WorldWideScience

Sample records for nuclear fuel pools

  1. Structure for nuclear fuel storage pools

    International Nuclear Information System (INIS)

    Ebata, Sakae; Nichiei, Shinji.

    1979-01-01

    Purpose: To enable leak detection in nuclear fuel storage pools, as well as prevent external leakages while keeping the strength of the constructional structures. Constitution: Protection plates are provided around pool linear plates and a leak reception is provided to the bottom. Leakages are detected by leak detecting pipeways and the external leakages are prevented by collecting them in a detection area provided in the intermediate layer. Since ferro-reinforcements at the bottom wall of the pool are disconnected by the protection plate making it impossible to form the constructional body, body hunches are provided to the bottom wall of the pool for processing the ferro-reinforcements. (Yoshino, Y.)

  2. Behavior of spent nuclear fuel in water pool storage

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1977-09-01

    Storage of irradiated nuclear fuel in water pools (basins) has been standard practice since nuclear reactors first began operation approximately 34 years ago. Pool storage is the starting point for all other fuel storage candidate processes and is a candidate for extended interim fuel storage until policy questions regarding reprocessing and ultimate disposal have been resolved. This report assesses the current performance of nuclear fuel in pool storage, the range of storage conditions, and the prospects for extending residence times. The assessment is based on visits to five U.S. and Canadian fuel storage sites, representing nine storage pools, and on discussions with operators of an additional 21 storage pools. Spent fuel storage experience from British pools at Winfrith and Windscale and from a German pool at Karlsruhe (WAK) also is summarized

  3. Spent nuclear fuel storage pool thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Gay, R.R.

    1984-01-01

    Storage methods and requirements for spent nuclear fuel at U.S. commercial light water reactors are reviewed in Section 1. Methods of increasing current at-reactor storage capabilities are also outlined. In Section 2 the development of analytical methods for the thermal-hydraulic analysis of spent fuel pools is chronicled, leading up to a discussion of the GFLOW code which is described in Section 3. In Section 4 the verification of GFLOW by comparisons of the code's predictions to experimental data taken inside the fuel storage pool at the Maine Yankee nuclear power plant is presented. The predictions of GFLOW using 72, 224, and 1584 node models of the storage pool are compared to each other and to the experimental data. An example of thermal licensing analysis for Maine Yankee using the GFLOW code is given in Section 5. The GFLOW licensing analysis is compared to previous licensing analysis performed by Yankee Atomic using the RELAP-4 computer code

  4. Biofouling on austenitic stainless steels in spent nuclear fuel pools

    Energy Technology Data Exchange (ETDEWEB)

    Sarro, M I; Moreno, D A; Chicote, E; Lorenzo, P I; Garcia, A M [Universidad Politecnica de Madrid, Departamento de Ingenieria y Ciencia de los Materiales, Escuela Tecnica Superior de Ingenieros Industriales, Jose Gutierrez Abascal, 2, E-28006 Madrid (Spain); Montero, F [Iberdrola Generacion, S.A., y C.M.D.S., Centro de Tecnologia de Materiales, Paseo de la Virgen del Puerto, 53, E-28005 Madrid (Spain)

    2003-07-01

    The objective of this study was to investigate the biofilm formation on three different types of austenitic stainless steel (UNS S30400, S30466 and S31600) submerged in a spent nuclear fuel pool. The presence of microorganisms in coupons was characterised using standard culture microbiological methods, microscopic techniques (epifluorescence microscopy and scanning electron microscopy), and molecular biology techniques (denaturing gradient gel electrophoresis and sequencing fragments of 16S rDNA). The microscopy techniques showed signs of colonisation of stainless steels in spite of these extreme conditions. Based on sequencing of cultured microorganisms, different bacteria belonging to {alpha}, {beta}, {gamma}-Proteobacteria, Bacilli, and Actinobacteria classes have been identified. The biofilm radioactivity was measured using gamma-ray spectrometry and, according to the data gathered, the radionuclides present in the water pool were entrapped in the biofilm increasing the amount of radiation at the surface of the different materials. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  5. Biofouling on austenitic stainless steels in spent nuclear fuel pools

    International Nuclear Information System (INIS)

    Sarro, M.I.; Moreno, D.A.; Chicote, E.; Lorenzo, P.I.; Garcia, A.M.; Montero, F.

    2003-01-01

    The objective of this study was to investigate the biofilm formation on three different types of austenitic stainless steel (UNS S30400, S30466 and S31600) submerged in a spent nuclear fuel pool. The presence of microorganisms in coupons was characterised using standard culture microbiological methods, microscopic techniques (epifluorescence microscopy and scanning electron microscopy), and molecular biology techniques (denaturing gradient gel electrophoresis and sequencing fragments of 16S rDNA). The microscopy techniques showed signs of colonisation of stainless steels in spite of these extreme conditions. Based on sequencing of cultured microorganisms, different bacteria belonging to α, β, γ-Proteobacteria, Bacilli, and Actinobacteria classes have been identified. The biofilm radioactivity was measured using gamma-ray spectrometry and, according to the data gathered, the radionuclides present in the water pool were entrapped in the biofilm increasing the amount of radiation at the surface of the different materials. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  6. Irradiation of Microbes from Spent Nuclear Fuel Storage Pool Environments

    International Nuclear Information System (INIS)

    Breckenridge, C.R.; Watkins, C.S.; Bruhn, D.F.; Roberto, F.F.; Tsang, M.N.; Pinhero, P.J.; Brey, R.F.; Wright, R.N.; Windes, W.F.

    1999-01-01

    Microbes have been isolated and identified from spent nuclear fuel storage pools at the Idaho National Engineering and Environmental Laboratory (INEEL). Included among these are Corynebacterium aquaticum, Pseudomonas putida, Comamonas acidovorans, Gluconobacter cerinus, Micrococcus diversus, Rhodococcus rhodochrous, and two strains of sulfate-reducing bacteria (SRB). We examined the sensitivity of these microbes to a variety of total exposures of radiation generated by a 6-MeV linear accelerator (LINAC). The advantage of using a LINAC is that it provides a relatively quick screen of radiation tolerance. In the first set of experiments, we exposed each of the aforementioned microbes along with four additional microbes, pseudomonas aeruginosa, Micrococcus luteus, Escherchia coli, and Deinococcus radiodurans to exposures of 5 x 10 3 and 6 x 10 4 rad. All microbial specimens withstood the lower exposure with little or no reduction in cell population. Upon exposing the microbes to the larger dose of 6 x 10 4 rad, we observed two distinct groupings: microbes that demonstrate resistance to radiation, and microbes that display intolerance through a dramatic reduction from their initial population. Microbes in the radiation tolerant grouping were exposed to 1.1 x 10 5 rad to examine the extent of their resistance. We observe a correlation between radiation resistance and gram stain. The gram-positive species we examined seem to demonstrate a greater radiation resistance

  7. Irradiation of Microbes from Spent Nuclear Fuel Storage Pool Environments

    Energy Technology Data Exchange (ETDEWEB)

    Breckenridge, C.R.; Watkins, C.S.; Bruhn, D.F.; Roberto, F.F.; Tsang, M.N.; Pinhero, P.J. [INEEL (US); Brey, R.F. [ISU (US); Wright, R.N.; Windes, W.F.

    1999-09-03

    Microbes have been isolated and identified from spent nuclear fuel storage pools at the Idaho National Engineering and Environmental Laboratory (INEEL). Included among these are Corynebacterium aquaticum, Pseudomonas putida, Comamonas acidovorans, Gluconobacter cerinus, Micrococcus diversus, Rhodococcus rhodochrous, and two strains of sulfate-reducing bacteria (SRB). We examined the sensitivity of these microbes to a variety of total exposures of radiation generated by a 6-MeV linear accelerator (LINAC). The advantage of using a LINAC is that it provides a relatively quick screen of radiation tolerance. In the first set of experiments, we exposed each of the aforementioned microbes along with four additional microbes, pseudomonas aeruginosa, Micrococcus luteus, Escherchia coli, and Deinococcus radiodurans to exposures of 5 x 10{sup 3} and 6 x 10{sup 4} rad. All microbial specimens withstood the lower exposure with little or no reduction in cell population. Upon exposing the microbes to the larger dose of 6 x 10{sup 4} rad, we observed two distinct groupings: microbes that demonstrate resistance to radiation, and microbes that display intolerance through a dramatic reduction from their initial population. Microbes in the radiation tolerant grouping were exposed to 1.1 x 10{sup 5} rad to examine the extent of their resistance. We observe a correlation between radiation resistance and gram stain. The gram-positive species we examined seem to demonstrate a greater radiation resistance.

  8. Loss of cooling accident simulation of nuclear power station spent-fuel pool

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.; Liang, K-S., E-mail: mlee@ess.nthu.edu.tw, E-mail: ksliang_1@hotmail.com [National Tsing Hua Univ., Hsinchu, Taiwan (China); Lin, K-Y., E-mail: syrup760914@gmail.com [Taiwan Power Company, Taiwan (China)

    2014-07-01

    The core melt down accident of Fukushima Nuclear Power Station on March 11th, 2011 alerted nuclear industry that the long term loss of cooling of spent fuel pool may need some attention. The target plant analyzed is the Chinshan Nuclear Power Station of Taiwan Power Company. The 3-Dimensional RELAP5 input deck of the spent fuel pool of the station is built. The results indicate that spent fuel of Chinshan Nuclear Power Station is uncovered at 6.75 days after an accident of loss cooling takes place and cladding temperature rises above 2,200{sup o}F around 8 days. The time is about 13 hours earlier than the results predicted using simple energy balance method. The results also show that the impact of Counter Current Flow Limitation (CCFL) and radiation heat transfer model is marginal. (author)

  9. Design of make-up water system for Tehran research reactor spent nuclear fuels storage pool

    Energy Technology Data Exchange (ETDEWEB)

    Aghoyeh, Reza Gholizadeh [Reactor Research Group, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), North Amirabad, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of); Khalafi, Hosein, E-mail: hkhalafi@aeoi.org.i [Reactor Research Group, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), North Amirabad, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2010-10-15

    Spent nuclear fuels storage (SNFS) is an essential auxiliary system in nuclear facility. Following discharge from a nuclear reactor, spent nuclear fuels have to be stored in water pool of SNFS away from reactor to allow for radioactive to decay and removal of generated heat. To prevent corrosion damage of fuels and other equipments, the storage pool is filled with de-ionized water which serves as moderator, coolant and shielding. The de-ionized water will be provided from make-up water system. In this paper, design of a make-up water system for optimal water supply and its chemical properties in SNFS pool is presented. The main concern of design is to provide proper make-up water throughout the storage time. For design of make-up water system, characteristics of activated carbon purifier, anionic, cationic and mixed-bed ion-exchangers have been determined. Inlet water to make-up system provide from Tehran municipal water system. Regulatory Guide 1.13 of the and graver company manual that manufactured the Tehran research reactor (TRR) make-up water system have been used for make-up water system of TRR spent nuclear fuels storage pool design.

  10. Design of make-up water system for Tehran research reactor spent nuclear fuels storage pool

    International Nuclear Information System (INIS)

    Aghoyeh, Reza Gholizadeh; Khalafi, Hosein

    2010-01-01

    Spent nuclear fuels storage (SNFS) is an essential auxiliary system in nuclear facility. Following discharge from a nuclear reactor, spent nuclear fuels have to be stored in water pool of SNFS away from reactor to allow for radioactive to decay and removal of generated heat. To prevent corrosion damage of fuels and other equipments, the storage pool is filled with de-ionized water which serves as moderator, coolant and shielding. The de-ionized water will be provided from make-up water system. In this paper, design of a make-up water system for optimal water supply and its chemical properties in SNFS pool is presented. The main concern of design is to provide proper make-up water throughout the storage time. For design of make-up water system, characteristics of activated carbon purifier, anionic, cationic and mixed-bed ion-exchangers have been determined. Inlet water to make-up system provide from Tehran municipal water system. Regulatory Guide 1.13 of the and graver company manual that manufactured the Tehran research reactor (TRR) make-up water system have been used for make-up water system of TRR spent nuclear fuels storage pool design.

  11. Information on the feasibility study for the reracking in the fuel storage pools of the Juragua Nuclear Power Plant

    International Nuclear Information System (INIS)

    Rodriguez, J.M.; Rodriguez, I.; Lopez, D.; Guerra, R.; Rodriguez, M.; Garcia, F.

    1995-01-01

    During 1993, in the Juragua Nuclear Power Plants as engineering evaluation programme was initiated in the storage area of irradiated nuclear fuel, where work in order to determine the feasibility of capacity increase for storage of irradiated nuclear fuel at the fuel storage pools using poisoned compact close racks instead of the originally designed racks. The feasibility study is a fundamental activity of this programme for the 1994-1995 period. According to this study the prospects of assimilation of compact storage conditions in the fuel storage pools in unit number one and prolonged fuel storage pool are investigated

  12. Structural analyses of the fuel receiving station pool at the Nuclear Fuel Service reprocessing plant, West Valley, New York

    International Nuclear Information System (INIS)

    Dong, R.G.; Ma, S.M.

    1978-01-01

    The FRS is a pool structure and enclosing building constructed in 1966 for storing spent nuclear fuel. The enclosing building was not analyzed. The pool structure's responses to operating loads, seismic excitation, and an accidentally dropped cask were determined. Locations in the FRS pool were identified where structural strength would be exceeded in the event of an earthquake of 0.2 g maximum ground acceleration or an accident in which a cask dropped from the maximum height of the crane hook used to maneuver it. 25 figures, 4 tables

  13. Spent fuel storage pool

    International Nuclear Information System (INIS)

    Murakami, Naoshi.

    1996-01-01

    Fences are disposed to a fuel exchange floor surrounding the upper surface of a fuel pool for preventing overflow of pool water. The fences comprise a plurality of flat boards arranged in parallel with each other in the longitudinal direction while being vertically inclined, and slits are disposed between the boards for looking down the pool. Further, the fences comprise wide boards and are constituted so as to be laid horizontally on the fuel exchange floor in a normal state and uprisen by means of the signals from an earthquake sensing device. Even if pool water is overflow from the fuel pool by the vibrations occurred upon earthquake and flown out to the floor of the fuel exchange floor, the overflow from the fuel exchange floor is prevented by the fences. An operator who monitors the fuel pool can observe the inside of the fuel pool through the slits formed to the fences during normal operation. The fences act as resistance against overflowing water upon occurrence of an earthquake thereby capable of reducing the overflowing amount of water due to the vibrations of pool water. The effect of preventing overflowing water can be enhanced. (N.H.)

  14. Current perceptions of spent nuclear fuel behavior in water pool storage

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1977-06-01

    A survey was conducted of a cross section of U.S. and Canadian fuel storage pool operators to define the spent fuel behavior and to establish the range of pool storage environments. There is no evidence for significant corrosion degradation. Fuel handling causes only minimal damage. Most fuel bundles with defects generally are stored without special procedures. Successful fuel storage up to 18 years with benign water chemistry has been demonstrated. 2 tables

  15. Quality of water from the pool, original containers and aluminum drums used for storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Idjakovic, Z.; Milonjic, S.; Cupic, S.

    2001-01-01

    Results of chemical analyses of water from the pool, including original containers and aluminium drums, for storage of spent nuclear fuel of the research reactor RA at the VINCA Institute and a short survey of the water properties from similar pools of other countries are presented in the paper. (author)

  16. Fuel assembly storage pool

    International Nuclear Information System (INIS)

    Hiranuma, Hiroshi.

    1976-01-01

    Object: To remove limitation of the number of storage of fuel assemblies to increase the number of storage thereof so as to relatively reduce the water depth required for shielding radioactive rays. Structure: Fuel assembly storage rack containers for receiving a plurality of spent fuel assembly racks are stacked in multi-layer fashion within a storage pool filled with water for shielding radioactive rays and removing heat. (Furukawa, Y.)

  17. Conception of a sub aquatic lighting system for nuclear fuels storage pools

    International Nuclear Information System (INIS)

    Bracco, P.; Rosenthal, E.

    1990-01-01

    Restrictions like contaminated water, irradiated fuel elements in racks located on the bottom of the pool and the impossibility of removing the water, require a non conventional design of pool lamps. The model developed is independent of the pool, permitting easily fabrication and maintenance. They are made of stainless steel tubes with borosilicate windows, where floodlight or light are located. The lamp assembly is fixed at the border of the pool. The system offers advantages over the conventional pool lighting systems in fabrication, operation and maintenance. (author)

  18. Micro-organisms and divers exposure to radioactivity in spent fuel pools at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Muniz de A, D. [Underwater Construction Corporation, Latin America, Fortaleza, Ceara (Brazil); Silva, R. [Universidade Federal do Rio de Janeiro, Instituto de Biofisica Carlos Chagas Filho, 21941-902 Rio de Janeiro (Brazil); Gomes N, C. A., E-mail: dmuniz@uccdive.com [Universidade Federal do Rio de Janeiro, Instituto de Biologia, Environmental Engineering Program, 21941-902 Rio de Janeiro (Brazil)

    2017-09-15

    Many nuclear power plants (NPPs) around the world are in the process of extending their lifespan from 40 to 60 years of operation. The NPP; Angra 1 (Brazil) has performed a thorough evaluation of its Life Extension Engineering project. In this context, the spent fuel pool (SFP) was one of the areas studied in order to demonstrate the plants integrity for a life extension. Micro-organisms growing on the liner of the fuel transfer channel (Ftc) and SFP can form a film of bacteria, which is highly resistant to radiation. This paper aims to compare the micro-organisms found in NPP Angra 1 with those reported to other NPPs and also relates their occurrence with the radiation levels at the sites. It also compares divers exposure to radioactivity during underwater activities in the SFP. Fourteen samples were collected on the surface of the liners of the Ftc, the SFP and the drains within the fuel building (FB) of Angra 1. For the identification of the micro-organisms, a metagenomics analysis was performed by random sequencing (Shotgun) and the use of Ion Torrent PGM Sequence r. Twelve micro-organisms phyla were identified; Acido-bacteria, Actino-bacteria, Bacteroidetes, Chlamydiae, Chlorobi, Chloroflexi, Cyano-bacteria, Deinococcus-Thermus, Firmicutes, Planctomycetes, Proteo-bacteria, and Verrucomicrobia as well as organisms not classified. In the SFP of Angra 1, the bacteria survived the exposure to a radiation of 0.416 Gy/h (high radiation). Deinococcus-thermus, bacteria identified in Angra 1, has resisted an exposure to 30,000 Gy/h in another plant. (Author)

  19. Micro-organisms and divers exposure to radioactivity in spent fuel pools at nuclear power plants

    International Nuclear Information System (INIS)

    Muniz de A, D.; Silva, R.; Gomes N, C. A.

    2017-09-01

    Many nuclear power plants (NPPs) around the world are in the process of extending their lifespan from 40 to 60 years of operation. The NPP; Angra 1 (Brazil) has performed a thorough evaluation of its Life Extension Engineering project. In this context, the spent fuel pool (SFP) was one of the areas studied in order to demonstrate the plants integrity for a life extension. Micro-organisms growing on the liner of the fuel transfer channel (Ftc) and SFP can form a film of bacteria, which is highly resistant to radiation. This paper aims to compare the micro-organisms found in NPP Angra 1 with those reported to other NPPs and also relates their occurrence with the radiation levels at the sites. It also compares divers exposure to radioactivity during underwater activities in the SFP. Fourteen samples were collected on the surface of the liners of the Ftc, the SFP and the drains within the fuel building (FB) of Angra 1. For the identification of the micro-organisms, a metagenomics analysis was performed by random sequencing (Shotgun) and the use of Ion Torrent PGM Sequence r. Twelve micro-organisms phyla were identified; Acido-bacteria, Actino-bacteria, Bacteroidetes, Chlamydiae, Chlorobi, Chloroflexi, Cyano-bacteria, Deinococcus-Thermus, Firmicutes, Planctomycetes, Proteo-bacteria, and Verrucomicrobia as well as organisms not classified. In the SFP of Angra 1, the bacteria survived the exposure to a radiation of 0.416 Gy/h (high radiation). Deinococcus-thermus, bacteria identified in Angra 1, has resisted an exposure to 30,000 Gy/h in another plant. (Author)

  20. Experimental and inspection facilities in post-irradiation of spent fuel pools for the analysis of the behaviour of nuclear fuels in power reactors

    International Nuclear Information System (INIS)

    Ruggirello, G.; Zawerucha, A.

    1992-01-01

    Since the beginning of the Atomic Nuclear Reactors (PHWR) Atucha I and Embalse in Argentine are employed different techniques for the knowing of the fuel bundles performances. It is detailed the facilities on post-irradiation examination. The techniques described are: online measurements, visual inspections, identifications of defective fuels and rods assemblies in spent fuel pools. This controls have made possible the feed-back to the manufactory process and the changes in the manufactory quality controls. (author)

  1. Analysis of raft foundations for spent fuel pool in nuclear facilities

    International Nuclear Information System (INIS)

    Subramanian, K.V.; Kashikar, A.V.; Nath, C.; Shintre, C.C.

    2005-01-01

    Foundation rafts are analysed as a plate on elastic foundation with the representation of the foundation media using the Winkler idealisation i.e. series of linear uncoupled springs. The elastic constant of the Winkler springs is derived using the sub-grade modulus. However, the Winkler approach has limitations due to incompatibility of the deflections at raft-soil interface. The deflection of the raft at the point of contact and the deformation of the foundation media at this point of contact are incompatible in this approach. This particularly influences flexible rafts and further if the foundation media is soil. This paper discusses the analysis of raft, in general, and the analysis of the foundation raft for a Spent Fuel pool facility using 'variable k approach' where deformations at a node and influencing nodes are computed using Boussinesq's theory. The limitations stated above are overcome in this approach. Some studies on the sensitivity of parameters were carried out in the form of variation of moduli of elasticity of concrete and deformation modulus of soil. Analysis is also performed with conventional method using 'Winkler' soil springs. It is concluded that the Winkler model does not correctly predict the behaviour of the mat both qualitatively and quantitatively and could lead to underestimation of soil pressures leading to unconservative design. The approach involving soil structure interaction like the one presented here is hence recommended for important structures like those involved in Nuclear facilities. (authors)

  2. Robotic cleaning of a spent fuel pool

    International Nuclear Information System (INIS)

    Roman, H.T.; Marian, F.A.; Silverman, E.B.; Barkley, V.P.

    1987-01-01

    Spent fuel pools at nuclear power plants are not cleaned routinely, other than by purifying the water that they contain. Yet, debris can collect on the bottom of a pool and should be removed prior to fuel transfer. At Public Service Electric and Gas Company's Hope Creek Nuclear Power Plant, a submersible mobile robot - ARD Corporation's SCAVENGER - was used to clean the bottom of the spent fuel pool prior to initial fuel loading. The robotic device was operated remotely (as opposed to autonomously) with a simple forward/reverse control, and it cleaned 70-80% of the pool bottom. This paper reports that a simple cost-benefit analysis shows that the robotic device would be less expensive, on a per mission basis, than other cleaning alternatives, especially if it were used for other similar cleaning operations throughout the plant

  3. Gravity-driven flow and heat transfer in a spent nuclear fuel storage pool

    International Nuclear Information System (INIS)

    Gay, R.R.

    1983-01-01

    The GFLOW code analyzes a three-dimensional rectangular porous medium by dividing the porous medium into a number of nodes or cells specified by the user. The finite difference form of the fluid conservation equations is solved for each node by application of a modified ''marker and cell'' numerical technique. The existence of spent nuclear fuel in any node is modeled by using a porosity value less than unity in that node and by including a surface heat transfer term in the fluid energy equation. In addition, local pressure losses due to grid spaces or other planar flow obstructions can be modeled by local loss coefficients. Heat conduction in the fuel is simulated by a fast running implicit finite difference model of the fuel, gap, and clad regions of the fuel rod

  4. Determination of maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant - Unit 3

    Energy Technology Data Exchange (ETDEWEB)

    Werner, F.L., E-mail: fernanda.werner@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Departamento de Engenharia Nuclear; Alves, A.S.M., E-mail: asergi@eletronuclear.gov.br [Eletrobras Termonuclear (Eletronuclear), Rio de Janeiro, RJ (Brazil); Frutuoso e Melo, P.F., E-mail: frutuoso@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    In this paper, a mathematical model for the determination of the maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant – Unit 3 was developed. The model was obtained from the boundary layer analysis and the application of Navier-Stokes equation to a vertical flat plate immersed in a water flow under free convection regime. Both types of pressure loss coefficients through the flow channel were considers in the modeling, the form coefficient for fuel assemblies (FAs) and the loss due to rod friction. The resulting equations enabled the determination of a mixed water temperature below the storage racks (High Density Storage Racks) as well as the estimation of a temperature gradient through the racks. The model was applied to the authorized operation of the plant (power operation, plant outage and upset condition) and faulted conditions (loss of coolant accidents and external events). The results obtained are in agreement with Brazilian and international standards. (author)

  5. Determination of maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant - Unit 3

    International Nuclear Information System (INIS)

    Werner, F.L.; Frutuoso e Melo, P.F.

    2017-01-01

    In this paper, a mathematical model for the determination of the maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant – Unit 3 was developed. The model was obtained from the boundary layer analysis and the application of Navier-Stokes equation to a vertical flat plate immersed in a water flow under free convection regime. Both types of pressure loss coefficients through the flow channel were considers in the modeling, the form coefficient for fuel assemblies (FAs) and the loss due to rod friction. The resulting equations enabled the determination of a mixed water temperature below the storage racks (High Density Storage Racks) as well as the estimation of a temperature gradient through the racks. The model was applied to the authorized operation of the plant (power operation, plant outage and upset condition) and faulted conditions (loss of coolant accidents and external events). The results obtained are in agreement with Brazilian and international standards. (author)

  6. Insights from a comprehensive evaluation of risk at spent fuel pools at decommissioning nuclear power plants in the U.S

    International Nuclear Information System (INIS)

    Kelly, G.; Palla, R.; Cheok, M.; Parry, G.

    2001-01-01

    Recently, the U.S. Nuclear Regulatory Commission (NRC) undertook the first comprehensive safety assessment (the study) of spent fuel pools at decommissioning nuclear power plants in the United States. Previous NRC studies of spent fuel pools applied only to commercial nuclear operating reactors. The NRC staff made site visits to four decommissioning sites, and determined that the configurations at the decommissioning plants were very different from that assumed in operating reactor spent fuel pool safety assessments previously performed. The safety assessment will help determine the technical basis for rule making for emergency preparedness, security, and indemnification for decommissioning reactors. The scenario investigated by the safety assessment is one where the pool inventory is lost, spent fuel is uncovered, the fuel heats up, rapid oxidation of the zirconium fuel cladding occurs, and a fuel clad zirconium fire commences, which results in significant off-site doses to the public. The assessment investigated a wide range of internal and external initiating events such as loss of pool cooling, seismic, fire, loss-of-offsite-power, heavy load drop, tornado missile, aircraft impact, and loss of inventory events. The assessment developed conditional recovery probabilities for extended recovery periods. Comparison to the U.S. NRC Safety Goals is made. (author)

  7. Nuclear fuels

    International Nuclear Information System (INIS)

    Gangwani, Saloni; Chakrabortty, Sumita

    2011-01-01

    Nuclear fuel is a material that can be consumed to derive nuclear energy, by analogy to chemical fuel that is burned for energy. Nuclear fuels are the most dense sources of energy available. Nuclear fuel in a nuclear fuel cycle can refer to the fuel itself, or to physical objects (for example bundles composed of fuel rods) composed of the fuel material, mixed with structural, neutron moderating, or neutron reflecting materials. Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. The following paper will also include the uses. advancements, advantages, disadvantages, various processes and behavior of nuclear fuels

  8. Safety analysis methodology for Chinshan nuclear power plant spent fuel pool under Fukushima-like accident condition

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hao-Tzu [Institute of Nuclear Energy Research, Taoyuan, Taiwan (China). Research Atomic Energy Council; Li, Wan-Yun; Wang, Jong-Rong; Tseng, Yung-Shin; Chen, Hsiung-Chih; Shih, Chunkuan; Chen, Shao-Wen [National Tsing Hua Univ., HsinChu, Taiwan (China). Inst. of Nuclear Engineering and Science

    2017-03-15

    Chinshan nuclear power plant (NPP), a BWR/4 plant, is the first NPP in Taiwan. After Fukushima NPP disaster occurred, there is more concern for the safety of NPPs in Taiwan. Therefore, in order to estimate the safety of Chinshan NPP spent fuel pool (SFP), by using TRACE, MELCOR, CFD, and FRAPTRAN codes, INER (Institute of Nuclear Energy Research, Atomic Energy Council, R.O.C.) performed the safety analysis of Chinshan NPP SFP. There were two main steps in this research. The first step was the establishment of Chinshan NPP SFP models. And the transient analysis under the SFP cooling system failure condition (Fukushima-like accident) was performed. In addition, the sensitive study of the time point for water spray was also performed. The next step was the fuel rod performance analysis by using FRAPTRAN and TRACE's results. Finally, the animation model of Chinshan NPP SFP was presented by using the animation function of SNAP with MELCOR analysis results.

  9. Method of performing shutdown reactivity measurements in spent nuclear fuel storage pools

    International Nuclear Information System (INIS)

    Levine, S.H.; Schultz, M.A.; Chang, D.

    1981-01-01

    The objective of this paper is to develop a device to measure the k/infinity/ of a spent fuel assembly used in light water reactors. A subcritical assembly having a cross configuration is designed to allow measurement of the k/sub //infinity/ of a spent fuel assembly by comparing the change in its multiplication with that of a fuel assembly of known k/infinity/. Calculations have been performed using nucleonic codes to develop polynomial equations that relate the k/infinity/ of the spent fuel assembly to measured data. The measurements involve taking count rates with the spent fuel assembly in the center position of the subcritical assembly, and the measured data are the count rate ratio of the spent fuel assembly over the count rate taken with a fuel assembly of known k/infinity/. The polynomial equations are easy to program on a microcomputer, which, together with the subcritical assembly, form the k/infinity/ meter. 9 refs

  10. Sensitivity studies of some important parameters in the criticality of nuclear fuel pool

    International Nuclear Information System (INIS)

    Pina, C.

    1981-01-01

    The criticality study of spent fuels storage aiming to verify this security. A small description of the optimal moderation phenomena as well as the effect of stainless steel plates as neutron absorbed material, arre presented [pt

  11. Optimal cost design of base-isolated pool structures for the storage of nuclear spent fuel

    International Nuclear Information System (INIS)

    Ko, H. M.; Park, K. S.; Song, J. H.

    1999-01-01

    A method of cost-effectiveness evaluation for seismic isolated pool structures is presented. Input ground motion is modeled as spectral density function compatible with response spectrum for combination of acceleration coefficient and site coefficient. Interaction effects between flexible walls and contained fluid are considered in the form of added mass matrix. Wall thickness and isolator stiffness are adopted as design variables for optimization. Transfer function vector of the structure-isolator system is derived from the equation of motion. Spectral analysis method based on random vibration theories is used for the calculation of failure probability. The exemplifying designs and analyses show that cost-effectiveness of isolated pool structure is relatively high in low-moderate seismic region and stiff soil condition. Sensitiveness of optimal design variables to assumed damage scales is relatively low in such region

  12. Investigation of the condition of spent-fuel pool components

    International Nuclear Information System (INIS)

    Kustas, F.M.; Bates, S.O.; Opitz, B.E.; Johnson, A.B. Jr.; Perez, J.M. Jr.; Farnsworth, R.K.

    1981-09-01

    It is currently projected that spent nuclear fuel, which is discharged from the reactor and then stored in water pools, may remain in those pools for several decades. Other studies have addressed the expected integrity of the spent fuel during extended water storage; this study assesses the integrity of metallic spent fuel pool components. Results from metallurgical examinations of specimens taken from stainless steel and aluminum components exposed in spent fuel pools are presented. Licensee Event Reports (LERs) relating to problems with spent fuel components were assessed and are summarized to define the types of operational problems that have occurred. The major conclusions of this study are: aluminum and stainless steel spent fuel pool components have a good history of performance in both deionized and borated water pools. Although some operational problems involving pool components have occurred, these problems have had minimal impacts

  13. Investigation of the condition of spent-fuel pool components

    Energy Technology Data Exchange (ETDEWEB)

    Kustas, F.M.; Bates, S.O.; Opitz, B.E.; Johnson, A.B. Jr.; Perez, J.M. Jr.; Farnsworth, R.K.

    1981-09-01

    It is currently projected that spent nuclear fuel, which is discharged from the reactor and then stored in water pools, may remain in those pools for several decades. Other studies have addressed the expected integrity of the spent fuel during extended water storage; this study assesses the integrity of metallic spent fuel pool components. Results from metallurgical examinations of specimens taken from stainless steel and aluminum components exposed in spent fuel pools are presented. Licensee Event Reports (LERs) relating to problems with spent fuel components were assessed and are summarized to define the types of operational problems that have occurred. The major conclusions of this study are: aluminum and stainless steel spent fuel pool components have a good history of performance in both deionized and borated water pools. Although some operational problems involving pool components have occurred, these problems have had minimal impacts.

  14. Stress corrosion (Astm G30-90 standard) in 08x18H10T stainless steel of nuclear fuel storage pool in WWER reactors

    International Nuclear Information System (INIS)

    Herrera, V.; Zamora R, L.

    1997-01-01

    At the water storage of the irradiated nuclear fuel has been an important factor in its management. The actual pools have its walls covered with inoxidable steel and heat exchangers to dissipate the residual heat from fuel. It is essential to control the water purity to eliminate those conditions which aid to the corrosion process in fuel and at related components. The steel used in this research was obtained from an austenitic inoxidizable steel standardized with titanium 08x18H10T (Type 321) similar to one of the two steel coatings used to cover walls and the pools floor. the test consisted in the specimen deformation through an U ply according to the Astm G30-90 standard. The exposition of the deformed specimen it was realized in simulated conditions to the chemical regime used in pools. (Author)

  15. Nuclear fuel

    International Nuclear Information System (INIS)

    D Hondt, P.

    1998-01-01

    The research and development programme on nuclear fuel at the Belgian Nuclear Research Centre SCK/CEN is described. The objective of this programme is to enhance the quantitative prediction of the operational limits of nuclear fuel and to assess the behaviour of fuel under incidental and accidental conditions. Progress is described in different domains including the modelling of fission gas release in LWR fuel, thermal conductivity, basic physical phenomena, post-irradiation examination for fuel performance assessment, and conceptual studies of incidental and accidental fuel experiments

  16. Anticipated corrosion in the Vermont Yankee spent fuel pool

    International Nuclear Information System (INIS)

    Weeks, J.R.

    1977-06-01

    The report provides additional information relating to a proposed modification to the spent fuel pool at the Vermont Yankee Nuclear Power Station (VYNPS) and addresses corrosion of spent fuel pool storage materials and zircaloy, and provides an analysis of the effectiveness of the Boral sealing

  17. Nuclear reactors and fuel storage pools security in France and in Belgium, and the associated reinforcement measures. Press kit

    International Nuclear Information System (INIS)

    Besnard, Manon; Marignac, Yves; Boilley, David; MacKerron, Gordon; Becker, Oda; Lyman, Ed; Zerbib, Jean-Claude; Sotty, Meryl

    2017-10-01

    This report on the security of nuclear reactors and fuel storage pools in France and Belgium draws on the contributions of seven experts from France, Germany, the United Kingdom and the United States - specialists in nuclear safety, security, radioprotection and economics - to bring together the full range of expertise necessary to analyse the problem. Each contributor is only responsible for his/her contribution in the form it was commissioned and separately delivered to Greenpeace France. This report looks at an eminently sensitive subject in an extremely delicate context. Critical analysis and independent expertise must, in line with this, be approached in a way which conciliates two conflicting requirements. The first is that of democratic choice. The security of nuclear facilities in the face of external attacks must be open to public debate. There is no justifiable reason for this issue, a major factor in the assessment of risks related to different industrial and energy options, to be excluded from the democratic process. The public has a fundamental right to information about the risks associated with the operation of nuclear facilities, which includes assessing the risk of external attacks in all its dimensions. It is thus the responsibility of non-institutional experts to contribute to this debate. The second requirement, equally fundamental, is the preservation of public security. Contributing to this debate in a way that enhances the risk of an external attack on nuclear facilities, or, even worse, favours the success of a possible attack by revealing any flaws in the system, is of course out of the question. It is therefore also the responsibility of non-institutional experts to ensure that the protection of such facilities is not impaired by the information they collect or the analyses they produce and make available to the public. It is particularly difficult to strike this balance in the French context, since the authorities responsible for nuclear

  18. Optimization of spent fuel pool weir gate driving mechanism

    Science.gov (United States)

    Liu, Chao; Du, Lin; Tao, Xinlei; Wang, Shijie; Shang, Ertao; Yu, Jianjiang

    2018-04-01

    Spent fuel pool is crucial facility for fuel storage and nuclear safety, and the spent fuel pool weir gate is the key related equipment. In order to achieve a goal of more efficient driving force transfer, loading during the opening/closing process is analyzed and an optimized calculation method for dimensions of driving mechanism is proposed. The result of optimizing example shows that the method can be applied to weir gates' design with similar driving mechanism.

  19. Nuclear fuel storage facility

    International Nuclear Information System (INIS)

    Matsumoto, Takashi; Isaka, Shinji.

    1987-01-01

    Purpose: To increase the spent fuel storage capacity and reduce the installation cost in a nuclear fuel storage facility. Constitution: Fuels handled in the nuclear fuel storage device of the present invention include the following four types: (1) fresh fuels, (2) 100 % reactor core charged fuels, (3) spent fuels just after taking out and (4) fuels after a certain period (for example one half-year) from taking out of the reactor. Reactivity is high for the fuels (1), and some of fuels (2), while low in the fuels (3) (4), Source intensity is strong for the fuels (3) and some of the fuels (2), while it is low for the fuels (1) and (4). Taking notice of the fact that the reactivity, radioactive source intensity and generated after heat are different in the respective fuels, the size of the pool and the storage capacity are increased by the divided storage control. While on the other hand, since the division is made in one identical pool, the control method becomes important, and the working range is restricted by means of a template, interlock, etc., the operation mode of the handling machine is divided into four, etc. for preventing errors. (Kamimura, M.)

  20. Nuclear fuels

    International Nuclear Information System (INIS)

    2008-01-01

    The nuclear fuel is one of the key component of a nuclear reactor. Inside it, the fission reactions of heavy atoms, uranium and plutonium, take place. It is located in the core of the reactor, but also in the core of the whole nuclear system. Its design and properties influence the behaviour, the efficiency and the safety of the reactor. Even if it represents a weak share of the generated electricity cost, its proper use represents an important economic stake. Important improvements remain to be made to increase its residence time inside the reactor, to supply more energy, and to improve its robustness. Beyond the economical and safety considerations, strategical questions have to find an answer, like the use of plutonium, the management of resources and the management of nuclear wastes and real technological challenges have to be taken up. This monograph summarizes the existing knowledge about the nuclear fuel, its behaviour inside the reactor, its limits of use, and its R and D tracks. It illustrates also the researches in progress and presents some key results obtained recently. Content: 1 - Introduction; 2 - The fuel of water-cooled reactors: aspect, fabrication, behaviour of UO 2 and MOX fuels inside the reactor, behaviour in loss of tightness situation, microscopic morphology of fuel ceramics and evolution under irradiation - migration and localisation of fission products in UOX and MOX matrices, modeling of fuels behaviour - modeling of defects and fission products in the UO 2 ceramics by ab initio calculations, cladding and assembly materials, pellet-cladding interaction, advanced UO 2 and MOX ceramics, mechanical behaviour of the fuel assembly, fuel during a loss of coolant accident, fuel during a reactivity accident, fuel during a serious accident, fuel management inside reactor cores, fuel cycle materials balance, long-term behaviour of the spent fuel, fuel of boiling water reactors; 3 - the fuel of liquid metal fast reactors: fast neutrons radiation

  1. Nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, H [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1976-10-01

    It is expected that nuclear power generation will reach 49 million kW in 1985 and 129 million kW in 1995, and the nuclear fuel having to be supplied and processed will increase in proportion to these values. The technical problems concerning nuclear fuel are presented on the basis of the balance between the benefit for human beings and the burden on the human beings. Recently, especially the downstream of nuclear fuel attracts public attention. Enriched uranium as the raw material for light water reactor fuel is almost monopolized by the U.S., and the technical information has not been published for fear of the diversion to nuclear weapons. In this paper, the present situations of uranium enrichment, fuel fabrication, transportation, reprocessing and waste disposal and the future problems are described according to the path of nuclear fuel cycle. The demand and supply of enriched uranium in Japan will be balanced up to about 1988, but afterwards, the supply must rely upon the early establishment of the domestic technology by centrifugal separation method. No problem remains in the fabrication of light water reactor fuel, but for the fabrication of mixed oxide fuel, the mechanization of the production facility and labor saving are necessary. The solution of the capital risk for the construction of the second reprocessing plant is the main problem. Japan must develop waste disposal techniques with all-out efforts.

  2. Nuclear fuels

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F.

    2009-01-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO 2 pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO 2 and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under irradiation

  3. Nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F

    2009-07-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO{sub 2} pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO{sub 2} and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under

  4. Nuclear fuel

    International Nuclear Information System (INIS)

    Azevedo, J.B.L. de.

    1980-01-01

    All stages of nuclear fuel cycle are analysed with respect to the present situation and future perspectives of supply and demand of services; the prices and the unitary cost estimation of these stages for the international fuel market are also mentioned. From the world resources and projections of uranium consumption, medium-and long term analyses are made of fuel availability for several strategies of use of different reactor types. Finally, the cost of nuclear fuel in the generation of electric energy is calculated to be used in the energetic planning of the electric sector. (M.A.) [pt

  5. Corrosion surveillance in spent fuel storage pools

    International Nuclear Information System (INIS)

    Howell, J.P.

    1996-01-01

    In mid-1991, corrosion of aluminum-clad spent nuclear fuel was observed in the light-water filled basins at the Savannah River site. A corrosion surveillance program was initiated in the P, K, L-Reactor basins and in the Receiving Basin for Offsite Fuels (RBOF). This program verified the aggressive nature of the pitting corrosion and provided recommendations for changes in basin operations to permit extended longer term interim storage. The changes were implemented during 1994--1996 and have resulted in significantly improved basin water quality with conductivity in the 1--3 microS/cm range. Under these improved conditions, no new pitting has been observed over the last three years. This paper describes the corrosion surveillance program at SRS and what has been learned about the corrosion of aluminum-clad in spent fuel storage pools

  6. Reactor TRIGA PUSPATI (RTP) spent fuel pool conceptual design

    International Nuclear Information System (INIS)

    Mohd Fazli Zakaria; Tonny Lanyau; Ahmad Nabil Ab Rahim

    2010-01-01

    Reactor TRIGA PUSPATI (RTP) is the one and only research reactor in Malaysia that has been safely operated and maintained since 1982. In order to enhance technical capabilities and competencies especially in nuclear reactor engineering a feasibility study on RTP power upgrading was proposed to serve future needs for advance nuclear science and technology in the country with the capability of designing and develop reactor system. The need of a Spent Fuel Pool begins with the discharge of spent fuel elements from RTP for temporary storage that includes all activities related to the storage of fuel until it is either sent for reprocessed or sent for final disposal. To support RTP power upgrading there will be major RTP systems replacement such as reactor components and a new temporary storage pool for fuel elements. The spent fuel pool is needed for temporarily store the irradiated fuel elements to accommodate a new reactor core structure. Spent fuel management has always been one of the most important stages in the nuclear fuel cycle and considered among the most common problems to all countries with nuclear reactors. The output of this paper will provide sufficient information to show the Spent Fuel Pool can be design and build with the adequate and reasonable safety assurance to support newly upgraded TRIGA PUSPATI TRIGA Research Reactor. (author)

  7. Contingency strategy for insufficient full core off load capability in spent fuel pool for Chinshan nuclear power station

    International Nuclear Information System (INIS)

    Huang, Pinghue

    2012-01-01

    The spent fuel pool (SFP) at Taiwan Power Company's (TUC's) Chinshan plant lost the full core off load (FCO) capability in 2010, even with the second SFP repacking project to expand the capacity as reported in 12PBNC. The TEPC had originally planned to move some spent fuel assemblies from SFP to dry storage facility, however, the dry storage project had seriously fell behind. Thus, it is required to address insufficient FCO capability, and the following contingency measures have been employed: The first step was to explore whether there was a specific regulatory requirement for FCO capability, and none were identified. Also, the industrial experiences were explored. The refueling strategy is changed from FCO to in-core shuffling. A feasibility evaluation performed indicates the Technical Specifications require: alternate method of decay heat removal, and verification of shutdown margin for each in vessel fuel movement. Specific methods have been successfully established. A safety evaluation for operation without FCO capability was performed, and no safety concerns were identified. The risk for operation without FCO capability was assessed. The previous operational experiences were identified. Moreover, such works are not expected in subsequent cycles. The new fuel vault is used to store new fuel assemblies. The criticality analysis has been performed and some new approaches are proposed to enhance the storage flexibility as reported in 17PBNC. An inter-unit transfer cask has been designed to transfer spent fuel from the SFP of one unit to the other. The FCO capability can be effectively extended for three more years with this consideration. The TPC discussed the contingency strategy with the ROCAEC in May 2006, and the ROCAEC's concurrence was attained. With the proposed strategy, Chinshan units have been operating smoothly

  8. Contingency strategy for insufficient full core off load capability in spent fuel pool for Chinshan nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Pinghue [Taiwan Power Company, Taipei (China)

    2012-03-15

    The spent fuel pool (SFP) at Taiwan Power Company's (TUC's) Chinshan plant lost the full core off load (FCO) capability in 2010, even with the second SFP repacking project to expand the capacity as reported in 12PBNC. The TEPC had originally planned to move some spent fuel assemblies from SFP to dry storage facility, however, the dry storage project had seriously fell behind. Thus, it is required to address insufficient FCO capability, and the following contingency measures have been employed: The first step was to explore whether there was a specific regulatory requirement for FCO capability, and none were identified. Also, the industrial experiences were explored. The refueling strategy is changed from FCO to in-core shuffling. A feasibility evaluation performed indicates the Technical Specifications require: alternate method of decay heat removal, and verification of shutdown margin for each in vessel fuel movement. Specific methods have been successfully established. A safety evaluation for operation without FCO capability was performed, and no safety concerns were identified. The risk for operation without FCO capability was assessed. The previous operational experiences were identified. Moreover, such works are not expected in subsequent cycles. The new fuel vault is used to store new fuel assemblies. The criticality analysis has been performed and some new approaches are proposed to enhance the storage flexibility as reported in 17PBNC. An inter-unit transfer cask has been designed to transfer spent fuel from the SFP of one unit to the other. The FCO capability can be effectively extended for three more years with this consideration. The TPC discussed the contingency strategy with the ROCAEC in May 2006, and the ROCAEC's concurrence was attained. With the proposed strategy, Chinshan units have been operating smoothly.

  9. Investigation of the thermal performance of a vertical two-phase closed thermosyphon as a passive cooling system for a nuclear reactor spent fuel storage pool

    Energy Technology Data Exchange (ETDEWEB)

    Kusuma, Mukhsinun Hadi; Putra, Nandy; Imawan, Ficky Augusta [Heat Transfer Laboratory, Department of Mechanical Engineering Universitas Indonesia, Kampus (Indonesia); Antariksawan, Anhar Riza [Centre for Nuclear Reactor Safety and Technology, National Nuclear Energy Agency of Indonesia (BATAN), Kawasan Puspiptek Serpong (Indonesia)

    2017-04-15

    The decay heat that is produced by nuclear reactor spent fuel must be cooled in a spent fuel storage pool. A wickless heat pipe or a vertical two-phase closed thermosyphon (TPCT) is used to remove this decay heat. The objective of this research is to investigate the thermal performance of a prototype model for a large-scale vertical TPCT as a passive cooling system for a nuclear research reactor spent fuel storage pool. An experimental investigation and numerical simulation using RELAP5/MOD 3.2 were used to investigate the TPCT thermal performance. The effects of the initial pressure, filling ratio, and heat load were analyzed. Demineralized water was used as the TPCT working fluid. The cooled water was circulated in the water jacket as a cooling system. The experimental results show that the best thermal performance was obtained at a thermal resistance of 0.22°C/W, the lowest initial pressure, a filling ratio of 60%, and a high evaporator heat load. The simulation model that was experimentally validated showed a pattern and trend line similar to those of the experiment and can be used to predict the heat transfer phenomena of TPCT with varying inputs.

  10. Loss of spent fuel pool cooling PRA: Model and results

    International Nuclear Information System (INIS)

    Siu, N.; Khericha, S.; Conroy, S.; Beck, S.; Blackman, H.

