P.; Tran, M.Q.; Ward, D.; Moslang, A.; Carre, F.; Serpantie, J.P.

    2007-01-01

    This document gathers together a series of articles dedicated to ITER. They are organized into 5 parts. The first part describes the potential of fusion as a source of energy that will be able to face the challenge of a continuously increasing demand. After a reminder of the main fusion reactions and the conditions to obtain fusion, the second part focuses on the magnetic fusion based concepts with a special emphasis on the tokamak configuration. In the third part the main components of ITER are described: first the plasma facing components, then the vacuum vessel, the superconducting magnets and the heating systems. In the fourth part short papers concerning ITER safety, the maintenance through remote handling systems, the tritium breeding blanket, are given, along with a full article on the waste management. It is interesting to notice that the nuclear wastes will represent: -) between 1600 and 3800 tons of housekeeping and process wastes produced during the 20 years of operation of ITER (20% very low level waste, 75% low or medium activity with short life and 5% medium activity with long life), -) about 750 tons from component replacement during ITER active operation, and -) about 30000 tons from the decommissioning of ITER. The last part presents the European concepts for a power plant based on a fusion reactor. A basic design is given along with a state of the art of the research on the materials that will be used for the structures. It is highlighted that synergies between fission and fusion technologies exist in at least 4 areas: nuclear design code system, high temperature materials, safety approach, and in-service inspection, maintenance and dismantling. (A.C.)

  16. Karlsruhe Nuclear Research Center. Research and development program 1992

    International Nuclear Information System (INIS)

    1991-01-01

    The KfK R and D activities are classified by ten point-of-main-effort projects: 1) low-pollution/low-waste methods, 2) environmental energy and mass transfers, 3) nuclear fusion, 4) nuclear saftey research, 5) radioactive waste management, 6) superconduction, 7) microtechnics, 8) materials handling, 9) materials and interfaces, 10) basic physical research. (orig.) [de

  17. Use of nuclear fusion systems for spent nuclear fuel degradation

    International Nuclear Information System (INIS)

    Nieto, M.; Ramos, G.; Herrera V, J. J. E.

    2009-10-01

    One of the severe problems of the nuclear industry that should be resolved to facilitate its acceptance like viable energy alternative is of the wastes. In spite of having alternative of fuel reprocessing, many of them have been abandoned by economic or security reasons. In the present work, the alternative is described for using reactors of nuclear fusion as sources of fast neutrons with two important applications in mind: the plutonium burning and the transmutation of the elements that contribute in way more important to their radioactivity, mainly the smaller actinides and the fission products of long half life. (Author)

  18. Contributions to the third international symposium on fusion nuclear technologies (ISFNT-3)

    International Nuclear Information System (INIS)

    1994-11-01

    The contributions of ENEA (Italian Agency for New Technologies, Energy and the Environment) Frascati center researchers to the 3rd international symposium on fusion nuclear technologies, held at Los Angeles, 27 June-1 July 1994, are presented

  19. Nuclear data for structural materials of fission and fusion reactors

    International Nuclear Information System (INIS)

    Goulo, V.

    1989-06-01

    The document presents the status of nuclear reaction theory concerning optical model development, level density models and pre-equilibrium and direct processes used in calculation of neutron nuclear data for structural materials of fission and fusion reactors. 6 refs

  20. Accelerator ampersand Fusion Research Division: 1993 Summary of activities

    International Nuclear Information System (INIS)

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book

  1. Accelerator & Fusion Research Division: 1993 Summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book.

  2. Nuclear fusion: sixty years of efforts, great advances and challenges. May nuclear fusion replace fossil energies? The Grail which makes start-ups dream

    International Nuclear Information System (INIS)

    Guilbaud, Sylvain; Pajot, Philippe; Delbecq, Denis

    2016-01-01

    A first article proposes an overview of sixty years of researches, investments and realisations aimed at a better knowledge and control of nuclear fusion to solve the Planet's energy problems. After a brief overview of the Sun as an example, and while presenting the principle of magnetic fusion in a tokamak, some key figures illustration the development of ITER, the authors describe magnetic fusion as the royal road to nuclear fusion (challenges for the ITER project, development of Stellarator as a concurrent of tokamaks), and inertial fusion as an alternate approach (principle, military interest, plasma physics). They also indicate other approaches based on a change of energy source, a change in ignition process, or a change in fuel. In a second article, the author discusses the economic perspectives of nuclear fusion: a supposed unlimited fuel, existence of radioactive releases and pollution, operation risks and costs, technical challenges to be faced, a development to be amortised on more than a century except if more compact processes are elaborated and developed. The author also discusses issues of profitability and of proliferation. The third and last article comments the existence of many start-ups, notably financed by Silicon Valley rich companies, which invest in researches and projects on nuclear fusion. They try to develop more compact systems, and aim at manufacturing their first prototypes by 2020. On the other side, academics remain doubtful about their ability to reach their objectives

  3. Technological forecasting a long time of the scientific-technological development of the nuclear fusion

    International Nuclear Information System (INIS)

    Schettert, Plinio G.; Oliveira, Wagner S.; Aquino, Afonso R.

    2009-01-01

    With base in the introduction in long time of the nuclear fusion inside of a system of viable energy, taking in consideration economic factors, would imply on investment in a long period. The objective of this project utilizing the method of the Delphi technique is the technological forecast a long time of the scientific-technological development of the nuclear fusion and its impact. This research project will be carried through different stages of improvement of variables. A questionnaire based on information and analysis of the literature validated for specialists in nuclear fusion becomes this project a tool in the elaboration future of a database contends variables on the theme nuclear fusion and its perspectives. The database will be composed for the answers and suggestions obtained, with exploratory and extrapolatory elements, on the theme a great number of specialists involving in the nuclear fusion area. The database is analyzed for the configuration of variables that represent elements as scientific-technological factors, economical, political, social and environmental among others. As final result of the research with the Delphi technique, different scenes obtained with the variables will be indicated by convergent factors or not on the approached perspectives. The analysis of the data will be possible through of improve of statistical analysis tools. This is the first analyzes of the answers. The questionnaire was validated with nuclear fusion specialists from the Institute of Physics of the University of Sao Paulo in Brazil and the Center of Nuclear Fusion of the Technical University of Lisbon in Portugal. (author)

  4. Nuclear measurements, techniques and instrumentation, industrial applications, plasma physics and nuclear fusion 1986-1996. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1997-03-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques, and Instrumentation, Industrial Applications, Plasma Physics and Nuclear Fusion, issued during the period 1986-1996. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all of these papers have abstracts in English. Contents cover the three main areas of (i) Nuclear Measurements, Techniques and Instrumentation (Physics, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactor and Particle Accelerator Applications, and Nuclear Data), (ii) Industrial Applications (Radiation Processing, Radiometry, and Tracers), and (iii) Plasma Physics and Controlled Thermonuclear Fusion

  5. The growth of European fusion research

    International Nuclear Information System (INIS)

    Palumbo, D.

    1988-01-01

    The Euratom initial research programme with fusion as a modest element was constituted in 1958. Progress in fusion research mainly in the USA, USSR and UK was reported at the Geneva Conference held in September 1958. A network of national laboratories cooperating in fusion research was constituted under Association Contracts rather than founding a single Euratom laboratory. Emergence of the Tokamak became evident in 1968, and in 1969 a team from Culham travelled to Moscow to measure the electron plasma temperature and confirmed the previous Russian results. Collaboration between Culham and the European Fusion programme developed before the entrance of the UK into the European Community. The JET design team began its work in 1973. The site selected was at Culham and construction of JET commenced in 1978. Subsequent international discussions including the USA and USSR resulted in detailed design studies for a large device known as the INTOR Tokamak which will probably lead to further international cooperation. (U.K.)

  6. Closed loop control of the sawtooth instability in nuclear fusion

    NARCIS (Netherlands)

    Witvoet, G.; Steinbuch, M.; Westerhof, E.; Doelman, N.J.; Baar, de M.R.

    2010-01-01

    In nuclear fusion the sawtooth instability is an important plasma phenomenon, having both positive and negative effects on the tokamak plasma. Control of its period is essential in future nuclear fusion reactors. This paper presents a control oriented model of the sawtooth instability, with current

  7. Controllers for high-performance nuclear fusion plasmas

    NARCIS (Netherlands)

    Baar, de M.R.

    2012-01-01

    A succesful nuclear fusion reactor will confine plasma at hig temperatures and densities, with low thermal losses. The workhorse of the nuclear fusion community is the tokamak, a toroidal device in which plasmas are confined by poloidal and toroidal magnetic fields. Ideally, the confirming magnetic

  8. Supercomputer applications in nuclear research

    International Nuclear Information System (INIS)

    Ishiguro, Misako

    1992-01-01

    The utilization of supercomputers in Japan Atomic Energy Research Institute is mainly reported. The fields of atomic energy research which use supercomputers frequently and the contents of their computation are outlined. What is vectorizing is simply explained, and nuclear fusion, nuclear reactor physics, the hydrothermal safety of nuclear reactors, the parallel property that the atomic energy computations of fluids and others have, the algorithm for vector treatment and the effect of speed increase by vectorizing are discussed. At present Japan Atomic Energy Research Institute uses two systems of FACOM VP 2600/10 and three systems of M-780. The contents of computation changed from criticality computation around 1970, through the analysis of LOCA after the TMI accident, to nuclear fusion research, the design of new type reactors and reactor safety assessment at present. Also the method of using computers advanced from batch processing to time sharing processing, from one-dimensional to three dimensional computation, from steady, linear to unsteady nonlinear computation, from experimental analysis to numerical simulation and so on. (K.I.)

  9. ANNETTE Project: Contributing to The Nuclearization of Fusion

    Science.gov (United States)

    Ambrosini, W.; Cizelj, L.; Dieguez Porras, P.; Jaspers, R.; Noterdaeme, J.; Scheffer, M.; Schoenfelder, C.

    2018-01-01

    The ANNETTE Project (Advanced Networking for Nuclear Education and Training and Transfer of Expertise) is well underway, and one of its work packages addresses the design, development and implementation of nuclear fusion training. A systematic approach is used that leads to the development of new training courses, based on identified nuclear competences needs of the work force of (future) fusion reactors and on the current availability of suitable training courses. From interaction with stakeholders involved in the ITER design and construction or the JET D-T campaign, it became clear that the lack of nuclear safety culture awareness already has an impact on current projects. Through the collaboration between the European education networks in fission (ENEN) and fusion (FuseNet) in the ANNETTE project, this project is well positioned to support the development of nuclear competences for ongoing and future fusion projects. Thereby it will make a clear contribution to the realization of fusion energy.

  10. ANNETTE Project: Contributing to The Nuclearization of Fusion

    Directory of Open Access Journals (Sweden)

    Ambrosini W.

    2018-01-01

    Full Text Available The ANNETTE Project (Advanced Networking for Nuclear Education and Training and Transfer of Expertise is well underway, and one of its work packages addresses the design, development and implementation of nuclear fusion training. A systematic approach is used that leads to the development of new training courses, based on identified nuclear competences needs of the work force of (future fusion reactors and on the current availability of suitable training courses. From interaction with stakeholders involved in the ITER design and construction or the JET D-T campaign, it became clear that the lack of nuclear safety culture awareness already has an impact on current projects. Through the collaboration between the European education networks in fission (ENEN and fusion (FuseNet in the ANNETTE project, this project is well positioned to support the development of nuclear competences for ongoing and future fusion projects. Thereby it will make a clear contribution to the realization of fusion energy.

  11. Overview of principles and challenges of fusion nuclear technology

    International Nuclear Information System (INIS)

    Abdou, M.

    2007-01-01

    Fusion offers very attractive features as a sustainable, broadly available energy source: no emissions of greenhouse gases, no risk of severe accident, and no long-lived radioactive waste. Significant advances in the science and technology of fusion have been realized in the past decades. Seven countries (EU, Japan, USA, Russia, S. Korea, China, and India) comprising about half the world population are constructing a major magnetic fusion facility, called ITER, in France. The objectives of ITER are to demonstrate self-sustaining burning fusion plasma and to test fusion technologies relevant to fusion reactor. Many challenges to the practical utilization of fusion energy remain ahead. Among these challenges is the successful development of Fusion Nuclear Technology (FNT). FNT includes those fusion system components circumscribing the plasma and responsible for tritium production and processing, heat removal at high temperature and power density, and high heat flux components. FNT components face a new and more challenging environment than experienced by any previous nuclear application. Beyond plasma physics, FNT has most of the remaining feasibility and attractiveness issues in the development of fusion as an energy source. The blanket, a key FNT component, determines the critical path to DEMO. The blanket is exposed to an intense radiation environment. Radioactivity and decay heat can be produced in the structure and other blanket elements. Hence, material choices have a large impact on safety and environmental attractiveness. The unique conditions of the fusion environment include high radiation flux, high surface heat flux, strong 3-D-component magnetic field with large gradients, and ultra-low vacuum. These conditions, together with the requirements for high-temperature operation and tritium self-sufficiency, make blanket design and development challenging tasks. The blanket concepts being considered worldwide can be classified into solid breeders and liquid

  12. Tehran Nuclear Research Center

    International Nuclear Information System (INIS)

    Taherzadeh, M.

    1977-01-01

    The Tehran Nuclear Research Center was formerly managed by the University of Tehran. This Center, after its transformation to the AEOI, has now become a focal point for basic research in the area of Nuclear Energy in Iran

  13. Stellarator fusion neutronics research in Australia

    International Nuclear Information System (INIS)

    Zimin, S.; Cross, R.C.

    1997-01-01

    The new status of the H-INF Heliac Stellaralor as a National Facility and the signed international Implementing Agreement on 'Collaboration in the Development of the Stellarator Concept' represents a significant encouragement for further fusion research in Australia. In this report the future of fusion research in Australia is discussed with special attention being paid to the importance of Stellarator power plant studies and in particular stellarator fusion neutronics. The main differences between tokamak and stellarator neutronics analyses are identified, namely the neutron wall loading, geometrical modelling and total heating in in-vessel reactor components including toroidal field (TF) coils. Due to the more complicated nature of stellarator neutronics analyses, simplified approaches to fusion neutronics already developed for tokamaks are expected to be even more important and widely used for designing a Conceptual Stellarator Power Plant

  14. Situation and role of industrial fields in nuclear fusion reactor development

    International Nuclear Information System (INIS)

    Suzuki, Gen-ichi

    1983-01-01

    Japan Atomic Industrial Forum (JAIF) established the nuclear fusion technical committee in October, 1980, and has investigated the attitude of industrial fields in progressing nuclear fusion research and development and the measures to cooperate with national development plans. Corresponding to the new long term plan and the establishment of the basic policy for nuclear fusion research and development by Atomic Energy Commission of Japan in June, 1982, JAIF has settled the policy on the situation and role of industrial fields. In this report, first the necessity of firmly grasping the position of nuclear fusion research in atomic energy development is described, next, the present status of the research and development in Japan is reported, and it is mentioned that the role of manufacturers in reinforcing engineering has become more important in industrial fields. In the stage of the construction of a nuclear fusion reactor, the experiences in the engineering safety in fission reactors, environmental safety and system engineering will be utilized. Japanese industrial fields feature that they have made larger cooperation with national projects even in the research and development stage as compared to foreign countries. When the plan of next phase system will be promoted in the future, the cooperating methods in the past should be evaluated, investigated and improved, and the experiences in fast breeder reactors and advanced heavy water reactors should be referred to. Finally, the problems and the countermeasures in nuclear fusion development are described. (Wakatsuki, Y.)

  15. Chemical aspects of nuclear fusion: New developments

    International Nuclear Information System (INIS)

    Ache, H.J.; Kernforschungszentrum Karlsruhe GmbH

    1990-01-01

    Managing thermally controlled nuclear fusion will certainly be regarded one day as one of the most successful accomplishments in nuclear physics. At the same time, however, it will represent a technical achievement unparalleled in the history of science and engineering. This in turn would mean, in retrospect, that decisive contributions had to come from a number of disciplines as diverse as materials and engineering sciences and classical chemistry, and that the same collaboration will have to continue in the future in order to reach the ultimate goal, to construct a reactor capable of producing energy from almost inexhaustible source materials (fuels), such as deuterium and lithium. What is the chemist's role in this development. Similarly as in the development of fission reactors, i.e., the nuclear power plants currently in operation, chemists will have to ensure the existence of a reliable fuel cycle - starting from the availability, storage and reprocessing of the fuel through to the provision for safe storage of the waste. In this review article an attempt will be made to outline the problems associated with these tasks and the approaches to be made by the chemist in solving them. (orig.)

  16. Nuclear fusion: technology development and achievements

    International Nuclear Information System (INIS)

    Ana, G.; Brad, S.; Lazar, A.; Spiridon, I.; Vijulie, M.

    2009-01-01

    The strategy for reducing the enhanced greenhouse effect, affecting our planet and the increasing energy demand caused by global growth of population, as well, is, certainly, that of adopting, all the three long-term carbon-free options for energy: renewable sources, fission and fusion reactions. All of them should be further explored and developed for the welfare of future generations, thus leaving them the option of a clean and green energy. From all those available options, the fusion is viewed as an energy source that would be effective in solving future demands, referring to the amount of the energy that can be produced taking into account spent fuel to obtain it. The slow (but steady) progress of fusion development linked with the need for large and expensive experimental devices is remarkable; all available technical and scientific information from experiment shows that progress is being made towards a successful reactor (ITER). The desired objective of this intensive research is obtaining of an industrial reactor able to cover energy future requirements. For the construction of this desired reactor, special designs systems are required. The TRF (TRITIUM RECOVERY FACILITY) is one of the installations that have a major importance maintaining an efficient fuel cycle of the reactor in proper function stage. A test model of TRF for implementation in reactor systems, proposed and developed at ICIT Ramnicu Valcea is presented. (authors)

  17. Nuclear energy research until 2000

    International Nuclear Information System (INIS)

    Reiman, L.; Rintamaa, R.; Vanttola, T.

    1994-03-01

    The working group was to assess the need and orientation of nuclear energy research (apart from research on nuclear waste management and fusion technology) up until the year 2000 in Finland and to propose framework schemes and organization guidelines for any forthcoming publicly financed research programmes from 1995 onwards. The main purpose of nuclear energy research is to ensure the safety and continued development of Finland's existing nuclear power plants. Factors necessarily influencing the orientation of research are Parliaments decision of late 1993 against further nuclear capacity in the country, the need to assess reactor safety in the eastern neighbour regions, and Finland's potential membership in the European Union. The working group proposes two new research programmes similar to the current ones but with slightly modified emphasis. Dedicated to reactor safety and structural safety respectively, they would both cover the four years from 1995 to 1998. A separate research project is proposed for automation technology. In addition, environmental research projects should have a joint coordination unit. (9 figs., 4 tabs.)

  18. Iodine laser for fusion research

    International Nuclear Information System (INIS)

    Dance, B.

    1988-01-01

    The most powerful iodine laser in the world, known as Asterix IV, is being prepared for operation at The Max Plank-Institut fuer Quantenoptik at Garching, near Munich, in West Germany. It is expected to produce 2kJ pulses of 1ns duration. Shorter pulses of about 200 ps duration should be obtainable at power levels of over 5 TW. Pulses of maximum power will be available every 20 minutes; this frequency is expected to be adequate for fusion experiments, although the short rate could be raised if necessary by greater gas circulation and cooling. (Author)

  19. Distinct roles for key karyogamy proteins during yeast nuclear fusion.

    Science.gov (United States)

    Melloy, Patricia; Shen, Shu; White, Erin; Rose, Mark D

    2009-09-01

    During yeast mating, cell fusion is followed by the congression and fusion of the two nuclei. Proteins required for nuclear fusion are found at the surface (Prm3p) and within the lumen (Kar2p, Kar5p, and Kar8p) of the nuclear envelope (NE). Electron tomography (ET) of zygotes revealed that mutations in these proteins block nuclear fusion with different morphologies, suggesting that they act in different steps of fusion. Specifically, prm3 zygotes were blocked before formation of membrane bridges, whereas kar2, kar5, and kar8 zygotes frequently contained them. Membrane bridges were significantly larger and occurred more frequently in kar2 and kar8, than in kar5 mutant zygotes. The kinetics of NE fusion in prm3, kar5, and kar8 mutants, measured by live-cell fluorescence microscopy, were well correlated with the size and frequency of bridges observed by ET. However the kar2 mutant was defective for transfer of NE lumenal GFP, but not diffusion within the lumen, suggesting that transfer was blocked at the NE fusion junction. These observations suggest that Prm3p acts before initiation of outer NE fusion, Kar5p may help dilation of the initial fusion pore, and Kar2p and Kar8p act after outer NE fusion, during inner NE fusion.

  20. Sono-luminescence and nuclear fusion

    International Nuclear Information System (INIS)

    Seife, Ch.; Hilgenfeldt, S.; Lohse, D.

    2002-01-01

    This article presents multi-bubble and single-bubble luminescence. Since long scientists have known that ultra-sound waves could trigger the formation of bubbles in water (phenomenon called cavitation) but in 1930, for the first time experiments showed that these bubbles could emit light in particular conditions. In 1989 F. Gaitan succeeded in trapping a single bubble by using stationary ultra-sound waves, this bubble was exploding 20.000 times per second according to the frequency of the wave while emitting a series of flashes of light. Some scientists thought that the gas inside the bubble could reach very high values of temperature and pressure, and proposed the possibility of nuclear fusion to explain the excess of neutrons that has been evidenced in a cavitation experiment with deuterated acetone. The last part of this article describes the controversy triggered by the article describing this experiment, that was published by 'Science' in march 2002. (A.C.)

  1. Vacuum vessel for a nuclear fusion device

    International Nuclear Information System (INIS)

    Watanabe, Takashi; Sato, Hiroshi; Owada, Koro.

    1976-01-01

    Object: To provide a reinforcing member on a bellows portion to reduce a stress at the bellows portion thereby increasing the strength of a vessel. Structure: A vacuum vessel for a nuclear fusion device has a bellows portion and a wall thick portion. A support extended toward the bellows portion is secured inside of a toroidal section in order to reduce the stress at the bellows portion. An insulator is interposed between the support and the bellows portion and is retained on the support by a bolt. Since the stress may be reduced by the support, the wall thick of the bellows portion may be decreased to sufficiently secure the low electric resistance value. (Yoshihara, H.)

  2. Fusion research programme in India

    Indian Academy of Sciences (India)

    safety characteristics and an acceptable environmental impact. ... benefits. A very large number of people around the world have been working on plasma and ..... Grover R B 2008 Prospects for nuclear energy in South Asia in the 21st Century.

  3. Nuclear research reactors

    International Nuclear Information System (INIS)

    1985-01-01

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.) [pt

  4. Nuclear energy related research

    International Nuclear Information System (INIS)

    Mattila, L.; Vanttola, T.

    1991-10-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1991. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  5. Nuclear energy related research

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-05-01

    The annual Research Programme Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  6. Development of materials for the fusion nuclear energy system

    International Nuclear Information System (INIS)

    Park, J. Y.; Kim, S. H.; Jang, J. S.; Kim, W. J.; Jung, C. H.; Jun, B. H.; Maeng, W. Y.; Kwon, J. H.; Kim, H. P.; Hong, J. H.

    2005-01-01

    A state of the art on the nuclear material development has been reviewed based on the each component of the Tokamak typed fusion reactor. The current status of the development of structural materials such as FM steels, ODS steels, vanadium alloys and SiCf/SiC composites are introduced. The application of Li-based ceramics as a ceramic breeder and W-based alloys and C/C composites as plasma facing components for the divertor were also investigated, respectively. Some evaluation methods and results of the computational material simulation for irradiation damages and the compatibility between materials and coolant are described. Additionally, the material related research activities of ITER and ITER TBM and the collaboration activities on fusion materials between Japan and USA are briefly summarized

  7. 2013 Nuclear Fusion Prize Acceptance Speech 2013 Nuclear Fusion Prize Acceptance Speech

    Science.gov (United States)

    Whyte, D.

    2015-01-01

    I would like to express gratitude to the IAEA, the journal Nuclear Fusion and its board for this acknowledgement of work carried out at the MIT Alcator C-Mod tokamak. I must begin by making it clear that this is in no way an award to an individual. The experiments, data analysis and paper were a true collaborative effort from the C-Mod team. It is a honor to work with them and to accept the award on their behalf. I would also like to thank the US Department of Energy for their support in funding this research. The paper describes the exploration of the 'improved' confinement regime dubbed 'I-mode'. The distinguishing feature of this operational mode is a robust boundary pedestal in temperature with the somewhat surprising lack of any form of density pedestal. Thus the regime exhibits an enhanced energy confinement similar to H-mode, roughly double of L-mode at fixed input power, yet has global fuel and impurity particle transport of L-mode. These features are intriguing from a scientific and practical point of view. On the science side it is extremely useful to obtain such a clear demarcation between the energy and particle transport. For example, soon after its discovery, the I-mode was used to extract the observation that the edge T pedestal is the strongest determinant for intrinsic rotation in work by John Rice, Pat Diamond and colleagues. Recent results regarding core transport by Anne White, Nate Howard and colleagues show that I-mode has intriguing properties with respect to core response of fluctuations and profile stiffness. Mike Churchill's recent Ph. D study on C-Mod shows that I-mode exhibits no strong poloidal impurity asymmetry, unlike H-mode. The I-mode posed an interesting test for the peeling-ballooning-KBM model of the pedestal, the subject of the 2014 Nuclear Fusion award of Phil Snyder, and was examined by John Walk and Jerry Hughes showing that in fact the lack of the density pedestal pushed the I-mode far away from the P-B limit, and thus the

  8. Fusion power by magnetic confinement: plans and the associated need for nuclear engineers

    International Nuclear Information System (INIS)

    Hirsch, R.L.; Beard, D.S.

    1975-01-01

    An essential ingredient in the fusion development plan will be the training of appropriate scientific and technical manpower. In examining the need for fusion-trained nuclear engineers, it is projected that an additional 120 to 250 engineers at the MS and PhD levels will be needed between now and 1980. To be most effective, these graduates must not only be trained in the ''classic'' physical, nuclear, mechanical, and electrical sciences, but they will need specialized training in fusion plasma physics and fusion materials science. To help develop the appropriate educational programs, close cooperation between U. S. Energy Research and Development Administration (ERDA) headquarters, ERDA laboratories, private industry, and the universities will be essential. An emerging need for a carefully structured ''fusion technology'' option in nuclear engineering departments is plainly evident and is already beginning to be developed at leading institutions

  9. Nuclear engineering questions: power, reprocessing, waste, decontamination, fusion

    International Nuclear Information System (INIS)

    Walton, R.D. Jr.

