WorldWideScience

Sample records for nuclear fuel pins

  1. Nuclear fuel pin

    International Nuclear Information System (INIS)

    Hartley, Kenneth; Moulding, T.L.J.; Rostron, Norman.

    1979-01-01

    Fuel pin for use in fast breeder nuclear reactors containing fissile and fertile areas of which the fissile and fertile materials do not mix. The fissile material takes the shape of large and small diameter microspheres (the small diameter microspheres can pass through the interstices between the large microspheres). The barrier layers being composed of microspheres with a diameter situated between those of the large and small microspheres ensure that the materials do not mix [fr

  2. Nuclear fuel pin controlled failure device

    International Nuclear Information System (INIS)

    Schlenker, L.D.

    1975-01-01

    Each fuel pin of a fuel assembly for a water-cooled nuclear reactor is provided with means for rupturing the cladding tube at a predetermined location if an abnormal increase in pressure of the gases present occurs due to a loss-of-coolant accident. Preferably all such rupture means are oriented to minimize the hydraulic resistance to the flow of emergency core coolant such as all rupture means pointing in the same direction. Rupture means may be disposed at different elevations in adjacent fuel pins and, further, fuel pins may be provided with two or more rupture means, one of which is in the upper portion of the fuel pin. Rupture means are mechanical as by providing a locally weakened condition of a controlled nature in the cladding. (U.S.)

  3. Automated system for loading nuclear fuel pins

    International Nuclear Information System (INIS)

    Marshall, J.L.

    1983-10-01

    A completely automatic and remotely controlled fuel pin fabrication system is being designed by the Westinghouse Hanford Company. The Pin Operations System will produce fuel pins for the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor Plant (CRBRP). The system will assemble fuel pin components into cladding tubes in a controlled environment. After fuel loading, the pins are filled with helium, the tag gas capsules are inserted, and the top end cap welded. Following welding, the pins are surveyed to assure they are free of contamination and then the pins are helium leak tested

  4. Nuclear fuel assemblies and fuel pins usable in such assemblies

    International Nuclear Information System (INIS)

    Jolly, R.

    1982-01-01

    A novel end cap for a nuclear fuel assembly is described in detail. It consists of a trisection arrangement which is received within a cell of a cellular grid. The cell contains abutment means with which the trisection comes into abutment. The grid also contains an abutment means for preventing the trisections from being inserted into the cell in an incorrect orientation. The present design allows fuel pins to be securely held in a hold-down grid of a sub-assembly. The design also allows easier dis-assembly of the swollen and embrittled fuel pins prior to reprocessing. (U.K.)

  5. Optimal pin enrichment distributions in nuclear reactor fuel bundles

    International Nuclear Information System (INIS)

    Lim, E.Y.

    1976-01-01

    A methodology has been developed to determine the fuel pin enrichment distribution that yields the best approximation to a prescribed power distribution in nuclear reactor fuel bundles. The problem is formulated as an optimization problem in which the optimal pin enrichments minimize the sum of squared deviations between the actual and prescribed fuel pin powers. A constant average enrichment constraint is imposed to ensure that a suitable value of reactivity is present in the bundle. When constraints are added that limit the fuel pins to a few enrichment types, one must determine not only the optimal values of the enrichment types but also the optimal distribution of the enrichment types amongst the pins. A matrix of boolean variables is used to describe the assignment of enrichment types to the pins. This nonlinear mixed integer programming problem may be rigorously solved with either exhaustive enumeration or branch and bound methods using a modification of the algorithm from the continuous problem as a suboptimization. Unfortunately these methods are extremely cumbersome and computationally overwhelming. Solutions which require only a moderate computational effort are obtained by assuming that the fuel pin enrichments in this problem are ordered as in the solution to the continuous problem. Under this assumption search schemes using either exhaustive enumeration or branch and bound become computationally attractive. An adaptation of the Hooke--Jeeves pattern search technique is shown to be especially efficient

  6. Internal fuel pin oxidizer

    International Nuclear Information System (INIS)

    Andrews, M.G.

    1978-01-01

    A nuclear fuel pin has positioned within it material which will decompose to release an oxidizing agent which will react with the cladding of the pin and form a protective oxide film on the internal surface of the cladding

  7. Measuring the linear heat generation rate of a nuclear reactor fuel pin

    International Nuclear Information System (INIS)

    Smith, R.D.

    1981-01-01

    A miniature gamma thermometer is described which is capable of travelling through bores distributed in an array through a nuclear reactor core and measure the linear heat generation rate of the fuel pins. (U.K.)

  8. Nuclear reactor fuel element with a cluster of parallel fuel pins

    International Nuclear Information System (INIS)

    Macfall, D.; Butterfield, C.E.; Butterfield, R.S.

    1977-01-01

    An improvement of the design of nuclear reactor fuel elements is described and illustrated by the example of a gas-cooled, graphite-moderated nuclear reactor. The fuel element has a cluster of parallel fuel pins with an outer can of structure material and an inner sleeve, as well as tie bars and spacing devices for all of these parts. The fuel element designed according to the invention allows lasy assembling and disassembling before and after use. During use, no relative axial motions are possible; nevertheless, the graphite sleeve is at no time subject to tensile stress: the individual parts are held in position from below by a single holding device. (UWI) [de

  9. Accuracy of dimension measurements from neutron radiographs of nuclear fuel pins

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1976-01-01

    A comparison is given of accuracies obtained with measuring the dimensions (pellet diameter and fuel-clad gap) from neutron and X-ray radiographs of a calibrated nuclear fuel pin performed with a projection microscope, microdensitometers and a video micrometer

  10. Considerations about the utilization of electrically heated rods used for simulation of nuclear fuel pins

    International Nuclear Information System (INIS)

    Lima, R. de C.F. de; Carajilescov, P.

    1987-01-01

    The dinamic behavior of electrically heated rods used for simulation of nuclear fuel pins in nuclear power transients, is analysed by the application of the lumped parameter and the finite difference methods. Deviations of the rods surface conditions, for extreme accidental transient conditions are presented and discussed. (author) [pt

  11. Automated fuel pin loading system

    Science.gov (United States)

    Christiansen, D.W.; Brown, W.F.; Steffen, J.M.

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inerted as a batch prior to welding of end caps by one of two disclosed welding systems.

  12. Device for supporting a fuel pin cluster within a nuclear reactor fuel assembly wrapper

    International Nuclear Information System (INIS)

    Marmonier, P.; Mesnage, B.; Teulon, J.; Vayra, J.; Venobre, H.

    1976-01-01

    A supporting member for an array of parallel rails each carrying one row of slidably mounted pins of a fuel cluster is placed coaxially at the lower end of a vertical fuel assembly wrapper. Each parallel rail is provided at each end with a downward extension and terminal lug which engages in a lateral groove formed in the periphery of the supporting member in order to lock and maintain the rails and the fuel pins in uniformly spaced relation within the fuel assembly wrapper. 10 claims, 8 figures

  13. Investigation into fuel pin reshuffling options in PWR in-core fuel management for enhancement of efficient use of nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Daing, Aung Tharn, E-mail: atdaing@khu.ac.kr; Kim, Myung Hyun, E-mail: mhkim@khu.ac.kr

    2014-07-01

    Highlights: • This paper discusses an alternative option, fuel pin reshuffling for maximization of cycle energy production. • The prediction results of isotopic compositions of each burnt pin are verified. • The operating performance is analyzed at equilibrium core with fuel pin reshuffling. • The possibility of reuse of spent fuel pins for reduction of fresh fuel assemblies is investigated. - Abstract: An alternative way to enhance efficient use of nuclear fuel is investigated through fuel pin reshuffling options within PWR fuel assembly (FA). In modeling FA with reshuffled pins, as prerequisite, the single pin calculation method is proposed to estimate the isotopic compositions of each pin of burnt FA in the core-wide environment. Subsequently, such estimation has been verified by comparing with the neutronic performance of the reference design. Two scenarios are concerned, i.e., first scenario was targeted on the improvement of the uniform flux spatial distribution and on the enhancement of neutron economy by simply reshuffling the existing fuel pins in once-burnt fuel assemblies, and second one was focused on reduction of fresh fuel loading and discharged fuel assemblies with more economic incentives by reusing some available spent fuel pins still carrying enough reactivity that are mechanically sound ascertained. In scenario-1, the operating time was merely somewhat increased for few minutes when treating eight FAs by keeping enough safety margins. The scenario-2 was proved to reduce four fresh FAs loading without largely losing any targeted parameters from the safety aspect despite loss of 14 effective full power days for operation at reference plant full rated power.

  14. Suspension scheme for fuel pin

    International Nuclear Information System (INIS)

    Butts, C.E.; Gray, H.C.

    1975-01-01

    A description is presented of a nuclear fuel pin suspension arrangement comprising, in combination, a rod; a first beam member connected to said rod at one end; a plurality of parallel-spaced slidable fuel support plates attached to said first beam member, the longitudinal axis of first beam member being perpendicular to the longitudinal axis of each of said fuel support plates, a first coupling means disposed along the length of the first beam member for permitting slidable fuel support plates parallel movement with respect to the longitudinal axis of said first beam member, a second coupling means located at one end of each of slidable fuel plates for slidably engaging first coupling means of first beam member, a second beam member connected to the other end of each of parallel-spaced slidable fuel support plates and providing an extension, second beam member being provided with a third coupling means disposed along the length of second beam member at one end thereof; and a plurality of fuel pins provided with a fourth coupling means located at one end of each fuel pin for slidably engaging third coupling means of second beam member to permit each fuel pin parallel movement with respect to the longitudinal axis of second beam member. (U.S.)

  15. State and parameter estimation in a nuclear fuel pin using the extended Kalman filter

    International Nuclear Information System (INIS)

    Feeley, J.J.

    1979-03-01

    The Kalman filter is a powerful tool for the design and analysis of stochastic systems. The general nature of the method permits such diverse applications as on-line state estimation in optimal control systems, as well as state and parameter estimation applications in data analysis and system identification. However, while there have been a large number of Kalman filter applications in the aerospace industry, there have been relatively few in the nuclear industry. The report describes some initial efforts made at the Idaho National Engineering Laboratory to gain experience with the methods of Kalman filtering and to test their applicability to nuclear engineering problems. Two specific cases were considered: first, a real-time state estimation problem using a hybrid computer where the process was simulated on the analog portion of the computer, and the Kalman filter was programmed on the digital portion; second, a system identification problem where a digital extended Kalman filter program was used to estimate states and parameters in a nuclear fuel pin using data generated both by actual experiments and computer simulations. The report contains a derivation of the Kalman filter equations, a development of the mathematical model of the nuclear fuel pin, a description of the computer programs used in the analysis, and a discussion of the results obtained

  16. Fuel pin transfer tool

    International Nuclear Information System (INIS)

    Patenaude, R. S.

    1985-01-01

    A fuel pin transfer tool has a latching device of the collet type attached to a first member movable vertically through a long work stroke enabling a fuel pin in an under water assembly to be engaged and withdrawn therefrom or placed therein and released. The latching device has a collet provided with a plurality of resilient fingers having cam portions normally spaced apart to receive the upper end of a fuel pin between them and a second member, movable vertically through a short stroke relative to the first member is provided with cam portions engageable with those of the fingers and is yieldably and resiliently held in a raised position in which its cam portions engage those of the fingers and force the fingers into their pin-gripping positions. When a predetermined force is applied to the second member, it is so moved that its cam portions are disengaged from the cam portions of the fingers permitting the latter to move into their normal relationship in which a gripped pin is released or another pin received but with their pin-gripping relationship positively re-established and maintained once the force on the tubular member is lessened. Movement of the first member in either direction and movement of the second member into its raised position is attended by forces inadequate to affect the integrity of fuel pin cladding. That force is applied in the preferred embodiment, by a power operated actuator which is within the upper portion of a housing and, in the preferred embodiment, carried by the long stroke member but always in the upper housing portion which is of a material sufficiently translucent to enable the actuator to be observed throughout the work stroke and is sufficiently light in weight to prevent the tool from being top heavy

  17. Stress relaxation of thermally bowed fuel pins

    International Nuclear Information System (INIS)

    Crossland, I.G.; Speight, M.V.

    1983-01-01

    The presence of cross-pin temperature gradients in nuclear reactor fuel pins produces differential thermal expansion which, in turn, causes the fuel pin to bow elastically. If the pin is restrained in any way, such thermal bowing causes the pin to be stressed. At high temperatures these stresses can relax by creep and it is shown here that this causes the pin to suffer an additional permanent deflection, so that when the cross-pin temperature difference is removed the pin remains bowed. By representing the cylindrical pin by an equivalent I-beam, the present work examines this effect when it takes place by secondary creep. Two restraint systems are considered, and it is demonstrated that the rate of relaxation depends mainly upon the creep equation, and hence the temperature, and also the magnitude of the initial stresses. (author)

  18. System for measuring spacer pin pitch in a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Isono, Kenji; Tateishi, Yoshinori; Mano, Tadashi.

    1975-01-01

    Object: To reduce the period for discriminating whether or not spacer pin pitch is satisfactory by simultaneously inserting a number of reference rods into a nuclear fuel assembly spacer ring element of a reactor and arranging them such that they can be simultaneously withdrawn to simplify the withdrawing operation. Structure: A spacer provided with a ring element which clamps a nuclear fuel element is supported on a spacer support with a rod secured to the support as a guide and is secured to the support by securing means. A vertically movable structure with a reference rod provided upright and thru-holes formed in two support plates provided in the same row as the spacer ring element is operated by a fluid pressure mechanism to simultaneously insert the reference rod into the spacer ring element. The reference rod is mounted in support plates via ball bearings such that it is slightly movable in the horizontal direction, and it is aligned with respect to the core of the ring element. The intercore distance of the reference rod is measured with the reference rod inserted in the ring element, thereby measuring the space pin pitch. From the results of measurement, discrimination as to whether the spacer is satisfactory or not is made. (Kamimura, M.)

  19. A simple nondestructive technique for monitoring the bond gas in sealed fast reactor nuclear fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Shriwastwa, B B; Mehrotra, R S; Ghosh, J K [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.

    1994-12-31

    A simple nondestructive testing technique has been developed to identify bond gas inside a welded fuel pin. The technique is based on the accurate surface temperature measurement of fuel pins heated in a constant temperature water bath. This technique can be applied in Fast Breeder Test Reactor (FBTR) fuel pin production line due to simplicity of the set up, simple operation and quick response time. An attempt was made to develop a non destructive test method for monitoring the bond gas composition. Preliminary development work carried out in this connection, the test method adopted and the test results are presented. 1 ref., 5 figs., 1 tab.

  20. Measuring deformation of Fuel pin in a Nuclear Fuel Test Rig

    Energy Technology Data Exchange (ETDEWEB)

    Heo, S. H.; Yang, T. H.; Hong, J. T.; Joung, C. Y.; Ahn, S. H.; Jang, S. Y.; Kim, J. H. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, an LVDT core for measuring the longitudinal displacement of fuel pellets and clad was designed and produced. A signal processing method for the prepared core was investigated. The Nuclear Fuel Test Rig is used to observe changes in the characteristics of the fuel according to the neutron irradiation at HANARO (High-flux Advanced Neutron Application Reactor), which is a research reactor. Which are the strain and internal temperature of the irradiated nuclear fuel and the internal pressure of fuel due to fission gas, the characteristics of the fuel are measured using various sensors such as a thermocouple, SPND and LVDT. In this study, two shaped LVDT (Linear Variable Differential Transformer) cores for displacement measurements were designed and manufactured in order to measure the displacement of a fuel pellet and cladding tube using LVDT sensors for measuring electrical signals by converting the physical variation such as the force and displacement into a linear motion. In addition, signals from the manufactured LVDT sensor were collected and calibrated. Moreover, a method for obtaining the displacement in the core according to the sensing signal was planned. A derived equation can used to predict the change in the position of core. A following study should be conducted to test the output signal and real variation of out-pile system. For further work, a performance verification is required for an in-pile irradiation test.

  1. Nondestructive characterization of mixed oxide pellets in welded nuclear fuel pins by neutron radiography and gamma-autoradiography

    International Nuclear Information System (INIS)

    Panakkal, J.P.; Ghosh, J.K.; Roy, P.R.

    1989-01-01

    Nondestructive evaluation of nuclear fuel pellets after the welding of fuel pins plays a vital role in assuring a safe and reliable operation of reactors. Some of the important characteristics to be monitored in low plutonium enriched mixed oxide fuel pellets are plutonium enrichment, size of plutonium dioxide agglomerates, incorrect loading and geometric shape. Experiments were carried out at Bhabha Atomic Research Centre, Bombay on experimental fuel pins containing mixed oxide pellets of different geometry (solid and annular), of different plutonium enrichment (0-6 w% of plutonium dioxide) and containing PuO 2 agglomerates of size 125-2000 microns to evaluate these characteristics nondestructively. Neutron radiography of these fuel pins was carried out using a swimming pool type reactor 'APSARA'. Results of quantitative evaluation of the neutron radiographs and a simple model correlating neutron interaction probability and the optical density are presented. Gamma autoradiography of these fuel pins showed that these parameters could be evaluated with a few limitations. This paper presents the experimental details, quantitative analysis of the radiographs by microdensitometry and merits and demerits of neutron radiography and gamma autoradiography for nondestructive charcterisation of nuclear fuel pellets. (orig.)

  2. Calculations on the effect of pellet filling on the rewetting of overheated nuclear reactor fuel pins

    International Nuclear Information System (INIS)

    Pearson, K.G.; Loveless, J.