    1996-09-01

    This letter report documents models for quantifying the likelihood of loss of spent fuel pool cooling; models for identifying post-boiling scenarios that lead to core damage; qualitative and quantitative results generated for a selected plant that account for plant design and operational practices; a comparison of these results and those generated from earlier studies; and a review of available data on spent fuel pool accidents. The results of this study show that for a representative two-unit boiling water reactor, the annual probability of spent fuel pool boiling is 5 x 10 -5 and the annual probability of flooding associated with loss of spent fuel pool cooling scenarios is 1 x 10 -3 . Qualitative arguments are provided to show that the likelihood of core damage due to spent fuel pool boiling accidents is low for most US commercial nuclear power plants. It is also shown that, depending on the design characteristics of a given plant, the likelihood of either: (a) core damage due to spent fuel pool-associated flooding, or (b) spent fuel damage due to pool dryout, may not be negligible

  11. Total quality in spent fuel pool reracking

    International Nuclear Information System (INIS)

    Cranston, J.S.; Bradbury, R.B.; Cacciapouti, R.J.

    1993-01-01

    The nuclear utility environment is one of strict cost control under prescriptive regulations and increasing public scrutiny. This paper presents the results of A Total Quality approach, by a dedicated team, that addresses the need for increased on-site spent fuel storage in this environment. Innovations to spent fuel pool reracking, driven by utilities' specific technical needs and shrinking budgets, have resulted in both product improvements and lower prices. A Total Quality approach to the entire turnkey project is taken, thereby creating synergism and process efficiency in each of the major phases of the project: design and analysis, licensing, fabrication, installation and disposal. Specific technical advances and the proven quality of the team members minimizes risk to the utility and its shareholders and provides a complete, cost effective service. Proper evaluation of spent fuel storage methods and vendors requires a full understanding of currently available customer driven initiatives that reduce cost while improving quality. In all phases of a spent fuel reracking project, from new rack design and analysis through old rack disposal, the integration of diverse experts, at all levels and throughout all phases of a reracking project, better serves utility needs. This Total Quality environment in conjunction with many technical improvements results in a higher quality product at a lower cost

  12. Thermal Cooling Limits of Sbotaged Spent Fuel Pools

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Thomas G. Hughes; Dr. Thomas F. Lin

    2010-09-10

    To develop the understanding and predictive measures of the post “loss of water inventory” hazardous conditions as a result of the natural and/or terrorist acts to the spent fuel pool of a nuclear plant. This includes the thermal cooling limits to the spent fuel assembly (before the onset of the zircaloy ignition and combustion), and the ignition, combustion, and the subsequent propagation of zircaloy fire from one fuel assembly to others

  13. The management of the Spend Fuel Pool Water Quality (1996-2007)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hwan; Lee, Eui Gyu; Choi, Ho Young; Choi, Mun Jo; Kim, Hyung Wook; Lee, Mun; Lee, Choong Sung; Hur, Soon Ock; Ahn, Guk Hun

    2008-12-15

    The water quality management of spent fuel storage pool water quality in HANARO is important to prevent the corrosion of nuclear fuel and reactor structure material. The condition of the spent fuel storage pool water has been monitored by measuring the electrical conductivity of the spent fuel storage pool purification system and pH periodically. The status of the spent fuel storage pool water quality management was investigated by using the measured data. taken from 1996 to 2007. In general, the electrical conductivity of the spent fuel storage pool water have been managed within 1 {mu}S/cm which is an operation target of HANARO.

  14. Compact fuel storage rack for fuel pools

    International Nuclear Information System (INIS)

    Parras, F.; Louvat, J.P.

    1986-01-01

    ETS LEMER and FRAMATOME propose a new compact storage rack. This rack permits a considerable increase of the storage capacity of cooling pools. A short description of the structure and the components is presented, to propose racks that are: . Inalterable, . Compact, . Insensitive to earthquakes. Installation in pools already in operation is simplified by their light structure and the bearing device [fr

  15. Laser surveillance systems for fuel storage pools

    International Nuclear Information System (INIS)

    Boeck, H.

    1985-06-01

    A Laser Surveillance System (LASSY) as a new safeguards device has been developed under the IAEA research contract No. 3458/RB at the Atominstitut Wien using earlier results by S. Fiarman. This system is designed to act as a sheet of light covering spent fuel assemblies in spent fuel storage pools. When movement of assemblies takes place, LASSY detects and locates the position of the movement in the pool and when interrogated, presents a list of pool positions and times of movement to the safeguards inspector. A complete prototype system was developed and built. Full scale tests showed the principal working capabilities of a LASSY underwater

  16. Analysis of radiation shields of BNPP spent fuel pool

    International Nuclear Information System (INIS)

    Ayoobian, N.; Hadad, K.; Nematollahi, M. R.

    2007-01-01

    Radioactive protection is one of the most important subjects in nuclear power plants safety. Analysis of BNPP spent fuel pool shielding , as a main source of energetic γ-rays was the main goal of this project. Firstly, we simulated the reactor core using WIMSD-4 neutronic code and the amount of fission product in the fuel assembly (FA) was calculated during the reactor operation. Then, by obtaining the results from the previous calculation and by using MCNP4C nuclear code , the intensity of γ-rays was obtained in layers of spent fuel pool shields. The results have shown that no significant γ-rays passed through these shields. Finally, an accident and resulting exposure dose above the pool was analyzed

  17. Spent fuel pool cleanup and stabilization

    International Nuclear Information System (INIS)

    Miller, R.L.

    1987-06-01

    Each of the plutonium production reactors at Hanford had a large water-filled spent fuel pool to provide interim storage of irradiated fuel while awaiting shipment to the separation facilities. After cessation of reactor operations the fuel was removed from the pools and the water levels were drawn down to a 5- to 10-foot depth. The pools were maintained with the water to provide shielding and radiological control. What appeared to be a straightforward project to process the water, remove the sediments from the basin, and stabilize the contamination on the floors and walls became a very complex and time consuming operation. The sediment characteristics varied from pool to pool, the ion exchange system required modification, areas of hard-pack sediments were discovered on the floors, special arrangements to handle and package high dose rate items for shipment were required, and contract problems ensued with the subcontractor. The original schedule to complete the project from preliminary engineering to final stabilization of the pools was 15 months. The actual time required was about 25 months. The original cost estimate to perform the work was $2,651,000. The actual cost of the project was $5,120,000, which included $150,000 for payment of claims to the subcontractor. This paper summarizes the experiences associated with the cleanup and radiological stabilization of the 100-B, -C, -D, and -DR spent fuel pools, and discusses a number of lessons learned items

  18. Chinese nuclear insurance and Chinese nuclear insurance pool

    International Nuclear Information System (INIS)

    Gong Zhiqi

    2000-01-01

    Chinese Nuclear Insurance Started with Daya Bay Nuclear Power Station, PICC issued the insurance policy. Nuclear insurance cooperation between Chinese and international pool's organizations was set up in 1989. In 1996, the Chinese Nuclear Insurance Pool was prepared. The Chinese Nuclear Insurance Pool was approved by The Chinese Insurance Regulatory Committee in May of 1999. The principal aim is to centralize maximum the insurance capacity for nuclear insurance from local individual insurers and to strengthen the reinsurance relations with international insurance pools so as to provide the high quality insurance service for Chinese nuclear industry. The Member Company of Chinese Nuclear Pool and its roles are introduced in this article

  19. Nuclear fuel storage

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1981-01-01

    A nuclear fuel storage apparatus for use in a water-filled pool is fabricated of a material such as stainless steel in the form of an egg crate structure having vertically extending openings. Fuel may be stored in this basic structure in a checkerboard pattern with high enrichment fuel, or in all openings when the fuel is of low effective enrichment. Inserts of a material such as stainless steel are adapted to fit within these openings so that a water gap and, therefore, a flux trap is formed between adjacent fuel storage locations. These inserts may be added at a later time and fuel of a higher enrichment may be stored in each opening. When it is desired to store fuel of still greater enrichment, poison plates may be added to the water gap formed by the installed insert plates, or substituted for the insert plates. Alternately, or in addition, fuel may be installed in high neutron absorption poison boxes which surround the fuel assembly. The stainless steel inserts and the poison plates are each not required until the capacity of the basic egg crate structure is approached. Purchase of these items can, therefore, be deferred for many years. Should the fuel to be stored be of higher enrichment than initially forecast, the deferred decision on the poison plates makes it possible to obtain increased poison in the plates to satisfy the newly discovered requirement

  20. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  1. Current operating practices of nuclear insurance pools

    International Nuclear Information System (INIS)

    O'Connell, J.M.

    1993-01-01

    This paper discusses the nuclear pooling system and co-operation between the pools, present practice and capacity, with a breakdown of the limits for third party liability and material damage. The author also describes the relationship between the pools and the nuclear operators (the policyholders), and concludes that the nuclear pools have been successful in serving the interests of their member companies, their policyholders and the governments as they have provided a stable insurance market by making available capacity in amounts that had never before been assembled and placed at risk in a single location. 2 tabs

  2. Rack for nuclear fuel elements

    International Nuclear Information System (INIS)

    Rubinstein, H.J.; Gordon, C.B.; Robison, A.; Clark, P.M.

    1977-01-01

    Disclosed is a rack for storing spent nuclear fuel elements in which a plurality of aligned rows of upright enclosures of generally square cross-sectional areas contain vertically disposed spent fuel elements. Each fuel element is supported at the lower end thereof by a respective support that rests on the floor of the spent fuel pool for a nuclear power plant. An open rack frame is employed as an upright support for the enclosures containing the spent fuel elements. Legs at the lower corners of the frame rest on the floor of the pool to support the frame. In one exemplary embodiment, the support for the fuel element is in the form of a base on which a fuel element rests and the base is supported by legs. In another exemplary embodiment, each fuel element is supported on the pool floor by a self-adjusting support in the form of a base on which a fuel element rests and the base rests on a ball or swivel joint for self-alignment. The lower four corners of the frame are supported by legs adjustable in height for leveling the frame. Each adjustable frame leg is in the form of a base resting on the pool floor and the base supports a threaded post. The threaded post adjustably engages a threaded column on which rests the lower end of the frame. 16 claims, 14 figures

  3. The Nuclear Insurance Pools: Operations and Covers

    International Nuclear Information System (INIS)

    Tetley, M.

    2008-01-01

    Nuclear insurance pools have provided insurance for the nuclear industry for over fifty years and it is fair to say that the development of civil nuclear power would not have been possible without the support of the commercial insurance market. The unknown risks presented by the nascent nuclear power industry in the 1950s required a leap of faith by insurers who developed specialist pooled insurance capacity to ensure adequate capacity to back up the operators' compensation obligations. Since then, nuclear insurance pools have evolved to become comprehensive suppliers of most types of insurance for nuclear plant globally. This paper will outline the structure, development, products and current operations of nuclear insurance pools.(author)

  4. Immobilization of radioactive waste sludge from spent fuel storage pool

    International Nuclear Information System (INIS)

    Pavlovic, R.; Plecas, I.

    1998-01-01

    In the last forty years, in FR Yugoslavia, as result of the research reactors' operation and radionuclides application in medicine, industry and agriculture, radioactive waste materials of the different categories and various levels of specific activities were generated. As a temporary solution, these radioactive waste materials are stored in the two hanger type interim storages for solid waste and some type of liquid waste packed in plastic barrels, and one of three stainless steal underground containers for other types of liquid waste. Spent fuel elements from nuclear reactors in the Vinca Institute have been temporary stored in water filled storage pool. Due to the fact that the water in the spent fuel elements storage pool have not been purified for a long time, all metallic components submerged in the water have been hardly corroded and significant amount of the sludge has been settled on the bottom of the pool. As a first step in improving spent fuel elements storage conditions and slowing down corrosion in the storage spent fuel elements pool we have decided to remove the sludge from the bottom of the pool. Although not high, but slightly radioactive, this sludge had to be treated as radioactive waste material. Some aspects of immobilisation, conditioning and storage of this sludge are presented in this paper. (author

  5. Alternatives for nuclear fuel disposal

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Badillo A, V.; Palacios H, J.; Celis del Angel, L.

    2010-10-01

    The spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments in the construction of repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution? or, What is the best technology for a specific solution? Many countries have deferred the decision on selecting an option, while other works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However, currently is under process an extended power up rate to 20% of their original power and also there are plans to extend operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. So this work describes some different alternatives that have been studied in Mexico to define which will be the best alternative to follow. (Author)

  6. Compact nuclear fuel storage

    International Nuclear Information System (INIS)

    Kiselev, V.V.; Churakov, Yu.A.; Danchenko, Yu.V.; Bylkin, B.K.; Tsvetkov, S.V.

    1983-01-01

    Different constructions of racks for compact storage of spent fuel assemblies (FA) in ''coolin''g pools (CP) of NPPs with the BWR and PWR type reactors are described. Problems concerning nuclear and radiation safety and provision of necessary thermal conditions arising in such rack design are discussed. It is concluded that the problem of prolonged fuel storage at NPPs became Very actual for many countries because of retapdation of the rates of fuel reprocessing centers building. Application of compact storage racks is a promising solution of the problem of intermediate FA storage at NPPs. Such racks of stainless boron steel and with neutron absorbers in the from of boron carbide panels enable to increase the capacity of the present CP 2-2.6 times, and the period of FA storage in them up to 5-10 years

  7. Nuclear Insurance Pools: Worldwide Practice and Development

    International Nuclear Information System (INIS)

    Reitsma, S. M. S.

    1998-01-01

    The development of nuclear installations to produce electricity led to the establishment of Nuclear Insurance Pools and the introduction of international Conventions on Third Party Liability. Nuclear Pools offer both Third Party Liability insurance, reflecting the Conventions' principles, and other insurance products. They are market-wide, providing a facility for participation by insurers who could not otherwise write the insurance for the particularly sensitive nuclear risk. All acceptances are for the net retention of each Member without recourse to individual reinsurance protection. Common account reinsurance is arranged with other Nuclear Pools all over the world. Thus, a transparency is created, which ensures the highest degree of reinsurance security and imposes a known finite limit to each participating insurer's commitment. Therefore, Pool-members are prepared to make a greater commitment to nuclear risks than would be case where they felt uncertain as regards their total exposure following a significant loss. (author)

  8. Evaluation of fire models for nuclear power plant applications. Benchmark exercise no. 4: Fuel pool fire inside a compartment - International panel report

    International Nuclear Information System (INIS)

    Klein-Hessling, W.; Roewekamp, M.; Riese, O.

    2006-11-01

    Fire simulations as well as their analytical validation procedures have gained more and more significance, particularly in the context of the fire safety analysis for operating nuclear power plants. Meanwhile, fire simulation models have been adapted as analytical tools for a risk oriented fire safety assessment. Calculated predictions can be used, on the one hand, for the improvements and upgrades of fire protection in nuclear power plants by the licensees and, on the other hand, as a tool for reproducible and clearly understandable estimations in assessing the available and/or foreseen fire protection measures by the authorities and their experts. For consideration of such aspects in the context of implementing new nuclear fire protection standards or of updating existing ones, an 'International Collaborative Project to Evaluate Fire Models for Nuclear Power Plant Applications' also known as the 'International Collaborative Fire Model Project' (ICFMP) was started in 1999. It has made use of the experience and knowledge of a variety of worldwide expert institutions in this field to assess and improve, if necessary, the state-of-the-art with respect to modeling fires in nuclear power plants and other nuclear installations. This document contains the results of the ICFMP Benchmark Exercise No. 4, where two fuel pool fire experiments in an enclosure with two different natural vent sizes have been considered. Analyzing the results of different fire simulation codes and code types provides some indications with respect to the uncertainty of the results. This information is especially important in setting uncertainty parameters in probabilistic risk studies and to provide general insights concerning the applicability and limitations in the application of different types of fire simulation codes for this type of fire scenario and boundary conditions. During the benchmark procedure the participants performed different types of calculations. These included totally blind

  9. The Role of Nuclear Insurance Pools

    International Nuclear Information System (INIS)

    Reitsma, S. M. S.

    2006-01-01

    Since fifty years insurers respond to the need of both governments and the electricity industry to provide financial protection to cover the perils presented by the use of nuclear energy for peaceful purposes. This paper aims at explaining what difficulties had to be solved in order to enable insurers to provide such protection, that as a solution to these difficulties Nuclear Insurance Pools were formed, how such pools operate and what security they provide. Thereby not only a number of universal principles underlying nuclear pool insurance will be explained, but also some differences in the characteristics of such insurance per group of countries. (author)

  10. In-pool damaged fuel bundle recovery

    International Nuclear Information System (INIS)

    Piascik, T.G.; Patenaude, R.S.

    1988-01-01

    While preparing to rerack the Oyster Creek Nuclear Generating Station, GPU Nuclear had need to move a damaged fuel bundle. This bundle had no upper tie plate and could not be moved in the normal manner. GPU Nuclear formed a small, dedicated project team to disassemble, package and move this damaged bundle. The team was composed of key personnel from GPU Nuclear Fuels Projects, OCNGS Operations and Proto-Power / Bisco, a specialty contractor who has fuel bundle reconstitution and rod consolidation experience, remote tooling, underwater video systems and experienced technicians. Proven tooling, clear procedures and a simple approach were important, but the key element was the spirit of teamwork and leadership exhibited by the people involved

  11. In-pool damaged fuel bundle recovery

    International Nuclear Information System (INIS)

    Piascik, T.G.; Patenaude, R.S.

    1988-01-01

    While preparing to rerack the Oyster Creek Nuclear Generating Station, GPU Nuclear had need to move a damaged fuel bundle. This bundle had no upper tie plate and could not be moved in the normal manner. GPU Nuclear formed a small, dedicated project team to disassemble, package, and move this damaged bundle. The team was composed of key personnel from GPU Nuclear Fuels Projects, OCNGS Operations and Proto-Power/Bisco, a specialty contractor who has fuel bundle reconstitution and rod consolidation experience, remote tooling, underwater video systems and experienced technicians. Proven tooling, clear procedures and a simple approach were important, but the key element was the spirit of teamwork and leadership exhibited by the people involved. In spite of several emergent problems which a task of this nature presents, this small, close knit utility/vendor team completed the work on schedule and within the exposure and cost budgets

  12. Nuclear fuel

    International Nuclear Information System (INIS)

    Quinauk, J.P.

    1990-01-01

    Since 1985, Fragema has been marketing and selling the Advanced Fuel Assemby AFA whose main features are its zircaloy grids and removable top and bottom nozzles. It is this product, which exists for several different fuel assembly arrays and heights, that will be employed in the reactors at Daya Bay. Fragema employs gadolinium as the consumable poison to enable highperformance fuel management. More recently, the company has supplied fuel assemblies of the mixed-oxide(MOX) and enriched reprocessed uranium type. The reliability level of the fuel sold by Fragema is one of the highest in the world, thanks in particular to the excellence of the quality assurance and quality control programs that have been implemented at all stages of its design and manufacture

  13. Expertise on the Goesgen-Daeniken nuclear power plant on the granting of a licence for the construction and operation of a water storage pool for fuel assemblies at the site of the power plant

    International Nuclear Information System (INIS)

    2003-04-01

    On June 26, 2002, the Goesgen-Daeniken AG nuclear power plant (KKG) delivered a request to the Swiss Federal Council for the granting of a licence for the construction and operation of a water storage pool for the on-site storage of the power plant's fuel assemblies. The present report contains the results of the examination of the request by the Federal Agency for the Safety of Nuclear Installations (HSK), to check that the projected storage pool satisfies the legal requirements from the point of view of nuclear safety and protection against radioactivity. A water storage pool already exists in the reactor building of KKG. It was conceived for a fuel cycle based on the reprocessing of the spent fuel assemblies. Its capacity is not sufficient when the spent fuel assemblies are no longer reprocessed but have to be transferred and stored in the Central Intermediate Storage Facility (ZWILAG) in Wuerenlingen because their heat production is too high. The capacity of the actual water pool allows a maximum cooling time of 5-6 years, while 7-10 years are required before transfer to ZWILAG. The projected new water storage pool has to be aircraft crash and earthquake proof, in the same way that the reactor building itself has to be. It can store a maximum of 1008 fuel assemblies. The water in the pool as well as the pool walls shield the radiation from of the fuel assemblies almost completely. Each fuel assembly is put into a square steel channel. The channel walls are lined with 6.11 mg/cm 2 of the neutron absorbing nuclide B-10, which guaranties the subcriticality of the water pool even if the storage pool would be entirely filled with non-irradiated fuel assemblies with the maximal allowed enrichment or the maximal allowed content of Plutonium in case of MOX fuel assemblies, which is a very conservative assumption. The heat released by decay in the spent fuel assemblies is transferred to the pool water. Storage pool cooling is carried out by natural circulation through

  14. Nuclear fuel for light water reactors. Part 2 and conclusion

    International Nuclear Information System (INIS)

    1983-01-01

    The article gives brief descriptions of a new cycle for nuclear fuel in the core and, in particular, fuel replacement, stock pool management for irradiated fuel elements, transport containers for irradiated nuclear fuels, treatment of low activity waste, the Climax system for long-term stocking of irradiated fuel, and transport of irradiated fuel over the Nevada Test Site. (A.E.W.)

  15. Equipment for the conditioning of core components in the fuel element storage pool with particular respect to the design required by the conditions for nuclear facilities in operation and the surveillance in accordance with atomic rules and regulations

    International Nuclear Information System (INIS)

    Dumpe, J.; Schwiertz, V.; Geiser, C.; Prucker, E.

    2001-01-01

    In nuclear power plants worn out and activated parts from the reactor core (core components) which are placed into the fuel element storage pool arise on a regular basis during the technical maintenance and the review. The disposal of these core components due to radiation protection aspects is only feasible within the fuel element storage pool during the operation of the NPP using techniques of the under water conditioning. Therefore, special GNS equipment is used for the conditioning, using under water conditioning equipment, such as UWS, BZ, and ZVA, a number of lifting and auxiliary equipment for mounting and dismantling purposes and the handling of the core components and the waste casks within the fuel element storage pool. These components must meet particular safety requirements with regard to their integrity and reliability. They are designed according to the requirements on nuclear components (KTA). The manipulating equipment must be partly redundant and the protection goals for nuclear accidents must be met. The Bavarian Ministry for Development and Environment tasked the TUeV Sueddeutschland with the surveillance and control. The conditioning equipment of GNS is therefore designed in co-ordination with the examiner of the Governmental Regulating Agency, in particular respect to all safety aspects. Furthermore the examiners perform reviews of the construction and the documentation during the design and construction phase. (orig.)

  16. Thermal analyses for the spend fuel pool of Taiwan BWR plants during the loss of cooling accident

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B-Y.; Yeh, C-L.; Wei, W-C.; Chen, Y-S., E-mail: onepicemine@iner.gov.tw, E-mail: clinyeh@iner.gov.tw, E-mail: hn150456@iner.gov.tw, E-mail: yschen@iner.gov.tw [Inst. of Nuclear Energy Research, Longtan Township, Taoyuan County, Taiwan (China)

    2014-07-01

    After the Fukushima nuclear accident, the safety of the spent fuel pool has become an important concern. In this study, thermal analysis of the spent fuel pool under a loss of cooling accident is performed. The BWR spent fuel pools in Taiwan are investigated, including the Chinshan, Kuosheng, and Lungmen plants. The transient pool temperature and level behaviors are calculated based on lumped energy balance. After the pool level drops below the top of the fuel, the peak cladding temperature is predicted by the Computational Fluid Dynamics (CFD) analysis. The influence to the cladding temperature of the uniform and checkboard fuel loading patterns is also investigated. (author)

  17. Comprehensive studies on regulatory issues of spent fuel pools

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    An existence of safety issues in the spent fuel pool (SFP) was recognized by the nuclear accident at the Fukushima Daiichi Nuclear Power Station, and many reports on the accident describe needs of countermeasures for SFP under sever accidents. For research planning, thermal hydraulic behaviors of SFP and possibility of occurrence of re-criticality conditions in SFP were studied by computational approaches. In the studies on thermal hydraulic behaviors, possibilities of adiabatic conditions in a spent fuel bundle were identified because natural circulation cooling of air could be terminated due to flow path blockage by pool water and steam cooling could be terminated due to reduction of pool water evaporation originated from cold water injection by emergency water supply. In the re-criticality study, in the case of the un-borated lack, it was shown that the neutron multiplication factor became larger than unity when the difference of water levels inside and outside the channel box larger than some values. (author)

  18. Nuclear fuel preheating system

    International Nuclear Information System (INIS)

    Andrea, C.

    1975-01-01

    A nuclear reactor new fuel handling system which conveys new fuel from a fuel preparation room into the reactor containment boundary is described. The handling system is provided with a fuel preheating station which is adaptd to heat the new fuel to reactor refueling temperatures in such a way that the fuel is heated from the top down so that fuel element cladding failure due to thermal expansions is avoided. (U.S.)

  19. Analysis of the loss of pool cooling accident in a PWR spent fuel pool with MAAP5

    International Nuclear Information System (INIS)

    Wu, Xiaoli; Li, Wei; Zhang, Yapei; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng

    2014-01-01

    Highlights: • A PWR spent fuel pool was modeled by using MAAP5. • Loss of pool cooling severe accident scenarios were studied. • Loss of pool cooling accidents with two mitigation measures were analyzed. - Abstract: The Fukushima Daiichi nuclear accident shows that it is necessary to study potential severe accidents and corresponding mitigation measures for the spent fuel pool (SFP) of a nuclear power plant (NPP). This paper presents the analysis of loss of pool cooling accident scenarios and the discussion of mitigation measures for the SFP at a pressurized water reactor (PWR) NPP with the MAAP5 code. Analysis of uncompensated loss of water due to the loss of pool cooling with different initial pool water levels of 12.2 m (designated as a reference case) and 10.7 m have been performed based on a MAAP5 input model. Scenarios of the accident such as overheating of uncovered fuel assemblies, oxidation of claddings and hydrogen generation, loss of intactness of fuel rod claddings, and release of radioactive fission products were predicted with the assumption that mitigation measures were unavailable. The results covered a broad spectrum of severe accident evaluations in the SFP. Furthermore, as important mitigation measures, the effects of recovering the SFP cooling system and makeup water in SFP on the accident progressions have also been investigated respectively based on the events of pool water boiling and spent fuels uncovery. Based upon the reference case, three cases with the recovery of SFP cooling system and three other cases with makeup water in SFP have been studied. The results showed that, severe accident might happen if SFP cooling system was not restored timely before the spent fuels started to become uncovered; spent fuels could be completely submerged and severe accident might be avoided if SFP makeup water system provided water with a mass flow rate larger than the average evaporation rate defined as the division of pool water mass above the

  20. Transportation of spent nuclear fuels

    International Nuclear Information System (INIS)

    Meguro, Toshiichi

    1976-01-01

    The spent nuclear fuel taken out of reactors is cooled in the cooling pool in each power station for a definite time, then transported to a reprocessing plant. At present, there is no reprocessing plant in Japan, therefore the spent nuclear fuel is shipped abroad. In this paper, the experiences and the present situation in Japan are described on the transport of the spent nuclear fuel from light water reactors, centering around the works in Tsuruga Power Station, Japan Atomic Power Co. The spent nuclear fuel in Tsuruga Power Station was first transported in Apr. 1973, and since then, about 36 tons were shipped to Britain by 5 times of transport. The reprocessing plant in Japan is expected to start operation in Apr. 1977, accordingly the spent nuclear fuel used for the trial will be transported in Japan in the latter half of this year. Among the permission and approval required for the transport of spent nuclear fuel, the acquisition of the certificate for transport casks and the approval of land and sea transports are main tasks. The relevant laws are the law concerning the regulations of nuclear raw material, nuclear fuel and reactors and the law concerning the safety of ships. The casks used in Tsuruga Power Station and EXL III type, and the charging of spent nuclear fuel, the decontamination of the casks, the leak test, land transport with a self-running vehicle, loading on board an exclusive carrier and sea transport are briefly explained. The casks and the ship for domestic transport are being prepared. (Kato, I.)

  1. Gasket structure improvement for the spent fuel pool cooler

    International Nuclear Information System (INIS)

    Li Yun; He Shaohua; Qi Hongchang; Wang Cong; Wang Chenglin; Zhong Boling

    2014-01-01

    The two spent fuel pool coolers for the 320 MW unit in CNNC Nuclear Power Operation Management Co., Ltd. have operated for more than 20 years. In accordance with the preventive maintenance programs, they must be overhauled. It is decided to improve the original gasket structure of the component and adopt the method of a short-length U-tubes pulling after analysis and study. There are no leakages and other abnormal situations after the equipment being put into operation. The unit is kept safe and stable. At the same time, thought and method for the maintenance of other similar equipment are provided. (authors)

  2. Romanian nuclear fuel program

    International Nuclear Information System (INIS)

    Budan, O.

    1999-01-01

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified and authorised CANDU-6 fuel supplier. The re-loading of the Cernavoda NGS Unit 1 started in the middle

  3. Spent-fuel pool thermal hydraulics: The evaporation question

    International Nuclear Information System (INIS)

    Yilmaz, T.P.; Lai, J.C.

    1996-01-01

    Many nuclear power plants are currently using dense fuel arrangements that increase the number of spent fuel elements stored in their spent-fuel pools (SFPs). The denser spent-fuel storage results in higher water temperatures, especially when certain event scenarios are analyzed. In some of these event scenarios, it is conservative to maximize the evaporation rate, while in other circumstances it is required to minimize the evaporation rates for conservatism. Evaporation is such a fundamental phenomenon that many branches of engineering developed various equations based on theory and experiments. The evaporation rates predicted by existing equations present a wide range of variation, especially at water temperatures >40 degrees C. Furthermore, a study on which equations provide the highest and lowest evaporation rates has not been done until now. This study explores the sensitivity of existing evaporation equations to various parameters and recommends the limiting evaporation equations for use in the solution of SFP thermal problems. Note that the results of this study may be applicable to a much wider range of applications from irrigation ponds, cooling lakes, and liquid-waste management to calculating adequate air exchange rate for swimming pools and health spas

  4. Preliminary Calculation on a Spent Fuel Pool Accident using GOTHIC

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaehwan; Choi, Yu Jung; Hong, Tae Hyub; Kim, Hyeong-Taek [KHNP-CRI, Daejeon (Korea, Republic of)

    2015-10-15

    The probability of an accident happening at the spent fuel pool was believed to be quite low until the 2011 Fukushima accident occurred. Notably, large amount of spent fuel are normally stored in the spent fuel pool for a long time compared to the amount of fuel in the reactor core and the total heat released from the spent fuel is high enough to boil the water of the spent fuel pool when the cooling system does not operate. In addition, the enrichment and the burnup of the fuel have both increased in the past decade and heat generation from the spent fuel thereby has also increased. The failure of the cooling system at the spent fuel pool (hereafter, a loss-of-cooling accident) is one of the principal hypothetical causes of an accident that could occur at the spent fuel pool. In this paper, the preliminary calculation of a loss-of-cooling accident was performed. In this paper, the preliminary calculation of a loss-of cooling accident was performed with GOTHIC. The calculation results show boiling away of water in the spent fuel pool due to the loss-of-cooling accident and similar thermal performance of the spent fuel pool with previous research results.

  5. Nuclear fuel lease accounting

    International Nuclear Information System (INIS)

    Danielson, A.H.

    1986-01-01

    The subject of nuclear fuel lease accounting is a controversial one that has received much attention over the years. This has occurred during a period when increasing numbers of utilities, seeking alternatives to traditional financing methods, have turned to leasing their nuclear fuel inventories. The purpose of this paper is to examine the current accounting treatment of nuclear fuel leases as prescribed by the Financial Accounting Standards Board (FASB) and the Federal Energy Regulatory Commission's (FERC's) Uniform System of Accounts. Cost accounting for leased nuclear fuel during the fuel cycle is also discussed

  6. Nuclear fuel storage

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1979-01-01

    A method and apparatus for the storage of fuel in a stainless steel egg crate structure within a storage pool are described. Fuel is initially stored in a checkerboard pattern or in each opening if the fuel is of low enrichment. Additional fuel (or fuel of higher enrichment) is later stored by adding stainless steel angled plates within each opening, thereby forming flux traps between the openings. Still higher enrichment fuel is later stored by adding poison plates either with or without the stainless steel angles. 8 claims

  7. Storage of water reactor spent fuel in water pools. Survey of world experience

    International Nuclear Information System (INIS)

    1982-01-01

    Following discharge from a nuclear reactor, spent fuel has to be stored in water pools at the reactor site to allow for radioactive decay and cooling. After this initial storage period, the future treatment of spent fuel depends on the fuel cycle concept chosen. Spent fuel can either be treated by chemical processing or conditioning for final disposal at the relevant fuel cycle facilities, or be held in interim storage - at the reactor site or at a central storage facility. Recent forecasts predict that, by the year 2000, more than 150,000 tonnes of heavy metal from spent LWR fuel will have been accumulated. Because of postponed commitments regarding spent fuel treatment, a significant amount of spent fuel will still be held in storage at that time. Although very positive experience with wet storage has been gained over the past 40 years, making wet storage a proven technology, it appears desirable to summarize all available data for the benefit of designers, storage pool operators, licensing agenices and the general public. Such data will be essential for assessing the viability of extended water pool storage of spent nuclear fuel. In 1979, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD jointly issued a questionnaire dealing with all aspects of water pool storage. This report summarizes the information received from storage pool operators

  8. The Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    2011-08-01

    This brochure describes the nuclear fuel cycle, which is an industrial process involving various activities to produce electricity from uranium in nuclear power reactors. The cycle starts with the mining of uranium and ends with the disposal of nuclear waste. The raw material for today's nuclear fuel is uranium. It must be processed through a series of steps to produce an efficient fuel for generating electricity. Used fuel also needs to be taken care of for reuse and disposal. The nuclear fuel cycle includes the 'front end', i.e. preparation of the fuel, the 'service period' in which fuel is used during reactor operation to generate electricity, and the 'back end', i.e. the safe management of spent nuclear fuel including reprocessing and reuse and disposal. If spent fuel is not reprocessed, the fuel cycle is referred to as an 'open' or 'once-through' fuel cycle; if spent fuel is reprocessed, and partly reused, it is referred to as a 'closed' nuclear fuel cycle.

  9. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Nakai, Keiichi

    1983-01-01

    Purpose: To decrease the tensile stresses resulted in a fuel can as well as prevent decladding of fuel pellets into the bore holes by decreasing the inner pressure within the nuclear fuel element. Constitution: A fuel can is filled with hollow fuel pellets, inserted with a spring for retaining the hollow fuel pellets with an appropriate force and, thereafter, closely sealed at the both ends with end plugs. A cylindrical body is disposed into the bore holes of the hollow fuel pellets. Since initial sealing gases and/or gaseous nuclear fission products can thus be excluded from the bore holes where the temperature is at the highest level, the inner pressure of the nuclear fuel element can be reduced to decrease the tensile strength resulted to the fuel can. Furthermore, decladding of fuel pellets into the bore holes can be prevented. (Moriyama, K.)

  10. Nuclear fuel replacement device

    International Nuclear Information System (INIS)

    Ritz, W.C.; Robey, R.M.; Wett, J.F.

    1984-01-01

    A fuel handling arrangement for a liquid metal cooled nuclear reactor having a single rotating plug eccentric to the fuel core and a fuel handling machine radially movable along a slot in the plug with a transfer station disposed outside the fuel core but covered by the eccentric plug and within range of movement of said fuel handling machine to permit transfer of fuel assemblies between the core and the transfer station. (author)

  11. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1981-01-01

    An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  12. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  13. Decommissioning the Dresden Unit 1 Spent Fuel Pool

    International Nuclear Information System (INIS)

    Demmer, R.L.; Bargelt, R.J.; Panozzo, J.B.; Christensen, R.J.

    2006-01-01

    The Dresden Nuclear Power Station, Unit 1 Spent Fuel Pool (SFP) (Exelon Generation Co.) was decommissioned using a new underwater coating strategy developed in cooperation with the Idaho National Laboratory (INL). This was the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating approach. This approach has advantages in many aspects, particularly in reducing airborne contamination and in safer, more cost effective deactivation. The process was pioneered at the INL and used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. The INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by the INL and Exelon on the pathway for this activity. The rationale used to select the underwater coating option and the advantages and disadvantages are shown. Special circumstances, such as the use of a remotely operated underwater vehicle to map (visually and radiologically) the pool areas that were not readily accessible, are discussed. Several specific areas where special equipment was employed are given and a lessons learned evaluation is included. (authors)

  14. Nuclear fuel accounting

    International Nuclear Information System (INIS)

    Aisch, D.E.

    1977-01-01

    After a nuclear power plant has started commercial operation the actual nuclear fuel costs have to be demonstrated in the rate making procedure. For this purpose an accounting system has to be developed which comprises the following features: 1) All costs associated with nuclear fuel shall be correctly recorded; 2) it shall be sufficiently flexible to cover also deviations from proposed core loading patterns; 3) it shall be applicable to different fuel cycle schemes. (orig./RW) [de

  15. Retrofitting a spent fuel pool spray system for alternative cooling as a strategy for beyond design basis events

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Christoph; Vujic, Zoran [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2017-06-15

    Due to requirements for nuclear power plants to withstand beyond design basis accidents, including events such as happened in 2011 in the Fukushima Daiichi Nuclear Power Plant in Japan, alternative cooling of spent fuel is needed. Alternative spent fuel cooling can be provided by a retrofitted spent fuel pool spray system based on the AP1000 plant design. As part of Krsko Nuclear Power Plant's Safety Upgrade Program, Krsko Nuclear Power Plant decided on, and Westinghouse successfully designed a retrofit of the AP1000 {sup registered} plant spent fuel pool spray system to provide alternative spent fuel cooling.

  16. Spent fuel pool cooling system upgrade for Kori Unit 1

    International Nuclear Information System (INIS)

    Sun Park, Jong; In Shin, Kyung

    2014-01-01

    Following Fukushima nuclear power plant accident, the needs for reliable performance of its own safety functions of Spent Fuel Pool Cooling System (SFPCS) has risen significantly to maintain the plant in a safe condition. Regulatory Guide 1.13 of United States Nuclear Regulatory Commission (USNRC) requires the SFPCS shall be designed safety related as Quality Group C and Seismic Category 1. However, the existing Spent Fuel Pool (SFP) of KORI Unit 1 was not designed as a safety system. In order to comply with the above licensing requirement for the extended operational life of KORI Unit 1, it has been decided to add a safety related Seismic Category 1 Makeup System to KORI Unit 1 and the existing SFPCS to be modified in dedicated channels with safety related equipment to enhance system's reliability as a means of providing diversity. This paper focuses on describing the relevant design requirements, applications, and supplemental facilities to the SFPCS of KORI Unit 1. (authors)

  17. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  18. Spent fuel pool thermal-hydraulic analysis using RELAP5-3D

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, M. C.; Fernandes, G.H.N.; Costa, A.L.; Pereira, F.; Pereira, C., E-mail: marc5663@gmail.com, E-mail: ghnfernandes@pq.cnpq.br, E-mail: claubia@nuclear.ufmg.br, E-mail: antonella@nuclear.ufmg.br [Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    In order to analyze the thermo-hydraulic behavior of spent fuel pools, and taking as reference a hypothetic PWR nuclear plant, a model of RELAP-3D for a spent fuel pool has been built. This model has been used to simulate a loss of coolant in SPF. This study focuses on the loss of coolant flow accident in spent fuel storage pool which is modelled by using RELAP5-3D code to observe the coolant level reduction and fuel uncovery because of decay heat generation of the spent fuel in the pool. The results have been compared with the available data. The developed model demonstrated that the RELAP5-3D is capable of reproduce the thermal behavior of SPF in a transient scenario. (author)

  19. Nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding, and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  20. Nuclear fuel element

    International Nuclear Information System (INIS)

    Thompson, J.R.; Rowland, T.C.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting, fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  1. Nuclear fuel production

    International Nuclear Information System (INIS)

    Randol, A.G.

    1985-01-01

    The production of new fuel for a power plant reactor and its disposition following discharge from the power plant is usually referred to as the ''nuclear fuel cycle.'' The processing of fuel is cyclic in nature since sometime during a power plant's operation old or ''depleted'' fuel must be removed and new fuel inserted. For light water reactors this step typically occurs once every 12-18 months. Since the time required for mining of the raw ore to recovery of reusable fuel materials from discharged materials can span up to 8 years, the management of fuel to assure continuous power plant operation requires simultaneous handling of various aspects of several fuel cycles, for example, material is being mined for fuel to be inserted in a power plant 2 years into the future at the same time fuel is being reprocessed from a discharge 5 years prior. Important aspects of each step in the fuel production process are discussed

  2. Nuclear fuel element

    International Nuclear Information System (INIS)

    Mogard, J.H.

    1977-01-01

    A nuclear fuel element is disclosed for use in power producing nuclear reactors, comprising a plurality of axially aligned ceramic cylindrical fuel bodies of the sintered type, and a cladding tube of metal or metal alloys, wherein said cladding tube on its cylindrical inner surface is provided with a plurality of slightly protruding spacing elements distributed over said inner surface

  3. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    Status of different nuclear fuel cycle phases in 1992 is discussed including the following issues: uranium exploration, resources, supply and demand, production, market prices, conversion, enrichment; reactor fuel technology; spent fuel management, as well as trends of these phases development up to the year 2010. 10 refs, 11 figs, 15 tabs

  4. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sasaki, Y.; Tashima, J.

    1975-01-01

    A description is given of nuclear reactor fuel assemblies arranged in the form of a lattice wherein there is attached to the interface of one of two adjacent fuel assemblies a plate spring having a concave portion curved toward said interface and to the interface of the other fuel assembly a plate spring having a convex portion curved away from said interface

  5. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1980-01-01

    A bimetallic spacer means is cooperatively associated with a nuclear fuel assembly and operative to resist the occurrence of in-reactor bowing of the nuclear fuel assembly. The bimetallic spacer means in one embodiment of the invention includes a space grid formed, at least principally, of zircaloy to the external surface of which are attached a plurality of stainless steel strips. In another embodiment the strips are attached to fuel pins. In each of the embodiments, the stainless steel strips during power production expand outwardly to a greater extent than do the members to which the stainless steel strips are attached, thereby forming stiff springs which abut against like bimetallic spacer means with which the other nuclear fuel assemblies are provided in a given nuclear reactor core to thus prevent the occurrence of in-reactor bowing of the nuclear fuel assemblies. (author)

  6. Spent nuclear fuel in Bulgaria

    International Nuclear Information System (INIS)

    Peev, P.; Kalimanov, N.

    1999-01-01

    The development of the nuclear energy sector in Bulgaria is characterized by two major stages. The first stage consisted of providing a scientific basis for the programme for development of the nuclear energy sector in the country and was completed with the construction of an experimental water-water reactor. At present, spent nuclear fuel from this reactor is placed in a water filled storage facility and will be transported back to Russia. The second stage consisted of the construction of the 6 NPP units at the Kozloduy site. The spent nuclear fuel from the six units is stored in at reactor pools and in an additional on-site storage facility which is nearly full. In order to engage the government of the country with the on-site storage problems, the new management of the National Electric Company elaborated a policy on nuclear fuel cycle and radioactive waste management. The underlying policy is de facto the selection of the 'deferred decision' option for its spent fuel management. (author)

  7. Method for handling nuclear fuel casks

    International Nuclear Information System (INIS)

    Weems, S.J.

    1976-01-01

    A heavy shielded nuclear fuel cask is lowered into and removed from a water filled spent fuel pool by providing a vertical guide tube in the pool, affixing to the bottom of the cask a base plate that approximates the transverse dimension of the guide tube, and lowering and elevating the cask and base plate assembly into and out of the pool by causing it to traverse within the guide tube. The guide tube and base plate coact to function as a dashpot, thereby cushioning and controlling the fall of the cask in the pool should it break loose while being lowered into or raised out of the pool. a specified approach path to the guide tube insures that the cask assembly will not fall into the pool, should it break loose on its approach to the guide tube

  8. Stress corrosion (Astm G30-90 standard) in 08x18H10T stainless steel of nuclear fuel storage pool in WWER reactors; Corrosion bajo esfuerzo (Norma ASTM G30-90) en acero inoxidable 08x18H10T de piscinas de almacenamiento de combustible nuclear en reactores V.V.E.R

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, V.; Zamora R, L. [Centro de Estudios Aplicados al Desarrollo Nuclear (Cuba)

    1997-07-01

    At the water storage of the irradiated nuclear fuel has been an important factor in its management. The actual pools have its walls covered with inoxidable steel and heat exchangers to dissipate the residual heat from fuel. It is essential to control the water purity to eliminate those conditions which aid to the corrosion process in fuel and at related components. The steel used in this research was obtained from an austenitic inoxidizable steel standardized with titanium 08x18H10T (Type 321) similar to one of the two steel coatings used to cover walls and the pools floor. the test consisted in the specimen deformation through an U ply according to the Astm G30-90 standard. The exposition of the deformed specimen it was realized in simulated conditions to the chemical regime used in pools. (Author)

  9. Nuclear fuel activities in Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Bairiot, H

    1997-12-01

    In his presentation on nuclear fuel activities in belgium the author considers the following directions of this work: fuel fabrication, NPP operation, fuel performance, research and development programmes.

  10. Boosting nuclear fuels

    International Nuclear Information System (INIS)

    Demarthon, F.; Donnars, O.; Dupuy-Maury, F.

    2002-01-01

    This dossier gives a broad overview of the present day status of the nuclear fuel cycle in France: 1 - the revival of nuclear power as a solution to the global warming and to the increase of worldwide energy needs; 2 - the security of uranium supplies thanks to the reuse of weapon grade highly enriched uranium; 3 - the fabrication of nuclear fuels from the mining extraction to the enrichment processes, the fabrication of fuel pellets and the assembly of fuel rods; 4 - the new composition of present day fuels (UO x and chromium-doped pellets); 5 - the consumption of plutonium stocks and the Corail and Apa fuel assemblies for the reduction of plutonium stocks and the preservation of uranium resources. (J.S.)

  11. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    Klepfer, H.H.

    1974-01-01

    A nuclear fuel element is described which comprises: 1) an elongated clad container, 2) a layer of high lubricity material being disposed in and adjacent to the clad container, 3) a low neutron capture cross section metal liner being disposed in the clad container and adjacent to the layer, 4) a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, 5) an enclosure integrally secured and sealed at each end of the container, and a nuclear fuel material retaining means positioned in the cavity. (author)

  12. Nuclear Fuel Reprocessing

    International Nuclear Information System (INIS)

    Simpson, Michael F.; Law, Jack D.

    2010-01-01

    This is a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. Nuclear reprocessing is the chemical treatment of spent fuel involving separation of its various constituents. Principally, it is used to recover useful actinides from the spent fuel. Radioactive waste that cannot be re-used is separated into streams for consolidation into waste forms. The first known application of nuclear reprocessing was within the Manhattan Project to recover material for nuclear weapons. Currently, reprocessing has a peaceful application in the nuclear fuel cycle. A variety of chemical methods have been proposed and demonstrated for reprocessing of nuclear fuel. The two most widely investigated and implemented methods are generally referred to as aqueous reprocessing and pyroprocessing. Each of these technologies is described in detail in Section 3 with numerous references to published articles. Reprocessing of nuclear fuel as part of a fuel cycle can be used both to recover fissionable actinides and to stabilize radioactive fission products into durable waste forms. It can also be used as part of a breeder reactor fuel cycle that could result in a 14-fold or higher increase in energy utilization per unit of natural uranium. Reprocessing can also impact the need for geologic repositories for spent fuel. The volume of waste that needs to be sent to such a repository can be reduced by first subjecting the spent fuel to reprocessing. The extent to which volume reduction can occur is currently under study by the United States Department of Energy via research at various national laboratories and universities. Reprocessing can also separate fissile and non-fissile radioactive elements for transmutation.

  13. Spent nuclear fuel storage

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2005-01-01

    When a country becomes self-sufficient in part of the nuclear cycle, as production of fuel that will be used in nuclear power plants for energy generation, it is necessary to pay attention for the best method of storing the spent fuel. Temporary storage of spent nuclear fuel is a necessary practice and is applied nowadays all over the world, so much in countries that have not been defined their plan for a definitive repository, as well for those that already put in practice such storage form. There are two main aspects that involve the spent fuels: one regarding the spent nuclear fuel storage intended to reprocessing and the other in which the spent fuel will be sent for final deposition when the definitive place is defined, correctly located, appropriately characterized as to several technical aspects, and licentiate. This last aspect can involve decades of studies because of the technical and normative definitions at a given country. In Brazil, the interest is linked with the storage of spent fuels that will not be reprocessed. This work analyses possible types of storage, the international panorama and a proposal for future construction of a spent nuclear fuel temporary storage place in the country. (author)

  14. Nuclear fuel element

    International Nuclear Information System (INIS)

    Yamamoto, Seigoro.

    1994-01-01

    Ultrafine particles of a thermal neutron absorber showing ultraplasticity is dispersed in oxide ceramic fuels by more than 1% to 10% or lower. The ultrafine particles of the thermal neutron absorber showing ultrafine plasticity is selected from any one of ZrGd, HfEu, HfY, HfGd, ZrEu, and ZrY. The thermal neutron absorber is converted into ultrafine particles and solid-solubilized in a nuclear fuel pellet, so that the dispersion thereof into nuclear fuels is made uniform and an absorbing performance of the thermal neutrons is also made uniform. Moreover, the characteristics thereof, for example, physical properties such as expansion coefficient and thermal conductivity of the nuclear fuels are also improved. The neutron absorber, such as ZrGd or the like, can provide plasticity of nuclear fuels, if it is mixed into the nuclear fuels for showing the plasticity. The nuclear fuel pellets are deformed like an hour glass as burning, but, since the end portion thereof is deformed plastically within a range of a repulsive force of the cladding tube, there is no worry of damaging a portion of the cladding tube. (N.H.)