    1979-01-01

    This volume contains papers presented at the chemical engineering symposium on nuclear questions. Specific questions addressed by the speakers included: nuclear power - why and how; commercial reprocessing - permanent death or resurrection; long-term management of commercial high-level wastes; long-term management of defense high-level waste; decontamination and decommissioning of nuclear facilities, engineering aspects of laser fusion I; and engineering aspects of laser fusion II. Individual papers have been input to the Energy Data Base previously

  10. Self-sustaining nuclear pumped laser-fusion reactor experiment

    International Nuclear Information System (INIS)

    Boody, F.P.; Choi, C.K.; Miley, G.H.

    1977-01-01

    The features of a neutron feedback nuclear pumped (NFNP) laser-fusion reactor equipment were studied with the intention of establishing the feasibility of the concept. The NFNP laser-fusion concept is compared schematically to electrically pumped laser fusion. The study showed that, once a method of energy storage has been demonstrated, a self-sustaining fusion-fission hybrid reactor with a ''blanket multiplication'' of two would be feasible using nuclear pumped Xe F* excimer lasers having efficiencies of 1 to 2 percent and D-D-T pellets with gains of 50 to 100

  11. Kinetic advantage of controlled intermediate nuclear fusion

    International Nuclear Information System (INIS)

    Guo Xiaoming

    2012-01-01

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  12. EU socio-economic research on fusion: findings and program

    International Nuclear Information System (INIS)

    Tosato, G.C.

    2002-01-01

    In 1997 the European Commission launched a Socio-Economic Research program to study under which conditions future fusion power plants may become competitive, compatible with the energy supply system and acceptable for the public. The program is developed by independent experts making use of well established international methodologies. It has been shown, among others, that: 1) local communities are ready to support the construction of an experimental fusion facility, if appropriate communication and awareness campaigns are carried out; 2) since the externalities are much lower than for competitors, fusion power plants may become the major producer of base load electricity at the end of the century in Europe, if climate changes have to be mitigated, if the construction of new nuclear fission power plants continues to be constrained and if nuclear fusion power plants become commercially available in 2050. Cooperating with major international organizations, the program for next year aims to demonstrate that the potential global benefits of fusion power plants in the second half of the century largely outdo the RD and D costs borne in the first half to make it available. (author)

  13. EU socio-economic research on fusion: Findings and program

    International Nuclear Information System (INIS)

    Tosato, G.C.

    2003-01-01

    In 1997 the European Commission launched a Socio-Economic Research program to study under which conditions future fusion power plants may become competitive, compatible with the energy supply system and acceptable for the public. It has been shown, among others, that: 1) local communities are ready to support the construction of an experimental fusion facility, if appropriate communication and awareness campaigns are carried out; 2) since the externalities are much lower than for competitors, fusion power plants may become the major producer of base load electricity at the end of the century in Europe, if climate changes have to be mitigated, if the construction of new nuclear fission power plants continues to be constrained and if nuclear fusion power plants become commercially available in 2050. Cooperating with major international organizations, the program for next year aims to demonstrating, through technical economic programming models and global multi-regional energy environmental scenarios, that the potential global benefits of fusion power plants in the second half of the century largely outdo the RD and D costs borne in the first half to make it available. Making the public aware of such benefits through field experiences will be part of the program. (author)

  14. Ultradense Nuclear Fusion in Metallic Lithium Liquid. A report on research performed at the R and D Center, Sakaguchi E.H VOC Co. under the auspices of the Swedish Energy Agency

    International Nuclear Information System (INIS)

    Ikegami, Hidetsugu; Pettersson, Roland

    2006-10-01

    This report is concerned with research and development on a new fusion scheme, 'chemonuclear fusion'. In this scheme, lithium or deuterium ions are implanted in liquid lithium whereby huge reaction rate enhancements, as much as up to 10 15 compared to what is expected for a free two-body deuterium-lithium interaction, are obtained. The enhancement is suggested to be a result of nuclear, atomic and chemical reactions taking place cooperatively. Experimental studies on the Li - D chemonuclear fusion is supported financially by the Swedish Energy Agency and were initiated at the Dept. of Analytical Chemistry, Uppsala University. The studies were continued in a collaboration with the R and D Centre, Sakaguchi E.H VOC Co. in Tokyo where a new and modified setup was constructed. Here, besides the Li - D chemonuclear fusion, the Li - Li fusion and the D 2 - 2Li molecular chemonuclear fusion were developed. In 2005 at the R and D Centre, molecular ions D 2 + of energies 30keV were implanted on a surface of metallic Li liquid. Product alpha particles were identified and measured by a single solid state detector. The energies were around 7.6MeV corresponding to what would be expected for the reaction 7 Li + D → 2x 4 He + n. Under some conditions of the Li liquid, the reaction rate was intermittently so high that the particle detector was saturated and stopped counting simultaneously with an appreciable temperature rise in the Li liquid. The results were discussed in March at the University of Tokyo and in October at the Royal Swedish Academy of Sciences, The Royal Swedish Engineering Academy of Sciences and at Uppsala University. This report presents a full description of the results. It also contains more recent results where an additional detector setup, a ΔE-E detector was used for validation of the results in particular the identity of the alpha particles

  15. Nuclear science research report

    International Nuclear Information System (INIS)

    1977-01-01

    Research activities in nuclear science carried out during 1976 are summarized. Research centers around nuclear structure and the application of nuclear techniques to solid state science, materials, engineering, chemistry, biology, and medicine. Reactor and accelerator operations are reported. (E.C.B.)

  16. Large power supply facilities for fusion research

    International Nuclear Information System (INIS)

    Miyahara, Akira; Yamamoto, Mitsuyoshi.

    1976-01-01

    The authors had opportunities to manufacture and to operate two power supply facilities, that is, 125MVA computer controlled AC generator with a fly wheel for JIPP-T-2 stellerator in Institute of Plasma Physics, Nagoya University and 3MW trial superconductive homopolar DC generator to the Japan Society for Promotion of Machine Industry. The 125MVA fly-wheel generator can feed both 60MW (6kV x 10kA) DC power for toroidal coils and 20MW (0.5kV x 40kA) DC power for helical coils. The characteristic features are possibility of Bung-Bung control based on Pontrjagin's maximum principle, constant current control or constant voltage control for load coils, and cpu control for routine operation. The 3MW (150V-20000A) homopolar generator is the largest in the world as superconductive one, however, this capacity is not enough for nuclear fusion research. The problems of power supply facilities for large Tokamak devices are discussed

  17. Overview of fusion nuclear technology in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Andreani, R. E-mail: roberto.andreani@tech.efda.org; Gasparotto, M. E-mail: maurizio.gasparotto@tech.efda.org

    2002-11-01

    The fusion nuclear technology programme in the EU is focussed on materials and breeding blankets development, tritium and high heat flux component technologies. A strong effort is also devoted to the validation of the design of an intense 14 MeV neutron source (IFMIF). The material programme includes the development of reduced activation ferritic martensitic steel (EUROFER) to be used as structural material in a DEMO reactor, and potentially more attractive higher performance materials: ODS and SiC/SiC composites. The breeding blanket activities are focussed in the preparation of the two European Test Blanket Moduli to be installed in ITER. The Fuel Cycle activities for ITER include development of the torus exhaust cryopump, fuel storage system, performance characterisation of the torus exhaust processing and design of water detritiation system. High heat flux components have been developed in the framework of ITER R and D programme and based on copper alloy heat sink protected by an armour of beryllium, CFC or tungsten. Studies give an important contribution in defining the nuclear technology programme strategy.

  18. Overview of fusion nuclear technology in Europe

    International Nuclear Information System (INIS)

    Andreani, R.; Gasparotto, M.

    2002-01-01

    The fusion nuclear technology programme in the EU is focussed on materials and breeding blankets development, tritium and high heat flux component technologies. A strong effort is also devoted to the validation of the design of an intense 14 MeV neutron source (IFMIF). The material programme includes the development of reduced activation ferritic martensitic steel (EUROFER) to be used as structural material in a DEMO reactor, and potentially more attractive higher performance materials: ODS and SiC/SiC composites. The breeding blanket activities are focussed in the preparation of the two European Test Blanket Moduli to be installed in ITER. The Fuel Cycle activities for ITER include development of the torus exhaust cryopump, fuel storage system, performance characterisation of the torus exhaust processing and design of water detritiation system. High heat flux components have been developed in the framework of ITER R and D programme and based on copper alloy heat sink protected by an armour of beryllium, CFC or tungsten. Studies give an important contribution in defining the nuclear technology programme strategy

  19. Heavy-ion fusion accelerator research, 1989

    International Nuclear Information System (INIS)

    1990-06-01

    This report discusses the following topics on heavy-ion fusion accelerator research: MBE-4: the induction-linac approach; transverse beam dynamics and current amplification; scaling up the results; through ILSE to a driver; ion-source and injector development; and accelerator component research and development

  20. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1989-03-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1989. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  1. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.; Mattila, L.

    1990-08-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out at the Technical Research Centre of Finland (VTT) in 1990. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Utilities and industry also contribute to some projects

  2. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.

    1988-02-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1988. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  3. Trends in fusion reactor safety research

    International Nuclear Information System (INIS)

    Herring, J.S.; Holland, D.F.; Piet, S.J.

    1991-01-01

    Fusion has the potential to be an attractive energy source. From the safety and environmental perspective, fusion must avoid concerns about catastrophic accidents and unsolvable waste disposal. In addition, fusion must achieve an acceptable level of risk from operational accidents that result in public exposure and economic loss. Finally, fusion reactors must control routine radioactive effluent, particularly tritium. Major progress in achieving this potential rests on development of low-activation materials or alternative fuels. The safety and performance of various material choices and fuels for commercial fusion reactors can be investigated relatively inexpensively through reactor design studies. These studies bring together experts in a wide range of backgrounds and force the group to either agree on a reactor design or identify areas for further study. Fusion reactors will be complex with distributed radioactive inventories. The next generation of experiments will be critical in demonstrating that acceptable levels of safe operation can be achieved. These machines will use materials which are available today and for which a large database exists (e.g. for 316 stainless steel). Researchers have developed a good understanding of the risks associated with operation of these devices. Specifically, consequences from coolant system failures, loss of vacuum events, tritium releases, and liquid metal reactions have been studied. Recent studies go beyond next step designs and investigate commercial reactor concerns including tritium release and liquid metal reactions. 18 refs

  4. FENDL: International reference nuclear data library for fusion applications

    International Nuclear Information System (INIS)

    Pashchenko, A.B.; Wienke, H.; Ganesan, S.

    1996-01-01

    The IAEA nuclear data section, in co-operation with several national nuclear data centres and research groups, has created the first version of an internationally available fusion evaluated nuclear data library (FENDL-1). The FENDL library has been selected to serve as a comprehensive source of processed and tested nuclear data tailored to the requirements of the engineering design activity (EDA) of the ITER project and other fusion-related development projects. The present version of FENDL consists of the following sublibraries covering the necessary nuclear input for all physics and engineering aspects of the material development, design, operation and safety of the ITER project in its current EDA phase: FENDL/A-1.1: neutron activation cross-sections, selected from different available sources, for 636 nuclides, FENDL/D-1.0: nuclear decay data for 2900 nuclides in ENDF-6 format, FENDL/DS-1.0: neutron activation data for dosimetry by foil activation, FENDL/C-1.0: data for the fusion reactions D(d,n), D(d,p), T(d,n), T(t,2n), He-3(d,p) extracted from ENDF/B-6 and processed, FENDL/E-1.0:data for coupled neutron-photon transport calculations, including a data library for neutron interaction and photon production for 63 elements or isotopes, selected from ENDF/B-6, JENDL-3, or BROND-2, and a photon-atom interaction data library for 34 elements. The benchmark validation of FENDL-1 as required by the customer, i.e. the ITER team, is considered to be a task of high priority in the coming months. The well tested and validated nuclear data libraries in processed form of the FENDL-2 are expected to be ready by mid 1996 for use by the ITER team in the final phase of ITER EDA after extensive benchmarking and integral validation studies in the 1995-1996 period. The FENDL data files can be electronically transferred to users from the IAEA nuclear data section online system through INTERNET. A grand total of 54 (sub)directories with 845 files with total size of about 2 million

  5. International ITER fusion energy organization. Paving the way to power generation from nuclear fusion

    International Nuclear Information System (INIS)

    Preuschen-Liebenstein, R. von

    2006-01-01

    ITER (Latin: the way) is the acronym of a new international large research facility gradually taking shape after the meeting of Gorbachev and Reagan in Reykjavik in 1985. Under the auspices of the IAEA, worldwide scientific and industrial cooperation with 'home teams' of each of the ITER partners began at that time which were commissioned to accumulate the knowledge and the technology of nuclear fusion in the participating countries. At the end of the preparation and decisionmaking process, the design draft of the ITER reactor was elaborated in international cooperation as the basis of the ITER Convention. After lengthy negotiations among the international ITER partners, a European site for the ITER organization and its reactor was found at Cadarache, France. As the first ITER member, Europe now initiated worldwide cooperation in research and development, seeking to demonstrate the technical and scientific feasibility of tapping fusion power for peaceful purposes. The Council of the European Union (competitiveness), at its meeting on September 25, 2006, decided to sign the ITER Convention about the establishment of the International ITER Fusion Energy Organization ('ITER Organization') and about the mutual obligation to make the necessary contributions towards the construction of ITER. (orig.)

  6. Magnetic confinement fusion energy research

    International Nuclear Information System (INIS)

    Grad, H.

    1977-03-01

    Controlled Thermonuclear Fusion offers probably the only relatively clean energy solution with completely inexhaustible fuel and unlimited power capacity. The scientific and technological problem consists in magnetically confining a hot, dense plasma (pressure several to hundreds of atmospheres, temperature 10 8 degrees or more) for an appreciable fraction of a second. The scientific and mathematical problem is to describe the behavior, such as confinement, stability, flow, compression, heating, energy transfer and diffusion of this medium in the presence of electromagnetic fields just as we now can for air or steam. Some of the extant theory consists of applications, routine or ingenious, of known mathematical structures in the theory of differential equations and in traditional analysis. Other applications of known mathematical structures offer surprises and new insights: the coordination between sub-supersonic and elliptic-hyperbolic is fractured; supersonic propagation goes upstream; etc. Other completely nonstandard mathematical structures with significant theory are being rapidly uncovered (and somewhat less rapidly understood) such as non-elliptic variational equations and new types of weak solutions. It is these new mathematical structures which one should expect to supply the foundation for the next generation's pure mathematics, if history is a guide. Despite the substantial effort over a period of some twenty years, there are still basic and important scintific and mathematical discoveries to be made, lying just beneath the surface

  7. The survey of nuclear fusion technology

    International Nuclear Information System (INIS)

    Hwang, W.K.

    1981-01-01

    The fusion research evaluation model for analyzing various R and D sinarios, the trend analysis of Tokamak research, and the near-term technologies are discussed. The results of the present study are as follows: A computer code, FUSREV, has been developed based on ECON Inc.'s approach. It consists of the plasma power model and the cost/benefit model. Since the State-of-the Knowledges, which are expected to achieve as the result of subproject R and D's, can only be obtained in the form of probability distribution function, Monte-Carlo method is employed. The test computation of the code shows acceptable results. However, FUSREV has been continuously modified employing new models for both technology and economics

  8. High-Frequency Gravitational Wave Induced Nuclear Fusion

    International Nuclear Information System (INIS)

    Fontana, Giorgio; Baker, Robert M. L. Jr.

    2007-01-01

    Nuclear fusion is a process in which nuclei, having a total initial mass, combine to produce a single nucleus, having a final mass less than the total initial mass. Below a given atomic number the process is exothermic; that is, since the final mass is less than the combined initial mass and the mass deficit is converted into energy by the nuclear fusion. On Earth nuclear fusion does not happen spontaneously because electrostatic barriers prevent the phenomenon. To induce controlled, industrial scale, nuclear fusion, only a few methods have been discovered that look promising, but net positive energy production is not yet possible because of low overall efficiency of the systems. In this paper we propose that an intense burst of High Frequency Gravitational Waves (HFGWs) could be focused or beamed to a target mass composed of appropriate fuel or target material to efficiently rearrange the atomic or nuclear structure of the target material with consequent nuclear fusion. Provided that efficient generation of HFGW can be technically achieved, the proposed fusion reactor could become a viable solution for the energy needs of mankind and alternatively a process for beaming energy to produce a source of fusion energy remotely - even inside solid materials

  9. Nuclear fusion an energetic option to the future

    International Nuclear Information System (INIS)

    Medialdea Utande, A.; Sanchez Sanz, J.

    2007-01-01

    Nuclear fusion is the energy source of the Sun and the rest of starts. The great availability of deuterium on Earth, the inherent safety of the reactions involved and the intrinsic environmental respect make fusion an attractive energy source for the future of making of man king. International promising contributions are making Fusion Science and Technology progress by leaps and bounds to achieve its long term goal of cost-effective energy-producing plasmas. (Author)

  10. Measurement of nuclear potentials from fusion excitation functions

    International Nuclear Information System (INIS)

    Huizenga, J.R.; Birkelund, J.R.

    1984-01-01

    The basis for measuring nuclear potentials from fusion excitation functions at energies above barrier is reviewed. It is argued that because of experimental and conceptual problems fusion excitation functions at high energies cannot lead to model independent measurements of internuclear potential at small separations. The Al 27 + Ne 20 reaction previously analyzed by others is used as an example of problems arising from the inability to distinguish complete and incomplete fusion in experimental data

  11. Nuclear Research and Compliance

    International Nuclear Information System (INIS)

    Noramly Muslim

    2012-01-01

    In his speech, Professor Noramly stressed on any research conducted in Malaysian Nuclear Agency must be comply with the national and international regulations. This to avoid any problems in the future. Moreover, research conducted in Malaysian Nuclear Agency are based on nuclear matters that seems sensitive to the public communities. In order to attract the publics on the benefit of nuclear technologies in many applications, researcher also must aware about the regulations and must take care on their safety during their experiment and working. This to make the public feels that nuclear are not the bad things and erased the worseness of nuclear technology into public minds. This strategies can be used for Malaysia in embarking for their first nuclear power program and the public feels that nuclear power are not threatened to them and consequently, they will accept that program without any issues. (author)

  12. Nuclear fusion experimental study on 16 O + 60 Ni system

    International Nuclear Information System (INIS)

    Silva, C.P. da.

    1990-01-01

    Nuclear fusion cross section measurements were performed in the energy range near The Coulomb Barrier (E Lab -> 40-72 MeV), for the system 16 O + 60 Ni, aiming the study of Fusion Process involving heavy ions. (L.C.J.A.)

  13. Canonical form of an elastoplastic model of nuclear fusion

    International Nuclear Information System (INIS)

    Mikhajlova, T.I.; Mikhajlov, I.N.; Do Dang, G.

    1997-01-01

    Starting from equations of motion describing the fusion process in symmetrical nuclear systems of low angular momenta we reconstruct the collective Lagrangian and dissipation Rayleigh functions. This opens new perspectives in studying the dynamical effects in the heavy nuclei collisions. In particular, it provides a basis for a quantal description of the fusion process and accompanying its effects

  14. The Fight for Fusion: A Modern Nuclear War.

    Science.gov (United States)

    Rogers, Adam; Sereda, David

    1992-01-01

    Describes the work of Bogdan Maglich with helium-based fusion and barriers to its development resulting from lack of government support, competition for funding, and political pet projects. Compares tritium-based to helium-based fusion and the potential for nonradioactive nuclear power to supply the world's energy requirements with no negative…

  15. Stat-of-the art of nuclear fusion and its future outlook in

    International Nuclear Information System (INIS)

    Abdelaziz, M.E.; Elnadi, A.M.; Masoud, M.; Elshaer, M.A.; Khalil, S.M.

    1993-01-01

    The study in this project is carried out with the objective of being able to present a clear view for the state-of-the art of nuclear fusion as one of the most promising coming energy source and its future outlook in Egypt. The study introduce a summary of the world energy problem and the advantages of thermonuclear fusion energy compared to other energy sources. A description of the two main techniques of confining plasma in the fusion experiments, namely the magnetic and the inertial confinement. These techniques are discussed and investigated through linear pinches and tokamaks. Tokamaks showed to be a promising machines for achieving the controlled thermonuclear fusion power reactor. Recent development of the research on laser fusion together with fast progress in pellet and laser technology suggest that it may be possible to achieve laser fusion power reactor. The story of the strange phenomena of cold fusion, muon-catalyzed fusion, and cold fusion in condensed matter are also studied and showed to be non promising. The project study in details the future fusion reactor, its nuclear engineering and its safety and environmental aspects. The study is based on the magnetic fusion using the tokamak configuration. The positive safety and environmental aspects of fusion reactors, if exist, is also investigated. Status of plasma physics and nuclear fusion activities and strategies in the developing countries (including egypt and the arab countries) are reviewed, besides, some national programmes are proposed. In addition, the status of international activities in plasma technology and its application are represented. Future outlook for egyptian programmes on different plasma technologies are studied. Finally, conclusions and recommendations are presented which summarized the principle achiements and future research opportunities in nuclear fusion activities. In fact, it must be emphasized that fusion is an exciting and challenging field of research -the most

  16. Nuclear safety research

    International Nuclear Information System (INIS)

    1999-01-01

    The NNSA checked and coordinated in 1999 the research project of the Surveillance Technology on Nuclear Installations under the National 9th-Five-Year Program to promote the organizations that undertake the research work on schedule and lay a foundation of obtaining achievements and effectiveness for the 9th-five-year plan on nuclear safety research

  17. Vacuum engineering for fusion research and fusion reactors

    International Nuclear Information System (INIS)

    Pittenger, L.C.

    1976-01-01

    The following topics are described: (1) surface pumping by cryogenic condensation, (2) operation of large condensing cryopumps, (3) pumping for large fusion experiments, and (4) vacuum technology for fusion reactors

  18. Accelerator and Fusion Research Division: 1987 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-01

    An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics. (WRF)

  19. Accelerator and Fusion Research Division: 1987 summary of activities

    International Nuclear Information System (INIS)

    1988-04-01

    An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics

  20. Brief history and current developments of nuclear fusion

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    The history of nuclear fusion is briefly outlined, the ITER project is described, the advantages of the Wendelstein 7-X stellarator are described, alternative projects and mentioned, and prospects for the nearest time to come are shown. (P.A.)

  1. Nuclear fusion: a dream in progress

    International Nuclear Information System (INIS)

    Michaut, Cecile

    2012-01-01

    This article addresses the construction of ITER, the International Thermonuclear Experimental Reactor, in which will be produced nuclear fusion reactions of the same type as those occurring in the sun. As only foundations have been built, physicists are working on component design, on material improvement, on monitoring and maintenance robots, on the simulation of plasma behaviour, a critical aspect of the operation. Experiments are performed in an older and smaller experimental reactor, Tore Supra. It is used to test plasma heating modes, the injection mode of deuterium and tritium which will fuse in ITER. Some parts of this installation are used to extract heat from plasma and must sustain huge heat fluxes (10 millions of Watt per square meter). In order to maintain ITER without stopping it, robots will be used to control and repair the installation. A virtual reality room has been designed to check in advance the construction process as well as the operation. ITER must be completed in 2018 and the first plasmas be produced in 2019. Tritium is to be introduced in 2026. Then, scientists hope to produce a power which will be ten times the input power

  2. Magnetic field coil in nuclear fusion device

    International Nuclear Information System (INIS)

    Yamaguchi, Mitsugi; Takano, Hirohisa.

    1975-01-01

    Object: To provide an electrical-insulatively stabilized magnetic field coil in nuclear fusion device, restraining an increase in voltage when plasma current is rapidly changed. Structure: A magnetic field coil comprises coils arranged coaxial with respective vacuum vessels, said coils being wound in positive and reverse polarities so as to form a vertical magnetic field within the plasma. The coils of the positive polarity are arranged along the vacuum vessel inside of an axis vertical in section of the annular plasma and are arranged symmetrically up and down of a horizontal axis. On the other hand, the coils of the reverse polarity are arranged along the vacuum vessel outside of a vertical axis and arranged symmetrically up and down of the horizontal axis. These positive and reverse polarity coils are alternately connected in series, and lead portions of the coils are connected to a power source by means of connecting wires. In this case, lead positions of the coils are arranged in one direction, and the connecting wires are disposed in closely contact relation to offset magnetic fields formed by the connecting wires each other. (Kawakami, Y.)

  3. Maryland controlled fusion research program

    International Nuclear Information System (INIS)

    Griem, H.R.; Liu, C.S.

    1992-01-01

    In this paper, we summarize the technical progress in four major areas of tokamak research: (a) L/H transition and edge turbulence and transport; (b) active control of microturbulence and transport; (c) major disruptions; and (d) the sawtooth crash

  4. Belgian research on fusion beryllium waste

    International Nuclear Information System (INIS)

    Druyts, F.; Mallants, D.; Sillen, X.; Iseghem, P. Van

    2004-01-01

    Future fusion power plants will generate important quantities of neutron irradiated beryllium. Although recycling is the preferred management option for this waste, this may not be technically feasible for all of the beryllium, because of its radiological characteristics. Therefore, at SCK·CEN, we initiated a research programme aimed at studying aspects of the disposal of fusion beryllium, including waste characterisation, waste acceptance criteria, conditioning methods, and performance assessment. One of the main issues to be resolved is the development of fusion-specific waste acceptance criteria for surface or deep geological disposal, in particular with regard to the tritium content. In case disposal is the only solution, critical nuclides can be immobilised by conditioning the waste. As a first approach to immobilising beryllium waste, we investigated the vitrification of beryllium. Corrosion tests were performed on both metallic and vitrified beryllium to provide source data for performance assessment. Finally, a first step in performance assessment was undertaken. (author)

  5. Core fusion accidents in nuclear power reactors. Knowledge review

    International Nuclear Information System (INIS)

    Bentaib, Ahmed; Bonneville, Herve; Clement, Bernard; Cranga, Michel; Fichot, Florian; Koundy, Vincent; Meignen, Renaud; Corenwinder, Francois; Leteinturier, Denis; Monroig, Frederique; Nahas, Georges; Pichereau, Frederique; Van-Dorsselaere, Jean-Pierre; Cenerino, Gerard; Jacquemain, Didier; Raimond, Emmanuel; Ducros, Gerard; Journeau, Christophe; Magallon, Daniel; Seiler, Jean-Marie; Tourniaire, Bruno

    2013-01-01

    This reference document proposes a large and detailed review of severe core fusion accidents occurring in nuclear power reactors. It aims at presenting the scientific aspects of these accidents, a review of knowledge and research perspectives on this issue. After having recalled design and operation principles and safety principles for reactors operating in France, and the main studied and envisaged accident scenarios for the management of severe accidents in French PWRs, the authors describe the physical phenomena occurring during a core fusion accident, in the reactor vessel and in the containment building, their sequence and means to mitigate their effects: development of the accident within the reactor vessel, phenomena able to result in an early failure of the containment building, phenomena able to result in a delayed failure with the corium-concrete interaction, corium retention and cooling in and out of the vessel, release of fission products. They address the behaviour of containment buildings during such an accident (sizing situations, mechanical behaviour, bypasses). They review and discuss lessons learned from accidents (Three Mile Island and Chernobyl) and simulation tests (Phebus-PF). A last chapter gives an overview of software and approaches for the numerical simulation of a core fusion accident

  6. Nuclear measurements, techniques and instrumentation industrial applications plasma physics and nuclear fusion. 1980-1994. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1995-04-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques and Instrumentation, with Industrial Applications (of Nuclear Physics and Engineering), and with Plasma Physics and Nuclear Fusion, issued during the period 1980-1994. Most publications are in English. Proceedings of conferences, symposia, and panels of experts may contain some papers in other languages (French, Russian, or Spanish), but all papers have abstracts in English. Price quotes are in Austrian Schillings, do not include local taxes, and are subject to change without notice. Contents cover the three main categories of (i) Nuclear Measurements, Techniques and Instrumentation (Physics, Chemistry, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactors and Particle Accelerator Applications, Nuclear Data); (ii) Industrial Applications (Radiation Processing, Radiometry, Tracers); and (iii) Plasma Physics and Nuclear Fusion

  7. Nuclear measurements, techniques and instrumentation industrial applications plasma physics and nuclear fusion, 1980-1993. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1994-01-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques and Instrumentation, with Industrial Applications (of Nuclear Physics and Engineering), and with Plasma Physics and Nuclear Fusion, issued during the period 1980-1993. Most publications are in English. Proceedings of conferences, symposia, and panels of experts may contain some papers in other languages (French, Russian, or Spanish), but all papers have abstracts in English. Price quotes are in Austrian Schillings, do not include local taxes, and are subject to change without notice. Contents cover the three main categories of (I) Nuclear Measurements, Techniques and Instrumentation (Physics, Chemistry, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactors and Particle Accelerator Applications, Nuclear Data); (ii) Industrial Applications (Radiation Processing, Radiometry, Tracers); and (iii) Plasma Physics and Nuclear Fusion

  8. On the economic prospects of nuclear fusion with tokamaks

    International Nuclear Information System (INIS)

    Pfirsch, D.; Schmitter, K.H.