    1977-03-01

    Numerical solutions of the rewetting equations are presented which show the effect of filler material and gas gap on the rate of rewetting of an overheated fuel pin. It is shown that taking the presence of the fuel into account can lead to a large reduction in the calculated rewetting speed compared with a calculation which neglects the presence of fuel. The effect is most marked in conditions where rewetting speeds tend to be already low, such as at high pin temperatures and low ambient pressure. A comparison is made between the predictions of the present method and experimental data obtained on zircaloy and stainless steel pins filled with magnesia and with boron nitride. In all cases filling the pins produced a large reduction in rewetting speed and the agreement between the calculated and measured effect was encouraging. It is concluded that the presence of the UO 2 pellet filling should be taken into account when calculating rewetting speeds in safety assessments. (author)

  3. Peripheral pin alignment system for fuel assemblies

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1981-01-01

    An alignment system is provided for nuclear fuel assemblies in a nuclear core. The core support structure of the nuclear reactor includes upwardly pointing alignment pins arranged in a square grid and engage peripheral depressions formed in the lateral periphery of the lower ends of each of the fuel assemblies of the core. In a preferred embodiment, the depressions are located at the corners of the fuel assemblies so that each depression includes one-quarter of a cylindrical void. Accordingly, each fuel assembly is positioned and aligned by one-quarter of four separate alignment pins which engage the fuel assemblies at their lower exterior corners. (author)

  4. Off-design temperature effects on nuclear fuel pins for an advanced space-power-reactor concept

    Science.gov (United States)

    Bowles, K. J.

    1974-01-01

    An exploratory out-of-reactor investigation was made of the effects of short-time temperature excursions above the nominal operating temperature of 990 C on the compatibility of advanced nuclear space-power reactor fuel pin materials. This information is required for formulating a reliable reactor safety analysis and designing an emergency core cooling system. Simulated uranium mononitride (UN) fuel pins, clad with tungsten-lined T-111 (Ta-8W-2Hf) showed no compatibility problems after heating for 8 hours at 2400 C. At 2520 C and above, reactions occurred in 1 hour or less. Under these conditions free uranium formed, redistributed, and attacked the cladding.

  5. Nodal methods for calculating nuclear reactor transients, control rod patterns, and fuel pin powers

    International Nuclear Information System (INIS)

    Cho, Byungoh.

    1990-01-01

    Nodal methods which are used to calculate reactor transients, control rod patterns, and fuel pin powers are investigated. The 3-D nodal code, STORM, has been modified to perform these calculations. Several numerical examples lead to the following conclusions: (1) By employing a thermal leakage-to-absorption ratio (TLAR) approximation for the spatial shape of the thermal fluxes for the 3-D Langenbuch-Maurer-Werner (LMW) and the superprompt critical transient problems, the convergence of the conventional two-group scheme is accelerated. (2) By employing the steepest-ascent hill climbing search with heuristic strategies, Optimum Control Rod Pattern Searcher (OCRPS) is developed for solving control rod positioning problem in BWRs. Using the method of approximation programming the objective function and the nuclear and thermal-hydraulic constraints are modified as heuristic functions that guide the search. The test calculations have demonstrated that, for the first cycle of the Edwin Hatch Unit number-sign 2 reactor, OCRPS shows excellent performance for finding a series of optimum control rod patterns for six burnup steps during the operating cycle. (3) For the modified two-dimensional EPRI-9R problem, the least square second-order polynomial flux expansion method was demonstrated to be computationally about 30 times faster than a fine-mesh finite difference calculation in order to achieve comparable accuracy for pin powers. The basic assumption of this method is that the reconstructed flux can be expressed as a product of an assembly form function and a second-order polynomial function

  6. Implementation into a CFD code of neutron kinetics and fuel pin models for nuclear reactor transient analyses

    International Nuclear Information System (INIS)

    Chen Zhao; Chen, Xue-Nong; Rineiski, Andrei; Zhao Pengcheng; Chen Hongli

    2014-01-01

    Safety analysis is an important tool for justifying the safety of nuclear reactors. The traditional method for nuclear reactor safety analysis is performed by means of system codes, which use one-dimensional lumped-parameter method to model real reactor systems. However, there are many multi-dimensional thermal-hydraulic phenomena cannot be predicated using traditional one-dimensional system codes. This problem is extremely important for pool-type nuclear systems. Computational fluid dynamics (CFD) codes are powerful numerical simulation tools to solve multi-dimensional thermal-hydraulics problems, which are widely used in industrial applications for single phase flows. In order to use general CFD codes to solve nuclear reactor transient problems, some additional models beyond general ones are required. Neutron kinetics model for power calculation and fuel pin model for fuel pin temperature calculation are two important models of these additional models. The motivation of this work is to develop an advance numerical simulation method for nuclear reactor safety analysis by implementing neutron kinetics model and fuel pin model into general CFD codes. In this paper, the Point Kinetics Model (PKM) and Fuel Pin Model (FPM) are implemented into a general CFD code FLUENT. The improved FLUENT was called as FLUENT/PK. The mathematical models and implementary method of FLUENT/PK are descripted and two demonstration application cases, e.g. the unprotected transient overpower (UTOP) accident of a Liquid Metal cooled Fast Reactor (LMFR) and the unprotected beam overpower (UBOP) accident of an Accelerator Driven System (ADS), are presented. (author)

  7. Ultrasonic inspections of fuel alignment pins

    International Nuclear Information System (INIS)

    Rathgeb, W.; Schmid, R.

    1994-01-01

    As a remedy to the practical problem of defects in fuel alignment pins made of Inconel X750, an inspection technique has been developed which fully meets the requirements of detecting defects. The newly used fuel alignment pins made of austenite are easy to test and therefore satisfy the necessity of further inspections.For the fuel alignment pins of the upper core structure a safe and fast inspection technique was made available. The inspection sensitivity is high and it is possible to give quantitative directions concerning defect orientation and depth. After the required inspections had been concluded in 1989, a total of 18 inspections were carried out in various national and international nuclear power plants in the following years. During this time more than 6000 fuel alignment pines were examined.For the fuel alignment pins the inspection technique provided could increase the understanding of the defect process. This technique contributed to the development of an adaptive and economical repair strategy. ((orig.))

  8. Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel

    International Nuclear Information System (INIS)

    Mella, R.; Wenman, M.R.

    2013-01-01

    Thermo-mechanical contributions to pellet–clad interaction (PCI) in advanced gas-cooled reactors (AGRs) are modelled in the ABAQUS finite element (FE) code. User supplied sub-routines permit the modelling of the non-linear behaviour of AGR fuel through life. Through utilisation of ABAQUS’s well-developed pre- and post-processing ability, the behaviour of the axially constrained steel clad fuel was modelled. The 2D axisymmetric model includes thermo-mechanical behaviour of the fuel with time and condition dependent material properties. Pellet cladding gap dynamics and thermal behaviour are also modelled. The model treats heat up as a fully coupled temperature-displacement study. Dwell time and direct power cycling was applied to model the impact of online refuelling, a key feature of the AGR. The model includes the visco-plastic behaviour of the fuel under the stress and irradiation conditions within an AGR core and a non-linear heat transfer model. A multiscale fission gas release model is applied to compute pin pressure; this model is coupled to the PCI gap model through an explicit fission gas inventory code. Whole pin, whole life, models are able to show the impact of the fuel on all segments of cladding including weld end caps and cladding pellet locking mechanisms (unique to AGR fuel). The development of this model in a commercial FE package shows that the development of a potentially verified and future-proof fuel performance code can be created and used

  9. Accuracy of dimension measurements from neutron radiographs of nuclear fuel pins

    International Nuclear Information System (INIS)

    Domanus, J. C.

    1976-03-01

    A review of different methods used for dimension measurements from neutron radiographs. The results are presented of an investigation performed using unirradiated fuel pins with calibrated UO 2 pellet-diameters and fuel-to-clad gaps. A projection microscope, three types of travelling microdensitometers and an electronic image analyzer were used to measure diameters and gaps from neutron radiographs produced at Risoe and Studsvik (Sweden) using different brands of X-ray films and transfer technique with 0.1 mm Dy foil. (author)

  10. MONJU fuel pin performance analysis

    International Nuclear Information System (INIS)

    Kitagawa, H.; Yamanaka, T.; Hayashi, H.

    1979-01-01

    Monju fuel pin has almost the same properties as other LMFBR fuel pins, i.e. Phenix, PFR, CRBR, but would be irradiated under severe conditions: maximum linear heat rate of 381 watt/cm, hot spot cladding temperature of 675 deg C, peak burnup of 131,000 MWd/t, peak fluence (E greater than 0.1 MeV) of 2.3 10 23 n/cm 2 . In order to understand in-core performance of Monju fuel pin, its thermal and mechanical behaviour was predicted using the fast running performance code SIMPLE. The code takes into account pellet-cladding interaction due to thermal expansion and swelling, gap conductance, structural changes of fuel pellets, fission product gas release with burnup and temperature increase, swelling and creep of fuel pellets, corrosion of cladding due to sodium flow and chemical attack by fission products, and cumulative damage of the cladding due to thermal creep

  11. Application of the pulsed magnetic welding process to nuclear breeder reactor fuel pin end closures

    International Nuclear Information System (INIS)

    Brown, W.F.

    1984-01-01

    The pulsed magnetic welding process is a solid state welding process in which metallurgical bonding is effected by impacting metal or alloy parts against each other at high velocity by use of controlled high frequency, high intensity pulsed magnetic fields. This process is similar to the explosive welding process except that magnetic energy is used for impacting the parts together instead of using explosive energy. The pulsed magnetic welding (PMW) process is readily applied to the welding of cylindrical plugs to small diameter tubes. Although breeder reactor fuel pin design may vary in size, the application described here consisted of cladding tubes approximately 6.4 mm in diameter by 244 cm long with a wall thickness of 0.38 mm. After the cladding tubes are filled with fuel pellets and associated metal hardware, tapered end plugs are inserted into the end of the tubes and welded. A typical setup for PMW is described

  12. Positioning and locking device for fuel pin to grid attachment

    International Nuclear Information System (INIS)

    Frick, T.M.; Wineman, A.L.

    1976-01-01

    A positioning and locking device for fuel pin to grid attachment provides an inexpensive means of positively positioning and locking the individual fuel pins which make up the driver fuel assemblies used in nuclear reactors. The device can be adapted for use with a currently used attachment grid assembly design and insures that the pins remain in their proper position throughout the in-reactor life of the assembly. This device also simplifies fuel bundle assembly in that a complete row of fuel pins can be added to the bundle during each step of assembly. 8 claims, 8 drawing figures

  13. Neutron radiography of fuel pins

    International Nuclear Information System (INIS)

    Jackson, C.N. Jr.; Powers, H.G.; Burgess, C.A.

    1975-01-01

    Neutron radiography performed with a reactor source has been shown to be a superior radiographic method for the examination of unirradiated mixed oxide fuel pins at the Hanford Engineering Development Laboratory. Approximately 1,700 fuel pins were contained in a sample that demonstrated the capability of the method for detecting laminations, structural flaws, fissile density variation, hydrogenous inclusions and voids in assembled fuel pins. The nature, extent, and importance of the detected conditions are substantiated by gamma autoradiography and by destructive analysis employing alpha autoradiography, electron microprobe and visual inspection. Also, a series of radiographs illustrate the response of neutron radiography as compared to low voltage and high voltage x-ray and gamma source Iridium 192 radiography. (U.S.)

  14. Integral nuclear fuel element assembly

    International Nuclear Information System (INIS)

    Schluderberg, D. C.

    1985-01-01

    An integral nuclear fuel element assembly utilizes longitudinally finned fuel pins. The continuous or interrupted fins of the fuel pins are brazed to fins of juxtaposed fuel pins or directly to the juxtaposed fuel pins or both. The integrally brazed fuel assembly is designed to satisfy the thermal and hydraulic requirements of a fuel assembly lattice having moderator to fuel atom ratios required to achieve high conversion and breeding ratios

  15. Activities at the Institute of Materials and Solid State Research of the Karlsruhe Nuclear Research Centre in the field of fuel pin modelling

    International Nuclear Information System (INIS)

    Elbel, H.

    1979-01-01

    Fuel pin modelling has been pursued at the Institute of Materials and Solid State Research (IMF) of the Karlsruhe Nuclear Research Centre (KfK) with the main objective to provide a detailed quantitative analysis of the fuel pin behaviour in a LMFBR under normal and off-normal operation conditions. The computer programs and models developed at the IMF serve the purpose to aid effectively in the development of an optimized fuel pin concept for a LMFBR. What extent of clad deformation can be tolerated without running into clad failure? What is the influence of neutron dose, temperature, corrosion attack, arid cyclic forces on the state of the clad? What may be the reasons for clad failure? In answering these questions computer programs can play an important role. The activities at the IMF in the field of fuel pin modelling cover the following topics: development of computer programs and models; validation of these programs and models, application to the design of fuel pins for irradiation experiments; assistance in the evaluation of operation data and post- irradiation results, and parametric studies on the influence of design parameters, operation conditions and certain material phenomena on the in-pile behaviour of the fuel pin

  16. DIMCO. A new system for mechanical and bidimensional of nuclear fuel pins

    International Nuclear Information System (INIS)

    Moreno, A.

    1977-01-01

    The system developed in JEN, for: the mechanical analysis uni and bidimensional, of nuclear fuels is presented. The mathematical and numerical foundations used, are here described. And so the models developed for effects such as swelling, cracking, clad growth etc. Numerical results for several cases are presented. a) Numerical test in one and two dimensions. b) Applicability range, c) Interaction effects. d) Influence of the power history. (Author) 17 refs

  17. TACO: fuel pin performance analysis

    International Nuclear Information System (INIS)

    Stoudt, R.H.; Buchanan, D.T.; Buescher, B.J.; Losh, L.L.; Wilson, H.W.; Henningson, P.J.

    1977-08-01

    The thermal performance of fuel in an LWR during its operational lifetime must be described for LOCA analysis as well as for other safety analyses. The determination of stored energy in the LOCA analysis, for example, requires a conservative fuel pin thermal performance model that is capable of calculating fuel and cladding behavior, including the gap conductance between the fuel and cladding, as a function of burnup. The determination of parameters that affect the fuel and cladding performance, such as fuel densification, fission gas release, cladding dimensional changes, fuel relocation, and thermal expansion, should be accounted for in the model. Babcock and Wilcox (B and W) has submitted a topical report, BAW-10087P, December 1975, which describes their thermal performance model TACO. A summary of the elements that comprise the TACO model and an evaluation are presented

  18. Transient survivability of LMR oxide fuel pins

    International Nuclear Information System (INIS)

    Weber, E.T.; Pitner, A.L.; Bard, F.E.; Culley, G.E.; Hunter, C.W.

    1986-01-01

    Fuel pin integrity during transient events must be assessed for both the core design and safety analysis phases of a reactor project. A significant increase in the experience related to limits of integrity for oxide fuel pins in transient overpower events has been realized from testing of fuel pins irradiated in FFTF and PFR. Fourteen FFTF irradiated fuel pins were tested in TREAT, representing a range of burnups, overpower ramp rates and maximum overpower conditions. Results of these tests along with similar testing in the PFR/TREAT program, provide a demonstration of significant safety margins for oxide fuel pins. Useful information applied in analytical extrapolation of fuel pin test data have been developed from laboratory transient tests on irradiated fuel cladding (FCTT) and on unirradiated fuel pellet deformation. These refinements in oxide fuel transient performance are being applied in assessment of transient capabilities of long lifetime fuel designs using ferritic cladding

  19. Mode of failure of LMFBR fuel pins

    International Nuclear Information System (INIS)

    Washburn, D.F.

    1975-01-01

    The objectives of the irradiation test described were to evaluate mixed-oxide fuel performance and to confirm the design adequacy of the FFTF fuel pins. After attainment of the initial objectives the irradiation of several of the original fuel pins was continued until a cladding breach occurred. The consequences of a cladding breach were evaluated by reconstituting the original 37-pin subassembly into two 19-pin subassemblies after a burnup at 50,000 MWd/MTM (5.2 a/o). The original pins were supplemented with fresh pins as necessary. Irradiation of the subassemblies was continued until a cladding breach occurred. Results are presented and discussed

  20. Cesium migration in LMFBR fuel pins

    International Nuclear Information System (INIS)

    Karnesky, R.A.; Jost, J.W.; Stone, I.Z.

    1978-10-01

    The factors affecting the axial migration of cesium in mixed oxide fuel pins and the effects of cesium migration on fuel pin performance are examined. The development and application of a correlated model which will predict the occurrence of cesium migration in a mixed oxide (75 w/o UO 2 + 25 w/o PuO 2 ) fuel pins over a wide range of fabrication and irradiation conditions are described

  1. FFTF fuel pin design bases and performance

    International Nuclear Information System (INIS)

    Cox, C.M.; Hanson, J.E.; Roake, W.E.; Slember, R.J.; Weber, C.E.; Millunzi, A.C.

    1975-04-01

    The FFTF fuel pin was conservatively designed to meet thermal and structural performance requirements in the categories normal operation, upset events, emergency events, and hypothetical, faulted events. The fuel pin operating limits consistent with these requirements were developed from a strong fuel pin irradiation testing program scoped to define the performance capability under relevant steady state and transient conditions. Comparison of the results of the irradiation testing program with design requirements indicates that the FFTF fuel pin can exceed its goal burnup of 80,000 MWd/MTM. (U.S.)

  2. Fabrication of FFTF fuel pin wire wrap

    International Nuclear Information System (INIS)

    Epperson, E.M.

    1980-06-01

    Lateral spacing between FFTF fuel pins is required to provide a passageway for the sodium coolant to flow over each pin to remove heat generated by the fission process. This spacing is provided by wrapping each fuel pin with type 316 stainless steel wire. This wire has a 1.435mm (0.0565 in.) to 1.448mm (0.0570 in.) diameter, contains 17 +- 2% cold work and was fabricated and tested to exacting RDT Standards. About 500 kg (1100 lbs) or 39 Km (24 miles) of fuel pin wrap wire is used in each core loading. Fabrication procedures and quality assurance tests are described

  3. Cesium chemistry in GCFR fuel pins

    International Nuclear Information System (INIS)

    Fee, D.C.; Johnson, C.E.