  15. Expansion of capacity of spent fuel pools and associated problems

    International Nuclear Information System (INIS)

    Francisco, J.L. De; Lopez-Cotarelo, J.; Ramos, J.M.

    1978-01-01

    Expanding the spent fuel storage pool capacity is a good solution for utilities facing the current shortage in fuel reprocessing capacity. The problems more likely to be found when expanding a spent fuel storage facility by using high density storage racks are reviewed. Basically three types of problems arise: 1) Problems related with the characteristics of the new facility. 2) Problems related with the works of expansion. 3) Problems related with the long term storage of large quantities of spent fuel. (author)

  16. Transportation of nuclear fuel

    International Nuclear Information System (INIS)

    Prowse, D.R.

    1979-01-01

    Shipment of used fuel from nuclear reactors to a central fuel management facility is discussed with particular emphasis on the assessment of the risk to the public due to these shipments. The methods of transporting used fuel in large shipping containers is reviewed. In terms of an accident scenario, it is demonstrated that the primary risk of transport of used fuel is due to injury and death in common road accidents. The radiological nature of the used fuel cargo is, for all practical purposes, an insignificant factor in the total risk to the public. (author)

  17. Nuclear fuel banks

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    In december 2010 IAEA gave its agreement for the creation of a nuclear fuel bank. This bank will allow IAEA to help member countries that renounce to their own uranium enrichment capacities. This bank located on one or several member countries will belong to IAEA and will be managed by IAEA and its reserve of low enriched uranium will be sufficient to fabricate the fuel for the first load of a 1000 MW PWR. Fund raising has been successful and the running of the bank will have no financial impact on the regular budget of the IAEA. Russia has announced the creation of the first nuclear fuel bank. This bank will be located on the Angarsk site (Siberia) and will be managed by IAEA and will own 120 tonnes of low-enriched uranium fuel (between 2 and 4.95%), this kind of fuel is used in most Russian nuclear power plants. (A.C.)

  18. HLM fuel pin bundle experiments in the CIRCE pool facility

    Energy Technology Data Exchange (ETDEWEB)

    Martelli, Daniele, E-mail: daniele.martelli@ing.unipi.it [University of Pisa, Department of Civil and Industrial Engineering, Pisa (Italy); Forgione, Nicola [University of Pisa, Department of Civil and Industrial Engineering, Pisa (Italy); Di Piazza, Ivan; Tarantino, Mariano [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone (Italy)

    2015-10-15

    Highlights: • The experimental results represent the first set of values for LBE pool facility. • Heat transfer is investigated for a 37-pin electrical bundle cooled by LBE. • Experimental data are presented together with a detailed error analysis. • Nu is computed as a function of the Pe and compared with correlations. • Experimental Nu is about 25% lower than Nu derived from correlations. - Abstract: Since Lead-cooled Fast Reactors (LFR) have been conceptualized in the frame of GEN IV International Forum (GIF), great interest has focused on the development and testing of new technologies related to HLM nuclear reactors. In this frame the Integral Circulation Experiment (ICE) test section has been installed into the CIRCE pool facility and suitable experiments have been carried out aiming to fully investigate the heat transfer phenomena in grid spaced fuel pin bundles providing experimental data in support of European fast reactor development. In particular, the fuel pin bundle simulator (FPS) cooled by lead bismuth eutectic (LBE), has been conceived with a thermal power of about 1 MW and a uniform linear power up to 25 kW/m, relevant values for a LFR. It consists of 37 fuel pins (electrically simulated) placed on a hexagonal lattice with a pitch to diameter ratio of 1.8. The FPS was deeply instrumented by several thermocouples. In particular, two sections of the FPS were instrumented in order to evaluate the heat transfer coefficient along the bundle as well as the cladding temperature in different ranks of sub-channels. Nusselt number in the central sub-channel was therefore calculated as a function of the Peclet number and the obtained results were compared to Nusselt numbers obtained from convective heat transfer correlations available in literature on Heavy Liquid Metals (HLM). Results reported in the present work, represent the first set of experimental data concerning fuel pin bundle behaviour in a heavy liquid metal pool, both in forced and

  19. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    This chapter explains the distinction between fissile and fertile materials, examines briefly the processes involved in fuel manufacture and management, describes the alternative nuclear fuel cycles and considers their advantages and disadvantages. Fuel management is usually divided into three stages; the front end stage of production and fabrication, the back end stage which deals with the fuel after it is removed from the reactor (including reprocessing and waste treatment) and the stage in between when the fuel is actually in the reactor. These stages are illustrated and explained in detail. The plutonium fuel cycle and thorium-uranium-233 fuel cycle are explained. The differences between fuels for thermal reactors and fast reactors are explained. (U.K.)

  20. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Merrett, G.J.; Gillespie, P.A.

    1983-07-01

    This report discusses events and processes that could adversely affect the long-term stability of a nuclear fuel waste disposal vault or the regions of the geosphere and the biosphere to which radionuclides might migrate from such a vault

  1. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Patarin, L.

    2002-01-01

    This book treats of the different aspects of the industrial operations linked with the nuclear fuel, before and after its use in nuclear reactors. The basis science of this nuclear fuel cycle is chemistry. Thus a recall of the elementary notions of chemistry is given in order to understand the phenomena involved in the ore processing, in the isotope enrichment, in the fabrication of fuel pellets and rods (front-end of the cycle), in the extraction of recyclable materials (residual uranium and plutonium), and in the processing and conditioning of wastes (back-end of the fuel cycle). Nuclear reactors produce about 80% of the French electric power and the Cogema group makes 40% of its turnover at the export. Thus this book contains also some economic and geopolitical data in order to clearly position the stakes. The last part, devoted to the management of wastes, presents the solutions already operational and also the research studies in progress. (J.S.)

  2. Nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    White, D.

    1981-01-01

    A simple friction device for cutting nuclear fuel wrappers comprising a thin metal disc clamped between two large diameter clamping plates. A stream of gas ejected from a nozzle is used as coolant. The device may be maintained remotely. (author)

  3. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Hayashi, Hiroshi; Watari, Yoshio; Hizahara, Hiroshi; Masuoka, Ryuzo.

    1970-01-01

    When exchanging nuclear fuel assemblies during the operation of a nuclear reactor, melting of fuel bodies, and severence of tubular claddings is halted at the time of insertion by furnishing a neutron absorbing material such as B 10 , Cd, Gd or the like at the forward end of the fuel assembly to thereby lower the power peak at the forward ends of the fuel elements to within tolerable levels and thus prevent both fuel liquification and excessive expansion. The neutron absorbing material may be attached in the form of a plate to the fuel assembly forward tie plate, or may be inserted as a pellet into the front end of the tubular cladding. (Owens, K.J.)

  4. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Ainsworth, K.F.

    1979-01-01

    A nuclear fuel element is described having a cluster of nuclear fuel pins supported in parallel, spaced apart relationship by transverse cellular braces within coaxial, inner and outer sleeves, the inner sleeve being in at least two separate axial lengths, each of the transverse braces having a peripheral portion which is clamped peripherally between the ends of the axial lengths of the inner sleeve. (author)

  5. Nuclear fuel manufacture

    International Nuclear Information System (INIS)

    Costello, J.M.

    1980-09-01

    The technologies used to manufacture nuclear fuel from uranium ore are outlined, with particular reference to the light water reactor fuel cycle. Capital and operating cost estimates for the processing stages are given, and the relevance to a developing uranium industry in Australia is discussed

  6. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Butterfield, C.E.; Waite, E.

    1982-01-01

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  7. Nuclear fuel pellet loading apparatus

    International Nuclear Information System (INIS)

    Gerkey, K.S.

    1979-01-01

    An automatic apparatus for loading a predetermined amount of nuclear fuel pellets into a nuclear fuel element to be used in a nuclear reactor is described. The apparatus consists of a vibratory bed capable of supporting corrugated trays containing rows of nuclear fuel pellets and arranged in alignment with the open ends of several nuclear fuel elements. A sweep mechanism is arranged above the trays and serves to sweep the rows of fuel pellets onto the vibratory bed and into the fuel element. A length detecting system, in conjunction with a pellet stopping mechanism, is also provided to assure that a predetermined amount of nuclear fuel pellets are loaded into each fuel element

  8. Nuclear Fuel Cycle Objectives

    International Nuclear Information System (INIS)

    2013-01-01

    . The four Objectives publications include Nuclear General Objectives, Nuclear Power Objectives, Nuclear Fuel Cycle Objectives, and Radioactive Waste management and Decommissioning Objectives. This publication sets out the objectives that need to be achieved in the area of the nuclear fuel cycle to ensure that the Nuclear Energy Basic Principles are satisfied. Within each of these four Objectives publications, the individual topics that make up each area are addressed. The five topics included in this publication are: resources; fuel engineering and performance; spent fuel management and reprocessing; fuel cycles; and the research reactor nuclear fuel cycle

  9. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hardy, C.J.; Silver, J.M.

    1985-09-01

    The report provides data and assessments of the status and prospects of nuclear power and the nuclear fuel cycle. The report discusses the economic competitiveness of nuclear electricity generation, the extent of world uranium resources, production and requirements, uranium conversion and enrichment, fuel fabrication, spent fuel treatment and radioactive waste management. A review is given of the status of nuclear fusion research

  10. Reracking Possibilities of the NPP Krsko Spent Fuel Pool

    International Nuclear Information System (INIS)

    Bace, M.; Pevec, D.; Smuc, T.

    1998-01-01

    Using the SCALE-4 code package reracking possibilities of the NPP Krsko spent fuel pool were analyzed. Two cases were considered: the first case assuming the 40 years lifetime of the plant, and the second case assuming the 50 years lifetime of the plant. It was shown that it is possible to design the additional racks in free space of the spent fuel pool with the sufficient total capacity to store all the spent fuel generated during the 40 years lifetime of the plant. In the case of 50 years plant lifetime, completely new racks (capacity of 1890 spent fuel assemblies), containing 4mm boral in storage cell walls, were proposed for the NPP Krsko spent fuel pool. The effective multiplication factor of the spent fuel pool fully loaded with new racks containing spent fuel assemblies of initial enrichment 4.3 w/o, burned to 40 GWd/tU and cooled 2 years is lower than the value required by standard. It showed the possibility of the safe disposal of all spent fuel accumulated during more than 50 years lifetime of the plant. (author)

  11. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a metal liner disposed between the cladding and the nuclear fuel material and a high lubricity material in the form of a coating disposed between the liner and the cladding. The liner preferably has a thickness greater than the longest fission product recoil distance and is composed of a low neutron capture cross-section material. The liner is preferably composed of zirconium, an alloy of zirconium, niobium or an alloy of niobium. The liner serves as a preferential reaction site for volatile impurities and fission products and protects the cladding from contact and reaction with such impurities and fission products. The high lubricity material acts as an interface between the liner and the cladding and reduces localized stresses on the cladding due to fuel expansion and cracking of the fuel

  12. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Wakamatsu, Mitsuo.

    1974-01-01

    Object: To improve a circulating flow passage of coolant so as to be able to accurately detect the temperature of coolant, rare gases contained, and the like. Structure: A fuel assembly comprising a flow regulating lattice provided with a plurality of communication holes in an axial direction, said lattice being positioned at the upper end of an outer tube in which nuclear fuel elements are received, and a neutron shielding body having a plurality of spiral coolant flow passages disposed between the lattice and the nuclear fuel elements, whereby a coolant comprised of liquid sodium or the like, which moves up passing through the coolant flow passages and the flow regulating passage, is regulated and passed through a detector mounted at the upper part of the flow regulating lattice to detect coolant temperature, flow rate, and rare gases or the like as the origin of nuclear fission contained in the coolant due to breakage of fuel elements. (Kamimura, M.)

  13. Nuclear fuel quality assurance

    International Nuclear Information System (INIS)

    1976-01-01

    Full text: Quality assurance is used extensively in the design, construction and operation of nuclear power plants. This methodology is applied to all activities affecting the quality of a nuclear power plant in order to obtain confidence that an item or a facility will perform satisfactorily in service. Although the achievement of quality is the responsibility of all parties participating in a nuclear power project, establishment and implementation of the quality assurance programme for the whole plant is a main responsibility of the plant owner. For the plant owner, the main concern is to achieve control over the quality of purchased products or services through contractual arrangements with the vendors. In the case of purchase of nuclear fuel, the application of quality assurance might be faced with several difficulties because of the lack of standardization in nuclear fuel and the proprietary information of the fuel manufacturers on fuel design specifications and fuel manufacturing procedures. The problems of quality assurance for purchase of nuclear fuel were discussed in detail during the seminar. Due to the lack of generally acceptable standards, the successful application of the quality assurance concept to the procurement of fuel depends on how much information can be provided by the fuel manufacturer to the utility which is purchasing fuel, and in what form and how early this information can be provided. The extent of information transfer is basically set out in the individual vendor-utility contracts, with some indirect influence from the requirements of regulatory bodies. Any conflict that exists appears to come from utilities which desire more extensive control over the product they are buying. There is a reluctance on the part of vendors to permit close insight of the purchasers into their design and manufacturing procedures, but there nevertheless seems to be an increasing trend towards release of more information to the purchasers. It appears that

  14. Reprocessing of nuclear fuels

    International Nuclear Information System (INIS)

    Hatfield, G.W.

    1960-11-01

    One of the persistent ideas concerning nuclear power is that the fuel costs are negligible. This, of course, is incorrect and, in fact, one of the major problems in the development of economic nuclear power is to get the cost of the fuel cycles down to an acceptable level. The irradiated fuel removed from the nuclear power reactors must be returned as fresh fuel into the system. Aside from the problems of handling and shipping involved in the reprocessing cycles, the two major steps are the chemical separation and the refabrication. The chemical separation covers the processing of the spent fuel to separate and recover the unburned fuel as well as the new fuel produced in the reactor. This includes the decontamination of these materials from other radioactive fission products formed in the reactor. Refabrication involves the working and sheathing of recycled fuel into the shapes and forms required by reactor design and the economics of the fabrication problem determines to a large extent the quality of the material required from the chemical treatment. At present there appear to be enough separating facilities in the United States and the United Kingdom to handle the recycling of fuel from power reactors for the next few years. However, we understand the costs of recycling fuel in these facilities will be high or low depend ing on whether or not the capital costs of the plant are included in the processing cost. Also, the present plants may not be well adapted to carry out the chemical processing of the very wide variety of power reactor fuel elements which are being considered and will continue to be considered over the years to come. (author)

  15. Nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Butterfield, R.S.; Garner, D.L.M.

    1977-01-01

    Reference is made to nuclear fuel assemblies designed for cooling on the 'tube-in-shell' principle in which the fuel is contained by a shell and is cooled by coolant passed through tubes extending through the shell. It has been proposed to employ coated particle fuel as a porous bed on the tube side and the bleed coolant from the tubes into direct contact with the fuel particles. In this way heat is extracted both by direct contact with the fuel and by heat transfer through the coolant tube walls. The system described aims to provide an improved structure of tube and shell for a fuel assembly of this kind and is particularly suitable for use in a gas cooled fast reactor, being able to withstand the neutron flux and high temperature conditions in these reactors. Constructional details are given. (U.K.)

  16. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirayama, Satoshi; Kawada, Toshiyuki; Matsuzaki, Masayoshi.

    1980-01-01

    Purpose: To provide a fuel element for reducing the mechanical interactions between a fuel-cladding tube and the fuel element and for alleviating the limits of the operating conditions of a reactor. Constitution: A fuel element having mainly uranium dioxide consists of a cylindrical outer pellet and cylindrical inner pellet inserted into the outer pellet. The outer pellet contains two or more additives selected from aluminium oxide, beryllium oxide, magnesium oxide, silicon oxide, sodium oxide, phosphorus oxide, calcium oxide and iron oxide, and the inner pellet contains nuclear fuel substance solely or one additive selected from calcium oxide, silicon oxide, aluminium oxide, magnesium oxide, zirconium oxide and iron oxide. The outer pellet of the fuel thus constituted is reduced in mechanical strength and also in the mechanical interactions with the cladding tube, and the plastic fluidity of the entire pellet is prevented by the inner pellet increased in the mechanical strength. (Kamimura, M.)

  17. Nuclear fuel deformation phenomena

    International Nuclear Information System (INIS)

    Van Brutzel, L.; Dingreville, R.; Bartel, T.J.

    2015-01-01

    Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)

  18. Nuclear fuel element

    International Nuclear Information System (INIS)

    Knowles, A.N.

    1979-01-01

    A nuclear fuel-containing body for a high temperature gas cooled nuclear reactor is described which comprises a flat plate in which the nuclear fuel is contained as a dispersion of fission product-retaining coated fuel particles in a flat sheet of graphitic or carbonaceous matrix material. The flat sheet is clad with a relatively thin layer of unfuelled graphite bonded to the sheet by being formed initially from a number of separate preformed graphitic artefacts and then platen-pressed on to the exterior surfaces of the flat sheet, both the matrix material and the artefacts being in a green state, to enclose the sheet. A number of such flat plates are supported edge-on to the coolant flow in the bore of a tube made of neutron moderating material. Where a number of tiers of plates are superimposed on one another, the abutting edges are chamfered to reduce vibration. (author)

  19. Nuclear fuel strategies

    International Nuclear Information System (INIS)

    Rippon, S.

    1989-01-01

    The paper reports on two international meetings on nuclear fuel strategies, one organised by the World Nuclear Fuel Market in Seville (Spain) October 1988, and the other organised by the American and European nuclear societies in Washington (U.S.A.) November 1988. At the Washington meeting a description was given of the uranium supply and demand market, whereas free trade in uranium was considered in Seville. Considerable concern was expressed at both meetings on the effect on the uranium and enrichment services market of very low prices for spot deals being offered by China and the Soviet Union. Excess enrichment capacity, the procurement policies of the USA and other countries, and fuel cycle strategies, were also discussed. (U.K.)

  20. Nuclear fuel element

    International Nuclear Information System (INIS)

    Penrose, R.T.; Thompson, J.R.

    1976-01-01

    A method of protecting the cladding of a nuclear fuel element from internal attack and a nuclear fuel element for use in the core of a nuclear reactor are disclosed. The nuclear fuel element has disposed therein an additive of a barium-containing material and the barium-containing material collects reactive gases through chemical reaction or adsorption at temperatures ranging from room temperature up to fuel element plenum temperatures. The additive is located in the plenum of the fuel element and preferably in the form of particles in a hollow container having a multiplicity of gas permeable openings in one portion of the container with the openings being of a size smaller than the size of the particles. The openings permit gases and liquids entering the plenum to contact the particles. The additive is comprised of elemental barium or a barium alloy containing one or more metals in addition to barium such as aluminum, zirconium, nickel, titanium and combinations thereof. 6 claims, 3 drawing figures

  1. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    Niedrig, T.

    1987-01-01

    Nuclear fuel supply is viewed as a buyer's market of assured medium-term stability. Even on a long-term basis, no shortage is envisaged for all conceivable expansion schedules. The conversion and enrichment facilities developed since the mid-seventies have done much to stabilize the market, owing to the fact that one-sided political decisions by the USA can be counteracted efficiently. In view of the uncertainties concerning realistic nuclear waste management strategies, thermal recycling and mixed oxide fuel elements might increase their market share in the future. Capacities are being planned accordingly. (orig.) [de

  2. A Probabilistic Analysis Methodology and Its Application to A Spent Fuel Pool System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyowon; Jae, Moosung [Hanyang Univ., Seoul (Korea, Republic of); Ryu, Ho G. [Daedeok R and D Center, Daejeon (Korea, Republic of)

    2013-05-15

    There was a similar accident occurring at the 2{sup nd} unit of PAKS nuclear power station in Hungary on the 10{sup th} April 2003. Insufficient cooling of spent fuel caused the spent fuel burn up or partly melting. There were many previous studies performed for analyzing and measuring the risk of spent fuel damage. In the 1980s, there are changes in conditions such as development of high density storage racks and new information concerning the possibility of cladding fires in the drained spent fuel pools. The US NRC assessed the spent fuel pool risk under the Generic Issue 82. In the 1990s, under the US NRC sponsorship, the risk assessment about the spent fuel pool at Susquehanna Steam Electric Station (SSES) has been performed and Analysis Evaluation of Operational Data (AEOD) has been organized for accumulating the reliability data. A methodology for assessing the risk associated with the spent fuel pool facility has been developed and is applied to the reference plant. It is shown that the methodology developed in this study might contribute to assessing these kinds of the SFP facilities. In this probabilistic risk analysis, the LINV Initial event results in the high frequent occurrence. The most dominant cut-sets include the human errors. The result of this analysis might contribute to identifying the weakness of the preventive and mitigating system in the SFP facility.

  3. Nuclear fuel element

    International Nuclear Information System (INIS)

    Grossman, L.N.; Levin, H.A.

    1975-01-01

    A nuclear fuel element has disposed therein an alloy having the essential components of nickel, titanium and zirconium, and the alloy reacts with water, water vapor and reactive gases at reactor ambient temperatures. The alloy is disposed in the plenum of the fuel element in the form of particles in a hollow gas permeable container having a multiplicity of openings of size smallr than the size of the particles. The container is preferably held in the spring in the plenum of the fuel element. (E.C.B.)

  4. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Kawada, Toshiyuki; Hirayama, Satoshi; Yoneya, Katsutoshi.

    1980-01-01

    Purpose: To enable load-depending operation as well as moderation for the restriction of operation conditions in the present nuclear reactors, by specifying the essential ingredients and the total weight of the additives to UO 2 fuel substances. Constitution: Two or more additives selected from Al 2 O 3 , B 2 O, CaO, MgO, SiO 2 , Na 2 O and P 2 O 5 are added by the total weight of 2 - 5% to fuel substances consisting of UO 2 or a mixture of UO 2 and PuO 2 . When the mixture is sintered, the strength of the fuel elements is decreased and the fuel-cladding interactions due to the difference in the heat expansion coefficients between the ceramic fuel elements and the metal claddings are decreased to a substantially harmless degree. (Horiuchi, T.)

  5. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Domoto, Noboru; Masuda, Hiroyuki

    1989-01-01

    In a nuclear fuel assembly loaded with a plurality of fuel rods, the inside of a fuel rod disposed at a high neutron flux region is divided into an inner region and an outer region, and more burnable poisons are mixed in the inner region than in the outer region. Alternatively, the central portion of a pellet disposed in a high neutron flux region is made hollow, in which burnable poisons are charged. This can prevent neutron infinite multiplication factor from decreasing extremely at the initial burning stage. Further, the burnable poisons are not rapidly burnt completely and local peaking coefficient can be controlled. Accordingly, in a case of suppressing a predetermined excess reactivity by using a fuel rod incorporated with the burnable poison, the fuel economy can be improved more and the reactor core controllability can also be improved as compared with the usual case. (T.M.)

  6. A present status for dry storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Park, H. Y.; Seo, K. S

    2003-04-01

    National policy for management of a spent nuclear fuel does not establish in Korea yet. A storage capacity of a storage pool that is to store the spent nuclear fuel will be exceeded an amount of accumulation from the first Woljin nuclear power plant in 2007. Therefore it is necessary that dry storage facility is secured to store safely the spent nuclear fuel on site of the nuclear power plant until national policy for a back-end spent nuclear fuel cycle is established. In order to store safely spent nuclear fuel, it is important that the present status and technology on dry storage of spent nuclear fuel is looked over. Therefore, the present status on dry storage of spent nuclear fuel was analyzed so as to develop dry storage system and choose a proper dry storage method domestic.

  7. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The papers presented at the International Conference on The Nuclear Fuel Cycle, held at Stockholm, 28 to 31 October 1975, are reviewed. The meeting, organised by the U.S. Atomic Industrial Forum, and the Swedish Nuclear Forum, was concerned more particularly with economic, political, social and commercial aspects than with tecnology. The papers discussed were considered under the subject heading of current status, uranium resources, enrichment, and reprocessing. (U.K.)

  8. Nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    1975-12-01

    The papers presented at the International Conference on The Nuclear Fuel Cycle, held at Stockholm, 28 to 31 October 1975, are reviewed. The meeting, organised by the U.S. Atomic Industrial Forum, and the Swedish Nuclear Forum, was concerned more particularly with economic, political, social and commercial aspects than with tecnology. The papers discussed were considered under the subject heading of current status, uranium resources, enrichment, and reprocessing.

  9. Encapsulating spent nuclear fuel

    International Nuclear Information System (INIS)

    Fleischer, L.R.; Gunasekaran, M.

    1979-01-01

    A system is described for encapsulating spent nuclear fuel discharged from nuclear reactors in the form of rods or multi-rod assemblies. The rods are completely and contiguously enclosed in concrete in which metallic fibres are incorporated to increase thermal conductivity and polymers to decrease fluid permeability. This technique provides the advantage of acceptable long-term stability for storage over the conventional underwater storage method. Examples are given of suitable concrete compositions. (UK)

  10. Nuclear Insurance Pools: World-wide Practice and Prospective

    International Nuclear Information System (INIS)

    Reitsma, S. M. S.

    2000-01-01

    The following paper explains why Nuclear Insurance Pools were established, how they operate and what insurance protection they offer to the operations of nuclear installations. It will be shown that the clear interrelationship of the Pool-insurance operations, both on a national and an international level, has resulted in a transparency of each individual Pool-Member's exposure, which enables him to make the highest possible commitment to nuclear risks. Finally, some views will be given as regards the future prospective for the long proven method of pooling this particularly sensitive class of business. (author)

  11. Nuclear fuel cycle information workshop

    International Nuclear Information System (INIS)

    1983-01-01

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US

  12. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Hirano, Yasushi; Hirukawa, Koji; Sakurada, Koichi.

    1994-01-01

    A bundle of fuel rods is divided into four fuel rod group regions of small fuel rod bundles by a cross-shaped partitioning structure consisting of paired plate-like structures which connect two opposing surfaces of a channel box. A water removing material with less neutron absorption (for example, Zr or a Zr alloy) or a solid moderator is inserted and secured to a portion of a non-boiling water region interposed between the paired plate-like structure. It has a structure that light water flows to the region in the plate-like structure. The volume, density or composition of the water removing material is controlled depending on the composition of the fuels, to change the moderating characteristics of neutrons in the non-boiling water region. This can easily moderate the difference of nuclear characteristics between each of fuel assemblies using fuel materials of different fuel compositions. Further, the reactivity control effect of the burnable poisons can be enhanced without worsening fuel economy or linear power density. (I.N.)

  13. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Delafosse, Jacques.

    1977-01-01

    This invention relates to a nuclear fuel assembly for a light or heavy water reactor, or for a fast reactor of the kind with a bundle of cladded pins, maintained parallel to each other in a regular network by an assembly of separate supporting grids, fitted with elastic bearing surfaces on these pins [fr

  14. Nuclear fuel pellets

    International Nuclear Information System (INIS)

    Larson, R.I.; Brassfield, H.C.

    1981-01-01

    Increased strength and physical durability in green bodies or pellets formed of particulate nuclear fuel oxides is achieved by inclusion of a fugitive binder which is ammonium bicarbonate, bicarbonate carbomate, carbomate, sesquicarbonate or mixtures thereof. Ammonium oxadate may be included as pore former. (author)

  15. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Ito, Arata; Wakamatsu, Mitsuo.

    1976-01-01

    Object: To permit the coolant in an FBR type reactor to enter from the entrance nozzle into a nuclear fuel assembly without causing cavitation. Structure: In a nuclear fuel assembly, which comprises a number of thin fuel pines bundled together at a uniform spacing and enclosed within an outer cylinder, with a handling head connected to an upper portion of the outer cylinder and an entrance nozzle connected to a lower portion of the cylinder, the inner surface of the entrance nozzle is provided with a buffer member and an orifice successively in the direction of flow of the coolant. The coolant entering from a low pressure coolant chamber into the entrance nozzle strikes the buffer member and is attenuated, and thereafter flows through an orifice into the outer cylinder. (Horiuchi, T.)

  16. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirama, H.

    1978-01-01

    A nuclear fuel element comprises an elongated tube having upper and lower end plugs fixed to both ends thereof and nuclear fuel pellets contained within the tube. The fuel pellets are held against the lower end plug by a spring which is supported by a setting structure. The setting structure is maintained at a proper position at the middle of the tube by a wedge effect caused by spring force exerted by the spring against a set of balls coacting with a tapered member of the setting structure thereby wedging the balls against the inner wall of the tube, and the setting structure is moved free by pushing with a push bar against the spring force so as to release the wedge effect

  17. Integral nuclear fuel element assembly

    International Nuclear Information System (INIS)

    Schluderberg, D. C.

    1985-01-01

    An integral nuclear fuel element assembly utilizes longitudinally finned fuel pins. The continuous or interrupted fins of the fuel pins are brazed to fins of juxtaposed fuel pins or directly to the juxtaposed fuel pins or both. The integrally brazed fuel assembly is designed to satisfy the thermal and hydraulic requirements of a fuel assembly lattice having moderator to fuel atom ratios required to achieve high conversion and breeding ratios

  18. Spent fuel and fuel pool component integrity. Annual report, FY 1979

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.; Kustas, F.M.

    1980-05-01

    International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-μm) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion. A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report

  19. Nuclear fuel cycle techniques

    International Nuclear Information System (INIS)

    Pecqueur, Michel; Taranger, Pierre

    1975-01-01

    The production of fuels for nuclear power plants involves five principal stages: prospecting of uranium deposits (on the ground, aerial, geochemical, geophysical, etc...); extraction and production of natural uranium from the deposits (U content of ores is not generally high and a chemical processing is necessary to obtain U concentrates); production of 235 U enriched uranium for plants utilizing this type of fuel (a description is given of the gaseous diffusion process widely used throughout the world and particularly in France); manufacture of suitable fuel elements for the different plants; reprocessing of spent fuels for the purpose of not only recovering the fissile materials but also disposing safely of the fission products and other wastes [fr

  20. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Vikhorev, Yu.V.; Biryukov, G.I.; Kirilyuk, N.A.; Lobanov, V.N.

    1977-01-01

    A fuel assembly is proposed for nuclear reactors allowing remote replacement of control rod bundles or their shifting from one assembly to another, i.e., their multipurpose use. This leads to a significant increase in fuel assembly usability. In the fuel assembly the control rod bundle is placed in guide tube channels to which baffles are attached for fuel element spacing. The remote handling of control rods is provided by a hollow cylinder with openings in its lower bottom through which the control rods pass. All control rods in a bundle are mounted to a cross beam which in turn is mounted in the cylinder and is designed for grasping the whole rod bundle by a remotely controlled telescopic mechanism in bundle replacement or shifting. (Z.M.)

  1. Experience with nuclear fuel utilization in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Harizanov, Y [Committee on the Use of Atomic Energy for Peaceful Purposes, Sofia (Bulgaria)

    1997-12-01

    The presentation on experience with nuclear fuel utilization in Bulgaria briefly reviews the situation with nuclear energy in Bulgaria and then discusses nuclear fuel performance (amount of fuel loaded, type of fuel, burnup, fuel failures, assemblies deformation). 2 tabs.

  2. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  3. Spent fuel pool risk analysis for the Dukovany NPP

    Energy Technology Data Exchange (ETDEWEB)

    Hust' ak, S.; Jaros, M.; Kubicek, J. [UJV Rez, a.s., Husinec-Rez (Czech Republic)

    2013-07-01

    UJV Rez, a.s. maintains a Living Probabilistic Safety Assessment (Living PSA) program for Dukovany Nuclear Power Plant (NPP) in the Czech Republic. This project has been established as a framework for activities related to risk assessment and to support for risk-informed decision making at this plant. The most extensively used PSA application at Dukovany NPP is risk monitoring of instantaneous (point-in-time) risk during plant operation, especially for the purpose of configuration risk management during plant scheduled outages to avoid risk significant configurations. The scope of PSA for Dukovany NPP includes also determination of a risk contribution from spent fuel pool (SFP) operation to provide recommendations for the prevention and mitigation of SFP accidents and to be applicable for configuration risk management. This paper describes the analysis of internal initiating events (IEs) in PSA for Dukovany NPP, which can contribute to the risk from SFP operation. The analysis of those IEs was done more thoroughly in the PSA for Dukovany NPP in order to be used in instantaneous risk monitoring. (orig.)

  4. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    1982-01-01

    This film for a general audience deals with nuclear fuel waste management in Canada, where research is concentrating on land based geologic disposal of wastes rather than on reprocessing of fuel. The waste management programme is based on cooperation of the AECL, various universities and Ontario Hydro. Findings of research institutes in other countries are taken into account as well. The long-term effects of buried radioactive wastes on humans (ground water, food chain etc.) are carefully studied with the help of computer models. Animated sequences illustrate the behaviour of radionuclides and explain the idea of a multiple barrier system to minimize the danger of radiation hazards

  5. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E. D.

    1984-01-01

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value

  6. Nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, E. D.

    1984-10-16

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value.

  7. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    1975-01-01

    The nuclear fuel assembly described includes a cluster of fuel elements supported at a distance from each other so that their axes are parallel in order to establish secondary channels between them reserved for the coolant. Several ducts for an auxiliary cooling fluid are arranged in the cluster. The wall of each duct is pierced with coolant ejection holes which are placed circumferentially to a pre-determined pattern established according to the position of the duct in the cluster and by the axial distance of the ejection hole along the duct. This assembly is intended for reactors cooled by light or heavy water [fr

  8. Sogin enriched uranium extraction (EUREX) plant spent fuel pool cleaning and decontamination utilizing the Smart Safe solution

    International Nuclear Information System (INIS)

    Denton, M.S.; Gili, M.; Nasta, M.; Quintiliani, R.; Caccia, G.; Botzen, W.; Forrester, K.

    2009-01-01

    SOGIN's EUREX facility in Italy was developed as a pilot plant functional testing laboratory for spent fuel reprocessing. This facility was operated successfully for many years since 1970 and was eventually shutdown consistent with Italy's suspension of all nuclear operations. At the time of suspension, the EUREX facility still had spent nuclear fuel assemblies in storage from a nearby PWR. Other fuel assemblies from an Italian AGR had remained stored in the spent fuel pool for the 20 years or so waiting for removal and reprocessing abroad. Being Magnox fuel elements, their recovery for the transport produced a huge amount of sludge in the pool. During this time, sediment, dirt, corrosion products, fuel cladding, etc. has collected within the fuel pool as a crud layer dispersed throughout. Most of this crud has accumulated on the horizontal surfaces of the pool and fuel element assemblies, while some remains as a suspended colloidal material. Furthermore many other contaminated metal components, used during the operation years, where still inside the pool. Due to a pool leak discovered in 2006, SOGIN speeded up its pool decommissioning program, making also available the transfer of the spent fuel to a nearby interim repository, with the goal to completely drain the pool in the shortest period of time. In order for SOGIN to successfully transfer the fuel assemblies from their current storage basket locations to the spent fuel transfer cask, the bulk of the crud needed to be removed. This cleanup operation was deemed necessary to minimize the suspension of contamination in the water during underwater handling operations. This would reduce the decontamination efforts on the transfer cask upon removal, once loaded with the spent fuel, and enhance safety by reducing potential underwater visibility issues. The operations were completed in July 2008 with the release to the environment of the pool water, thoroughly purified and without any relevant radiological impact. The

  9. Nuclear fuel activities in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D S [Fuel Development Branch, Chalk River Labs., AECL (Canada)

    1997-12-01

    Nuclear fuel activities in Canada are considered in the presentation on the following directions: Canadian utility fuel performance; CANDU owner`s group fuel programs; AECL advanced fuel program (high burnup fuel behaviour and development); Pu dispositioning (MOX) activities. 1 tab.

  10. Nuclear fuel brokerage

    International Nuclear Information System (INIS)

    Hoffman, J.; Schreiber, K.

    1985-01-01

    Making available nuclear fuels on the spot market, especially uranium in various compounds and processing stages, has become an important service rendered nuclear power plant operators. A secondary market has grown, both for natural uranium and for separative work, the conditions and transactions of which require a comprehensive overview of what is going on, especially also in connection with possibilities to terminate in a profitable manner existing contracts. This situation has favored the activity of brokers with excellent knowledge of the market, who are able to handle the complicated terms and conditions in an optimum way. (orig.) [de

  11. Non-electric applications of pool-type nuclear reactors

    International Nuclear Information System (INIS)

    Adamov, E.O.; Cherkashov, Yu.M.; Romenkov, A.A.

    1997-01-01

    This paper recommends the use of pool-type light water reactors for thermal energy production. Safety and reliability of these reactors were already demonstrated to the public by the long-term operation of swimming pool research reactors. The paper presents the design experience of two projects: Apatity Underground Nuclear Heating Plant and Nuclear Sea-Water Desalination Plant. The simplicity of pool-type reactors, the ease of their manufacturing and maintenance make this type of a heat source attractive to the countries without a developed nuclear industry. (author). 6 figs, 1 tab

  12. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a nuclear reactor fuel assembly comprising a cluster of fuel elements supported by transversal grids so that their axes are parallel to and at a distance from each other, in order to establish interstices for the axial flow of a coolant. At least one of the interstices is occupied by an axial duct reserved for an auxiliary cooling fluid and is fitted with side holes through which the auxiliary cooling fluid is sprayed into the cluster. Deflectors extend as from a transversal grid in a position opposite the holes to deflect the cooling fluid jet towards those parts of the fuel elements that are not accessible to the auxiliary coolant. This assembly is intended for reactors cooled by light or heavy water [fr

  13. Engineering program in order to increase the irradiated fuel storage capacity in pool facilities of Juragua

    International Nuclear Information System (INIS)

    Rodriguez R, J.

    1996-01-01

    In 1993, a technical program in the spent fuel storage area of Nuclear Plant Juragua was launched. Such a program tries to carry out an engineering assessment of the possibility of increasing the spent fuel storage capacity in pool storage facilities by using high density racks (re-racking) instead of the original (non-compact) ones. The purpose of the above-mentioned program is to evaluate possible solutions that can be applied to the construction works prior to plant operation. The first stage of the program for the 1994-95 period is an ongoing Engineering-Economic Feasibility Study (EEFS), which endeavors to examine the capabilities of the reloading pool in Unit-1 Reactor building and long-term storage pool in auxiliary building in high density storage conditions. Technical details of the EEFS and reached results and difficulties are described. (author). 5 refs., 2 figs

  14. Nuclear fuel pin

    International Nuclear Information System (INIS)

    Hartley, Kenneth; Moulding, T.L.J.; Rostron, Norman.

    1979-01-01

    Fuel pin for use in fast breeder nuclear reactors containing fissile and fertile areas of which the fissile and fertile materials do not mix. The fissile material takes the shape of large and small diameter microspheres (the small diameter microspheres can pass through the interstices between the large microspheres). The barrier layers being composed of microspheres with a diameter situated between those of the large and small microspheres ensure that the materials do not mix [fr

  15. Alternative nuclear fuel cycles

    International Nuclear Information System (INIS)

    Till, C.E.

    1979-01-01

    This diffuse subject involves value judgments that are political as well as technical, and is best understood in that context. The four questions raised here, however, are mostly from the technical viewpoints: (1) what are alternative nuclear fuel cycles; (2) what generalizations are possible about their characteristics; (3) what are the major practical considerations; and (4) what is the present situation and what can be said about the outlook for the future

  16. Vented nuclear fuel element

    International Nuclear Information System (INIS)

    Oguma, M.; Hirose, Y.

    1976-01-01

    A description is given of a vented nuclear fuel element having a plenum for accumulation of fission product gases and plug means for delaying the release of the fission product gases from the plenum, the plug means comprising a first porous body wettable with a liquid metal and a second porous body non-wettable with the liquid metal, the first porous body being impregnated with the liquid metal and in contact with the liquid metal

  17. Nuclear reactor fuel element splitter

    International Nuclear Information System (INIS)

    Yeo, D.

    1976-01-01

    A method and apparatus are disclosed for removing nuclear fuel from a clad fuel element. The fuel element is power driven past laser beams which simultaneously cut the cladding lengthwise into at least two longitudinal pieces. The axially cut lengths of cladding are then separated, causing the nuclear fuel contained therein to drop into a receptacle for later disposition. The cut lengths of cladding comprise nuclear waste which is disposed of in a suitable manner. 6 claims, 10 drawing figures

  18. Problems of the Spent Nuclear Fuel Storage

    International Nuclear Information System (INIS)

    Negrivoda, G.

    1997-01-01

    Approximately 99% of the radioactivity in waste, produced in the process of operating a nuclear power plant, is contained in spent nuclear fuel. Safe handling and storage of the spent nuclear fuel is an important factor of a nuclear plant safety. Today at Ignalina NPP the spent fuel is stored in special water pools, located in the same buildings as the reactors. The volume of the pools is limited, for unit one the pool will be fully loaded in 1998, for unit 2 - in 2000. The further operation of the plant will only be possible if new storage is constructed. In 1994 contract with German company GNB was signed for the supply of 20 containers of the CASTOR type. Containers were delivered in accordance with agreed schedule. In the end of 1995 a new tender for new storage options was announced in order to minimize the storage costs. A proposal from Canadian company AECL now is being considered as one of the most suitable and negotiations to sign the contract started. (author)

  19. Nuclear fuel handling apparatus

    International Nuclear Information System (INIS)

    Andrea, C.; Dupen, C.F.G.; Noyes, R.C.

    1977-01-01

    A fuel handling machine for a liquid metal cooled nuclear reactor in which a retractable handling tube and gripper are lowered into the reactor to withdraw a spent fuel assembly into the handling tube. The handling tube containing the fuel assembly immersed in liquid sodium is then withdrawn completely from the reactor into the outer barrel of the handling machine. The machine is then used to transport the spent fuel assembly directly to a remotely located decay tank. The fuel handling machine includes a decay heat removal system which continuously removes heat from the interior of the handling tube and which is capable of operating at its full cooling capacity at all times. The handling tube is supported in the machine from an articulated joint which enables it to readily align itself with the correct position in the core. An emergency sodium supply is carried directly by the machine to provide make up in the event of a loss of sodium from the handling tube during transport to the decay tank. 5 claims, 32 drawing figures

  20. Stress corrosion cracking (Standard Astm G 30-90) in stainless steel 08X18H10T of swimming-pool that contain nuclear fuel in reactors V.V.E.R.-440

    International Nuclear Information System (INIS)

    Zamora R, L.; Herrera, V.

    1998-01-01

    The standard recommended practice for making and using 'U' bend stress corrosion test specimens; Designation G30-90 has been used as a laboratory tool to study the susceptibility of austenitic stainless steels and the other materials of test of intergranular stress corrosion cracking (IGSCC). The experiment has been development in a similar conditions of the chemical regime, the swimming-pool that containing nuclear fuel in borated water reactors VVER-440 in general this cladding by two films, one of carbon steel (04T26) and other with austenitic stainless steel 08X18HT (similar type 321) stabilized with titanium, the thickness of filler metals was to 4 to 8 mm. The specimens was prepare one plate with this characteristics, the welding was put in the part central with the following measurements of 160x15x5 mm. The specimens strips bent approximately 180 degrees around radius of curvature of R=14.5 mm and ε 1 = 17.2% and maintained in this plastically deformed condition during the test. And then preparing metallographically and exposure in environment of 12 and 40 gr./l of H 3 BO 3 70 Centigrade with or noting contaminants of NaCl. The results showed the initial cracks. (Author)

  1. South Korea's nuclear fuel industry

    International Nuclear Information System (INIS)

    Clark, R.G.

    1990-01-01

    March 1990 marked a major milestone for South Korea's nuclear power program, as the country became self-sufficient in nuclear fuel fabrication. The reconversion line (UF 6 to UO 2 ) came into full operation at the Korea Nuclear Fuel Company's fabrication plant, as the last step in South Korea's program, initiated in the mid-1970s, to localize fuel fabrication. Thus, South Korea now has the capability to produce both CANDU and pressurized water reactor (PWR) fuel assemblies. This article covers the nuclear fuel industry in South Korea-how it is structures, its current capabilities, and its outlook for the future

  2. Radiation heat transfer model in a spent fuel pool by TRACE code

    International Nuclear Information System (INIS)

    Sanchez-Saez, F.; Carlos, S.; Villanueva, J.F.; Martorell, S.

    2014-01-01

    Nuclear policies have experienced an important change since Fukushima Daiichi nuclear plant accident and the safety of spent fuels has been in the spot issue among all the safety concerns. The work presented consists of the thermohydraulic simulation of spent fuel pool behavior after a loss of coolant throughout transfer channel with loss of cooling transient is produced. The simulation is done with the TRACE code. One of the most important variables that define the behavior of the pool is cladding temperature, which evolution depends on the heat emission. In this work convection and radiation heat transfer is considered. When both heat transfer models are considered, a clear delay in achieving the maximum peak cladding temperature (1477 K) is observed compared with the simulation in which only convection heat transfer is considered. (authors)

  3. Nonlinear dynamic response of whole pool multiple spent fuel racks subject to three-dimensional excitations

    International Nuclear Information System (INIS)

    Zhao, Y.; Wilson, P.R.; Stevenson, J.D.

    1995-01-01

    The seismic evaluation of submerged free standing spent fuel storage racks is more complicated than most other nuclear structural systems. When subjected to three dimensional (3-D) floor seismic excitations the dynamic responses of racks in a pool are hydro dynamically coupled with each other, with the fuel assemblies water in gaps. The motion behavior of the racks is significantly different from that observed using a 3D single rack mode. Few seismic analyses using 3-D whole pool multiple rack models are available in the literature. I this paper an analysis was performed for twelve racks using potential theory for the fluid-structure interaction, and using a 3-D whole pool multi-rack finite element model developed herein. The analysis includes the potential nonlinear dynamic behavior of the impact of fuel-rack, rack-rack and rack-pool wall, the tilting or uplift and the frictional sliding of rack supports, and the impact of the rack supports to the pool floor. (author). 12 refs., 7 figs., 1 tab

  4. Development of INSPCT-S for inspection of spent fuel pool

    Energy Technology Data Exchange (ETDEWEB)

    Walters, W.; Haghighat, A. [Nuclear Engineering Program, Mechanical Engineering Dept., Virginia Tech., Blacksburg, VA 24061 (United States); Sitaraman, S.; Ham, Y. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States)

    2011-07-01

    In this paper, we discuss an accurate and fast software tool (INSPCT-S, Inspection of Nuclear Spent fuel-Pool Calculation Tool, version Spreadsheet) developed for calculation of the response of fission chambers placed in a spent fuel pool, such as Atucha-I. INSPCT-S is developed for identification of suspicious regions of the pool that may have missing or substitute assemblies. INSPCT-S uses a hybrid algorithm based on the adjoint function methodology. The neutron source is comprised of spontaneous fission, ({alpha}, n) interactions, and subcritical multiplication. The former is evaluated using the ORIGEN-ARP code, and the latter is obtained with the fission matrix (FM) formulation. The FM coefficients are determined using the MCNP Monte Carlo code, and the importance function is determined using the PENTRAN 3-D parallel Sn code. Three databases for the neutron source, FM elements, and adjoint flux are prepared as functions of different parameters including burnup, cooling time, enrichment, and pool lattice size. INSPCT-S uses the aforementioned databases and systems of equations to calculate detector responses, which are subsequently compared with normalized experimental data. If this comparison is not satisfied, INSPCT-S utilizes color coding to identify the suspicious regions of a spent fuel pool. (authors)

  5. Nuclear fuel rod loading apparatus

    International Nuclear Information System (INIS)

    King, H.B.

    1981-01-01

    A nuclear fuel loading apparatus, incorporating a microprocessor control unit, is described which automatically loads nuclear fuel pellets into dual fuel rods with a minimum of manual involvement and in a manner and sequence to ensure quality control and accuracy. (U.K.)

  6. Future trends in nuclear fuels

    International Nuclear Information System (INIS)

    Guitierrez, J.E.

    2006-01-01

    This series of transparencies presents: the fuel management cycle and key areas (security of supplies, strategies and core management, reliability, spent fuel management), the world nuclear generating capacity, concentrate capacity, enrichment capacity, and manufacturing capacity forecasts, the fuel cycle strategies and core management (longer cycles, higher burnups, power up-rates, higher enrichments), the Spanish nuclear generation cost, the fuel reliability (no defects, robust designs, operational margins, integrated fuel and core design), spent fuel storage (design and safety criteria, fuel performance and integrity). (J.S.)

  7. Nuclear fuel element

    International Nuclear Information System (INIS)

    Iwano, Yoshihiko.