    1987-12-01

    This paper describes a method of cost and construction energy estimation for tokamak fusion power stations conforming to the present, early stage of fusion development. The method is based on first-wall heat load constraints rather than β limitations, which, however, might eventually be the more critical of the two. It is used to discuss the economic efficiency of pure fusion, with particular reference to the European study entitled 'Environmental Impact and Economic Prospects of Nuclear Fusion'. It is shown that the claims made therein for the economic prospects of pure fusion with tokamaks, when discussed on the basis of the present-day technology, do not stand up to critical examination. A fusion-fission hybrid, however, could afford more positive prospects. Support for the stated method is even derived when it is properly applied for cost estimation of advanced gascooled and Magnox reactors, the two very examples presented by the European study to 'disprove' it. (orig.)

  9. Karlsruhe Nuclear Research Center. Research and development programme 1989

    International Nuclear Information System (INIS)

    1988-01-01

    The R and D activities of the KfK are classified in 10 main research activities: 1) Project fast breeder; 2) separation nozzle method; 3) project nuclear fusion; 4) project reprocessing and waste processing; 5) ultimate storage; 6) environment and safety; 7) solid-state and materials research; 8) nuclear and elementary particle physics; 9) microtechnics e.g. X-ray lithography; 10) materials handling. (HP) [de

  10. Propagation of nuclear data uncertainties for fusion power measurements

    Directory of Open Access Journals (Sweden)

    Sjöstrand Henrik

    2017-01-01

    Full Text Available Neutron measurements using neutron activation systems are an essential part of the diagnostic system at large fusion machines such as JET and ITER. Nuclear data is used to infer the neutron yield. Consequently, high-quality nuclear data is essential for the proper determination of the neutron yield and fusion power. However, uncertainties due to nuclear data are not fully taken into account in uncertainty analysis for neutron yield calibrations using activation foils. This paper investigates the neutron yield uncertainty due to nuclear data using the so-called Total Monte Carlo Method. The work is performed using a detailed MCNP model of the JET fusion machine; the uncertainties due to the cross-sections and angular distributions in JET structural materials, as well as the activation cross-sections in the activation foils, are analysed. It is found that a significant contribution to the neutron yield uncertainty can come from uncertainties in the nuclear data.

  11. Academic Training: New Trends in Fusion Research

    CERN Multimedia

    Françoise Benz

    2004-01-01

    11, 12 and 13 October 2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 11 October from 11.00 to 12.00 hrs, 12 and 13 October from 10.00 to 12.00 hrs - 11 and 12 October in the Main Auditorium, bldg. 500, 13 October in the TH Amphitheatre New Trends in Fusion Research A. FASOLI / EPFL, Lausanne, CH The efforts of the international fusion community aim at demonstrating the scientific feasibility of thermonuclear fusion energy power plants. Understanding the behavior of burning plasmas, i.e. plasmas with strong self-heating, represents a primary scientific challenge for fusion research and a new science frontier. Although integrated studies will only be possible, in new, dedicated experimental facilities, such as the International Tokamak Experimental Reactor (ITER), present devices can address specific issues in regimes relevant to burning plasmas. Among these are an improvement of plasma performance via a reduction of the energy and particle transport, an optimization of the path to ignition or to su...

  12. Academic Training: New Trends in Fusion Research

    CERN Multimedia

    Françoise Benz

    2004-01-01

    11, 12 and 13 October 2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 11 October from 11.00 to 12.00 hrs, 12 and 13 October from 10.00 to 12.00 hrs - 11 and 12 October in the Main Auditorium, bldg. 500, 13 October in the Theory Conference Room, bldg. 4 New Trends in Fusion Research A. FASOLI / EPFL, Lausanne, CH The efforts of the international fusion community aim at demonstrating the scientific feasibility of thermonuclear fusion energy power plants. Understanding the behavior of burning plasmas, i.e. plasmas with strong self-heating, represents a primary scientific challenge for fusion research and a new science frontier. Although integrated studies will only be possible, in new, dedicated experimental facilities, such as the International Tokamak Experimental Reactor (ITER), present devices can address specific issues in regimes relevant to burning plasmas. Among these are an improvement of plasma performance via a reduction of the energy and particle transport, an optimization of the path to i...

  13. The JET project and the European fusion research programme

    International Nuclear Information System (INIS)

    Wuester, H.-O.

    1984-01-01

    The paper concerns the Joint European Torus (JET) project and the European Fusion Research Programme. Fusion as an energy source and commercial fusion power are briefly discussed. The main features of the JET apparatus and the tokamak magnetic field configuration are given. Also described are the specific aims of JET, and the proposed future fusion reactor programme. (U.K.)

  14. New technology and neo-science on the nuclear fusion reactor engineering. ITER and super high speed phenomena

    International Nuclear Information System (INIS)

    1996-12-01

    This research meeting has been held under cooperation of the ''nuclear fusion reactor engineering research group'' and ''nuclear fusion reactor materials research group'' of the Yayoi Research Group. This meeting was planned and conducted for 2 days under the following predominant thema: Present status of research on thermo-nuclear fusion experimental reactor engineering design (ITER/EDA) and its promoting method in Japan, and a new scientific side in the research and development of nuclear fusion reactor materials or the super high speed phenomena. In the former item, the following reports were published: Creative period of R and D on the nuclear fusion reactor, present statue and future development of ITER/EDA, meanings of ITER under realization of the nuclear fusion energy, and others. And in the latter item, the following reports were published: Nuclear fusion materials engineering and system quantum engineering, dynamic imagination of atom and molecule using pulse snap shot method, laser wake field acceleration and ultra short x-ray pulse generation, development of T-cube laser in JAERI, and others. (G.K.)

  15. Accelerator Fusion Research Division 1991 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    Berkner, Klaus H.

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  16. Accelerator & Fusion Research Division 1991 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  17. Accelerator ampersand Fusion Research Division 1991 summary of activities

    International Nuclear Information System (INIS)

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations

  18. Accelerator and fusion research division. 1992 Summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations.

  19. Nuclear Propulsion through Direct Conversion of Fusion Energy: The Fusion Driven Rocket

    Science.gov (United States)

    Slough, John; Pancotti, Anthony; Kirtley, David; Pihl, Christopher; Pfaff, Michael

    2012-01-01

    The future of manned space exploration and development of space depends critically on the creation of a dramatically more proficient propulsion architecture for in-space transportation. A very persuasive reason for investigating the applicability of nuclear power in rockets is the vast energy density gain of nuclear fuel when compared to chemical combustion energy. Current nuclear fusion efforts have focused on the generation of electric grid power and are wholly inappropriate for space transportation as the application of a reactor based fusion-electric system creates a colossal mass and heat rejection problem for space application.

  20. X-Pinch Plasma Generation Testing for Neutron Source Development and Nuclear Fusion

    Directory of Open Access Journals (Sweden)

    Hossam A.Gabbar

    2018-04-01

    Full Text Available Nuclear fusion is a sought-out technology in which two light elements are fused together to create a heavier element and releases energy. Two primary nuclear fusion technologies are being researched today: magnetic and inertial confinement. However, a new type of nuclear fusion technology is currently being research: multi-pinch plasma beams. At the University of Ontario Institute of Technology, there is research on multi-pinch plasma beam technology as an alternative to nuclear fusion. The objective is to intersect two plasma arcs at the center of the chamber. This is a precursor of nuclear fusion using multi-pinch. The innovation portion of the students’ work is the miniaturization of this concept using high energy electrical DC pulses. The experiment achieved the temperature of 2300 K at the intersection. In comparison to the simulation data, the temperature from the simulation is 7000 K at the intersection. Additionally, energy harvesting devices, both photovoltaics and a thermoelectric generator, were placed in the chamber to observe the viable energy extraction.

  1. Overview of materials research for fusion reactors

    International Nuclear Information System (INIS)

    Muroga, T.; Gasparotto, M.; Zinkle, S.J.

    2002-01-01

    Materials research for fusion reactors is overviewed from Japanese, EU and US perspectives. Emphasis is placed on programs and strategies for developing blanket structural materials, and recent highlights in research and development for reduced activation ferritic martensitic steels, vanadium alloys and SiC/SiC composites, and in mechanistic experimental and modeling studies. The common critical issue for the candidate materials is the effect of irradiation with helium production. For the qualification of materials up to the full lifetime of a DEMO and Power Plant reactors, an intense neutron source with relevant fusion neutron spectra is crucial. Elaborate use of the presently available irradiation devices will facilitate efficient and sound materials development within the required time scale

  2. Nuclear hydrogen production: re-examining the fusion option

    International Nuclear Information System (INIS)

    Baindur, S.

    2007-01-01

    This paper describes a scheme for nuclear hydrogen production by fusion. The basic idea is to use nuclear energy of the fuel (hydrogen plasma) to produce molecular hydrogen fro carbon-free hydrogen compounds. The hydrogen is then stored and utilized electrochemically in fuel cells or chemically as molecular hydrogen in internal combustion engines

  3. ANNETTE Project : contributing to the nuclearization of fusion

    NARCIS (Netherlands)

    Ambrosini, W.; Cizelj, L.; Dieguez Porras, P.; Jaspers, R.; Noterdaeme, J.; Scheffer, M.; Schoenfelder, C.

    2018-01-01

    The ANNETTE Project (Advanced Networking for Nuclear Education and Training and Transfer of Expertise) is well underway, and one of its work packages addresses the design, development and implementation of nuclear fusion training. A systematic approach is used that leads to the development of new

  4. Statements on Energy from Nuclear Fusion

    International Nuclear Information System (INIS)

    The Energy Committee of the Royal Swedish Academy of Sciences

    2006-07-01

    The Royal Swedish Academy of Sciences (KVA) is an independent non-governmental organization, with expertise in most of the sciences as well as in the economical, social and humanistic fields. The KVA has appointed an Energy Committee that will summarize scientific knowledge on supply and use of energy over the coming fifty years. The Energy Committee has selected a number of subjects to be studied in some depth, one of these being nuclear energy from the fission process. The Energy Committee's key issues concerning nuclear energy: We have identified six key issues which require very careful analysis during the coming years. Safety remains a key issue. It is one of the major activities of OECD's Nuclear Energy Agency. 40 years of multilateral cooperation has led to improvements in the analysis and management of accidents and in the assessment of safety margins in the fuel cycle. In particular, attention is focused on ageing and structural integrity as the lifetime of reactors is extended to up to 60 years. The new Gen III reactors have improved safety features such as double containment, better separation of critical safety systems and improved possibilities to handle steam explosions and core meltdown. The Gen IV reactors will be designed with a goal to further improve safety features. Handling of the nuclear waste: Today, in most light water reactors, the fuel is used once only ('once through') and then sent directly to repositories. After some cooling time, the waste will be buried in underground repositories. Another important aspect is that a final decision for waste disposal is of great importance to the public's acceptance of any new nuclear ventures. The waste handling in future reactors is an important item for research and its solution will also influence how the waste from current reactors is managed. Non-proliferation: With increased use of nuclear energy, more countries may build up facilities for the whole fuel cycle, thus also, at least theoretically

  5. Fusion-related work at the Nuclear Energy Agency Data Bank

    International Nuclear Information System (INIS)

    Henriksson, H.; Mompean, F.J.; Kodeli, I.

    2007-01-01

    research is a field of growing relevance for innovative nuclear systems, such as Generation IV reactors, critical and sub-critical transmutation systems and fusion devices. The NEA is organising a workshop on Structural Materials for Innovative Nuclear Systems (SMINS) aiming at stimulating an exchange of information on current material research programmes for different innovative nuclear systems in order to identify and develop potential synergies. In this paper an overview will be given of the fusion-related projects within the NEA, with examples of nuclear data services offered, such as the SINBAD database and validation of data with fusion neutronics shielding experiments. The main emphasis will be given to recent work within the EFF project as well as a discussion on the forth-coming evaluation efforts among the EFF collaborators and conclusions from the SMINS workshop. (orig.)

  6. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming.

    Science.gov (United States)

    Mitani, Yasuyuki; Vagnozzi, Ronald J; Millay, Douglas P

    2017-01-01

    Knowledge regarding cellular fusion and nuclear reprogramming may aid in cell therapy strategies for skeletal muscle diseases. An issue with cell therapy approaches to restore dystrophin expression in muscular dystrophy is obtaining a sufficient quantity of cells that normally fuse with muscle. Here we conferred fusogenic activity without transdifferentiation to multiple non-muscle cell types and tested dystrophin restoration in mouse models of muscular dystrophy. We previously demonstrated that myomaker, a skeletal muscle-specific transmembrane protein necessary for myoblast fusion, is sufficient to fuse 10T 1/2 fibroblasts to myoblasts in vitro. Whether myomaker-mediated heterologous fusion is functional in vivo and whether the newly introduced nonmuscle nuclei undergoes nuclear reprogramming has not been investigated. We showed that mesenchymal stromal cells, cortical bone stem cells, and tail-tip fibroblasts fuse to skeletal muscle when they express myomaker. These cells restored dystrophin expression in a fraction of dystrophin-deficient myotubes after fusion in vitro. However, dystrophin restoration was not detected in vivo although nuclear reprogramming of the muscle-specific myosin light chain promoter did occur. Despite the lack of detectable dystrophin reprogramming by immunostaining, this study indicated that myomaker could be used in nonmuscle cells to induce fusion with muscle in vivo, thereby providing a platform to deliver therapeutic material.-Mitani, Y., Vagnozzi, R. J., Millay, D. P. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming. © FASEB.

  7. Accelerator and Fusion Research Division 1989 summary of activities

    International Nuclear Information System (INIS)

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations

  8. Accelerator and Fusion Research Division 1989 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

  9. Overview of US heavy ion fusion research

    International Nuclear Information System (INIS)

    Logan, G.; Bieniosek, F.; Celata, C.; Henestroza, E.; Kwan, J.; Lee, E.P.; Leitner, M.; Prost, L.; Roy, P.; Seidl, P.A.; Eylon, S.; Vay, J.-L.; Waldron, W.; Yu, S.; Barnard, J.; Callahan, D.; Cohen, R.; Friedman, A.; Grote, D.; Kireeff Covo, M.; Meier, W.R.; Molvik, A.; Lund, S.; Davidson, R.; Efthimion, P.; Gilson, E.; Grisham, L.; Kaganovich, I.; Qin, H.; Startsev, E.; Rose, D.; Welch, D.; Olson, C.; Kishek, R.; O'Shea, P.; Haber, I.

    2005-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy. (author)

  10. Overview of US heavy ion fusion research

    International Nuclear Information System (INIS)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Eylon, S.; Vay, J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Callahan, D.A.; Cohen, R.H.; Friedman, A.; Grote, D.P; Covo, Kireeff M.; Meier, W.R.; Molvik, A.W.; Lund, S.M.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.R.; Kaganovich, I.D.; Qin, H.; Startsev, E.A.; Rose, D.V.; Welch, D.R.; Olson, C.L.; Kishek, R.A.; O'Shea, P.; Haber, I.; Prost, L.R.; Prost, L.

    2004-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy

  11. Fusion reactor materials research in China

    International Nuclear Information System (INIS)

    Qian Jiapu

    1994-10-01

    The fusion materials research in China is introduced. Many kinds of structural materials (such as Ti-modified stainless steel, ferritic steel, HT-9, HT-7, oxide dispersion strengthening ferritic steel), tritium breeders (lithium, Li 2 O, γ-LiAlO 2 ) and plasma facing materials (PFMs) (graphite with TiC and SiC coatings) have been developed or being developed. A systematic research activities on irradiation effects, compatibility, plasma materials interaction, thermal shock during disruption, tritium production, release and permeation, neutron multiplication in Be and Pb, etc. have been performed. The research activities are summarized and some experimental results are also given

  12. Future of nuclear energy research

    International Nuclear Information System (INIS)

    Fuketa, Toyojiro

    1989-09-01

    In spite of the easing of worldwide energy supply and demand situation in these years, we believe that research efforts towards the next generation nuclear energy are indispensably necessary. Firstly, the nuclear colleagues believe that nuclear energy is the best major energy source from many points of view including the global environmental viewpoint. Secondly, in the medium- and long-range view, there will once again be a high possibility of a tight supply and demand situation for oil. Thirdly, nuclear energy is the key energy source to overcome the vulnerability of the energy supply structure in industrialized countries like Japan where virtually no fossil energy source exists. In this situation, nuclear energy is a sort of quasi-domestic energy as a technology-intensive energy. Fourthly, the intensive efforts to develop the nuclear technology in the next generation will give rise to a further evolution in science and technology in the future. A few examples of medium- and long-range goals of the nuclear energy research are development of new types of reactors which can meet various needs of energy more flexibly and reliably than the existing reactors, fundamental and ultimate solution of the radioactive waste problems, creation and development of new types of energy production systems which are to come beyond the fusion, new development in the biological risk assessment of the radiation effects and so on. In order to accomplish those goals it is quite important to introduce innovations in such underlying technologies as materials control in more microscopic manners, photon and particle beam techniques, accelerator engineering, artificial intelligence, and so on. 32 refs, 2 figs

  13. Nuclear technology in research and everyday life

    International Nuclear Information System (INIS)

    2015-12-01

    The paper.. discusses the impact of nuclear technology in research and everyday life covering the following issues: miniaturization of memory devices, neutron radiography in material science, nuclear reactions in the universe, sterilization of food, medical applies, cosmetics and packaging materials using beta and gamma radiation, neutron imaging for radioactive waste analysis, microbial transformation of uranium (geobacter uraniireducens), nuclear technology knowledge preservation, spacecrafts voyager 1 and 2, future fusion power plants, prompt gamma activation analysis in archeology, radiation protection and radioecology and nuclear medicine (radiotherapy).

  14. Fusion power: massive research program aims at formidable problems, almost limitless potential

    International Nuclear Information System (INIS)

    Dingee, D.A.

    1979-01-01

    This article surveys extensively fusion development under the following topics: US research directions; inertial confinement fusion; foreign fusion efforts; fusion issues; fusion applications; and arguments for fusion development. Dr. Dingee points out that, despite persuasive arguments for development, fusion has as yet attracted no substantial constituency; and that winning greater support for fusion may thus require a considerable technical breakthrough (namely, proof of scientific feasibility or achievement of energy breakeven) - or a new focus on an energy source such as hybrids, which offer a nearer-term payoff than pure fusion. Dr. Dingee says the next major facility for magnetic confinement research (to be built in late 1980s) has not yet been selected, but will probably be an engineering test facility; there are similar plans for inertial confinement. Whichever type is chosen, the first experimental power reactor is scheduled for the first few years of the 2000's, this to be followed by commercial demonstration of fusion power in the 2010 to 2020 time frame. He points out, finally, that the complex technical and institutional issues are being considered in a climate in which the benefits of nuclear energy itself are being questioned; and that there is little doubt that future development is tied to overall decisions the nation will make regarding the value of nuclear energy

  15. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    International Nuclear Information System (INIS)

    Wendt, Amy; Callis, Richard; Efthimion, Philip; Foster, John; Keane, Christopher; Onsager, Terry; O'Shea, Patrick

    2015-01-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  16. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Amy [Univ. of Wisconsin, Madison, WI (United States); Callis, Richard [General Atomics, San Diego, CA (United States); Efthimion, Philip [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Foster, John [Univ. of Michigan, Ann Arbor, MI (United States); Keane, Christopher [Washington State Univ., Pullman, WA (United States); Onsager, Terry [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); O' Shea, Patrick [Univ. of Maryland, College Park, MD (United States)

    2015-09-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  17. Nuclear fusion and fission, and related technologies department: 2007 progress report

    International Nuclear Information System (INIS)

    2007-12-01

    ENEA continues to contribute to broadening plasma physics knowledge as well as to developing the relevant technologies in the framework of the EURATOM-ENEA Association for fusion. This report describes the 2007 research activities carried out by the ENEA Fusion Research Group of the Nuclear Fusion and Fission, and Related Technologies Department (FPN). Other ENEA research groups also contributed to the activities. The following fields were addressed: magnetically confined nuclear fusion (physics and technology), superconductivity and inertial fusion. Planning of the 2007 fusion activities took into account the different scenarios determined by the new organisation of the European programme based on the start of ITER construction. The establishment of the ITER International Organisation and the European Domestic Agency (Fusion for Energy) required a new organisational scheme. This has implied not only the implementation of a more project oriented structure but also the need to launch the constitution of a consortium agreement between the Associations in order to cope with the needs for the design and construction of the components of ITER that require specific know-how, e.g., diagnostics and test blanket module

  18. New approaches to the economic evaluation of fusion research

    International Nuclear Information System (INIS)

    Hazelrigg, G.A.; Lietzke, K.R.

    1978-01-01

    The economic evaluation of fusion research to date has focussed on the benefits of essentially unlimited energy for future generations. In this paper it is shown that energy research in general, and fusion research in particular, also provides benefits in the short term, benefitting us today as well as future generations. Short-term benefits are the result of two distinct aspects of fusion research. First, fusion research provides information for decision making on both the continuing fusion research efforts and on other energy research programs. Second, fusion research provides an expectation of a future energy source thereby promoting accelerated consumption of existing fossil fuels today. Both short-term benefits can be quantitatively evaluated and both are quite substantial. Together, these short-term benefits form the primary economic rationale for fusion research

  19. American research programs on controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    At a time when the site of the European JET project has been decided, this study proposes to highlight the American effort in this field over the last five years. The Federal Civil Research and Development budget assigned to Energy has been multiplied by 6.3 and inside this budget the portion allocated to fusion has been multiplied by a factor of 6, in value. Two avenues have been explored; magnetic confinement and inertial confinement but one reaction only has been considered, namely D + T fusion. In magnetic confinement, the first operational reactor is being contemplated for around the year 2012. Three technologies have been explored in inertial confinement: by laser beams, electron beams and ion beams [fr

  20. Nuclear energy related research

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kilpi, K.

    1985-01-01

    This research programme plan for 1985 covers the nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT

  1. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1987-02-01

    This annual Research Programme Plan covers the nuclear related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1987 and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT itself

  2. Some introductory notes on the problem of nuclear energy by controlled fusion reactions

    International Nuclear Information System (INIS)

    Pedretti, E.

    1988-01-01

    Written for scientists and technologist interested in, but unfamiliar with nuclear energy by controlled fusion reactions, this ''sui generis'' review paper attempts to provide the reader, as shortly as possible, with a general idea of the main issues at stake in nuclear fusion research. With the purpose of keeping this paper within a reasonable length, the various subjects are only outlined in their essence, basic features, underlying principles, etc., without entering into details, which are left to the quoted literature. Due to the particular readership of this journal, vacuum problems and/or aspects of fusion research anyhow related with vacuum science and technology are evidentiated. After reviewing fusion reactions' cross sections, fusion by accelerators and muon catalyzed fusion are described, followed by mention of Lawson's criteria and of plasma confinement features. Then, inertial confinement fusion is dealt with, also including one example of laser system (Nova), one of accelerator facility (PBFA-II) and some guesses on the classified Centurion-Halite program. Magnetic confinement fusion research is also reviewed, in particulary reporting one example of linear machine (MFTF-B), two examples of toroidal machines other than Tokamak (ATF and Eta-Beta-II) and various examples of Tokamaks, including PBX and PBX-M; TFTR, JET, JT-60, T-15 and Tore-Supra (large machines); Alcator A, FT, Alcator C/MTX, Alcator C-Mod and T-14 (compact high field machines). Tokamaks under design for ignition experiments (Ignitor, CIT, Ignitex and NET) are also illustrated. Thermal conversion of fusion power and direct generation of electricity are mentioned; conceptual design of fusion power plants are considered and illustrated by four examples (STARFIRE, WILDCAT, MARS and CASCADE). The D 3 He fuel cycle is discussed as an alternative more acceptable than Deuterium-Tritium, and thw Candor proposal is reported. After recalling past experience of the fission power development, some

  3. Heat transfer and mechanical interactions in fusion nuclear systems

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1984-01-01

    This general review of design issues in heat transfer and mechanical interactions of the first wall, blanket and shield systems of tokamak and mirror fusion reactors begins with a brief introduction to fusion nuclear systems. The design issues are summarized in tables and the following examples are described to illustrate these concerns: the surface heating of limiters, heat transfer from solid breeders, MHD effects in liquid metal blankets, mechanical loads from electromagnetic transients and remote maintenance

  4. Nuclear fusion project. Semi-annual report of the Association KfK/EURATOM

    International Nuclear Information System (INIS)

    1986-11-01

    Nuclear fusion is one of the main activities of the Karlsruhe Nuclear Research Center (KfK). It is organized as a project under the Directorate of Reactor Development and Safety. The work of KfK concentrates on technology aspects of nuclear fusion with magnetic confinement. It is part of the European Fusion Programme where KfK participates as an association to EURATOM. Close links have been established to the Max Planck Institute for Plasma Physics (IPP). In the Entwicklungsgemeinschaft Kernfusion KfK and IPP cooperate for the development of future fusion experiments joining the experience gained in plasma physics (IPP) and materials, safety, and nuclear technology (KfK), respectively. As in the present strategy of the European Fusion Programme the Next European Tokamak (NET) is foreseen as the major next step, most of the activities of KfK address this subject. In addition to the contributions to NET, studies are carried out to innovate INTOR, the worldwide cooperation for an experimental reactor under the auspices of IAEA. Furthermore, the Entwicklungsgemeinschaft Kernfusion has evaluated the feasibility of a fusion reactor with a stellarator confinement. (orig./GG)

  5. Maryland controlled fusion research program. Volume I

    International Nuclear Information System (INIS)

    1985-01-01

    This renewal proposal describes the University of Maryland research program on Magnetic Fusion Energy for a three-year period beginning January 1, 1986. This program consists of five tasks: (I) Plasma Theory; (II) Electron Cyclotron Emission Diagnostics for Mirror Machines; (III) Electron Cyclotron Emission Diagnostics on TFTR; (IV) Atomic Physics; and (V) Magnetic Field Measurement by Ion Beams. The four separate tasks of continuing research (Tasks I to IV) and the new experimental task (Task V) are described in detail. The task descriptions contain estimated budgets for CY 86, 87, and 88

  6. Thailand's nuclear research centre

    International Nuclear Information System (INIS)

    Yamkate, P.