    1979-01-01

    The fuel rod design for the Gas Cooled Fast-Breeder Reactor (GCFR) is similar to that employed for the Liquid Metal Fast Breeder Reactor (LMFBR) with the exception of the unique features inherent to the use of helium as the coolant. These unique design features include the use of (1) vented and pressure-equalized fuel rods, and (2) ribbed cladding along 75% of the fuel section. The former design feature enables reduction in cladding thickness and prevention of possible creep collapse of the cladding due to the high coolant pressure (8.5 MPa). The latter design feature brings about improved heat transfer characteristics. Each GCFR fuel rod is vented to a manifold whereby gaseous fission products diffusing out of the fuel pin are retained on charcoal traps. As a result, the internal pressure of a GCFR fuel pin does not increase during irradiation. In addition, the venting system also maintains the pressure within the fuel pin slightly below (0.3 to 0.5 MPa) the coolant pressure outside the fuel pin. Consequently, should a breach occur in the cladding, helium flows into the breached fuel pin thereby minimizing fission product contamination of the coolant. These desirable aspects of a GCFR fuel pin can be maintained only as long as axial gas transport paths are available and operating within the fuel pin

  4. Integral Fast Reactor fuel pin processor

    International Nuclear Information System (INIS)

    Levinskas, D.

    1993-01-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves

  5. Development of a CVD silica coating for UK advanced gas-cooled nuclear reactor fuel pins

    International Nuclear Information System (INIS)

    Bennett, M.J.; Houlton, M.R.; Moore, D.A.; Foster, A.I.; Swidzinski, M.A.M.

    1983-04-01

    Vapour deposited silica coatings could extend the life of the 20% Cr/25% Ni niobium stabilised (20/25/Nb) stainless steel fuel cladding of the UK advanced gas cooled reactors. A CVD coating process developed originally to be undertaken at atmospheric pressure has now been adapted for operation at reduced pressure. Trials on the LP CVD process have been pursued to the production scale using commercial equipment. The effectiveness of the LP CVD silica coatings in providing protection to 20/25/Nb steel surfaces against oxidation and carbonaceous deposition has been evaluated. (author)

  6. Electro-optical fuel pin identification system

    International Nuclear Information System (INIS)

    Kirchner, T.L.

    1978-09-01

    A prototype Electro-Optical Fuel Pin Identification System referred to as the Fuel Pin Identification System (FPIS) has been developed by the Hanford Engineering Development Laboratory (HEDL) in support of the Fast Flux Test Facility (FFTF) presently under construction at HEDL. The system is designed to remotely read an alpha-numeric identification number that is roll stamped on the top of the fuel pin end cap. The prototype FPIS consists of four major subassemblies: optical read head, digital compression electronics, video display, and line printer

  7. Fabrication of the instrumented fuel rods for the 3-Pin Fuel Test Loop at HANARO

    International Nuclear Information System (INIS)

    Sohn, Jae Min; Park, Sung Jae; Shin, Yoon Tag; Lee, Jong Min; Ahn, Sung Ho; Kim, Soo Sung; Kim, Bong Goo; Kim, Young Ki; Lee, Ki Hong; Kim, Kwan Hyun

    2008-09-01

    The 3-Pin Fuel Test Loop(hereinafter referred to as the '3-Pin FTL') facility has been installed at HANARO(High-flux Advanced Neutron Application Reactor) and the 3-Pin FTL is under a test operation. The purpose of this report is to fabricate the instrumented fuel rods for the 3-Pin FTL. The fabrication of these fuel rods was based on experiences and technologies of the instrumented fuel rods for an irradiation fuel capsule. The three instrumented fuel rods of the 3-Pin FTL have been designed. The one fuel rod(180 .deg. ) was designed to measure the centerline temperature of the nuclear fuels and the internal pressure of the fuel rod, and others(60 .deg. and 300 .deg. ) were designed to measure the centerline temperature of the fuel pellets. The claddings were made of the reference material 1 and 2 and new material 1 and 2. And nuclear fuel was used UO 2 (2.0w/o) pellet type with large grain and standard grain. The major procedures of fabrication are followings: (1) the assembling and weld of fuel rods with the pellet mockups and the sensor mockups for the qualification tests, (2) the qualification tests(dimension measurements, tensile tests, metallography examinations and helium leak tests) of weld, (3) the assembling and weld of instrumented fuel rods with the nuclear pellets and the sensors for the irradiation test, and (4) the qualification tests(the helium leak test, the dimensional measurement, electric resistance measurements of sensors) of test fuel rods. Satisfactory results were obtained for all the qualification tests of the instrumented fuel rods for the 3-Pin FTL. Therefore the three instrumented fuel rods for the 3-Pin FTL have been fabricated successfully. These will be installed in the In-Pile Section of 3-Pin FTL. And the irradiation test of these fuel rods is planned from the early next year for about 3 years at HANARO

  8. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Delafosse, Jacques.

    1977-01-01

    This invention relates to a nuclear fuel assembly for a light or heavy water reactor, or for a fast reactor of the kind with a bundle of cladded pins, maintained parallel to each other in a regular network by an assembly of separate supporting grids, fitted with elastic bearing surfaces on these pins [fr

  9. Cladding properties under simulated fuel pin transients

    International Nuclear Information System (INIS)

    Hunter, C.W.; Johnson, G.D.

    1975-01-01

    A description is given of the HEDL fuel pin testing program utilizing a recently developed Fuel Cladding Transient Tester (FCTT) to generate the requisite mechanical property information on irradiated and unirradiated fast reactor fuel cladding under temperature ramp conditions. The test procedure is described, and data are presented

  10. Performance of refractory alloy-clad fuel pins

    International Nuclear Information System (INIS)

    Dutt, D.S.; Cox, C.M.; Millhollen, M.K.

    1984-12-01

    This paper discusses objectives and basic design of two fuel-cladding tests being conducted in support of SP-100 technology development. Two of the current space nuclear power concepts use conventional pin type designs, where a coolant removes the heat from the core and transports it to an out-of-core energy conversion system. An extensive irradiation testing program was conducted in the 1950's and 1960's to develop fuel pins for space nuclear reactors. The program emphasized refractory metal clad uranium nitride (UN), uranium carbide (UC), uranium oxide (UO 2 ), and metal matrix fuels (UCZr and BeO-UO 2 ). Based on this earlier work, studies presented here show that UN and UO 2 fuels in conjunction with several refractory metal cladding materials demonstrated high potential for meeting space reactor requirements and that UC could serve as an alternative but higher risk fuel

  11. Fuel pin bowing in CAGR

    International Nuclear Information System (INIS)

    Crossland, I.G.

    1982-01-01

    Some of the more important mechanisms by which pin bowing can occur in Advanced Gas Cooled Reactors are examined. These include creep relaxation of the stresses which occur when thermal bowing is restrained and asymmetric axial clad creep. The clad temperature changes which accompany such bowing are also investigated and the theoretical results briefly compared with the empirical behaviour. (author)

  12. Critical experiments supporting underwater storage of tightly packed configurations of spent fuel pins. Technical progress report, January 1-March 31, 1981

    International Nuclear Information System (INIS)

    Hoovler, G.S.; Baldwin, M.N.

    1981-04-01

    Critical experiments are in progress on arrays of 2 1/2% enriched UO 2 fuel pins simulating underwater pin storage of spent power reactor fuel. Pin storage refers to a spent fuel storage concept in which the fuel assemblies are dismantled and the fuel pins are tightly packed into specially designed canisters. These experiments are providing benchmark data with which to validate nuclear codes used to design spent fuel pin storage racks

  13. Radiographic examination methods for fuel pins

    International Nuclear Information System (INIS)

    Smirnov, V.P.; Dvoretskii, V.G.

    1987-11-01

    To study the fast neutron reactor fuel pins structure the NIIAR Institute used x diffraction, neutronic radiography and autoradiographies. The two first methods are used for internal macrostructure studies, the third method for the plutonium and uranium radial distribution. These methods and the main results are indicated in this document [fr

  14. Analytical method for reconstruction pin to pin of the nuclear power density distribution

    Energy Technology Data Exchange (ETDEWEB)

    Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S., E-mail: ppessoa@con.ufrj.br, E-mail: fernando@con.ufrj.br, E-mail: aquilino@imp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    An accurate and efficient method for reconstructing pin to pin of the nuclear power density distribution, involving the analytical solution of the diffusion equation for two-dimensional neutron energy groups in homogeneous nodes, is presented. The boundary conditions used for analytic as solution are the four currents or fluxes on the surface of the node, which are obtained by Nodal Expansion Method (known as NEM) and four fluxes at the vertices of a node calculated using the finite difference method. The analytical solution found is the homogeneous distribution of neutron flux. Detailed distributions pin to pin inside a fuel assembly are estimated by the product of homogeneous flux distribution by local heterogeneous form function. Furthermore, the form functions of flux and power are used. The results obtained with this method have a good accuracy when compared with reference values. (author)

  15. Analytical method for reconstruction pin to pin of the nuclear power density distribution

    International Nuclear Information System (INIS)

    Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S.

    2013-01-01

    An accurate and efficient method for reconstructing pin to pin of the nuclear power density distribution, involving the analytical solution of the diffusion equation for two-dimensional neutron energy groups in homogeneous nodes, is presented. The boundary conditions used for analytic as solution are the four currents or fluxes on the surface of the node, which are obtained by Nodal Expansion Method (known as NEM) and four fluxes at the vertices of a node calculated using the finite difference method. The analytical solution found is the homogeneous distribution of neutron flux. Detailed distributions pin to pin inside a fuel assembly are estimated by the product of homogeneous flux distribution by local heterogeneous form function. Furthermore, the form functions of flux and power are used. The results obtained with this method have a good accuracy when compared with reference values. (author)

  16. Improved Retrieval Technique of pin-wise composition for spent fuel recycling

    Energy Technology Data Exchange (ETDEWEB)

    Park, YunSeo; Kim, Myung Hyun [Kyung Hee University , Yongin (Korea, Republic of)

    2016-10-15

    New reutilization method which does not require fabrication processing was suggested and showed feasibility by Dr. Aung Tharn Daing. This new reutilization method is predict spent nuclear fuel pin composition, reconstruct new fuel assembly by spent nuclear pin, and directly reutilize in same PWR core. There are some limitation to predict spent nuclear fuel pin composition on his methodology such as spatial effect was not considered enough. This research suggests improving Dr. Aung Tharn Daing's retrieval technique of pin-wise composition. This new method classify fuel pin groups by its location effect in fuel assembly. Most of fuel pin composition along to burnup in fuel assembly is not highly dependent on location. However, compositions of few fuel pins where near water hole and corner of fuel assembly are quite different in same burnup. Required number of nuclide table is slightly increased from 3 to 6 for one fuel assembly with this new method. Despite of this little change, prediction of the pin-wise composition became more accurate. This new method guarantees two advantages than previous retrieving technique. First, accurate pin-wise isotope prediction is possible by considering location effect in a fuel assembly. Second, it requires much less nuclide tables than using full single assembly database. Retrieving technique of pin-wise composition can be applied on spent fuel management field useful. This technique can be used on direct use of spent fuel such as Dr. Aung Tharn Daing showed or applied on pin-wise waste management instead of conventional assembly-wise waste management.

  17. Timing analysis of PWR fuel pin failures

    International Nuclear Information System (INIS)

    Jones, K.R.; Wade, N.L.; Katsma, K.R.; Siefken, L.J.; Straka, M.

    1992-09-01

    Research has been conducted to develop and demonstrate a methodology for calculation of the time interval between receipt of the containment isolation signals and the first fuel pin failure for loss-of-coolant accidents (LOCAs). Demonstration calculations were performed for a Babcock and Wilcox (B ampersand W) design (Oconee) and a Westinghouse (W) four-loop design (Seabrook). Sensitivity studies were performed to assess the impacts of fuel pin bumup, axial peaking factor, break size, emergency core cooling system availability, and main coolant pump trip on these times. The analysis was performed using the following codes: FRAPCON-2, for the calculation of steady-state fuel behavior; SCDAP/RELAP5/MOD3 and TRACPF1/MOD1, for the calculation of the transient thermal-hydraulic conditions in the reactor system; and FRAP-T6, for the calculation of transient fuel behavior. In addition to the calculation of fuel pin failure timing, this analysis provides a comparison of the predicted results of SCDAP/RELAP5/MOD3 and TRAC-PFL/MOD1 for large-break LOCA analysis. Using SCDAP/RELAP5/MOD3 thermal-hydraulic data, the shortest time intervals calculated between initiation of containment isolation and fuel pin failure are 10.4 seconds and 19.1 seconds for the B ampersand W and W plants, respectively. Using data generated by TRAC-PF1/MOD1, the shortest intervals are 10.3 seconds and 29.1 seconds for the B ampersand W and W plants, respectively. These intervals are for a double-ended, offset-shear, cold leg break, using the technical specification maximum peaking factor and applied to fuel with maximum design bumup. Using peaking factors commensurate widi actual bumups would result in longer intervals for both reactor designs. This document also contains appendices A through J of this report

  18. Nuclear fuels

    International Nuclear Information System (INIS)

    Gangwani, Saloni; Chakrabortty, Sumita

    2011-01-01

    Nuclear fuel is a material that can be consumed to derive nuclear energy, by analogy to chemical fuel that is burned for energy. Nuclear fuels are the most dense sources of energy available. Nuclear fuel in a nuclear fuel cycle can refer to the fuel itself, or to physical objects (for example bundles composed of fuel rods) composed of the fuel material, mixed with structural, neutron moderating, or neutron reflecting materials. Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. The following paper will also include the uses. advancements, advantages, disadvantages, various processes and behavior of nuclear fuels

  19. Means for supporting nuclear fuel

    International Nuclear Information System (INIS)

    Cocker, P.; Price, M.A.

    1975-01-01

    Reference is made to means for supporting nuclear fuel pins in a reactor coolant channel and the problems that arise in this connection. For reasons of nuclear reactivity and neutron economy 'parasitic' material in a reactor core must be kept to a minimum, whilst for heat transfer reasons the use of fuel pins of large cross-sectional areas should be avoided. Fuel pins tend to be long thin objects having a can of minimum thickness and typically a pin may have a length/diameter ratio of about 500/1 and for fast reactor fuel pins, the outside diameter may be about 0.2 inch. The long slender pins must also be spaced very close together. A fast reactor fuel assembly may involve 200 to 300 fuel pins, each a few tenths of an inch in diameter, supported end on to coolant flowing up a channel of about 22 square inches in total area. The pins have a heavy metal oxide filling and require support. Details are given of a suitable method of support. Such support also allows withdrawal of pins from a fuel channel without the risk of breach of the can, after irradiation. (U.K.)

  20. Some aspects of continuum physics used in fuel pin modeling

    International Nuclear Information System (INIS)

    Bard, F.E.

    1975-06-01

    The mathematical formulation used in fuel pin modeling is described. Fuel pin modeling is not a simple extension of the experimental and interpretative methods used in classical mechanics. New concepts are needed to describe materials in a reactor environment. Some aspects of continuum physics used to develop these new constitutive equations for fuel pins are presented. (U.S.)

  1. Post irradiation examination on test fuel pins for PWR

    International Nuclear Information System (INIS)

    Fogaca Filho, N.; Ambrozio Filho, F.

    1981-01-01

    Certain aspects of irradiation technology on test fuel pins for PWR, are studied. The results of post irradiation tests, performed on test fuel pins in hot cells, are presented. The results of the tests permit an evaluation of the effects of irradiation on the fuel and cladding of the pin. (Author) [pt

  2. The lumped parameter model for fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W S [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    The use of a lumped fuel-pin model in a thermal-hydraulic code is advantageous because of computational simplicity and efficiency. The model uses an averaging approach over the fuel cross section and makes some simplifying assumptions to describe the transient equations for the averaged fuel, fuel centerline and sheath temperatures. It is shown that by introducing a factor in the effective fuel conductivity, the analytical solution of the mean fuel temperature can be modified to simulate the effects of the flux depression in the heat generation rate and the variation in fuel thermal conductivity. The simplified analytical method used in the transient equation is presented. The accuracy of the lumped parameter model has been compared with the results from the finite difference method. (author). 4 refs., 2 tabs., 4 figs.

  3. A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Philip, Bobby, E-mail: philipb@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Berrill, Mark A.; Allu, Srikanth; Hamilton, Steven P.; Sampath, Rahul S.; Clarno, Kevin T. [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Dilts, Gary A. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States)

    2015-04-01

    This paper describes an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors is described. Details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstrating the achieved efficiency of the algorithm are presented. Furthermore, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.

  4. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Ainsworth, K.F.

    1979-01-01

    A nuclear fuel element is described having a cluster of nuclear fuel pins supported in parallel, spaced apart relationship by transverse cellular braces within coaxial, inner and outer sleeves, the inner sleeve being in at least two separate axial lengths, each of the transverse braces having a peripheral portion which is clamped peripherally between the ends of the axial lengths of the inner sleeve. (author)

  5. Analytic models for fuel pin transient performance

    International Nuclear Information System (INIS)

    Bard, F.E.; Fox, G.L.; Washburn, D.F.; Hanson, J.E.

    1976-09-01

    HEDL's ability to analyze various mechanisms that operate within a fuel pin has progressed substantially through development of codes such as PECTCLAD, which solves cladding response, and DSTRESS, which solves fuel response. The PECTCLAD results show good correlation with a variety of mechanical tests on cladding material and also demonstrate the significance of cladding strength when applying the life fraction rule. The DSTRESS results have shown that fuel deforms sufficiently during overpower transient tests that available volumes are filled, whether in the form of a central cavity or start-up cracks

  6. Method of dismantling nuclear fuel elements

    International Nuclear Information System (INIS)

    Adams, G.J.