    1993-01-01

    Microfine cracks having a depth of less than 10% of a pipe thickness are disposed radially from a central axis each at an interval of less than 100 micron over the entire inner circumferential surface of a zirconium alloy fuel cladding tube. For manufacturing such a nuclear fuel element, the inside of the cladding tube is at first filled with an electrolyte solution of potassium chloride. Then, electrolysis is conducted using the cladding tube as an anode and the electrolyte solution as a cathode, and the inner surface of the cladding tube with a zirconium dioxide layer having a predetermined thickness. Subsequently, the cladding tube is laid on a smooth steel plate and lightly compressed by other smooth steel plate to form microfine cracks in the zirconium dioxide layer on the inner surface of the cladding tube. Such a compressing operation is continuously applied to the cladding tube while rotating the cladding tube. This can inhibit progress of cracks on the inner surface of the cladding tube, thereby enabling to prevent failure of the cladding tube even if a pellet/cladding tube mechanical interaction is applied. Accordingly, reliability of the nuclear fuel elements is improved. (I.N.)

  8. Calculation of spent fuel pool severe accident with MELCOR

    International Nuclear Information System (INIS)

    Deng Jian; Xiang Qing'an; Zhou Kefeng

    2014-01-01

    A calculation model was established for spent fuel pool (SFP) using MELCOR code to study the severe accident phenomena caused by the long term station black-out (SBO), including spent fuel heatup, zirconium cladding oxidation, and the injection into SFP to mitigate the severe accident. The results show that the severe accident progression is slow and relates directly with the initial water level in SFP. It is illustrated that the injection into SFP is one of the best mitigated measures for the SFP severe accident. (authors)

  9. Stabilization of reactor fuel storage pool-TTP

    International Nuclear Information System (INIS)

    Sevigny, G.

    1994-10-01

    The proposed work includes evaluating standard and improved technologies an designing an integrated demonstration system to clean the water and sludge the fuel storage pools. The water released would meet drinking water standards and tritium standards. The volume of radioactive sludge would be reduced by partial separation of the sludge and radionuclides and eventual solidification of the hazardous and radioactive waste. The scope of the wo includes a survey of needs and applicable technologies, system engineering evaluation, conceptual design, detailed design, fabrication of the integrat demonstration system, and testing of the system. The survey task will locate potential specific customers within the DOE complex, and outside of the DOE complex throughout the United States, that be able to utilize the narrowly focused technology to stabilize/shutdown reactor fuel storage pools, responsible parties will be located and asked respond to a survey about their specific process requirements. Literature searches will be run through technical and scientific databases to locate technologies that may be an improvement over the standard baselined technol for cleanup of radioactively-contaminated pools. Systems engineering will provide decision analysis support for the development, evaluation, design, test functions of the treatment of pool water and sludge

  10. Stabilization of reactor fuel storage pool-TTP

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, G.

    1994-10-01

    The proposed work includes evaluating standard and improved technologies an designing an integrated demonstration system to clean the water and sludge the fuel storage pools. The water released would meet drinking water standards and tritium standards. The volume of radioactive sludge would be reduced by partial separation of the sludge and radionuclides and eventual solidification of the hazardous and radioactive waste. The scope of the wo includes a survey of needs and applicable technologies, system engineering evaluation, conceptual design, detailed design, fabrication of the integrat demonstration system, and testing of the system. The survey task will locate potential specific customers within the DOE complex, and outside of the DOE complex throughout the United States, that be able to utilize the narrowly focused technology to stabilize/shutdown reactor fuel storage pools, responsible parties will be located and asked respond to a survey about their specific process requirements. Literature searches will be run through technical and scientific databases to locate technologies that may be an improvement over the standard baselined technol for cleanup of radioactively-contaminated pools. Systems engineering will provide decision analysis support for the development, evaluation, design, test functions of the treatment of pool water and sludge.

  11. Application of burnup credit for PWR spent fuel storage pool

    International Nuclear Information System (INIS)

    Shin, Hee Sung; Ro, Seung-Gy; Bae, Kang Mok; Kim, Ik Soo; Shin, Young Joon

    1999-01-01

    A study on the application of burnup credit for a PWR spent fuel storage pool has been investigated using a computer code system such as CSAS6 module of SCALE 4.3 in association with 44-group SCALE cross-section library. The calculation bias of the code system at a 95% probability with a 95% confidence level seems to be 0.00951 by benchmarking the system for forty six experimental data. With the aid of this computer code system, criticality analysis has been performed for the PWR spent fuel storage pool. Uncertainties due to postulated abnormal and accidental conditions, and manufacturing tolerance such as stainless steel thickness of storage rack, fuel enrichment, fuel density and box size have statistically been combined and resulted in 0.00674. Also, isotopic correction factor which was based on the calculated and measured concentration of 43 isotopes for both selected actinides and fission products important in burnup credit application has been taken into account in the criticality analysis. It is revealed that the minimum burnup with the corrected isotopic concentrations as required for the safe storage is 5,730 MWd/tU in enriched fuel of 5.0 wt%. (author)

  12. On the neutronics of spent fuel storage pools

    International Nuclear Information System (INIS)

    Caro, R.; Martinez-Val, J.M.; Donoso, E.

    1980-01-01

    The neutron physics of light-water-reactor fuel elements storage is analyzed for reviewing the calculation methodologies and pointing out its characteristics, specially those related to the safety analysis report. Some numerical results are presented, involving both clean and poisoned storage pools. Besides the conventional criticality calculations in nominal and accidental circumstances, the so-called optimum moderation phenomenon is dealt with special emphasis. (author)

  13. Nuclear fuel element

    International Nuclear Information System (INIS)

    Armijo, J.S.

    1977-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed which has a composite cladding having a substrate, a metal barrier metallurgically bonded to the inside surface of the substrate and an inner layer metallurgically bonded to the inside surface of the metal barrier. In this composite cladding, the inner layer and the metal barrier shield the substrate from any impurities or fission products from the nuclear fuel material held within the composite cladding. The metal barrier forms about 1 to about 4 percent of the thickness of the cladding and is comprised of a metal selected from the group consisting of niobium, aluminum, copper, nickel, stainless steel, and iron. The inner layer and then the metal barrier serve as reaction sites for volatile impurities and fission products and protect the substrate from contact and reaction with such impurities and fission products. The substrate and the inner layer of the composite cladding are selected from conventional cladding materials and preferably are a zirconium alloy. Also in a preferred embodiment the substrate and the inner layer are comprised of the same material, preferably a zirconium alloy. 19 claims, 2 figures

  14. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    1980-01-01

    The invention is of a nuclear fuel element which comprises a central core of a body of nuclear fuel material selected from the group consisting of compounds of uranium, plutonium, thorium and mixtures thereof, and an elongated composite cladding container comprising a zirconium alloy tube containing constituents other than zirconium in an amount greater than about 5000 parts per million by weight and an undeformed metal barrier of moderate purity zirconium bonded to the inside surface of the alloy tube. The container encloses the core so as to leave a gap between the container and the core during use in a nuclear reactor. The metal barrier is of moderate purity zirconium with an impurity level on a weight basis of at least 1000ppm and less than 5000ppm. Impurity levels of specific elements are given. Variations of the invention are also specified. The composite cladding reduces chemical interaction, minimizes localized stress and strain corrosion and reduces the likelihood of a splitting failure in the zirconium alloy tube. Other benefits are claimed. (U.K.)

  15. Quality management of nuclear fuel

    International Nuclear Information System (INIS)

    2006-01-01

    The Guide presents the quality management requirements to be complied with in the procurement, design, manufacture, transport, receipt, storage, handling and operation of nuclear fuel. The Guide also applies to control rods and shield elements to be placed in the reactor. The Guide is mainly aimed for the licensee responsible for the procurement and operation of fuel, for the fuel designer and manufacturer and for other organisations, whose activities affect fuel quality and the safety of fuel transport, storage and operation. General requirements for nuclear fuel are presented in Section 114 of the Finnish Nuclear Energy Decree and in Section 15 of the Government Decision (395/1991). Regulatory control of the safety of fuel is described in Guides YVL6.1, YVL6.2 and YVL6.3. An overview of the regulatory control of nuclear power plants carried out by STUK (Radiation and Nuclear Safety Authority, Finland) is clarified in Guide YVL1.1

  16. Nonlinear analysis and evaluation of a reinforced concrete spent fuel storage pool for accidental thermal loads

    International Nuclear Information System (INIS)

    Kabir, A.F.; Bolourchi, S.

    1991-01-01

    A feasibility study was conducted for addition of consolidated fuel racks to an existing reinforced concrete spent fuel storage pool of a Mark I BWR plant. Nonlinear analysis of a detailed three-dimensional model of the fuel pool, considering cracking in concrete under gravity and thermal load conditions, showed that the pool has reserve capacities to carry the additional loads. (author)

  17. Nuclear power and the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    The IAEA is organizing a major conference on nuclear power and the nuclear fuel cycle, which is to be held from 2 to 13 May 1977 in Salzburg, Austria. The programme for the conference was published in the preceding issue of the IAEA Bulletin (Vol.18, No. 3/4). Topics to be covered at the conference include: world energy supply and demand, supply of nuclear fuel and fuel cycle services, radioactivity management (including transport), nuclear safety, public acceptance of nuclear power, safeguarding of nuclear materials, and nuclear power prospects in developing countries. The articles in the section that follows are intended to serve as an introduction to the topics to be discussed at the Salzburg Conference. They deal with the demand for uranium and nuclear fuel cycle services, uranium supplies, a computer simulation of regional fuel cycle centres, nuclear safety codes, management of radioactive wastes, and a pioneering research project on factors that determine public attitudes toward nuclear power. It is planned to present additional background articles, including a review of the world nuclear fuel reprocessing situation and developments in the uranium enrichment industry, in future issues of the Bulletin. (author)

  18. Nuclear fuel supplies

    International Nuclear Information System (INIS)

    1960-01-01

    When the International Atomic Energy Agency was set up nearly three years ago, it was widely believed that it would soon become a world bank or broker for the supply of nuclear fuel. Some observers now seem to feel that this promise has been rather slow to come to fruition. A little closer analysis would, however, show that the promise can be fulfilled only in a certain objective context, and to the extent that this context exists, the development of the Agency's role has been commensurate with the actual needs of the situation

  19. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Allan, C.J.

    1993-01-01

    The Canadian concept for nuclear fuel waste disposal is based on disposing of the waste in a vault excavated 500-1000 m deep in intrusive igneous rock of the Canadian Shield. The author believes that, if the concept is accepted following review by a federal environmental assessment panel (probably in 1995), then it is important that implementation should begin without delay. His reasons are listed under the following headings: Environmental leadership and reducing the burden on future generations; Fostering public confidence in nuclear energy; Forestalling inaction by default; Preserving the knowledge base. Although disposal of reprocessing waste is a possible future alternative option, it will still almost certainly include a requirement for geologic disposal

  20. Evaporation-preventive device for nuclear reactor pool water

    International Nuclear Information System (INIS)

    Kurusu, Yoshihisa; Akabori, Shiro.

    1986-01-01

    Purpose: To prevent pool water from evaporating by a great amount in a reactor pool such as a spent fuel storing pool. Constitution: Air discharge and in-take ports are disposed just above the surface of the pool water and charge and discharge of airs are forcively carried out to form air curtains above the pool water. Water vapor evaporated from the surface of the pool water does not diffuse above the air curtains due to the air stream of the curtains, but is intaken into the intake port and then condensated into water by a steam condensator and re-supplied to the pool. Since diffusion of water vapor and radioactive materials are suppressed above the air curtains, the working circumstance in the pool chamber can be maintained desirably thereby keeping the radioactivity dose in the atmosphere. Further, incorporation of dusts from above into the pool can also be prevented by the air curtains to provide an effect for the prevention of radioactive contamination. Further, since covers are not used, visual observation can be insured. (Kawakami, Y.)

  1. Regulation at nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the role of the UJD in regulation at nuclear fuel cycle is presented. The Nuclear Fuel Cycle (NFC) is a complex of activities linked with production of nuclear fuel for nuclear reactors as a source of energy used for production of electricity and heat, and of activities linked with spent nuclear fuel handling. Activities linked with nuclear fuel (NF) production, known as the Front-End of Nuclear Fuel Cycle, include (production of nuclear fuel from uranium as the most frequently used element). After discharging spent nuclear fuel (SNF) from nuclear reactor the activities follow linked with its storage, reprocessing and disposal known as the Back-End of Nuclear Fuel Cycle. Individual activity, which penetrates throughout the NFC, is transport of nuclear materials various forms during NF production and transport of NF and SNF. Nuclear reactors are installed in the Slovak Republic only in commercial nuclear power plants and the NFC is of the open type is imported from abroad and SNF is long-term supposed without reprocessing. The main mission of the area of NFC is supervision over: - assurance of nuclear safety throughout all NFC activities; - observance of provisions of the Treaty on Non-Proliferation of Nuclear Weapons during nuclear material handling; with an aim to prevent leakage of radioactive substances into environment (including deliberated danage of NFC sensitive facilities and misuse of nuclear materials to production of nuclear weapons. The UJD carries out this mission through: - assessment of safety documentation submitted by operators of nuclear installations at which nuclear material, NF and SNF is handled; - inspections concentrated on assurance of compliance of real conditions in NFC, i.e. storage and transport of NF and SNF; storage, transport and disposal of wastes from processing of SNF; with assumptions of the safety

  2. Nuclear power generation and nuclear fuel

    International Nuclear Information System (INIS)

    Okajima, Yasujiro

    1985-01-01

    As of June 30, 1984, in 25 countries, 311 nuclear power plants of about 209 million kW were in operation. In Japan, 27 plants of about 19 million kW were in operation, and Japan ranks fourth in the world. The present state of nuclear power generation and nuclear fuel cycle is explained. The total uranium resources in the free world which can be mined at the cost below $130/kgU are about 3.67 million t, and it was estimated that the demand up to about 2015 would be able to be met. But it is considered also that the demand and supply of uranium in the world may become tight at the end of 1980s. The supply of uranium to Japan is ensured up to about 1995, and the yearly supply of 3000 st U 3 O 8 is expected in the latter half of 1990s. The refining, conversion and enrichment of uranium are described. In Japan, a pilot enrichment plant consisting of 7000 centrifuges has the capacity of about 50 t SWU/year. UO 2 fuel assemblies for LWRs, the working of Zircaloy, the fabrication of fuel assemblies, the quality assurance of nuclear fuel, the behavior of UO 2 fuel, the grading-up of LWRs and nuclear fuel, and the nuclear fuel business in Japan are reported. The reprocessing of spent fuel and plutonium fuel are described. (Kako, I.)

  3. Experimental study on heat pipe heat removal capacity for passive cooling of spent fuel pool

    International Nuclear Information System (INIS)

    Xiong, Zhenqin; Wang, Minglu; Gu, Hanyang; Ye, Cheng

    2015-01-01

    Highlights: • A passively cooling SFP heat pipe with an 8.2 m high evaporator was tested. • Heat removed by the heat pipe is in the range of 3.1–16.8 kW. • The heat transfer coefficient of the evaporator is 214–414 W/m 2 /K. • The heat pipe performance is sensitive to the hot water temperature. - Abstract: A loop-type heat pipe system uses natural flow with no electrically driven components. Therefore, such a system was proposed to passively cool spent fuel pools during accidents to improve nuclear power station safety especially for station blackouts such as those in Fukushima. The heat pipe used for a spent fuel pool is large due to the spent fuel pool size. An experimental heat pipe test loop was developed to estimate its heat removal capacity from the spent fuel pool during an accident. The 7.6 m high evaporator is heated by hot water flowing vertically down in an assistant tube with a 207-mm inner diameter. R134a was used as the potential heat pipe working fluid. The liquid R134a level was 3.6 m. The tests were performed for water velocities from 0.7 to 2.1 × 10 −2 m/s with water temperatures from 50 to 90 °C and air velocities from 0.5 m/s to 2.5 m/s. The results indicate significant heat is removed by the heat pipe under conditions that may occur in the spent fuel pool

  4. Financing the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Stephany, M.

    1975-01-01

    While conventional power stations usually have fossil fuel reserves for only a few weeks, nuclear power stations, because of the relatively long time required for uranium processing from ore extraction to the delivery of the fuel elements and their prolonged in-pile time, require fuel reserves for a period of several years. Although the specific fuel costs of nuclear power stations are much lower than those of conventional power stations, this results in consistently higher financial requirements. But the problems involved in financing the nuclear fuel do not only include the aspect of financing the requirements of reactor operators, but also of financing the facilities of the nuclear fuel cycle. As far as the fuel supply is concerned, the true financial requirements greatly exceed the mere purchasing costs because the costs of financing are rather high as a consequence of the long lead times. (orig./UA) [de

  5. Performance of candu-6 fuel bundles manufactured in romania nuclear fuel plant

    International Nuclear Information System (INIS)

    Bailescu, A.; Barbu, A.; Din, F.; Dinuta, G.; Dumitru, I.; Musetoiu, A.; Serban, G.; Tomescu, A.

    2013-01-01

    The purpose of this article is to present the performance of nuclear fuel produced by Nuclear Fuel Plant (N.F.P.) - Pitesti during 1995 - 2012 and irradiated in units U1 and U2 from Nuclear Power Plant (N.P.P.) Cernavoda and also present the Nuclear Fuel Plant (N.F.P.) - Pitesti concern for providing technology to prevent the failure causes of fuel bundles in the reactor. This article presents Nuclear Fuel Plant (N.F.P.) - Pitesti experience on tracking performance of nuclear fuel in reactor and strategy investigation of fuel bundles notified as suspicious and / or defectives both as fuel element and fuel bundle, it analyzes the possible defects that can occur at fuel bundle or fuel element and can lead to their failure in the reactor. Implementation of modern technologies has enabled optimization of manufacturing processes and hence better quality stability of achieving components (end caps, chamfered sheath), better verification of end cap - sheath welding. These technologies were qualified by Nuclear Fuel Plant (N.F.P.) - Pitesti on automatic and Computer Numerical Control (C.N.C.) programming machines. A post-irradiation conclusive analysis which will take place later this year (2013) in Institute for Nuclear Research Pitesti (the action was initiated earlier this year by bringing a fuel bundle which has been reported defective by pool visual inspection) will provide additional information concerning potential damage causes of fuel bundles due to manufacturing processes. (authors)

  6. IAEA activities on nuclear fuel

    International Nuclear Information System (INIS)

    Basak, U.

    2011-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The following Coordinated Research Projects: 1) FUel performance at high burn-up and in ageing plant by management and optimisation of WAter Chemistry Technologies (FUWAC ); 2) Near Term and Promising Long Term Options for Deployment of Thorium Based Nuclear Energy; 3) Fuel Modelling (FUMEX-III) are shortly described. The data collected by the IAEA Expert Group of Fuel Failures in Water Cooled Reactors including information about fuel failure cause for PWR (1994-2006) and failure mechanisms for BWR fuel (1994-2006) are shown. The just published Fuel Failure Handbook as well as preparation of a Monograph on Zirconium including an overview of Zirconium for nuclear applications are presented. The current projects in Sub-programme B2 - Power Reactor Fuel Engineering are also listed

  7. Bases for extrapolating materials durability in fuel storage pools

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1994-12-01

    A major body of evidence indicates that zirconium alloys have the most consistent and reliable durability in wet storage, justifying projections of safe wet storage greater than 50 y. Aluminum alloys have the widest range of durabilities in wet storage; systematic control and monitoring of water chemistry have resulted in low corrosion rates for more than two decades on some fuels and components. However, cladding failures have occurred in a few months when important parameters were not controlled. Stainless steel is extremely durable when stress, metallurgical and water chemistry factors are controlled. LWR SS cladding has survived for 25 y in wet storage. However, sensitized, stressed SS fuels and components have seriously degraded in fuel storage pools (FSPs) at ∼ 30 C. Satisfactory durability of fuel assembly and FSP component materials in extended wet storage requires investments in water quality management and surveillance, including chemical and biological factors. The key aspect of the study is to provide storage facility operators and other decision makers a basis to judge the durability of a given fuel type in wet storage as a prelude to basing other fuel management plans (e.g. dry storage) if wet storage will not be satisfactory through the expected period of interim storage

  8. Nuclear fuel pellet charging device

    International Nuclear Information System (INIS)

    Komuro, Kojiro.

    1990-01-01

    The present invention concerns a nuclear fuel pellet loading device, in which nuclear fuel pellets are successively charged from an open end of a fuel can while rotating the can. That is, a fuel can sealed at one end with an end plug and opened at the other end is rotated around its pipe axis as the center on a rotationally diriving table. During rotation of the fuel can, nuclear fuel pellets are successively charged by means of a feed rod of a feeding device to the inside of the fuel can. The fuel can is rotated while being supported horizontally and the fuel pellets are charged from the open end thereof. Alternatively, the fuel can is rotated while being supported obliquely and the fuel pellets are charged gravitationally into the fuel can. In this way, the damages to the barrier of the fuel can can be reduce. Further, since the fuel pellets can be charged gravitationally by rotating the fuel can while being supported obliquely, the damages to the barrier can be reduced remarkably. (I.S.)

  9. Nuclear power fuel cycle

    International Nuclear Information System (INIS)

    Havelka, S.; Jakesova, L.

    1982-01-01

    Economic problems are discussed of the fuel cycle (cost of the individual parts of the fuel cycle and the share of the fuel cycle in the price of 1 kWh), the technological problems of the fuel cycle (uranium ore mining and processing, uranium isotope enrichment, the manufacture of fuel elements, the building of long-term storage sites for spent fuel, spent fuel reprocessing, liquid and gaseous waste processing), and the ecologic aspects of the fuel cycle. (H.S.)

  10. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Scurr, I.F.; Silver, J.M.

    1990-01-01

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  11. Safety aspects of the cleaning and conditioning of radioactive sludge from spent fuel storage pool on 'RA' Research reactor in the Vinca Institute

    International Nuclear Information System (INIS)

    Pavlovic, R; Pavlovic, S.; Plecas, I.

    1999-01-01

    Spent fuel elements from nuclear reactors in the Vinca Institute have been temporary stored in water filled storage pool. Due to the fact that the water in the spent fuel elements storage pool have not been purified for a long time, all metallic components submerged in the water have been hardly corroded and significant amount of the sludge has been settled on the bottom of the pool. As a first step in improving spent fuel elements storage conditions and slowing down corrosion in the storage spent fuel elements pool we have decided to remove the sludge from the bottom of the pool. Although not high, but slightly radioactive, this sludge had to be treated as radioactive waste material. Some safety aspects and radiation protection measures in the process of the spent fuel storage pool cleaning are presented in this paper

  12. Romanian nuclear fuel cycle development

    International Nuclear Information System (INIS)

    Rapeanu, S.N.; Comsa, Olivia

    1998-01-01

    Romanian decision to introduce nuclear power was based on the evaluation of electricity demand and supply as well as a domestic resources assessment. The option was the introduction of CANDU-PHWR through a license agreement with AECL Canada. The major factors in this choice have been the need of diversifying the energy resources, the improvement the national industry and the independence of foreign suppliers. Romanian Nuclear Power Program envisaged a large national participation in Cernavoda NPP completion, in the development of nuclear fuel cycle facilities and horizontal industry, in R and D and human resources. As consequence, important support was being given to development of industries involved in Nuclear Fuel Cycle and manufacturing of equipment and nuclear materials based on technology transfer, implementation of advanced design execution standards, QA procedures and current nuclear safety requirements at international level. Unit 1 of the first Romanian nuclear power plant, Cernavoda NPP with a final profile 5x700 Mw e, is now in operation and its production represents 10% of all national electricity production. There were also developed all stages of FRONT END of Nuclear Fuel Cycle as well as programs for spent fuel and waste management. Industrial facilities for uranian production, U 3 O 8 concentrate, UO 2 powder and CANDU fuel bundles, as well as heavy water plant, supply the required fuel and heavy water for Cernavoda NPP. The paper presents the Romanian activities in Nuclear Fuel Cycle and waste management fields. (authors)

  13. Reactor Structure Materials: Nuclear Fuel

    International Nuclear Information System (INIS)

    Sannen, L.; Verwerft, M.

    2000-01-01

    Progress and achievements in 1999 in SCK-CEN's programme on applied and fundamental nuclear fuel research in 1999 are reported. Particular emphasis is on thermochemical fuel research, the modelling of fission gas release in LWR fuel as well as on integral experiments

  14. Burnable absorber coated nuclear fuel

    International Nuclear Information System (INIS)

    Chubb, W.; Radford, K.C.; Parks, B.H.

    1984-01-01

    A nuclear fuel body which is at least partially covered by a burnable neutron absorber layer is provided with a hydrophobic overcoat generally covering the burnable absorber layer and bonded directly to it. In a method for providing a UO 2 fuel pellet with a zirconium diboride burnable poison layer, the fuel body is provided with an intermediate niobium layer. (author)

  15. The fuel of nuclear reactors

    International Nuclear Information System (INIS)

    1995-03-01

    This booklet is a presentation of the different steps of the preparation of nuclear fuels performed by Cogema. The documents starts with a presentation of the different French reactor types: graphite moderated reactors, PWRs using MOX fuel, fast breeder reactors and research reactors. The second part describes the fuel manufacturing process: conditioning of nuclear materials and fabrication of fuel assemblies. The third part lists the different companies involved in the French nuclear fuel industry while part 4 gives a short presentation of the two Cogema's fuel fabrication plants at Cadarache and Marcoule. Part 5 and 6 concern the quality assurance, the safety and reliability aspects of fuel elements and the R and D programs. The last part presents some aspects of the environmental and personnel protection performed by Cogema. (J.S.)

  16. The evolving nuclear fuel cycle

    International Nuclear Information System (INIS)

    Gale, J.D.; Hanson, G.E.; Coleman, T.A.

    1993-01-01

    Various economics and political pressures have shaped the evolution of nuclear fuel cycles over the past 10 to 15 yr. Future trends will no doubt be similarly driven. This paper discusses the influences that long cycles, high discharge burnups, fuel reliability, and costs will have on the future nuclear cycle. Maintaining the economic viability of nuclear generation is a key issue facing many utilities. Nuclear fuel has been a tremendous bargain for utilities, helping to offset major increases in operation and maintenance (O ampersand M) expenses. An important factor in reducing O ampersand M costs is increasing capacity factor by eliminating outages

  17. Nuclear Fuel elements

    International Nuclear Information System (INIS)

    Hirakawa, Hiromasa.

    1979-01-01

    Purpose: To reduce the stress gradient resulted in the fuel can in fuel rods adapted to control the axial power distribution by the combination of fuel pellets having different linear power densities. Constitution: In a fuel rod comprising a first fuel pellet of a relatively low linear power density and a second fuel pellet of a relatively high linear power density, the second fuel pellet is cut at its both end faces by an amount corresponding to the heat expansion of the pellet due to the difference in the linear power density to the adjacent first fuel pellet. Thus, the second fuel pellet takes a smaller space than the first fuel pellet in the fuel can. This can reduce the stress produced in the portion of the fuel can corresponding to the boundary between the adjacent fuel pellets. (Kawakami, Y.)

  18. Thorium in nuclear fuel

    International Nuclear Information System (INIS)

    Stankevicius, Alejandro

    2012-01-01

    We revise the advantages and possible problems on the use of thorium as a nuclear fuel instead of uranium. The following aspects are considered: 1) In the world there are three times more thorium than uranium 2) In spite that thorium in his natural form it is not a fisil, under neutron irradiation, is possible to transform it to uranium 233, a fisil of a high quality. 3) His ceramic oxides properties are superior to uranium or plutonium oxides. 4) During the irradiation the U 233 due to n,2n reaction produce small quantities of U 232 and his decay daughters' bismuth 212 and thallium 208 witch are strong gamma source. In turn thorium 228 and uranium 232 became, in time anti-proliferate due to there radiation intensity. 5) As it is described in here and experiments done in several countries reactors PHWR can be adapted to the use of thorium as a fuel element 6) As a problem we should mentioned that the different steps in the process must be done under strong radiation shielding and using only automatized equipment s (author)

  19. Nuclear reactor spent fuel storage rack

    International Nuclear Information System (INIS)

    Machado, O.J.; Flynn, W.M.; Flanders, H.E. Jr.; Booker, L.W.

    1989-01-01

    A fuel rack is described for use in storing nuclear fuel assemblies in a nuclear fuel storage pool having a floor on which an upwardly projecting stud is mounted; the fuel rack comprising: a base structure at the lower end of the fuel rack including base-plate means having flow openings therein, the base-plate means supporting a first network of interlaced beams which form a multiplicity of polygonal openings; a second network of interlaced beams forming polygonal openings positioned in spaced vertical alignment with corresponding polygonal openings in the first network of beams; a plurality of cells, each cell having sides bounded by inner and outer surfaces and being of a size and configuration designed to hold therein a fuel assembly, each cell positioned in a corresponding pair of the aligned polygonal openings, each cell being open at both ends with a guiding funnel at the upper end, and the cells being positioned over the flow openings in the base-plate to permit flow of coolant through the cells; spaced, outwardly directed, projections on the outer surfaces of the sides of the cells near the tops and bottoms of the sides thereof, each cell being sized to be received within a corresponding of the pair of aligned polygonal openings in which the cells are respectively positioned; and means fixedly securing the projections to the beams in the first and second networks of beams thereby to provide a substantially rigid fuel rack of modular design

  20. Operational Experience of Nuclear Fuel in Finnish Nuclear Power Plants (with Emphasis on WWER Fuel)

    International Nuclear Information System (INIS)

    Teraesvirta, R.

    2009-01-01

    The four operating nuclear reactors in Finland, Loviisa-1 and -2 and Olkiluoto-1 and -2 have now operated approximately 30 years. The overall operational experience has been excellent. Load factors of all units have been for years among the highest in the world. The development of the fuel designs during the years has enabled remarkable improvement in the fuel performance in terms of burnup. Average discharge burnup has increased more than 30 percent in all Finnish reactor units. A systematic inspection of spent fuel assemblies, and especially all failed fuel assemblies, is a good and useful practise employed in Finland. A possibility to inspect the fuel on site using a pool side inspection facility is a relatively economic way to find out root causes of fuel failures and thereby facilitate developing remedies to prevent similar failures in the future

  1. British Nuclear Fuels (Warrington)

    International Nuclear Information System (INIS)

    Hoyle, D.; Cryer, B.; Bellotti, D.

    1992-01-01

    This adjournment debate is about British Nuclear Fuels plc and the 750 redundancies due to take place by the mid-1990s at BNFL, Risley. The debate was instigated by the Member of Parliament for Warrington, the constituency in which BNFL, Risley is situated. Other members pointed out that other industries, such as the textile industry are also suffering job losses due to the recession. However the MP for Warrington argued that the recent restructuring of BNFL restricted the financial flexibility of BNFL so that the benefits of contracts won for THORP at Sellafield could not help BNFL, Risley. The debate became more generally about training, apprentices and employment opportunities. The Parliamentary Under-Secretary of State for Energy explained the position as he saw it and said BNFL may be able to offer more help to its apprentices. Long- term employment prospects at BNFL are dependent on the future of the nuclear industry in general. The debate lasted about half an hour and is reported verbatim. (U.K)

  2. Postirradiation examination of Kori-1 nuclear power plant fuels

    International Nuclear Information System (INIS)

    Ro, S.G.; Kim, E.K.; Lee, K.S.; Min, D.K.

    1994-01-01

    Full size fuels discharged from Kori-1 PWR nuclear power plant have been subjected to postirradiation examination. The fuels under investigation were irradiated for one- to four-reactor cycles. Nondestructive examination and dismantling of the fuel assemblies have been conducted in the pool of the postirradiation examination facility (PIEF) of Korea Atomic Energy Research Institue. Subsequently nondestructive and destructive examinations of fuel rods have been performed in the hot cells of the PIEF. An evaluation of fuel burnup behaviors was based on the postirradiation examination data and the nominal design values. The results did not show any evidence of abnormalities in the fuel integrity. (orig.)

  3. Postirradiation examination of Kori-1 nuclear power plant fuels

    Science.gov (United States)

    Seung-Gy, Ro; Eun-Ka, Kim; Key-Soon, Lee; Duck-Kee, Min

    1994-05-01

    Full size fuels discharged from Kori-1 PWR nuclear power plant have been subjected to postirradiation examination. The fuels under investigation were irradiated for one- to four-reactor cycles. Nondestructive examination and dismantling of the fuel assemblies have been conducted in the pool of the postirradiation examination facility (PIEF) of Korea Atomic Energy Research Institute. Subsequently nondestructive and destructive examinations of fuel rods have been performed in the hot cells of the PIEF. An evaluation of fuel burnup behaviors was based on the postirradiation examination data and the nominal design values. The results did not show any evidence of abnormalities in the fuel integrity.

  4. Nuclear fuel tax in court

    International Nuclear Information System (INIS)

    Leidinger, Tobias

    2014-01-01

    Besides the 'Nuclear Energy Moratorium' (temporary shutdown of eight nuclear power plants after the Fukushima incident) and the legally decreed 'Nuclear Energy Phase-Out' (by the 13th AtG-amendment), also the legality of the nuclear fuel tax is being challenged in court. After receiving urgent legal proposals from 5 nuclear power plant operators, the Hamburg fiscal court (4V 154/13) temporarily obliged on 14 April 2014 respective main customs offices through 27 decisions to reimburse 2.2 b. Euro nuclear fuel tax to the operating companies. In all respects a remarkable process. It is not in favour of cleverness to impose a political target even accepting immense constitutional and union law risks. Taxation 'at any price' is neither a statement of state sovereignty nor one for a sound fiscal policy. Early and serious warnings of constitutional experts and specialists in the field of tax law with regard to the nuclear fuel tax were not lacking. (orig.)

  5. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  6. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    2014-01-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100 th nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U 3 O 8 were replaced by U 3 Si 2 -based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to fulfill its mission that is

  7. Method for inspecting nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    A technique for disassembling a nuclear reactor fuel element without destroying the individual fuel pins and other structural components from which the element is assembled is described. A traveling bridge and trolley span a water-filled spent fuel storage pool and support a strongback. The strongback is under water and provides a working surface on which the spent fuel element is placed for inspection and for the manipulation that is associated with disassembly and assembly. To remove, in a non-destructive manner, the grids that hold the fuel pins in the proper relative positions within the element, bars are inserted through apertures in the grids with the aid of special tools. These bars are rotated to flex the adjacent grid walls and, in this way relax the physical engagement between protruding portions of the grid walls and the associated fuel pins. With the grid structure so flexed to relax the physical grip on the individual fuel pins, these pins can be withdrawn for inspection or replacement as necessary without imposing a need to destroy fuel element components

  8. Innovative nuclear fuels: results and strategy

    International Nuclear Information System (INIS)

    Stan, Marius

    2009-01-01

    To facilitate the discovery and design of innovative nuclear fuels, multi-scale models and simulations are used to predict irradiation effects on the thermal conductivity, oxygen diffusivity, and thermal expansion of oxide fuels. The multi-scale approach is illustrated using results on ceramic fuels with a focus on predictions of point defect concentrations, stoichiometry, and phase stability. The high performance computer simulations include coupled heat transport, diffusion, and thermal expansion, gas bubble formation and temperature evolution in a fuel element consisting of UO2 fuel and metallic cladding. The second part of the talk is dedicated to a discussion of an international strategy for developing advanced, innovative nuclear fuels. Four initiative are proposed to accelerate the discovery and design of new materials: (a) Develop an international pool of experts, (b) Create Institutes for Materials Discovery and Design, (c) Create an International Knowledge base for experimental data, models (mathematical expressions), and simulations (codes) and (d) Organize international workshops and conference sessions. The paper ends with a discussion of existing and emerging international collaborations.

  9. Manipulator for fuel assemblies in a spent fuel pool, especially for a LMFBR

    International Nuclear Information System (INIS)

    Dalmas, R.

    1988-01-01

    The spent fuel manipulator has - a travelling crane moving longitudinally: - a carriage moving on the travelling crane in a direction perpendicular to its motion so that the carriage is positioned over each assembly, - a telescopic rod carried by the carriage and terminating in a vertically mobile grapple, - a tubular shielded hood on the carriage extending downwards to house the rod, grapple and fuel assembly and maintaining a biologically acceptable level of radiation above the surface of the pool [fr

  10. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Kidd, S.

    2008-01-01

    The closed fuel cycle is the most sustainable approach for nuclear energy, as it reduces recourse to natural uranium resources and optimises waste management. The advantages and disadvantages of used nuclear fuel reprocessing have been debated since the dawn of the nuclear era. There is a range of issues involved, notably the sound management of wastes, the conservation of resources, economics, hazards of radioactive materials and potential proliferation of nuclear weapons. In recent years, the reprocessing advocates win, demonstrated by the apparent change in position of the USA under the Global Nuclear Energy Partnership (GNEP) program. A great deal of reprocessing has been going on since the fourties, originally for military purposes, to recover plutonium for weapons. So far, some 80000 tonnes of used fuel from commercial power reactors has been reprocessed. The article indicates the reprocessing activities and plants in the United Kigdom, France, India, Russia and USA. The aspect of plutonium that raises the ire of nuclear opponents is its alleged proliferation risk. Opponents of the use of MOX fuels state that such fuels represent a proliferation risk because the plutonium in the fuel is said to be 'weapon-use-able'. The reprocessing of used fuel should not give rise to any particular public concern and offers a number of potential benefits in terms of optimising both the use of natural resources and waste management.

  11. Conditions inside Water Pooled in a Failed Nuclear Waste Container and its Effect on Radionuclide Release

    Science.gov (United States)

    Hamdan, L. K.; Walton, J. C.; Woocay, A.

    2009-12-01

    Nuclear power use is expected to expand in the future, as part of the global clean energy initiative, to meet the world’s surging energy demand, and attenuate greenhouse gas emissions, which are mainly caused by fossil fuels. As a result, it is estimated that hundreds of thousands of metric tons of spent nuclear fuel (SNF) will accumulate. SNF disposal has major environmental (radiation exposure) and security (nuclear proliferation) concerns. Storage in unsaturated zone geological repositories is a reasonable solution for dealing with SNF. One of the key factors that determine the performance of the geological repository is the release of radionuclides from the engineered barrier system. Over time, the nuclear waste containers are expected to fail gradually due to general and localized corrosions and eventually infiltrating water will have access to the nuclear waste. Once radionuclides are released, they will be transported by water, and make their way to the accessible environment. Physical and chemical disturbances in the environment over the container will lead to different corrosion rates, causing different times and locations of penetration. One possible scenario for waste packages failure is the bathtub model, where penetrations occur on the top of the waste package and water pools inside it. In this paper the bathtub-type failed waste container is considered. We shed some light on chemical and physical processes that take place in the pooled water inside a partially failed waste container (bathtub category), and the effects of these processes on radionuclide release. Our study considers two possibilities: temperature stratification of the pooled water versus mixing process. Our calculations show that temperature stratification of the pooled water is expected when the waste package is half (or less) filled with water. On the other hand, when the waste package is fully filled (or above half) there will be mixing in the upper part of water. The effect of

  12. Debris removal system for a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Cooper, F.W. Jr.; Dailey, G.F.

    1987-01-01

    A system is described for working on an elongated nuclear fuel assembly suspended vertically and submerged in a spent fuel pool having fuel assembly racks at the bottom. The system comprises a work platform disposable in the pool and adapted to be supported on the fuel assembly racks. The platform has an opening disposed in registry with a selected one of the underlying racks; guide means carried by the platform for guiding the suspended fuel assembly into the opening and the selected rack to accommodate vertical movement of the fuel assembly into and out of the rack to make different portions of the fuel assembly accessible from the platform; and tool manipulating apparatus disposable on the platform adjacent to the opening, the tool manipulating apparatus including a tool carriage. Tool holders for respectively holding associated tools. Each of the tool holders is mounted on the tool carriage for reciprocating movement with respect along a predetermined axis between extended and retracted conditions

  13. Quality assurance of nuclear fuel

    International Nuclear Information System (INIS)

    1994-01-01

    The guide presents the quality assurance requirements to be completed with in the procurement, design, manufacture, transport, handling and operation of the nuclear fuel. The guide also applies to the procurement of the control rods and the shield elements to be placed in the reactor. The guide is mainly aimed for the licensee responsible for the procurement and operation of fuel, for the fuel designer and manufacturer and for other organizations whose activities affect fuel quality, the safety of fuel transport, storage and operation. (2 refs.)

  14. Nuclear Fuel Cycle & Vulnerabilities

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Brian D. [Los Alamos National Laboratory

    2012-06-18

    The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

  15. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Tomihiro.

    1970-01-01

    The present invention relates to fuel assemblies employing wire wrap spacers for retaining uniform spatial distribution between fuel elements. Clad fuel elements are helically wound in the oxial direction with a wave-formed wire strand. The strand is therefore provided with spring action which permits the fuel elements to expand freely in the axial and radial directions so as to retain proper spacing and reduce stresses due to thermal deformation. (Ownes, K.J.)

  16. Nuclear fuel string assembly

    International Nuclear Information System (INIS)

    Ip, A.K.; Koyanagi, K.; Tarasuk, W.R.

    1976-01-01

    A method of fabricating rodded fuels suitable for use in pressure tube type reactors and in pressure vessel type reactors is described. Fuel rods are secured as an inner and an outer sub-assembly, each rod attached between mounting rings secured to the rod ends. The two sub-assemblies are telescoped together and positioned by spaced thimbles located between them to provide precise positioning while permittng differential axial movement between the sub-assemblies. Such sub-assemblies are particularly suited for mounting as bundle strings. The method provides particular advantages in the assembly of annular-section fuel pins, which includes booster fuel containing enriched fuel material. (LL)

  17. Nuclear fuel rod loading apparatus

    International Nuclear Information System (INIS)

    King, H.B.; Macivergan, R.; Mckenzie, G.W.

    1980-01-01

    An apparatus incorporating a microprocessor control is provided for automatically loading nuclear fuel pellets into fuel rods commonly used in nuclear reactor cores. The apparatus comprises a split ''v'' trough for assembling segments of fuel pellets in rows and a shuttle to receive the fuel pellets from the split ''v'' trough when the two sides of the split ''v'' trough are opened. The pellets are weighed while in the shuttle, and the shuttle then moves the pellets into alignment with a fuel rod. A guide bushing is provided to assist the transfer of the pellets into the fuel rod. A rod carousel which holds a plurality of fuel rods presents the proper rod to the guide bushing at the appropriate stage in the loading sequence. The bushing advances to engage the fuel rod, and the shuttle advances to engage the guide bushing. The pellets are then loaded into the fuel rod by a motor operated push rod. The guide bushing includes a photocell utilized in conjunction with the push rod to measure the length of the row of fuel pellets inserted in the fuel rod

  18. Spent Nuclear Fuel project, project management plan

    International Nuclear Information System (INIS)

    Fuquay, B.J.

    1995-01-01

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  19. IAEA activities on nuclear fuel cycle 1997

    International Nuclear Information System (INIS)

    Oi, N.

    1997-01-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme

  20. IAEA activities on nuclear fuel cycle 1997

    Energy Technology Data Exchange (ETDEWEB)

    Oi, N [International Atomic Energy Agency, Vienna (Austria). Nuclear Fuel Cycle and Materials Section

    1997-12-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme.

  1. Nuclear Fuel in Cofrentes NPP

    International Nuclear Information System (INIS)

    2002-01-01

    Fuel is an essential in the nuclear power generating business because of its direct implications on safety, generating costs and the operating conditions and limitations of the facility. Fuel management in Cofrentes NPP has been targeted at optimized operation, enhanced reliability and the search for an in-depth knowledge of the design and licensing processes that will provide Iberdrola,as the responsible operator, with access to independent control of safety aspects related to fuel and free access to manufacturing markets. (Author)

  2. Conditioning of nuclear reactor fuel

    International Nuclear Information System (INIS)

    1975-01-01

    A method of conditioning the fuel of a nuclear reactor core to minimize failure of the fuel cladding comprising increasing the fuel rod power to a desired maximum power level at a rate below a critical rate which would cause cladding damage is given. Such conditioning allows subsequent freedom of power changes below and up to said maximum power level with minimized danger of cladding damage. (Auth.)

  3. Nuclear fuel pellet loading machine

    International Nuclear Information System (INIS)

    Dazen, J.R.; Denero, J.V.

    1976-01-01

    A nuclear fuel pellet loading machine is described including an inclined rack mounted on a base and having parallel spaced grooves on its upper surface arranged to support fuel rods. A fuel pellet tray is adapted to be placed on a table spaced from the rack, the tray having columns of fuel pellets which are in alignment with the open ends of fuel rods located in the rack grooves. A transition plate is mounted between the fuel rod rack and the fuel pellet tray to receive and guide the pellets into the open ends of the fuel rods. The pellets are pushed into the fuel rods by a number of mechanical fingers mounted on a motor operated block which is moved along the pellet tray length by a drive screw driven by the motor. To facilitate movement of the pellets in the fuel rods the rack is mounted on a number of spaced vibrators which vibrate the fuel rods during fuel pellet insertion. A pellet sensing device movable into an end of each fuel rod indicates to an operator when each rod has been charged with the correct number of pellets

  4. Nuclear power and its fuel cycle

    International Nuclear Information System (INIS)

    Wymer, R.G.

    1986-01-01

    A series of viewgraphs describes the nuclear fuel cycle and nuclear power, covering reactor types, sources of uranium, enrichment of uranium, fuel fabrication, transportation, fuel reprocessing, and radioactive wastes

  5. Nuclear fuels and development of nuclear fuel elements

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Mannan, S.L.

    1989-01-01

    Safe, reliable and economic operation of nuclear fission reactors, the source of nuclear power at present, requires judicious choice, careful preparation and specialised fabrication procedures for fuels and fuel element structural materials. These aspects of nuclear fuels (uranium, plutonium and their oxides and carbides), fuel element technology and structural materials (aluminium, zircaloy, stainless steel etc.) are discussed with particular reference to research and power reactors in India, e.g. the DHRUVA research reactor at BARC, Trombay, the pressurised heavy water reactors (PHWR) at Rajasthan and Kalpakkam, and the Fast Breeder Test Reactor (FBTR) at Kalpakkam. Other reactors like the gas-cooled reactors operating in UK are also mentioned. Because of the limited uranium resources, India has opted for a three-stage nuclear power programme aimed at the ultimate utilization of her abundant thorium resources. The first phase consists of natural uranium dioxide-fuelled, heavy water-moderated and cooled PHWR. The second phase was initiated with the attainment of criticality in the FBTR at Kalpakkam. Fast Breeder Reactors (FBR) utilize the plutonium and uranium by-products of phase 1. Moreover, FBR can convert thorium into fissile 233 U. They produce more fuel than is consumed - hence, the name breeders. The fuel parameters of some of the operating or proposed fast reactors in the world are compared. FBTR is unique in the choice of mixed carbides of plutonium and uranium as fuel. Factors affecting the fuel element performance and life in various reactors e.g. hydriding of zircaloys, fuel pellet-cladding interaction etc. in PHWR and void swelling; irradiation creep and helium embrittlement of fuel element structural materials in FBR are discussed along with measures to overcome some of these problems. (author). 15 refs., 9 tabs., 23 figs

  6. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Betten, P.R.

    1976-01-01

    Under the invention the fuel assembly is particularly suitable for liquid metal cooled fast neutron breeder reactors. Hence, according to the invention a fuel assembly cladding includes inward corrugations with respect to the remainder of the cladding according to a recurring pattern determined by the pitch of the metal wire helically wound round the fuel rods of the assembly. The parts of the cladding pressed inwards correspond to the areas in which the wire encircling the peripheral fuel rods is generally located apart from the cladding, thereby reducing the play between the cladding and the peripheral fuel rods situated in these areas. The reduction in the play in turn improves the coolant flow in the internal secondary channels of the fuel assembly to the detriment of the flow in the peripheral secondary channels and thereby establishes a better coolant fluid temperature profile [fr

  7. Nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Natori, Hisahide; Kurihara, Kunitoshi.

    1982-01-01

    Purpose: To increase the fuel safety by decreasing the gap conductance between fuels and cladding tubes, as well as improve the reactor core controllability by rendering the void coefficient negative. Constitution: Fuel assemblies in a pressure tube comprise a tie-rod, fuel rods in a central region, and fuel rods with burnable poison in the outer circumference region. Here, B 4 C is used as the burnable poison by 1.17 % by weight ratio. The degrees of enrichment for the fissile plutonium as PuO 2 -UO 2 fuel used in the assemblies are 2.7 %, 2.7 % and 1.5 % respectively in the innermost layer, the intermediate layer and the outermost layer. This increases the burn-up degree to improve the plant utilizability, whereby the void coefficient is rendered negative to improve the reactor core controllability. (Horiuchi, T.)

  8. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sakurai, Shungo; Ogiya, Shunsuke.

    1990-01-01

    In a fuel assembly, if the entire fuels comprise mixed oxide fuels, reactivity change in cold temperature-power operation is increased to worsen the reactor shutdown margin. The reactor shutdown margin has been improved by increasing the burnable poison concentration thereby reducing the reactivity of the fuel assembly. However, since unburnt poisons are present at the completion of the reactor operation, the reactivity can not be utilized effectively to bring about economical disadvantage. In view of the above, the reactivity change between lower temperature-power operations is reduced by providing a non-boiling range with more than 9.1% of cross sectional area at the inside of a channel at the central portion of the fuel assembly. As a result, the amount of the unburnt burnable poisons is decreased, the economy of fuel assembly is improved and the reactor shutdown margin can be increase. (N.H.)