    2001-01-01

    The Office of Atomic Energy for Peace, Thailand, is charged with three main tasks, namely, Nuclear Energy development Plan, Utilization of Nuclear Based technology Plan and Science and Technology Plan. Its activities are centred around the research reactor TRR-1/M1. The main areas of contribution include improvement in agricultural production, nuclear medicine and nuclear oncology, health care and nutrition, increasing industrial productivity and efficiency and, development of cadre competent in nuclear science and technology. The office also has the responsibility of ensuring nuclear safety, radiation safety and nuclear waste management. The office has started a new project in 1997 under which a 10 MWt research reactor, an isotope production facility and a waste processing and storage facility would be set up by General Atomic of USA. OAEP has a strong linkage with the IAEA and has been an active participant in RCA programmes. In the future OAEP will enhance its present capabilities in the use of radioisotopes and radiation and look into the possibility of using nuclear energy as an alternative energy resource. (author)

  7. Nuclear Power Plants Fault Diagnosis Method Based on Data Fusion

    International Nuclear Information System (INIS)

    Xie Chunli; Liu Yongkuo; Xia Hong

    2009-01-01

    The data fusion is a method suit for complex system fault diagnosis such as nuclear power plants, which is multisource information processing technology. This paper uses data fusion information hierarchical thinking and divides nuclear power plants fault diagnosis into three levels. Data level adopts data mining method to handle data and reduction attributes. Feature level uses three parallel neural networks to deal with attributes of data level reduction and the outputs of three networks are as the basic probability assignment of Dempster-Shafer (D-S) evidence theory. The improved D-S evidence theory synthesizes the outputs of neural networks in decision level, which conquer the traditional D-S evidence theory limitation which can't dispose conflict information. The diagnosis method was tested using correlation data of literature. The test results indicate that the data fusion diagnosis system can diagnose nuclear power plants faults accurately and the method has application value. (authors)

  8. Nuclear fusion and genome encounter during yeast zygote formation.

    Science.gov (United States)

    Tartakoff, Alan Michael; Jaiswal, Purnima

    2009-06-01

    When haploid cells of Saccharomyces cerevisiae are crossed, parental nuclei congress and fuse with each other. To investigate underlying mechanisms, we have developed assays that evaluate the impact of drugs and mutations. Nuclear congression is inhibited by drugs that perturb the actin and tubulin cytoskeletons. Nuclear envelope (NE) fusion consists of at least five steps in which preliminary modifications are followed by controlled flux of first outer and then inner membrane proteins, all before visible dilation of the waist of the nucleus or coalescence of the parental spindle pole bodies. Flux of nuclear pore complexes occurs after dilation. Karyogamy requires both the Sec18p/NSF ATPase and ER/NE luminal homeostasis. After fusion, chromosome tethering keeps tagged parental genomes separate from each other. The process of NE fusion and evidence of genome independence in yeast provide a prototype for understanding related events in higher eukaryotes.

  9. Review of fusion research program: historical summary and program projections

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E.S.

    1976-09-01

    This report provides a brief review of the history and current status of fusion research in the United States. It also describes the Federally funded program aimed at the development of fusion reactors for electric power generation.

  10. LLL magnetic fusion research: the first 25 years

    International Nuclear Information System (INIS)

    Post, R.F.

    1978-01-01

    From its inception, the Laboratory has supported research directed at tapping controlled fusion. Our magnetic fusion energy program--now one of the major elements of the national fusion energy research effort--dates back to the Laboratory's founding in 1952. This article reviews the program's beginnings, progress, and present status in terms of its ultimate goal: to demonstrate a practical and economical means of generating power from controlled fusion reactions

  11. Be Bold : An Alternative Plan for Fusion Research

    Energy Technology Data Exchange (ETDEWEB)

    Wurden, Glen Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-15

    Government sponsored magnetic fusion energy research in the USA has been on downward trajectory since the early 1990’s. The present path is unsustainable. Indeed, our research community and national research facilities are withering from old-age and lack of investment. The present product (tokamak-centric production of electricity) does not yet work, will not be economic, and is clearly not valued or needed by our society. Even if a prototype existed at any cost, DT-based fusion energy would come too late to significantly impact the reduction of CO2 emissions in this century. This white paper outlines what “being bold” could mean with respect to the invention and application of nuclear fusion technologies, and how the USA could once again set a visionary example for the world. I present the discussion in two parts, reflecting on the NAS panel two-part assignment of a plan “with” and “without” ITER.

  12. Plasma physics and controlled nuclear fusion

    International Nuclear Information System (INIS)

    Sato, Tetsuya

    1993-05-01

    The report contains the proceedings of a conference on plasma physics. A fraction of topics included MHD instabilities, magnetic confinement and plasma heating in the field of fusion plasmas, in 8 papers falling in the INIS scope have been abstracted and indexed for the INIS database. (K.A.)

  13. Some theories of cold nuclear fusion

    International Nuclear Information System (INIS)

    Preparata, G.

    1991-01-01

    In this paper a review is presented of the main theoretical attempts to describe the phenomenology of cold fusion, whose general structure begins to clearly unravel. The main conclusion is that the approaches that are likely to be of relevance must invoke processes where the elementary components (nuclei and electrons) of condensed matter act in a coherent fashion

  14. Collective dynamics of nuclear fusion: deformation changes and heating during the fusion

    International Nuclear Information System (INIS)

    Mikhailov, I.N.; Mikhailova, T.I.; Toro, M. di; Baran, V.; Briancon, C.

    1996-01-01

    The formalism developed elsewhere for the theoretical description of the dynamics involved in the heavy nucleus fusion is applied in this paper to study the history of the fusion of two identical heavy nuclei experiencing central collision. The evolution of the shape and of the temperature of symmetrical fusing systems is studied. The role of the elastoplasticity of nuclear matter in the nonmonotonical changes of the shape is elucidated in this way. A tentative explanation of the ''extra push'' phenomenon is given in terms of the competition between elastic properties of fusing systems driving to the re-separation of colliding nuclei and the dissipative (plastic) properties of nuclear matter transforming the energy of collective motion into the energy of statistical excitation and thus leading to the fusion. The fingerprints of the heavy-nucleus fusion history as it is depicted by the model are traced in the anisotropy of the dipole and quadrupole γ-radiation emitted during the fusion. The parallels in the description of the fusion dynamics given by the simple model used in this paper and by the more fundamental approaches based on the kinetic equation are emphasised. (orig.)

  15. Italy, EURATOM and Early Research on Controlled Thermonuclear Fusion (1957-1962)

    International Nuclear Information System (INIS)

    Curli, Barbara

    2017-01-01

    This chapter traces the early origins of European collaboration in controlled thermonuclear fusion research, within the larger picture of Cold War nuclear policy in the late 1950s-early 1960s, and as a consequence of the signing of the EURATOM treaty in 1957. It then presents some preliminary findings on the Association contract which was signed in 1960 between EURATOM and Italy, in order to carry out research in controlled thermonuclear fusion at the then newly created 'Laboratori nazionali di Frascati', near Rome, within the framework of the Comitato Nazionale Energia Nucleare (CNEN), the Italian civilian nuclear energy agency.

  16. Computational methods, tools and data for nuclear analyses of fusion technology systems

    International Nuclear Information System (INIS)

    Fischer, U.

    2006-01-01

    An overview is presented of the Research and Development work conducted at Forschungszentrum Karlsruhe in co-operation with other associations in the framework of the European Fusion Technology Programme on the development and qualification of computational tools and data for nuclear analyses of Fusion Technology systems. The focus is on the development of advanced methods and tools based on the Monte Carlo technique for particle transport simulations, and the evaluation and qualification of dedicated nuclear data to satisfy the needs of the ITER and the IFMIF projects. (author)

  17. Data fusion and sensor management for nuclear power plant safety

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.

    1996-05-01

    The paper describes the implementation of the data-sensor fusion and sensor management technology for accident management through simulated severe accident (SA) scenarios subjected to study. By means of accident management the appropriate prompt actions to be taken to avoid nuclear accident (SA) scenarios subjected to study. By means of accident management the appropriate prompt actions to be taken to avoid nuclear accidents are meant, while such accidents are deemed to somehow be imminent during plant operation. The organisation of the present paper is as follows. As the data-sensor fusion and sensor management is an emerging technology which is not widely known, in Sec. 2, the definition and goals of data-sensor fusion and sensor management technology is described. In Sec. 3 first, with reference to Kalman filtering as an information filter, statistical data-sensor fusion technology is described. This is followed by the examples of deterministic data-sensor fusion technology using gross plant state variables and neural networks (NN) and the implementation for severe accident management in NPPs. In Sec. 4, the sensor management technology is described. Finally, the performance of the data-sensor fusion technology for NPP safety is discussed. (orig./WL)

  18. Fusion: introduction

    International Nuclear Information System (INIS)

    Decreton, M.

    2006-01-01

    The article gives an overview and introduction to the activities of SCK-CEN's research programme on fusion. The decision to construct the ITER international nuclear fusion experiment in Cadarache is highlighted. A summary of the Belgian contributions to fusion research is given with particular emphasis on studies of radiation effects on diagnostics systems, radiation effects on remote handling sensing systems, fusion waste management and socio-economic studies

  19. Trends of researches for fusion engineering research facility (FERF)

    International Nuclear Information System (INIS)

    Ozawa, Yasutomo; Enoto, Takeaki

    1975-01-01

    The role of a fusion neutron radiation test facility in the development of a scientific feasibility experimental reactor or demonstration fusion power reactor plant would be analogous to the role of the materials testing and experimental reactors in the development of fission power reactor. While the material testing fission reactor has been developed after successful operation of fission reactors, in the case of fusion reactor development it is desirable to realize the fusion engineering research facility (FERF) in-phase to the development of SFX and/or demonstration fusion power reactor plants. Here so called FERF in near future is the Controlled Thermonuclear Reactor which provides the high-intensity and high-energy neutron and plasma source whether the net power output is produced or not. From the point of direct attainment to SFX, we would like to emphasize that FEFE is the royal road leading to the goal of successful achievement of CTR program and could be useful for the experiment on impurity effects caused by neutron and plasma irradiations onto the wall material for SFX. Further, we rather suppose that hybrid FERF-fission assembly could be fairly and easily realizable in near future. (auth.)

  20. Surface study of fusion research in universities linkage organization

    International Nuclear Information System (INIS)

    Miyahara, Akira.

    1980-04-01

    The surface studies for nuclear fusion research consist of the studies on the surface process and the surface damage. The problems with the surface study are different at different research stages. The plasma-wall interaction in the ignition stage is mainly concerned with heating. The impurity control becomes important in the breakeven stage. In the longer burn experiment, the problems of plasma contamination and ash accumulation are serious, and the blistering is also a problem. From the reactor aspect, the reduction of life of wall due to the irradiation of high fluence must be considered. The surface damage due to plasma disruption is a very big problem. The activities concerning the surface studies in university-linked organizations are the surface characterization for fusion reactor materials by low energy ion scattering spectroscopy, the high power ion irradiation test for CTR first wall, data compilation on plasma-wall interaction, the studies of sputtering process and surface coating, and the study on hydrogen isotope permeation through metals for fusion reactors. Other activities such as the sample characterization at many universities using the SUS 304 samples from the same lot, and the collaboration works on JIPP-T-2 plasma wall experiments are introduced. Concerning the surface study, US-Japan or international collaboration are strongly expected. (Kato, T.)

  1. Customizable scientific web portal for fusion research

    International Nuclear Information System (INIS)

    Abla, G.; Kim, E.N.; Schissel, D.P.; Flanagan, S.M.

    2010-01-01

    Web browsers have become a major application interface for participating in scientific experiments such as those in magnetic fusion. The recent advances in web technologies motivated the deployment of interactive web applications with rich features. In the scientific world, web applications have been deployed in portal environments. When used in a scientific research environment, such as fusion experiments, web portals can present diverse sources of information in a unified interface. However, the design and development of a scientific web portal has its own challenges. One such challenge is that a web portal needs to be fast and interactive despite the high volume of information and number of tools it presents. Another challenge is that the visual output of the web portal must not be overwhelming to the end users, despite the high volume of data generated by fusion experiments. Therefore, the applications and information should be customizable depending on the needs of end users. In order to meet these challenges, the design and implementation of a web portal needs to support high interactivity and user customization. A web portal has been designed to support the experimental activities of DIII-D researchers worldwide by providing multiple services, such as real-time experiment status monitoring, diagnostic data access and interactive data visualization. The web portal also supports interactive collaborations by providing a collaborative logbook, shared visualization and online instant messaging services. The portal's design utilizes the multi-tier software architecture and has been implemented utilizing web 2.0 technologies, such as AJAX, Django, and Memcached, to develop a highly interactive and customizable user interface. It offers a customizable interface with personalized page layouts and list of services, which allows users to create a unique, personalized working environment to fit their own needs and interests. This paper describes the software

  2. Customizable scientific web portal for fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Abla, G., E-mail: abla@fusion.gat.co [General Atomics, P.O. Box 85608, San Diego, CA (United States); Kim, E.N.; Schissel, D.P.; Flanagan, S.M. [General Atomics, P.O. Box 85608, San Diego, CA (United States)

    2010-07-15

    Web browsers have become a major application interface for participating in scientific experiments such as those in magnetic fusion. The recent advances in web technologies motivated the deployment of interactive web applications with rich features. In the scientific world, web applications have been deployed in portal environments. When used in a scientific research environment, such as fusion experiments, web portals can present diverse sources of information in a unified interface. However, the design and development of a scientific web portal has its own challenges. One such challenge is that a web portal needs to be fast and interactive despite the high volume of information and number of tools it presents. Another challenge is that the visual output of the web portal must not be overwhelming to the end users, despite the high volume of data generated by fusion experiments. Therefore, the applications and information should be customizable depending on the needs of end users. In order to meet these challenges, the design and implementation of a web portal needs to support high interactivity and user customization. A web portal has been designed to support the experimental activities of DIII-D researchers worldwide by providing multiple services, such as real-time experiment status monitoring, diagnostic data access and interactive data visualization. The web portal also supports interactive collaborations by providing a collaborative logbook, shared visualization and online instant messaging services. The portal's design utilizes the multi-tier software architecture and has been implemented utilizing web 2.0 technologies, such as AJAX, Django, and Memcached, to develop a highly interactive and customizable user interface. It offers a customizable interface with personalized page layouts and list of services, which allows users to create a unique, personalized working environment to fit their own needs and interests. This paper describes the software

  3. Scoping of oil shale retorting with nuclear fusion reactors

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1983-01-01

    An engineering scoping study was conducted at the U.S. Department of Energy's request to see if a feasible concept could be developed for using nuclear fusion heat to improve in situ extraction by retorting of underground oil shale. It was found that a fusion heated, oxygen-free inert gas could be used for driving modified, in situ retorts at a higher yield, using lower grade shale and producing less environmental problems than present-day processes. It was also found to be economically attractive with return on investments of 20 to 30%. Fusion blanket technology required was found to be reasonable at hot gas delivery temperatures of about650 0 C (920 K). The scale of a fusion reactor at 2.8 GW(thermal) producing 45 000 Mg/day (335 000 barrel/day) was also found to be reasonable

  4. Nuclear dynamics around the barrier: from fusion to evaporation

    International Nuclear Information System (INIS)

    Simenel, Cedric

    2003-01-01

    This work is devoted to aspects of nuclear dynamics around the barrier. It is shown that for fusion reactions, the Coulomb field couples relative motion of nuclei to rotation of a deformed projectile independently of the energy and the charge of the nuclei. An experimental study of the reaction 6 He + 190 Os via gamma spectroscopy of product nuclei has shown that the break up of the 6 He is coupled to the relative motion too, a strong hindrance resulting in the fusion around and above the fusion barrier. The path to fusion after overcoming the barrier, especially the charge equilibration, have been studied in the framework of the TDHF theory via the preequilibrium GDR excited in N/Z asymmetric reactions. An application to formation of the super-heavy elements has been proposed. Finally, couplings between protons and neutrons have been shown up in mean field calculations. Their main expected effect is an emission of protons under the Coulomb barrier. (author)

  5. Nuclear characteristics of D-D fusion reactor blankets

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Ohta, Masao

    1978-01-01

    Fusion reactors operating on deuterium (D-D) cycle are considered to be of long range interest for their freedom from tritium breeding in the blanket. The present paper discusses the various possibilities of D-D fusion reactor blanket designs mainly from the standpoint of the nuclear characteristics. Neutronic and photonic calculations are based on presently available data to provide a basis of the optimal blanket design in D-D fusion reactors. It is found that it appears desirable to design a blanket with blanket/shield (BS) concept in D-D fusion reactors. The BS concept is designed to obtain reasonable shielding characteristics for superconducting magnet (SCM) by using shielding materials in the compact blanket. This concept will open the possibility of compact radiation shield design based on assured technology, and offer the advantage from the system economics point of view. (auth.)

  6. 50 years of controlled nuclear fusion in the European Union

    International Nuclear Information System (INIS)

    Vandenplas, P.; Wolf, G.H.

    2008-01-01

    The author presents the history of fusion energy since its official birth in 1955 during the first conference on the peaceful uses of atomic energy to the expectations put on the ITER project. Nuclear fusion became a major component of the newly created European Atomic Energy Community (EURATOM). The milestones that were: magnetic mirror machines, pinch versions, stellarators and tokamaks are examined. The construction of the first fusion machines were decisive and gave fusion energy enough momentum to overcome greater and greater technological difficulties. At the scale of the world, major machines that were built like TFTR, Princeton (1974), JET, Culham (1977) or JT60, Tokai (1977), appear like a scientific and necessary strategy towards the demonstration reactor. The ITER project is detailed

  7. Atomic resonances in nuclear fusion plasmas

    International Nuclear Information System (INIS)

    Clauser, C. F.; Barrachina, R. O.

    2013-01-01

    We present a study of zero energy resonances of photoionization and radiative recombination cross section for the different species in a fusion reactor. In this context, the interaction potential is screened and its typical length depends on the plasma density and temperature. Due to the nature of these resonances, we propose other atomic processes in which they can take place. Finally, we show the density and temperature conditions where these resonances occur and their probable consequence on the reactor performance. (author)

  8. ITER, a major step toward nuclear fusion energy; ITER, une etape majeure vers l'energie de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Holtkamp, N.; Pick, M.; Gauche, F.; Garin, P.; Bigot, B.; Luciani, J.F.; Mougniot, J.C.; Watteau, J.P.; Saoutic, B.; Becoulet, A.; Libeyre, P.; Beaumont, B.; Simonin, A.; Giancarli, L.; Rosenvallon, S.; Gastaldi, O.; Marbach, G.; Boudot, C.; Ioki, K.; Mitchell, N.; Girard, J.Ph.; Giraud, B.; Lignini, F.; Giguet, E.; Bofusch, E.; Friconneau, J.P.; Di Pace, L.; Pampin, R.; Cook, I.; Maisonnier, D.; Campbell, D.; Hayward, J.; Li Puma, A.; Norajitra, P.; Sardain, P.; Tran, M.Q.; Ward, D.; Moslang, A.; Carre, F.; Serpantie, J.P

    2007-01-15

    This document gathers together a series of articles dedicated to ITER. They are organized into 5 parts. The first part describes the potential of fusion as a source of energy that will be able to face the challenge of a continuously increasing demand. After a reminder of the main fusion reactions and the conditions to obtain fusion, the second part focuses on the magnetic fusion based concepts with a special emphasis on the tokamak configuration. In the third part the main components of ITER are described: first the plasma facing components, then the vacuum vessel, the superconducting magnets and the heating systems. In the fourth part short papers concerning ITER safety, the maintenance through remote handling systems, the tritium breeding blanket, are given, along with a full article on the waste management. It is interesting to notice that the nuclear wastes will represent: -) between 1600 and 3800 tons of housekeeping and process wastes produced during the 20 years of operation of ITER (20% very low level waste, 75% low or medium activity with short life and 5% medium activity with long life), -) about 750 tons from component replacement during ITER active operation, and -) about 30000 tons from the decommissioning of ITER. The last part presents the European concepts for a power plant based on a fusion reactor. A basic design is given along with a state of the art of the research on the materials that will be used for the structures. It is highlighted that synergies between fission and fusion technologies exist in at least 4 areas: nuclear design code system, high temperature materials, safety approach, and in-service inspection, maintenance and dismantling. (A.C.)

  9. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    International Nuclear Information System (INIS)

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described

  10. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Ronald C.

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

  11. Historical evolution of nuclear energy systems development and related activities in JAERI. Fission, fusion, accelerator utilization

    Energy Technology Data Exchange (ETDEWEB)

    Tone, Tatsuzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Overview of the historical evolution of nuclear energy systems development and related activities in JAERI is given in the report. This report reviews the research and development for light water reactor, fast breeder reactor, high temperature gas reactor, fusion reactor and utilization of accelerator-based neutron source. (author)

  12. Nuclear design of a very-low-activation fusion reactor

    International Nuclear Information System (INIS)

    Cheng, E.T.; Hopkins, G.R.

    1983-06-01

    An investigation was conducted to study the nuclear design aspects of using very-low-activation materials, such as SiC, MgO, and aluminum for fusion-reactor first wall, blanket, and shield applications. In addition to the advantage of very-low radioactive inventory, it was found that the very-low-activation fusion reactor can also offer an adequate tritium-breeding ratio and substantial amount of blanket nuclear heating as a conventional-material-structured reactor does. The most-stringent design constraint found in a very-low-activation fusion reactor is the limited space available in the inboard region of a tokamak concept for shielding to protect the superconducting toroidal field coil. A reference design was developed which mitigates the constraint by adopting a removable tungsten shield design that retains the inboard dimensions and gives the same shield performance as the reference STARFIRE tokamak reactor design

  13. Fusion research in the European Community

    International Nuclear Information System (INIS)

    Wolf, G.H.

    1988-01-01

    Centering around the European joint project Joint European Torus (JET), in the framework of which hot fusion plasmas are already brought close to thermonuclear ignition, the individual research centres in Europe have taken over different special tasks. In Germany research concentrates above all on the development of super-conductive magnets, the stage of plasma-physical fundamentals or the investigation of the interaction between the plasma boundary layer and the material of the vessel wall. On this basis the development stage following JET, the Next European Torus (NET), is planned, with its main aim being the production and maintenance of a thermonuclear burning plasma, i.e. a plasma which maintains its active state from the gain of energy of its own fusion reactions. In the framework of a contractually agreed cooperation between the European Community, Japan, the USSR and the USA, the establishment of an international study group (with seat in Garching) was decided upon, which is to develop the concept of an 'International Thermonuclear Experimental Reactor (ITER)' jointly supported by these countries. The results of the studies presented show that the differences in the design data of ITER and NET are negligible. (orig./DG) [de

  14. Nuclear wastes: research programs

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    The management of long-living and high level radioactive wastes in France belongs to the framework of the December 30, 1991 law which defines three ways of research: the separation and transmutation of radionuclides, their reversible storage or disposal in deep geologic formations, and their processing and surface storage during long duration. Research works are done in partnership between public research and industrial organizations in many French and foreign laboratories. Twelve years after its enforcement, the impact of this law has overstepped the simple research framework and has led to a deep reflection of the society about the use of nuclear energy. This short paper presents the main results obtained so far in the three research ways, the general energy policy of the French government, the industrial progresses made in the framework of the 1991 law and the international context of the management of nuclear wastes. (J.S.)

  15. IAEA and IEA roles in international fusion energy research

    International Nuclear Information System (INIS)

    Dolan, T.; Nakamura, K.

    2000-01-01

    The article describes the IAEA's and the IEA's complementary roles in facilitating international fusion research cooperation. These roles represent highly desirable contributions to fusion research through pooling of limited human and financial resources. The two Agencies both coordinate research and organize technical meeting, but in different ways. They each have unique strengths and different modes of operation. In order to deal with potential overlaps and serve the fusion research community optimally, they are coordinating their activities

  16. Preparation of processed nuclear data libraries for thermal, fast and fusion research and power reactor applications. Texts of papers presented at the IAEA consultants' meeting

    International Nuclear Information System (INIS)

    Ganesan, S.

    1996-04-01

    The report contains 12 papers on nuclear data processing activities in Algeria, India, Indonesia, Italy, Japan, Republic of Korea, the Netherlands, Russia, Slovenia, United Kingdom, U.S.A., including ENDF formatted nuclear data libraries and computer code systems such as NJOY, AMPX, NSLINK, MCNP, multigroup data schemes such as WIMS, ABBN, and others. The role of the IAEA Nuclear Data Section in the establishment of nuclear data centers in developing countries is reviewed. (author). Refs, figs, tabs

  17. International research co-operation in the field of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Conscience, J.-F.

    2003-01-01

    This final report for the Swiss Federal Office of Education and Science presents a review of activities carried out in 2002 within the framework of the International Experimental Thermonuclear Reactor (ITER) project that involves contributions from Canada, Japan, the Russian Federation and the European Union. Further agreements on the development of a fusion reactor with other countries, including Switzerland, the USA and China, are mentioned. The first chapter describes the current state of research on electricity production using nuclear fusion and discusses feasibility, safety, environmental, fuel supply and economic aspects. A second chapter reviews global efforts in the fusion area, including ITER and EURATOM projects and the activities running under the European Fusion Development Agreement EFDA and the JET Implementing Agreement. Finally, a third chapter deals with fusion research activities in Switzerland and the contributions made to international research by Swiss universities and institutes

  18. Robust adaptive control of the sawtooth instability in nuclear fusion

    NARCIS (Netherlands)

    Bolder, J.J.; Witvoet, G.; Baar, de M.R.; Wouw, van de N.; Haring, M.A.M.; Westerhof, E.; Doelman, N.J.; Steinbuch, M.