    1983-01-01

    Nuclear fuel assemblies of the kind comprising fuel pins in dimpled cellular grids are freed from the grids to aid dismantling of the assemblies by causing a rotary sleeve to pass concentrically over the pins to remove the dimples in the grids and thereby increase the freedom of the pins in the cells of the grids. (author)

  7. Theoretical studies of the influence of filler material gas gap and cladding material on rewetting rate of nuclear reactor fuel pins

    International Nuclear Information System (INIS)

    Blackburn, D.; Pearson, K.G.; Shires, G.L.

    1977-03-01

    Theoretical studies of the effect of fuel and gas gap on the rewetting rate of overheated fuel pins quenched by a falling film of water are presented. Two approaches have been made: a finite difference technique and an approximate analytical solution. The results obtained by the two methods for the case of a uranium-dioxide-filled Zircaloy clad fuel pin are in close agreement. The paper shows that under high pressure conditions the delaying effect of the stored heat within the fuel on the wetting rate is relatively small, particularly if a gas gap is present between the clad and the fuel. At low pressure conditions, however, the effect of the fuel may be very important. Simplification of the analytical solution shows that at low wetting rates a constant fractional reduction in wetting speed may be anticipated the magnitude of which depends only on the relative thermal diffusivities and heat capacities of the fuel and cladding. (author)

  8. Alternatives for water basin spent fuel storage using pin storage

    International Nuclear Information System (INIS)

    Viebrock, J.M.; Carlson, R.W.

    1979-09-01

    The densest tolerable form for storing spent nuclear fuel is storage of only the fuel rods. This eliminates the space between the fuel rods and frees the hardware to be treated as non-fuel waste. The storage density can be as much as 1.07 MTU/ft 2 when racks are used that just satisfy the criticality and thermal limitations. One of the major advantages of pin storage is that it is compatible with existing racks; however, this reduces the storage density to 0.69 MTU/ft 2 . Even this is a substantial increase over the 0.39 MTU/ft 2 that is achievable with current high capacity stainless steel racks which have been selected as the bases for comparison. Disassembly requires extensive operation on the fuel assembly to remove the upper end fitting and to extract the fuel rods from the assembly skeleton. These operations will be performed with the aid of an elevator to raise the assembly where each fuel rod is grappled. Lowering the elevator will free the fuel rod for transfer to the storage canister. A storage savings of $1510 per MTU can be realized if the pin storage concept is incorporated at a new away-from-reactor facility. The storage cost ranges from $3340 to $7820 per MTU of fuel stored with the lower cost applying to storage at an existing away-from-reactor storage facility and the higher cost applying to at-reactor storage

  9. Method and device for cleaning fuel pins

    International Nuclear Information System (INIS)

    Matsumoto, Kaname; Oohigashi, Yoshiaki.

    1985-01-01

    Purpose: To remove clads or scales deposited on the outer surface of fuel pins in BWR type reactors. Method: A fuel assembly taken out of a reactor core is vertically contained without detaching a channel box in a scrubber tower disposed in a liquid tight manner within a fuel pool. Then, a specifically prepared slurry is caused to flow and uprise from the bottom of the scrubber tower into the channel box and then discharged from the top of the tower. The slurry is prepared by mixing pure water and granules (for example, as activated carbon, ion exchanger resin, iron and molecular sieve) of such a granular size as not causing clogging in the channel box of the fuel assembly and having a larger specific gravity than pure water. The slurry flown into the channel box scrubs the surface of fuel pins to scrape off clads or scales. Then, discharged slurry is sent to a hydraulic cyclone to separate the granules from the clads or scales. (Ikeda, J.)

  10. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1980-01-01

    A bimetallic spacer means is cooperatively associated with a nuclear fuel assembly and operative to resist the occurrence of in-reactor bowing of the nuclear fuel assembly. The bimetallic spacer means in one embodiment of the invention includes a space grid formed, at least principally, of zircaloy to the external surface of which are attached a plurality of stainless steel strips. In another embodiment the strips are attached to fuel pins. In each of the embodiments, the stainless steel strips during power production expand outwardly to a greater extent than do the members to which the stainless steel strips are attached, thereby forming stiff springs which abut against like bimetallic spacer means with which the other nuclear fuel assemblies are provided in a given nuclear reactor core to thus prevent the occurrence of in-reactor bowing of the nuclear fuel assemblies. (author)

  11. Correlation of creep and swelling with fuel pin performance

    International Nuclear Information System (INIS)

    Jackson, R.J.; Washburn, D.F.; Garner, F.A.; Gilbert, E.R.

    1975-09-01

    The HEDL PNL-11 experiment described was one in a series of fueled subassemblies irradiated in EBR-II to demonstrate the adequacy of the FFTF fuel pin design. The cladding material, dimensions, and fuel density are prototypic of FFTF. Because neutron flux in EBR-II is lower than in FFTF, the uranium enrichment is higher in these experimental fuel pins, irradiated in EBR-II, than the FFTF enrichment for comparable linear heat rates. Some pertinent oprating conditions for the center fuel pin in this experiment are listed. This 37-pin subassembly represents, at 110,000 MWd/MTM, the highest burnup yet attained by a prototypic FFTF subassembly. Similarly, this is the highest fluence presently attained by prototypic fuel pins. A cladding breach occurred in one fuel pin which is presently being examined. Results are presented and discussed

  12. Nuclear fuel

    International Nuclear Information System (INIS)

    D Hondt, P.

    1998-01-01

    The research and development programme on nuclear fuel at the Belgian Nuclear Research Centre SCK/CEN is described. The objective of this programme is to enhance the quantitative prediction of the operational limits of nuclear fuel and to assess the behaviour of fuel under incidental and accidental conditions. Progress is described in different domains including the modelling of fission gas release in LWR fuel, thermal conductivity, basic physical phenomena, post-irradiation examination for fuel performance assessment, and conceptual studies of incidental and accidental fuel experiments

  13. Fuel-pin cladding transient failure strain criterion

    International Nuclear Information System (INIS)

    Bard, F.E.; Duncan, D.R.; Hunter, C.W.

    1983-01-01

    A criterion for cladding failure based on accumulated strain was developed for mixed uranium-plutonium oxide fuel pins and used to interpret the calculated strain results from failed transient fuel pin experiments conducted in the Transient Reactor Test (TREAT) facility. The new STRAIN criterion replaced a stress-based criterion that depends on the DORN parameter and that incorrectly predicted fuel pin failure for transient tested fuel pins. This paper describes the STRAIN criterion and compares its prediction with those of the stress-based criterion

  14. Material accountancy for metallic fuel pin casting

    International Nuclear Information System (INIS)

    Bucher, R.G.; Orechwa, Y.; Beitel, J.C.

    1995-01-01

    The operation of the Fuel Conditioning Facility (FCF) is based on the electrometallurgical processing of spent metallic reactor fuel. The pin casting operation, although only one of several operations in FCF, was the first to be on-line. As such, it has served to demonstrate the material accountancy system in many of its facets. This paper details, for the operation of the pin casting process with depleted uranium, the interaction between the mass tracking system (MTG) and some of the ancillary computer codes which generate pertinent information for operations and material accountancy. It is necessary to distinguish between two types of material balance calculations -- closeout for operations and material accountancy for safeguards. The two have much in common, for example, the mass tracking system database and the calculation of an inventory difference, but, in general, are not congruent with regard to balance period and balance spatial domain. Moreover, the objective, assessment, and reporting requirements of the calculated inventory difference are very different in the two cases

  15. Fabrication drawings of fuel pins for FUJI project among PSI, JNC and NRG. Revised version

    International Nuclear Information System (INIS)

    Ozawa, Takayuki; Nakazawa, Hiroaki; Abe, Tomoyuki; Nagayama, Masahiro

    2002-02-01

    Irradiation tests and post-irradiation examinations in the framework of JNC-PSI-NRG collaboration project will be performed in 2003-2005. Irradiation fuel pins will be fabricated by the middle of 2003. The fabrication procedure for irradiation fuel pins has been started in 2001. Several fabrication tests and qualification tests in JNC and PSI (Paul Scherrer Institute, Switzerland) have been performed before the fuel pin fabrication. According to the design assignment between PSI and JNC in the frame of this project, PSI should make a specification document for the fuel pellet, the sphere-pac fuel particles, the vipac fuel particles, and the fuel pin. JNC should make a fabrication drawing for irradiation pins. JNC has been performed the fuel design in cooperation with PSI and NRG (Nuclear Research and Consultancy Group, Netherlands). In this project, the pelletized fuel, the sphere-pac fuel, and the vipac fuel will be simultaneously irradiated on HFR (High Flux Reactor, Netherlands). This fabrication drawing has been made under the design assignment with PSI, and consists of the drawing of MOX pellet, thermal insulator pellet, pin components, fuel segments, and the constructed pin. The fabrication drawings were approved in October 2001, but after that, the optimization of specifications has been discussed and agreed among all partners. In this report, the revised fabrication drawings will be shown. Based on the commission of Plutonium Fuel Technology Group, Advanced Fuel Recycle Technology Division, this design work has been performed in Fuel Design and Evaluation Group, Plutonium Fuel Fabrication Division, Plutonium Fuel Center. (author)

  16. Numerical solution of diffusion equation to study fast neutrons flux distribution for variant radii of nuclear fuel pin and moderator regions

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi Shirazi, Seyed Alireza [Islamic Azad Univ. (I.A.U.), Dept. of Physics, Tehran (Iran, Islamic Republic of)

    2015-07-15

    In this symbolic investigation, a cylindrical cell in a LWR, which consists of one fuel pin and moderator (water), is considered. The width of this cylindrical cell is divided into 100 equal units. Since the neutron flux in a cylindrical fuel pin is resulting from the diffusion equation: -(1)/(r)(d)/(dr)Dr(d)/(dr)φ(r) + Σ{sub a}φ(r) = S(r), the amount of fast neutron fluxes are obtained on the basis of the numeric solution of this equation, and the applied boundary conditions are considered: φ'(0) = φ'(1) = 0. This differential equation is solved by the tridiagonal method for variant enrichments of uranium. Neutron fluxes are obtained in variant radii of fuel pin and moderator and are finally compared with each other. There are some interesting outcomes resulting from this investigation. It can be inferred that because of the fuel enrichment increment, the fast neutron flux increases significantly at the centre of core, while many of the fast neutrons produced are absorbed after entering the water region, moderation of lots of them causes the reduced neutron flux to get improved in this region.

  17. Heat transfer in a fuel pin shipping container

    International Nuclear Information System (INIS)

    Ingham, J.G.

    1980-01-01

    Maximum cladding temperatures occur when the IDENT 1578 fuel pin shipping container is installed in the T-3 Cask. The maximum allowable cladding temperature of 800 0 F is reached when the rate of energy deposited in the 19-pin basket reaches 400 watts. Since 45% of the energy which is generated in the fuel escapes the 19-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 400/.55 = 727 watts. Similarly, the maximum allowable cladding temperature of 800 0 F is reached when the rate of energy deposited in the 40-pin basket reaches 465 watts. Since 33% of the energy which is generated in the fuel escapes the 40-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 465/.66 = 704 watts. The IDENT 1578 fuel pin shipping container therefore meets its thermal design criteria. IDENT 1578 can handle fuel pins with a decay heat load of 600 watts while maintaining the maximum fuel pin cladding temperature below 800 0 F. The emissivities which were determined from the test results for the basket tubes and container are relatively low and correspond to new, shiny conditions. As the IDENT 1578 container is exposed to high temperatures for extended periods of time during the transportation of fuel pins, the emissivities will probably increase. This will result in reduced temperatures

  18. Reactor physics analysis of the pin-cell Doppler effect in a thermal nuclear reactor

    International Nuclear Information System (INIS)

    Kruijf, W.J.M. de.

    1995-01-01

    This report has also been published as a PhD thesis. It deals with the Doppler effect in thermal nuclear reactors. Especially the behaviour of the reactor in transient conditions is an important issue. During such a transient the radial temperature profile in a fuel pin changes. In this PhD research effective fuel temperatures have been calculated for arbitrary temperature profiles in the fuel pin with the improved slowing-down code ROLAIDS-CPM. A general expression for the effective fuel temperature in a specific fuel pin is found by defining this effective fuel temperature as a weighted sum of the temperatures in different radial fuel zones. Also, the radial power profile in a fuel pin has been calculated by performing detailed burnup calculations, which agree very well with experimental data. (orig.)

  19. DIMCO. A new system for mechanical and bidimensional, of nuclear fuel pins; DIMCO un nuevo sistema de calculo mecanico de combustibles nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, A

    1977-07-01

    The system developed in JEN, for: the mechanical analysis uni and bidimensional, of nuclear fuels is presented. The mathematical and numerical foundations used, are here described. And so the models developed for effects such as swelling, cracking, clad growth etc. Numerical results for several cases are presented. a) Numerical test in one and two dimensions. b) Applicability range, c) Interaction effects. d) Influence of the power history. (Author) 17 refs.

  20. Whole-Pin Furnace system: An experimental facility for studying irradiated fuel pin behavior under potential reactor accident conditions

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tsai, H.C.; Donahue, D.A.; Pushis, D.O.; Savoie, F.E.; Holland, J.W.; Wright, A.E.; August, C.; Bailey, J.L.; Patterson, D.R.

    1990-05-01

    The whole-pin furnace system is a new in-cell experimental facility constructed to investigate how irradiated fuel pins may fail under potential reactor accident conditions. Extensive checkouts have demonstrated excellent performance in remote operation, temperature control, pin breach detection, and fission gas handling. The system is currently being used in testing of EBIR-II-irradiated Integral Fast Reactor (IFR) metal fuel pins; future testing will include EBR-II-irradiated mixed-oxide fuel pins. 7 refs., 4 figs

  1. Nuclear fuels

    International Nuclear Information System (INIS)

    2008-01-01

    The nuclear fuel is one of the key component of a nuclear reactor. Inside it, the fission reactions of heavy atoms, uranium and plutonium, take place. It is located in the core of the reactor, but also in the core of the whole nuclear system. Its design and properties influence the behaviour, the efficiency and the safety of the reactor. Even if it represents a weak share of the generated electricity cost, its proper use represents an important economic stake. Important improvements remain to be made to increase its residence time inside the reactor, to supply more energy, and to improve its robustness. Beyond the economical and safety considerations, strategical questions have to find an answer, like the use of plutonium, the management of resources and the management of nuclear wastes and real technological challenges have to be taken up. This monograph summarizes the existing knowledge about the nuclear fuel, its behaviour inside the reactor, its limits of use, and its R and D tracks. It illustrates also the researches in progress and presents some key results obtained recently. Content: 1 - Introduction; 2 - The fuel of water-cooled reactors: aspect, fabrication, behaviour of UO 2 and MOX fuels inside the reactor, behaviour in loss of tightness situation, microscopic morphology of fuel ceramics and evolution under irradiation - migration and localisation of fission products in UOX and MOX matrices, modeling of fuels behaviour - modeling of defects and fission products in the UO 2 ceramics by ab initio calculations, cladding and assembly materials, pellet-cladding interaction, advanced UO 2 and MOX ceramics, mechanical behaviour of the fuel assembly, fuel during a loss of coolant accident, fuel during a reactivity accident, fuel during a serious accident, fuel management inside reactor cores, fuel cycle materials balance, long-term behaviour of the spent fuel, fuel of boiling water reactors; 3 - the fuel of liquid metal fast reactors: fast neutrons radiation

  2. SP-100 Fuel Pin Performance: Results from Irradiation Testing

    Science.gov (United States)

    Makenas, Bruce J.; Paxton, Dean M.; Vaidyanathan, Swaminathan; Marietta, Martin; Hoth, Carl W.

    1994-07-01

    A total of 86 experimental fuel pins with various fuel, liner, and cladding candidate materials have been irradiated in the Experimental Breeder Reactor-II (EBR-II) and the Fast Flux Test Facility (FFTF) reactor as part of the SP-100 fuel pin irradiation testing program. Postirradiation examination results from these fuel pins are key in establishing performance correlations and demonstrating the lifetime and safety of the reactor fuel system. This paper provides a brief description of the in-reactor fuel pin tests and presents the most recent irradiation data on the performance of wrought rhenium (Re) liner material and high density UN fuel at goal burnup of 6 atom percent (at. %). It also provides an overview of the significant variety of other fuel/liner/cladding combinations which were irradiated as part of this program and which may be of interest to more advanced efforts.

  3. Nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, H [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1976-10-01

    It is expected that nuclear power generation will reach 49 million kW in 1985 and 129 million kW in 1995, and the nuclear fuel having to be supplied and processed will increase in proportion to these values. The technical problems concerning nuclear fuel are presented on the basis of the balance between the benefit for human beings and the burden on the human beings. Recently, especially the downstream of nuclear fuel attracts public attention. Enriched uranium as the raw material for light water reactor fuel is almost monopolized by the U.S., and the technical information has not been published for fear of the diversion to nuclear weapons. In this paper, the present situations of uranium enrichment, fuel fabrication, transportation, reprocessing and waste disposal and the future problems are described according to the path of nuclear fuel cycle. The demand and supply of enriched uranium in Japan will be balanced up to about 1988, but afterwards, the supply must rely upon the early establishment of the domestic technology by centrifugal separation method. No problem remains in the fabrication of light water reactor fuel, but for the fabrication of mixed oxide fuel, the mechanization of the production facility and labor saving are necessary. The solution of the capital risk for the construction of the second reprocessing plant is the main problem. Japan must develop waste disposal techniques with all-out efforts.