  9. International Nuclear Fuel Cycle Evaluation

    International Nuclear Information System (INIS)

    Carnesale, A.

    1980-01-01

    As nuclear power expands globally, so too expands the capability for producing nuclear weapons. The International Nuclear Fuel Cycle Evaluation (INFCE) was organized in 1977 for the purpose of exploring two areas: (1) ways in which nuclear energy can be made available to help meet world energy needs, and (2) means by which the attendant risk of weapons proliferation can be held to a minimum. INFCE is designed for technical and analytical study rather than negotiation. Its organizational structure and issues under consideration are discussed. Some even broader issues that emerge from consideration of the relationships between the peaceful and military use of nuclear energy are also discussed. These are different notions of the meaning of nuclear proliferation, nuclear export policy, the need of a nuclear policy to be both a domestic as well as a foreign one, and political-military measures that can help reduce incentives of countries to acquire nuclear weapons of their own

  10. Nuclear fuel financing

    International Nuclear Information System (INIS)

    Lurf, G.

    1975-01-01

    Fuel financing is only at its beginning. A logical way of developing financing model is a step by step method starting with the financing of pre-payments. The second step will be financing of natural uranium and enrichment services to the point where the finished fuel elements are delivered to the reactor operator. The third step should be the financing of fuel elements during the time the elements are inserted in the reactor. (orig.) [de

  11. Nuclear fuel cycle. V. 1

    International Nuclear Information System (INIS)

    1983-01-01

    Nuclear fuel cycle information in the main countries that develop, supply or use nuclear energy is presented. Data about Japan, FRG, United Kingdom, France and Canada are included. The information is presented in a tree-like graphic way. (C.S.A.) [pt

  12. Nuclear Fuel Cycle Introductory Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.

  13. Nuclear Fuel Cycle Introductory Concepts

    International Nuclear Information System (INIS)

    Karpius, Peter Joseph

    2017-01-01

    The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.

  14. Nuclear fuel cycle. V. 2

    International Nuclear Information System (INIS)

    1984-01-01

    Nuclear fuel cycle information in some countries that develop, supply or use nuclear energy is presented. Data about Argentina, Australia, Belgium, Netherlands, Italy, Denmarmark, Norway, Sweden, Switzerland, Finland, Spain and India are included. The information is presented in a tree-like graphic way. (C.S.A.) [pt

  15. Thermoacoustic sensor for nuclear fuel temperaturemonitoring and heat transfer enhancement

    Energy Technology Data Exchange (ETDEWEB)

    James A. Smith; Dale K. Kotter; Randall A. Alli; Steven L. Garrett

    2013-05-01

    A new acoustical sensing system for the nuclear power industry has been developed at The Pennsylvania State University in collaboration with Idaho National Laboratories. This sensor uses the high temperatures of nuclear fuel to convert a nuclear fuel rod into a standing-wave thermoacoustic engine. When a standing wave is generated, the sound wave within the fuel rod will be propagated, by acoustic radiation, through the cooling fluid within the reactor or spent fuel pool and can be monitored a remote location external to the reactor. The frequency of the sound can be correlated to an effective temperature of either the fuel or the surrounding coolant. We will present results for a thermoacoustic resonator built into a Nitonic-60 (stainless steel) fuel rod that requires only one passive component and no heat exchangers.

  16. Spent Nuclear Fuel Project Safety Management Plan

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities

  17. Regional nuclear fuel cycle centers study project

    International Nuclear Information System (INIS)

    Bennett, L.; Catlin, R.G.; Meckoni, V.

    1977-01-01

    The concept of regional fuel cycle centers (RFCC) has attracted wide interest. The concept was endorsed by many countries in discussions at the General Conference of the International Atomic Energy Agency and at the General Assembly of the United Nations. Accordingly, in 1975, the IAEA initiated a detailed study of the RFCC concept. The Agency study has concentrated on what is referred to as the ''back-end'' of the fuel cycle because that is the portion which is currently problematic. The study covers transport, storage, processing and recycle activities starting from the time the spent fuel leaves the reactor storage pools and through all steps until the recycled fuel is in finished fuel elements and shipped to the reactor. A detailed evaluation of the specific features of large regional fuel cycle centers established on a multinational basis vis-a-vis smaller dispersed fuel cycle facilities set up on a national basis has been carried out. The methodology for assessment of alternative strategies for fuel storage, reprocessing, and recycling of plutonium has been developed, characteristic data on material flows and cost factors have been generated, and an analytic system has been developed to carry out such evaluations including appropriate sensitivity analysis. Studies in related areas on institutional and legal, organizational, environmental, materials control and other essential aspects have also been made. The material developed during the course of this Study would enable any group of interested Member States to examine and work out alternative strategies pertinent to their present and projected nuclear fuel cycle needs, as well as evolve institutional, legal and other appropriate frameworks or agreements for the establishment of fuel cycle centers on a multinational cooperative basis

  18. On-site concrete cask storage system for spent nuclear fuel

    International Nuclear Information System (INIS)

    Craig, P.A.; Haelsig, R.T.; Kent, J.D.; Schmoker, D.S.

    1989-01-01

    A method is described of storing spent nuclear fuel assemblies including the steps of: transferring the fuel assemblies from a spent-fuel pool to a moveable concrete storage cask located outside the spent-fuel pool; maintaining a barrier between the fuel and the concrete in the cask to prevent contamination of the concrete by the fuel; maintaining the concrete storage cask containing the spent-fuel on site at the reactor complex for some predetermined period; transferring the fuel assemblies from the concrete storage cask to a shipping container; and, recycling the concrete storage cask

  19. Device for reprocessing nuclear fuels

    International Nuclear Information System (INIS)

    Hatano, Mamoru.

    1981-01-01

    Purpose: To readily discharge a nuclear fuel by burning the nuclear fuel as it is without a pulverizing step and removing the graphite and other coated fuel particles. Constitution: An oxygen supply pipe is connected to the lower portion of a discharge chamber having an inlet for the fuel, and an exhaust pipe is connected to the upper portion of the chamber. The fuel mounted on a metallic gripping member made of metallic material is inserted from the inlet, the gripping member is connected through a conductor to a voltage supply unit, oxygen is then supplied through the oxygen supply tube to the discharge chamber, the voltage supply unit is subsequently operated, and discharge takes place among the fuels. Thus, high heat is generated by the discharge, the graphite carbon of the fuel is burnt, silicon carbide is destroyed and decomposed, the isolated nuclear fuel particles are discharged from the exhaust port, and the combustion gas and small embers are exhausted from the exhaust tube. Accordingly, radioactive dusts are not so much generated as when using a mechanical pulverizing means, and prescribed objective can be achieved. (Yoshino, Y.)

  20. Nuclear fuel element end fitting

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    A typical embodiment of the invention has an array of sockets that are welded to the intersections of the plates that form the upper and lower end fittings of a nuclear reactor fuel element. The sockets, which are generally cylindrical in shape, are oriented in directions that enable the longitudinal axes of the sockets to align with the longitudinal axes of the fuel rods that are received in the respective sockets. Detents impressed in the surfaces of the sockets engage mating grooves that are formed in the ends of the fuel rods to provide for the structural integrity of the fuel element

  1. Nuclear fuel recycling system

    International Nuclear Information System (INIS)

    Lee, H.R.; Koch, A.K.; Krawczyk, A.

    1981-01-01

    A process is provided for recycling sintered uranium dioxide fuel pellets rejected during fuel manufacture and the swarf from pellet grinding. The scrap material is prepared mechanically by crushing and milling as a high solids content slurry, using scrap sintered UO 2 pellets as the grinding medium under an inert atmosophere

  2. Hanford spent nuclear fuel project update

    Energy Technology Data Exchange (ETDEWEB)

    Williams, N.H.

    1997-08-19

    Twenty one hundred metric tons of spent nuclear fuel (SNF) are currently stored in the Hanford Site K Basins near the Columbia River. The deteriorating conditions of the fuel and the basins provide engineering and management challenges to assure safe current and future storage. DE and S Hanford, Inc., part of the Fluor Daniel Hanford, Inc. lead team on the Project Hanford Management Contract, is constructing facilities and systems to move the fuel from current pool storage to a dry interim storage facility away from the Columbia River, and to treat and dispose of K Basins sludge, debris and water. The process starts in K Basins where fuel elements will be removed from existing canisters, washed, and separated from sludge and scrap fuel pieces. Fuel elements will be placed in baskets and loaded into Multi-Canister Overpacks (MCOs) and into transportation casks. The MCO and cask will be transported to the Cold Vacuum Drying Facility, where free water within the MCO will be removed under vacuum at slightly elevated temperatures. The MCOs will be sealed and transported via the transport cask to the Canister Storage Building.

  3. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Obara, Hiroshi.

    1981-01-01

    Purpose: To suppress iodine release thereby prevent stress corrosion cracks in fuel cans by dispersing ferrous oxide at the outer periphery of sintered uranium dioxide pellets filled and sealed within zirconium alloy fuel cans of fuel elements. Constitution: Sintered uranium dioxide pellets to be filled and sealed within a zirconium alloy fuel can are prepared either by mixing ferric oxide powder in uranium dioxide powder, sintering and then reducing at low temperature or by mixing iron powder in uranium dioxide powder, sintering and then oxidizing at low temperature. In this way, ferrous oxide is dispersed on the outer periphery of the sintered uranium dioxide pellets to convert corrosive fission products iodine into iron iodide, whereby the iodine release is suppressed and the stress corrosion cracks can be prevented in the fuel can. (Moriyama, K.)

  4. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Borrman, B.; Nylund, O.

    1984-01-01

    A fuel assembly with a fuel channel which surrounds a plurality of fuel rods and which is divided, by means of a stiffening device of cruciform cross-section and four wings, into four sub-channels each of which comprises a bundle of fuel rods. Each fuel channel side has a plurality of stamped, inwardly-directed projections, arranged vertically one after the other, aid projections being welded to one and the same stiffening wing. Each one of the wall portions located between the projections defines, together with two adjacently positioned projections and a portion of the stiffening wing, a communiation opening between two bundles located on on one side each of the stiffening wing. (Author)

  5. Nuclear fuel element

    International Nuclear Information System (INIS)

    Yamanaka, Tsuneyasu.

    1976-01-01

    Purpose: To provide a mechanism for the prevention of fuel pellet dislocation in fuel can throughout fuel fablication, fuel transportation and reactor operation. Constitution: A plenum spacer as a mechanism for the prevention of fuel pellet dislocation inserted into a cladding tube comprises split bodies bundled by a frame and an expansion body being capable of inserting into the central cavity of the split bodies. The expansion body is, for example, in a conical shape and the split bodies are formed so that they define in the center portion, when disposed along the inner wall of the cladding tube, a gap capable of inserting the conical body. The plenum spacer is assembled by initially inserting the split bodies in a closed state into the cladding tube after the loading of the pellets, pressing their peripheral portions and then inserting the expansion body into the space to urge the split bodies to the inner surface of the cladding tube. (Kawakami, Y.)

  6. Nuclear fuels accounting interface: River Bend experience

    International Nuclear Information System (INIS)

    Barry, J.E.

    1986-01-01

    This presentation describes nuclear fuel accounting activities from the perspective of nuclear fuels management and its interfaces. Generally, Nuclear Fuels-River Bend Nuclear Group (RBNG) is involved on a day-by-day basis with nuclear fuel materials accounting in carrying out is procurement, contract administration, processing, and inventory management duties, including those associated with its special nuclear materials (SNM)-isotopics accountability oversight responsibilities as the Central Accountability Office for the River Bend Station. As much as possible, these duties are carried out in an integrated, interdependent manner. From these primary functions devolve Nuclear Fuels interfacing activities with fuel cost and tax accounting. Noting that nuclear fuel tax accounting support is of both an esoteric and intermittent nature, Nuclear Fuels-RBNG support of developments and applications associated with nuclear fuel cost accounting is stressed in this presentation

  7. Nuclear fuel rods

    International Nuclear Information System (INIS)

    Wada, Toyoji.

    1979-01-01

    Purpose: To remove failures caused from combination of fuel-cladding interactions, hydrogen absorptions, stress corrosions or the likes by setting the quantity ratio of uranium or uranium and plutonium relative to oxygen to a specific range in fuel pellets and forming a specific size of a through hole at the center of the pellets. Constitution: In a fuel rods of a structure wherein fuel pellets prepared by compacting and sintering uranium dioxide, or oxide mixture consisting of oxides of plutonium and uranium are sealed with a zirconium metal can, the ratio of uranium or uranium and plutonium to oxygen is specified as 1 : 2.01 - 1 : 2.05 in the can and a passing hole of a size in the range of 15 - 30% of the outer diameter of the fuel pellet is formed at the center of the pellet. This increases the oxygen partial pressure in the fuel rod, oxidizes and forms a protection layer on the inner surface of the can to control the hydrogen absorption and stress corrosion. Locallized stress due to fuel cladding interaction (PCMI) can also be moderated. (Horiuchi, T.)

  8. Radioactive droplet moisture transfer from nuclear power plant spray pool

    International Nuclear Information System (INIS)

    Elokhin, A.P.

    1995-01-01

    Problem on transfer of radioactive droplet moisture with an account of its evaporation from the nuclear power plant spray pool (NPP coolant) is considered. Formulae enabling evaluation of droplet and radioactive water admixture lifetime as a whole, as well as the maximum distance (by wind), over which it can extend, are obtained. Recommendations for decrease in the droplet dispersed composition and reduction in scale of radioactive contamination of underlying surface are given. 10 refs.; 3 figs.; 1 tab

  9. Material input of nuclear fuel

    International Nuclear Information System (INIS)

    Rissanen, S.; Tarjanne, R.

    2001-01-01

    The Material Input (MI) of nuclear fuel, expressed in terms of the total amount of natural material needed for manufacturing a product, is examined. The suitability of the MI method for assessing the environmental impacts of fuels is also discussed. Material input is expressed as a Material Input Coefficient (MIC), equalling to the total mass of natural material divided by the mass of the completed product. The material input coefficient is, however, only an intermediate result, which should not be used as such for the comparison of different fuels, because the energy contents of nuclear fuel is about 100 000-fold compared to the energy contents of fossil fuels. As a final result, the material input is expressed in proportion to the amount of generated electricity, which is called MIPS (Material Input Per Service unit). Material input is a simplified and commensurable indicator for the use of natural material, but because it does not take into account the harmfulness of materials or the way how the residual material is processed, it does not alone express the amount of environmental impacts. The examination of the mere amount does not differentiate between for example coal, natural gas or waste rock containing usually just sand. Natural gas is, however, substantially more harmful for the ecosystem than sand. Therefore, other methods should also be used to consider the environmental load of a product. The material input coefficient of nuclear fuel is calculated using data from different types of mines. The calculations are made among other things by using the data of an open pit mine (Key Lake, Canada), an underground mine (McArthur River, Canada) and a by-product mine (Olympic Dam, Australia). Furthermore, the coefficient is calculated for nuclear fuel corresponding to the nuclear fuel supply of Teollisuuden Voima (TVO) company in 2001. Because there is some uncertainty in the initial data, the inaccuracy of the final results can be even 20-50 per cent. The value

  10. Transport of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    1980-01-01

    In response to public interest in the transport by rail through London of containers of irradiated fuel elements on their way from nuclear power stations to Windscale, the Central Electricity Generating Board and British Rail held three information meetings in London in January 1980. One meeting was for representatives of London Borough Councils and Members of Parliament with a known interest in the subject, and the others were for press, radio and television journalists. This booklet contains the main points made by the principal speakers from the CEGB and BR. (The points covered include: brief description of the fuel cycle; effect of the fission process in producing plutonium and fission products in the fuel element; fuel transport; the fuel flasks; protection against accidents; experience of transporting fuel). (U.K.)

  11. Online failed fuel identification using delayed neutron detector signals in pool type reactors

    International Nuclear Information System (INIS)

    Upadhyay, Chandra Kant; Sivaramakrishna, M.; Nagaraj, C.P.; Madhusoodanan, K.

    2011-01-01

    In todays world, nuclear reactors are at the forefront of modern day innovation and reactor designs are increasingly incorporating cutting edge technology. It is of utmost importance to detect failure or defects in any part of a nuclear reactor for healthy operation of reactor as well as the safety aspects of the environment. Despite careful fabrication and manufacturing of fuel pins, there is a chance of clad failure. After fuel pin clad rupture takes place, it allows fission products to enter in to sodium pool. There are some potential consequences due to this such as Total Instantaneous Blockage (TIB) of coolant and primary component contamination. At present, the failed fuel detection techniques such as cover gas monitoring (alarming the operator), delayed neutron detection (DND-automatic trip) and standalone failed fuel localization module (FFLM) are exercised in various reactors. The first technique is a quantitative measurement of increase in the cover gas activity background whereas DND system causes automatic trip on detecting certain level of activity during clad wet rupture. FFLM is subsequently used to identify the failed fuel subassembly. The later although accurate, but mainly suffers from downtime and reduction in power during identification process. The proposed scheme, reported in this paper, reduces the operation of FFLM by predicting the faulty sector and therefore reducing reactor down time and thermal shocks. The neutron evolution pattern gets modulated because fission products are the delay neutron precursors. When they travel along with coolant to Intermediate heat Exchangers, experienced three effects i.e. delay; decay and dilution which make the neutron pulse frequency vary depending on the location of failed fuel sub assembly. This paper discusses the method that is followed to study the frequency domain properties, so that it is possible to detect exact fuel subassembly failure online, before the reactor automatically trips. (author)

  12. Nuclear fuel management in JMTR

    International Nuclear Information System (INIS)

    Naka, Michihiro; Miyazawa, Masataka; Sato, Hiroshi; Nakayama, Fusao; Ito, Haruhiko

    1999-01-01

    The Japan Materials Testing Reactor (JMTR) is the largest scale materials (author)ted the fission gas release compared with the steady state opkW/l in Japan. JMTR as a multi-purpose reactor has been contributing to research and development on nuclear field with a wide variety of irradiation for performing engineering tests and safety research on fuel and component for light water reactor as well as fast breeder reactor, high temperature gas-cooled reactor etc., for research and development on blanket material for fusion reactor, for fundamental research, and for radio-isotope (RI) production. The driver nuclear fuel used in JMTR is aluminum based MTR type fuel. According to the Reduced Enrichment for Research and Test Reactors (RERTR) Program, the JMTR fuel elements had been converted from 93% high enriched uranium (HEU) fuel to 45% medium enriched uranium (MEU) fuel in 1986, and then to 20% low enriched uranium (LEU) fuel in 1994. The cumulative operation cycles until March 1999 reached to 127 cycles since the first criticality in 1968. JMTR has used 1,628 HEU, 688 MEU and 308 LEU fuel elements for these operation cycles. After these spent fuel elements were cooled in the JMTR water canal more than one year after discharged from the JMTR core, they had been transported to reprocessing plants in Europe, and then to plants in USA in order to extract the uranium remaining in the spent fuel. The JMTR spent fuel transportation for reprocessing had been continued until the end of 1988. However, USA had ceased spent fuel reprocessing in 1989, while USDOE committed to prepare an environmental review of the impacts of accepting spent fuels from foreign research reactors. After that, USDOE decided to implement a new acceptance policy in 1996, the spent fuel transportation from JMTR to Savannah River Site was commenced in 1997. It was the first transportation not only in Japan but in Asia also. Until resuming the transportation, the spent fuel elements stored in JMTR

  13. MELCOR Modeling of Air-Cooled PWR Spent Fuel Assemblies in Water empty Fuel Pools

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L. E.; Lopez, C.

    2013-07-01

    The OECD Spent Fuel Project (SFP) investigated fuel degradation in case of a complete Loss-Of- Coolant-Accident in a PWR spent fuel pool. Analyses of the SFP PWR ignition tests have been conducted with the 1.86.YT.3084.SFP MELCOR version developed by SNL. The main emphasis has been placed on assessing the MELCOR predictive capability to get reasonable estimates of time-to-ignition and fire front propagation under two configurations: hot neighbor (i.e., adiabatic scenario) and cold neighbor (i.e., heat transfer to adjacent fuel assemblies). A detailed description of hypotheses and approximations adopted in the MELCOR model are provided in the paper. MELCOR results accuracy was notably different between both scenarios. The reasons are highlighted in the paper and based on the results understanding a set of remarks concerning scenarios modeling is given.

  14. Fuel assembly for nuclear reactor

    International Nuclear Information System (INIS)

    Yamanaka, Akihiro; Haikawa, Katsumasa; Haraguchi, Yuko; Nakamura, Mitsuya; Aoyama, Motoo; Koyama, Jun-ichi.

    1996-01-01

    In a BWR type fuel assembly comprising first fuel rods filled with nuclear fission products and second fuel rods filled with burnable poisons and nuclear fission products, the concentration of the burnable poisons mixed to a portion of the second fuel rods is controlled so that it is reduced at the upper portion and increased at the lower portion in the axial direction. In addition, a product of the difference of an average concentration of burnable poisons between the upper portion and the lower portion and the number of fuel rods is determined to higher than a first set value determined corresponding to the limit value of a maximum linear power density. The sum of the difference of the average concentration of the burnable poisons between the upper portion and the lower portion of the second fuel rod and the number of the second fuel rods is determined to lower than a second set value determined corresponding to a required value of a surplus reactivity. If the number of the fuel rods mixed with the burnable poisons is increased, the infinite multiplication factor at an initial stage of the burning is lowered and, if the concentration of the mixed burnable poisons is increased, the time of exhaustion of the burnable poisons is delayed. As a result, the maximum value of the infinite multiplication factor is suppressed thereby enabling to control surplus reactivity. (N.H.)

  15. Inspection of nuclear fuel transport in Spain

    International Nuclear Information System (INIS)

    Lobo Mendez, J.

    1977-01-01

    The experience acquired in inspecting nuclear fuel shipments carried out in Spain will serve as a basis for establishing the regulations wich must be adhered to for future transports, as the transport of nuclear fuels in Spain will increase considerably within the next years as a result of the Spanish nuclear program. The experience acquired in nuclear fuel transport inspection is described. (author) [es

  16. Proliferation Resistant Nuclear Reactor Fuel

    International Nuclear Information System (INIS)

    Gray, L.W.; Moody, K.J.; Bradley, K.S.; Lorenzana, H.E.

    2011-01-01

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and

  17. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  18. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Takeda, Tadashi; Sato, Kenji; Goto, Masakazu.

    1984-01-01

    Purpose: To facilitate identification of a fuel assembly upon fuel exchange in BWR type reactors. Constitution: Fluorescent material is coated or metal plating is applied to the impressed portion of a upper tie plate handle of a fuel assembly, and the fluorescent material or the metal plating surface is covered with a protective membrane made of transparent material. This enables to distinguish the impressed surface from a distant place and chemical reaction between the impressed surface and the reactor water can be prevented. Furthermore, since the protective membrane is formed such that it protrudes toward the upper side relative to the impressed surface, there is no risk of depositions of claddings thereover. (Moriyama, K.)

  19. Nuclear fuel cladding material

    International Nuclear Information System (INIS)

    Nakahigashi, Shigeo.

    1982-01-01

    Purpose: To largely improve the durability and the safety of fuel cladding material. Constitution: Diffusion preventive layers, e.g., aluminum or the like are covered on both sides of a zirconium alloy base layer of thin material, and corrosion resistant layers, e.g., copper or the like are covered thereon. This thin plate material is intimately wound in a circularly tubular shape in a plurality of layers to form a fuel cladding tube. With such construction, corrosion of the tube due to fuel and impurity can be prevented by the corrosion resistant layers, and the diffusion of the corrosion resistant material to the zirconium alloy can be prevented by the diffusion preventive layers. Since a plurality of layers are cladded, even if the corrosion resistant layers are damaged or cracked due to stress corrosion, only one layer is damaged or cracked, but the other layers are not affected. (Sekiya, K.)

  20. Criteria for recladding of spent light water reactor fuel before long term pool storage

    International Nuclear Information System (INIS)

    Pettersson, K.; Jansson, L.

    1979-01-01

    The question of the need for any special treatment of failed fuel elements prior to long term pool storage has been studied. It is concluded that the main problem appears to be hydride embrittlement of failed fuel rods, which may lead to increased damage during handling and transport of the failed fuel. Some mechanisms for the degradation of failed fuel rods have been identified. They can all be considered as relatively improbable, but further experimental evidence is needed before it can be concluded that these degradation mechanisms are insignificant during pool storage. The report also contains a review of methods for identification of leaking fuel bundles and fuel rods. (Auth.)

  1. Criteria for recladding of spent light water reactor fuel before long term pool storage

    International Nuclear Information System (INIS)

    Pettersson, K.; Jansson, L.

    1979-06-01

    The question of the need for any special treatment of failed fuel elements prior to long term pool storage has been studied. It is concluded that the main problem appears to be hydride embrittlement of failed fuel rods, which may lead to increased damage during handling and transport of the failed fuel. Some mechanisms for the degradation of failed fuel rods have been identified. They can all be considered as relatively improbable, but further experimental evidence is needed before it can be concluded that thede degradation mechanisms are insignificant during pool storage. The report also contains a review of methods for identification of leaking fuel bundles and fuel rods.(author)

  2. Nuclear reactor fuel rod

    International Nuclear Information System (INIS)

    Busch, H.; Mindnich, F.R.

    1973-01-01

    The fuel rod consists of a can with at least one end cap and a plenum spring between this cap and the fuel. To prevent the hazard that a eutectic mixture is formed during welding of the end cap, a thermal insulation is added between the end cap and plenum spring. It consists of a comical extension of the end cap with a terminal disc against which the spring is supported. The end cap, the extension, and the disc may be formed by one or several pieces. If the disc is separated from the other parts it may be manufactured from chrome steel or VA steel. (DG) [de

  3. Modular nuclear fuel assembly rack

    International Nuclear Information System (INIS)

    Davis, C.J.

    1982-01-01

    A modular nuclear fuel assembly rack constructed of an array of identical cells, each cell constructed of a plurality of identical flanged plates. The unique assembly of the plates into a rigid rack provides a cellular compartment for nuclear fuel assemblies and a cavity between the cells for accepting neutron absorbing materials thus allowing a closely spaced array. The modular rack size can be easily adapted to conform with available storage space. U-shaped flanges at the edges of the plates are nested together at the intersection of four cells in the array. A bar is placed at the intersection to lock the cells together

  4. Spent nuclear fuel shipping basket

    International Nuclear Information System (INIS)

    Wells, A.H.

    1990-01-01

    This patent describes a basket for a cask for transporting nuclear fuel elements. It comprises: sleeve members, each of the sleeve members having interior cross-section dimensions for receiving a nuclear fuel assembly such that the assembly is restrained from lateral movement within the sleeve member, apertured disk members, means for axially aligning the apertures in the disk members, and means for maintaining the disk members in fixed spaced relationship to form a disk assembly, comprising an array of disks, the aligned apertures of the disks being adapted to receive the sleeve members and maintain them in fixed spaced relationship

  5. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  6. Fuel bundle for nuclear reactor

    International Nuclear Information System (INIS)

    Long, J.W.; Flora, B.S.; Ford, K.L.

    1977-01-01

    The invention concerns a new, simple and inexpensive system for assembling and dismantling a nuclear reactor fuel bundle. Several fuel rods are fitted in parallel rows between two retaining plates which secure the fuel rods in position and which are maintained in an assembled position by means of several stays fixed to the two end plates. The invention particularly refers to an improved apparatus for fixing the stays to the upper plate by using locking fittings secured to rotating sleeves which are applied against this plate [fr

  7. Regulating nuclear fuel waste

    International Nuclear Information System (INIS)

    1995-01-01

    When Parliament passed the Atomic Energy Control Act in 1946, it erected the framework for nuclear safety in Canada. Under the Act, the government created the Atomic Energy Control Board and gave it the authority to make and enforce regulations governing every aspect of nuclear power production and use in this country. The Act gives the Control Board the flexibility to amend its regulations to adapt to changes in technology, health and safety standards, co-operative agreements with provincial agencies and policy regarding trade in nuclear materials. This flexibility has allowed the Control Board to successfully regulate the nuclear industry for more than 40 years. Its mission statement 'to ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment' concisely states the Control Board's primary objective. The Atomic Energy Control Board regulates all aspects of nuclear energy in Canada to ensure there is no undue risk to health, safety, security or the environment. It does this through a multi-stage licensing process

  8. World nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    A coloured pull-out wall chart is presented showing the fuel cycle interests of the world. Place names are marked and symbols are used to indicate regions associated with uranium or thorium deposits, mining, milling, enrichment, reprocessing and fabrication. (UK)

  9. Contracting for nuclear fuels

    International Nuclear Information System (INIS)

    Schuessler, C.M.

    1981-10-01

    This paper deals with uranium sales contracts, i.e. with contractual arrangements in the first steps of the fuel cycle, which cover uranium production and conversion. The various types of contract are described and, where appropriate, their underlying business philosophy and their main terms and conditions. Finally, the specific common features of such contracts are reviewed. (NEA) [fr

  10. Nuclear fuel cycle studies

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    For the metal-matrix encapsulation of radioactive waste, brittle-fracture, leach-rate, and migration studies are being conducted. For fuel reprocessing, annular and centrifugal contactors are being tested and modeled. For the LWBR proof-of-breeding project, the full-scale shear and the prototype dissolver were procured and tested. 5 figures

  11. Axially alignable nuclear fuel pellets

    International Nuclear Information System (INIS)

    Johansson, E.B.; Klahn, D.H.; Marlowe, M.O.

    1978-01-01

    An axially alignable nuclear fuel pellet of the type stacked in end-to-end relationship within a tubular cladding is described. Fuel cladding failures can occur at pellet interface locations due to mechanical interaction between misaligned fuel pellets and the cladding. Mechanical interaction between the cladding and the fuel pellets loads the cladding and causes increased cladding stresses. Nuclear fuel pellets are provided with an end structure that increases plastic deformation of the pellets at the interface between pellets so that lower alignment forces are required to straighten axially misaligned pellets. Plastic deformation of the pellet ends results in less interactions beween the cladding and the fuel pellets and significantly lowers cladding stresses. The geometry of pellets constructed according to the invention also reduces alignment forces required to straighten fuel pellets that are tilted within the cladding. Plastic deformation of the pellets at the pellet interfaces is increased by providing pellets with at least one end face having a centrally-disposed raised area of convex shape so that the mean temperature and shear stress of the contact area is higher than that of prior art pellets

  12. Nuclear fuel fabrication in India

    Energy Technology Data Exchange (ETDEWEB)

    Kondal Rao, N

    1975-01-01

    The important role of a nuclear power program in meeting the growing needs of power in India is explained. The successful installation of Tarapur Atomic Power Station and Rajasthan Atomic Power Station as well as the work at Madras Atomic Power Station are described. The development of the Atomic Fuels Division and the Nuclear Fuel Complex, Hyderabad which is mainly concerned with the fabrication of fuel elements and the reprocessing of fuels are explained. The N.F.C. essentially has the following constituent units : Zirconium Plant (ZP) comprising of Zirconium Oxide Plant, Zirconium Sponge Plant and Zirconium Fabrication Plant; Natural Uranium Oxide Plant (UOP); Ceramic Fuel Fabrication Plant (CFFP); Enriched Uranium Oxide Plant (EUOP); Enriched Fuel Fabrication Plant (EEFP) and Quality Control Laboratory for meeting the quality control requirements of all plants. The capacities of various plants at the NFC are mentioned. The work done on mixed oxide fuels and FBTR core with blanket assemblies, nickel and steel assemblies, thermal research reactor of 100 MW capacity, etc. are briefly mentioned.

  13. Means for supporting nuclear fuel

    International Nuclear Information System (INIS)

    Cocker, P.; Price, M.A.

    1975-01-01

    Reference is made to means for supporting nuclear fuel pins in a reactor coolant channel and the problems that arise in this connection. For reasons of nuclear reactivity and neutron economy 'parasitic' material in a reactor core must be kept to a minimum, whilst for heat transfer reasons the use of fuel pins of large cross-sectional areas should be avoided. Fuel pins tend to be long thin objects having a can of minimum thickness and typically a pin may have a length/diameter ratio of about 500/1 and for fast reactor fuel pins, the outside diameter may be about 0.2 inch. The long slender pins must also be spaced very close together. A fast reactor fuel assembly may involve 200 to 300 fuel pins, each a few tenths of an inch in diameter, supported end on to coolant flowing up a channel of about 22 square inches in total area. The pins have a heavy metal oxide filling and require support. Details are given of a suitable method of support. Such support also allows withdrawal of pins from a fuel channel without the risk of breach of the can, after irradiation. (U.K.)

  14. Nuclear fuel fabrication in India

    International Nuclear Information System (INIS)

    Kondal Rao, N.

    1975-01-01

    The important role of a nuclear power programme in meeting the growing needs of power in India is explained. The successful installation of Tarapur Atomic Power Station and Rajasthan Atomic Power Station as well as the work at Madras Atomic Power Station are described. The development of the Atomic Fuels Division and the Nuclear Fuel Complex, Hyderabad which is mainly concerned with the fabrication of fuel elements and the reprocessing of fuels are explained. The N.F.C. essentially has the following constituent units : Zirconium Plant (ZP) comprising of Zirconium Oxide Plant, Zirconium Sponge Plant and Zirconium Fabrication Plant; Natural Uranium Oxide Plant (UOP); Ceramic Fuel Fabrication Plant (CFFP); Enriched Uranium Oxide Plant (EUOP); Enriched Fuel Fabrication Plant (EEFP) and Quality Control Laboratory for meeting the quality control requirements of all plants. The capacities of various plants at the NFC are mentioned. The work done on mixed oxide fuels and FBTR core with blanket assemblies, nickel and steel assemblies, thermal research reactor of 100 MW capacity, etc. are briefly mentioned. (K.B.)

  15. Nuclear spent fuel dry storage in the EWA reactor shaft

    International Nuclear Information System (INIS)

    Mieleszczenko, W.; Moldysz, A.; Hryczuk, A.; Matysiak, T.

    2001-01-01

    The EWA reactor was in operation from 1958 until February 1995. Then it was subjected to the decommissioning procedure. Resulting from a prolonged operation of Polish research reactors a substantial amount of nuclear spent fuel of various types, enrichment and degree of burnup have been accumulated. The technology of storage of spent nuclear fuel foresees the two stages of wet storing in a water pool (deferral period from tens to several dozens years) and dry storing (deferral period from 50 to 80 years). In our case the deferral time in the water environment is pretty significant (the oldest fuel elements have been stored in water for more than 40 years). Though the state of stored fuel elements is satisfactory, there is a real need for changing the storage conditions of spent fuel. The paper is covering the description of philosophy and conceptual design for construction of the spent fuel dry storage in the decommissioned EWA reactor shaft. (author)

  16. Nuclear reactor fuel element

    International Nuclear Information System (INIS)

    D'Eye, R.W.M.; Shennan, J.V.; Ford, L.H.

    1977-01-01

    Fuel element with particles from ceramic fissionable material (e.g. uranium carbide), each one being coated with pyrolitically deposited carbon and all of them being connected at their points of contact by means of an individual crossbar. The crossbar consists of silicon carbide produced by reaction of silicon metal powder with the carbon under the influence of heat. Previously the silicon metal powder together with the particles was kneaded in a solvent and a binder (e.g. epoxy resin in methyl ethyl ketone plus setting agent) to from a pulp. The reaction temperature lies at 1750 0 C. The reaction itself may take place in a nitrogen atmosphere. There will be produced a fuel element with a high overall thermal conductivity. (DG) [de

  17. Development of Methodology for Spent Fuel Pool Severe Accident Analysis Using MELCOR Program

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Tae; Shin, Jae-Uk [RETech. Co. LTD., Yongin (Korea, Republic of); Ahn, Kwang-Il [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The general reason why SFP severe accident analysis has to be considered is that there is a potential great risk due to the huge number of fuel assemblies and no containment in a SFP building. In most cases, the SFP building is vulnerable to external damage or attack. In contrary, low decay heat of fuel assemblies may make the accident processes slow compared to the accident in reactor core because of a great deal of water. In short, its severity of consequence cannot exclude the consideration of SFP risk management. The U.S. Nuclear Regulatory Commission has performed the consequence studies of postulated spent fuel pool accident. The Fukushima-Daiichi accident has accelerated the needs for the consequence studies of postulated spent fuel pool accidents, causing the nuclear industry and regulatory bodies to reexamine several assumptions concerning beyond-design basis events such as a station blackout. The tsunami brought about the loss of coolant accident, leading to the explosion of hydrogen in the SFP building. Analyses of SFP accident processes in the case of a loss of coolant with no heat removal have studied. Few studies however have focused on a long term process of SFP severe accident under no mitigation action such as a water makeup to SFP. USNRC and OECD have co-worked to examine the behavior of PWR fuel assemblies under severe accident conditions in a spent fuel rack. In support of the investigation, several new features of MELCOR model have been added to simulate both BWR fuel assembly and PWR 17 x 17 assembly in a spent fuel pool rack undergoing severe accident conditions. The purpose of the study in this paper is to develop a methodology of the long-term analysis for the plant level SFP severe accident by using the new-featured MELCOR program in the OPR-1000 Nuclear Power Plant. The study is to investigate the ability of MELCOR in predicting an entire process of SFP severe accident phenomena including the molten corium and concrete reaction. The

  18. Spent nuclear fuel transport problems

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kosarev, Yu.A.; Yulikov, E.I.

    1977-01-01

    The paper considers the problems of shipping spent fuel from nuclear power stations to reprocessing plants and also the principal ways of solving these problems with a view to achieving maximum economy and safety in transport. The increase in the number of nuclear power plants in the USSR will entail an intensification of spent-fuel shipments. Higher burnup and the need to reduce cooling time call for heavier and more complex shipping containers. The problem of shipping spent fuel should be tackled comprehensively, bearing in mind the requirements of safety and economy. One solution to these problems is to develop rational and cheap designs of such containers. In addition, the world-wide trend towards more thorough protection of the environment against pollution and of the health of the population requires the devotion of constant attention to improving the reliability and safety of shipments. The paper considers the prospects for nuclear power development in the USSR and in other member countries of the CMEA (1976-1980), the composition and design of some Soviet packaging assemblies, the appropriate cooling time for spent fuel from thermal reactor power stations, procedures for reducing fuel-shipping costs, some methodological problems of container calculation and design, and finally problems of testing and checking containers on test rigs. (author)

  19. Storage of spent nuclear fuel: the problem of spent nuclear fuel in Bulgaria

    International Nuclear Information System (INIS)

    Boyadzhiev, Z.; Vapirev, E.

    1995-01-01

    A review of existing technologies for wet and dry storage of spent nuclear fuel (SNF) and the reprocessing policies is presented. The problem of SNF in Bulgaria is arising from nonobservance of the obligation to return SNF back to the former Soviet Union as agreed in the construction contract. In November 1994 approximately 1800 fuel assemblies have been stored in away-from-reactor (AFR) facility and another 1060 in at-reactor (AR) pools. The national policy is to export SNF out of the country. The AFR facility has a limited capacity and it is designed only for WWER-440 fuel although work is going on to extend it in order to store WWER-1000 SNF. 14 refs

  20. Storage of spent nuclear fuel: the problem of spent nuclear fuel in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Boyadzhiev, Z; Vapirev, E [Kombinat Atomna Energetika, Kozloduj (Bulgaria)

    1996-12-31

    A review of existing technologies for wet and dry storage of spent nuclear fuel (SNF) and the reprocessing policies is presented. The problem of SNF in Bulgaria is arising from nonobservance of the obligation to return SNF back to the former Soviet Union as agreed in the construction contract. In November 1994 approximately 1800 fuel assemblies have been stored in away-from-reactor (AFR) facility and another 1060 in at-reactor (AR) pools. The national policy is to export SNF out of the country. The AFR facility has a limited capacity and it is designed only for WWER-440 fuel although work is going on to extend it in order to store WWER-1000 SNF. 14 refs.

  1. Disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    1979-12-01

    This report addresses the topic of the mined geologic disposal of spent nuclear fuel from Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). Although some fuel processing options are identified, most of the information in this report relates to the isolation of spent fuel in the form it is removed from the reactor. The characteristics of the waste management system and research which relate to spent fuel isolation are discussed. The differences between spent fuel and processed HLW which impact the waste isolation system are defined and evaluated for the nature and extent of that impact. What is known and what needs to be determined about spent fuel as a waste form to design a viable waste isolation system is presented. Other waste forms and programs such as geologic exploration, site characterization and licensing which are generic to all waste forms are also discussed. R and D is being carried out to establish the technical information to develop the methods used for disposal of spent fuel. All evidence to date indicates that there is no reason, based on safety considerations, that spent fuel should not be disposed of as a waste

  2. Fire resistant nuclear fuel cask

    International Nuclear Information System (INIS)

    Heckman, R.C.; Moss, M.

    1979-01-01

    The disclosure is directed to a fire resistant nuclear fuel cask employing reversibly thermally expansible bands between adjacent cooling fins such that normal outward flow of heat is not interfered with, but abnormal inward flow of heat is impeded or blocked

  3. Storage arrangements for nuclear fuel

    International Nuclear Information System (INIS)

    Ealing, C.J.

    1985-01-01

    A storage arrangement for nuclear fuel has a plurality of storage tubes connected by individual pipes to manifolds which are connected, in turn, to an exhaust system for maintaining the tubes at sub-atmospheric pressure, and means for producing a flow of a cooling fluid, such as air, over the exterior surfaces of the tubes. (author)

  4. World nuclear fuel cycle requirements 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-10

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  5. World nuclear fuel cycle requirements 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, ''burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs

  6. Study Of Thorium As A Nuclear Fuel.

    Directory of Open Access Journals (Sweden)

    Prakash Humane

    2017-10-01

    Full Text Available Conventional fuel sources for power generation are to be replacing by nuclear power sources like nuclear fuel Uranium. But Uranium-235 is the only fissile fuel which is in 0.72 found in nature as an isotope of Uranium-238. U-238 is abundant in nature which is not fissile while U-239 by alpha decay naturally converted to Uranium- 235. For accompanying this nuclear fuel there is another nuclear fuel Thorium is present in nature is abundant can be used as nuclear fuel and is as much as safe and portable like U-235.

  7. Innovative microstructures in nuclear fuels

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Kumar, Arun; Kamath, H.S.

    2009-01-01

    For cleaner and safe nuclear power, new processes are required to design better nuclear fuels and make more efficient reactors to generate nuclear power. Therefore, one must understand how the microstructure changes during reactor operation. Accordingly, the materials scientists and engineers can then design and fabricate fuels with higher reliability and performance. Microstructure and its evolution are big unknowns in nuclear fuel. The basic requirements for the high performance of a fuel are: a) Soft pellets - To reduce Pellet clad mechanical interaction (PCMI) b) Large grain size - To reduce fission gas release (FGR). The strength of the pellet at room temperature is related to grain size by the Hall-Petch relation. Accordingly, the lower grain sized pellets will have high strength. But at high temperature (above equicohesive temperature) the grain boundaries becomes weaker than grain matrix. Since the small grain sized pellets have more grain boundary areas, these pellet become softer than pellet that have large grain sizes. Also as grain size decreases, creep rate of the fuel increases. Therefore, pellets with small grain size have higher creep rate and better plasticity. Therefore, these pellets will be useful to reduce the PCMI. On the other hand, pellet with large grain size is beneficial to reduce the fission gas release. In developing thermal reactor fuels for high burn-up, this factor should be taken into consideration. The question being asked is whether the microstructure can be tailored for irradiation hardening, fracture resistance, fission-gas release. This paper deals with the role played by microstructure for better irradiation performance. (author)

  8. Apparatus for locating defective nuclear fuel elements

    International Nuclear Information System (INIS)

    Lawrie, W.E.

    1979-01-01

    An ultrasonic search unit for locating defective fuel elements within a fuel assembly used in a water cooled nuclear reactor is presented. The unit is capable of freely traversing the restricted spaces between the fuel elements

  9. Fuel containing vessel for transporting nuclear fuel

    International Nuclear Information System (INIS)

    Yoshizawa, Hiroyasu; Shimizu, Fukuzo; Tanaka, Nobuyuki.

    1996-01-01

    A shock absorbing mechanism is disposed on an inner bottom of a vessel main body. The shock absorbing mechanism comprises a shock absorbing member disposed on the upper surface of a bottom wall, an annular metal plate disposed on the upper surface of the shock absorbing member and an annular spacer disposed on the upper surface of the metal plate. The shock absorbing member is made of a material such as of wood, lead, metal honeycomb or a metal mesh, which plastically deforms when applied with load higher than a predetermined level, and is formed in a square block-like form covering the upper surface of the bottom wall. The spacer is made of a thin soft material such as tetrafluoroethylene, and is formed in such a shape as capable of preventing direct contact of the lower end of the cylindrical member in a lower tie plate of nuclear fuels with the metal portion. This can ensure integrity of nuclear fuels even when they fall from a high place upon an assumed dropping accident. (I.N.)

  10. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Marmonier, Pierre; Mesnage, Bernard; Nervi, J.C.

    1975-01-01

    This invention refers to fuel assemblies for a liquid metal cooled fast neutron reactor. Each assembly is composed of a hollow vertical casing, of regular polygonal section, containing a bundle of clad pins filled with a fissile or fertile substance. The casing is open at its upper end and has a cylindrical foot at its lower end for positioning the assembly in a housing provided in the horizontal diagrid, on which the core assembly rests. A set of flat bars located on the external surface of the casing enables it to be correctly orientated in its housing among the other core assemblies [fr

  11. Spent fuel management and closed nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kudryavtsev, E.G.

    2012-01-01

    Strategic objectives set by Rosatom Corporation in the field of spent fuel management are given. By 2030, Russia is to create technological infrastructure for innovative nuclear energy development, including complete closure of the nuclear fuel cycle. A target model of the spent NPP nuclear fuel management system until 2030 is analyzed. The schedule for key stages of putting in place the infrastructure for spent NPP fuel management is given. The financial aspect of the problem is also discussed [ru

  12. Uranium - the nuclear fuel

    International Nuclear Information System (INIS)

    Smith, E.E.N.

    1976-01-01

    A brief history is presented of Canadian uranium exploration, production, and sales. Statistics show that Canada is a good customer for its own uranium due to a rapidly expanding nuclear power program. Due to an average 10 year lag between commencement of exploration and production, and with current producers sold out through 1985, it is imperative that exploration efforts be increased. (E.C.B.)

  13. Storage arrangements for nuclear fuel

    International Nuclear Information System (INIS)

    Deacon, D.

    1982-01-01

    A storage arrangement for spent nuclear fuel either irradiated or pre-irradiated or for vitrified waste after spent fuel reprocessing, comprises a plenum chamber which has a base pierced by a plurality of openings each of which has sealed to it an open topped tube extending downwards and closed at its lower end. The plenum chamber, with the tubes, forms an air-filled enclosure associated with an exhaust system for exhausting air from the system through filters to maintain the interior of the enclosure at sub-atmospheric pressure. The tubes are arranged to accommodate the stored fuel and the arrangement includes a means for producing a flow of cooling air over the exterior of the tubes so that the latter effectively form a plurality of heat exchangers in close proximity to the fuel. The air may be caused to flow over the tube surfaces by a natural thermosyphon process. (author)

  14. Nuclear fuel and energy policy

    International Nuclear Information System (INIS)

    Ahmed, S.B.

    1979-01-01

    This book examines the uranium resource situation in relation to the future needs of the nuclear economy. Currently the United States is the world's leading producer and consumer of nuclear fuels. In the future US nuclear choices will be highly interdependent with the rest of the world as other countries begin to develop their own nuclear programs. Therefore the world's uranium resource availability has also been examined in relation to the expected growth in the world nuclear industry. Based on resource evaluation, the study develops an economic framework for analyzing and describing the behavior of the US uranium mining and milling industry. An econometric model designed to reflect the underlying structure of the physical processes of the uranium mining and milling industry has been developed. The purpose of this model is to forecast uranium prices and outputs for the period 1977 to 2000. Because uncertainty has sometimes surrounded the economic future of the uranium markets, the results of the econometric modeling should be interpreted with great care and restrictive assumptions. Another aspect of this study is to provide much needed information on the operations of government-owned enrichment plants and the practices used by the government in the determination of fuel enrichment costs. This study discusses possible future developments in enrichment supply and technologies and their implications for future enrichment costs. A review of the operations involving the uranium concentrate conversion to uranium hexafluoride and fuel fabrication is also provided. An economic analysis of these costs provides a comprehensive view of the front-end costs of the nuclear fuel cycle

  15. Ceramics as nuclear reactor fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    1975-01-01

    Ceramics are widely accepted as nuclear reactor fuel materials, for both metal clad ceramic and all-ceramic fuel designs. Metal clad UO 2 is used commercially in large tonnages in five different power reactor designs. UO 2 pellets are made by familiar ceramic techniques but in a reactor they undergo complex thermal and chemical changes which must be thoroughly understood. Metal clad uranium-plutonium dioxide is used in present day fast breeder reactors, but may eventually be replaced by uranium-plutonium carbide or nitride. All-ceramic fuels, which are necessary for reactors operating above about 750 0 C, must incorporate one or more fission product retentive ceramic coatings. BeO-coated BeO matrix dispersion fuels and silicate glaze coated UO 2 -SiO 2 have been studied for specialised applications, but the only commercial high temperature fuel is based on graphite in which small fuel particles, each coated with vapour deposited carbon and silicon carbide, are dispersed. Ceramists have much to contribute to many aspects of fuel science and technology. (author)

  16. Fuel assemblies for nuclear reactor

    International Nuclear Information System (INIS)

    Nishi, Akihito.