    2012-01-01

    The sawtooth instability is a repetitive phenomenon occurring in plasmas of tokamak nuclear fusion reactors. Experimental studies of these instabilities and the effect they have on the plasma (notably the drive of secondary instabilities and consequent performance reduction) for a wide variety of

  19. Current research and development at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Kuesters, H.

    1982-01-01

    The Nuclear Research Center Karlsruhe (KfK) is funded to 90% by the Federal Republic of Germany and to 10% by the State of Baden-Wuerttemberg. Since its foundation in 1956 the main objective of the Center is research and development (R and D) in the aera of the nuclear technology and about 2/3 of the research capacity is now devoted to this field. Since 1960 a major activity of KfK is R and D work for the design of fast breeder reactors, including material research, physics, and safety investigations; a prototype of 300 MWe is under construction now in the lower Rhine Valley. For enrichment of 235 U fissile material KfK developed the separation nozzle process; its technical application is realized within an international contract between the Federal Republic of Germany and Brazil. Within the frame of the European Programme on fusion technology KfK develops and tests superconducting magnets for toroidal fusion systems; a smaller activity deals with research on inertial confinement fusion. A broad research programme is carried through for safety investigations of nuclear installations, especially for PWRs; this activity is supplemented by research and development in the field of nuclear materials' safeguards. Development of fast reactors has to initiate research for the reprocessing of spent fuel and waste disposal. In the pilot plant WAK spent fuel from LKWs is reprocessed; research especially tries e.g. to improve the PUREX-process by electrochemical means, vitrification of high active waste is another main activity. First studies are being performed now to clarify the necessary development for reprocessing fast reactor fuel. About 1/3 of the research capacity of KfK deals with fundamental research in nuclear physics, solid state physics, biology and studies on the impact of technology on environment. Promising new technologies as e.g. the replacement of gasoline by hydrogen cells as vehicle propulsion are investigated. (orig.)

  20. Security of nuclear materials using fusion multi sensor wavelett

    International Nuclear Information System (INIS)

    Djoko Hari Nugroho

    2010-01-01

    Security of a nuclear material in an installation is determined by how far the installation is to assure that nuclear material remains at a predetermined location. This paper observed a preliminary design on nuclear material tracking system in the installation for decision making support based on multi sensor fusion that is reliable and accurate to ensure that the nuclear material remains inside the control area. Capability on decision making in the Management Information System is represented by an understanding of perception in the third level of abstraction. The second level will be achieved with the support of image analysis and organizing data. The first level of abstraction is constructed by merger between several CCD camera sensors distributed in a building in a data fusion representation. Data fusion is processed based on Wavelett approach. Simulation utilizing Matlab programming shows that Wavelett fuses multi information from sensors as well. Hope that when the nuclear material out of control regions which have been predetermined before, there will arise a warning alarm and a message in the Management Information System display. Thus the nuclear material movement time event can be obtained and tracked as well. (author)

  1. Nuclear fusion. (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-08-01

    The bibliography contains citations concerning research, development, and assessment of nuclear fusion for applications in reactor engineering and technology. Citations discuss various engineering problems associated with reactor design, magnetic systems, nuclear materials, plasma generation and control, blankets, environments, economics, and safety. Also discussed are tokamak devices, stellarators, inertial confinement, reflectometry, and magnetohydrodynamics. Studies sponsored by the Department of Energy are not included. (Contains a minimum of 249 citations and includes a subject term index and title list.)

  2. Induction linacs for heavy ion fusion research

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Avery, R.T.; Brady, V.; Bisognano, J.; Celata, C.; Chupp, W.W.; Faltens, A.; Hartwig, E.C.; Judd, D.L.; Keefe, D.; Kim, C.H.; Laslett, L.J.; Lee, E.P.; Rosenblum, S.S.; Smith, L.; Warwick, A.

    1984-01-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams. (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to proportional70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units. (orig.)

  3. Induction linacs for heavy ion fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, T.J.

    1984-05-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams, (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to approx. 70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units.

  4. International power supply policy and the globalisation of research: the example of fusion research

    International Nuclear Information System (INIS)

    Bechmann, G.; Gloede, F.; Lessmann, E.

    2001-01-01

    At the present state of our information, we can affirm that fusion research, as far as the necessary financial expenditures and their political justification are concerned, is a matter of politically controversial debate. In the political arenas, projects like controlled nuclear fusion are discussed primarily with regard to the controllability of complex technical systems and the sustainability of our future supply of electric power. The attempt to discuss this problem will have to consider: (i) on the one hand, already established concepts of sustainability; (ii) and on the other, the - according to the present state of our knowledge - foreseeable characteristics of a system of power generation and supply based on fusion reactors. Not only do the goals of global technology projects have to be embedded in patterns of universally accepted legitimisation (sustainability), but the organisation of research and development is also changing into networks acting globally. In this sense, globalisation means not only the worldwide linking of financial markets and the permanent availability of information and communication networks, but above all the creation of global organisations of research and innovation processes. The globalisation of research and development of technology has several dimensions: (i) the recognition and treatment of global problems; (ii) the transformation and evolution of new forms of organisation and cooperation in a global community of researchers; (iii) the constitution of Global Change Research. Fusion is playing a 'pathfinder role' for these processes and is at the same time itself an expression of the globalisation of the production of technology

  5. Heavy-ion accelerator research for inertial fusion

    International Nuclear Information System (INIS)

    1987-08-01

    Thermonuclear fusion offers a most attractive long-term solution to the problem of future energy supplies: The fuel is virtually inexhaustible and the fusion reaction is notably free of long-lived radioactive by-products. Also, because the fuel is in the form of a plasma, there is no solid fuel core that could melt down. The DOE supports two major fusion research programs to exploit these virtues, one based on magnetic confinement and a second on inertial confinement. One part of the program aimed at inertial fusion is known as Heavy Ion Fusion Accelerator Research, or HIFAR. In this booklet, the aim is to place this effort in the context of fusion research generally, to review the brief history of heavy-ion fusion, and to describe the current status of the HIFAR program

  6. Nuclear fusion TORE SUPRA, a new stage

    International Nuclear Information System (INIS)

    Gregoire, M.; Laurent, L.

    1995-01-01

    Since almost forty years, the scientists try and neutralize in a pacific aim thermonuclear fusion energy and therefore they use the magnetic confinement of hot plasmas.In France, since 1960 the achieved studies permitted in 1988 to bring into service the TORE SUPRA TOKAMAK, which used, for the first time a superconducting magnet to generate the confinement magnetic field. TORE SUPRA, which didn't still explore its maximal potentialities, will be one of the apparatuses which will be used as basis of the international project ITER development. 5 figs

  7. Nuclear structure in cold rearrangement processes in fission and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, P.

    1998-11-01

    In fission and fusion of heavy nuclei large numbers of nucleons are rearranged at a scale of excitation energy very small compared to the binding energy of the nuclei. The energies involved are less than 40 MeV at nuclear temperatures below 1.5 MeV. The shapes of the configurations in the rearrangement of a binary system into a monosystem in fusion, or vice versa in fission, change their elongations by as much as 8 fm, the radius of the monosystem. The dynamics of the reactions macroscopically described by a potential energy surface, inertia parameters, dissipation, and a collision energy is strongly modified by the nuclear structure of the participating nuclei. Experiments showing nuclear structure effects in fusion and fission of the heaviest nuclei are reviewed. The reaction kinematics and the multitude of isotopes involved are investigated by detector techniques and by recoil spectrometers. The advancement of the latter allows to find very small reaction branches in the range of 10{sup -5} to 10{sup -10}. The experiments reveal nuclear structure effects in all stages of the rearrangement processes. These are discussed pointing to analogies in fusion and fission on the microscopic scale, notwithstanding that both processes macroscopically are irreversible. Heavy clusters, as 132Sn, 208Pb, nuclei with closed shell configurations N=82,126, Z=50,82 survive in large parts of the nuclear rearrangement. They determine the asymmetry in the mass distribution of low energy fission, and they allow to synthesise superheavy elements, until now up to element 112. Experiments on the cold rearrangement in fission and fusion are presented. Here, in the range of excitation energies below 12 MeV the phenomena are observed most convincingly. (orig.)

  8. Cytosol-dependent membrane fusion in ER, nuclear envelope and nuclear pore assembly: biological implications.

    Science.gov (United States)

    Rafikova, Elvira R; Melikov, Kamran; Chernomordik, Leonid V

    2010-01-01

    Endoplasmic reticulum and nuclear envelope rearrangements after mitosis are often studied in the reconstitution system based on Xenopus egg extract. In our recent work we partially replaced the membrane vesicles in the reconstitution mix with protein-free liposomes to explore the relative contributions of cytosolic and transmembrane proteins. Here we discuss our finding that cytosolic proteins mediate fusion between membranes lacking functional transmembrane proteins and the role of membrane fusion in endoplasmic reticulum and nuclear envelope reorganization. Cytosol-dependent liposome fusion has allowed us to restore, without adding transmembrane nucleoporins, functionality of nuclear pores, their spatial distribution and chromatin decondensation in nuclei formed at insufficient amounts of membrane material and characterized by only partial decondensation of chromatin and lack of nuclear transport. Both the mechanisms and the biological implications of the discovered coupling between spatial distribution of nuclear pores, chromatin decondensation and nuclear transport are discussed.

  9. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    International Nuclear Information System (INIS)

    Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin; Liu, Ke; Shang, Zheng-jun

    2014-01-01

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo

  10. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kai [Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Shandong Province (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Song, Yong [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Department of Stomatology, Liu Zhou People' s Hospital, Guangxi (China); Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Liu, Ke, E-mail: liuke.1999@aliyun.com [Department of Oral and Maxillofacial-Head and Neck oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Shang, Zheng-jun, E-mail: shangzhengjun@hotmail.com [Department of Oral and Maxillofacial-Head and Neck oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China)

    2014-10-15

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo.

  11. Research on an Agricultural Knowledge Fusion Method for Big Data

    Directory of Open Access Journals (Sweden)

    Nengfu Xie

    2015-05-01

    Full Text Available The object of our research is to develop an ontology-based agricultural knowledge fusion method that can be used as a comprehensive basis on which to solve agricultural information inconsistencies, analyze data, and discover new knowledge. A recent survey has provided a detailed comparison of various fusion methods used with Deep Web data (Li, 2013. In this paper, we propose an effective agricultural ontology-based knowledge fusion method by leveraging recent advances in data fusion, such as the semantic web and big data technologies, that will enhance the identification and fusion of new and existing data sets to make big data analytics more possible. We provide a detailed fusion method that includes agricultural ontology building, fusion rule construction, an evaluation module, etc. Empirical results show that this knowledge fusion method is useful for knowledge discovery.

  12. Operating large controlled thermonuclear fusion research facilities

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.; Tarrh, J.M.; Post, R.S.; Thomas, P.

    1987-01-01

    The MIT Tara Tandem Mirror is a large, state of the art controlled thermonuclear fusion research facility. Over the six years of its design, implementation, and operation, every effort was made to minimize cost and maximize performance by using the best and latest hardware, software, and scientific and operational techniques. After reviewing all major DOE fusion facilities, an independent DOE review committee concluded that the Tara operation was the most automated and efficient of all DOE facilities. This paper includes a review of the key elements of the Tara design, construction, operation, management, physics milestones, and funding that led to this success. The authors emphasize a chronological description of how the system evolved from the proposal stage to a mature device with an emphasis on the basic philosophies behind the implementation process. This description can serve both as a qualitative and quantitative database for future large experiment planning. It includes actual final costs and manpower spent as well as actual run and maintenance schedules, number of data shots, major system failures, etc. The paper concludes with recommendations for the next generation of facilities

  13. Operating large controlled thermonuclear fusion research facilities

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.; Tarrh, J.M.; Post, R.S.; Thomas, P.

    1987-10-01

    The MIT Tara Tandem Mirror is a large, state of the art controlled thermonuclear fusion research facility. Over the six years of its design, implementation, and operation, every effort was made to minimize cost and maximize performance by using the best and latest hardware, software, and scientific and operational techniques. After reviewing all major DOE fusion facilities, an independent DOE review committee concluded that the Tara operation was the most automated and efficient of all DOE facilities. This paper includes a review of the key elements of the Tara design, construction, operation, management, physics milestones, and funding that led to this success. We emphasize a chronological description of how the system evolved from the proposal stage to a mature device with an emphasis on the basic philosophies behind the implementation process. This description can serve both as a qualitative and quantitative database for future large experiment planning. It includes actual final costs and manpower spent as well as actual run and maintenance schedules, number of data shots, major system failures, etc. The paper concludes with recommendations for the next generation of facilities. 13 refs., 15 figs., 3 tabs

  14. Concept evaluation of nuclear fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    This paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U233 breeders. Two different blanket types were used: metallic thorium pebble-bed blankets with a batch reprocessing mode and a molten salt blanket with on-line continuous or batch reprocessing. All fusion-driven blankets are assumed to have spherical geometries, with a 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries. These neutronics calculations are coupled with a scenario optimization and cost analysis code. Also, the fusion burn was shaped so as to keep the blanket maximum power density below a preset value, and to improve the performance of the fusion-driven systems. The fusion-driven symbiotes are compared with LMFBR-driven energy systems. The nuclear fission breeders that were used as drivers have parameters characteristic of heterogeneous, oxide LMFBRs. They are net plutonium users - the plutonium is obtained from the discharges of LWRs - and U233 is bred in the fission breeder thorium blankets. The analyses of the symbiotic energy systems were performed at equilibrium, at maximum rate of grid expansion, and for a given nuclear power demand

  15. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Wiffen, F. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Melton, Stephanie G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.

  16. Nuclear characteristics of D-D fusion reactor blankets, (1)

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Ohta, Masao; Seki, Yasushi.

    1977-01-01

    Fusion reactors operating on the deuterium (D-D) cycle are considered promising for their freedom from tritium breeding in the blanket. In this paper, neutronic and photonic calculations are undertaken covering several blanket models of the D-D fusion reactor, using presently available data, with a view to comparing the nuclear characteristics of these models, in particular, the nuclear heating rates and their spatial distributions. Nine models are taken up for the study, embodying various combinations of coolant, blanket, structural and reflector materials. About 10 MeV is found to be a typical value for the total nuclear energy deposition per source neutron in the models considered here. The realization of high energy gain is contingent upon finding a favorable combination of blanket composition and configuration. The resulting implications on the thermal design aspect are briefly discussed. (auth.)

  17. Nuclear fusion rate of the muonic T3 molecule

    International Nuclear Information System (INIS)

    Faghihi, F.; Eskandari, M. R.

    2004-01-01

    The ground state binding energy, size and effective nuclear charge of the muonic T 3 molecule are calculated using Born-Oppenheimer adiabatic approximation. The system possesses two minimum positions, one at typically muonic and the second at the atomic distances. A symmetric planar vibrational model between two minima is assumed and the approximated potential are calculated. Moreover, nuclear fusion rate calculations of the short-life molecule is carried out due to the overlap integral of the resonance nuclear compound nucleus and the molecular wave functions

  18. Software problems in magnetic fusion research

    International Nuclear Information System (INIS)

    Gruber, R.

    1982-01-01

    The main world effort in magnetic fusion research involves studying the plasma in a Tokamak device. Four large Tokamaks are under construction (TFTR in USA, JET in Europe, T15 in USSR and JT60 in Japan). To understand the physical phenomena that occur in these costly devices, it is generally necessary to carry out extensive numerical calculations. These computer simulations make use of sophisticated numerical methods and demand high power computers. As a consequence they represent a substantial investment. To reduce software costs, the computer codes are more and more often exhanged among scientists. Standardization (STANDARD FORTRAN, OLYMPUS system) and good documentation (CPC program library) are proposed to make codes exportable. Centralized computing centers would also help in the exchange of codes and ease communication between the staff at different laboratories. (orig.)

  19. Research in nuclear astrophysics

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1989-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. We are actively researching both the astrophysics of gravitational collapse, neutron star birth, and the emission of neutrinos from supernovae, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and the supernova phenomenon; in fact, nuclear matter properties, especially at supernuclear densities, might be best delineated by astrophysical considerations. Our research has also focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. The recent observations of neutrinos from SN 1987A proved to be in remarkable agreement with models we pioneered in the one and one half years prior to its explosion in February 1987. We have also developed a novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity. We propose to modify it to use implicit differencing and to include multi-group neutrino diffusion and General Relativity. In parallel, we are extending calculations of the birth of a neutron star to include convection and mass accretion, by incorporating a hydrodynamic envelope onto a hydrostatic core. In view of the possible recent discovery of a pulsar in SN1987A, we are including the effects of rotation. We are undertaking a detailed comparison of current equations of state, focusing on disagreements regarding the nuclear incompressibly, symmetry energy and specific heat. Especially important is the symmetry energy, which below nuclear density controls free proton fractions and weak interaction rates and above this density critically influences the neutron star maximum mass and binding energy. 60 refs

  20. The near future of nuclear fusion

    International Nuclear Information System (INIS)

    Grenier, E.

    2000-01-01

    In this short article the author tries to find an explanation about the withdraw of the Usa from the ITER project. According to the author the American economy is not so flourishing as it seems, it is only the IT (information technologies) sector that is attracting huge foreign investments. Moreover state agencies such as Nasa have difficulties to recruit talented people because they are lured by easy money earned in the new economy. The whole of the ITER project has been reduced: the volume of plasma will be 840 m 3 (instead of 2000 m 3 ) for a fusion power of 500 MW (instead of 1500 MW). Canada is standing for hosting the building site. (A.C.)

  1. Burning nuclear wastes in fusion reactors

    International Nuclear Information System (INIS)

    Meldner, H.W.; Howard, W.M.

    1979-01-01

    A study was made up of actinide burn-up in ICF reactor pellets; i.e. 14 Mev neutron fission of the very long-lived actinides that pose storage problems. A major advantage of pellet fuel region burn-up is safety: only milligrams of highly toxic and active material need to be present in the fusion chamber, whereas blanket burn-up requires the continued presence of tons of actinides in a small volume. The actinide data tables required for Monte Carlo calculations of the burn-up of /sup 241/Am and /sup 243/Am are discussed in connection with a study of the sensitivity to cross section uncertainties. More accurate and complete cross sections are required for realistic quantitative calculations. 13 refs

  2. Nuclear transmutation. The reality of cold fusion

    International Nuclear Information System (INIS)

    Mizuno, Tadahiko

    1997-01-01

    The book is introducing the quest on the way to reality of cold fusion. Another point of author is interaction between the quest and social impacts. After the first report on cold fusion by M. Fleischmann and S. Pons on March 1989, the inspired author started a series of following experiments based on his own characteristic background of electrochemistry. The first experiment from March 25 to April 7, 1989 did not show any indications on neutrons, gamma rays, tritium, and heat. The second experiment was initiated at the underground experimental hall of the linear accelerator facilities. This means the shielding of noises coming from outsides. The neutron of about 2.45 MeV was observed after the 1-month continuation of the experiment. The intensity of neutron was nearly 10 to 20 times of the background noise. Furthermore, there were no changes of signals on heat and tritium before and after the experiments. The closed cell experiment was conducted to keep reliability of the experiment. The experiment started on June 1990. In this case, Tritium signals of 100 times of background noise were observed, however, no meaningful signal on neutrons. Anomalous heat was observed after March 24, 1991, where the electric current was increased up to 6 A. On the other hand, there were no appreciable change in neutron and tritium signals. The solid electrolysis was used in the experiment after May 1992, for its high temperature characteristics, where anomalous heat was observed with a certain probability. The experimental system was upgraded in diagnostic methods after 1994. As a result, particular isotopes related to fission reaction were detected. This fact indicates some kinds of transmutations at very local area of the solid surfaces. The author has also pointed out many reactions for a series of this scientific results responded by, for example, well known professors, scientific societies, mass media, and international conferences. Consequently the reactions had almost smeared

  3. Materials research in the Nuclear Research Centre Karlsruhe

    International Nuclear Information System (INIS)

    Kleykamp, H.

    1990-03-01

    This report gives a survey of the research work done at the Institute for Material and Solids Research at Karlsruhe. The following subjects are dealt with: Instrumental analysis; producing thin films; corrosion; failure mechanism and damage analysis; fuel elements, ceramic nuclear fuels and can and structure materials for fast breeder reactors; material problems and ceramic breeding materials for nuclear fusion plants; glass materials for the treatment of radioactive waste; super-conducting materials; amorphous metals, new high alloyed steels; ceramic high performance materials; hard materials; compound materials and polymers. (MM) [de

  4. 1986 progress report on R and D work of the Nuclear Fusion Project (PKF)

    International Nuclear Information System (INIS)

    Kast, G.

    1987-03-01

    The Kernforschungszentrum Karlsruhe (KfK) and the Max-Planck-Institute for Plasma Physics, Garching, have joined to form the Entwicklungsgemeinschaft Kernfusion, and under this roof perform research work on the physical and technical conditions and requirements of using the energy from nuclear fusion, and to plan the design and the construction of the necessary equipment for future large-scale experiments. The activities of the KfK for the development of fusion devices with magnetic confinement have been concentrated in the Nuclear Fusion Project, which cooperates in the European Fusion Technology Programme, on the basis of an association agreement between KfK and Euratom, supported by the European Commission. Supplementary KfK contributions, studies in most cases, create a connection between various fields of work, and prepare the road for new tasks, which in the years to come will be found in the extension of the Fusion Technology Programme and the planning work for NET. The reports collected in this annual survey are contributions from KfK Institutes of the year 1986. An annex presents the Easks taken over by KfK within the Fusion Technology Programme of the EC, and notes on the KfK Institutes taking part in the particular activities facilitate reference to the individual, full-text reports. (orig.) [de

  5. The Fukushima nuclear disaster and its effects on media framing of fission and fusion energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Luisa; Horta, Ana; Pereira, Sergio; Delicado, Ana [Institute of Social Sciences of the University of Lisbon, Av. Prof. Anibal de Bettencourt, 9 1600-189 Lisbon (Portugal)

    2015-07-01

    This paper presents results of a comparison of media coverage of fusion and fission energy technologies in three countries (Germany, Spain and Portugal) and in the English language international print media addressing transnational elite, from 2008 to 2012. The analysis showed that the accident in Fukushima in March 2010 did not have significant impact on media framing of nuclear fusion in the major part of print media under investigation. In fact, fusion is clearly dissociated from traditional nuclear (fission) energy and from nuclear accidents. It tends to be portrayed as a safe, clean and unlimited source of energy, although less credited when confronted with research costs, technological feasibility and the possibility to be achieved in a reasonable period of time. On the contrary, fission is portrayed as a hazardous source of energy, expensive when compared to research costs of renewables, hardly a long-term energy option, susceptible to contribute to the proliferation of nuclear weapons or rogue military use. Fukushima accident was consistently discussed in the context of safety problems of nuclear power plants and in many cases appeared not as an isolated event but rather as a reminder of previous nuclear disasters such as Three Miles Island and Chernobyl. (authors)

  6. The Fukushima nuclear disaster and its effects on media framing of fission and fusion energy technologies

    International Nuclear Information System (INIS)

    Schmidt, Luisa; Horta, Ana; Pereira, Sergio; Delicado, Ana

    2015-01-01

    This paper presents results of a comparison of media coverage of fusion and fission energy technologies in three countries (Germany, Spain and Portugal) and in the English language international print media addressing transnational elite, from 2008 to 2012. The analysis showed that the accident in Fukushima in March 2010 did not have significant impact on media framing of nuclear fusion in the major part of print media under investigation. In fact, fusion is clearly dissociated from traditional nuclear (fission) energy and from nuclear accidents. It tends to be portrayed as a safe, clean and unlimited source of energy, although less credited when confronted with research costs, technological feasibility and the possibility to be achieved in a reasonable period of time. On the contrary, fission is portrayed as a hazardous source of energy, expensive when compared to research costs of renewables, hardly a long-term energy option, susceptible to contribute to the proliferation of nuclear weapons or rogue military use. Fukushima accident was consistently discussed in the context of safety problems of nuclear power plants and in many cases appeared not as an isolated event but rather as a reminder of previous nuclear disasters such as Three Miles Island and Chernobyl. (authors)

  7. Nuclear fusion ion beam source composed of optimum channel wall

    International Nuclear Information System (INIS)

    Furukaw, T.

    2007-01-01

    Full text of publication follows: Numerical and experimental researches of the hall-type beam accelerator was conducted by highlighting both neutral species and material of acceleration channel wall. The hall-type beam accelerator is expected as ion beam source for nuclear fusion since it could product ion beam density over 10 3 times as high as that of electrostatic accelerator, which is used regularly as beam heating device, because it is proven that the beam heating method could accelerate ion to high energy beam by electric field and heat plasma to ultra high temperature of 100 million degrees or more. At high-voltage mode of DC regime that is normal operational condition, however, the various plasma MHD (magneto-hydrodynamic) instabilities are generated. In particular, the large-amplitude and low-frequency plasma MHD instability in the tens of kHz among them has been a serious problem that should be solved to improve the operational stability and the system durability. So, we propose a hall-type beam accelerator with new design concepts; both acquisition of simultaneous solution for reducing the plasma MHD instability and the accelerator core overheating and optimum combination of the acceleration channel wall material. The technologies for this concept are as follows: 1) To increase neutral species velocity-inlet in acceleration channel by preheating propellant through circularly propellant conduit line inside accelerator system could bring about the lower amplitude of the instability. 2) Through this method, the accelerator system is cooled, and the higher thrust and specific-impulse is produced with hardly changing thrust efficiency at the same time. 3) To select BN (Boron- Nitride) and Al 2 O 3 as wall material of ionization- and acceleration-zone in acceleration channel respectively having different secondary-electron emission-coefficient could achieve the higher-efficiency and -durability. The hall-type beam accelerator designed using these technologies

  8. Nuclear safety research

    International Nuclear Information System (INIS)

    1996-01-01

    The topics 'Large-sized PWR-NPP Safety Techniques Research',and 'The Key Techniques Research on the Safety Supervision and Control for Operation of Nuclear Installations' have been adopted as an apart of 'the National 9th five Year Programs for Tacking the Key Scientific and Technical Topics' which are organized by the State Planning Commission (SPC) and State Science and Technology Commission (SSTC) respectively, and have obtained a financial support from them. To play a better role with the limited fund, the NNSA laid special stress on selecting key sub-topics on nuclear safety, and carefully choosing units which would undertake sub-topics and signing technical contracts with them

  9. Accelerator and Fusion Research Division: Summary of activities, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This report contains a summary of activities at the Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division for the year 1986. Topics and facilities investigated in individual papers are: 1-2 GeV Synchrotron Radiation Source, the Center for X-Ray Optics, Accelerator Operations, High-Energy Physics Technology, Heavy-Ion Fusion Accelerator Research and Magnetic Fusion Energy. Six individual papers have been indexed separately

  10. Compilation of benchmark results for fusion related Nuclear Data

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Wada, Masayuki; Oyama, Yukio; Ichihara, Chihiro; Makita, Yo; Takahashi, Akito

    1998-11-01

    This report compiles results of benchmark tests for validation of evaluated nuclear data to be used in nuclear designs of fusion reactors. Parts of results were obtained under activities of the Fusion Neutronics Integral Test Working Group organized by the members of both Japan Nuclear Data Committee and the Reactor Physics Committee. The following three benchmark experiments were employed used for the tests: (i) the leakage neutron spectrum measurement experiments from slab assemblies at the D-T neutron source at FNS/JAERI, (ii) in-situ neutron and gamma-ray measurement experiments (so-called clean benchmark experiments) also at FNS, and (iii) the pulsed sphere experiments for leakage neutron and gamma-ray spectra at the D-T neutron source facility of Osaka University, OKTAVIAN. Evaluated nuclear data tested were JENDL-3.2, JENDL Fusion File, FENDL/E-1.0 and newly selected data for FENDL/E-2.0. Comparisons of benchmark calculations with the experiments for twenty-one elements, i.e., Li, Be, C, N, O, F, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, W and Pb, are summarized. (author). 65 refs

  11. LLNL nuclear data libraries used for fusion calculations

    International Nuclear Information System (INIS)

    Howerton, R.J.