  4. Nuclear fuels

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F.

    2009-01-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO 2 pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO 2 and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under irradiation

  5. Nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F

    2009-07-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO{sub 2} pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO{sub 2} and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under

  6. Nuclear fuel

    International Nuclear Information System (INIS)

    Azevedo, J.B.L. de.

    1980-01-01

    All stages of nuclear fuel cycle are analysed with respect to the present situation and future perspectives of supply and demand of services; the prices and the unitary cost estimation of these stages for the international fuel market are also mentioned. From the world resources and projections of uranium consumption, medium-and long term analyses are made of fuel availability for several strategies of use of different reactor types. Finally, the cost of nuclear fuel in the generation of electric energy is calculated to be used in the energetic planning of the electric sector. (M.A.) [pt

  7. HLM fuel pin bundle experiments in the CIRCE pool facility

    Energy Technology Data Exchange (ETDEWEB)

    Martelli, Daniele, E-mail: daniele.martelli@ing.unipi.it [University of Pisa, Department of Civil and Industrial Engineering, Pisa (Italy); Forgione, Nicola [University of Pisa, Department of Civil and Industrial Engineering, Pisa (Italy); Di Piazza, Ivan; Tarantino, Mariano [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone (Italy)

    2015-10-15

    Highlights: • The experimental results represent the first set of values for LBE pool facility. • Heat transfer is investigated for a 37-pin electrical bundle cooled by LBE. • Experimental data are presented together with a detailed error analysis. • Nu is computed as a function of the Pe and compared with correlations. • Experimental Nu is about 25% lower than Nu derived from correlations. - Abstract: Since Lead-cooled Fast Reactors (LFR) have been conceptualized in the frame of GEN IV International Forum (GIF), great interest has focused on the development and testing of new technologies related to HLM nuclear reactors. In this frame the Integral Circulation Experiment (ICE) test section has been installed into the CIRCE pool facility and suitable experiments have been carried out aiming to fully investigate the heat transfer phenomena in grid spaced fuel pin bundles providing experimental data in support of European fast reactor development. In particular, the fuel pin bundle simulator (FPS) cooled by lead bismuth eutectic (LBE), has been conceived with a thermal power of about 1 MW and a uniform linear power up to 25 kW/m, relevant values for a LFR. It consists of 37 fuel pins (electrically simulated) placed on a hexagonal lattice with a pitch to diameter ratio of 1.8. The FPS was deeply instrumented by several thermocouples. In particular, two sections of the FPS were instrumented in order to evaluate the heat transfer coefficient along the bundle as well as the cladding temperature in different ranks of sub-channels. Nusselt number in the central sub-channel was therefore calculated as a function of the Peclet number and the obtained results were compared to Nusselt numbers obtained from convective heat transfer correlations available in literature on Heavy Liquid Metals (HLM). Results reported in the present work, represent the first set of experimental data concerning fuel pin bundle behaviour in a heavy liquid metal pool, both in forced and

  8. Fabrication drawings of fuel pins for FUJI project among PSI, JNC and NRG. Revised version 2

    International Nuclear Information System (INIS)

    Ozawa, Takayuki; Nakazawa, Hiroaki; Abe, Tomoyuki; Nagayama, Masahiro

    2002-10-01

    Irradiation tests and post-irradiation examinations in the framework of JNC-PSI-NRG collaboration project will be performed in 2003-2005. Irradiation fuel pins will be fabricated by the middle of 2003. The fabrication procedure for irradiation fuel pins has been started in 2001. Several fabrication tests and qualification tests in JNC and PSI (Paul Scherrer Institut, Switzerland) have been performed before the fuel pin fabrication. According to the design assignment between PSI and JNC in the frame of this project, PSI should make specification documents for the fuel pellet, the sphere-pac fuel particles, the vipac fuel fragments, and the fuel segment fabrication. JNC should make the fabrication drawings for irradiation pins. JNC has been performed the fuel design in cooperation with PSI and NRG (Nuclear Research and Consultancy Group, Holland). In this project, the pelletized fuel, the sphere-pac fuel, and the vipac fuel will be simultaneously irradiated on HFR (High Flux Reactor, Holland). The fabrication drawings have been made under the design assignment with PSI, and consist of the drawings of MOX pellet, thermal insulator pellet, pin components, fuel segments, and the constructed pin. The fabrication drawings were approved in October 2001, but after that, the optimization of specifications was discussed and agreed among all partners. According to this agreement, the fabrication drawings were revised in January 2002. After the earlier revision, the shape of particle retainer to be made by PSI was modified from its drawing beforehand delivered. In this report, the fabrication drawings revised again will be shown, and the fabrication procedure (welding Qualification Tests) will be modified in accordance with the result of discussion on the 3rd technical meeting held in September 2002. These design works have been performed in Fuel Design and Evaluation Group, Plutonium Fuel Fabrication Division, Plutonium Fuel Center under the commission of Plutonium Fuel

  9. Fuel pin integrity assessment under large scale transients

    International Nuclear Information System (INIS)

    Dutta, B.K.

    2006-01-01

    The integrity of fuel rods under normal, abnormal and accident conditions is an important consideration during fuel design of advanced nuclear reactors. The fuel matrix and the sheath form the first barrier to prevent the release of radioactive materials into the primary coolant. An understanding of the fuel and clad behaviour under different reactor conditions, particularly under the beyond-design-basis accident scenario leading to large scale transients, is always desirable to assess the inherent safety margins in fuel pin design and to plan for the mitigation the consequences of accidents, if any. The severe accident conditions are typically characterized by the energy deposition rates far exceeding the heat removal capability of the reactor coolant system. This may lead to the clad failure due to fission gas pressure at high temperature, large- scale pellet-clad interaction and clad melting. The fuel rod performance is affected by many interdependent complex phenomena involving extremely complex material behaviour. The versatile experimental database available in this area has led to the development of powerful analytical tools to characterize fuel under extreme scenarios

  10. Dynamic behaviour of FBR fuel pin bundles

    International Nuclear Information System (INIS)

    Martin, P.H.; Van Dorsselaere, J.P.; Ravenet, A.

    1990-01-01

    A programme of shock tests on a fast neutron reactor subassembly model (SPX1 geometry) including a complete bundle of fuel pins (dummy elements) is being carried out in the BELIER test facility at Cadarache. The purpose of these tests is: to determine the distribution of dynamic forces applied to the fuel rod clads under the impact conditions encountered in a reactor during a earthquake; to reduce as much as possible the conservatism of the methods presently used for the calculation of those forces. The test programme, now being completed, consists of the following steps: impacts on the mock-up in air with an non-compact bundle (situation of the subassembly at beginning of life (BOL) with clearances within the bundle); impacts under the same conditions but with fluid (water) in the subassembly; impacts on the mock-up in air and with a compacted bundle (simulating the conditions of an end-of-life (EOL) bundle with no clearance within the bundle). The accelerations studied in these tests cover the range encountered in design calculations for the subassembly frequencies in beam mode. (author)

  11. Fabrication of oxide dispersion strengthened ferritic clad fuel pins

    International Nuclear Information System (INIS)

    Zirker, L.R.; Bottcher, J.H.; Shikakura, S.; Tsai, C.L.

    1991-01-01

    A resistance butt welding procedure was developed and qualified for joining ferritic fuel pin cladding to end caps. The cladding are INCO MA957 and PNC ODS lots 63DSA and 1DK1, ferritic stainless steels strengthened by oxide dispersion, while the end caps are HT9 a martensitic stainless steel. With adequate parameter control the weld is formed without a residual melt phase and its strength approaches that of the cladding. This welding process required a new design for fuel pin end cap and weld joint. Summaries of the development, characterization, and fabrication processes are given for these fuel pins. 13 refs., 6 figs., 1 tab

  12. Assessment of pin-by-pin fission rate distribution within MOX/UO{sub 2} fuel assembly using MCNPX code

    Energy Technology Data Exchange (ETDEWEB)

    Louis, Heba Kareem; Amin, Esmat [Nuclear and Radiological Regulation Authority (NRRA), Cairo (Egypt). Safety Engineering Dept.

    2016-03-15

    The aim of the present paper is to assess the calculations of pin-by-pin group integrated fission rates within MOX/UO{sub 2} Fuel assemblies using the Monte Carlo code MCNP2.7c with two sets of the available latest nuclear data libraries used for calculating MOX-fueled systems. The data that are used in this paper are based on the benchmark by the NEA Nuclear Science Committee (NSC). The k{sub ∞} and absorption/fission reaction rates per isotope, k{sub eff} and pin-by-pin group integrated fission rates on 1/8 fraction of the geometry are determined. To assess the overall pin-by-pin fission rate distribution, the collective per cent error measures were investigated. The results of AVG, MRE and RMS error measures were less than 1 % error. The present results are compared with other participants using other Monte Carlo codes and with CEA results that were taken in the benchmark as reference. The results with ENDF/B-VI.6 are close to the results received by MVP (JENDL3.2) and SCALE 4.2 (JEF2.2). The results with ENDF/BVII.1 give higher values of k{sub ∞} reflecting the changes in the newer evaluations. In almost all results presented here, the MCNP calculated results with ENDF/B VII.1 should be considered more than those obtained by using other Monte Carlo codes and nuclear data libraries. The present calculations may be consider a reference for evaluating the numerical schemes in production code systems, as well as the global performance including cross-section data reduction methods as the calculations used continuous energy and no geometrical approximations.

  13. Progress in fuel pin modelling in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Stephen, J D; Biancheria, A; Leibnitz, D; O' Reilly, B D; Liu, Y Y; Labar, M P; Gneiting, B C [General Electric Company, Sunnyvale, CA (United States)

    1979-12-01

    In the USA, the focus for theoretical fuel pin modeling is the LIFE system. This system of codes, algorithms, criteria and analysis guidelines is intended to provide a common basis for communication amongst the development groups, a reference set of analysis guidelines for design, and eventually a consensus on the state-of-the-art for licensing. The technical objective is to predict the effect of design options on fuel pin performance limits, which include fuel temperature, pin deformation and cladding breach during normal operation and design basis transients. The mechanistic approach to modeling is taken in LIFE to the extent possible. That is, the approach is to describe the key phenomena in sufficient detail to provide a fundamental understanding of their synergistic effect on the fuel pin performance limits.

  14. Advanced foil activation techniques for the measurement of within-pin distributions of the 63Cu(n,γ)64Cu reaction rate in nuclear fuel

    International Nuclear Information System (INIS)

    Macku, K.; Jatuff, F.; Murphy, M.F.; Joneja, O.P.; Bischofberger, R.; Chawla, R.

    2006-01-01

    Different foil activation techniques have been used for measuring spatial distributions of the 63 Cu(n,γ) 64 Cu reaction within two pins of a SVEA-96 Optima2 boiling water reactor fuel assembly, at the critical facility PROTEUS. This reaction is of interest because its 1/v cross-section gives it a good representation of the 235 U fission rate. Initially, radial capture rate profiles were measured with mechanically punched copper foils. More detailed profiles were then determined by using a 0.2 mm copper wire spiral (∼200 μm resolution), as well as 5-, 10-, and 20-ring UV-lithography, electroplating, and molding (UV-LIGA) foils (up to a 100 μm resolution). For azimuthal measurements, apart from manually cut activation foils (into 8 sectors), 8- and 12-sector LIGA foils were used. The highly versatile LIGA foils have the additional advantage of being very easily separated into individual pieces after irradiation without the use of punches or other cutting tools. In order to account for the invasive character of the foil activation techniques, corrections to account for sample perturbations and for self-shielding effects were determined via simplified Monte Carlo (MCNP4C) modeling of the experimental setup. The final results from the various measurements of 63 Cu(n,γ) 64 Cu within-pin distributions have been compared with MCNP computations employing a detailed model of the full SVEA Optima2 fuel assembly

  15. Fuel pin bowing and related investigation of WWER-440 control rod influence on power release inside of neighbouring fuel pins

    International Nuclear Information System (INIS)

    Mikus, J.

    2005-01-01

    The purpose of this work consists in investigation of the WWER-440 control rod (CR) influence on space power distribution, especially from viewpoint of the values and gradient occurrence that could result in static and cyclic loads with some consequences, e.g. fuel pin bowing. As known, CR can cause power peaks in periphery fuel pins of adjacent operating assemblies because of the butt joint design of the absorbing adapter to the CR fuel part, that is, presence of the water cavity resulting in a flash up of thermal neutrons. As a consequence, beside well-known peaks in axial power distribution, above power gradients can occur inside of mentioned fuel pins. Because of complicated geometry and material composition of the CR, the detailed calculations concerning both above phenomena are complicated, too. Therefore it is useful to acquire appropriate experimental data to investigate mentioned influence and compare them with calculations. Since detailed power distributions cannot be obtained in the NPP, needed information is provided by means of experiments on research reactors. In case of measurements inside of fuel pins, special (e.g. track) detectors placed between fuel pellets are used. Such works are relatively complicated and time consuming, therefore an evaluation based on mathematical modelling and numerical approximation was proposed by means of that, and using measured power release in some selected fuel pins, information about power release inside of one of these fuel pins, can be obtained. For this purpose, an experiment on light water, zero-power research reactor LR-0 was realized and axial power distribution measurements were performed in a WWER-440 type core near to an authentic CR model. Application of the above evaluation method is demonstrated on one ''investigated'' fuel pin neighbouring CR by means of following results: 1. Axial power distribution inside of investigated fuel pin in two opposite positions on its pellets surface that are situated to

  16. Assessment of Radiographic Image Quality by Visual Examination of Neutron Radiographs of the Calibration Fuel Pin

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    Up till now no reliable radiographic image quality standards exist for neutron radiography of nuclear reactor fuel. Under the Euratoro Neutron Radiography Working Group (NRWG) Test Program neutron radiographs were produced at different neutron radiography facilities within the European Community...... of a calibration fuel pin. The radiographs were made by the direct, transfer and tracketch methods using different film recording materials. These neutron radiographs of the calibration fuel pin were used for the assessement of radiographic image quality. This was done by visual examination of the radiographs...

  17. FFTF/IEM cell fuel pin weighing system

    International Nuclear Information System (INIS)

    Gibbons, P.W.

    1987-01-01

    The Interim Examination and Maintenance (IEM) cell in the Fast Flux Test Facility (FFTF) is used for remote disassembly of irradiated fuel and materials experiments. For those fuel experiments where the FFTF tag-gas detection system has indicated a fuel pin cladding breach, a weighing system is used in identifying that fuel pin with a reduced weight due to the escape of gaseous and volatile fission products. A fuel pin weighing machine, originally purchased for use in the Fuels and Materials Examination Facility (FMEF), was the basis for the IEM cell system. Design modifications to the original equipment were centered around adapting the machine to the differences between the two facilities and correcting deficiencies discovered during functional testing in the IEM cell mock-up

  18. Fuel pin design algorithm for conceptual design studies

    International Nuclear Information System (INIS)

    Uselman, J.P.

    1979-01-01

    Two models are available which are currently verified by part of the requirements and which are adaptable as algorithms for the complete range. Fuel thermal performance is described by the HEDL SIEX model. Cladding damage and total deformation are determined by the GE GRO-II structural analysis code. A preliminary fuel pin performance model for analysis of (U, P/sub U/)O 2 pins in the COROPT core conceptual design system has been constructed by combining the key elements of SIEX and GRO-II. This memo describes the resulting pin performance model and its interfacing with COROPT system. Some exemplary results are presented

  19. FFTF metal fuel pin sodium bond quality verification

    International Nuclear Information System (INIS)

    Pitner, A.L.; Dittmer, J.O.

    1988-12-01

    The Fast Flux Test Facility (FFTF) Series III driver fuel design consists of U-10Zr fuel slugs contained in a ferritic alloy cladding. A liquid metal, sodium bond between the fuel and cladding is required to prevent unacceptable temperatures during operation. Excessive voiding or porosity in the sodium thermal bond could result in localized fuel melting during irradiation. It is therefore imperative that bond quality be verified during fabrication of these metal fuel pins prior to irradiation. This document discusses this verification

  20. Radial power distribution shaping within a PWR fuel assembly utilizing asymmetrically loaded gadolinia-bearing fuel pins

    International Nuclear Information System (INIS)

    Stone, I.Z.

    1992-01-01

    As in-core fuel management designs evolve to meet the demands of increasing energy output, more innovative methods are developed to maintain power peaking within acceptable thermal margin limits. In-core fuel management staff must utilize various loading pattern strategies such as cross-core movement of fuel assemblies, multibatch enrichment schemes, and burnable absorbers as the primary means of controlling the radial power distribution. The utilization of fresh asymmetrically loaded gadolinia-bearing assemblies as a fuel management tool provides an additional means of controlling the radial power distribution. At Siemens Nuclear Power Corporation (SNP), fresh fuel assemblies fabricated with asymmetrically loaded gadolinia-bearing fuel rods have been used successfully for several cycles of reactor operation. Asymmetric assemblies are neutronically modeled using the same tools and models that SNP uses to model symmetrically loaded gadolinia-bearing fuel assemblies. The CASMO-2E code is used to produce the homogenized macroscopic assembly cross sections for the nodal core simulator. Optimum fuel pin locations within the asymmetrical assembly are determined using the pin-by-pin PDQ7 assembly core model for each new assembly design. The optimum pin location is determined by the rod loading that minimizes the peak-to-average pin power

  1. Implications and control of fuel-cladding chemical interaction for LMFBR fuel pin design

    International Nuclear Information System (INIS)

    Roake, W.E.