    1987-01-01

    Purpose: To control power-up rate at the initial burning stage of new fuel assemblies due to fuel exchange in a pressure tube type power reactor. Constitution: Burnable poisons are disposed to a most portion of fuel pellets in a fuel assembly to such a low concentration as the burn-up rate changes with time at the initial stage of the burning. The most portion means substantially more than one-half part of the pellets and gadolinia is used as burn-up poisons to be dispersed and the concentration is set to less than about 0.2 %. Upon elapse of about 15 days after the charging, the burnable poisons are eliminated and the infinite multiplication factors are about at 1.2 to attain a predetermined power state. Since the power-up rate of the nuclear reactor fuel assembly is about 0.1 % power/hour and the power-up rate of the fuel assembly around the exchanged channel is lower than that, it can be lowered sufficiently than the limit for the power-up rate practiced upon reactor start-up thereby enabling to replace fuels during power operation. (Horiuchi, T.)

  17. Development of high burnup nuclear fuel technology

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Kang, Young Hwan; Jung, Jin Gone; Hwang, Won; Park, Zoo Hwan; Ryu, Woo Seog; Kim, Bong Goo; Kim, Il Gone

    1987-04-01

    The objectives of the project are mainly to develope both design and manufacturing technologies for 600 MWe-CANDU-PHWR-type high burnup nuclear fuel, and secondly to build up the foundation of PWR high burnup nuclear fuel technology on the basis of KAERI technology localized upon the standard 600 MWe-CANDU- PHWR nuclear fuel. So, as in the first stage, the goal of the program in the last one year was set up mainly to establish the concept of the nuclear fuel pellet design and manufacturing. The economic incentives for high burnup nuclear fuel technology development are improvement of fuel utilization, backend costs plant operation, etc. Forming the most important incentives of fuel cycle costs reduction and improvement of power operation, etc., the development of high burnup nuclear fuel technology and also the research on the incore fuel management and safety and technologies are necessary in this country

  18. Sufficiency of the Nuclear Fuel

    International Nuclear Information System (INIS)

    Pevec, D.; Knapp, V.; Matijevic, M.

    2008-01-01

    Estimation of the nuclear fuel sufficiency is required for rational decision making on long-term energy strategy. In the past an argument often invoked against nuclear energy was that uranium resources are inadequate. At present, when climate change associated with CO 2 emission is a major concern, one novel strong argument for nuclear energy is that it can produce large amounts of energy without the CO 2 emission. Increased interest in nuclear energy is evident, and a new look into uranium resources is relevant. We examined three different scenarios of nuclear capacity growth. The low growth of 0.4 percent per year in nuclear capacity is assumed for the first scenario. The moderate growth of 1.5 percent per year in nuclear capacity preserving the present share in total energy production is assumed for the second scenario. We estimated draining out time periods for conventional resources of uranium using once through fuel cycle for the both scenarios. For the first and the second scenario we obtained the draining out time periods for conventional uranium resources of 154 years and 96 years, respectively. These results are, as expected, in agreement with usual evaluations. However, if nuclear energy is to make a major impact on CO 2 emission it should contribute much more in the total energy production than at present level of 6 percent. We therefore defined the third scenario which would increase nuclear share in the total energy production from 6 percent in year 2020 to 30 percent by year 2060 while the total world energy production would grow by 1.5 percent per year. We also looked into the uranium requirement for this scenario, determining the time window for introduction of uranium or thorium reprocessing and for better use of uranium than what is the case in the once through fuel cycle. The once through cycle would be in this scenario sustainable up to about year 2060 providing most of the expected but undiscovered conventional uranium resources were turned

  19. Method of manufacturing nuclear fuel pellet

    International Nuclear Information System (INIS)

    Oguma, Masaomi; Masuda, Hiroshi; Hirai, Mutsumi; Tanabe, Isami; Yuda, Ryoichi.

    1989-01-01

    In a method of manufacturing nuclear fuel pellets by compression molding an oxide powder of nuclear fuel material followed by sintering, a metal nuclear material is mixed with an oxide powder of the nuclear fuel material. As the metal nuclear fuel material, whisker or wire-like fine wire or granules of metal uranium can be used effectively. As a result, a fuel pellet in which the metal nuclear fuel is disposed in a network-like manner can be obtained. The pellet shows a great effect of preventing thermal stress destruction of pellets upon increase of fuel rod power as compared with conventional pellets. Further, the metal nuclear fuel material acts as an oxygen getter to suppress the increase of O/M ratio of the pellets. Further, it is possible to reduce the swelling of pellet at high burn-up degree. (T.M.)

  20. Nuclear fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, J S; Coffing, L F

    1979-04-05

    The fuel element with circular cross-section for BWR and PWR consists of a core surrounded by a compound jacket container where there is a gap between the core and jacket during operation in the reactor. The core consists of U, Pu, Th compounds and mixtures of these. The compound jacket consists of zircaloy 2 or 4. In order to for example prevent the corrosion of the compound jacket, its inner surface has a metal barrier with smaller neutron absorbers than the jacket material in the form of a zirconium sponge. The zirconium of this metal barrier has impurities of various elements in the order of magnitude of 1000 to 5000 ppm. The oxygen content is in the range of 200 to 1200 ppm and the thickness of the metal barrier is 1-30% of the thickness of the jacket.

  1. Cooling nuclear reactor fuel

    International Nuclear Information System (INIS)

    Porter, W.H.L.

    1975-01-01

    Reference is made to water or water/steam cooled reactors of the fuel cluster type. In such reactors it is usual to mount the clusters in parallel spaced relationship so that coolant can pass freely between them, the coolant being passed axially from one end of the cluster in an upward direction through the cluster and being effective for cooling under normal circumstances. It has been suggested, however, that in addition to the main coolant flow an auxiliary coolant flow be provided so as to pass laterally into the cluster or be sprayed over the top of the cluster. This auxiliary supply may be continuously in use, or may be held in reserve for use in emergencies. Arrangements for providing this auxiliary cooling are described in detail. (U.K.)

  2. Yugoslav spent nuclear fuel management program and international perspectives

    International Nuclear Information System (INIS)

    Pesic, M.; Subotic, K.; Sotic, O.; Plecas, I.; Ljubenov, V.; Peric, A.; Milosevic, M.

    2002-01-01

    Spent nuclear fuel stored in the Vinca Institute of Nuclear Sciences, Yugoslavia, consists of about 2.5 tons of metal uranium (initial enrichment 2%) and about 20 kg uranium dioxide (dispersed in aluminum matrix, initial fuel uranium enrichment 80%). This spent nuclear fuel is generated in operation of the RA heavy water research reactor during 1959-1984 period. Both types of fuel are of ex-USSR origin, have the same shape and dimensions and approximately the same initial mass of 235 nuclide. They are known as the TVR-S type of fuel elements. The total of 8030 spent fuel elements are stored at the RA research reactor premises, almost all in the spent fuel pool filled by ordinary water. The last used 480 high-enriched uranium spent fuel elements are kept in the drained RA reactor core since 1984. Fuel layer of both enrichments is covered with thin aluminium cladding. Due to non-suitable chemical parameters of water in the spent fuel storage pool, the corrosion processes penetrated aluminium cladding and aluminium walls od storage containers during storage period long from 20 to 40 years. Activity of fission products ( 137 Cs) is detected in water samples during water inspection in 1996 and experts of the lAEA Russia and USA were invited to help. By end of 2001, some remediation of the water transparency of the storage pool and inspections of water samples taken from the storage containers with the spent fuel elements were carried out by the Vinca Institute staff and with the help of experts from the Russia and the IAEA. Following new initiatives on international perspective on spent fuel management, a proposal was set by the IAEA, and was supported by the governments of the USA and the Russian Federation to ship the spent fuel elements of the RA research reactor to Mayak spent fuel processing plant in Russia. This paper describes current status of the reactor RA spent fuel elements, initiative for new Yugoslav spent fuel management program speculates on some of the

  3. Nuclear fuel reprocessing expansion strategies

    International Nuclear Information System (INIS)

    Gallagher, J.M.

    1975-01-01

    A description is given of an effort to apply the techniques of operations research and energy system modeling to the problem of determination of cost-effective strategies for capacity expansion of the domestic nuclear fuel reprocessing industry for the 1975 to 2000 time period. The research also determines cost disadvantages associated with alternative strategies that may be attractive for political, social, or ecological reasons. The sensitivity of results to changes in cost assumptions was investigated at some length. Reactor fuel types covered by the analysis include the Light Water Reactor (LWR), High-Temperature Gas-Cooled Reactor (HTGR), and the Fast Breeder Reactor (FBR)

  4. Fuel element for nuclear reactors

    International Nuclear Information System (INIS)

    Cadwell, D.J.

    1982-01-01

    The invention concerns a fuel element for nuclear reactors with fuel rods and control rod guide tubes, where the control rod guide tubes are provided with flat projections projecting inwards, in the form of local deformations of the guide tube wall, in order to reduce the radial play between the control rod concerned and the guide tube, and to improve control rod movement. This should ensure that wear on the guide tubes is largely prevented which would be caused by lateral vibration of the control rods in the guide tubes, induced by the flow of coolant. (orig.) [de

  5. Spent nuclear fuel sampling strategy

    International Nuclear Information System (INIS)

    Bergmann, D.W.

    1995-01-01

    This report proposes a strategy for sampling the spent nuclear fuel (SNF) stored in the 105-K Basins (105-K East and 105-K West). This strategy will support decisions concerning the path forward SNF disposition efforts in the following areas: (1) SNF isolation activities such as repackaging/overpacking to a newly constructed staging facility; (2) conditioning processes for fuel stabilization; and (3) interim storage options. This strategy was developed without following the Data Quality Objective (DQO) methodology. It is, however, intended to augment the SNF project DQOS. The SNF sampling is derived by evaluating the current storage condition of the SNF and the factors that effected SNF corrosion/degradation

  6. Grids for nuclear fuel elements

    International Nuclear Information System (INIS)

    Nicholson, G.

    1980-01-01

    This invention relates to grids for nuclear fuel assemblies with the object of providing an improved grid, tending to have greater strength and tending to offer better location of the fuel pins. It comprises sets of generally parallel strips arranged to intersect to define a structure of cellular form, at least some of the intersections including a strip which is keyed to another strip at more than one point. One type of strip may be dimpled along its length and another type of strip may have slots for keying with the dimples. (Auth.)

  7. Fission product concentration evolution in sodium pool following a fuel subassembly failure in an LMFBR

    International Nuclear Information System (INIS)

    Natesan, K.; Velusamy, K.; Selvaraj, P.; Kasinathan, N.; Chellapandi, P.; Chetal, S.; Bhoje, S.

    2003-01-01

    During a fuel element failure in a liquid metal cooled fast breeder reactor, the fission products originating from the failed pins mix into the sodium pool. Delayed Neutron Detectors (DND) are provided in the sodium pool to detect such failures by way of detection of delayed neutrons emitted by the fission products. The transient evolution of fission product concentration is governed by the sodium flow distribution in the pool. Transient hydraulic analysis has been carried out using the CFD code PHOENICS to estimate fission product concentration evolution in hot pool. k- ε turbulence model and zero laminar diffusivity for the fission product concentration have been considered in the analysis. Times at which the failures of various fuel subassemblies (SA) are detected by the DND are obtained. It has been found that in order to effectively detect the failure of every fuel SA, a minimum of 8 DND in hot pool are essential

  8. Nuclear fuel element

    International Nuclear Information System (INIS)

    Watarumi, Kazutoshi.

    1992-01-01

    Hollow fuel pellets are piled at multi-stages in a cladding tube to form a pellet stack. A bundle of metal fine wires made of zirconium or an alloy thereof is inserted passing through the hollow portion of each of the hollow pellets over a length of the pellet stack. The metal fine wires are bundled by securing ring at a joining portions of the pellets. Then, the portion between both of adjacent rings is expanded radially and has a spring function biasing in the radial direction. With such a constitution, even if the pellet is expanded radially due to pallet gas swelling, the hollow portion is not closed, and the gas flow channel is ensured. In addition, even if the pellet is cracked due to thermal shocks, the pellet piece is prevented from dropping to the hollow portion. In this case, the thermal conduction between the pellets and the cladding tube is kept satisfactorily by the spring function of the metal wire bundle. (I.N.)

  9. Coal and nuclear electricity fuels

    International Nuclear Information System (INIS)

    Rahnama, F.

    1982-06-01

    Comparative economic analysis is used to contrast the economic advantages of nuclear and coal-fired electric generating stations for Canadian regions. A simplified cash flow method is used with present value techniques to yield a single levelized total unit energy cost over the lifetime of a generating station. Sensitivity analysis illustrates the effects of significant changes in some of the cost data. The analysis indicates that in Quebec, Ontario, Manitoba and British Columbia nuclear energy is less costly than coal for electric power generation. In the base case scenario the nuclear advantage is 24 percent in Quebec, 29 percent in Ontario, 34 percent in Manitoba, and 16 percent in British Columbia. Total unit energy cost is sensitive to variations in both capital and fuel costs for both nuclear and coal-fuelled power stations, but are not very sensitive to operating and maintenance costs

  10. Nuclear fuel shipping inspection device

    International Nuclear Information System (INIS)

    Takahashi, Toshio; Hada, Koji.

    1988-01-01

    Purpose: To provide an nuclear fuel shipping inspection device having a high detection sensitivity and capable of obtaining highly reliable inspection results. Constitution: The present invention concerns a device for distinguishing a fuel assembly having failed fuel rods in LMFBR type reactors. Coolants in a fuel assembly to be inspected are collected by a sampling pipeway and transferred to a filter device. In the filter device, granular radioactive corrosion products (CP) in the coolants are captured, to reduce the background. The coolants, after being passed through the filter device, are transferred to an FP catching device and gamma-rays of iodine and cesium nuclides are measured in FP radiation measuring device. Subsequently, the coolants transferred to a degasing device to separate rare gas FP in the coolants from the liquid phase. In a case if rare gas fission products are detected by the radiation detector, it means that there is a failed fuel rod in the fuel assembly to be inspected. Since the CP and the soluble FP are separated and extracted for the radioactivity measurement, the reliability can be improved. (Kamimura, M.)

  11. Nuclear Fuels: Present and Future

    Directory of Open Access Journals (Sweden)

    Donald R. Olander

    2009-02-01

    Full Text Available The important new developments in nuclear fuels and their problems are reviewed and compared with the status of present light-water reactor fuels. The limitations of these fuels and the reactors they power are reviewed with respect to important recent concerns, namely provision of outlet coolant temperatures high enough for use in H2 production, destruction of plutonium to eliminate proliferation concerns, and burning of the minor actinides to reduce the waste repository heat load and long-term radiation hazard. In addition to current oxide-based fuel-rod designs, the hydride fuel with liquid metal thermal bonding of the fuel-cladding gap is covered. Finally, two of the most promising Generation IV reactor concepts, the Very High Temperature Reactor and the Sodium Fast Reactor, and the accompanying reprocessing technologies, aqueous-based UREX and pyrometallurgical, are summarized. In all of the topics covered, the thermodynamics involved in the material's behavior under irradiation and in the reprocessing schemes are emphasized.

  12. ORIGAMI Automator Primer. Automated ORIGEN Source Terms and Spent Fuel Storage Pool Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wieselquist, William A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thompson, Adam B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowman, Stephen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peterson, Joshua L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    Source terms and spent nuclear fuel (SNF) storage pool decay heat load analyses for operating nuclear power plants require a large number of Oak Ridge Isotope Generation and Depletion (ORIGEN) calculations. SNF source term calculations also require a significant amount of bookkeeping to track quantities such as core and assembly operating histories, spent fuel pool (SFP) residence times, heavy metal masses, and enrichments. The ORIGEN Assembly Isotopics (ORIGAMI) module in the SCALE code system provides a simple scheme for entering these data. However, given the large scope of the analysis, extensive scripting is necessary to convert formats and process data to create thousands of ORIGAMI input files (one per assembly) and to process the results into formats readily usable by follow-on analysis tools. This primer describes a project within the SCALE Fulcrum graphical user interface (GUI) called ORIGAMI Automator that was developed to automate the scripting and bookkeeping in large-scale source term analyses. The ORIGAMI Automator enables the analyst to (1) easily create, view, and edit the reactor site and assembly information, (2) automatically create and run ORIGAMI inputs, and (3) analyze the results from ORIGAMI. ORIGAMI Automator uses the standard ORIGEN binary concentrations files produced by ORIGAMI, with concentrations available at all time points in each assembly’s life. The GUI plots results such as mass, concentration, activity, and decay heat using a powerful new ORIGEN Post-Processing Utility for SCALE (OPUS) GUI component. This document includes a description and user guide for the GUI, a step-by-step tutorial for a simplified scenario, and appendices that document the file structures used.

  13. PWR core and spent fuel pool analysis using scale and nestle

    International Nuclear Information System (INIS)

    Murphy, J. E.; Maldonado, G. I.; St Clair, R.; Orr, D.

    2012-01-01

    The SCALE nuclear analysis code system [SCALE, 2011], developed and maintained at Oak Ridge National Laboratory (ORNL) is widely recognized as high quality software for analyzing nuclear systems. The SCALE code system is composed of several validated computer codes and methods with standard control sequences, such as the TRITON/NEWT lattice physics sequence, which supplies dependable and accurate analyses for industry, regulators, and academia. Although TRITON generates energy-collapsed and space-homogenized few group cross sections, SCALE does not include a full-core nodal neutron diffusion simulation module within. However, in the past few years, the open-source NESTLE core simulator [NESTLE, 2003], originally developed at North Carolina State Univ. (NCSU), has been updated and upgraded via collaboration between ORNL and the Univ. of Tennessee (UT), so it now has a growingly seamless coupling to the TRITON/NEWT lattice physics [Galloway, 2010]. This study presents the methodology used to couple lattice physics data between TRITON and NESTLE in order to perform a three-dimensional full-core analysis employing a 'real-life' Duke Energy PWR as the test bed. The focus for this step was to compare the key parameters of core reactivity and radial power distribution versus plant data. Following the core analysis, following a three cycle burn, a spent fuel pool analysis was done using information generated from NESTLE for the discharged bundles and was compared to Duke Energy spent fuel pool models. The KENO control module from SCALE was employed for this latter stage of the project. (authors)

  14. PWR core and spent fuel pool analysis using scale and nestle

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J. E.; Maldonado, G. I. [Dept. of Nuclear Engineering, Univ. of Tennessee, Knoxville, TN 37996-2300 (United States); St Clair, R.; Orr, D. [Duke Energy, 526 S. Church St, Charlotte, NC 28202 (United States)

    2012-07-01

    The SCALE nuclear analysis code system [SCALE, 2011], developed and maintained at Oak Ridge National Laboratory (ORNL) is widely recognized as high quality software for analyzing nuclear systems. The SCALE code system is composed of several validated computer codes and methods with standard control sequences, such as the TRITON/NEWT lattice physics sequence, which supplies dependable and accurate analyses for industry, regulators, and academia. Although TRITON generates energy-collapsed and space-homogenized few group cross sections, SCALE does not include a full-core nodal neutron diffusion simulation module within. However, in the past few years, the open-source NESTLE core simulator [NESTLE, 2003], originally developed at North Carolina State Univ. (NCSU), has been updated and upgraded via collaboration between ORNL and the Univ. of Tennessee (UT), so it now has a growingly seamless coupling to the TRITON/NEWT lattice physics [Galloway, 2010]. This study presents the methodology used to couple lattice physics data between TRITON and NESTLE in order to perform a three-dimensional full-core analysis employing a 'real-life' Duke Energy PWR as the test bed. The focus for this step was to compare the key parameters of core reactivity and radial power distribution versus plant data. Following the core analysis, following a three cycle burn, a spent fuel pool analysis was done using information generated from NESTLE for the discharged bundles and was compared to Duke Energy spent fuel pool models. The KENO control module from SCALE was employed for this latter stage of the project. (authors)

  15. Nuclear fuel pellet transfer escalator

    International Nuclear Information System (INIS)

    Huggins, T.B. Sr.; Roberts, E.; Edmunds, M.O.

    1991-01-01

    This patent describes a nuclear fuel pellet escalator for loading nuclear fuel pellets into a sintering boat. It comprises a generally horizontally-disposed pellet transfer conveyor for moving pellets in single file fashion from a receiving end to a discharge end thereof, the conveyor being mounted about an axis at its receiving end for pivotal movement to generally vertically move its discharge end toward and away from a sintering boat when placed below the discharge end of the conveyor, the conveyor including an elongated arm swingable vertically about the axis and having an elongated channel recessed below an upper side of the arm and extending between the receiving and discharge ends of the conveyor; a pellet dispensing chute mounted to the arm of the conveyor at the discharge end thereof and extending therebelow such that the chute is carried at the discharge end of the conveyor for generally vertical movement therewith toward and away from the sintering boat

  16. Nuclear reactor fuel element assemblies

    International Nuclear Information System (INIS)

    Raven, L.F.

    1975-01-01

    A spacer grid for a nuclear fuel element comprises a plurality of cojointed cylindrical ferrules adapted to receive a nuclear fuel pin. Each ferrule has a pair of circumferentially spaced rigid stop members extending inside the ferrule and a spring locating member attached to the ferrule and also extending from the ferrule wall inwardly thereof at such a circumferential spacing relative to the rigid stop members that the line of action of the spring locating member passes in opposition to and between the rigid stop members which lie in the same diametric plane. At least some of the cylindrical ferrules have one rim shaped to promote turbulence in fluid flowing through the grid. (Official Gazette)

  17. Nuclear fuel storage apparatus for seismic areas

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1982-01-01

    A structural grid for supporting spent fuel is located underwater in a pool. The grid is spaced from the walls of the pool and supported by cables from above. Horizontal acceleration due to seismic forces results in a movement of the support members and of the pool walls. The cables, being flexible, continue to support the grid but do not contribute to the horizontal movement of the grid. Accordingly, no significant earthquake forces are transmitted from the supporing structure

  18. Interfaces in ceramic nuclear fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    Internal interfaces in all-ceramic dispersion fuels (such as these for HTGRs) are discussed for two classes: BeO-based dispersions, and coated particles for graphite-based fuels. The following points are made: (1) The strength of a two-phase dispersion is controlled by the weaker dispersed phase bonded to the matrix. (2) Differential expansion between two phases can be controlled by an intermediate buffer zone of low density. (3) A thin ceramic coating should be in compression. (4) Chemical reaction between coating and substrate and mass transfer in service should be minimized. The problems of the nuclear fuel designer are to develop coatings for fission product retention, and to produce radiation-resistant interfaces. 44 references, 18 figures

  19. Electrochemical reprocessing of nuclear fuels

    International Nuclear Information System (INIS)

    Brambilla, G.; Sartorelli, A.

    1980-01-01

    A method is described for the reprocessing of irradiated nuclear fuel which is particularly suitable for use with fuel from fast reactors and has the advantage of being a dry process in which there is no danger of radiation damage to a solvent medium as in a wet process. It comprises the steps of dissolving the fuel in a salt melt under such conditions that uranium and plutonium therein are converted to sulphate form. The plutonium sulphate may then be thermally decomposed to PuO 2 and removed. The salt melt is then subjected to electrolysis conditions to achieve cathodic deposition of UO 2 (and possibly PuO 2 ). The salt melt can then be recycled or conditioned for final disposal. (author)

  20. Storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Machado, O.J.; Moore, J.T.; Cooney, B.F.

    1989-01-01

    This patent describes a rack for storing nuclear fuel assemblies. The rack including a base, an array of side-by-side fuel-storage locations, each location being a hollow body of rectangular transverse cross section formed of metallic sheet means which is readily bent, each body having a volume therein dimensioned to receive a fuel assembly. The bodies being mounted on the base with each body secured to bodies adjacent each body along welded joints, each joint joining directly the respective contiguous corners of each body and of bodies adjacent to each body and being formed by a series of separate welds spaced longitudinally between the tops and bottoms of the secured bodies along each joint. The spacings of the separate welds being such that the response of the rack when it is subjected to the anticipated seismic acceleration of the rack, characteristic of the geographical regions where the rack is installed, is minimized

  1. Fuel assemblies for nuclear reactors

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    In a nuclear fuel assembly, hollow guide posts protrude into a fuel assembly and fitting grill from a biased spring pad with a plunger that moves with the spring pad plugging one end of each of the guide posts. A plate on the end fitting grill that has a hole for fluid discharge partially plugs the other end of the guide post. Pressurized water coolant that fills the guide post volume acts as a shock absorber and should the reactor core receive a major seismic or other shock, the fuel assembly is compelled to move towards a pad depending from a transversely disposed support grid. The pad bears against the spring pad and the plunger progressively blocks the orifices provided by slots in the guide posts thus gradually absorbing the applied shock. After the orifice has been completely blocked, controlled fluid discharge continues through a hole coil spring cooperating in the attenuation of the shock. (author)

  2. Inserts for nuclear fuel elements

    International Nuclear Information System (INIS)

    Cragg, P.J.

    1982-01-01

    An insert for a nuclear fuel pin which comprises a strip. The strip carries notches, which enable a coding arrangement to be carried on the strip. The notches may be of differing sizes and the coding on the strip includes identification and identification checking data. Each notch on the strip may give rise to a signal pulse which is counted by a detector to avoid errors. (author)

  3. Oxidation behavior of fuel cladding tube in spent fuel pool accident condition

    International Nuclear Information System (INIS)

    Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Ogawa, Chihiro; Nakashima, Kazuo; Tojo, Masayuki

    2017-01-01

    In spent fuel pool (SFP) under loss-of-cooling or loss-of-coolant severe accident condition, the spent fuels will be exposed to air and heated by their own residual decay heat. Integrity of fuel cladding is crucial for SFP safety therefore study on cladding oxidation in air at high temperature is important. Zircaloy-2 (Zry2) and zircaloy-4 (Zry4) were applied for thermogravimetric analyses (TGA) in different temperatures in air at different flow rates to evaluate oxidation behavior. Oxidation rate increased with testing temperature. In a range of flow rate of air which is predictable in spent fuel lack during a hypothetical SFP accident, influence of flow rate was not clearly observed below 950degC for the Zry2, or below 1050degC for Zry4. In higher temperature, oxidation rate was higher in high rate condition, and this trend was seen clearer when temperature increased. Oxide layers were carefully examined after the TGA analyses and compared with mass gain data to investigate detail of oxidation process in air. It was revealed that the mass gain data in pre-breakaway regime reflects growth of dense oxide film on specimen surface, meanwhile in post-breakaway regime, it reflects growth of porous oxide layer beneath fracture of the dense oxide film. (author)

  4. Nuclear fuel element and container

    International Nuclear Information System (INIS)

    Grubb, W.T.; King, L.H.

    1981-01-01

    The invention is based on the discovery that a substantial reduction in metal embrittlement or stress corrosion cracking from fuel pellet-cladding interaction can be achieved by the use of a copper layer or liner in proximity to the nuclear fuel, and an intermediate zirconium oxide barrier layer between the copper layer and the zirconium cladding substrate. The intermediate zirconia layer is a good copper diffusion barrier; also, if the zirconium cladding surface is modified prior to oxidation, copper can be deposited by electroless plating. A nuclear fuel element is described which comprises a central core of fuel material and an elongated container using the system outlined above. The method for making the container is again described. It comprises roughening or etching the surface of the zirconium or zirconium alloy container, oxidizing the resulting container, activating the oxidized surface to allow for the metallic coating of such surfaces by electroless deposition and further coating the activated-oxidized surface of the zirconium or zirconium alloy container with copper, iron or nickel or an alloy thereof. (U.K.)

  5. Modeling the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Jacobson, Jacob J.; Dunzik-Gougar, Mary Lou; Juchau, Christopher A.

    2010-01-01

    A review of existing nuclear fuel cycle systems analysis codes was performed to determine if any existing codes meet technical and functional requirements defined for a U.S. national program supporting the global and domestic assessment, development and deployment of nuclear energy systems. The program would be implemented using an interconnected architecture of different codes ranging from the fuel cycle analysis code, which is the subject of the review, to fundamental physical and mechanistic codes. Four main functions are defined for the code: (1) the ability to characterize and deploy individual fuel cycle facilities and reactors in a simulation, while discretely tracking material movements, (2) the capability to perform an uncertainty analysis for each element of the fuel cycle and an aggregate uncertainty analysis, (3) the inclusion of an optimization engine able to optimize simultaneously across multiple objective functions, and (4) open and accessible code software and documentation to aid in collaboration between multiple entities and facilitate software updates. Existing codes, categorized as annualized or discrete fuel tracking codes, were assessed according to the four functions and associated requirements. These codes were developed by various government, education and industrial entities to fulfill particular needs. In some cases, decisions were made during code development to limit the level of detail included in a code to ease its use or to focus on certain aspects of a fuel cycle to address specific questions. The review revealed that while no two of the codes are identical, they all perform many of the same basic functions. No code was able to perform defined function 2 or several requirements of functions 1 and 3. Based on this review, it was concluded that the functions and requirements will be met only with development of a new code, referred to as GENIUS.

  6. Current situation of spent fuel management in the Laguna Verde Nuclear Power Plant, Veracruz, Mexico

    International Nuclear Information System (INIS)

    Moreno, C.V.

    1994-01-01

    The Comision Federal de Electricidad (CFE), owner and operator of the Laguna Verde nuclear power plant (2 x 654 MWe BWR), has twice decided to increase the storage capacity of the spent fuel pools of the reactors. The Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS), the national nuclear regulatory authority, approved the increase by a factor of 2.66 in the storage capacity proposal by CFE in 1989. Each reactor spent fuel pool can now hold 614 t HM. The reracking was done at a cost of about US $13 per kg U, which will add only 0.042 mills per kWh to the fuel cycle cost. (author)

  7. Spent nuclear fuel storage vessel

    International Nuclear Information System (INIS)

    Watanabe, Yoshio; Kashiwagi, Eisuke; Sekikawa, Tsutomu.

    1997-01-01

    Containing tubes for containing spent nuclear fuels are arranged vertically in a chamber. Heat releasing fins are disposed horizontal to the outer circumference of the containing tubes for rectifying cooling air and promoting cooling of the containing tubes. Louvers and evaporation sides of heat pipes are disposed at a predetermined distance in the chamber. Cooling air flows from an air introduction port to the inside of the chamber and takes heat from the containing tubes incorporated with heat generating spent nuclear fuels, rising its temperature and flows off to an air exhaustion exit. The direction for the rectification plate of the louver is downward from a horizontal position while facing to the air exhaustion port. Since the evaporation sides of the heat pipes are disposed in the inside of the chamber and the condensation side of the heat pipes is disposed to the outside of the chamber, the thermal energy can be recovered from the containing tubes incorporated with spent nuclear fuels and utilized. (I.N.)

  8. The analysis of the RA reactor irradiated fuel cooling in the spent fuel pool; Analiza hladjenja ozracenog goriva u bazenu za odlaganje reaktora RA

    Energy Technology Data Exchange (ETDEWEB)

    Vrhovac, M; Afgan, N; Spasojevic, D; Jovic, V [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1985-07-01

    According to the RA reactor exploitation plan the great quantity of the irradiated spent fuel will be disposed in the reactor spent fuel pool after each reactor campaign which will including the present spent fuel inventory increase the residual power level in the pool and will soon cause the pool capacity shortage. To enable the analysis of the irradiated fuel cooling the pool and characteristic spent fuel canister temperature distribution at the residual power maximum was done. The results obtained under the various spent fuel cooling conditions in the pit indicate the normal spent fuel thermal load even in the most inconvenient cooling conditions. (author)

  9. Seismic analysis of spent nuclear fuel storage racks

    International Nuclear Information System (INIS)

    Shah, S.J.; Biddle, J.R.; Bennett, S.M.; Schechter, C.B.; Harstead, G.A.; Marquet, F.

    1996-01-01

    In many nuclear power plants, existing storage racks are being replaced with high-density racks to accommodate the increasing inventory of spent fuel. In the hypothetical design considered here, the high-density arrangement of fuel assemblies, or consolidated fuel canisters, is accomplished through the use of borated stainless steel (BSS) plates acting as neutron absorbers. No structural benefit from the BSS is assumed. This paper describes the methods used to perform seismic analysis of high density spent fuel storage racks. The sensitivity of important parameters such as the effect of variation of coefficients of friction between the rack legs and the pool floor and fuel loading conditions (consolidated and unconsolidated) are also discussed in the paper. Results of this study are presented. The high-density fuel racks are simply supported by the pool floor with no structural connections to adjacent racks or to the pool walls or floor. Therefore, the racks are free standing and may slide and tip. Several time history, nonlinear, seismic analyses are required to account for variations in the coefficient of friction, rack loading configuration, and the type of the seismic event. This paper presents several of the mathematical models usually used. Friction cannot be precisely predicted, so a range of friction coefficients is assumed. The range assumed for the analysis is 0.2 to 0.8. A detailed model representing a single rack is used to evaluate the 3-D loading effects. This model is a controlling case for the stress analysis. A 2-D multi-rack model representing a row of racks between the spent fuel pool walls is used to evaluate the change in gaps between racks. The racks are normally analyzed for the fuel loading conditions of consolidated, full, empty, and half-loaded with fuel assemblies

  10. Modification in fuel processing of Mitsubishi Nuclear Fuel's Tokai Works

    International Nuclear Information System (INIS)

    1976-01-01

    Results of the study by the Committee for Examination of Fuel Safety, reported to the AEC of Japan, are presented, concerning safety of the modifications of Tokai Works, Mitsubishi Nuclear Fuel Co., Ltd. Safety has been confirmed thereof. The modifications covered are the following: storage facility of nuclear fuel in increase, analytical facility in transfer, fuel assemblage equipment in addition, incineration facility of combustible solid wastes in installation, experimental facility of uranium recovery in installation, and warehouse in installation. (Mori, K.)

  11. Thermal analyses for the rack design with spent fuel pool during the loss of cooling accident

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, C-L.; Chen, Y-S.; Chen, B-Y., E-mail: clinyeh@iner.gov.tw, E-mail: yschen@iner.gov.tw, E-mail: onepicemine@iner.gov.tw [Inst. of Nuclear Energy Research, Taoyuan County, Taiwan (China); Tseng, Y-S., E-mail: ystseng@mx.nthu.edu.tw [National Tsing Hua Univ., Engineering and System Science, Hsinchu, Taiwan (China); Wei, W-C., E-mail: hn150456@iner.gov.tw [Inst. of Nuclear Energy Research, Taoyuan County, Taiwan (China)

    2014-07-01

    Alternative fuel arrangements separating the latest fuels discharge from the reactor core are proposed, such as the 1x4 configuration in which the hot assembly is surrounded by 4 assemblies with much lower decay heat. For the rack design in the BWR spent fuel pool design, the lateral flow is eliminated by solid walls. In this study, cooling enhancement of splitting fuel rack is investigated using Computational Fluid Dynamics (CFD). The fuels in the pool are modeled by porous medium. Separating the fuel rack by a distance of 10 cm can lower the peak cladding temperature and the natural convection between the fuels and then earns more response time for the site people to implement necessary mitigation actions. (author)

  12. Plenum separator system for pool-type nuclear reactors

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1983-01-01

    This invention provides a plenum separator system for pool-type nuclear reactors which substantially lessens undesirable thermal effects on major components. A primary feature of the invention is the addition of one or more intermediate plena, containing substantially stagnant and stratified coolant, which separate the hot and cold plena and particularly the hot plena from critical reactor components. This plenum separator system also includes a plurality of components which together form a dual pass flow path annular region spaced from the reactor vessel wall by an annular gas space. The bypass flow through the flow path is relatively small and is drawn from the main coolant pumps and discharged to an intermediate plenum

  13. Strategies of management of the nuclear fuel

    International Nuclear Information System (INIS)

    Leon, J.R.; Perez, A.; Filella, J.M.

    1996-01-01

    The management of nuclear fuel is depending on several factors: - Regulatory commission. The enterprises owner of the NPPs.The enterprise owner of the energy distribution. These factors are considered for the management of nuclear fuel. The design of fuel elements, the planning of cycles, the design of core reactors and the costs are analyzed. (Author)

  14. Role of ion chromatograph in nuclear fuel fabrication process at Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Balaji Rao, Y.; Prasada Rao, G.; Prahlad, B.; Saibaba, N.

    2012-01-01

    The present paper discusses the different applications of ion chromatography followed in nuclear fuel fabrication process at Nuclear Fuel Complex. Some more applications of IC for characterization of nuclear materials and which are at different stages of method development at Control Laboratory, Nuclear Fuel Complex are also highlighted

  15. Probabilistic Risk Assessment on Maritime Spent Nuclear Fuel Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Robby; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Spent nuclear fuel (SNF) management has been an indispensable issue in South Korea. Before a long term SNF solution is implemented, there exists the need to distribute the spent fuel pool storage loads. Transportation of SNF assemblies from populated pools to vacant ones may preferably be done through the maritime mode since all nuclear power plants in South Korea are located at coastal sites. To determine its feasibility, it is necessary to assess risks of the maritime SNF transportation. This work proposes a methodology to assess the risk arising from ship collisions during the transportation of SNF by sea. Its scope is limited to the damage probability of SNF packages given a collision event. The effect of transport parameters' variation to the package damage probability was investigated to obtain insights into possible ways to minimize risks. A reference vessel and transport cask are given in a case study to illustrate the methodology's application.

  16. On the nuclear fuel and fossil fuel reserves

    International Nuclear Information System (INIS)

    Fettweis, G.

    1978-01-01

    A short discussion of the nuclear fuel and fossil fuel reserves and the connected problem of prices evolution is presented. The need to regard fuel production under an economic aspect is emphasized. Data about known and assessed fuel reserves, world-wide and with special consideration of Austria, are reviewed. It is concluded that in view of the fuel reserves situation an energy policy which allows for a maximum of options seems adequate. (G.G.)

  17. Nuclear fuels - swords and ploughshares

    Energy Technology Data Exchange (ETDEWEB)

    Franklin, N.L.

    1986-05-01

    In 1986 the problems associated with the implementation of nuclear power programmes mainly arise from difficulties of social acceptability. The scientific and technological achievements are no longer a source of wonder and are taken for granted by a public which has become accustomed to such achievements in other fields. This lecture recounts the history of the nuclear fuel cycle starting around 1955 but continuing, to look at future prospects. The problems are discussed. The technical improvements that have occurred over the years mean that, currently it is possible for all the problems to be overcome technically. Although there is always room for improvements in endurance, design etc. commercial and safety requirements can be met. In economic terms, the real costs of the fuel cycle have reached a plateau and should decrease as the result of lower cost for enriched uranium, lower reprocessing costs and better fuel management. However, in social and political terms, the position is not so certain because of public concern about reprocessing plants and the disposal of radioactive wastes. (U.K.).

  18. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Schmitt, D.

    1985-01-01

    How should the decision in favour of reprocessing and against alternative waste management concepts be judged from an economic standpoint. Reprocessing is not imperative neither for resource-economic reasons nor for nuclear energy strategy reasons. On the contrary, the development of an ultimate storage concept representing a real alternative promising to close, within a short period of time, the nuclear fuel cycle at low cost. At least, this is the result of an extensive economic efficiency study recently submitted by the Energy Economics Institute which investigated all waste management concepts relevant for the Federal Republic of Germany in the long run, i.e. direct ultimate storage of spent fuel elements (''Other waste disposal technologies'' - AE) as well as reprocessing of spent fuel elements where re-usable plutonium and uranium are recovered and radioactive waste goes to ultimate storage (''Integrated disposal'' - IE). Despite such fairly evident results, the government of the Federal Republic of Germany has favoured the construction of a reprocessing plant. From an economic point of view there is no final answer to the question whether or not the argumentation is sufficient to justify the decision to construct a reprocessing plant. This is true for both the question of technical feasibility and issues of overriding significance of a political nature. (orig./HSCH) [de

  19. An introduction to the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Leuze, R.E.

    1986-01-01

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work;second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity;and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US. 34 figs., 10 tabs

  20. Nuclear fuel handling grapple carriage with self-lubricating bearing

    International Nuclear Information System (INIS)

    Wade, E.E.

    1978-01-01

    Disclosed is a nuclear fuel handling grapple carriage having a bearing with a lubricant reservoir that is capable of being refilled when the bearing and reservoir are submerged in a lubricant pool. The lubricant reservoir supplies lubricant to the bearing while the bearing allows a small amount of lubricant to leak passed appropriately placed seals creating a positive out flow of lubricant thereby preventing foreign material from entering the bearing

  1. Critical review of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kuster, N.

    1996-01-01

    Transmutation of long-lived radionuclides is considered as an alternative to the in-depth disposal of spent nuclear fuel, in particular, on the final stage of the nuclear fuel cycle. The majority of conclusions is the result of the common work of the Karlsruhe FZK and the Commissariat on nuclear energy of France (CEA)

  2. Determining fissile content of nuclear fuel elements

    International Nuclear Information System (INIS)

    Arya, S.P.; Grossman, L.N.; Schoenig, F.C.

    1980-01-01

    This invention relates to the determination of the fissile fuel content of fuel for nuclear reactors. A nondestructive method is described for determining rapidly, accurately and simultaneously the fissile content, enrichment and location of fuel material which may also contain amounts of burnable poison, by detecting the γ-rays emitted from the fuel material due to natural radioactive decay. (U.K.)

  3. Transport and reprocessing of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Lenail, B.

    1981-01-01

    This contribution deals with transport and packaging of oxide fuel from and to the Cogema reprocessing plant at La Hague (France). After a general discussion of nuclear fuel and the fuel cycle, the main aspects of transport and reprocessing of oxide fuel are analysed. (Auth.)

  4. Fuel optimization of Qinshan nuclear power plant

    International Nuclear Information System (INIS)

    Liao Zejun; Li Zhuoqun; Kong Deping; Xue Xincai; Wang Shiwei

    2010-01-01

    Based on the design practice of the fuel replacement of Qin Shan nuclear power plant, this document effectively analyzes the shortcomings of current replacement design of Qin Shan. To address these shortcomings, this document successfully implements the 300 MW fuel optimization program from fuel replacement. fuel improvement and experimentation ,and achieves great economic results. (authors)

  5. Conceptual design of reactor TRIGA PUSPATI (RTP) spent fuel pool cooling system

    International Nuclear Information System (INIS)

    Tonny Lanyau; Mazleha Maskin; Mohd Fazli Zakaria; Mohmammad Suhaimi Kassim; Ahmad Nabil Abdul Rahim; Phongsakorn Prak Tom; Mohd Fairus Abdul Farid; Mohd Huzair Hussain

    2012-01-01

    After undergo about 30 years of safe operation, Reactor TRIGA PUSPATI (RTP) was planned to be upgraded to ensure continuous operation at optimum safety condition. In the meantime, upgrading is essential to get higher flux to diversify the reactor utilization. Spent fuel pool is needed for temporary storage of the irradiated fuel before sending it back to original country for reprocessing, reuse after the upgrading accomplished or final disposal. The irradiated fuel elements need to be secure physically with continuous cooling to ensure the safety of the fuels itself. The decay heat probably still exist even though the fuel elements not in the reactor core. Therefore, appropriate cooling is required to remove the heat produced by decay of the fission product in the irradiated fuel element. The design of spent fuel pool cooling system (SFPCS) was come to mind in order to provide the sufficient cooling to the irradiated fuel elements and also as a shielding. The spent fuel pool cooling system generally equipped with pumps, heat exchanger, water storage tank, valve and piping. The design of the system is based on criteria of the primary cooling system. This paper provides the conceptual design of the spent fuel cooling system. (author)

  6. Detection of fission products release in the research reactor 'RA' spent fuel storage pool

    International Nuclear Information System (INIS)

    Matausek, M.V.; Vukadin, Z.; Pavlovic, S.; Maksin, T.; Idakovic, Z.; Marinkovic, N.

    1997-05-01

    Spent fuel resulting from 25 years of operating the 6.5/10 MW thermal heavy water moderated and cooled research reactor RA at the VINCA Institute is presently all stored in the temporary spent fuel storage pool in the basement of the reactor building. In 1984, the reactor was shut down for refurbishment, which for a number of reasons has not yet been completed. Recent investigations show that independent of the future status of the research reactor, safe disposal of the so far irradiated fuel must be the subject of primary concern. The present status of the research reactor RA spent fuel storage pool at the VINCA Institute presents a serious safety problem. Action is therefore initiated in two directions. First, safety of the existing spent fuel storage should be improved. Second, transferring spent fuel into another, presumably dry storage space should be considered. By storing the previously irradiated fuel of the research reactor RA in a newly built storage space, sufficient free space will be provided in the existing spent fuel storage pool for the newly irradiated fuel when the reactor starts operation again. In the case that it would be decided to decommission the research reactor RA, the newly built storage space would provide safe disposal for the fuel irradiated so far

  7. Nuclear fuel control in fuel fabrication plants

    International Nuclear Information System (INIS)

    Seki, Yoshitatsu

    1976-01-01

    The basic control problems of measuring uranium and of the environment inside and outside nuclear fuel fabrication plants are reviewed, excluding criticality prevention in case of submergence. The occurrence of loss scraps in fabrication and scrap-recycling, the measuring error, the uranium going cut of the system, the confirmation of the presence of lost uranium and the requirement of the measurement control for safeguard make the measurement control very complicated. The establishment of MBA (material balance area) and ICA (item control area) can make clearer the control of inventories, the control of loss scraps and the control of measuring points. Besides the above basic points, the following points are to be taken into account: 1) the method of confirmation of inventories, 2) the introduction of reliable NDT instruments for the rapid check system for enrichment and amount of uranium, 3) the introduction of real time system, and 4) the clarification of MUF analysis and its application to the reliability check of measurement control system. The environment control includes the controls of the uranium concentration in factory atmosphere, the surface contamination, the space dose rate, the uranium concentration in air and water discharged from factories, and the uranium in liquid wastes. The future problems are the practical restudy of measurement control under NPT, the definite plan of burglary protection and the realization of the disposal of solid wastes. (Iwakiri, K.)

  8. Integrated scheme of long-term for spent fuel management of power nuclear reactors

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Palacios H, J. C.; Martinez C, E.

    2015-09-01

    After of irradiation of the nuclear fuel in the reactor core, is necessary to store it for their cooling in the fuel pools of the reactor. This is the first step in a processes series before the fuel can reach its final destination. Until now there are two options that are most commonly accepted for the end of the nuclear fuel cycle, one is the open nuclear fuel cycle, requiring a deep geological repository for the fuel final disposal. The other option is the fuel reprocessing to extract the plutonium and uranium as valuable materials that remaining in the spent fuel. In this study the alternatives for the final part of the fuel cycle, which involves the recycling of plutonium and the minor actinides in the same reactor that generated them are shown. The results shown that this is possible in a thermal reactor and that there are significant reductions in actinides if they are recycled into reactor fuel. (Author)

  9. Nuclear fuel cycle modelling using MESSAGE

    International Nuclear Information System (INIS)

    Guiying Zhang; Dongsheng Niu; Guoliang Xu; Hui Zhang; Jue Li; Lei Cao; Zeqin Guo; Zhichao Wang; Yutong Qiu; Yanming Shi; Gaoliang Li

    2017-01-01

    In order to demonstrate the possibilities of application of MESSAGE tool for the modelling of a Nuclear Energy System at the national level, one of the possible open nuclear fuel cycle options based on thermal reactors has been modelled using MESSAGE. The steps of the front-end and back-end of nuclear fuel cycle and nuclear reactor operation are described. The optimal structure for Nuclear Power Development and optimal schedule for introducing various reactor technologies and fuel cycle options; infrastructure facilities, nuclear material flows and waste, investments and other costs are demonstrated. (author)

  10. Method of producing nuclear fuels

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Suzuki, Tokuyuki; Oomura, Hiroshi.

    1985-01-01

    Purpose: To fabricate a nuclear fuel assembly with uniform enrichment degree, in the blanket of a hybrid reactor. Constitution: A vessel charged with powderous source materials is conveyed by a conveying gas through a material charge/discharge tube to the inside of the blanket. Then, plasmas are formed in the inner space of the blanket so as to enrich the source materials by the irradiation of neutrons. After the average degree of enrichment reaches a predetermined level, the material vessel is discharged by the conveying gas onto a conveyor. The powder materials are separated from the source-material vessel and then charged into a source-material hopper. The mixed material of a uniform enrichment degree is supplied to a fuel-assembly-fabrication device. FP gases resulted after the enrichment are effectively separated and removed through an FP gas pipe. (Horiuchi, T.)