    1984-01-01

    The Physical Data Group of the Computational Physics Division of the Lawrence Livermore National Laboratory has as its principal responsibility the development and maintenance of those data that are related to nuclear reaction processes and are needed for Laboratory programs. Among these are the Magnetic Fusion Energy and the Inertial Confinement Fusion programs. To this end, we have developed and maintain a collection of data files or libraries. These include: files of experimental data of neutron induced reactions; an annotated bibliography of literature related to charged particle induced reactions with light nuclei; and four main libraries of evaluated data. We also maintain files of calculational constants developed from the evaluated libraries for use by Laboratory computer codes. The data used for fusion calculations are usually these calculational constants, but since they are derived by prescribed manipulation of evaluated data this discussion will describe the evaluated libraries

  12. Inquiry on nuclear fusion for peaceful uses by the 12th Committee of Industry of the Italian Parliament

    International Nuclear Information System (INIS)

    Bertolini, E.

    1987-01-01

    The paper is a statement by the author to the 12th Committee of Industry of the Italian Parliament concerning the Inquiry on nuclear fusion for peaceful uses. The basis concepts of thermonuclear fusion are outlined. A description is given of the European Programme, and the role of the JET Project within that Programme. The role of the JET Project in the field of fusion research is described, in detail. Preliminary answers to the Committee's questions on fusion posed previously are also reported. (U.K.)

  13. Applications of nuclear techniques and research 1990

    International Nuclear Information System (INIS)

    1990-01-01

    The application of nuclear techniques, i.e. those techniques where use is made of isotopes and radiation, continues to contribute to progress in science, technology, agriculture, industry and medicine. Nuclear applications found their way into the IAEA's activities from the very beginning, and their promotion constitutes today a substantial fraction of the IAEA's Technical Co-operation and Research Contract Programmes. The 1990 selection is opened by a review of the role and function of the IAEA's Research Contract Programme, which is one of the Agency's most effective tools for promoting and developing nuclear applications. Applications in agriculture are covered in two articles dealing respectively with issues affecting the acceptance of food irradiation by governments, the food industry and consumers and with the use of radiation to induce plant mutation, a practical tool available to plant breeders in their effort to develop better quality crops. The following article deals with a typical nuclear application in medicine, i.e. the use of radionuclides in the diagnosis of lung diseases and in investigations related to the respiratory function. The use of environmental isotopes to assess the energy potential of geothermal fields is the next subject, a good example of nuclear methods applied to the evaluation of natural resources. The 1990 review concludes with a presentation prepared by the Third World Academy of Sciences on magnetic fusion research activity in the developing countries and its connection with the IAEA's own fusion programme

  14. Vacuum-brazed joints made from carbon-based materials and metals for the nuclear fusion research; Loetverbindungen zwischen Kohlenstoffwerkstoffen und metallischen Werkstoffen fuer die Fusionsforschung

    Energy Technology Data Exchange (ETDEWEB)

    Koppitz, T. [Forschungszentrum Juelich GmbH (Germany); Lison, R.; Bolt, H.; Hohenauer, W.

    1998-12-01

    The stationary operation of fusion plants may involve power fluxes of up to 5 MW/m2 in the region of the surfaces of plasma-facing components. In the case of disruptions, these power fluxes can reach 30 MW/m2 at exposed locations within a few milliseconds. Special materials with fusion capability are required to cope with loads arising at these locations due to thermal fatigue, physical and chemical erosion as well as thermal evaporation or sublimation. Such materials, so-called low-Z materials, include carbon-based materials such as graphites, carbon fibre reinforced carbon, boron carbides and others. The exposure of these materials to the above power fluxes for experimental purposes requires particular water-cooled components of different geometry with a materials-connected interface between the carbon-based material and the water-cooled component of TZM or copper. The application of high-temperature brazing for a largely defect-free fabrication of such components with different geometry will be presented in the following. (orig.)

  15. Nuclear research and development in the European community

    International Nuclear Information System (INIS)

    1979-01-01

    Research programmes undertaken by the European Atomic Energy Community and the European Economic Community are discussed. These programmes are carried out both at the Communities own Joint Research Centres (at Ispra, Karlsruhe, Geel and Petten) and also, although centrally managed by the Commission, at research organizations in the Member States. Such research projects include radioactive waste management and storage, decommissioning of nuclear power stations and nuclear fusion. Culham Laboratory is not only the centre for the UKAEA's research into controlled thermonuclear fusion but is also host to the Joint European Torus Joint Undertaking. (U.K.)

  16. Socio-Economic research on fusion SERF 3(2001-2003) External Costs of Fusion

    International Nuclear Information System (INIS)

    Lechon, Y.; Saez, R.; Cabal, H.

    2003-01-01

    Based on SEAFP project (Raeder et al, 1995) findings a preliminary assessment of environmental external costs associated to fusion power was performed under the framework of the first phase of the SERF (Socioeconomic Research on Fusion) project (Saez et al, 1999). This study showed very low external costs of fusion power compared with other traditional and new energy generating technologies. In order to update the assessment of externalities of fusion power, SERF2 project a new plant was included and an analysis of the key variables influencing the external cost was carried out. In the new phase of the SERF project, SERF3, three new additional plant models have been introduced with the aim of assessing the possibilities of silicon carbide to be used as structural material for fusion power plants. Furthermore, comparison of fusion external costs with those of other generation technologies in the state of technology development expected for 2050 has been also performed. (Author)

  17. Color-coded Live Imaging of Heterokaryon Formation and Nuclear Fusion of Hybridizing Cancer Cells.

    Science.gov (United States)

    Suetsugu, Atsushi; Matsumoto, Takuro; Hasegawa, Kosuke; Nakamura, Miki; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Bouvet, Michael; Hoffman, Robert M

    2016-08-01

    Fusion of cancer cells has been studied for over half a century. However, the steps involved after initial fusion between cells, such as heterokaryon formation and nuclear fusion, have been difficult to observe in real time. In order to be able to visualize these steps, we have established cancer-cell sublines from the human HT-1080 fibrosarcoma, one expressing green fluorescent protein (GFP) linked to histone H2B in the nucleus and a red fluorescent protein (RFP) in the cytoplasm and the other subline expressing RFP in the nucleus (mCherry) linked to histone H2B and GFP in the cytoplasm. The two reciprocal color-coded sublines of HT-1080 cells were fused using the Sendai virus. The fused cells were cultured on plastic and observed using an Olympus FV1000 confocal microscope. Multi-nucleate (heterokaryotic) cancer cells, in addition to hybrid cancer cells with single-or multiple-fused nuclei, including fused mitotic nuclei, were observed among the fused cells. Heterokaryons with red, green, orange and yellow nuclei were observed by confocal imaging, even in single hybrid cells. The orange and yellow nuclei indicate nuclear fusion. Red and green nuclei remained unfused. Cell fusion with heterokaryon formation and subsequent nuclear fusion resulting in hybridization may be an important natural phenomenon between cancer cells that may make them more malignant. The ability to image the complex processes following cell fusion using reciprocal color-coded cancer cells will allow greater understanding of the genetic basis of malignancy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Nuclear fusion induced by x rays in a crystal

    Science.gov (United States)

    Belyaev, V. B.; Miller, M. B.; Otto, J.; Rakityansky, S. A.

    2016-03-01

    The nuclei that constitute a crystalline lattice oscillate relative to each other with a very low energy that is not sufficient to penetrate through the Coulomb barriers separating them. An additional energy, which is needed to tunnel through the barrier and fuse, can be supplied by external electromagnetic waves (x rays or synchrotron radiation). Exposing the solid compound LiD (lithium deuteride) to x rays for the duration of 111 h, we detect 88 events of nuclear fusion d +6Li→8Be* . Our theoretical estimate agrees with what we observed. One possible application of the phenomenon we found is in measurements of the rates of various nuclear reactions (not necessarily fusion) at extremely low energies inaccessible in accelerator experiments.

  19. Nuclear fusion apparatus and method for operating the same

    International Nuclear Information System (INIS)

    Nagata, Daizaburo.

    1974-01-01

    Object: To provide a nuclear fusion apparatus in which a magnetic limiter is disposed within a vacuum vessel, the magnetic limiter having a limiter coil whose outer periphery is vacuumized to thereby facilitate insulating treatment of the coil and to prevent the coil from lowering of insulation, and to minimize the force applied to a protective pipe for the limiter coil and the bellows. Structure: A lengthwise exhaust groove is provided in the outer periphery of a coil conductor of the magnetic limiter disposed within the vacuum vessel and a lateral exhaust groove in communication with the first-mentioned exhaust groove is provided, said exhaust grooves being connected to an exhaust pipe. Since operation is performed so as to produce nuclear fusion reaction while exhausted by the exhaust pipe, the coil is not required to be vacuum-impregnated with resin or the like, thus facilitating insulating treatment. (Kamimura, M.)

  20. Fusion fuel and renewables

    International Nuclear Information System (INIS)

    Entler, Slavomir

    2015-01-01

    It is shown that fusion fuel meets all aspects applied when defining renewables. A table of definitions of renewables is presented. The sections of the paper are as follows: An industrial renewable source; Nuclear fusion; Current situation in research; Definitions of renewable sources; Energy concept of nuclear fusion; Fusion fuel; Natural energy flow; Environmental impacts; Fusion fuel assessment; Sustainable power; and Energy mix from renewables. (P.A.)

  1. Turbomolecular pumping systems for nuclear fusion devices in JAERI

    International Nuclear Information System (INIS)

    Ohga, Tokumichi; Arai, Takashi

    1978-01-01

    The turbomolecular pumping systems for the nuclear fusion devices JFT-2, JFT-2a and the injector test stands ITS-1, 2 and 3 in the Japan Atomic Energy Research Institute are mainly reported. For these vacuum systems, many requirements exist, such as oil free, large exhausting speed up to high pressure region (10 -3 Torr), compactness and easy operation and maintenance, etc., for the special usage. The outline of the systems and components, and the functions and the operational characteristics of the turbomolecular pumps are introduced. Concerning to the vacuum systems for JFT-2 and JFT-2a, the main system flow charts, the key specifications, the exhausting characteristic curves in case of starting from the atmospheric pressure for both JFT-2 and JFT-2a, and the conductance for hydrogen gas in the high vacuum side of JFT-2a are explained. As for the vacuum system for ITS-2, the main specification, the system flow chart, the main components, the functions, the conductance for hydrogen gas, the pumping characteristic curve, the starting characteristic of the turbomolecular pump, the exhausting speed for hydrogen gas and an example of mass spectrum are shown. The vacuum pressure obtained is almost 10 -5 -- 10 -6 torr for the three pumping systems. (Nakai, Y.)

  2. Developments and needs in nuclear analysis of fusion technology

    Energy Technology Data Exchange (ETDEWEB)

    Pampin, R., E-mail: raul.pampin@f4e.europa.eu [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Davis, A. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Izquierdo, J. [F4E Fusion For Energy, Josep Pla 2, Torres Diagonal Litoral B3, Barcelona 08019 (Spain); Leichtle, D. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, D-76344 Karlsruhe (Germany); Loughlin, M.J. [ITER Organisation, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Sanz, J. [UNED, Departamento de Ingenieria Energetica, Juan del Rosal 12, 28040 Madrid (Spain); Turner, A. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Villari, R. [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Wilson, P.P.H. [University of Wisconsin, Nuclear Engineering Department, Madison, WI (United States)

    2013-10-15

    Highlights: • Complex fusion nuclear analyses require detailed models, sophisticated acceleration and coupling of cumbersome tools. • Progress on development of tools and methods to meet specific needs of fusion nuclear analysis reported. • Advances in production of reference models and in preparation and QA of acceleration and coupling algorithms shown. • Evaluation and adaptation studies of alternative transport codes presented. • Discussion made of the importance of efforts in these and other areas, considering some of the more pressing needs. -- Abstract: Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case of fusion technology in current experiments, ITER, next-step devices and power plant studies. Calculations are intricate and computer-intensive, typically requiring detailed geometry models, sophisticated acceleration algorithms, high-performance parallel computations, and coupling of large and complex transport and activation codes and databases. This paper reports progress on some key areas in the development of tools and methods to meet the specific needs of fusion nuclear analyses. In particular, advances in the production and modernisation of reference models, in the preparation and quality assurance of acceleration algorithms and coupling schemes, and in the evaluation and adaptation of alternative transport codes are presented. Emphasis is given to ITER-relevant activities, which are the main driver of advances in the field. Discussion is made of the importance of efforts in these and other areas, considering some of the more pressing needs and requirements. In some cases, they call for a more efficient and coordinated use of the scarce resources available.

  3. Development of materials of low activation for nuclear fusion

    International Nuclear Information System (INIS)

    Kamata, Koji

    1986-01-01

    Unlike nuclear fission, in nuclear fusion, it is a feature that activated products are not formed, but this merit is to be lost if the structural materials of the equipment are activated by generated neutrons. Accordingly, the elements which are activated by neutrons must be excluded from the structural materials in nuclear fusion reactors and fusion experiment apparatuses. As the result of evaluating the materials for low induced activation, aluminum alloys are the most promising. Aluminum alloys have also excellent properties in gas release, the thermal stress of first walls due to the temperature distribution, vaporizing quantity at the time of disruption and so on. However, in the existing aluminum alloys, the lowering of strength above 150 deg C is remarkable, and when the aluminum walls of vacuum vessels are too thick, the rate of tritium breeding may lower. The Institute of Plasma Physics, Nagoya University, carried out the total design of a tokamak made of an aluminum alloy for the first time in the world. In this paper, the properties of the aluminum alloy and the feasibility of its industrial manufacture are described, and the course of improving this alloy is pointed out. Improved 5083 alloy and Al-4 % Mg-1 % Li alloy were investigated. The industrial manufacture of large plates with this Al-Mg-Li alloy is possible now. (Kako, I.)

  4. Cell-fusion method to visualize interphase nuclear pore formation.

    Science.gov (United States)

    Maeshima, Kazuhiro; Funakoshi, Tomoko; Imamoto, Naoko

    2014-01-01

    In eukaryotic cells, the nucleus is a complex and sophisticated organelle that organizes genomic DNA to support essential cellular functions. The nuclear surface contains many nuclear pore complexes (NPCs), channels for macromolecular transport between the cytoplasm and nucleus. It is well known that the number of NPCs almost doubles during interphase in cycling cells. However, the mechanism of NPC formation is poorly understood, presumably because a practical system for analysis does not exist. The most difficult obstacle in the visualization of interphase NPC formation is that NPCs already exist after nuclear envelope formation, and these existing NPCs interfere with the observation of nascent NPCs. To overcome this obstacle, we developed a novel system using the cell-fusion technique (heterokaryon method), previously also used to analyze the shuttling of macromolecules between the cytoplasm and the nucleus, to visualize the newly synthesized interphase NPCs. In addition, we used a photobleaching approach that validated the cell-fusion method. We recently used these methods to demonstrate the role of cyclin-dependent protein kinases and of Pom121 in interphase NPC formation in cycling human cells. Here, we describe the details of the cell-fusion approach and compare the system with other NPC formation visualization methods. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Technical requirement of experiments and facilities for fusion nuclear technology

    International Nuclear Information System (INIS)

    Abdou, M.; Tillak, M.; Gierszwski, P.; Grover, J.; Puigh, R.; Sze, D.K.; Berwald, D.

    1986-06-01

    The technical issues and requirements of experiments and facilities for fusion nuclear technology (FNT) have been investigated. The nuclear subsystems addressed are: a) blanket, b) radiation shield, c) tritium processing system, and d) plasma interactive components. Emphasis has been placed on the important and complex development problems of the blanket. A technical planning process for FNT has been developed and applied, including four major elements: 1) characterization of issues, 2) quantification of testing requirements, 3) evaluation of facilities, and 4) development of a test plan to identify the role, timing, characteristics and costs of major experiments and facilities

  6. Research program. Controlled thermonuclear fusion. Synthesis report 2013

    International Nuclear Information System (INIS)

    Villard, L.; Marot, L.

    2014-01-01

    In 1961, 3 years after the 2 nd International Conference on Peaceful Use of Nuclear Energy, the Research Centre on Plasma Physics (CRPP) was created as a department of the Federal Institute of Technology (EPFL) in Lausanne (Switzerland). From 1979, CRPP collaborates to the European Program on fusion research in the framework of EURATOM. The advantages of fusion are remarkable: the fuel is available in great quantity all over the world; the reactor is intrinsically safe; the reactor material, activated during operation, loses practically all its activity within about 100 years. But the working up of the controlled fusion necessitates extreme technological conditions. The progress realized in the framework of EURATOM has led to the design of the experimental reactor ITER which is being built at Cadarache (France). The future prototype reactor DEMO is foreseen in 2040-2050. In 2013, CRPP participated in the works on ITER in the framework of the Fusion for Energy (F4E) agency. At EPFL the research concerns the physics of the magnetic confinement with experiments on the tokamak TCV (variable configuration tokamak), the numerical simulations, the plasma heating and the generation of current by hyper frequency radio waves. At the Paul Scherrer Institute (PSI), research is devoted to the superconductivity. At the Basel University the studies get on interactions between the plasma and the tokamak walls. A new improved confinement regime, called IN-mode, was discovered on TCV. The theory and numerical simulation group interprets the experimental results and foresees those of futures machines. It requires very high performance computers. The Gyrotron group develops radiofrequency sources in the mm range for heating the TCV plasma as well as for ITER and the Wendelstein-7 stellarator. Concerning superconductivity, tests are conducted at PSI on toroidal cables of ITER. The development of conductors and coils for the DEMO reactor has been pursued. In the context of international

  7. Nuclear Research and Society

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2000-07-01

    In 1998, SCK-CEN took the initiative to include social sciences and humanities into its research programme. Within this context, four projects were defined, respectively on sustainability and nuclear development; transgenerational ethics related to the disposal of long-lived radioactive waste; legal aspects and liability; emergency communication and risk perception. Two reflection groups were established, on expert culture and ethical choices respectively, in order to deepen insight while creating exchange of disciplinary approaches of the committed SCK-CEN researchers and social scientists. Within the context of SCK-CEN's social sciences and humanities programme, collaborations with various universities were initiated, teams consisting of young doctorate and post-doctorate researchers and university promotors with experience in interaction processes of technology with society were established and steering committees with actors and external experts were set up for each project. The objectives and main achievements in the four projects are summarised.

  8. Nuclear Research and Society

    International Nuclear Information System (INIS)

    Eggermont, G.

    2000-01-01

    In 1998, SCK-CEN took the initiative to include social sciences and humanities into its research programme. Within this context, four projects were defined, respectively on sustainability and nuclear development; transgenerational ethics related to the disposal of long-lived radioactive waste; legal aspects and liability; emergency communication and risk perception. Two reflection groups were established, on expert culture and ethical choices respectively, in order to deepen insight while creating exchange of disciplinary approaches of the committed SCK-CEN researchers and social scientists. Within the context of SCK-CEN's social sciences and humanities programme, collaborations with various universities were initiated, teams consisting of young doctorate and post-doctorate researchers and university promotors with experience in interaction processes of technology with society were established and steering committees with actors and external experts were set up for each project. The objectives and main achievements in the four projects are summarised

  9. Inner/Outer nuclear membrane fusion in nuclear pore assembly: biochemical demonstration and molecular analysis.

    Science.gov (United States)

    Fichtman, Boris; Ramos, Corinne; Rasala, Beth; Harel, Amnon; Forbes, Douglass J

    2010-12-01

    Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment.

  10. Research and development plan of fusion technologies in JAERI toward DEMO reactors

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Hayashi, Takumi; Abe, Tetsuya; Akiba, Masato; Isono, Takaaki; Inoue, Takashi; Enoeda, Mikio; Okuno, Kiyoshi; Koizumi, Norikiyo; Sakamoto, Keishi; Sato, Satoshi; Jitsukawa, Shiro; Sugimoto, Masayoshi; Suzuki, Satoshi; Seki, Shogo; Takatsu, Hideyuki; Tanzawa, Sadamitsu; Tsuchiya, Kunihiko; Nishi, Masataka; Hayashi, Kimio; Matsui, Hideki; Yamanishi, Toshihiko; Watanabe, Kazuhiro

    2005-03-01

    In accordance with the 'Third Phase Basic Program on Fusion Research and Development' established by the Fusion Council of the Japan Atomic Energy Commission, research and development (R and D) of fusion technologies aim at realization of two elements: development of ITER key components and their improvement for higher performances; and construction of sound technical basis of fusion nuclear technologies essential for fusion energy utilization. JAERI has been assigned in the Third Phase Basic Program as a responsible institute for developing the above two elements, and accordingly has been implementing technology R and Ds categorized in the following three areas: R and D for ITER construction and operation; R and D for ITER utilization (blanket testing in ITER) and toward DEMO; and R and D on basic fusion technologies. The present report reviews the status and the plan of fusion technology R and Ds in the latter two areas, and presents the technical objectives, technical issues, status of R and D and near-term R and D plans for: breeding blankets; structural materials; the IFMIF program; improvements of the key ITER components for higher performances toward DEMO; and basic fusion technologies. (author)

  11. International information exchange in fusion research

    International Nuclear Information System (INIS)

    Strickler, C.S.

    1979-01-01

    Formal and informal agreements exist between the US and several other countries, assuring the unrestricted exchange of magnetic fusion information. The Fusion Energy Library at Oak Ridge National Laboratory uses the US Department of Energy standard distribution system and exchange agreements to ensure the receipt of current reports. Selective dissemination of information, computer networks, and exchange programs are additional means for information gathering. The importance of these means as they relate to the fusion program in the US and specifically at ORNL is discussed

  12. The role of atomic and molecular processes in fusion research

    International Nuclear Information System (INIS)

    Harrison, M.F.A.

    1977-01-01

    This paper considers the relevance of atomic and molecular processes to research into controlled nuclear fusion and in particular their effects upon the magnetically confined plasma in Tokamak experiments and conceptual Tokamak reactors. The relative significance of collective phenomena and of single particle collisions to both plasma heating and loss processes are discussed and the pertinent principles of plasma refuelling and plasma diagnostics are outlined. The methods by which atomic and molecular data are applied to these problems, the contributing effects of surface interactions and the consequent implications upon the accuracy and the type of data needed are described in a qualitative manner. Whilst particular atomic and molecular processes are not discussed in detail, sufficient information is given of the physical environments of Tokamak devices for significant processes to be self evident. (author)

  13. Controlled Nuclear Fusion Research, September 1965: Review Of Experimental Results; Issledovaniya v oblasti upravlyaemogo yadernogo sinteza/sentyabr' 1965 g. obzor rezul'tatov ehksperimentov

    Energy Technology Data Exchange (ETDEWEB)

    Spitzer, Lyman Jr. [Princeton University, Princeton, New Jersey (United States)

    1966-04-15

    To my way of thinking the most significant milestone of the present meeting is the substantial body of evidence that has been presented on the hydromagnetic stabilization of open-ended systems. The success of minimum magnetic-field ('minimum-B') configurations in stabilizing a plasma marks one more area where theory and experiment in the field of plasma physics have been brought together with gratifying results. Let me go back a little into history and discuss the gradual growth of our information on hydromagnetic instabilities generally. Many of you will remember that hydromagnetic theory was applied to the self-pinched discharge in the early years of the controUed fusion programme. The predictions of this theory were very shortly fulfilled by the observations; the effects were so unmistakable that it was not difficult to compare the theory with the observations. On the streak pictures of the linear or toroidal discharges that were obtained in those early years one saw clearly the diffuse plasma column, which first contracted to a narrow filament and then started to distort and kink until finally it hit the wall. Under some conditions the plasma was observed to break up into a series of blobs like a string of sausages. Since the behaviour was exactly what the theory had predicted, it took no very great experimental wisdom to conclude that observations had confirmed theory.

  14. Atomic data for controlled fusion research

    International Nuclear Information System (INIS)

    Barnett, C.F.; Ray, J.A.; Ricci, E.; Wilker, M.I.; McDaniel, E.W.; Thomas, E.W.; Gilbody, H.B.

    1977-02-01

    Presented is an evaluated graphical and tabular compilation of atomic and molecular cross sections of interest to controlled thermonuclear research. The cross sections are tabulated and graphed as a function of energy for collision processes involving heavy particles, electrons, and photons with atoms and ions. Also included are sections on data for particle penetration through macroscopic matter, particle transport properties, particle interactions with surfaces, and pertinent charged particle nuclear cross sections and reaction rates. In most cases estimates have been made of the data accuracy

  15. Experiences with remote collaborations in fusion research

    International Nuclear Information System (INIS)

    Wurden, G.A.; Davis, S.; Barnes, D.

    1998-03-01

    The magnetic fusion research community has considerable experience in placing remote collaboration tools in the hands of real user. The ability to remotely view operations and to control selected instrumentation and analysis tasks has been demonstrated. University of Wisconsin scientists making turbulence measurements on TFTR: (1) were provided with a remote control room from which they could operate their diagnostic, while keeping in close contact with their colleagues in Princeton. LLNL has assembled a remote control room in Livermore in support of a large, long term collaboration on the DIII-D tokamak in San Diego. (2) From the same control room, a joint team of MIT and LLNL scientists has conducted full functional operation of the Alcator C-Mod tokamak located 3,000 miles away in Cambridge Massachusetts. (3) These early efforts have been highly successful, but are only the first steps needed to demonstrate the technical feasibility of a complete facilities on line environment. These efforts have provided a proof of principle for the collaboratory concept and they have also pointed out shortcomings in current generation tools and approaches. Current experiences and future directions will be discussed

  16. Fusion Ignition Research Experiment System Integration

    International Nuclear Information System (INIS)

    Brown, T.