    1977-01-01

    Fuel-cladding-chemical-interaction (FCCI) is typically incorporated into the design of an LMFBR fuel pin as a wastage allowance. Several interrelated factors are considered during the evolution of an LMFBR fuel pin design. Those which are indirectly affected by FCCI include: allowable pin power, fuel restructuring, fission gas migration and release from the fuel, fuel cracking, fuel swelling, in-reactor cladding creep, cladding swelling, and the cladding mechanical strain. Chemical activity of oxygen is the most readily controlled factor in FCCI. Two methods are being investigated: control of total oxygen inventory by limiting fuel O/M, and control of oxygen activity with buffer metals

  2. Implications and control of fuel-cladding chemical interaction for LMFBR fuel pin design

    Energy Technology Data Exchange (ETDEWEB)

    Roake, W E [Westinghouse-Hanford Co., Richland, WA (United States)

    1977-04-01

    Fuel-cladding-chemical-interaction (FCCI) is typically incorporated into the design of an LMFBR fuel pin as a wastage allowance. Several interrelated factors are considered during the evolution of an LMFBR fuel pin design. Those which are indirectly affected by FCCI include: allowable pin power, fuel restructuring, fission gas migration and release from the fuel, fuel cracking, fuel swelling, in-reactor cladding creep, cladding swelling, and the cladding mechanical strain. Chemical activity of oxygen is the most readily controlled factor in FCCI. Two methods are being investigated: control of total oxygen inventory by limiting fuel O/M, and control of oxygen activity with buffer metals.

  3. Fabrication of Fast Reactor Fuel Pins for Test Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Karsten, G. [Institute for Applied Reactor Physics, Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany); Dippel, T. [Institute for Radiochemistry, Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany); Laue, H. J. [Institute for Applied Reactor Physics, Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany)

    1967-09-15

    An extended irradiation programme is being carried out for the fuel element development of the Karlsruhe fast breeder project. A very important task within the programme is the testing of plutonium-containing fuel pins in a fast-reactor environment. This paper deals with fabrication of such pins by our laboratories at Karlsruhe. For the fast reactor test positions at present envisaged a fuel with 15% plutonium and the uranium fully enriched is appropriate. Hie mixed oxide is both pelletized and vibro-compacted with smeared densities between 80 and 88% theoretical. The pin design is, for example, such that there are two gas plena at the top and bottom, and one blanket above the fuel with the fuel zone fitting to the test reactor core length. The specifications both for fuel and cladding have been adapted to the special purpose of a fast-breeder reactor - the outer dimensions, the choice of cladding and fuel types, the data used and the kind of tests outline the targets of the development. The fuel fabrication is described in detail, and also the powder line used for vibro-compaction. The source materials for the fuel are oxalate PuO{sub 2} and UO{sub 2} from the UF{sub 6} process. The special problems of mechanical mixing and of plutonium homogeneity have been studied. The development of the sintering technique and grain characteristics for vibratory compactive fuel had to overcome serious problems in order to reach 82-83% theoretical. The performance of the pin fabrication needed a major effort in welding, manufacturing of fits and decontamination of the pin surfaces. This was a stimulation for the development of some very subtle control techniques, for example taking clear X-ray photographs and the tube testing. In general the selection of tests was a special task of the production routine. In conclusion the fabrication of the pins resulted in valuable experiences for the further development of fast reactor fuel elements. (author)

  4. Irradiation of TZM: Uranium dioxide fuel pin at 1700 K

    Science.gov (United States)

    Mcdonald, G. E.

    1973-01-01

    A fuel pin clad with TZM and containing solid pellets of uranium dioxide was fission heated in a static helium-cooled capsule at a maximum surface temperature of 1700 K for approximately 1000 hr and to a total burnup of 2.0 percent of the uranium-235. The results of the postirradiation examination indicated: (1) A transverse, intergranular failure of the fuel pin occurred when the fuel pin reached 2.0-percent burnup. This corresponds to 1330 kW-hr/cu cm, where the volume is the sum of the fuel, clad, and void volumes in the fuel region. (2) The maximum swelling of the fuel pin was less than 1.5 percent on the fuel-pin diameter. (3) There was no visible interaction between the TZM clad and the UO2. (4) Irradiation at 1700 K produced a course-grained structure, with an average grain diameter of 0.02 centimeter and with some of the grains extending one-half of the thickness of the clad. (5) Below approximately 1500 K, the irradiation of the clad produced a moderately fine-grained structure, with an average grain diameter of 0.004 centimeter.

  5. Development of wire wrapping technology for FBR fuel pin

    International Nuclear Information System (INIS)

    Nogami, Tetsuya; Seki, Nobuo; Sawayama, Takeo; Ishibashi, Takashi

    1991-01-01

    For the FBR fuel assembly, the spacer wire is adopted to maintain the space between fuel pins. The developments have been carried out to achieve automatically wire wrapping with high precision. Based on the fundamental technology developed through the mock-up test operation, Joyo 'MK-I', fuel pin fabrication was started using partially mechanized wire wrapping machine in 1973. In 1978, an automated wire wrapping machine for Joyo 'MK-II' was developed by the adoption of some improvements for the wire inserting system to end plug hole and the precision of wire pitch. On the bases of these experiences, fully automated wire wrapping machine for 'Monju' fuel pin was installed at Plutonium Fuel Production Facility (PFPF) in 1987. (author)

  6. Effects of variations in fuel pellet composition and size on mixed-oxide fuel pin performance

    International Nuclear Information System (INIS)

    Makenas, B.J.; Jensen, B.W.; Baker, R.B.

    1980-10-01

    Experiments have been conducted which assess the effects on fuel pin performance of specific minor variations from nominal in both fuel pellet size and pellet composition. Such pellets are generally referred to in the literature as rogue pellets. The effect of these rogue pellets on fuel pin and reactor performance is shown to be minimal

  7. Image analysis for remote examination of fuel pins

    International Nuclear Information System (INIS)

    Cook, J.H.; Nayak, U.P.

    1982-01-01

    An image analysis system operating in the Wing 9 Hot Cell Facility at Los Alamos National Laboratory provides quantitative microstructural analyses of irradiated fuels and materials. With this system, fewer photomicrographs are required during postirradiation microstructural examination and data are available for analysis much faster. The system has been used successfully to examine Westinghouse Advanced Reactors Division experimental fuel pins

  8. Review of HEDL fuel pin transient analyses analytical programs

    International Nuclear Information System (INIS)

    Scott, J.H.; Baars, R.E.

    1975-05-01

    Methods for analysis of transient fuel pin performance are described, as represented by the steady-state SIEX code and the PECT series of codes used for steady-state and transient mechanical analyses. The empirical fuel failure correlation currently in use for analysis of transient overpower accidents is described. (U.S.)

  9. Preliminary evaluation of pin power distribution for fuel assemblies of SMART by MCNP

    International Nuclear Information System (INIS)

    Kim, Kyo Youn

    1998-08-01

    Monte Carlo transport code MCNP can describe an object sophisticately by use of three-dimensional modelling and can adopt a continuous energy cross-section library. Therefore MCNP has been widely utilized in the field of radiation physics to estimate fluxes and dose rates for nuclear facilities and to review results from conventional methods such a as discrete ordinates method and point kernel method. The Monte Carlo method has recently been introduced to estimated the neutron multiplication factor and pin power distribution in the fuel assembly of a reactor core. The operating thermal power of SMART core is 330 MWt and there are 57 fuel assemblies in the core. In this study it was assumed that the core has 4 types of fuel assemblies. In this study, MCNP4a was used to perform to estimate criticality and normalized pin power distribution in a fuel assembly of SMART core. The results from MCNP4a calculations are able to be used review those from nuclear design/analysis code. It is very complicated to pick up interested data from MCNP output list and to normalize pin power distribution in a fuel assembly because MCNP is not only a nuclear design/analysis code. In this study a program FAPIN was developed to generated a generate a normalized pin power distribution from the MCNP output list. (author). 11 refs

  10. Behavior of a bundle of fast fuel pins under irradiation

    International Nuclear Information System (INIS)

    Marbach, G.; Millet, P.; Robert, J.; Languille, A.

    1979-01-01

    In the French design of fuel elements for fast reactors, great deformation of pins can bring about interaction with the hexagonal tube through the spacer wires. The change in such bundles is described here when the diameter of the cladding increases and the outcome of this reaction (bending and ovalization of pins) is calculated with a simplified model. It is shown that the results achieved agree well with the experimental observations [fr

  11. Fast reactor fuel pin behaviour modelling in the UK

    International Nuclear Information System (INIS)

    Matthews, J.R.; Hughes, H.

    1979-01-01

    Two fuel behaviour codes have been applied extensively to fast reactor problems; SLEUTH developed at Sprlngfields Nuclear Laboratory and FRUMP at A.E.R.E. Harwell. The SLEUTH fuel pin endurance code was originally developed to define a programme of power cycling and power ramp experiments In Advanced Gas Cooled Reactors (AGRs) where, because of the very soft cladding, pellet clad interaction is severe. The code was required to define accelerated test conditions to generalise from the observed endurance to that under other power histories and to select for investigation the most significant design, material and operational variables. The weak clad and low coolant pressure combine to make fission gas swelling a major contributor to clad deformation while the high clad ductility renders the distribution of strain readily observable. This has led to a detailed study of strain concentrations using the SEER code. SLEUTH and SEER have subsequently been used to specify power cycling and power ramp 112 experiments in water cooled, fast and materials testing reactors with the aim of developing a unified quantitative model of pellet-clad interaction whatever the reactor system. The FRUMP fuel behaviour code was developed specifically for the interpretation of fast reactor fuel pin behaviour. Experience with earlier models was valuable In its development. Originally the model was developed to describe behaviour during normal operation, but subsequently the code has been used extensively in the field of accident studies. Much of the effort in FRUMP development has been devoted to the production of physical models of the various effects of irradiation and the temperature gradients on the structure of the fuel and clad. Each process is modelled as well as is permitted by current knowledge and the limitations of computing costs. Each sub-model has a form which reflects the underlying mechanisms, where quantities are unknown values are assigned semi-empirically, i.e. coefficients

  12. Fast reactor fuel pin behaviour modelling in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, J R [UKAEA, Harwell, Didcot, Oxon (United Kingdom); Hughes, H [Springfields Nuclear Power Development Laboratories, Springfields, Salwick, Preston (United Kingdom)

    1979-12-01

    Two fuel behaviour codes have been applied extensively to fast reactor problems; SLEUTH developed at Sprlngfields Nuclear Laboratory and FRUMP at A.E.R.E. Harwell. The SLEUTH fuel pin endurance code was originally developed to define a programme of power cycling and power ramp experiments In Advanced Gas Cooled Reactors (AGRs) where, because of the very soft cladding, pellet clad interaction is severe. The code was required to define accelerated test conditions to generalise from the observed endurance to that under other power histories and to select for investigation the most significant design, material and operational variables. The weak clad and low coolant pressure combine to make fission gas swelling a major contributor to clad deformation while the high clad ductility renders the distribution of strain readily observable. This has led to a detailed study of strain concentrations using the SEER code. SLEUTH and SEER have subsequently been used to specify power cycling and power ramp 112 experiments in water cooled, fast and materials testing reactors with the aim of developing a unified quantitative model of pellet-clad interaction whatever the reactor system. The FRUMP fuel behaviour code was developed specifically for the interpretation of fast reactor fuel pin behaviour. Experience with earlier models was valuable In its development. Originally the model was developed to describe behaviour during normal operation, but subsequently the code has been used extensively in the field of accident studies. Much of the effort in FRUMP development has been devoted to the production of physical models of the various effects of irradiation and the temperature gradients on the structure of the fuel and clad. Each process is modelled as well as is permitted by current knowledge and the limitations of computing costs. Each sub-model has a form which reflects the underlying mechanisms, where quantities are unknown values are assigned semi-empirically, i.e. coefficients

  13. Fuel assemblies for use in nuclear reactors

    International Nuclear Information System (INIS)

    Schluderberg, D.C.

    1981-01-01

    A fuel assembly for use in pressurized water cooled nuclear fast breeder reactors is described in which moderator to fuel ratios, conducive to a high Pu-U-D 2 O reactor breeding ratio, are obtained whilst at the same time ensuring accurate spacing of fuel pins without the parasitic losses associated with the use of spacer grids. (U.K.)

  14. Reirradiation of mixed-oxide fuel pins at increased temperatures

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Weber, E.T.

    1976-05-01

    Mixed-oxide fuel pins from EBR-II irradiations were reirradiated in the General Electric Test Reactor (GETR) at higher temperatures than experienced in EBR-II to study effects of the increased operating temperatures on thermal/mechanical and chemical behavior. The response of a mixed-oxide fuel pin to a power increase after having operated at a lower power for a significant portion of its life-time is an area of performance evaluation where little information currently exists. Results show that the cladding diameter changes resulting from the reirradiation are strongly dependent upon both prior burnup level and the magnitude of the temperature increase. Results provide the initial rough outlines of boundaries within which mixed-oxide fuel pins can or cannot tolerate power increases after substantial prior burnup at lower powers

  15. Axial migratin of cesium in LMFBR fuel pins

    International Nuclear Information System (INIS)

    Karnesky, R.A.; Bridges, A.E.; Jost, J.W.

    1981-11-01

    A correlated model for quantitatively predicting the behavior of cesium in LMFBR fuel pins has been developed. This correlation was shown to be in good agreement with experimental data. It has been used to predict the behavior of cesium in the FFTF driver fuel and as the result of this analysis it has been shown that the accumulation of cesium in the insulator pellets at the ends of the fuel column will not be life limiting

  16. RANS based CFD methodology for a real scale 217-pin wire-wrapped fuel assembly of KAERI PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae-Ho, E-mail: jhjeong@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseoung-gu, Daejeon (Korea, Republic of); Song, Min-Seop [Department of Nuclear Engineering, Seoul National University, 559 Gwanak-ro, Gwanak-gu, Seoul (Korea, Republic of); Lee, Kwi-Lim [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseoung-gu, Daejeon (Korea, Republic of)

    2017-03-15

    Highlights: • This paper presents a suitable way for a practical RANS based CFD methodology which is applicable to real scale 217-pin wire-wrapped fuel assembly of KAERI PGSFR. • A key point of differentiation of the RANS based CFD methodology in this study is adapting an innovative grid generation method using a fortran based in-house code with a GGI function in a general-purpose commercial CFD code, CFX. • The RANS based CFD methodology is implemented with high resolution scheme and SST turbulence model in the 7-pin 37-pin, and 127-pin wire-wrapped fuel assembly of PNC and JNC. Furthermore, the RANS based CFD methodology can be successfully extended to the real scale 217-pin wire-wrapped fuel bundles of KAERI PGSFR. • Three-dimensional thermal-hydraulic characteristics have been also investigated briefly. - Abstract: This paper presents a suitable way for a practical RANS (Reynolds Averaged Navier-Stokes simulation) based CFD (Computational Fluid Dynamics) methodology which is applicable to real scale 217-pin wire-wrapped fuel assembly of KAERI (Korea Atomic Energy Research Institute) PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor). The main purpose of the current study is to support license issue for the KAERI PGSFR core safety and to elucidate thermal-hydraulic characteristics in a 217-pin wire-wrapped fuel assembly of KAERI PGSFR. A key point of differentiation of the RANS based CFD methodology in this study is adapting an innovative grid generation method using a fortran based in-house code with a GGI (General Grid Interface) function in a general-purpose commercial CFD code, CFX. The innovative grid generation method with GGI function can achieve to simulate a real wire shape with minimizing cell skewness. The RANS based CFD methodology is implemented with high resolution scheme in convection term and SST (Shear Stress Transport) turbulence model in the 7-pin 37-pin, and 127-pin wire-wrapped fuel assembly of PNC (Power reactor and Nuclear fuel

  17. Fuel pin response to an overpower transient in an LMFBR

    International Nuclear Information System (INIS)

    Grosberg, A.J.; Head, J.L.

    1979-01-01

    This paper describes a method by which the ability of a whole-core code accurately to predict the time and location of the first fuel pin failures may be tested. The method involves the use of a relatively simple whole-core code to 'drive' a sophisticated fuel pin code, which is far too complex to be used within a whole-core code but which is potentially capable of modelling reliably the response of an individual fuel pin. The method cannot follow accurately the subsequent course of the transient because the simple whole-core code does not model the reactivity effects of events which may follow pin failure. The codes used were the simple whole-core code FUTURE and the fuel pin behaviour code FRUMP. The paper describes an application of the method to analyse a hypothetical LMFBR accident in which the control rods were assumed to be driven from the core at maximum speed, with all trip circuits failed. Taking 0.5% clad strain as a clad failure criterion, failure was predicted to occur at the top of the active core at about 10s into the transient. A repeat analysis, using an alternative clad yield criterion which is thought to be more realistic, indicated failure at the same position but 24s into the transient. This is after the onset of sodium boiling. Pin failure at the top of the core are likely to cause negative reactivity changes. In this hypothetical accident, pin failures are likely, therefore, to have a moderating effect on the course of the transient. (orig.)

  18. Creep relaxation of fuel pin bending and ovalling stresses

    International Nuclear Information System (INIS)

    Chan, D.P.; Jackson, R.J.

    1979-06-01

    Analytical methods for calculating fuel pin cladding bending and ovalling stresses due to pin bundle-duct mechanical interaction taking into account nonlinear creep are presented. Calculated results are in close agreement with finite element results by MARC-CDC program. The methods are used to investigate the effect of creep on the FTR fuel cladding bending and ovalling stresses. It is concluded that the cladding of 316 SS 20% CW and reference design has high creep rates in the FTR core region to keep the bending and ovalling stresses to low levels

  19. Fuel pin failure in the PFR/TREAT experiments

    International Nuclear Information System (INIS)

    Herbert, R.; Hunter, C.W.; Kramer, J.M.; Wood, M.H.; Wright, A.E.