  11. Nuclear fuel pellet loading machine

    International Nuclear Information System (INIS)

    Kee, R.W.; Denero, J.V.

    1975-01-01

    An apparatus for loading nuclear fuel pellets on trays for transfer in a system is described. A conveyor supplies pellets from a source to a loading station. When the pellets reach a predetermined position at the loading station, a manual or automatically operated arm pushes the pellets into slots on a tray and this process is repeated until pellet sensing switches detect that the tray is full. Thereupon, the tray is lowered onto a belt or other type conveyor and transferred to other apparatus in the system, such as a furnace for sintering, and in some cases, reduction of UO 2 . 2 to UO 2 . The pellets are retained on the tray and subsequently loaded directly into fuel rods to be used in the reactor core. (auth)

  12. Nuclear fuel pellet production method and nuclear fuel pellet

    International Nuclear Information System (INIS)

    Yuda, Ryoichi; Ito, Ken-ichi; Masuda, Hiroshi.

    1993-01-01

    In a method of manufacturing nuclear fuel pellets by compression-molding UO 2 powders followed by sintering, a sintering agent having a composition of about 40 to 80 wt% of SiO 2 and the balance of Al 2 O 3 , a sintering agent at a ratio of 10 to 500 ppm based on the total amount of UO 2 and UO 2 powders are mixed, compression molded and then sintered at a sintering temperature of about 1500 of 1800degC. The UO 2 particles have an average grain size of about 20 to 60μm, most of the crystal grain boundary thereof is coated with a glassy or crystalline alumina silicate phase, and the porosity is about 1 to 4 vol%. With such a constitution, the sintering agent forms a single liquid phase eutectic mixture during sintering, to promote a surface reaction between nuclear fuel powders by a liquid phase sintering mechanism, increase their density and promote the crystal growth. Accordingly, it is possible to lower the softening temperature, improve the creep velocity of the pellets and improve the resistance against pellet-clad interaction. (T.M.)

  13. Detectability prediction for a thermoacoustic sensor in the breazeale nuclear reactor pool

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James [Idaho National Laboratory, Idaho Falls, ID (United States); Hrisko, Joshua [Idaho National Laboratory, Idaho Falls, ID (United States); Garrett, Steven [Idaho National Laboratory, Idaho Falls, ID (United States)

    2016-03-01

    Laboratory experiments have suggested that thermoacoustic engines can be in- corporated within nuclear fuel rods. Such engines would radiate sounds that could be used to measure and acoustically-telemeter information about the op- eration of the nuclear reactor (e.g., coolant temperature or uxes of neutrons or other energetic particles) or the physical condition of the nuclear fuel itself (e.g., changes in temperature, evolved gases) that are encoded as the frequency and/or amplitude of the radiated sound [IEEE Measurement and Instrumen- tation 16(3), 18-25 (2013)]. For such acoustic information to be detectable, it is important to characterize the vibroacoustical environments within reactors. Measurements will be presented of the background noise spectra (with and with- out coolant pumps) and reverberation times within the 70,000 gallon pool that cools and shields the fuel in the 1 MW research reactor on Penn State's campus using two hydrophones, a piezoelectric projector, and an accelerometer. Sev- eral signal-processing techniques will be demonstrated to enhance the measured results. Background vibrational measurement were also taken at the 250 MW Advanced Test Reactor, located at the Idaho National Laboratory, using ac- celerometers mounted outside the reactor's pressure vessel and on plumbing will also be presented. The detectability predictions made in the thesis were validated in September 2015 using a nuclear ssion-heated thermoacoustic sensor that was placed in the core of the Breazeale Nuclear Reactor on Penn State's campus. Some features of the thermoacoustic device used in that experiment will also be revealed. [Work supported by the U.S. Department of Energy.

  14. International nuclear fuel cycle evaluation

    International Nuclear Information System (INIS)

    Witt, P.

    1980-01-01

    In the end of February 1980, the two-years work on the International Nuclear Fuel Cycle Evaluation (INFCE) was finished in Vienna with a plenary meeting. INFCE is likely to have been a unique event in the history of international meetings: It was ni diplomatic negotiation meeting, but a techno-analytical investigation in which the participants tenaciously shuggled for many of the formulations. Starting point had been a meeting initiated by President Carter in Washington in Oct. 1979 after the World Economy Summit Meeting in London. The results of the investigation are presented here in a brief and popular form. (orig./UA) [de

  15. Nuclear fuel grid outer strap

    International Nuclear Information System (INIS)

    Duncan, R.; Craver, J.E.

    1989-01-01

    This patent describes a nuclear reactor fuel assembly grid. It comprises a first outer grip strap segment end. The first end having a first tab arranged in substantially the same plane as the plane defined by the first end; a second outer grip strap end. The second end having a second slot arranged in substantially the same plane as the plane defined by the second end, with the tab being substantially disposed in the slot, defining a socket therebetween; and a fort tine interposed substantially perpendicularly in the socket

  16. Radioecology of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Cadwell, L.L.

    1982-01-01

    This study provides information to help assess the environmental impacts and certain potential human hazards associated with nuclear fuel cycles. A data base is being developed to define and quantify biological transport routes, which will permit credible predictions and assessment of routine and potential large-scale releases of radionuclides and other toxic materials. These data, used in assessment models, will increase the accuracy of estimating radiation doses to man and other life forms. Results will provide information to determine if waste management procedures on the Hanford site have caused ecological perturbations, and, if so, to determine the source, nature and magnitude of such disturbances

  17. Container for nuclear fuel powders

    International Nuclear Information System (INIS)

    Etheredge, B.F.; Larson, R.I.

    1982-01-01

    A critically safe container is disclosed for the storage and rapid discharge of enriched nuclear fuel material in powder form is disclosed. The container has a hollow, slab-shaped container body that has one critically safe dimension. A powder inlet is provided on one side wall of the body adjacent to a corner thereof and a powder discharge port is provided at another corner of the body approximately diagonal the powder inlet. Gas plenum for moving the powder during discharge are located along the side walls of the container adjacent the discharge port

  18. Radioecology of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Schreckhise, R.G.; Cadwell, L.L.; Emery, R.M.

    1981-01-01

    This study provides information to help assess the environmental impacts and certain potential human hazards associated with nuclear fuel cycles. A data base is being developed to define and quantify biological transport routes which will permit credible predictions and assessment of routine and potential large-scale releases of radionuclides and other toxic materials. Information obtained from existing storage and disposal sites will provide a meaningful radioecological perspective with which to improve the effectiveness of waste management practices. This paper focuses on terrestrial and aquatic radioecology of waste management areas and biotic transport parameters

  19. Advantages of dry hardened cask storage over wet storage for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Romanato, Luiz Sergio, E-mail: romanato@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil). Dept. da Qualidade

    2011-07-01

    Pools are generally used to store and maintain spent nuclear fuel assemblies for cooling, after removed from reactors. After three to five years stored in the pools, spent fuel can be reprocessed or sent to a final disposition in a geological repository and handled as radioactive waste or sent to another site waiting for future solution. Spent fuel can be stored in dry or wet installations, depending on the method adopted by the nuclear plant. If this storage were exclusively wet, at the installation decommissioning in the future, another solution for storage will need to be found. Today, after a preliminary cooling, the spent fuel assemblies can be removed from the pool and sent to dry hardened storage installations. This kind of storage does not need complex radiation monitoring and it is safer than wet storage. Brazil has two nuclear reactors in operation, a third reactor is under construction and they use wet spent fuel storage . Dry hardened casks use metal or both metal and concrete for radiation shielding and they are safe, especially during an earthquake. An earthquake struck Japan on March 11, 2011 damaging Fukushima Daiichi nuclear power plant. The occurrence of earthquakes in Brazil is very small but dry casks can resist to other events, including terrorist acts, better than pools. This paper shows the advantages of dry hardened cask storage in comparison with the wet storage (water pools) for spent nuclear fuel. (author)

  20. Advantages of dry hardened cask storage over wet storage for spent nuclear fuel

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2011-01-01

    Pools are generally used to store and maintain spent nuclear fuel assemblies for cooling, after removed from reactors. After three to five years stored in the pools, spent fuel can be reprocessed or sent to a final disposition in a geological repository and handled as radioactive waste or sent to another site waiting for future solution. Spent fuel can be stored in dry or wet installations, depending on the method adopted by the nuclear plant. If this storage were exclusively wet, at the installation decommissioning in the future, another solution for storage will need to be found. Today, after a preliminary cooling, the spent fuel assemblies can be removed from the pool and sent to dry hardened storage installations. This kind of storage does not need complex radiation monitoring and it is safer than wet storage. Brazil has two nuclear reactors in operation, a third reactor is under construction and they use wet spent fuel storage . Dry hardened casks use metal or both metal and concrete for radiation shielding and they are safe, especially during an earthquake. An earthquake struck Japan on March 11, 2011 damaging Fukushima Daiichi nuclear power plant. The occurrence of earthquakes in Brazil is very small but dry casks can resist to other events, including terrorist acts, better than pools. This paper shows the advantages of dry hardened cask storage in comparison with the wet storage (water pools) for spent nuclear fuel. (author)

  1. Getter for nuclear fuel elements

    International Nuclear Information System (INIS)

    Ross, W.T.; Williamson, H.E.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has disposed therein an improved getter capable of gettering reactive gases including a source of hydrogen. The getter comprises a composite with a substrate having thereon a coating capable of gettering reactive gases. The substrate has a greater coefficient of thermal expansion than does the coating, and over a period of time at reactor operating temperatures any protective film on the coating is fractured at various places and fresh portions of the coating are exposed to getter reactive gases. With further passage of time at reactor operating temperatures a fracture of the protective film on the coating will grow into a crack in the coating exposing further portions of the coating capable of gettering reactive gases. 13 claims, 5 drawing figures

  2. Getter for nuclear fuel elements

    International Nuclear Information System (INIS)

    Ross, W.T.; Williamson, H.E.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has disposed therein an improved getter capable of gettering reactive gases including a source of hydrogen. The getter comprises a composite with a substrate having thereon a coating capable of gettering reactive gases. The substrate has a greater coefficient of thermal expansion than does the coating, and over a period of time at reactor operating temperatures any protective film on the coating is fractured at various places and fresh portions of the coating are exposed to getter reactive gases. With further passage of time at reactor operating temperatures a fracture of the protective film on the coating will grow into a crack in the coating exposing further portions of the coating capable of gettering reactive gases

  3. Test on Similarity between the Flooded and Optimum Moderation Conditions of the Spent Fuel Storage Pool

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gil Soo; Jang, Chang Sun; Woo, Sweng Woong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2009-05-15

    In the criticality safety analysis, uncertainty and bias should be considered. The final multiplication factor including uncertainty and bias in addition to calculated k-eff should be below the administrative limit. The administrative limit of spent fuel pool is 0.95 with flooded condition (filled with unborated water), and 0.98 with optimum moderation condition (filled with foggy unborated water, usually occurs near 0.1g/cc water density) for new fuel storage. The bias is determined by comparing the calculation results of the critical experiments ever performed. It is important to choose 'good' experiments which have 'similar' condition with application. To obtain realistic bias, many experiments with similar conditions should be chosen and considered. In previous approach, same critical experiment set are used to determine bias of the flooded and optimum moderation conditions. It would be correct way if two conditions are similar. The similarity test on this paper was performed by TSUNAMI code included in SCALE5.1 package. TSUNAMI code produces sensitivity data for each nuclear reaction by using first order perturbation theory. TSUNAMI code performs forward and adjoint multigroup Monte Carlo calculation. Sensitivity data are obtained by forward and adjoint results. TSUNAMI also produces uncertainty data with sensitivity data and cross section covariance data. In this paper, similarity is determined by comparing energy of average lethargy of fission (EALF), uncertainty data, sensitivity data, and correlation coefficient which is also output of the TSUNAMI code.

  4. Nuclear fuel element leak detection system

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1978-01-01

    Disclosed is a leak detection system integral with a wall of a building used to fabricate nuclear fuel elements for detecting radiation leakage from the nuclear fuel elements as the fuel elements exit the building. The leak detecting system comprises a shielded compartment constructed to withstand environmental hazards extending into a similarly constructed building and having sealed doors on both ends along with leak detecting apparatus connected to the compartment. The leak detecting system provides a system for removing a nuclear fuel element from its fabrication building while testing for radiation leaks in the fuel element

  5. The Nuclear Fuel Cycle Information System

    International Nuclear Information System (INIS)

    1987-02-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities. Its purpose is to identify existing and planned nuclear fuel cycle facilities throughout the world and to indicate their main parameters. It includes information on facilities for uranium ore processing, refining, conversion and enrichment, for fuel fabrication, away-from-reactor storage of spent fuel and reprocessing, and for the production of zirconium metal and Zircaloy tubing. NFCIS currently covers 271 facilities in 32 countries and includes 171 references

  6. Underwater Nuclear Fuel Disassembly and Rod Storage Process and Equipment Description. Volume II

    International Nuclear Information System (INIS)

    Viebrock, J.M.

    1981-09-01

    The process, equipment, and the demonstration of the Underwater Nuclear Fuel Disassembly and Rod Storage System are presented. The process was shown to be a viable means of increasing spent fuel pool storage density by taking apart fuel assemblies and storing the fuel rods in a denser fashion than in the original storage racks. The assembly's nonfuel-bearing waste is compacted and containerized. The report documents design criteria and analysis, fabrication, demonstration program results, and proposed enhancements to the system

  7. Dissolving method for nuclear fuel oxide

    International Nuclear Information System (INIS)

    Tomiyasu, Hiroshi; Kataoka, Makoto; Asano, Yuichiro; Hasegawa, Shin-ichi; Takashima, Yoichi; Ikeda, Yasuhisa.

    1996-01-01

    In a method of dissolving oxides of nuclear fuels in an aqueous acid solution, the oxides of the nuclear fuels are dissolved in a state where an oxidizing agent other than the acid is present together in the aqueous acid solution. If chlorate ions (ClO 3 - ) are present together in the aqueous acid solution, the chlorate ions act as a strong oxidizing agent and dissolve nuclear fuels such as UO 2 by oxidation. In addition, a Ce compound which generates Ce(IV) by oxidation is added to the aqueous acid solution, and an ozone (O 3 ) gas is blown thereto to dissolve the oxides of nuclear fuels. Further, the oxides of nuclear fuels are oxidized in a state where ClO 2 is present together in the aqueous acid solution to dissolve the oxides of nuclear fuels. Since oxides of the nuclear fuels are dissolved in a state where the oxidizing agent is present together as described above, the oxides of nuclear fuels can be dissolved even at a room temperature, thereby enabling to use a material such as polytetrafluoroethylene and to dissolve the oxides of nuclear fuels at a reduced cost for dissolution. (T.M.)

  8. Demonstration of a transportable storage system for spent nuclear fuel

    International Nuclear Information System (INIS)

    Shetler, J.R.; Miller, K.R.; Jones, R.E.

    1993-01-01

    The purpose of this paper is to discuss the joint demonstration project between the Sacramento Municipal Utility District (SMUD) and the US Department of Energy (DOE) regarding the use of a transportable storage system for the long-term storage and subsequent transport of spent nuclear fuel. SMUD's Rancho Seco nuclear generating station was shut down permanently in June 1989. After the shutdown, SMUD began planning the decommissioning process, including the disposition of the spent nuclear fuel. Concurrently, Congress had directed the Secretary of Energy to develop a plan for the use of dual-purpose casks. Licensing and demonstrating a dual-purpose cask, or transportable storage system, would be a step toward achieving Congress's goal of demonstrating a technology that can be used to minimize the handling of spent nuclear fuel from the time the fuel is permanently removed from the reactor through to its ultimate disposal at a DOE facility. For SMUD, using a transportable storage system at the Rancho Seco Independent Spent-Fuel Storage Installation supports the goal of abandoning Rancho Seco's spent-fuel pool as decommissioning proceeds

  9. Management number identification method for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Furuya, Nobuo; Mori, Kazuma.

    1995-01-01

    In the present invention, a management number indicated to appropriate portions of a fuel assembly can be read with no error for the management of nuclear fuel materials in the nuclear fuel assembly (counting management) and physical protection: PP. Namely, bar codes as a management number are printed by electrolytic polishing to one or more portions of a side surface of an upper nozzle of the assembly, an upper surface of a clamp and a side surface of a lower nozzle. The bar codes are read by a reader at one or more portions in a transporting path for transporting the fuel assembly and at a fuel detection device disposed in a fuel storage pool. The read signals are inputted to a computer. With such procedures, the nuclear fuel assembly can be identified with no error by reading the bar codes and without applying no danger to a human body. Since the reader is disposed in the course of the transportation and test for the assembly, and the read signals are inputted to the computer, the management for the counting number and PP is facilitated. (I.S.)

  10. MODELLING OF NUCLEAR FUEL CLADDING TUBES CORROSION

    Directory of Open Access Journals (Sweden)

    Miroslav Cech

    2016-12-01

    Full Text Available This paper describes materials made of zirconium-based alloys used for nuclear fuel cladding fabrication. It is focused on corrosion problems their theoretical description and modeling in nuclear engineering.

  11. OECD - HRP Summer School on Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures.

  12. International Summer School on Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures.

  13. OECD - HRP Summer School on Nuclear Fuel

    International Nuclear Information System (INIS)

    2000-01-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures

  14. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-01-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the ''front end'' and ''back end'' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of the Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  15. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-10-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the 'front end' and 'back end' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of The Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  16. Nuclear Fusion Fuel Cycle Research Perspectives

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin; Yun, Sei-Hun

    2015-01-01

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants

  17. Nuclear-fuel-cycle education: Module 1. Nuclear fuel cycle overview

    International Nuclear Information System (INIS)

    Eckhoff, N.D.

    1981-07-01

    This educational module is an overview of the nuclear-fule-cycle. The overview covers nuclear energy resources, the present and future US nuclear industry, the industry view of nuclear power, the International Nuclear Fuel Cycle Evaluation program, the Union of Concerned Scientists view of the nuclear-fuel-cycle, an analysis of this viewpoint, resource requirements for a model light water reactor, and world nuclear power considerations

  18. International issue: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    In this special issue a serie of short articles of informations are presented on the following topics: the EEC's medium term policy regarding the reprocessing and storage of spent fuel, France's natural uranium supply, the Pechiney Group in the nuclear field, zircaloy cladding for nuclear fuel elements, USSI: a major French nuclear engineering firm, gaseous diffusion: the only commercial enrichment process, the transport of nuclear materials in the fuel cycle, Cogema and spent fuel reprocessing, SGN: a leader in the fuel cycle, quality control of mechanical, thermal and termodynamic design in nuclear engineering, Sulzer's new pump testing station in Mantes, the new look of the Ateliers et Chantiers de Bretagne, tubes and piping in nuclear power plants, piping in pressurized water reactor. All these articles are written in English and in French [fr

  19. Studies and research concerning BNFP: spent fuel dry storage studies at the Barnwell Nuclear Fuel Plant

    International Nuclear Information System (INIS)

    Anderson, K.J.

    1980-09-01

    Conceptual designs are presented utilizing the Barnwell Nuclear Fuel Plant for the dry interim storage of spent light water reactor fuel. Studies were conducted to determine feasible approaches to storing spent fuel by methods other than wet pool storage. Fuel that has had an opportunity to cool for several years, or more, after discharge from a reactor is especially adaptable to dry storage since its thermal load is greatly reduced compared to the thermal load immediately following discharge. A thermal analysis was performed to help in determining the feasibility of various spent fuel dry storage concepts. Methods to reject the heat from dry storage are briefly discussed, which include both active and passive cooling systems. The storage modes reviewed include above and below ground caisson-type storage facilities and numerous variations of vault, or hot cell-type, storage facilities

  20. Maintaining Continuity of Knowledge of Spent Fuel Pools: Tool Survey

    Energy Technology Data Exchange (ETDEWEB)

    Benz, Jacob M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tanner, Jennifer E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); MacDougall, Matthew R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-30

    This report examines supplemental tools that can be used in addition to optical surveillance cameras to maintain CoK in low-to-no light conditions, and increase the efficiency and effectiveness of spent fuel CoK, including item counting and ID verification, in challenging conditions.

  1. Nuclear fuel powder transfer device

    International Nuclear Information System (INIS)

    Komono, Akira

    1998-01-01

    A pair of parallel rails are laid between a receiving portion to a molding portion of a nuclear fuel powder transfer device. The rails are disposed to the upper portion of a plurality of parallel support columns at the same height. A powder container is disposed while being tilted in the inside of the vessel main body of a transfer device, and rotational shafts equipped with wheels are secured to right and left external walls. A nuclear powder to be mixed, together with additives, is supplied to the powder container of the transfer device. The transfer device engaged with the rails on the receiving side is transferred toward the molding portion. The wheels are rotated along the rails, and the rotational shafts, the vessel main body and the powder container are rotated. The nuclear powder in the tilted powder container disposed is rotated right and left and up and down by the rotation, and the powder is mixed satisfactory when it reaches the molding portion. (I.N.)

  2. Micro-structured nuclear fuel and novel nuclear reactor concepts for advanced power production

    International Nuclear Information System (INIS)

    Popa-Simil, Liviu

    2008-01-01

    Many applications (e.g. terrestrial and space electric power production, naval, underwater and railroad propulsion and auxiliary power for isolated regions) require a compact-high-power electricity source. The development of such a reactor structure necessitates a deeper understanding of fission energy transport and materials behavior in radiation dominated structures. One solution to reduce the greenhouse-gas emissions and delay the catastrophic events' occurrences may be the development of massive nuclear power. The actual basic conceptions in nuclear reactors are at the base of the bottleneck in enhancements. The current nuclear reactors look like high security prisons applied to fission products. The micro-bead heterogeneous fuel mesh gives the fission products the possibility to acquire stable conditions outside the hot zones without spilling, in exchange for advantages - possibility of enhancing the nuclear technology for power production. There is a possibility to accommodate the materials and structures with the phenomenon of interest, the high temperature fission products free fuel with near perfect burning. This feature is important to the future of nuclear power development in order to avoid the nuclear fuel peak, and high price increase due to the immobilization of the fuel in the waste fuel nuclear reactor pools. (author)

  3. Nuclear design of APSARA reload-2 fuel

    International Nuclear Information System (INIS)

    Nath, M.; Veeraraghavan, N.

    1978-01-01

    In view of the satisfactory operating performance of initial and reload-1 fuel designs of Apsara reactor, it was felt desirable to adopt a basically similar design for reload-2 fuel, i.e. the fuel assembly should consist of equally spaced parallel fuel plates in which highly enriched uranium, alloyed with aluminium, is employed as fuel. However, because of fabricational constraints, certain modifications were necessary and were incorporated in the proposed reload design to cater to the multiple needs of operational requirements, improved fuel utilization and inherent reactor safety. The salient features of the nuclear design of reload-2 fuel for the Apsara reactor are discussed. (author)

  4. Monitoring arrangement for vented nuclear fuel elements

    International Nuclear Information System (INIS)

    Campana, R.J.

    1981-01-01

    In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180 0 rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements

  5. Sustainability Features of Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Stefano Passerini

    2012-09-01

    Full Text Available The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis, the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.

  6. Nuclear fuel cycle scenarios at CGNPC

    International Nuclear Information System (INIS)

    Xiao, Min; Zhou, Zhou; Nie, Li Hong; Mao, Guo Ping; Hao, Si Xiong; Shen, Kang

    2008-01-01

    Established in 1994, China Guangdong Nuclear Power Holding Co. (CGNPC) now owns two power stations GNPS and LNPS Phase I, with approximate 4000 MWe of installed capacity. With plant upgrades, advanced fuel management has been introduced into the two plants to improve the plant economical behavior with the high burnup fuel implemented. For the purpose of sustainable development, some preliminary studies on nuclear fuel cycle, especially on the back-end, have been carried out at CGNPC. According to the nuclear power development plan of China, the timing for operation and the capacity of the reprocessing facility are studied based on the amount of the spent fuel forecast in the future. Furthermore, scenarios of the fuel cycles in the future in China with the next generation of nuclear power were considered. Based on the international experiences on the spent fuel management, several options of spent fuel reprocessing strategies are investigated in detail, for example, MOX fuel recycling in light water reactor, especially in the current reactors of CGNPC, spent fuel intermediated storage, etc. All the investigations help us to draw an overall scheme of the nuclear fuel cycle, and to find a suitable road-map to achieve the sustainable development of nuclear power. (authors)

  7. Spent nuclear fuel disposal liability insurance

    International Nuclear Information System (INIS)

    Martin, D.W.

    1984-01-01

    This thesis examines the social efficiency of nuclear power when the risks of accidental releases of spent fuel radionuclides from a spent fuel disposal facility are considered. The analysis consists of two major parts. First, a theoretical economic model of the use of nuclear power including the risks associated with releases of radionuclides from a disposal facility is developed. Second, the costs of nuclear power, including the risks associated with a radionuclide release, are empirically compared to the costs of fossil fuel-fired generation of electricity. Under the provisions of the Nuclear Waste Policy Act of 1982, the federally owned and operated spent nuclear fuel disposal facility is not required to maintain a reserve fund to cover damages from an accidental radionuclide release. Thus, the risks of a harmful radionuclide release are not included in the spent nuclear fuel disposal fee charged to the electric utilities. Since the electric utilities do not pay the full, social costs of spent fuel disposal, they use nuclear fuel in excess of the social optimum. An insurance mechanism is proposed to internalize the risks associated with spent fueled disposal. Under this proposal, the Federal government is required to insure the disposal facility against any liabilities arising from accidental releases of spent fuel radionuclides

  8. Spent nuclear fuel storage - Basic concept

    International Nuclear Information System (INIS)

    Krempel, Ascanio; Santos, Cicero D. Pacifici dos; Sato, Heitor Hitoshi; Magalhaes, Leonardo de

    2009-01-01

    According to the procedures adopted in others countries in the world, the spent nuclear fuel elements burned to produce electrical energy in the Brazilian Nuclear Power Plant of Angra do Reis, Central Nuclear Almirante Alvaro Alberto - CNAAA will be stored for a long time. Such procedure will allow the next generation to decide how they will handle those materials. In the future, the reprocessing of the nuclear fuel assemblies could be a good solution in order to have additional energy resource and also to decrease the volume of discarded materials. This decision will be done in the future according to the new studies and investigations that are being studied around the world. The present proposal to handle the nuclear spent fuel is to storage it for a long period of time, under institutional control. Therefore, the aim of this paper is to introduce a proposal of a basic concept of spent fuel storage, which involves the construction of a new storage building at site, in order to increase the present storage capacity of spent fuel assemblies in CNAAA installation; the concept of the spent fuel transportation casks that will transfer the spent fuel assemblies from the power plants to the Spent Fuel Complementary Storage Building and later on from this building to the Long Term Intermediate Storage of Spent Fuel; the concept of the spent fuel canister and finally the basic concept of the spent fuel long term storage. (author)

  9. Spent Nuclear Fuel (SNF) Project Execution Plan

    International Nuclear Information System (INIS)

    LEROY, P.G.

    2000-01-01

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities

  10. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mecartnery, Martha [Univ. of California, Irvine, CA (United States); Graeve, Olivia [Univ. of California, San Diego, CA (United States); Patel, Maulik [Univ. of Liverpool (United Kingdom)

    2017-05-25

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  11. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    International Nuclear Information System (INIS)

    Mecartnery, Martha; Graeve, Olivia; Patel, Maulik

    2017-01-01

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  12. The IFR modern nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hannum, W.H.

    1991-01-01

    Nuclear power is an essential component of the world's energy supply. The IFR program, by returning to fundamentals, offers a fresh approach to closing the nuclear fuel cycle. This closed fuel cycle represents the ultimate in efficient resource utilization and environmental accountability. 35 refs., 2 tabs.

  13. Spent Nuclear Fuel (SNF) Project Execution Plan

    Energy Technology Data Exchange (ETDEWEB)

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  14. The IFR modern nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hannum, W.H.

    1991-01-01

    Nuclear power is an essential component of the world's energy supply. The IFR program, by returning to fundamentals, offers a fresh approach to closing the nuclear fuel cycle. This closed fuel cycle represents the ultimate in efficient resource utilization and environmental accountability. 35 refs., 2 tabs

  15. Guide for subdivision of spent fuel pool. Project UNESA MAAP5-SFP

    International Nuclear Information System (INIS)

    Martinez Barrios, M.; Garcia Gonzalez, M.; Perez Martin, F. J.

    2013-01-01

    The main goal of the UNESA MAAP5-SFP project is to analyze the capabilities of MAAP5 code and, particularly, the Spent Fuel Pool (SFP) module in order to tackle its modeling and facilitate the development of specific SFP models of Spanish NPPs. Within the project, Empresarios Agrupados (EEAA) is the responsible for the development of the Guide for the subdivision of the Spent Fuel Pool (SFP). This Guide includes a theoretical description of the model that is used by the code and a sequence of practical cases with the aim to evaluate the influence of specific parameters

  16. Nuclear Fuel Cycle Information System. A directory of nuclear fuel cycle facilities. 2009 ed

    International Nuclear Information System (INIS)

    2009-04-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities, published online as part of the Integrated Nuclear Fuel Cycle Information System (iNFCIS: http://www-nfcis.iaea.org/). This is the fourth hardcopy publication in almost 30 years and it represents a snapshot of the NFCIS database as of the end of 2008. Together with the attached CD-ROM, it provides information on 650 civilian nuclear fuel cycle facilities in 53 countries, thus helping to improve the transparency of global nuclear fuel cycle activities

  17. Nuclear fuel burn-up economy

    International Nuclear Information System (INIS)

    Matausek, M.

    1984-01-01

    In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)

  18. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    The nuclear fuel cycle covers the procurement and preparation of fuel for nuclear power reactors, its recovery and recycling after use and the safe storage of all wastes generated through these operations. The facilities associated with these activities have an extensive and well documented safety record accumulated over the past 40 years by technical experts and safety authorities. This report constitutes an up-to-date analysis of the safety of the nuclear fuel cycle, based on the available experience in OECD countries. It addresses the technical aspects of fuel cycle operations, provides information on operating practices and looks ahead to future activities

  19. Post-accident cooling capacity analysis of the AP1000 passive spent fuel pool cooling system

    International Nuclear Information System (INIS)

    Su Xia

    2013-01-01

    The passive design is used in AP1000 spent fuel pool cooling system. The decay heat of the spent fuel is removed by heating-boiling method, and makeup water is provided passively and continuously to ensure the safety of the spent fuel. Based on the analysis of the post-accident cooling capacity of the spent fuel cooling system, it is found that post-accident first 72-hour cooling under normal refueling condition and emergency full-core offload condition can be maintained by passive makeup from safety water source; 56 hours have to be waited under full core refueling condition to ensure the safety of the core and the spent fuel pool. Long-term cooling could be conducted through reserved safety interface. Makeup measure is available after accident and limited operation is needed. Makeup under control could maintain the spent fuel at sub-critical condition. Compared with traditional spent fuel pool cooling system design, the AP1000 design respond more effectively to LOCA accidents. (authors)

  20. Nuclear fuels for very high temperature applications

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO 2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures

  1. FERC perspectives on nuclear fuel accounting issues

    International Nuclear Information System (INIS)

    McDanal, M.W.

    1986-01-01

    The purpose of the presentation is to discuss the treatment of nuclear fuel and problems that have evolved in industry practices in accounting for fuel. For some time, revisions to the Uniform System of Accounts have been considered with regard to the nuclear fuel accounts. A number of controversial issues have been encountered on audits, including treatment of nuclear fuel enrichment charges, costs associated with delays in enrichment services, the treatment and recognition of fuel inventories in excess of current or projected needs, and investments in and advances to mining and milling companies for future deliveries of nuclear fuel materials. In an effort to remedy the problems and to adapt the Federal Energy Regulatory Commission's accounting to more easily provide for or point out classifications for each problem area, staff is reevaluating the need for contemplated amendments to the Uniform System of Accounts

  2. System for assembling nuclear fuel elements

    International Nuclear Information System (INIS)

    1980-01-01

    An automatic system is described for assembling nuclear fuel elements, in particular those employing mixed oxide fuels. The system includes a sealing mechanism which allows movement during the assembling of the fuel element along the assembly stations without excessive release of contaminants. (U.K.)

  3. Fuel assemblies for use in nuclear reactors

    International Nuclear Information System (INIS)

    Schluderberg, D.C.

    1981-01-01

    A fuel assembly for use in pressurized water cooled nuclear fast breeder reactors is described in which moderator to fuel ratios, conducive to a high Pu-U-D 2 O reactor breeding ratio, are obtained whilst at the same time ensuring accurate spacing of fuel pins without the parasitic losses associated with the use of spacer grids. (U.K.)

  4. The economy of the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, W [Alpha Chemie und Metallurgie G.m.b.H. (ALKEM), Hanau (Germany, F.R.)

    1989-07-01

    Heat extracted from nuclear fuel costs by a factor of 3 to 7 less than heat from conventional fossile fuel. So, nuclear fuel per se has an economical advantage, decreased however partly by higher nuclear plant investment costs. The standard LWR design does not allow all the fission energy stored in the fuel during on cycle to be used. It is therefore the most natural approach to separate fissionable species from fission products and consume them by fissioning. Whether this is economically justified as opposed by storing them indefinitely with spent fuel has widely been debated. The paper outlines the different approaches taken by nuclear communities worldwide and their perceived or proven rational arguments. It will balance economic and other factors for the near and distant future including advanced reactor concepts. The specific solution within the German nuclear programme will be explained, including foreseeable future trends. (orig.).

  5. Express diagnostics of WWER fuel rods at nuclear power plants

    International Nuclear Information System (INIS)

    Pavlov, S.; Amosov, S.; Sagalov, S.; Kostyuchenko, A.

    2009-01-01

    Higher safety and economical efficiency of nuclear power plants (NPP) call for a continuous design modification and technological development of fuel assemblies and fuel rods as well as optimization of their operating conditions. In doing so the efficiency of new fuel introduction depends on the completeness of irradiated fuel data in many respects as well as on the rapidity and cost of such data obtaining. Standard examination techniques of fuel assemblies (FA) and fuel rods (FR) intended for their use in hot cell conditions do not satisfy these requirements in full extent because fuel assemblies require preliminary cooling at NPP to provide their shipment to the research center. Expenditures for FA transportation, capacity of hot cells and expenditures for the examined fuel handling do not make it possible to obtain important information about the condition of fuel assemblies and fuel rods after their operation. In order to increase the comprehensiveness of primary data on fuel assemblies and fuel rods immediately after their removal from the reactor, inspection test facilities are widely used for these purposes. The inspection test facilities make it possible to perform nondestructive inspection of fuel in the NPP cooling pools. Moreover these test facilities can be used to repair failed fuel assemblies. The ultrasonic testing of failed fuel rods inside the fuel assembly was developed for stands of inspection and repair of TVSA WWER-1000 for the Kalinin NPP and Temelin NPP. This method was tested for eight leaking fuel assemblies WWER-440 and WWER-1000 with a burnup of ∼14 up to 38 MW·day/kgU. The ultrasonic testing proved its high degree of reliability and efficiency. The defectoscopy by means of the pulsed eddy-current method was adapted for the stand of inspection and repair of TVSA WWER-1000 for the Kalinin NPP. This method has been used at RIAR as an express testing method of FR claddings during the post-irradiation examinations of fuel assemblies WWER

  6. Social awareness on nuclear fuel cycle

    International Nuclear Information System (INIS)

    Tanigaki, Toshihiko

    2006-01-01

    In the present we surveyed public opinion regarding the nuclear fuel cycle to find out about the social awareness about nuclear fuel cycle and nuclear facilities. The study revealed that people's image of nuclear power is more familiar than the image of the nuclear fuel cycle. People tend to display more recognition and concern towards nuclear power and reprocessing plants than towards other facilities. Comparatively speaking, they tend to perceive radioactive waste disposal facilities and nuclear power plants as being highly more dangerous than reprocessing plants. It is found also that with the exception of nuclear power plants don't know very much whether nuclear fuel cycle facilities are in operation in Japan or not. The results suggests that 1) the relatively mild image of the nuclear fuel cycle is the result of the interactive effect of the highly dangerous image of nuclear power plants and the less dangerous image of reprocessing plants; and 2) that the image of a given plant (nuclear power plant, reprocessing plant, radioactive waste disposal facility) is influenced by the fact of whether the name of the plant suggests the presence of danger or not. (author)

  7. Nonproliferation norms in civilian nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kawata, Tomio

    2005-01-01

    For sustainable use of nuclear energy in large scale, it seems inevitable to choose a closed cycle option. One of the important questions is, then, whether we can really achieve the compatibility between civilian nuclear fuel cycle and nonproliferation norms. In this aspect, Japan is very unique because she is now only one country with full-scope nuclear fuel cycle program as a non-nuclear weapon state in NPT regime. In June 2004 in the midst of heightened proliferation concerns in NPT regime, the IAEA Board of Governors concluded that, for Japanese nuclear energy program, non-diversion of declared nuclear material and the absence of undeclared nuclear material and activities were verified through the inspections and examinations under Comprehensive Safeguards and the Additional Protocol. Based on this conclusion, the IAEA announced the implementation of Integrated Safeguards in Japan in September 2004. This paper reviews how Japan has succeeded in becoming the first country with full-scope nuclear fuel cycle program to qualify for integrated Safeguards, and identifies five key elements that have made this achievement happen: (1) Obvious need of nuclear fuel cycle program, (2) Country's clear intention for renunciation of nuclear armament, (3) Transparency of national nuclear energy program, (4) Record of excellent compliance with nonproliferation obligations for many decades, and (5) Numerous proactive efforts. These five key elements will constitute a kind of an acceptance model for civilian nuclear fuel cycle in NNWS, and may become the basis for building 'Nonproliferation Culture'. (author)

  8. Calculation of the external dose rate in the spent fuel pool for the case to use compact racks

    International Nuclear Information System (INIS)

    Passos, E.M. dos; Alves, A.S.M.

    1988-01-01

    The possible introduction of compact racks in the spent fuel pool of the Angra 1 Nuclear Power Plant largely inreases its storage capacity, but originates an increase of the gamma radiation sources. The precise evaluation of the effects of the adoption of this option on the external gamma dose rates and also on the thickness of the concrete shielding requires the utilization of sofisticated computer codes (QAD, ANISN), which allow the calculation of the gamma dose rates through thick shielding walls. This paper describes the utilized methodology for the calculation of the modified pool shieldings, showing the obtained results for the Angra 1 NPP case. The gamma dose rate was calculated with the point Kernel model, first analytically, and later through utilization of the tridimensional multigroup QAD computer code. (author) [pt

  9. Overview of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Knief, R.A.

    1978-01-01

    The nuclear fuel cycle is substantially more complicated than the energy production cycles of conventional fuels because of the very low abundance of uranium 235, the presence of radioactivity, the potential for producing fissile nuclides from irradiation, and the risk that fissile materials will be used for nuclear weapons. These factors add enrichment, recycling, spent fuel storage, and safeguards to the cycle, besides making the conventional steps of exploration, mining, processing, use, waste disposal, and transportation more difficult

  10. Financial aspects of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Lurf, G.

    1975-01-01

    A nuclear power plant has a forward supply of several years as a consequence of the long processing time of the uranium from mining to delivery of fabricated fuel elements and of the long insertion time in the reactor. This leads to a considerable capital requirement although the specific fuel costs for nuclear fuel are considerably lower then for a conventional power plant and present only 15% of the total generating costs. (orig./RW) [de

  11. Nuclear Power, Nuclear Fuel Cycle and Sustainable Development in a Changing World

    International Nuclear Information System (INIS)

    Arakawa, Yoshitaka

    2000-01-01

    ) fuels are keys to improving the economics of the nuclear fuel cycle as a whole. The commercial application of MOX fuel in LWRs has been started in the middle of 1980s when fast reactor programs were cut back. Today, more than 30 thermal reactors use MOX-fuel in a partial core-loading pattern. In early days of the nuclear power era, the philosophy was to close the nuclear fuel cycle. Some countries decided not to do that and consequently the necessity appeared to expand the spent fuel storage pool capacity by reracking their pools and using neutron absorbers. Additional pool type storage facilities away-from-the-reactor (AFR) rather than at-reactor (AR) were built. About 130,000 tHM (tonnes of heavy metal) of spent fuel is presently being stored in AR and AFR storage facilities awaiting either reprocessing or final disposal. Spent fuel reprocessing meets today's requirement of natural resource conservation and reduction of waste toxicity. At present, reprocessing capacity amounts to some 5000 tHM/y in the OECD member countries, essentially commercial, and some 620 tHM/y in non-OECD countries (Russia and India). Nuclear power avoids the release into the atmosphere of approximately 8% of global GHG emissions and potentially will play a much greater role in the future. Managing waste and fuel in the short term does not pose a problem because the supervision can be guaranteed and storage facilities have been built. For longer term, however, it is generally recognized that deep underground disposal is the most appropriate solution. Many states are re-examining national policies, seeking to identify waste management solution. It is now recognized that the trust of the public has to be obtained through continuous dialogue and exchange between all concerned parties so that it eventually becomes recognized that geological disposal is a safe and sound solution. The document contains an extended abstract and a slide-based oral presentation. (author)

  12. Nuclear reactor fuel assembly grid

    International Nuclear Information System (INIS)

    Alder, J.L.; Kmonk, S.; Racki, F.R.

    1981-01-01

    A grid for a nuclear reactor fuel assembly which includes intersecting straps arranged to form a structure of egg crate configuration. The cells defined by the intersecting straps are adapted to contain axially extending fuel rods, each of which occupy one cell, while each control rod guide tube or thimble occupies the space of four cells. To effect attachment of each guide thimble to the grid, a short intermediate sleeve is brazed to the strap walls and the guide thimble is then inserted therein and mechanically secured to the sleeve walls. Each sleeve preferably, although not necessarily, is equipped with circumferentially spaced openings useful in adjusting dimples and springs in adjacent cells. To accurately orient each sleeve in position in the grid, the ends of straps extending in one direction project through transversely extending straps and terminate in the wall of the guide sleeve. Other straps positioned at right angles thereto terminate in that portion of the wall of a strap which lies next to a wall of the sleeve

  13. Eddy current testing of PWR fuel pencils in the pool of the Osiris reactor

    International Nuclear Information System (INIS)

    Faure, M.; Marchand, L.

    1983-12-01

    A nondestructive testing bench is described. It is devoted to examination of high residual power fuel pencils without stress on the cladding nor interference with cooling. Guiding by fluid bearings decrease the background noise. Scanning speed is limited only by safety criteria and data acquisition configuration. Simultaneous control of various parameters is possible. Associated to an irradiation loop, loaded and unloaded in a reactor swinning pool, this bench can follow fuel pencil degradation after each irradiation cycle [fr

  14. Analysis of the LBLOCAs in the HANARO pool for the 3-pin fuel test loop

    International Nuclear Information System (INIS)

    Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, Y. J.

    2004-12-01

    The Fuel Test Loop(FTL) has been developed to meet the increasing demand on fuel irradiation and burn up test required the development of new fuels in Korea. It is designed to provide the test conditions of high pressure and temperature like the commercial PWR and CANDU power plants. And also the FTL have the cooling capability to sufficiently remove the thermal power of the in-pile test section for normal operation, Anticipated Operational Occurrences(AOOs), and Design Basis Accidents(DBAs). This report deals with the Large Break Loss of Coolant Accidents (LBLOCAs) in HANARO pool for the 3-pin fuel test loop. The MARS code has been used for the prediction of the emergency core cooling capability of the FTL and the peak cladding temperature of the test fuels for the LBLOCAs. The location of the pipe break is assumed at the hill taps connecting the cold and hot legs in HANARO pool to the inlet and outlet nozzles of the In-Pile test Section (IPS). Double ended guillotine break is assumed for the large break loss of coolant accidents. The discharge coefficients of 0.1, 0.33, 0.67, 1.0 are investigated for the LBLOCAs. The test fuels for PWR and CANDU test modes are not heated up for the LBLOCAs caused by the double ended guillotine break in the HANARO pool. The reason is that the sufficient emergency cooling water to cool down the test fuels is supplied continuously to the in-pile test section. Therefore the PCTs for the LBLOCAs in the HANARO pool meet the design criterion of commercial PWR fuel that maximum PCT is lower than 1204 .deg. C

  15. Simulated nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Berta, V.T.

    1993-01-01

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end

  16. World nuclear fuel cycle requirements 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management

  17. Fuel assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Tower, S.N.; Huckestein, E.A.

    1982-01-01

    A fuel assembly for a nuclear reactor comprises a 5x5 array of guide tubes in a generally 20x20 array of fuel elements, the guide tubes being arranged to accommodate either control rods or water displacer rods. The fuel assembly has top and bottom Inconel (Registered Trade Mark) grids and intermediate Zircaloy grids in engagement with the guide tubes and supporting the fuel elements and guide tubes while allowing flow of reactor coolant through the assembly. (author)

  18. Fuel element shipping shim for nuclear reactor

    International Nuclear Information System (INIS)

    Gehri, A.

    1975-01-01

    A shim is described for use in the transportation of nuclear reactor fuel assemblies. It comprises a member preferably made of low density polyethylene designed to have three-point contact with the fuel rods of a fuel assembly and being of sufficient flexibility to effectively function as a shock absorber. The shim is designed to self-lock in place when associated with the fuel rods. (Official Gazette)

  19. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Dixon, R.S.; Rosinger, E.L.J.

    1984-04-01

    This report, the fifth of a series of annual reports, reviews the progress that has been made in the research and development program for the safe management and disposal of Canada's nuclear fuel waste. The report summarizes activities over the past year in the following areas: public interaction; used fuel storage and transportation; immobilization of used fuel and fuel recycle waste; geoscience research related to deep underground disposal; environmental research; and environmental and safety assessment

  20. Dispersion fuel for nuclear research facilities

    International Nuclear Information System (INIS)

    Kushtym, A.V.; Belash, M.M.; Zigunov, V.V.; Slabospitska, O.O.; Zuyok, V.A.

    2017-01-01

    Designs and process flow sheets for production of nuclear fuel rod elements and assemblies TVS-XD with dispersion composition UO_2+Al are presented. The results of fuel rod thermal calculation applied to Kharkiv subcritical assembly and Kyiv research reactor VVR-M, comparative characteristics of these fuel elements, the results of metallographic analyses and corrosion tests of fuel pellets are given in this paper

  1. Development of nuclear fuel cycle technologies

    International Nuclear Information System (INIS)

    Suzuoki, Akira; Matsumoto, Takashi; Suzuki, Kazumichi; Kawamura, Fumio

    1995-01-01

    In the long term plan for atomic energy that the Atomic Energy Commission decided the other day, the necessity of the technical development for establishing full scale fuel cycle for future was emphasized. Hitachi Ltd. has engaged in technical development and facility construction in the fields of uranium enrichment, MOX fuel fabrication, spent fuel reprocessing and so on. In uranium enrichment, it took part in the development of centrifuge process centering around Power Reactor and Nuclear Fuel Development Corporation (PNC), and took its share in the construction of the Rokkasho uranium enrichment plant of Japan Nuclear Fuel Service Co., Ltd. Also it cooperates with Laser Enrichment Technology Research Association. In Mox fuel fabrication, it took part in the construction of the facilities for Monju plutonium fuel production of PNC, for pellet production, fabrication and assembling processes. In spent fuel reprocessing, it cooperated with the technical development of maintenance and repair of Tokai reprocessing plant of PNC, and the construction of spent fuel stores in Rokkasho reprocessing plant is advanced. The centrifuge process and the atomic laser process of uranium enrichment are explained. The high reliability of spent fuel reprocessing plants and the advancement of spent fuel reprocessing process are reported. Hitachi Ltd. Intends to exert efforts for the technical development to establish nuclear fuel cycle which increases the importance hereafter. (K.I.)

  2. Fission product release in conditions of a spent fuel pool severe accident

    International Nuclear Information System (INIS)

    Ohai, Dumitru

    2007-01-01

    Full text: Depending on the residence time, fuel burnup, and fuel rack configuration, there may be sufficient decay heat for the fuel clad to heat up, swell, and burst in case of a loss of pool water. Initiating event categories can be: loss of offsite power from events initiated by severe weather, internal fire, loss of pool cooling, loss of coolant inventory, seismic event, aircraft impact, tornado, missile attack. The breach in the clad releases the radioactive gases present in the gap between the fuel and clad, what is called 'gap release'. If the fuel continues to heat up, the zirconium clad will reach the point of rapid oxidation in air. This reaction of zirconium and air, or zirconium and steam is exothermic. The energy released from the reaction, combined with the fuel's decay energy, can cause the reaction to become self-sustaining and ignite the zirconium. The increase in heat from the oxidation reaction can also raise the temperature in adjacent fuel assemblies and propagate the oxidation reaction. Simultaneously, the sintered UO 2 pellets resulting from pins destroying are oxidized. Due to the self-disintegration of pellets by oxidation, fission gases and low volatile fission products are released. The release rate, the chemical nature and the amount of fission products depend on powder granulation distribution and environmental conditions. The zirconium burning and pellets self-disintegration will result in a significant release of spent fuel fission products that will be dispersed from the reactor site. (author)

  3. The status of nuclear fuel cycle system analysis for the development of advanced nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Seong Ki; Lee, Hyo Jik; Chang, Hong Rae; Kwon, Eun Ha; Lee, Yoon Hee; Gao, Fanxing [KAERI, Daejeon (Korea, Republic of)

    2011-11-15

    The system analysis has been used with different system and objectives in various fields. In the nuclear field, the system can be applied from uranium mining to spent fuel reprocessing or disposal which is called the nuclear fuel cycle. The analysis of nuclear fuel cycle can be guideline for development of advanced fuel cycle through integrating and evaluating the technologies. For this purpose, objective approach is essential and modeling and simulation can be useful. In this report, several methods which can be applicable for development of advanced nuclear fuel cycle, such as TRL, simulation and trade analysis were explained with case study

  4. Spent fuel characterization program in Jose Cabrera nuclear power plant

    International Nuclear Information System (INIS)

    Lloret, M.; Canencia, R.; Blanco, J.; POMAR, C.