    1999-01-01

    The FIRE (Fusion Ignition Research Experiment) configuration has been designed to meet the physics objectives and subsystem requirements in an arrangement that allows remote maintenance of in-vessel components and hands-on maintenance of components outside the TF (toroidal-field) boundary. The general arrangement consists of sixteen wedged-shaped TF coils that surround a free-standing central solenoid (CS), a double-wall vacuum vessel and internal plasma-facing components. A center tie rod is used to help support the vertical magnetic loads and a compression ring is used to maintain wedge pressure in the inboard corners of the TF coils. The magnets are liquid nitrogen cooled and the entire device is surrounded by a thermal enclosure. The double-wall vacuum vessel integrates cooling and shielding in a shape that maximizes shielding of ex-vessel components. The FIRE configuration development and integration process has evolved from an early stage of concept selection to a higher level of machine definition and component details. This paper describes the status of the configuration development and the integration of the major subsystem components

  17. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  18. Accelerator and Fusion Research Division: 1984 summary of activities

    International Nuclear Information System (INIS)

    1985-05-01

    During fiscal 1984, major programmatic activities in AFRD continued in each of five areas: accelerator operations, highlighted by the work of nuclear science users, who produced clear evidence for the formation of compressed nuclear matter during heavy-ion collisions; high-energy physics, increasingly dominated by our participation in the design of the Superconducting Super Collider; heavy-ion fusion accelerator research, which focused on the design of a four-beam experiment as a first step toward assessing the promise of heavy-ion inertial-confinement fusion; and research at the Center for X-Ray Optics, which completed its first year of broadly based activities aimed at the exploitation of x-ray and ultraviolet radiation. At the same time, exploratory studies were under way, aimed at investigating major new programs for the division. During the past year, for example, we took a preliminary look at how we could use the Bevatron as an injector for a pair of colliding-beam rings that might provide the first glimpse of a hitherto unobserved state of matter called the quark-gluon plasma. Together with Livermore scientists, we also conducted pioneering high-gain free-electron laser (FEL) experiments and proposed a new FEL-based scheme (called the two-beam accelerator) for accelerating electrons to very high energies. And we began work on the design of the Coherent XUV Facility (CXF), an advanced electron storage ring for the production of intense coherent radiation from either undulators or free-electron lasers

  19. Some implications for mirror research of the coupling between fusion economics and fusion physics

    International Nuclear Information System (INIS)

    Post, R.F.

    1980-01-01

    The thesis is made that physics understanding and innovation represent two of the most important ingredients of any program to develop fusion power. In this context the coupling between these and the econmics of yet-to-be realized fusion power plants is explored. The coupling is two-way: realistic evaluations of the economic (and environmental) requirements for fusion power systems can influence the physics objectives of present-day fusion research programs; physics understanding and innovative ideas can favorably impact the future economics of fusion power systems. Of equal importance is the role that physics/innovation can have on the time scale for the first practical demonstration of fusion power. Given the growing worldwide need for long-term solutions to the problem of energy it is claimed to be crucial that fusion research be carried out on a broad base and in a spirit that both facilitates the growth of physics understanding and fosters innovation. Developing this theme, some examples of mirror-based fusion system concepts are given that illustrate the coupling here described

  20. A survey on publications in fusion research and technology science and technology indicators in fusion R and T

    International Nuclear Information System (INIS)

    Hillebrand, C.D.

    1999-01-01

    Scientific publications disseminate research results and are therefore an interesting subject for science and technology analysis. Bibliographic databases contain scientific publications which are indexed and structured. The paper considers Fusion Research and Technology records which are stored in the International Nuclear Information System (INIS) bibliographic database. For the first time, all scientometric and bibliometric information specific to a selected field of science and technology contained in a bibliographic database, using INIS records, is analysed and quantified. A variety of new science and technology indicators which can be used for assessing research and development activities are also presented. (author)

  1. A survey on publications in fusion research and technology science and technology indicators in fusion R and T

    International Nuclear Information System (INIS)

    Hillebrand, C.-D.

    2001-01-01

    Scientific publications disseminate research results and are therefore an interesting subject for science and technology analysis. Bibliographic databases contain scientific publications which are indexed and structured. The paper considers Fusion Research and Technology records which are stored in the International Nuclear Information System (INIS) bibliographic database. For the first time, all scientometric and bibliometric information specific to a selected field of science and technology contained in a bibliographic database, using INIS records, is analysed and quantified. A variety of new science and technology indicators which can be used for assessing research and development activities are also presented. (author)

  2. Small-scale nuclear fusion needs investors

    International Nuclear Information System (INIS)

    Kasteren, J. van.

    1985-01-01

    The only Dutch high-risk research company 'Convector' needs money. In the beginning of October, investors could put at most five million Dutch florins in a highly disputed project for the development of a thermonuclear reactor, based on the principle of globular lightnings. (G.J.P.)

  3. Radiological safety design considerations for fusion research experiments

    International Nuclear Information System (INIS)

    Crase, K.W.; Singh, M.S.

    1979-01-01

    A wide variety of fusion research experiments are in the planning or construction stages. Two such experiments, the Nova Laser Fusion Facility and the Mirror Fusion Test Facility (MFTF), are currently under construction at Lawrence Livermore Laboratory. Although the plasma chamber vault for MFTF and the Nova target room will have thick concrete walls and roofs, the radiation safety problems are made complex by the numerous requirements for shield wall penetrations. This paper addresses radiation safety considerations for the MFTF and Nova experiments, and the need for integrated safety considerations and safety technology development during the planning stages of fusion experiments

  4. Research program. Controlled thermonuclear fusion. Synthesis report 2015

    International Nuclear Information System (INIS)

    Villard, L.; Marot, L.; Soom, P.

    2016-01-01

    In 1961, 3 years after the 2 nd International Conference on Peaceful Use of Nuclear Energy, the Research Centre on Plasma Physics (CRPP) was created as a department of the Federal Institute of Technology (EPFL) in Lausanne (Switzerland). From 1979, CRPP collaborates to the European Program on fusion research in the framework of EURATOM. In 2015 its name was changed to Swiss Plasma Centre (SPC). The advantages of fusion are remarkable: the fuel is available in great quantity all over the world; the reactor is intrinsically safe; the reactor material, activated during operation, loses practically all its activity within about 100 years. But the working up of the controlled fusion necessitates extreme technological conditions. In 1979, the Joint European Torus (JET) began its operation; today it is still the most powerful tokamak in the world, in which an energy yield Q of 0.65 could be obtained. In 2015, the stellarator Wendelstein 7-X (W7X), the largest in the world, was set into operation. The progress realized in the framework of EURATOM has led to the planning of the experimental reactor ITER which is being built at Cadarache (France). ITER is designed to reach a Q-value largely above 1. The future prototype reactor DEMO is foreseen in 2040-2050. It should demonstrate the ability of a fusion reactor to inject permanently electricity into the grid. In 2015, SPC participated in the works on ITER in the framework of the Fusion for Energy (F4E) agency. At EPFL the research concerns the physics of the magnetic confinement with experiments on the tokamak TCV (variable configuration tokamak), the numerical simulations, the plasma heating and the generation of current by hyper frequency radio waves. At the Paul Scherrer Institute (PSI), research is devoted to the superconductivity; at the Basel University the studies get on interactions between the plasma and the tokamak walls. The large flexibility of TCV allows creating and controlling plasmas of different shapes which

  5. Development of Fusion Nuclear Technologies and the role of MTR's

    International Nuclear Information System (INIS)

    Laan, J.G. van der; Schaaf, B. van der

    2006-01-01

    Fusion power plant operation will strongly depend on the economy and reliability of crucial components, such as first wall modules, tritium breeding blankets and divertors. Their operating temperature shall be high to accomplish high plant efficiency. The materials properties and component fabrication routes shall also assure long reliable operation to minimize plant outage. The components must be fabricated in large quantities based on demonstrations with a limited amount of test beds. Mock-ups and test loops will, through iteration processes, demonstrate the reliable operation under reference thermal-hydraulic conditions. Although 14 MeV neutrons dominate the nuclear conditions near the first wall, neutron transport analyses have shown that large portions of the components near the plasma have to cope with a neutron spectrum resembling a fission core. Present Materials Test Reactors, MTR's, offer fluxes relevant for large parts of the fusion major components. The mixed and fast fission spectra though is not representative for all fusion conditions. The strong point of MTR's is their ability to generate sufficient displacement damage in the materials in a relatively short time. The cores of MTR's provide sufficient space for irradiation of representative cut-outs of components to allow integrated functional and materials tests in a high flux neutron field. The MTR's are the primary test bed for structural and functional fusion relevant materials. The MTR space and dose rates provide a valuable base line for the developments and demonstrations of fusion key components in a neutron field. In recent years the pebble bed assembly, PBA, irradiated in the HFR, Petten, has shown the feasibility of the helium-cooled concept with lithium ceramics and beryllium multiplier pebble beds. The irradiations produce a wealth of process parameters for the control of the tritium release of the pebbles. The PBA packaging, cooling and tritium purging arrangements closely resemble the

  6. Annual progress report for atomic and nuclear research with accelerators and fusion related atomic physics. Reporting period, October 1, 1974--September 30, 1975

    International Nuclear Information System (INIS)

    1975-10-01

    Topics covered include: laboratory operation and development; atomic collision cross sections in gases; ionization cross sections in thin solid materials; experimental impact-parameter dependent probabilities for k-shell vacancy production by fast heavy-ion projectiles; x-ray spectroscopy with high energy ions; atomic lifetime measurements; polarization studies of ion-induced x rays; theoretical spectra in ion-induced reactions; theoretical atomic cross section calculations; search for heavy-ion resonances; lifetimes of low energy states in 21 Ne; nuclear scattering and reactions; and trace element analysis

  7. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Summaries of research are included for each of the following topics: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) the MACK/MACKLIB system for nuclear response functions, and (5) energy storage and power supply systems for fusion reactors

  8. Researches in nuclear safety

    International Nuclear Information System (INIS)

    Souchet, Y.

    2009-01-01

    This article comprises three parts: 1 - some general considerations aiming at explaining the main motivations of safety researches, and at briefly presenting the important role of some organisations in the international conciliation, and the most common approach used in safety researches (analytical experiments, calculation codes, global experiments); 2 - an overview of some of the main safety problems that are the object of worldwide research programs (natural disasters, industrial disasters, criticality, human and organisational factors, fuel behaviour in accidental situation, serious accidents: core meltdown, corium spreading, failure of the confinement building, radioactive releases). Considering the huge number of research topics, this part cannot be exhaustive and many topics are not approached; 3 - the presentation of two research programs addressing very different problems: the evaluation of accidental releases in the case of a serious accident (behaviour of iodine and B 4 C, air infiltration, fission products release) and the propagation of a fire in a facility (PRISME program). These two programs belong to an international framework involving several partners from countries involved in nuclear energy usage. (J.S.)

  9. Nuclear Fusion Effects Induced in Intense Laser-Generated Plasmas

    Directory of Open Access Journals (Sweden)

    Lorenzo Torrisi

    2013-01-01

    Full Text Available Deutered polyethylene (CD2n thin and thick targets were irradiated in high vacuum by infrared laser pulses at 1015W/cm2 intensity. The high laser energy transferred to the polymer generates plasma, expanding in vacuum at supersonic velocity, accelerating hydrogen and carbon ions. Deuterium ions at kinetic energies above 4 MeV have been measured by using ion collectors and SiC detectors in time-of-flight configuration. At these energies the deuterium–deuterium collisions may induce over threshold fusion effects, in agreement with the high D-D cross-section valuesaround 3 MeV energy. At the first instants of the plasma generation, during which high temperature, density and ionacceleration occur, the D-D fusions occur as confirmed by the detection of mono-energetic protonsand neutrons with a kinetic energy of 3.0 MeV and 2.5 MeV, respectively, produced by the nuclear reaction. The number of fusion events depends strongly on the experimental set-up, i.e. on the laser parameters (intensity, wavelength, focal spot dimension, target conditions (thickness, chemical composition, absorption coefficient, presence of secondary targets and used geometry (incidence angle, laser spot, secondary target positions.A number of D-D fusion events of the order of 106÷7 per laser shot has been measured.

  10. Nuclear Fusion Blast and Electrode Lifetimes in a PJMIF Reactor

    Science.gov (United States)

    Thio, Y. C. Francis; Witherspoon, F. D.; Case, A.; Brockington, S.; Cruz, E.; Luna, M.; Hsu, S. C.

    2017-10-01

    We present an analysis and numerical simulation of the nuclear blast from the micro-explosion following the completion of the fusion burn for a baseline design of a PJMIF fusion reactor with a fusion gain of 20. The stagnation pressure from the blast against the chamber wall defines the engineering requirement for the structural design of the first wall and the plasma guns. We also present an analysis of the lifetimes of the electrodes of the plasma guns which are exposed to (1) the high current, and (2) the neutron produced by the fusion reactions. We anticipate that the gun electrodes are made of tungsten alloys as plasma facing components reinforced structurally by appropriate steel alloys. Making reasonable assumptions about the electrode erosion rate (100 ng/C transfer), the electrode lifetime limited by the erosion rate is estimated to be between 19 and 24 million pulses before replacement. Based on known neutron radiation effects on structural materials such as steel alloys and plasma facing component materials such as tungsten alloys, the plasma guns are expected to survive some 22 million shots. At 1 Hz, this equal to about 6 months of continuous operation before they need to be replaced. Work supported by Strong Atomics, LLC.

  11. Plasma physics and controlled fusion research during half a century

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bo

    2001-06-01

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas.

  12. Role of supercomputers in magnetic fusion and energy research programs

    International Nuclear Information System (INIS)

    Killeen, J.

    1985-06-01

    The importance of computer modeling in magnetic fusion (MFE) and energy research (ER) programs is discussed. The need for the most advanced supercomputers is described, and the role of the National Magnetic Fusion Energy Computer Center in meeting these needs is explained

  13. Advanced laser fusion target fabrication research and development proposal

    International Nuclear Information System (INIS)

    Stupin, D.M.; Fries, R.J.

    1979-05-01

    A research and development program is described that will enable the fabrication of 10 6 targets/day for a laser fusion prototype power reactor in 2007. We give personnel and cost estimates for a generalized laser fusion target that requires the development of several new technologies. The total cost of the program between 1979 and 2007 is $362 million in today's dollars

  14. Plasma physics and controlled fusion research during half a century

    International Nuclear Information System (INIS)

    Lehnert, Bo

    2001-06-01

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas

  15. The role of nuclear data for fusion technology studies

    International Nuclear Information System (INIS)

    Forrest, Robin A.

    2011-01-01

    Highlights: → Nuclear data are of fundamental importance in studies of nuclear technology. → Data libraries cover: experiments (EXFOR), theory (RIPL) and evaluations (ENDF). → Libraries are general purpose or special purpose (decay, dosimetry and activation). → Activation files contain many reactions, only a fraction needs to be known precisely. → Covariance data are important, but details of formatting are being worked out. - Abstract: Nuclear data are of fundamental importance in studies of nuclear technology. In these studies, experiments to measure cross sections and decay properties and simulations of the design of fission power plants, fusion devices and accelerators are included. The large amount of data required is stored in computer readable formats in data libraries and the most common of these are the general purpose files used for neutronics or transport calculations. These files also contain the standards against which most measurements are made. The other class of libraries are the special purpose ones containing decay data, fission yields and cross section data for dosimetry and activation. This paper gives examples of what data are available and describes their use for various fusion applications. The focus will be on neutron-induced activation data with examples of how the reactions of particular importance can be identified. All data should be accompanied by estimates of the uncertainty. This is best achieved by including covariance data; however, this is extremely challenging and only a subset of the available data has such uncertainty data. The general principles of how covariance matrices are used are outlined.

  16. Polarization plasma spectroscopy (PPS) viewed from plasma physics and fusion research

    International Nuclear Information System (INIS)

    Ida, Katsumi

    1998-01-01

    Recently the measurements of poloidal magnetic field become important in plasma physics and nuclear fusion research, since an improved confinement mode associating with a negative magnetic shear has been found. The polarization plasma spectroscopy is recognized to be a useful tool to measure poloidal magnetic field and pitch angle of magnetic field. (author)

  17. Synthetic report 2012. Research programme on controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Vaucher, C.; Tran, M. Q.; Villard, L.; Marot, L.

    2013-01-01

    points, what reduces the damages on the wall. The activity of the theory and numerical modelling group concerns the turbulence and the heat and particles transport in the tokamaks, the analysis of the equilibrium and the magneto-hydrodynamic stability, the application of radiofrequency (RF) waves and optimization of new configurations for the magnetic confinement. The numerical modelling necessitates using very powerful computers; it was applied to the turbulence in a plasma or ITER. The TORPEX machine, which is simpler than the tokamak, allows in situ measurements with high spatio-temporal resolution; the results are used for the qualification of the codes for the numerical modelling. The gyrotron group studies the millimetric RF sources used for the electron cyclotron (EC) heating and the system foreseen for ITER. The development of a new modelling code has been pursued. The materials of a fusion reactor are submitted to irradiation through high energy neutrons, what induces mechanical defects and nuclear transmutations. The ‘Fusion Technology: Materials’ group is devoted to the improvement of the mechanical properties of reduced activation steels. At PSI the ‘Superconductivity’ group has tested for ITER in the SULTAN installation conducting-wires for the spools of toroidal and poloidal field, for the central solenoid as well as for the correction spools. The EDIPO plant, which will be used in parallel with SULTAN, has been cooled to the temperature of liquid helium. The Basel University conducts research projects on the interaction between the plasma and the walls of ITER. Applying an argon RF plasma has allowed improving the reflectivity of mirrors used to measure the plasma in ITER

  18. Personnel Radiation Protection at the ITER Nuclear Fusion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, A.; Sandri, S. [ENEA, Radiation Protection Institute, Frascati (Italy); D' Arienzo, M. [RFX, Padova (Italy)

    2006-07-01

    The hosting site for the ITER nuclear fusion experiment was finally chosen in France (Cadarache). The radiation protection program for the ITER personnel involved into operation and maintenance activities will be then tested in the near future. Related studies were mainly carried out during the last ten years and important assessments were performed at the Frascati ENEA Research Center in Italy. In this ambit individual and collective doses to the operators were calculated for different categories of working activities involving more and less critical systems. The radiation protection organization was outlined and the related program was proposed. A short review of the analyses performed in this field by the Italian investigators of the ENEA Radiation Protection Institute is shown here. The principal parameter taken into account in these evaluations was the collective dose due to the different working activities. This quantity has been assessed considering the following radiological source terms: a) the prompt radiation during the plasma burning phase, b) the gamma radiation due to the neutron activation of the solid structures, c) the activated corrosion products (ACPs) generated in the water cooling system (WCS) by corrosion of the inner wall of the piping under the neutron flux, d) tritium concentration in the atmosphere of the working premises. Individual doses have been integrated over the different worker typology, considering the design evolution for the different systems and the required person power. Ordinary, inspection and maintenance activities were taken into account to assess the person power, sometime also construction, plant modifications and unscheduled maintenance were included in the working activities list. The collective dose assessed for ITER fusion projects has been compared with that of the fission power stations and analogies and differences have been pointed out. In this review the dose assessment process is recalled starting from the

  19. Personnel Radiation Protection at the ITER Nuclear Fusion Facility

    International Nuclear Information System (INIS)

    Coniglio, A.; Sandri, S.; D'Arienzo, M.

    2006-01-01

    The hosting site for the ITER nuclear fusion experiment was finally chosen in France (Cadarache). The radiation protection program for the ITER personnel involved into operation and maintenance activities will be then tested in the near future. Related studies were mainly carried out during the last ten years and important assessments were performed at the Frascati ENEA Research Center in Italy. In this ambit individual and collective doses to the operators were calculated for different categories of working activities involving more and less critical systems. The radiation protection organization was outlined and the related program was proposed. A short review of the analyses performed in this field by the Italian investigators of the ENEA Radiation Protection Institute is shown here. The principal parameter taken into account in these evaluations was the collective dose due to the different working activities. This quantity has been assessed considering the following radiological source terms: a) the prompt radiation during the plasma burning phase, b) the gamma radiation due to the neutron activation of the solid structures, c) the activated corrosion products (ACPs) generated in the water cooling system (WCS) by corrosion of the inner wall of the piping under the neutron flux, d) tritium concentration in the atmosphere of the working premises. Individual doses have been integrated over the different worker typology, considering the design evolution for the different systems and the required person power. Ordinary, inspection and maintenance activities were taken into account to assess the person power, sometime also construction, plant modifications and unscheduled maintenance were included in the working activities list. The collective dose assessed for ITER fusion projects has been compared with that of the fission power stations and analogies and differences have been pointed out. In this review the dose assessment process is recalled starting from the

  20. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential.

    Science.gov (United States)

    Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-Lin; Liu, Ke; Shang, Zheng-Jun

    2014-10-15

    Most previous studies have linked cancer-macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Customizable Scientific Web Portal for Fusion Research

    Energy Technology Data Exchange (ETDEWEB)

    Abla, G; Kim, E; Schissel, D; Flannagan, S [General Atomics, San Diego (United States)

    2009-07-01

    The Web browser has become one of the major application interfaces for remotely participating in magnetic fusion experiments. Recently in other areas, web portals have begun to be deployed. These portals are used to present very diverse sources of information in a unified way. While a web portal has several benefits over other software interfaces, such as providing single point of access for multiple computational services, and eliminating the need for client software installation, the design and development of a web portal has unique challenges. One of the challenges is that a web portal needs to be fast and interactive despite a high volume of tools and information that it presents. Another challenge is the visual output on the web portal often is overwhelming due to the high volume of data generated by complex scientific instruments and experiments; therefore the applications and information should be customizable depending on the needs of users. An appropriate software architecture and web technologies can meet these problems. A web-portal has been designed to support the experimental activities of DIII-D researchers worldwide. It utilizes a multi-tier software architecture, and web 2.0 technologies, such as AJAX, Django, and Memcached, to develop a highly interactive and customizable user interface. It offers a customizable interface with personalized page layouts and list of services for users to select. The users can create a unique personalized working environment to fit their own needs and interests. Customizable services are: real-time experiment status monitoring, diagnostic data access, interactive data visualization. The web-portal also supports interactive collaborations by providing collaborative logbook, shared visualization and online instant message services. Furthermore, the web portal will provide a mechanism to allow users to create their own applications on the web portal as well as bridging capabilities to external applications such as

  2. Customisable Scientific Web Portal for Fusion Research

    Energy Technology Data Exchange (ETDEWEB)

    Abla, G; Kim, E; Schissel, D; Flannagan, S [General Atomics, San Diego (United States)

    2009-07-01

    The Web browser has become one of the major application interfaces for remotely participating in magnetic fusion. Web portals are used to present very diverse sources of information in a unified way. While a web portal has several benefits over other software interfaces, such as providing single point of access for multiple computational services, and eliminating the need for client software installation, the design and development of a web portal has unique challenges. One of the challenges is that a web portal needs to be fast and interactive despite a high volume of tools and information that it presents. Another challenge is the visual output on the web portal often is overwhelming due to the high volume of data generated by complex scientific instruments and experiments; therefore the applications and information should be customizable depending on the needs of users. An appropriate software architecture and web technologies can meet these problems. A web-portal has been designed to support the experimental activities of DIII-D researchers worldwide. It utilizes a multi-tier software architecture, and web 2.0 technologies, such as AJAX, Django, and Memcached, to develop a highly interactive and customizable user interface. It offers a customizable interface with personalized page layouts and list of services for users to select. Customizable services are: real-time experiment status monitoring, diagnostic data access, interactive data visualization. The web-portal also supports interactive collaborations by providing collaborative logbook, shared visualization and online instant message services. Furthermore, the web portal will provide a mechanism to allow users to create their own applications on the web portal as well as bridging capabilities to external applications such as Twitter and other social networks. In this series of slides, we describe the software architecture of this scientific web portal and our experiences in utilizing web 2.0 technologies. A

  3. Finnish Fusion Research Programme Yearbook 1993-1994

    International Nuclear Information System (INIS)

    Karttunen, S.; Paettikangas, T.

    1995-05-01

    Finnish Fusion Research Programme (FFUSION) is one of the national energy research programmes funded by the Ministry of Trade and Industry and from 1995 by TEKES. National organization for fusion research is necessary for efficient and successful participation in international fusion programmes. FFUSION programme serves well for this purpose and it made possible to establish relations and the dialogue with the European Fusion Programme. The process led to the Finnish Association Euratom-TEKES in early 1995. The first period of the FFUSION programme (1993-1994) was preparation for the association to the Community Programme. The strategy was to emphasize fusion technology parallel with the basic fusion and plasma physics and to activate the related Finnish industry to collaborate and participate in the FFUSION programme and later in the European Fusion Programme. The key element in the strategy is the focusing our fairly small R and D effort to a few topics, which increases possibilities to be competitive in Europe. The physics programme in FFUSION deals mainly with theoretical and computational studies of radio-frequency heating in tokamak plasmas. Technology programme started with prestudies in 1993 and it concentrates into two areas: fusion reactor materials and remote handling systems. (8 figs., 3 tabs.)

  4. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  5. Teaching and research in fusion plasmas and technology at the University of Illinois

    International Nuclear Information System (INIS)

    Miley, G.H.; Southworth, F.H.

    1975-01-01

    Teaching in fusion at the University of Illinois is an integrated part of the nuclear engineering curriculum. Through the use of two key courses, ''Introduction to Fusion'' and ''Fusion Systems,'' basic preparation for those wishing to specialize in fusion is provided. These courses are primarily directed to plasma aspects of fusion, but materials and other engineering aspects have been integrated into the curriculum through a broadened coverage in such existing courses as nuclear materials, shielding, and reactor physics. Research is primarily focused at the PhD level, although some MS studies are in progress. While current theses involve a wide variety of topics, one major area being pursued is the study of advanced fuel (non-deuterium-tritium) reactors based on two-component fusion and other concepts. This effort consists of a series of loosely knit subtasks related to such problems as cyclotron emission and direct energy conversion. Also, various research involving charge-exchange losses during neutral-beam injection, vacuum-wall sputtering, and related topics has developed as a direct outgrowth of the PROMETHEUS project, which involved the conceptual design of a power-consuming mirror-type reactor for materials and engineering tests

  6. ENDF/B-VI nuclear data evaluations for fusion applications

    International Nuclear Information System (INIS)

    Dunford, C.L.; Larson, D.C.; Young, P.G.