    1986-01-01

    The PFR/TREAT safety testing programme involves the transient testing of fresh and pre-irradiated UK and US fuel pins. This paper summarizes the experimental and calculational results obtained to date on fuel pin failure during transient overpower (resulting from an accidental addition of resolivity) and transient undercooling followed by overpower (arising from an accidental stoppage of the primary sodium circulating pumps) accidents. Companion papers at this conference address: (I) the progress and future plans of the programme, and (II) post-failure material movements

  20. Influence of LMFBR fuel pin temperature profiles on corrosion rate

    International Nuclear Information System (INIS)

    Shiels, S.A.; Bagnall, C.; Schrock, S.L.; Orbon, S.J.

    1976-01-01

    The paper describes the sodium corrosion behavior of 20 percent cold worked Type 316 stainless steel fuel pin cladding under a simulated reactor thermal environment. A temperature gradient, typical of a fuel pin, was generated in a 0.9 m long heater section by direct resistance heating. Specimens were located in an isothermal test section immediately downstream of the heater. A comparison of the measured corrosion rates with available data showed an enhancement factor of between 1.5 and 2 which was attributed to the severe axial temperature gradient through the heater. Differences in structure and surface chemistry were also noted

  1. Analysis of fuel cladding chemical interaction in mixed oxide fuel pins

    International Nuclear Information System (INIS)

    Weber, J.W.; Dutt, D.S.

    1976-01-01

    An analysis is presented of the observed interaction between mixed oxide 75 wt percent UO 2 --25 wt percent PuO 2 fuel and 316--20 percent CW stainless steel cladding in LMFBR type fuel pins irradiated in EBR-II. A description is given of the test pins and their operating conditions together with, metallographic observations and measurements of the fuel/cladding reaction, and a correlation equation is developed relating depth of cladding attack to temperature and burnup. Some recent data on cladding reaction in fuel pins with low initial O/M in the fuel are given and compared with the correlation equation curves

  2. Performance of fast reactor mixed-oxide fuels pins during extended overpower transients

    International Nuclear Information System (INIS)

    Tsai, H.; Neimark, L.A.; Asaga, T.; Shikakura, S.

    1991-02-01

    The Operational Reliability Testing (ORT) program, a collaborative effort between the US Department of Energy and the Power Reactor and Nuclear Fuel Development Corp. (PNC) of Japan, was initiated in 1982 to investigate the behavior of mixed-oxide fuel pin under various slow-ramp transient and duty-cycle conditions. In the first phase of the program, a series of four extended overpower transient tests, with severity sufficient to challenge the pin cladding integrity, was conducted. The objectives of the designated TOPI-1A through -1D tests were to establish the cladding breaching threshold and mechanisms, and investigate the thermal and mechanical effects of the transient on pin behavior. The tests were conducted in EBR-2, a normally steady-state reactor. The modes of transient operation in EBR-2 were described in a previous paper. Two ramp rates, 0.1%/s and 10%/s, were selected to provide a comparison of ramp-rate effects on fuel behavior. The test pins chosen for the series covered a range of design and pre-test irradiation parameters. In the first test (1A), all pins maintained their cladding integrity during the 0.1%/s ramp to 60% peak overpower. Fuel pins with aggressive designs, i.e., high fuel- smear density and/or thin cladding, were, therefore, included in the follow-up 1B and 1C tests to enhance the likelihood of achieving cladding breaching. In the meantime, a higher pin overpower capability, to greater than 100%, was established by increasing the reactor power limit from 62.5 to 75 MWt. In this paper, the significant results of the 1B and 1C tests are presented. 4 refs., 5 figs., 1 tab

  3. Irradiation project of SiC/SiC fuel pin 'INSPIRE': Status and future plan

    International Nuclear Information System (INIS)

    Kohyama, Akira; Kishimoto, Hirotatsu

    2015-01-01

    After the March 11 Disaster in East-Japan, Research and Development towards Ensuring Nuclear Safety Enhancement for LWR becomes a top priority R and D in nuclear energy policy of Japan. The role of high temperature non-metallic materials, such as SiC/SiC, is becoming important for the advanced nuclear reactor systems. SiC fibre reinforced SiC composite has been recognised to be the most attractive option for the future, now, METI fund based project, INSPIRE, has been launched as 5-year termed project at OASIS in Muroran Institute of Technology aiming at early realisation of this system. INSPIRE is the irradiation project of SiC/SiC fuel pins aiming to accumulate material, thermal, irradiation effect data of NITE-SiC/SiC in BWR environment. Nuclear fuel inserted SiC/SiC fuel pins are planned to be installed in the Halden reactor. The project includes preparing the NITE-SiC/SiC tubes, joining of end caps, preparation of rigs to control the irradiation environment to BWR condition and the instruments to measure the condition of rigs and pins in operation. Also, basic neutron irradiation data will be accumulated by SiC/SiC coupon samples currently under irradiation in BR2. The output from this project may present the potentiality of NITE-SiC/SiC fuel cladding with the first stage fuel-cladding interaction. (authors)

  4. Performance of advanced oxide fuel pins in EBR-II

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Jensen, S.M.; Hales, J.W.; Karnesky, R.A.; Makenas, B.J.

    1986-05-01

    The effects of design and operating parameters on mixed-oxide fuel pin irradiation performance were established for the Hanford Engineering Development Laboratory (HEDL) advanced oxide EBR-II test series. Fourteen fuel pins breached in-reactor with reference 316 SS cladding. Seven of the breaches are attributed to FCMI. Of the remaining seven breached pins, three are attributed to local cladding over-temperatures similar to the breach mechanism for the reference oxide pins irradiated in EBR-II. FCCI was found to be a contributing factor in two high burnup, i.e., 11.7 at. % breaches. The remaining two breaches were attributed to mechanical interaction of UO 2 fuel and fission products accumulated in the lower cladding insulator gap, and a loss of cladding ductility possibly due to liquid metal embrittlement. Fuel smear density appears to have the most significant impact on lifetime. Quantitative evaluations of cladding diameter increases attributed to FCMI, established fuel smear density, burnup, and cladding thickness-to-diameter ratio as the major parameters influencing the extent of cladding strain

  5. Automation of FBTR fuel pin inspection using FPGA

    International Nuclear Information System (INIS)

    Khare, K.M.; Pai, Siddhesh; Pant, Brijesh; Sendhil Raja, S.; Gupta, P.K.

    2011-01-01

    A non-contact metrology system for inspection of FBTR fuel pins has been developed. The system consists of a stepper motors driven mechanism for orientation and positioning of FBTR fuel pin, a telecentric imaging system, absolute linear encoder with 0.1 μm resolution and a Field Programmable Gate Array (FPCA) based controller. The FBTR pin assembly is telecentrically illuminated from bottom by a red LED and its shadow graph is imaged using a CCD camera through telecentric imaging lens system. For system control and automation we have used a FPGA that has integrated soft picoblaze processor, X-θ axis motion controller, custom IPs for encoder data acquisition, synchronization circuit, RS485 interface along with other l/Os. Using the Graphical User Interface (GUI) on a PC the system is initialized at home position and the controller provides the trigger signal for start of data acquisition of CCD camera. CCD image of pin and the corresponding X-θ information is captured. After the acquisition of one set of images, the imaging module is moved with a step size pre-programmed to ensure proper stitching of acquired images. The GUI is programmed to analyze these X-θ Images to calculate the required parameters of the fuel pin like the diameter variation, pitch and bow. The details of the instrument and measurements made with it will be presented. (author)

  6. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  7. Neutron radiography for quality assurance of PHWR fuel pins

    International Nuclear Information System (INIS)

    Chandrasekharan, K.N.; Patil, B.P.; Ghosh, J.K.; Ganguly, C.

    1993-01-01

    Neutron radiography was employed for quality assurance (QA) for advanced PHWR experimental fuel pins containing mixed uranium-plutonium dioxide and thorium-plutonium dioxide pellets. Direct, transfer and track-etch techniques were utilised. The thermal neutron beam facility of APSARA research reactor at Bhabha Atomic Research Centre was used. (author). 5 refs., 16 figs., 2 tabs

  8. Calculation of fuel pin failure timing under LOCA conditions

    International Nuclear Information System (INIS)

    Jones, K.R.; Wade, N.L.; Siefken, L.J.; Straka, M.; Katsma, K.R.

    1991-10-01

    The objective of this research was to develop and demonstrate a methodology for calculation of the time interval between receipt of the containment isolation signals and the first fuel pin failure for loss-of-coolant accidents (LOCAs). Demonstration calculations were performed for a Babcock and Wilcox (B ampersand W) design (Oconee) and a Westinghouse (W) 4-loop design (Seabrook). Sensitivity studies were performed to assess the impacts of fuel pin burnup, axial peaking factor, break size, emergency core cooling system (ECCS) availability, and main coolant pump trip on these items. The analysis was performed using a four-code approach, comprised of FRAPCON-2, SCDAP/RELAP5/MOD3, TRAC-PF1/MOD1, and FRAP-T6. In addition to the calculation of timing results, this analysis provided a comparison of the capabilities of SCDAP/RELAP5/MOD3 with TRAC-PF1/MOD1 for large-break LOCA analysis. This paper discusses the methodology employed and the code development efforts required to implement the methodology. The shortest time intervals calculated between initiation of containment isolation and fuel pin failure were 11.4 s and 19.1 for the B ampersand W and W plants, respectively. The FRAP-T6 fuel pin failure times calculated using thermal-hydraulic data generated by SCDAP/RELAP5/MOD3 were more conservative than those calculated using data generated by TRAC-PF1/MOD1. 18 refs., 7 figs., 4 tabs

  9. Axial gap formation in P.W.R. fuel pins

    International Nuclear Information System (INIS)

    Roberts, G.; Jones, K.W.

    1978-07-01

    The potential mechanisms of axial gap formation in PWR fuel pins are examined analytically and also using evidence from post-irradiation examination (p.i.e.) investigation. It is concluded that fuel and cladding cannot remain in contact during densification and so the settling of of the fuel stack, which forms the gaps, must be prevented by such things as asperities in the cladding, fuel chips or tilted pellets. Examples from the p.i.e. examination programme are used to support this conclusion. (author)

  10. Serviceability of rod ceramic fuel pins on motoring conditions of FTP or NEMF reactor

    International Nuclear Information System (INIS)

    Deryavko, I.I.

    2004-01-01

    The operation conditions of rod ceramic fuel pins in the running hydrogen-cooled technological canals of FTP or NEMF reactor on the motoring conditions are considered. The available postreactor researches of the fuel pins are presented and the additional postreactor researches of fuel pins, tested on this mode in IVG.1 and IRGIT reactors, are carried out. The fuel pins serviceability on motoring conditions of FTP or NEF reactor operation is concluded. (author)

  11. Cyclic movement pin mechanism for controlling a nuclear reactor

    International Nuclear Information System (INIS)

    Joly, J.G.; Martin, Jean.

    1981-01-01

    This invention concerns a recurring movement pin mechanism for controlling a nuclear reactor by shifting a neutron absorbing assembly, vertically mobile in the nuclear reactor, to adjust the power and for emergency shut-down. This mechanism ensures a continuous movement and accurate shut-down at any level of the travel height of the absorbing assembly in the core. It also prevents the impacts of the pivoting pins in the control rod slots [fr

  12. Postirradiation examinations of fuel pins from the GCFR F-1 series of mixed-oxide fuel pins at 5.5 at. % burnup

    International Nuclear Information System (INIS)

    Strain, R.V.; Johnson, C.E.

    1978-05-01

    Postirradiation examinations were performed on five fuel pins from the Gas-Cooled Fast-Breeder Reactor F-1 experiment irradiated in EBR-II to a peak burnup of approximately 5.5 at. %. These encapsulated fuel pins were irradiated at peak-power linear ratings from approximately 13 to 15 kW/ft and peak cladding inside diameter temperatures from approximately 625 to 760 0 C. The maximum diametral change that occurred during irradiation was 0.2% ΔD/D 0 . The maximum fuel-cladding chemical interaction depth was 2.6 mils in fuel pin G-1 and 1 mil or less in the other three pins examined destructively. Significant migration of the volatile fission products occurred axially to the fuel-blanket interfaces. Teh postirradiation examination data indicate that fuel melted at the inner surface of the annular fuel pellets in the two highest power rating fuel pins, but little axial movement of fuel occurred

  13. Correlations between fuel pins irradiated in fast and thermal fluxes using the frump fuel pin modelling program

    International Nuclear Information System (INIS)

    Hayns, M.R.; Adam, J.

    1975-08-01

    There is no experimental facilities in which a fuel pin can be irradiated in a fast environment under well defined conditions of over power or flow run down. Consequently most of the infor mation which is being accumulated on the behaviour of fuel pins under severe conditions is obtained from either capsule or loop rigs in thermal reactors. It is the purpose of this paper to highlight the differences between the behaviour of fuel pins irradiated in a thermal flux and a fast flux. A typical set of conditions is taken from an overpower experiment in a thermal flux and the behaviour of the system is analysed using the fuel modelling program FRUMP. A second numerical experiment is then performed in which the same conditions prevail, except that a fast flux is assumed, the criterion for comparison being that the total power input to the system is the same in both cases. From the many possible correlations which result from such an exercise the fuel tempreature has been selected to highlight various important features of the two irradiations. It is demonstrated that the flux depression can cause differences in the pin behaviour, even to altering the order of events in a transient. For example fuel melting will occur at different times and at different positions in the fuel in the two cases. It is concluded that the techniques of fuel modelling, as typified in the program FRUMP can provide a very useful tool indeed for the analysis of such experiments and for guiding the establishment of the appropriate correlations for the extrapolation to the fast flux case. (author)

  14. Inserts for nuclear fuel elements

    International Nuclear Information System (INIS)

    Cragg, P.J.

    1982-01-01

    An insert for a nuclear fuel pin which comprises a strip. The strip carries notches, which enable a coding arrangement to be carried on the strip. The notches may be of differing sizes and the coding on the strip includes identification and identification checking data. Each notch on the strip may give rise to a signal pulse which is counted by a detector to avoid errors. (author)

  15. Shield requirement estimation for pin storage room in fuel fabrication plant

    International Nuclear Information System (INIS)

    Shanthi, M.M.; Keshavamurthy, R.S.; Sivashankaran, G.

    2012-01-01

    Fast Reactor Fuel Cycle Facility (FRFCF) is an upcoming project in Kalpakkam. It has the facility to recycle the fuel from PFBR. It is an integrated facility, consists of fuel reprocessing plant, fuel fabrication plant (FFP), core subassembly plant, Reprocessed Uranium plant (RUP) and waste management plant. The spent fuel from PFBR would be reprocessed in fuel reprocessing plant. The reprocessed fuel material would be sent to fuel fabrication plant. The main activity of fuel fabrication plant is the production of MOX fuel pins. The fuel fabrication plant has a fuel pin storage room. The shield requirement for the pin storage room has been estimated by Monte Carlo method. (author)

  16. Velocity distribution measurement in wire-spaced fuel pin bundle

    International Nuclear Information System (INIS)

    Mizuta, Hiroshi; Ohtake, Toshihide; Uruwashi, Shinichi; Takahashi, Keiichi

    1974-01-01

    Flow distribution measurement was made in the subchannels of a pin bundle in air flow. The present paper is interim because the target of this work is the decision of temperature of the pin surface in contact with wire spacers. The wire-spaced fuel pin bundle used for the experiment consists of 37 simulated fuel pins of stainless steel tubes, 3000 mm in length and 31.6 mm in diameter, which are wound spirally with 6 mm stainless steel wire. The bundle is wrapped with a hexagonal tube, 3500 mm in length and 293 mm in flat-to-flat distance. The bundle is fixed with knock-bar at the entrance of air flow in the hexagonal tube. The pitch of pins in the bundle is 37.6 mm (P/D=1.19) and the wrapping pitch of wire is 1100 mm (H/D=34.8). A pair of arrow-type 5-hole Pitot tubes are used to measure the flow velocity and the direction of air flow in the pin bundle. The measurement of flow distribution was made with the conditions of air flow rate of 0.33 m 3 /sec, air temperature of 45 0 C, and average Reynolds number of 15100 (average air velocity of 20.6 m/sec.). It was found that circular flow existed in the down stream of wire spacers, that axial flow velocity was slower in the subchannels, which contained wire spacers, than in those not affected by the wire, and that the flow angle to the axial velocity at the boundary of subchannels was two thirds smaller than wire wrapping angle. (Tai, I.)

  17. FFTF fuel pin design procedure verification for transient operation

    International Nuclear Information System (INIS)

    Baars, R.E.

    1975-05-01

    The FFTF design procedures for evaluating fuel pin transient performance are briefly reviewed, and data where available are compared with design procedure predictions. Specifically, burst conditions derived from Fuel Cladding Transient Tester (FCTT) tests and from ANL loss-of-flow tests are compared with burst pressures computed using the design procedure upon which the cladding integrity limit was based. Failure times are predicted using the design procedure for evaluation of rapid reactivity insertion accidents, for five unterminated TREAT experiments in which well characterized fuel failures were deliberately incurred. (U.S.)

  18. The interpretation of fuel centre temperature measurements on a suspected leaking fuel pin

    International Nuclear Information System (INIS)

    Ainscough, J.B.; Lang, C.; Clough, D.J.