    2010-01-01

    Jose Cabrera Nuclear Power Plant (NPP) is a 14x14 PWR reactor built in 1964 in Spain (160 MWe). The commercial operation started in 1969 and finished in 2006. During year 2009, 377 fuel assemblies from cycles 11 to 29 have been stored in 12 containers HI-STORM 100, and positioned in an Interim Spent Fuel Storage Installation built near the NPP. The spent fuel characterization and classification is a critical and complex activity that could impact all the storage process. As every container has a number of positions for damaged fuel, the loading plans and the quantity of containers depends on the total fuels classified as damaged. The classification of the spent fuel in Jose Cabrera has been performed on the basis of the Interim Staff Guidance ISG-1 from USNRC, 'Damaged Fuel'. As the storage system should assure thermal limitations, criticality control, retrievability, confinement and shielding for radioactive protection, the criteria analyzed for every spent fuel have been the existence/non existence of fuel leaks; damage that could affect the criticality analysis (as missing fuel pins) and any situation that could affect the future retrievability, as defects on the top nozzle. The first classification was performed based upon existing core records. If there were no indication of operating leakers during the concerned cycles and the structural integrity was adequate, the fuel was classified as intact or undamaged. When operating records indicated a fuel leaker, an additional inspection by ultrasonic testing of all the fuel in the concerned cycle was performed to determine the fuel leakers. If the examination results indicated that the fuel has cladding cracks, it was classified as damaged fuel without considering if it was a gross breach or a hairline crack. Additionally, it was confirmed that the water chemistry specifications for spent fuel pool has been fulfilled. Finally, a visual inspection before dry cask storage was performed and foreign particles were

  5. Spent fuel characterization program in Jose Cabrera nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lloret, M.; Canencia, R. [Product Engineering, Enusa Industrias Avanzadas S.A., Santiago Rusinol 12, 28040 Madrid (Spain); Blanco, J.; POMAR, C. [Direction of Nuclear Generation, Gas Natural SDG, Avda. San Luis 77, 28033 Madrid (Spain)

    2010-07-01

    Jose Cabrera Nuclear Power Plant (NPP) is a 14x14 PWR reactor built in 1964 in Spain (160 MWe). The commercial operation started in 1969 and finished in 2006. During year 2009, 377 fuel assemblies from cycles 11 to 29 have been stored in 12 containers HI-STORM 100, and positioned in an Interim Spent Fuel Storage Installation built near the NPP. The spent fuel characterization and classification is a critical and complex activity that could impact all the storage process. As every container has a number of positions for damaged fuel, the loading plans and the quantity of containers depends on the total fuels classified as damaged. The classification of the spent fuel in Jose Cabrera has been performed on the basis of the Interim Staff Guidance ISG-1 from USNRC, 'Damaged Fuel'. As the storage system should assure thermal limitations, criticality control, retrievability, confinement and shielding for radioactive protection, the criteria analyzed for every spent fuel have been the existence/non existence of fuel leaks; damage that could affect the criticality analysis (as missing fuel pins) and any situation that could affect the future retrievability, as defects on the top nozzle. The first classification was performed based upon existing core records. If there were no indication of operating leakers during the concerned cycles and the structural integrity was adequate, the fuel was classified as intact or undamaged. When operating records indicated a fuel leaker, an additional inspection by ultrasonic testing of all the fuel in the concerned cycle was performed to determine the fuel leakers. If the examination results indicated that the fuel has cladding cracks, it was classified as damaged fuel without considering if it was a gross breach or a hairline crack. Additionally, it was confirmed that the water chemistry specifications for spent fuel pool has been fulfilled. Finally, a visual inspection before dry cask storage was performed and foreign particles

  6. National Policy on Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Soedyartomo, S.

    1996-01-01

    National policy on nuclear fuel cycle is aimed at attaining the expected condition, i.e. being able to support optimality the national energy policy and other related Government policies taking into account current domestic nuclear fuel cycle condition and the trend of international nuclear fuel cycle development, the national strength, weakness, thread and opportunity in the field of energy. This policy has to be followed by the strategy to accomplish covering the optimization of domestic efforts, cooperation with other countries, and or purchasing licences. These policy and strategy have to be broken down into various nuclear fuel cycle programmes covering basically assesment of the whole cycle, performing research and development of the whole cycle without enrichment and reprocessing being able for weapon, as well as programmes for industrialization of the fuel cycle stepwisery commencing with the middle part of the cycle and ending with the edge of the back-end of the cycle

  7. Nuclear fuel cycle and no proliferation

    International Nuclear Information System (INIS)

    Villagra Delgado, Pedro

    2005-01-01

    The worry produced by the possibility of new countries acquiring nuclear weapons through the forbidden use of sensitive installations for the production of fissionable materials, had arisen proposals intended to restrict activities related to the full nuclear fuel cycle, even when these activities are allowed in the frame of rules in force for the peaceful uses of nuclear energy. (author) [es

  8. Transport insurance of unirradiated nuclear fuels

    International Nuclear Information System (INIS)

    Matto, H.

    1985-01-01

    Special conditions must be taken into account in transport insurance for nuclear materials even if the nuclear risk involved is negligible, as in shipments of unirradiated nuclear fuels. The shipwreck of the 'Mont Louis' has raised a number of open points which must be solved pragmatically within the framework of transport insurance. Some proposals are outlined in the article. (orig.) [de

  9. Regulatory viewpoint on nuclear fuel quality assurance

    International Nuclear Information System (INIS)

    Tripp, L.E.

    1976-01-01

    Considerations of the importance of fuel quality and performance to nuclear safety, ''as low reasonably achievable'' release of radioactive materials in reactor effluents, and past fuel performance problems demonstrate the need for strong regulatory input, review and inspection of nuclear fuel quality assurance programs at all levels. Such a regulatory program is being applied in the United States of America by the US Nuclear Regulatory Commission. Quality assurance requirements are contained within government regulations. Guidance on acceptable methods of implementing portions of the quality assurance program is contained within Regulatory Guides and other NRC documents. Fuel supplier quality assurance program descriptions are reviewed as a part of the reactor licensing process. Inspections of reactor licensee control of their fuel vendors as well as direct inspections of fuel vendor quality assurance programs are conducted on a regularly scheduled basis. (author)

  10. Nuclear fuel cycle and legal regulations

    International Nuclear Information System (INIS)

    Shimoyama, Shunji; Kaneko, Koji.

    1980-01-01

    Nuclear fuel cycle is regulated as a whole in Japan by the law concerning regulation of nuclear raw materials, nuclear fuel materials and reactors (hereafter referred to as ''the law concerning regulation of reactors''), which was published in 1957, and has been amended 13 times. The law seeks to limit the use of atomic energy to peaceful objects, and nuclear fuel materials are controlled centering on the regulation of enterprises which employ nuclear fuel materials, namely regulating each enterprise. While the permission and report of uses are necessary for the employment of nuclear materials under Article 52 and 61 of the law concerning regulation of reactors, the permission provisions are not applied to three kinds of enterprises of refining, processing and reprocessing and the persons who install reactors as the exceptions in Article 52, when nuclear materials are used for the objects of the enterprises themselves. The enterprises of refining, processing and reprocessing and the persons who install reactors are stipulated respectively in the law. Accordingly the nuclear material regulations are applied only to the users of small quantity of such materials, namely universities, research institutes and hospitals. The nuclear fuel materials used in Japan which are imported under international contracts including the nuclear energy agreements between two countries are mostly covered by the security measures of IAEA as internationally controlled substances. (Okada, K.)

  11. Nuclear fuel transport and particularly spent fuel transport

    International Nuclear Information System (INIS)

    Lenail, B.

    1986-01-01

    Nuclear material transport is an essential activity for COGEMA linking the different steps of the fuel cycle transport systems have to be safe and reliable. Spent fuel transport is more particularly examined in this paper because the development of reprocessing plant. Industrial, techmical and economical aspects are reviewed [fr

  12. A Path Forward to Advanced Nuclear Fuels: Spectroscopic Calorimetry of Nuclear Fuel Materials

    International Nuclear Information System (INIS)

    Tobin, J.G.

    2009-01-01

    The goal is to relieve the shortage of thermodynamic and kinetic information concerning the stability of nuclear fuel alloys. Past studies of the ternary nuclear fuel UPuZr have demonstrated constituent redistribution when irradiated or with thermal treatment. Thermodynamic data is key to predicting the possibilities of effects such as constituent redistribution within the fuel rods and interaction with cladding materials

  13. Criticality safety assessment of a TRIGA reactor spent-fuel pool under accident conditions

    International Nuclear Information System (INIS)

    Glumac, B.; Ravnik, M.; Logar, M.

    1997-01-01

    Additional criticality safety analysis of a pool-type storage for TRIGA spent fuel at the Jozef Stefan Institute in Ljubljana, Slovenia, is presented. Previous results have shown that subcriticality is not guaranteed for some postulated accidents (earthquake with subsequent fuel rack disintegration resulting in contact fuel pitch) under the assumption that the fuel rack is loaded with fresh 12 wt% standard fuel. To mitigate this deficiency, a study was done on replacing a certain number of fuel elements in the rack with cadmium-loaded absorber rods. The Monte Carlo computer code MCNP4A with an ENDF/B-V library and detailed three-dimensional geometrical model of the spent-fuel rack was used for this purpose. First, a minimum critical number of fuel elements was determined for contact pitch, and two possible geometries of rack disintegration were considered. Next, it was shown that subcriticality can be ensured when pitch is decreased from a rack design pitch of 8 cm to contact, if a certain number of fuel elements (8 to 20 out of 70) are replaced by absorber rods, which are uniformly mixed into the lattice. To account for the possibility that random mixing of fuel elements and absorber rods can occur during rack disintegration and result in a supercritical configuration, a probabilistic study was made to sample the probability density functions for random absorber rod lattice loadings. Results of the calculations show that reasonably low probabilities for supercriticality can be achieved (down to 10 -6 per severe earthquake, which would result in rack disintegration and subsequent maximum possible pitch decrease) even in the case where fresh 12 wt% standard TRIGA fuel would be stored in the spent-fuel pool

  14. Standard guide for drying behavior of spent nuclear fuel

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This guide is organized to discuss the three major components of significance in the drying behavior of spent nuclear fuel: evaluating the need for drying, drying spent nuclear fuel, and confirmation of adequate dryness. 1.1.1 The guide addresses drying methods and their limitations in drying spent nuclear fuels that have been in storage at water pools. The guide discusses sources and forms of water that remain in SNF, its container, or both, after the drying process and discusses the importance and potential effects they may have on fuel integrity, and container materials. The effects of residual water are discussed mechanistically as a function of the container thermal and radiological environment to provide guidance on situations that may require extraordinary drying methods, specialized handling, or other treatments. 1.1.2 The basic issue in drying is to determine how dry the SNF must be in order to prevent issues with fuel retrievability, container pressurization, or container corrosion. Adequate d...

  15. Spent nuclear fuel storage. (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1997-07-01

    The bibliography contains citations concerning spent nuclear fuel storage technologies, facilities, sites, and assessment. References review wet and dry storage, spent fuel casks and pools, underground storage, monitored and retrievable storage systems, and aluminum-clad spent fuels. Environmental impact, siting criteria, regulations, and risk assessment are also discussed. Computer codes and models for storage safety are covered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  16. Spent Nuclear Fuel (SNF) Removal Campaign Plan

    International Nuclear Information System (INIS)

    PAJUNEN, A.L.

    2000-01-01

    The overall operation of the Spent Nuclear Fuel Project will include fuel removal, sludge removal, debris removal, and deactivation transition activities. Figure 1-1 provides an overview of the current baseline operating schedule for project sub-systems, indicating that a majority of fuel removal activities are performed over an approximately three-and-one-half year time period. The purpose of this document is to describe the strategy for operating the fuel removal process systems. The campaign plan scope includes: (1) identifying a fuel selection sequence during fuel removal activities, (2) identifying MCOs that are subjected to extra testing (process validation) and monitoring, and (3) discussion of initial MCO loading and monitoring in the Canister Storage Building (CSB). The campaign plan is intended to integrate fuel selection requirements for handling special groups of fuel within the basin (e.g., single pass reactor fuel), process validation activities identified for process systems, and monitoring activities during storage

  17. Fuel assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Gjertsen, R.K.

    1982-01-01

    A fuel assembly in a nuclear reactor comprises a locking mechanism that is capable of locking the fuel assembly to the core plate of a nuclear reactor to prevent inadvertent movement of the fuel assembly. The locking mechanism comprises a ratchet mechanism 108 that allows the fuel assembly to be easily locked to the core plate but prevents unlocking except when the ratchet is disengaged. The ratchet mechanism is coupled to the locking mechanism by a rotatable guide tube for a control rod or water displacer rod. (author)

  18. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Dixon, R.S.

    1984-12-01

    The Canadian Nuclear Fuel Waste Management Program involves research into the storage and transportation of used nuclear fuel, immobilization of fuel waste, and deep geological disposal of the immobilized waste. The program is now in the fourth year of a ten-year generic research and development phase. The objective of this phase of the program is to assess the safety and environmental aspects of the deep underground disposal of immobilized fuel waste in plutonic rock. The objectives of the research for each component of the program and the progress made to the end of 1983 are described in this report

  19. DATA-POOL : a direct-access data base for large-scale nuclear codes

    International Nuclear Information System (INIS)

    Yamano, Naoki; Koyama, Kinji; Naito, Yoshitaka; Minami, Kazuyoshi.

    1991-12-01

    A direct-access data base DATA-POOL has been developed for large-scale nuclear codes. The data can be stored and retrieved with specifications of simple node names, by using the DATA-POOL access package written in the FORTRAN 77 language. A management utility POOL for the DATA-POOL is also provided. A typical application of the DATA-POOL is shown to the RADHEAT-V4 code system developed for performing safety analyses of radiation shielding. Many samples and error messages are also noted to apply the DATA-POOL for the other code systems. This report is provided for a manual of DATA-POOL. (author)

  20. Nuclear fuel conversion and fabrication chemistry

    International Nuclear Information System (INIS)

    Lerch, R.E.; Norman, R.E.

    1984-01-01

    Following irradiation and reprocessing of nuclear fuel, two operations are performed to prepare the fuel for subsequent reuse as fuel: fuel conversion, and fuel fabrication. These operations complete the classical nuclear fuel cycle. Fuel conversion involves generating a solid form suitable for fabrication into nuclear fuel. For plutonium based fuels, either a pure PuO 2 material or a mixed PuO 2 -UO 2 fuel material is generated. Several methods are available for preparation of the pure PuO 2 including: oxalate or peroxide precipitation; or direct denitration. Once the pure PuO 2 is formed, it is fabricated into fuel by mechanically blending it with ceramic grade UO 2 . The UO 2 can be prepared by several methods which include direct denitration. ADU precipitation, AUC precipitation, and peroxide precipitation. Alternatively, UO 2 -PuO 2 can be generated directly using coprecipitation, direct co-denitration, or gel sphere processes. In coprecipitation, uranium and plutonium are either precipitated as ammonium diuranate and plutonium hydroxide or as a mixture of ammonium uranyl-plutonyl carbonate, filtered and dried. In direct thermal denitration, solutions of uranium and plutonium nitrates are heated causing concentration and, subsequently, direct denitration. In gel sphere conversion, solutions of uranium and plutonium nitrate containing additives are formed into spherical droplets, gelled, washed and dried. Refabrication of these UO 3 -PuO 2 starting materials is accomplished by calcination-reduction to UO 2 -PuO 2 followed by pellet fabrication. (orig.)

  1. Spent Nuclear Fuel Project dose management plan

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1996-03-01

    This dose management plan facilitates meeting the dose management and ALARA requirements applicable to the design activities of the Spent Nuclear Fuel Project, and establishes consistency of information used by multiple subprojects in ALARA evaluations. The method for meeting the ALARA requirements applicable to facility designs involves two components. The first is each Spent Nuclear Fuel Project subproject incorporating ALARA principles, ALARA design optimizations, and ALARA design reviews throughout the design of facilities and equipment. The second component is the Spent Nuclear Fuel Project management providing overall dose management guidance to the subprojects and oversight of the subproject dose management efforts

  2. Method of making nuclear fuel bodies

    International Nuclear Information System (INIS)

    Davis, D.E.; Leary, D.F.

    1977-01-01

    A method of making nuclear fuel bodies is described comprising: providing particulate graphite having a particle size not greater than about 1500 microns; impregnating the graphite with a polymerizable organic resin in liquid form; treating the impregnated particles with a hot aqueous acid solution to pre-cure the impregnated resin and to remove excess resin from the surfaces of said graphite particles; heating the treated particles to polymerize the impregnant; blending the impregnated particles with particulate nuclear fuel; and forming a nuclear fuel body by joining the blend of particles into a cohesive mass using a carbonaceous binder

  3. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.; Patridge, M.D.

    1991-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

  4. Globalisation of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rougeau, J.-P.; Durret, L.-F.

    1995-01-01

    Three main features of the globalisation of the nuclear fuel cycle are identified and discussed. The first is an increase in the scale of the nuclear fuel cycle materials and services markets in the past 20 years. This has been accompanied by a growth in the sophistication of the fuel cycle. Secondly, the nuclear industry is now more vulnerable to outside pressures; it is no longer possible to make strategic decisions on the industry within a country solely on national considerations. Thirdly, there are changes in the decision-making process at the political, regulatory, operational and industrial level which are the consequence of global factors. (UK)

  5. Annotated Bibliography for Drying Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rebecca E. Smith

    2011-09-01

    Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most value to the commercial industry and the U. S. Department of Energy.

  6. Corrosion of aluminium alloy test coupons in water of spent fuel storage pool at RA reactor

    International Nuclear Information System (INIS)

    Pesic, M.; Maksin, T.; Jordanov, G.; Dobrijevic, R.

    2004-12-01

    Study on corrosion of aluminium cladding, of the TVR-S type of enriched uranium spent fuel elements of the research reactor RA in the storage water pool is examined in the framework nr the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) 'Corrosion of Research Reactor Clad-Clad Spent Fuel in Water' since 2002. Standard racks with aluminium coupons are exposed to water in the spent fuel pools of the research reactor RA. After predetermined exposure times along with periodic monitoring of the water parameters, the coupons are examined according to the strategy and the protocol supplied by the IAEA. Description of the standard corrosion racks, experimental protocols, test procedures, water quality monitoring and compilation of results of visual examination of corrosion effects are present in this article. (author)

  7. Management of Spent Nuclear Fuel from Nuclear Power Plant Reactor

    International Nuclear Information System (INIS)

    Wati, Nurokhim

    2008-01-01

    Management of spent nuclear fuel from Nuclear Power Plant (NPP) reactor had been studied to anticipate program of NPP operation in Indonesia. In this paper the quantity of generated spent nuclear fuel (SNF) is predicted based on the national electrical demand, power grade and type of reactor. Data was estimated using Pressurized Water Reactor (PWR) NPP type 1.000 MWe and the SNF management overview base on the experiences of some countries that have NPP. There are four strategy nuclear fuel cycle which can be developed i.e: direct disposal, reprocessing, DUPlC (Direct Use of Spent PWR Fuel In Candu) and wait and see. There are four alternative for SNF management i.e : storage at the reactor building (AR), away from reactor (AFR) using wet centralized storage, dry centralized storage AFR and prepare for reprocessing facility. For the Indonesian case, centralized facility of the wet type is recommended for PWR or BWR spent fuel. (author)

  8. The nuclear fuel cycle associated with the operation of nuclear ...

    African Journals Online (AJOL)

    The nuclear power option has been mentioned as an alternative for Ghana but the issue of waste management worries both policy makers and the public. In this paper, the nuclear fuel cycle associated with the operation of nuclear power plants (NPPs) for electric power generation has been extensively reviewed. Different ...

  9. Assessment of fuel damage of pool type research reactor in the case of fuel plates blockage

    Energy Technology Data Exchange (ETDEWEB)

    Jalil, Jafari; Samad, Khakshournia [AEOI, Karegar Ave. School of R and D of Nuclear Reactors and Accelerators, Teheran (Iran, Islamic Republic of); D' Auria, F. [Pisa Univ., DIMNP (Italy)

    2007-07-01

    Tehran Research Reactor (TRR) is a pool type 5 MW research reactor. It is assumed that external objects or debris that may fall down to reactor core cause obstruction of coolant flow through one of the fuel assemblies. Thermal hydraulic analysis of this event, using the RELAP5 system code has been studied. The reported transient is related to the partial and total obstruction of a single Fuel Element (FE) cooling channel of 27 FE equilibrium core of TRR. Such event constitutes a severe accident for this type of reactor since it may lead to local dryout and eventually to loss of the FE integrity. Two scenarios are analysed to emphasize the severity of the accident. The first one is a partial blockage of an average FE considering four different obstruction levels: 25%, 50%, 75% and 97% of nominal flow area. The second one is an extreme scenario consisting of total blockage of the same FE. This study constitutes the first step of a larger work which consists of performing a 3-dimensional simulation using the Best Estimate coupled code technique. However, as a first approach the instantaneous reactor power is derived through the point kinetic calculation included in the RELAP5 code. Main results obtained from the RELAP5 calculations are as following. First, in the case of flow blockage under 97% of the nominal flow area of an average FE, only an increase of the coolant and clad temperatures is observed without any consequences for the integrity of the FE. The mass flow rate remains sufficient to cool the clad safely. Secondly, in the case of total obstruction of the nominal flow area, it is seen that transient turns out to be a severe accident due to the dryout conditions are reached shortly and melting of the cladding occurs. Thirdly, the use of the point kinetic approach leads to conservative results. A best estimate simulation of such kind of transients requires the use of 3-dimensional kinetic calculations, which could be done using the current Coupled Codes

  10. Analysis of the SBLOCAs in HANARO pool for the 3-pin fuel test loop

    International Nuclear Information System (INIS)

    Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, Y. J.

    2004-09-01

    Fuel Test Loop(FTL) has been developed to meet the increasing demand on fuel irradiation and burn up test required the development of new fuels in Korea. It is designed to provide the test conditions of high pressure and temperature like the commercial PWR and CANDU power plants. And also the FTL have the cooling capability to sufficiently remove the thermal power of the in-pile test section for normal operation, Anticipated Operational Occurrences(AOOs), and Design Basis Accidents(DBAs). This report deals with the Small Break Loss Of Coolant Accidents (SBLOCAs) in HANARO pool for the 3-pin fuel test loop. The MARS code has been used for the prediction of the emergency core cooling capability of the FTL and the peak cladding temperature of the test fuels for the SBLOCAs. The location of the pipe break is assumed at the hill taps connecting the cold and hot legs in HANARO pool to the inlet and outlet nozzles of the In-Pile test Section (IPS). The break size is also assumed less than 20% of the cross section area of the pipe. The test fuels are heated up when the cold leg break occur. However, they are not heated up when the hot leg break occur. The maximum Peak Cladding Temperatures (PCT) are predicted to be about 906.9 .deg. C for the cold leg break accident in PWR fuel test mode and 971.9 .deg. C in CANDU fuel test mode respectively. The critical break size is about the 6% of the cross section area of the pipe for PWR fuel test mode and the 8% for CANDU fuel test mode. The PCTs meet the design criterion of commercial PWR fuel that the maximum PCT is lower than 1204 .deg. C

  11. Examination of Zircaloy-clad spent fuel after extended pool storage

    International Nuclear Information System (INIS)

    Bradley, E.R.; Bailey, W.J.; Johnson, A.B. Jr.; Lowry, L.M.

    1981-09-01

    This report presents the results from metallurgical examinations of Zircaloy-clad fuel rods from two bundles (0551 and 0074) of Shippingport PWR Core 1 blanket fuel after extended water storage. Both bundles were exposed to water in the reactor from late 1957 until discharge. The estimated average burnups were 346 GJ/kgU (4000 MWd/MTU) for bundle 0551 and 1550 GJ/kgU (18,000 MWd/MTU) for bundle 0074. Fuel rods from bundle 0551 were stored in deionized water for nearly 21 yr prior to examination in 1980, representing the world's oldest pool-stored Zircaloy-clad fuel. Bundle 0074 has been stored in deionized water since reactor discharge in 1964. Data from the current metallurgical examinations enable a direct assessment of extended pool storage effects because the metallurgical condition of similar fuel rods was investigated and documented soon after reactor discharge. Data from current and past examinations were compared, and no significant degradation of the Zircaloy cladding was indicated after almost 21 yr in water storage. The cladding dimensions and mechanical properties, fission gas release, hydrogen contents of the cladding, and external oxide film thicknesses that were measured during the current examinations were all within the range of measurements made on fuel bundles soon after reactor discharge. The appearance of the external surfaces and the microstructures of the fuel and cladding were also similar to those reported previously. In addition, no evidence of accelerated corrosion or hydride redistribution in the cladding was observed

  12. A Study on Rack Thickness Effect for Spent Fuel Pool Storage

    International Nuclear Information System (INIS)

    Kim, Mi Jin; Lee, Hee-Jae; Sohn, Dong-Seong

    2015-01-01

    For the effective storage of used fuel, the development of high performance neutron absorbing materials is needed. One of the major concern for the used fuel storage is the assurance to keep subcriticality of the storage rack and the high performance neutron absorbing material is the vital part to assure this requirement. According to NRC guide line, the k-effective of the spent fuel storage racks must not exceed 0.95. To ensure its safety, subcriticality analysis is required. Subcriticality analysis of the used storage in spent fuel pool have been performed by different authors. Criticality calculations for light water reactor spent fuel storage rack were carried out by Jae et al. They used AMPX-KENO IV code and considered the effect of rack pitch and rack thickness for consolidated fuel. The criticality analysis has performed at Gd 0.2 and 1 wt% according to thickness change. As thickness increases, the volume of the spent fuel pool rack increases. Therefore, absorbing material also increases according to thickness

  13. A Study on Rack Thickness Effect for Spent Fuel Pool Storage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Jin; Lee, Hee-Jae; Sohn, Dong-Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    For the effective storage of used fuel, the development of high performance neutron absorbing materials is needed. One of the major concern for the used fuel storage is the assurance to keep subcriticality of the storage rack and the high performance neutron absorbing material is the vital part to assure this requirement. According to NRC guide line, the k-effective of the spent fuel storage racks must not exceed 0.95. To ensure its safety, subcriticality analysis is required. Subcriticality analysis of the used storage in spent fuel pool have been performed by different authors. Criticality calculations for light water reactor spent fuel storage rack were carried out by Jae et al. They used AMPX-KENO IV code and considered the effect of rack pitch and rack thickness for consolidated fuel. The criticality analysis has performed at Gd 0.2 and 1 wt% according to thickness change. As thickness increases, the volume of the spent fuel pool rack increases. Therefore, absorbing material also increases according to thickness.

  14. Commercialization of nuclear fuel cycle business

    International Nuclear Information System (INIS)

    Yakabe, Hideo

    1998-01-01

    Japan depends on foreign countries almost for establishing nuclear fuel cycle. Accordingly, uranium enrichment, spent fuel reprocessing and the safe treatment and disposal of radioactive waste in Japan is important for securing energy. By these means, the stable supply of enriched uranium, the rise of utilization efficiency of uranium and making nuclear power into home-produced energy can be realized. Also this contributes to the protection of earth resources and the preservation of environment. Japan Nuclear Fuel Co., Ltd. operates four business commercially in Rokkasho, Aomori Prefecture, aiming at the completion of nuclear fuel cycle by the technologies developed by Power Reactor and Nuclear Fuel Development Corporation and the introduction of technologies from foreign countries. The conditions of location of nuclear fuel cycle facilities and the course of the location in Rokkasho are described. In the site of about 740 hectares area, uranium enrichment, burying of low level radioactive waste, fuel reprocessing and high level waste control have been carried out, and three businesses except reprocessing already began the operation. The state of operation of these businesses is reported. Hereafter, efforts will be exerted to the securing of safety through trouble-free operation and cost reduction. (K.I.)

  15. World nuclear fuel cycle requirements 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under two nuclear supply scenarios. These two scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries in the World Outside Centrally Planned Economic Areas (WOCA). A No New Orders scenarios is also presented for the Unites States. This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the WOCA projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel; discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2020 for the Lower and Upper Reference cases and through 2036, the last year in which spent fuel is discharged, for the No New Orders case

  16. On recycling of nuclear fuel in Japan

    International Nuclear Information System (INIS)

    1992-01-01

    In Japan, atomic energy has become to accomplish the important role in energy supply. Recently the interest in the protection of global environment heightened, and the anxiety on oil supply has been felt due to the circumstances in Mideast. Therefore, the importance of atomic energy as an energy source for hereafter increased, and the future plan of nuclear fuel recycling in Japan must be promoted on such viewpoint. At present in Japan, the construction of nuclear fuel cycle facilities is in progress in Rokkasho, Aomori Prefecture. The prototype FBR 'Monju' started the general functional test in May, this year. The transport of the plutonium reprocessed in U.K. and France to Japan will be carried out in near future. This report presents the concrete measures of nuclear fuel recycling in Japan from the long term viewpoint up to 2010. The necessity and meaning of nuclear fuel recycling in Japan, the effort related to nuclear nonproliferation, the plan of nuclear fuel recycling for hereafter in Japan, the organization of MOX fuel fabrication in Japan and abroad, the method of utilizing recovered uranium and the reprocessing of spent MOX fuel are described. (K.I.)

  17. Radioecology of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Schreckhise, R.G.; Cadwell, L.L.; Emery, R.M.

    1980-01-01

    Sites where radioactive wastes are found are solid waste burial grounds, soils below liquid stoage areas, surface ditches and ponds, and the terrestrial environment around chemical processing facilities that discharge airborne radioactive debris from stacks. This study provides information to help assess the environmental impacts and certain potentiall human hazards associated with nuclear fuel cycles. A data base is being developed to define and quantify biological transport routes which will permit credible predictions and assessment of routine and potential large-scale releases of radionuclides and other toxic materials. These data, used in assessment models, will increase the accuracy of estimating radiation doses to man and other life forms. Information obtained from existing storage and disposal sites will provide a meaningful radioecological perspective with which to improve the effectiveness of waste management practices. Results will provide information to determine if waste management procedures on the Hanford Site have caused ecological perturbations, and if so, to determine the source, nature, and magnitude of such disturbances

  18. Fuel assemblies for nuclear reactors

    International Nuclear Information System (INIS)

    Leclercg, J.

    1985-01-01

    Improvements to guide tubes for the fuel assemblies of light water nuclear reactors, said assemblies being immersed in operation in the cooling water of the core of such a reactor, the guide tubes being of the type made from zircaloy and fixed at their two ends respectively to an upper end part and a lower end part made from stainless steel or Irconel and which incorporate devices for braking the fall of the control rods which they house during the rapid shutdown of the reactor, wherein the said braking devices are constituted by means for restricting the diameter of the guide tubes comprising for each guide tube a zircaloy inner sleeve spot welded to the said guide tube and whose internal diameter permits the passage, with a calibrated clearance, of the corresponding control rod, the sleeve being distributed over the lower portion of each guide tube and associated with orifices made in the actual guide tubes to produce the progressive hydraulic absorption of the end of the fall of the control rods

  19. Overview of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Leuze, R.E.

    1981-01-01

    The use of nuclear reactors to provide electrical energy has shown considerable growth since the first nuclear plant started commercial operation in the mid 1950s. Although the main purpose of this paper is to review the fuel cycle capabilities in the United States, the introduction is a brief review of the types of nuclear reactors in use and the world-wide nuclear capacity

  20. Overview of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Leuze, R.E.

    1982-01-01

    The use of nuclear reactors to provide electrical energy has shown considerable growth since the first nuclear plant started commercial operation in the mid 1950s. Although the main purpose of this paper is to review the fuel cycle capabilities in the United States, the introduction is a brief review of the types of nuclear reactors in use and the world-wide nuclear capacity

  1. Thermochemistry of nuclear fuels in advanced reactors

    International Nuclear Information System (INIS)

    Agarwal, Renu

    2015-01-01

    The presence of a large number of elements, accompanied with steep temperature gradient results in dynamic chemistry during nuclear fuel burn-up. Understanding this chemistry is very important for efficient and safe usage of nuclear fuels. The radioactive nature of these fuels puts lot of constraint on regulatory bodies to ensure their accident free operation in the reactors. One of the common aims of advanced fuels is to achieve high burn-up. As burn-up of the fuel increases, chemistry of fission-products becomes increasingly more important. To understand different phenomenon taking place in-pile, many out of-pile experiments are carried out. Extensive studies of thermodynamic properties, phase analysis, thermophysical property evaluation, fuel-fission product clad compatibility are carried out with relevant compounds and simulated fuels (SIMFUEL). All these data are compiled and jointly evaluated using different computational methods to predict fuel behaviour during burn-up. Only when this combined experimental and theoretical information confirms safe operation of the pin, a test pin is prepared and burnt in a test reactor. Every fuel has a different chemistry and different constraints associated with it. In this talk, various thermo-chemical aspects of some of the advanced fuels, mixed carbide, mixed nitride, 'Pu' rich MOX, 'Th' based AHWR fuels and metallic fuels will be discussed. (author)

  2. The nuclear fuel cycle: (2) fuel element manufacture

    International Nuclear Information System (INIS)

    Doran, J.

    1976-01-01

    Large-scale production of nuclear fuel in the United Kingdom is carried out at Springfields Works of British Nuclear Fuels Ltd., a company formed from the United Kingdom Atomic Energy Authority in 1971. The paper describes in some detail the Springfields Works processes for the conversion of uranium ore concentrate to uranium tetrafluoride, then conversion of the tetrafluoride to either uranium metal for cladding in Magnox to form fuel for the British Mk I gas-cooled reactors, or to uranium hexafluoride for enrichment of the fissile 235 U isotope content at the Capenhurst Works of BNFL. Details are given of the reconversion at Springfields Works of this enriched uranium hexafluoride to uranium dioxide, which is pelleted and then clad in either stainless steel or zircaloy containers to form the fuel assemblies for the British Mk II AGR or advanced gas-cooled reactors or for the water reactor fuels. (author)

  3. Fuel Management at the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pham, V.L.; Nguyen, N.D.; Luong, B.V.; Le, V.V.; Huynh, T.N.; Nguyen, K.C. [Nuclear Research Institute, 01 Nguyen Tu Luc Street, Dalat City (Viet Nam)

    2011-07-01

    The Dalat Nuclear Research Reactor (DNRR) is a pool type research reactor which was reconstructed in 1982 from the old 250 kW TRIGA-MARK II reactor. The spent fuel storage was newly designed and installed in the place of the old thermalizing column for biological irradiation. The core was loaded by Russian WWR-M2 fuel assemblies (FAs) with 36% enrichment. The reconstructed reactor reached its initial criticality in November 1983 and attained it nominal power of 500 kW in February 1984. The first fuel reloading was executed in April 1994 after more than 10 years of operation with 89 highly enriched uranium (HEU) FAs. The third fuel reloading by shuffling of HEU FAs was executed in June 2004. After the shuffling the working configuration of reactor core kept unchanged of 104 HEU FAs. The fourth fuel reloading was executed in November 2006. The 2 new HEU FAs were loaded in the core periphery, at previous locations of wet irradiation channel and dry irradiation channel. After reloading the working configuration of reactor core consisted of 106 HEU FAs. Contracts for reactor core conversion between USA, Russia, Vietnam and the International Atomic Energy Agency for Nuclear fuel manufacture and supply for DNRR and Return of Russian-origin non-irradiated highly enriched uranium fuel to the Russian Federation have been realized in 2007. According to the results of design and safety analyses performed by the joint study between RERTR Program at Argonne National Laboratory and Vietnam Atomic Energy Institute the mixed core configurations of irradiated HEU and new low enriched uranium (LEU) FAs has been created on 12 September, 2007 and on 20 July, 2009. After reloading in 2009, the 14 HEU FAs with highest burnup were removed from the core and put in the interim storage in reactor pool. The works on full core conversion for the DNRR are being realized in cooperation with the organizations, DOE and IAEA. Contract for Nuclear fuel manufacture and supply of 66 LEU FAs for DNRR

  4. Model of cooling nuclear fuel rod in the nuclear reactor

    International Nuclear Information System (INIS)

    Lavicka, David; Polansky, Jiri

    2010-01-01

    The following topics are described: Some basic requirements for nuclear fuel rods; The VVER 1000 fuel rod; Classification of the two-phase flow in the vertical tube; Type of heat transfer crisis in the vertical tube; Experimental apparatus; Model of the nuclear fuel rod and spacers; Potential of the experimental apparatus (velocity profile measurement via PIV; thermal flow field measurement by the PLIF method; cooling graph in dependence on the fuel rod temperature; comparison of the hydrodynamic properties with respect to the design features of the spacers). (P.A.)

  5. Transparency associated with the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2009-01-01

    This document presents the different fuel cycle stages with which the CEA is associated, the annual flow of materials and wastes produced at these different stages, and the destiny of these produced materials and wastes. These information are given for the different CEA R and D activities: experimentation hot laboratories (activities, fuel cycle stages, list of laboratories, tables giving annual flows for each of them), research reactors (types of reactors, fuel usage modes, annual flows of nuclear materials for each reactor), spent fuel management (different types of used materials), spent fuels and radioactive wastes with a foreign origin (quantities, processes)

  6. Consolidation equipment for irradiated nuclear fuel channels

    International Nuclear Information System (INIS)

    Taguchi, M.; Komatsu, Y.; Ose, T.

    1989-01-01

    The authors have developed and put into use a new type of mechanical consolidation equipment for irradiated nuclear fuel channels. This includes round-slice cutting of the top 100mm of the fuel channel with a guillotine cutter, and press cutting of the two corners of the remaining length of the fuel channel. Four guillotine blades work in combination with receiving blades arranged inside the fuel channel to cut the top 100mm, including the clips and spacers, of the fuel channel into a round slice. A press assembled in the consolidation equipment then presses the slice to achieve volume reduction. The press cutting operation uses two press cutting blades arranged inside the fuel channel and the receiving blades outside the fuel channel. The remaining length of fuel channel is cut off into L-shaped pieces by press cutting. This consolidation equipment is highly efficient because the round-slice cutting, pressing, and press cutting are all achieved by one unit

  7. Sintering method for nuclear fuel pellet

    International Nuclear Information System (INIS)

    Omuta, Hirofumi; Nakabayashi, Shigetoshi.

    1997-01-01

    When sintering a compressed nuclear fuel powder in an atmosphere of a mixed gas comprising hydrogen and nitrogen, steams are added to the mixed gas to suppress the nitrogen content in sintered nuclear fuel pellets. In addition, the content of nitrogen impurities in the nuclear fuel pellets can be controlled by controlling the amount of steams to be added to the mixed gas, namely, by controlling the dew point as an index thereof. If the addition amount of steams to the mixed gas is determined by controlling the dew point as an index, the content of nitrogen impurities in the sintered nuclear fuel pellets can be controlled reliably to a specified value of 0.0075% or less. If ammonolyzed gas is used as the mixed gas, a more economical mixed gas can be obtained than in the case of forming mixed gas by mixing the hydrogen gas and the nitrogen gas. (N.H.)

  8. Nuclear reactor fuel sub-assemblies

    International Nuclear Information System (INIS)

    Ford, J.; Bishop, J.F.W.

    1981-01-01

    An improved fuel sub-assembly for liquid metal cooled fast breeder nuclear reactors is described which facilitates dismantling operations for reprocessing purposes. The method of dismantling is described. (U.K.)

  9. Storage and Reprocessing of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    Addressing the problem of waste, especially high-level waste (HLW), is a requirement of the nuclear fuel cycle that cannot be ignored. We explore the two options employed currently, long-term storage and reprocessing.

  10. Globalization of the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rougeau, J.P. [Cogema, Corporate Strategy and International Development, Velizy (France)

    1996-07-01

    The article deals with the increased scale and sophistication of the markets in the nuclear fuel cycle, with the increased vulnerability to outside pressures, and with changes in the decision process.

  11. Fuel element for a nuclear reactor

    International Nuclear Information System (INIS)

    Linning, D.L.

    1977-01-01

    An improvement of the fuel element for a fast nuclear reactor described in patent 15 89 010 is proposed which should avoid possible damage due to swelling of the fuel. While the fuel element according to patent 15 89 010 is made in the form of a tube, here a further metal jacket is inserted in the centre of the fuel rod and the intermediate layer (ceramic uranium compound) is provided on both sides, so that the nuclear fuel is situated in the centre of the annular construction. Ceramic uranium or plutonium compounds (preferably carbide) form the fuel zone in the form of circular pellets, which are surrounded by annular gaps, so that gaseous fission products can escape. (UWI) [de

  12. Nuclear fuel resources: enough to last?

    International Nuclear Information System (INIS)

    Price, R.; Blaise, J.R.

    2002-01-01

    The need to meet ever-growing energy demands in an environmentally sustainable manner has turned attention to the potential for nuclear energy to play an expanded role in future energy supply mixes. One of the key aspects in defining the sustainability of any energy source is the availability of fuel resources. This article shows that available nuclear energy fuel resources can meet future needs for hundreds, even thousands, of years

  13. Nuclear fuel: modelling the advanced plutonium assembly

    International Nuclear Information System (INIS)

    Kaoua, Th.; Lenain, R.

    2004-01-01

    The benefits of modeling in the nuclear sector are illustrated by the example of the design study for a new plutonium fuel assembly, APA, capable of ensuring maximum consumption of this fuel in pressurized-water reactors. Beyond the physical design of the assembly and its integration into the reactor, this serves for the working out of a complete materials flow and assists in modeling production from the entire inventory of nuclear power stations. (authors)

  14. Nuclear fuel: modelling the advanced plutonium assembly

    International Nuclear Information System (INIS)

    N'kaoua, Th.; Lenain, R.

    2002-01-01

    The benefits of modeling in the nuclear sector are illustrated by the example of the design study for a new plutonium fuel assembly, APA, capable of ensuring maximum consumption of this fuel in pressurized-water reactors. Beyond the physical design of the assembly and its integration into the reactor, this serves for the working out of a complete materials flow and assists in modeling production from the entire inventory of nuclear power stations. (authors)

  15. Perspective of nuclear fuel cycle for sustainable nuclear energy

    International Nuclear Information System (INIS)

    Fukuda, K.; Bonne, A.; Kagramanian, V.

    2001-01-01

    Nuclear power, on a life-cycle basis, emits about the same level of carbon per unit of electricity generated as wind and solar power. Long-term energy demand and supply analysis projects that global nuclear capacities will expand substantially, i.e. from 350 GW today to more than 1,500 GW by 2050. Uranium supply, spent fuel and waste management, and a non-proliferation nuclear fuel cycle are essential factors for sustainable nuclear power growth. An analysis of the uranium supply up to 2050 indicates that there is no real shortage of potential uranium available if based on the IIASA/WEC scenario on medium nuclear energy growth, although its market price may become more volatile. With regard to spent fuel and waste management, the short term prediction foresees that the amount of spent fuel will increase from the present 145,000 tHM to more than 260,000 tHM in 2015. The IPCC scenarios predicted that the spent fuel quantities accumulated by 2050 will vary between 525 000 tHM and 3 210 000 tHM. Even according to the lowest scenario, it is estimated that spent fuel quantity in 2050 will be double the amount accumulated by 2015. Thus, waste minimization in the nuclear fuel cycle is a central tenet of sustainability. The proliferation risk focusing on separated plutonium and resistant technologies is reviewed. Finally, the IAEA Project INPRO is briefly introduced. (author)

  16. Approaches for Securing the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Jae San; Kim, Min Su; Jo, Seong Youn

    2007-01-01

    The greatest challenge to international nuclear nonproliferation regime is posed by nuclear energy's dual nature for both peaceful and military purposes. Uranium enrichment and spent nuclear fuel (SNF) reprocessing (sensitive nuclear technologies) are critical from the non-proliferation viewpoint because they may be used to produce weapons-grade nuclear materials. Therefore, since 1970s the world community started to develop further measures to curb the spread of sensitive nuclear technologies. The establishment of a Nuclear Suppliers Group (NSG) in 1975 was one such measure. The NSG united countries which voluntarily agreed to coordinate their legislation regarding export of nuclear materials, equipment and technologies to countries not possessing nuclear weapons. Alongside measures to limit the spread of sensitive nuclear technologies, multilateral approaches to the nuclear fuel cycle (NFC) started to be discussed. It's becoming increasingly important to link the objective need for an expanded use of nuclear energy with strengthening nuclear non-proliferation by preventing the spread of sensitive nuclear technologies and securing access for interested countries to NFC products and services

  17. Conceptual design of an interim dry storage system for the Atucha nuclear power plant spent fuels

    International Nuclear Information System (INIS)

    Nassini, Horacio E.P.; Fuenzalida Troyano, C.S.; Bevilacqua, Arturo M.; Bergallo, Juan E.

    2005-01-01

    The Atucha I nuclear power station, after completing the rearrangement and consolidation of the spent fuels in the two existing interim wet storage pools, will have enough room for the storage of spent fuel from the operation of the reactor till December 2014. If the operation is extended beyond 2014, or if the reactor is decommissioned, it will be necessary to empty both pools and to transfer the spent fuels to a dry storage facility. This paper shows the progress achieved in the conceptual design of a dry storage system for Atucha I spent fuels, which also has to be adequate, without modifications, for the storage of fuels from the second unity of the nuclear power station, Atucha II, that is now under construction. (author) [es

  18. Current status of sea transport of nuclear fuel materials and LLW in Japan

    International Nuclear Information System (INIS)

    Kitagawa, Hiroshi; Akiyama, Hideo

    2000-01-01

    Along with the basic policy of the nuclear fuel cycle of Japan, many fuel cycle facilities have been already constructed in Rokkasho-Mura, Aomori prefecture, such as the uranium enrichment plant, the low level waste disposal center and the receiving pool of the spent nuclear fuels for reprocessing. These facilities belong to the Japan Nuclear Fuel Limited. (JNFL). Domestic sea transport of the spent nuclear fuels (SF) has been carried out since 1977 to the Tokai Reprocessing Plant, and the first sea transport of the SF to the fuel cycle facility in Rokkasho-Mura was done in Oct, 1998 using a new exclusive ship 'Rokuei-Maru'. Sea transport of the low level radioactive wastes (LLW) has been carried out since 1992 to the Rokkasho LLW Disposal Center, and about 130,000 LLW drams were transported from the nuclear power plant sites. These sea transport have demonstrated the safety of the transport of the nuclear fuel cycle materials. It is hoped that the safe sea transport of the nuclear fuel materials will contribute to the more progress of the nuclear fuel cycle activities of Japan. (author)

  19. Criticality analysis of the CAREM-25 reactor irradiated fuel elements storage pool

    International Nuclear Information System (INIS)

    Albornoz, A.F.; Jatuff, F.E.; Gho, C.J.

    1993-01-01

    A criticality safety analysis of the irradiated fuel element pool storage of the CAREM-25 reactor was performed. The CAREM project is property of the Comision Nacional de Energia Atomica (CNEA) of Argentine, and it is being executed by INVAP S.E. difficult evaluation of the CAREM core (relatively high -3,4%- enriched U O 2 , Gd 2 O 3 burnable absorber in different densities, or criticality achievement with as few as 7 fuel elements is inherited by the pool storage. The lattice code CONDOR 1.1 was used for investigating the problem scene, and some results compared on the Monte Carlo codes MONK 5.0 and MONK 6.3. Circular and square tubes of 304-L stainless steel, borated steel and boral B 4 C in Al) were tested as suitable channels for fuel element containment, in square and hexagonal arrays; in addition, burnup, burnable absorber concentration, Sm and leakage credits were determined. It was found that the critical is strongly dependent on the separation of the fuel elements in the pool. Out-of-nominal conditions were investigated too, showing that the loss of coolant and the change in temperature and density conditions in the storage lead to an increase in reactivity, but the system's reactivity remains near the safety limits. (author)

  20. Nuclear reactor fuel assembly spacer grids

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1977-01-01

    Designs of nuclear reactor fuel assembly spacer grids for supporting and spacing fuel elements are described which do not utilize resilient grid plate protrusions in the peripheral band but retain the advantages inherent in the combination resilient and rigid protrusion cells. (U.K.)