    1988-01-01

    The next release of the ENDF/B data library planned for 1989 contains improved data evaluations of interest to the fusion neutronics community. New data formats permit inclusion of energy-angle correlated particle emission spectra and recoil nucleus energy spectra. Enhanced formats for covariance information have been developed. Many new isotopic evaluations will lead to improved energy conservation and kerma factor calculations. Improved nuclear model calculations will provide reliable particle emission data where experimental information is sparse. Improved Bayssian fitting codes will provide more accurate evaluations for data rich reactions such as Li(n,nt)α. All of the most important fusion material evaluations contain these new features. 32 refs., 8 figs

  7. Nuclear fusion and its large potential for the future world energy supply

    Directory of Open Access Journals (Sweden)

    Ongena Jef

    2016-12-01

    Full Text Available An overview of the energy problem in the world is presented. The colossal task of ‘decarbonizing’ the current energy system, with ~85% of the primary energy produced from fossil sources is discussed. There are at the moment only two options that can contribute to a solution: renewable energy (sun, wind, hydro, etc. or nuclear fission. Their contributions, ~2% for sun and wind, ~6% for hydro and ~5% for fission, will need to be enormously increased in a relatively short time, to meet the targets set by policy makers. The possible role and large potential for fusion to contribute to a solution in the future as a safe, nearly inexhaustible and environmentally compatible energy source is discussed. The principles of magnetic and inertial confinement are outlined, and the two main options for magnetic confinement, tokamak and stellarator, are explained. The status of magnetic fusion is summarized and the next steps in fusion research, ITER and DEMO, briefly presented.

  8. The challenge to keep nuclear fusion alive as a future energy source

    International Nuclear Information System (INIS)

    D'haeseleer, W.D.

    1999-01-01

    Few people are preoccupied with the energy issue. Indeed, inflation-corrected energy prices (in euros) are currently lower than before the first oil crisis of 1973; the annual growth rate of primary-energy use in the industrialized world has diminished considerably compared to before 1970, and oil and gas production is characterized by increased exploration activity and a wider geographical spread. Nevertheless, there is a real energy issue. If the greenhouse effect turns out to be real, then mankind should at least slow down the consumption of fossil fuels. Given the fact that world energy consumption (especially by the developing countries) will rise in the future, and that nuclear fission power has become unpopular in the western world, the idea reigning in some circles to cope with this situation by total reliance on energy savings and renewable energy sources comes close to wishful thinking. A realistic analysis makes it clear that there will be a need for large workhorses for electricity generation to keep the overall electricity grid sufficiently robust. From a global and long-term perspective, the logical conclusion is the following: because mankind cannot count on the continued use of fossil fuels (due to the finiteness of the resources combined with the possible climate change effects), our generation has the responsibility to develop alternative energy sources for the distant future. Many parallel lines of research and development therefore need be pursued; because of the uncertainties with other alternative sources, it would be irresponsible to kill some of these development lines. This holds for renewable sources, the nuclear fission breeder, and for nuclear fusion. A major hurdle for the survival of long term energy research and development is the liberalization of the electricity market. Because of the revolutionary changes taking place, utilities concentrate on cost cutting and short-term survival. In addition, they are no longer supposed to take

  9. Nuclear physics research report 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The paper presents the 1988 Nuclear Physics Research Report for the University of Surrey, United Kingdom. The report includes both experimental nuclear structure physics and theoretical nuclear physics research work. The experimental work has been carried out predominantly with the Nuclear Structure Facility at the SERC Daresbury Laboratory, and has concerned nuclear shapes, shape coexistence, shape oscillations, single-particle structures and neutron-proton interaction. The theoretical work has involved nuclear reactions with a variety of projectiles below 1 GeV per nucleon incident energy, and aspects of hadronic interactions at intermediate energies. (U.K.)

  10. Prospects for nuclear safety research

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-04-01

    This document is the text of a paper presented by Eric S. Beckjord (Director, Nuclear Regulatory Research/NRC) at the 22nd Water Reactor Safety Meeting in Bethesda, MD in October 1994. The following topics are briefly reviewed: (1) Reactor vessel research, (2) Probabilistic risk assessment, (3) Direct containment heating, (4) Advanced LWR research, (5) Nuclear energy prospects in the US, and (6) Future nuclear safety research. Subtopics within the last category include economics, waste disposal, and health and safety.

  11. Reprocessing free nuclear fuel production via fusion fission hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Kotschenreuther, Mike, E-mail: mtk@mail.utexas.edu [Intitute for Fusion Studies, University of Texas at Austin (United States); Valanju, Prashant; Mahajan, Swadesh [Intitute for Fusion Studies, University of Texas at Austin (United States)

    2012-05-15

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively 'new' cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th{sup 232}-U{sup 233} conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO{sub 2} matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U{sup 235} fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  12. Reprocessing free nuclear fuel production via fusion fission hybrids

    International Nuclear Information System (INIS)

    Kotschenreuther, Mike; Valanju, Prashant; Mahajan, Swadesh

    2012-01-01

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively “new” cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th 232 –U 233 conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO 2 matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U 235 fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  13. Physics of thermo-nuclear fusion and the ITER project; La physique de la fusion thermonucleaire et le projet ITER

    Energy Technology Data Exchange (ETDEWEB)

    Garin, P [CEA Cadarache, Dept. de Recherches sur la Fusion Controlee - DRFC, 13 - Saint-Paul-lez-Durance (France)

    2003-01-01

    This document gathers the slides of the 6 contributions to the workshop 'the physics of thermo-nuclear fusion and the ITER project': 1) the feasibility of magnetic confinement and the issue of heat recovery, 2) heating and current generation in tokamaks, 3) the physics of wall-plasma interaction, 4) recent results at JET, 5) inertial confinement and fast ignition, and 6) the technology of fusion machines based on magnetic confinement. This document presents the principles of thermo-nuclear fusion machines and gives a lot of technical information about JET, Tore-Supra and ITER.

  14. HSE Nuclear Safety Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Bagley, M.J. [Health and Safety Executive, Sheffield (United Kingdom)

    1995-12-31

    HSE funds two programmes of nuclear safety research: a programme of {approx} 2.2M of extramural research to support the Nuclear Safety Division`s regulatory activities and a programme of {approx} 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author).

  15. HSE Nuclear Safety Research Program

    International Nuclear Information System (INIS)

    Bagley, M.J.

    1995-01-01

    HSE funds two programmes of nuclear safety research: a programme of ∼ 2.2M of extramural research to support the Nuclear Safety Division's regulatory activities and a programme of ∼ 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author)

  16. New era for fusion research centre

    CERN Multimedia

    Cartlidge, Edwin

    2003-01-01

    The former director general of CERN, Sir Chris Llewellyn Smith, takes over as director of the Culham fusion laboratory in Oxfordshire, UK. Plans for the laboratory include continuing the success of the Joint European Torus (JET) and the Mega Amp Spherical Tokamak (MAST) (1 page)

  17. Magnet Design Considerations for Fusion Nuclear Science Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kessel, C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); El-Guebaly, L. [Univ. of Wisconsin, Madison, WI (United States) Fusion Technology Institute; Titus, P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.

  18. Cluster dynamics transcending chemical dynamics toward nuclear fusion.

    Science.gov (United States)

    Heidenreich, Andreas; Jortner, Joshua; Last, Isidore

    2006-07-11

    Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 10(15)-10(20) W.cm(-2)). Extreme cluster multielectron ionization produces highly charged cluster ions, e.g., (C(4+)(D(+))(4))(n) and (D(+)I(22+))(n) at I(M) = 10(18) W.cm(-2), that undergo Coulomb explosion (CE) with the production of high-energy (5 keV to 1 MeV) ions, which can trigger nuclear reactions in an assembly of exploding clusters. The laser intensity and the cluster size dependence of the dynamics and energetics of CE of (D(2))(n), (HT)(n), (CD(4))(n), (DI)(n), (CD(3)I)(n), and (CH(3)I)(n) clusters were explored by electrostatic models and molecular dynamics simulations, quantifying energetic driving effects, and kinematic run-over effects. The optimization of table-top dd nuclear fusion driven by CE of deuterium containing heteroclusters is realized for light-heavy heteroclusters of the largest size, which allows for the prevalence of cluster vertical ionization at the highest intensity of the laser field. We demonstrate a 7-orders-of-magnitude enhancement of the yield of dd nuclear fusion driven by CE of light-heavy heteroclusters as compared with (D(2))(n) clusters of the same size. Prospective applications for the attainment of table-top nucleosynthesis reactions, e.g., (12)C(P,gamma)(13)N driven by CE of (CH(3)I)(n) clusters, were explored.

  19. Report on the research and development work of 1984 in the project atomic fusion

    International Nuclear Information System (INIS)

    Finken, D.

    1985-02-01

    The work done by the Nuclear Research Centre in Karlsruhe on fusion under magnetic influence is compiled in the project atomic fusion and put in the programme for European Fusion Technology. The work is supported by an association contract between KfK and Euratom via the European Commission. Some of the work exceeds the volume defined in the E.E.C's technology programme. Using these papers, mostly studies, connections are established between the various fields of work and new tasks prepared. This is taking place in the light of the expected extension of the technology programme in the coming year and the plans for NET. The reports compiled here are the 1984 papers from the KfK institute. The appendix contains a compilation of the tasks undertaken by KfK from the EEC's fusion technology programme. (orig./GG) [de

  20. Status of cold fusion research in Japan

    International Nuclear Information System (INIS)

    Kitamura, Akira

    2015-01-01

    In Japan, the Condensed Matter Nuclear Science (CMNS) works have been centering around the Japan CF-Research Society (JCFRS) established in 1999. Recently, about 10 research groups were actively working in the CMNS field, and have been exchanging information mainly in the annual meetings of JCFRS in addition to the International ICCF conferences. For many years efforts have been exclusively devoted to clarification of the underlying physics of excess heat phenomenon and isotopic composition change. Recently, however, an entrepreneur group, Clean Planet Inc., has entered into the CMNS field in Japan, and joined Mizuno to form the above-mentioned group and made a presentation at the LANR/CF Colloquium, at MIT in March 2014. In their work they used glow discharge to form surface nanostructures on nickel mesh wires that are to be subjected to deuterium exposure. They claimed excess power on the order of kilowatts with a coefficient of performance of 1.9. Confirmation of their claim by third parties is highly expected

  1. Pathways to Energy from Inertial Fusion. An Integrated Approach. Report of a Coordinated Research Project 2006-2010

    International Nuclear Information System (INIS)

    2013-04-01

    The IAEA has continuously demonstrated its commitment to supporting the development of safe and environmentally clean nuclear fusion energy. Statistics show that at the current rate of energy consumption, fusion energy would remain an inexhaustible energy source for humankind for millions of years. Furthermore, some of the existing and foreseen risks - such as nuclear waste disposal and rising greenhouse gas emissions from the use of fossil fuels - can also be reduced. In the quest for fusion energy, two main lines of research and development are currently being pursued worldwide, namely the inertial and the magnetic confinement fusion concepts. For both approaches, the IAEA has conducted coordinated research activities focusing on specific physics and technological issues relevant the establishment of the knowledge base and foundation for the design and construction of fusion power plants. This report describes the recent research and technological developments and challenges in inertial fusion energy within the framework of such a coordinated research effort. The coordinated research project on Pathways to Energy from Inertial Fusion: An Integrated Approach was initiated in 2006 and concluded in 2010. The project involved experts and institutions from 16 Member States, addressing issues relevant to advancing inertial fusion energy research and development in its practical applications. The key topics addressed include: (i) high repetition rate, low cost, high efficiency ignition drivers; (ii) beam-matter/beam-plasma interaction related to inertial fusion target physics; (iii) target fusion chamber coupling and interface; and (iv) integrated inertial fusion power plant design. Participants in this coordinated research project have contributed 17 detailed research and technology progress reports of work performed at national and international levels. This report compiles all these reports while highlighting the various achievements.

  2. Research program. Controlled thermonuclear fusion. Synthesis report 2014

    International Nuclear Information System (INIS)

    Villard, L.; Marot, L.; Fiocco, D.

    2015-01-01

    In 1961, 3 years after the 2 nd International Conference on Peaceful Use of Nuclear Energy, the Research Centre on Plasma Physics (CRPP) was created as a department of the Federal Institute of Technology (EPFL) in Lausanne (Switzerland). From 1979, CRPP collaborates to the European Program on fusion research in the framework of EURATOM. The advantages of fusion are remarkable: the fuel is available in great quantity all over the world; the reactor is intrinsically safe; the reactor material, activated during operation, loses practically all its activity within about 100 years. But the working up of the controlled fusion necessitates extreme technological conditions. In 1979, the Joint European Torus (JET) began its operation; today it is still the most powerful tokamak in the world; its energy yield Q reached 0.65. The progress realized in the framework of EURATOM has led to the planning of the experimental reactor ITER which is being built at Cadarache (France). ITER is designed to reach a Q-value largely above 1. The future prototype reactor DEMO is foreseen in 2040-2050. It should demonstrate the ability of a fusion reactor to inject electricity into the grid for long term. In 2014, CRPP participated in the works on ITER in the framework of the Fusion for Energy (F4E) agency. At EPFL the research concerns the physics of the magnetic confinement with experiments on the tokamak TCV (variable configuration tokamak), the numerical simulations, the plasma heating and the generation of current by hyper frequency radio waves. At the Paul Scherrer Institute (PSI), research is devoted to the superconductivity. At the Basel University the studies get on interactions between the plasma and the tokamak walls. The large flexibility of TCV allows creating and controlling plasmas of different shapes which are necessary to optimise the core geometry of future reactors. Moreover, the plasma heating by mm radio waves allows guiding the injected power according to specific

  3. Research on Kalman-filter based multisensor data fusion

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc.Various multisensor data fusion methods have been extensively investigated by researchers,of which Klaman filtering is one of the most important.Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown.states of a dynamic system,which has found widespread application in many areas.The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods.then a new method of state fusion is proposed.Finally the simulation results demonstrate the effectiveness of the introduced method.

  4. The European Fusion Energy Research Programme towards the realization of a fusion demonstration reactor

    International Nuclear Information System (INIS)

    Gasparotto, M.; Laesser, R.

    2006-01-01

    Since its inception, the European Fusion Programme has been orientated towards the establishment of the knowledge base needed for the definition of a reactor to be used for power production. Its ultimate goal is then to demonstrate the scientific and the technological feasibility of fusion power while incorporating the assessment of the safety, environmental, social and economic features of this type of energy source. At present, the JET device, the largest tokamak in the world, and the other medium-sized experimental machines are contributing essentially to the basic scientific phase of this development path. Their successful operation greatly contributed to support the design basis of ITER, the next step in fusion, which will aim to demonstrate the scientific and technical feasibility of fusion power production by achieving extended D-T burning plasma operation. Following ITER, the conception and construction of the DEMO device is planned. DEMO will be a demonstration power plant which will be the first fusion device to generate a significant amount of electrical power from fusion. This paper describes the status of fusion research and the European strategy for achievement of the ultimate goal of construction of a prototype reactor. (author)

  5. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  6. Nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias

    2011-01-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  7. Impact of fusion-fission hybrids on world nuclear future

    International Nuclear Information System (INIS)

    Abdel-Khalick, S.; Jansen, P.; Kessler, G.; Klumpp, P.

    1980-08-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been: (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrids are coupled to the breeders. The results also indicate that from a resource standpoint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  8. Impact of fusion-fission hybrids on world nuclear future

    International Nuclear Information System (INIS)

    Abdel-Khalik, S.I.

    1980-01-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources with or without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrides are coupled to the breeders. The results also indicate that from a resource standpaint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  9. Impact of fusion-fission hybrids on world nuclear future

    International Nuclear Information System (INIS)

    Abdel-Khalik, S.I.; Jansen, P.; Kessler, G.; Klumpp, P.

    1981-01-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been: (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources with or without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrids are coupled to the breeders. The results also indicate that from a resource standpoint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  10. 1981 inertial fusion research annual technical report

    International Nuclear Information System (INIS)

    Solomon, D.E.; Wei, J.L.; Greacen, N.T.

    1981-01-01

    This annual report consists of the following two topics: (1) target fabrication technology, and (2) fusion experiments. The first section is reported by the following seven areas: (1) characterization, (2) fuel shell technology, (3) polymer technology, (4) lithium foil development, (5) precision etch technology, (6) analytical instrumentation, and (7) target fabrication. The second area is reported by the following topics: (1) experiments, (2) plasma theory, (3) code development and simulation, and (4) lasers and optics

  11. Magnetic fusion energy research and development

    International Nuclear Information System (INIS)

    1984-02-01

    This report on the Department of Energy's Magnetic Fusion Program was requested by the Secretary of Energy. The Panel finds that substantial progress has been made in the three years since the previous ERAB review, although budget constraints have precluded the engineering initiatives recommended in that review and authorized in the Magnetic Fusion Energy Engineering Act of 1980 (the Act). Recognizing that the goals of the Act cannot now be met, the Panel recommends that the engineering phase be further postponed in favor of a strong base program in physics and technology, including immediate commitment to a major new tokamak-based device for the investigation of an ignited long-pulse plasma designated in this report as the Burning Core Experiment or BCX. Resources to design such a device could be obtained from within the existing program by redirecting work toward to BCX. At this time it is not possible to assess accurately the potential economic viability of fusion power in the future. The Panel strongly recommends expansion of international collaboration, particularly the joint construction and operation of major new unique facilities, such as the proposed BCX

  12. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1993-06-01

    The introductory section describes the goals, main thrusts, and interrelationships between the various activities in the program and principal achievements of the Stony Brook Nuclear Theory Group during 1992--93. Details and specific accomplishments are related in abstract form. Current research is taking place in the following areas: strong interaction physics (the physics of hadrons, QCD and the nucleus, QCD at finite temperature and high density), relativistic heavy-ion physics, nuclear structure and nuclear many- body theory, and nuclear astrophysics

  13. Modeling, analysis and experiments for fusion nuclear technology

    International Nuclear Information System (INIS)

    Abdou, M.A.; Hadid, A.H.; Raffray, A.R.; Tillack, M.S.; Iizuka, T.

    1988-01-01

    Selected issues in the development of fusion nuclear technology (FNT) have been studied. These relate to (1) near-term experiments, modeling, and analysis for several key FNT issues, and (2) FNT testing in future fusion facilities. A key concern for solid breeder blankets is to reduce the number of candidate materials and configurations for advanced experiments to emphasize those with the highest potential. Based on technical analysis, recommendations have been developed for reducing the size of the test matrix and for focusing the testing program on important areas of emphasis. The characteristics of an advanced liquid metal MHD experiment have also been studied. This facility is required in addition to existing facilities in order to address critical uncertainties in MHD fluid flow and heat transfer. In addition to experiments, successful development of FNT will require models for interpreting experimental data, for planning experiments, and for use as a design tool for fusion components. Modeling of liquid metal fluid flows is a particular area of need in which substantial progress is expected, and initial efforts are reported here. Preliminary results on the modeling of tritium transport and inventory in solid breeders are also summarized. Finally, the thermo-mechanical behavior of liquid-metal-cooled limiters is analyzed and the parameter space for feasible designs is explored. Because of the renewed strong interest in a fusion engineering facility, a critical review and analysis of the important FNT testing requirements have been performed. Several areas have been emphasized due to their strong impact on the design and cost of the test facility. These include (1) the length of the plasma burn and the mode of operation (pulsed vs. steady-state), and (2) the need for a tritium-producing blanket and its impact on the availability of the device. (orig.)

  14. Role of nuclear fusion in future energy systems and the environment under future uncertainties

    International Nuclear Information System (INIS)

    Tokimatsu, Koji; Fujino, Jun'ichi; Konishi, Satoshi; Ogawa, Yuichi; Yamaji, Kenji

    2003-01-01

    Debates about whether or not to invest heavily in nuclear fusion as a future innovative energy option have been made within the context of energy technology development strategies. This is because the prospects for nuclear fusion are quite uncertain and the investments therefore carry the risk of quite large regrets, even though investment is needed in order to develop the technology. The timeframe by which nuclear fusion could become competitive in the energy market has not been adequately studied, nor has roles of the nuclear fusion in energy systems and the environment. The present study has two objectives. One is to reveal the conditions under which nuclear fusion could be introduced economically (hereafter, we refer to such introductory conditions as breakeven prices) in future energy systems. The other objective is to evaluate the future roles of nuclear fusion in energy systems and in the environment. Here we identify three roles that nuclear fusion will take on when breakeven prices are achieved: (i) a portion of the electricity market in 2100, (ii) reduction of annual global total energy systems cost, and (iii) mitigation of carbon tax (shadow price of carbon) under CO 2 constraints. Future uncertainties are key issues in evaluating nuclear fusion. Here we treated the following uncertainties: energy demand scenarios, introduction timeframe for nuclear fusion, capacity projections of nuclear fusion, CO 2 target in 2100, capacity utilization ratio of options in energy/environment technologies, and utility discount rates. From our investigations, we conclude that the presently designed nuclear fusion reactors may be ready for economical introduction into energy systems beginning around 2050-2060, and we can confirm that the favorable introduction of the reactors would reduce both the annual energy systems cost and the carbon tax (the shadow price of carbon) under a CO 2 concentration constraint

  15. N + 1 redundancy on ATCA instrumentation for Nuclear Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Correia, Miguel, E-mail: miguelfc@ipfn.ist.utl.pt [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico – Universidade Técnica de Lisboa, Lisboa (Portugal); Sousa, Jorge; Rodrigues, António P.; Batista, António J.N.; Combo, Álvaro; Carvalho, Bernardo B.; Santos, Bruno; Carvalho, Paulo F.; Gonçalves, Bruno [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico – Universidade Técnica de Lisboa, Lisboa (Portugal); Correia, Carlos M.B.A. [Centro de Instrumentação, Departamento de Física, Universidade de Coimbra, Coimbra (Portugal); Varandas, Carlos A.F. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico – Universidade Técnica de Lisboa, Lisboa (Portugal)

    2013-10-15

    Highlights: ► In Nuclear Fusion, demanding security and high-availability requirements call for redundancy to be available. ► ATCA standard features desirable redundancy features for Fusion instrumentation. ► The developed control and data acquisition hardware modules support additional redundancy schemes. ► Implementation of N + 1 redundancy of host processor and I/O data modules. -- Abstract: The role of redundancy on control and data acquisition systems has gained a significant importance in the case of Nuclear Fusion, as demanding security and high-availability requirements call for redundancy to be available. IPFN's control and data acquisition system hardware is based on an Advanced Telecommunications Computing Architecture (ATCA) set of I/O (DAC/ADC endpoints) and data/timing switch modules, which handle data and timing from all I/O endpoints. Modules communicate through Peripheral Component Interconnect Express (PCIe), established over the ATCA backplane and controlled by one or more external hosts. The developed hardware modules were designed to take advantage of ATCA specification's redundancy features, namely at the hardware management level, including support of: (i) multiple host operation with N + 1 redundancy – in which a designated failover host takes over data previously assigned to a suddenly malfunctioning host and (ii) N + 1 redundancy of I/O and data/timing switch modules. This paper briefly describes IPFN's control and data acquisition system, which is being developed for ITER fast plant system controller (FPSC), and analyses the hardware implementation of its supported redundancy features.

  16. Effect of a generalized particle momentum distribution on plasma nuclear fusion rates

    International Nuclear Information System (INIS)

    Kim, Yeong E.; Zubarev, Alexander L.

    2006-01-01

    We investigate the effect of a generalized particle momentum distribution derived by Galitskii and Yakimets (GY) on nuclear reaction rates in plasma. We derive an approximate semi-analytical formula for nuclear fusion reaction rate between nuclei in a plasma (quantum plasma nuclear fusion; or QPNF). The QPNF formula is applied to calculate deuteron-deuteron fusion rate in a plasma, and the results are compared with the results calculated with the conventional Maxwell-Boltzmann velocity distribution. As an application, we investigate the deuteron-deuteron fusion rate for mobile deuterons in a deuterated metal/alloy. The calculated deuteron-deuteron fusion rates at low energies are enormously enhanced due to the modified tail of the GY's generalized momentum distribution. Our preliminary estimates indicate also that the deuteron-lithium (D+Li) fusion rate and the proton-lithium (p+Li) fusion rate in a metal/alloy at ambient temperatures are also substantially enhanced. (author)

  17. Methods of economic analysis applied to fusion research. Final report

    International Nuclear Information System (INIS)

    1983-01-01

    In this and previous efforts ECON has provided economic assessment of a fusion research program. This phase of study focused on two tasks, the first concerned with the economics of fusion in an economy that relies heavily upon synthetic fuels, and the second concerned with the overall economic effects of pursuing soft energy technologies instead of hard technologies. This report is organized in two parts, the first entitled An Economic Analysis of Coproduction of Fusion-Electric Energy and Other Products, and the second entitled Arguments Associated with the Choice of Potential Energy Futures

  18. Nuclear fusion project. Semi-annual report of the Association KfK/EURATOM

    International Nuclear Information System (INIS)

    Kast, G.

    1987-05-01

    This semi-annual report gives 36 short descriptions of the work done in the framework of the Nuclear Fusion Project and outlines studies for NET/INTOR and for ECRH power sources at 150 GHz. Tables of fusion technology contracts, of NET contracts, of KfK departments contributing to the Fusion Project, and of the Fusion Project management staff complete this report. (GG)

  19. Contribution to the actual discussion on the technological problems of nuclear fusion energy exploitation

    International Nuclear Information System (INIS)

    Seifritz, W.

    1982-02-01

    Recently increased criticism has been raised from many sides as to the technical realization of fusion reactors. The basic argument is continually stated whether it is really sensible to invest the enormous sums of money in order to produce a commercial fusion reactor. In this article, the principle problems facing nuclear fusion are presented and it is outlined which priorities should be set for the realization of fusion energy in the near future. (Auth.)

  20. Fusion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Lackner, Karl; Tran, Minh Quang [eds.

    2012-09-15

    Recreating the energy production process of the Sun - nuclear fusion - on Earth in a controlled fashion is one of the greatest challenges of this century. If achieved at affordable costs, energy supply security would be greatly enhanced and environmental degradation from fossil fuels greatly diminished. Fusion Physics describes the last fifty years or so of physics and research in innovative technologies to achieve controlled thermonuclear fusion for energy production. The International Atomic Energy Agency (IAEA) has been involved since its establishment in 1957 in fusion research. It has been the driving force behind the biennial conferences on Plasma Physics and Controlled Thermonuclear Fusion, today known as the Fusion Energy Conference. Hosted by several Member States, this biennial conference provides a global forum for exchange of the latest achievements in fusion research against the backdrop of the requirements for a net energy producing fusion device and, eventually, a fusion power plant. The scientific and technological knowledge compiled during this series of conferences, as well as by the IAEA Nuclear Fusion journal, is immense and will surely continue to grow in the future. It has led to the establishment of the International Thermonuclear Experimental Reactor (ITER), which represents the biggest experiment in energy production ever envisaged by humankind.