    1983-01-01

    In order to study fuel densification a series of single instrumented pin irradiations has been carried out in the High Pressure Water Loop of DIDO at Harwell. The behaviour of two of these pins was different from that expected. In the fifth test, where the fuel was 95% dense pellet UO 2 and expected to densify readily in-reactor, the fuel centre temperature increased from its starting value of approx. 1300 deg. C at a rate somewhat higher than expected on the basis of predicted densification rates. After about six days, the temperature increased rapidly and unexpectedly to 2100-2200 deg. C and remained steady at this level for a further eight days until a reactor trip occurred and the pin was unloaded. Predictions made using the HOTROD code imply a maximum fuel temperature of less than 1500 deg. C after densification. Post-irradiation examination confirmed that fission gas release had occurred, that the measured temperatures were consistent with the fuel microstructure and that the pin had a high internal gas pressure. The fourth pin in the series contained 97% dense UO 2 which was also expected to be dimensionally unstable. Qualitatively its behaviour was similar to that of the fifth pin though the temperatures throughout were lower. This pin experienced a number of major power cycles and failed after about 30 days in-reactor. It is probable that coolant ingress occurred in both pins via the thermocouple Hoke seal, degrading the filling gas conductivity and allowing the fuel to densify rapidly with consequent increase in the fuel/clad gap and hence in fuel temperature. These irradiations show that, for a short time at least, an apparently unfailed pin could operate undetected with temperatures significantly higher than those predicted for normal operation. (author)

  19. One- and two-dimension effects on fuel pin lifetime

    International Nuclear Information System (INIS)

    Stephen, J.D.; Biancheria, A.; Leibnitz, D.; O'Reilly, B.D.; Liu, Y.Y.; Labar, M.P.; Gneiting, B.C.

    1979-01-01

    Lifetime, or breach of the cladding, is a difficult performance limit to establish in fuel pin design. The significant benefits of high plant capacity factor favor conservative design to eliminate downtime or partial power operation caused by the breach limit; however, overly conservative design produces significant penalties. The LIFE system is being applied to help understand the range between operation and breach so that appropriate design margins can be selected. Standards are being developed in the USA to assure the structural integrity of all core components. These standards will provide guidelines to account for the failure mechanisms observed in the high temperature, high fluence core environment. The work to date indicates that creep rupture is the most important failure mechanism for mixed-oxide fuel pins during normal operation and slow power changes. The local cumulative creep rupture damage fraction (CDF) has been adopted as the parameter to assess the approach to failure. Several oxide breached pins and siblings have been studied For example, the P23B-73 pin was an FFTR driver design pin irradiated in EBR-II which failed at 10 at,% burnup. Initial evaluation based on LIFE3 led to the conclusion that the pin should not have failed. Further analyses determined the sensitivity of the breach prediction to the time-to-rupture correlation, cladding temperature, and fuel-fission product swelling (which had not been modeled in LIFE3). The uncertainties in the time-to-rupture correlation have been established. But LIFE is a one-dimensional model. The TWOD code is complete, and development of the best way to couple LIFE and TWOD for lifetime analysis is in progress. Two preliminary conclusions from analysis of representative oxide pin geometries are, first, that the circumferential stress distribution may not peak at the hot spot, but the damage (CDF) does. And second, that the effect of stress concentrations near fuel cracks on cladding creep damage is small

  20. Breached fuel pin contamination from Run Beyond Cladding Breach (RBCB) tests in EBR-II

    International Nuclear Information System (INIS)

    Colburn, R.P.; Strain, R.V.; Lambert, J.D.B.; Ukai, S.; Shibahara, I.

    1988-09-01

    Studies indicate there may be a large economic incentive to permit some continued reactor operation with breached fuel pin cladding. A major concern for this type of operation is the potential spread of contamination in the primary coolant system and its impact on plant maintenance. A study of the release and transport of contamination from naturally breached mixed oxide Liquid Metal Reactor (LMR) fuel pins was performed as part of the US Department of Energy/Power Reactor and Nuclear Fuel Development Corporation (DOE/PNC) Run Beyond Cladding Breach (RBCB) Program at EBR-II. The measurements were made using the Breached Fuel Test Facility (BFTF) at EBR-II with replaceable deposition samplers located approximately 1.5 meters from the breached fuel test assemblies. The effluent from the test assemblies containing the breached fuel pins was routed up through the samplers and past dedicated instrumentation in the BFTF before mixing with the main coolant flow stream. This paper discusses the first three contamination tests in this program. 2 refs., 5 figs., 2 tabs

  1. Post-irradiation examination of a fuel pin using a microscopic X-ray system: Measurement of carbon deposition and pin metrology

    International Nuclear Information System (INIS)

    Gras, Ch.; Stanley, S.J.

    2008-01-01

    The paper presents some interesting aspects associated with X-ray imaging and its potential application in the nuclear industry. The feasibility of using X-ray technology for the post-irradiation examination of a fuel pin has been explored, more specifically pin metrology and carbon deposition measurement. The non-active sample was specially designed to mimic the structure of an AGR fuel pin whilst a carbon based material was applied to the mock up fuel rod in order to mimic carbon deposition. Short duration low energy (50 kV) 2D digital radiography was employed and provided encouraging results (with respect to carbon deposition thickness and structure measurements) for the mock up fuel pin with a spatial resolution of around 10 μm. Obtaining quantitative data from the resultant images is the principal added value associated with X-ray imaging. A higher intensity X-ray beam (≥90 kV) was also used in conjunction with the low energy set-up to produce a clear picture of the cladding as well as the interface between the lead (Pb mimics the uranium oxide) and stainless steel cladding. Spent fuel metrology and routine radiography are two additional tasks that X-ray imaging could perform for the post-irradiation examination programme. Therefore, when compared to other techniques developed to deliver information on one particular parameter, X-ray imaging offers the possibility to extract useful information on a range of parameters

  2. Nuclear fuel

    International Nuclear Information System (INIS)

    Quinauk, J.P.

    1990-01-01

    Since 1985, Fragema has been marketing and selling the Advanced Fuel Assemby AFA whose main features are its zircaloy grids and removable top and bottom nozzles. It is this product, which exists for several different fuel assembly arrays and heights, that will be employed in the reactors at Daya Bay. Fragema employs gadolinium as the consumable poison to enable highperformance fuel management. More recently, the company has supplied fuel assemblies of the mixed-oxide(MOX) and enriched reprocessed uranium type. The reliability level of the fuel sold by Fragema is one of the highest in the world, thanks in particular to the excellence of the quality assurance and quality control programs that have been implemented at all stages of its design and manufacture

  3. Design fix for vibration-induced wear in fuel pin bundles

    International Nuclear Information System (INIS)

    Naas, D.F.; Heck, E.N.

    1976-01-01

    In summary, results at 45,000 MWd/MTM burnup from the FFTF mixed oxide fuel pin irradiation tests in EBR-II show that reduction of the initial fuel pin bundle clearance and use of 20 percent cold-worked stainless steel ducts virtually eliminate vibration and wear observed in an initial series of 61-pin tests

  4. Grids for nuclear fuel elements

    International Nuclear Information System (INIS)

    Nicholson, G.

    1980-01-01

    This invention relates to grids for nuclear fuel assemblies with the object of providing an improved grid, tending to have greater strength and tending to offer better location of the fuel pins. It comprises sets of generally parallel strips arranged to intersect to define a structure of cellular form, at least some of the intersections including a strip which is keyed to another strip at more than one point. One type of strip may be dimpled along its length and another type of strip may have slots for keying with the dimples. (Auth.)

  5. Method for inspecting nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    A technique for disassembling a nuclear reactor fuel element without destroying the individual fuel pins and other structural components from which the element is assembled is described. A traveling bridge and trolley span a water-filled spent fuel storage pool and support a strongback. The strongback is under water and provides a working surface on which the spent fuel element is placed for inspection and for the manipulation that is associated with disassembly and assembly. To remove, in a non-destructive manner, the grids that hold the fuel pins in the proper relative positions within the element, bars are inserted through apertures in the grids with the aid of special tools. These bars are rotated to flex the adjacent grid walls and, in this way relax the physical engagement between protruding portions of the grid walls and the associated fuel pins. With the grid structure so flexed to relax the physical grip on the individual fuel pins, these pins can be withdrawn for inspection or replacement as necessary without imposing a need to destroy fuel element components

  6. Reference Neutron Radiographs of Nuclear Reactor Fuel

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    Reference neutron radiographs of nuclear reactor fuel were produced by the Euraton Neutron Radiography Working Group and published in 1984 by the Reidel Publishing Company. In this collection a classification is given of the various neutron radiographic findings, that can occur in different parts...... of pelletized, annular and vibro-conpacted nuclear fuel pins. Those parts of the pins are shown where changes of appearance differ from those for the parts as fabricated. Also radiographs of those as fabricated parts are included. The collection contains 158 neutron radiographs, reproduced on photographic paper...

  7. Gamma scanning of mixed carbide and oxide fuel pins irradiated in FBTR

    International Nuclear Information System (INIS)

    Jayaraj, V.V.; Padalakshmi, M.; Ulaganathan, T.; Venkiteswaran, C.N.; Divakar, R.; Joseph, Jojo; Bhaduri, A.K.

    2016-01-01

    Fission in nuclear fuels results in a number of fission products that are gamma emitters in the energy range of 100 keV to 3 MeV. The gamma emitting fission products are therefore amenable for detection by gamma detectors. Assessment of the fission product distribution and their migration behavior through gamma scanning is important for characterizing the in reactor behavior of the fuel. Gamma scanning is an important non destructive technique used to evaluate the behavior of irradiated fuels. As a part of Post Irradiation Examinations (PIE), axial gamma scanning has been carried out on selected fuel pins of the FBTR Mark I mixed carbide fuel sub-assemblies and PFBR MOX test fuel sub-assembly irradiated in FBTR. This paper covers the results of gamma scanning and correlation of gamma scanning results with other PIE techniques

  8. Oxide fuel pin transient performance analysis and design with the TEMECH code

    International Nuclear Information System (INIS)

    Bard, F.E.; Dutt, S.P.; Hinman, C.A.; Hunter, C.W.; Pitner, A.L.

    1986-01-01

    The TEMECH code is a fast-running, thermal-mechanical-hydraulic, analytical program used to evaluate the transient performance of LMR oxide fuel pins. The code calculates pin deformation and failure probability due to fuel-cladding differential thermal expansion, expansion of fuel upon melting, and fission gas pressurization. The mechanistic fuel model in the code accounts for fuel cracking, crack closure, porosity decrease, and the temperature dependence of fuel creep through the course of the transient. Modeling emphasis has been placed on results obtained from Fuel Cladding Transient Test (FCTT) testing, Transient Fuel Deformation (TFD) tests and TREAT integral fuel pin experiments

  9. Analysis of fuel pin mechanics in case of flow blockage of a single RBMK channel

    International Nuclear Information System (INIS)

    Pierro, F.; Moretti, F.; Mazzini, D.; D'Auria, F.

    2005-01-01

    The evaluation of the consequences of the pressure tube rupture due to accidental overheating is one of the key elements for addressing an RBMK safety analysis, since it causes the lost of design boundaries against the fission products release. Several events are expected to take place: thermal hydraulic crisis (energy unbalance), fuel overheating, fuel rod damage, pressure tube overheating, pressure tube failure and graphite stack damage, Hydrogen and fission products release. The present work deals with the research activity carried out at ''Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione'' (DIMNP) of the University of Pisa aimed at assessing numerical models for safety analysis of the RBMK-1000. The attention is focused on the modelling of (1) a single fuel channel and its surrounding graphite column for evaluating the transient conditions enabling the different damaging phenomena, (2) a single fuel rod for investigating fuel pin behaviour, (3) the ruptured fuel channel for figuring the magnitude of the hydrodynamic loads acting on fuel rods. Different codes were employed to cover the competences for the investigation of each field; in particular, RELAP5 code for thermal-hydraulics, FRAPCON-3 and FRAPTRAN1-2 codes for fuel pin mechanics, FLUENT-6 for fluid dynamics. The paper discusses the numerical models, the analysis capabilities of numerical models in comparison with available data about the Leningrad NPP 1992 accident. Furthermore, the possibility to draw a failure map identifying the range of the cladding safety respect to the transient condition is outlined. (author)

  10. Advanced disassembling technique of irradiated driver fuel assembly for continuous irradiation of fuel pins

    International Nuclear Information System (INIS)

    Ichikawa, Shoichi; Haga, Hiroyuki; Katsuyama, Kozo; Maeda, Koji; Nishinoiri, Kenji

    2012-01-01

    It was necessary to carry out continuous irradiation tests in order to obtain the irradiation data of high burn-up fuel and high neutron dose material for FaCT (Fast Reactor Cycle Technology Development) project. There, the disassembling technique of an irradiated fuel assembly was advanced in order to realize further continuous irradiation tests. Although the conventional disassembling technique had been cutting a lower end-plug of a fuel pin needed to fix fuel pins to an irradiation vehicle, the advanced disassembling technique did not need cutting a lower end-plug. As a result, it was possible to supply many irradiated fuel pins to various continuous irradiation tests for FaCT project. (author)

  11. Thermochemical aspects of fuel-cladding and fuel-coolant interactions in LMFBR oxide fuel pins

    International Nuclear Information System (INIS)

    Adamson, M.G.; Aitken, E.A.; Caputi, R.W.; Potter, P.E.; Mignanelli, M.A.

    1979-01-01

    This paper examines several thermochemical aspects of the fuel-cladding, fuel-coolant and fuel-fission product interactions that occur in LMFBR austenitic stainless steel-clad mixed (U,Pu)-oxide fuel pins during irradiation under normal operating conditions. Results are reported from a variety of high temperature EMF cell experiments in which continuous oxygen activity measurements on reacting and equilibrium mixtures of metal oxides and (excess) liquid alkali metal (Na, K, Cs) were performed. Oxygen potential and 0:M thresholds for Na-fuel reactions are re-evaluated in the light of new measurements and newly-assessed thermochemical data, and the influence on oxygen potential of possible U-Pu segregation between oxide and urano-plutonate (equilibrium) phases has been analyzed. (orig./RW) [de

  12. Modelling of WWER-440 fuel rod behaviour under operational conditions with the PIN-micro code

    Energy Technology Data Exchange (ETDEWEB)

    Stefanova, S; Vitkova, M; Simeonova, V; Passage, G; Manolova, M [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Haralampieva, Z [National Electric Company Ltd., Kozloduy (Bulgaria); Scheglov, A; Proselkov, V [Institute of Nuclear Reactors, RSC Kurchatov Inst., Moscow (Russian Federation)

    1997-08-01

    The report summarizes the first practical experience obtained by fuel rod performance modelling at the Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences. The results of application of the PIN-micro code and the code modification PINB1 for thermomechanical analysis of WWER-440 fuel assemblies (FAs) are presented. The aim of this analysis is to study the fuel rod behaviour of the operating WWER reactors. The performance of two FAs with maximal linear power and varying geometrical and technological parameters is analyzed. On the basis of recent publications on WWER fuel performance modelling at extended burnup, a modified PINB1 version of the standard PIN-micro code is shortly described and applied for the selected FAs. Comparison of the calculated results is performed. The PINB1 version predicts higher fuel temperatures and more adequate FGR rate, accounting for the extended burnup. The results presented in this paper prove the existence of sufficient safety margins, for the fuel performance limiting parameters during the whole considered period of core operation. (author). 8 refs, 16 figs, 1 tab.

  13. Modelling of WWER-440 fuel rod behaviour under operational conditions with the PIN-micro code

    International Nuclear Information System (INIS)

    Stefanova, S.; Vitkova, M.; Simeonova, V.; Passage, G.; Manolova, M.; Haralampieva, Z.; Scheglov, A.; Proselkov, V.

    1997-01-01

    The report summarizes the first practical experience obtained by fuel rod performance modelling at the Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences. The results of application of the PIN-micro code and the code modification PINB1 for thermomechanical analysis of WWER-440 fuel assemblies (FAs) are presented. The aim of this analysis is to study the fuel rod behaviour of the operating WWER reactors. The performance of two FAs with maximal linear power and varying geometrical and technological parameters is analyzed. On the basis of recent publications on WWER fuel performance modelling at extended burnup, a modified PINB1 version of the standard PIN-micro code is shortly described and applied for the selected FAs. Comparison of the calculated results is performed. The PINB1 version predicts higher fuel temperatures and more adequate FGR rate, accounting for the extended burnup. The results presented in this paper prove the existence of sufficient safety margins, for the fuel performance limiting parameters during the whole considered period of core operation. (author). 8 refs, 16 figs, 1 tab

  14. Fuel canister and blockage pin fabrication for SLSF Experiment P4

    International Nuclear Information System (INIS)

    Rhude, H.V.; Folkrod, J.R.; Noland, R.A.; Schaus, P.S.; Benecke, M.W.; Delucchi, T.A.

    1983-01-01

    As part of its fast breeder reactor safety research program, Argonne National Laboratory (ANL) has conducted an experiment (SLSF Experiment P4) to determine the extent of fuel-failure propagation resulting from the release of molten fuel from one or more heat-generating fuel canisters. The test conditions consisted of 37 full-length FTR fuel pins operating at FTR rated core nominal peak fuel/reduced coolant conditions. Thirty-four of the the fuel pins were prototypical FTR mixed-oxide fuel pins. The other three fuel pins were fabricated with a mid-core section having an enlarged canister containing fully enriched UO 2 . Two of the canisters were cylindrical and one was fluted. The cylindrical canisters were designed to fail and release molten fuel into the 37-pin fuel cluster at near full power

  15. French approach in fuel pin modelling for fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pascard, R [CEA-Centre de Fontenay-aux-Roses, Fontenay-aux-Roses (France)

    1979-12-01

    The purpose of this paper is to present the general philosophy on the problem of fuel modelling now prevailing in France after a twelve years period of tremendously increasing knowledge on fuel behavior. When the Rapsodie fuel pin was designed in 1962 , little was known about the behavior of a mixed oxide fuel pin under fast flux ; but a large body of knowledge on UO{sub 2} behavior in thermal reactor was available together with some sparse irradiation results on (U Pu)O{sub 2} in French experimental reactors. The performances assigned to the pin were then rather modest in rating (400 w/cm) and in burnup (30,000 MWd/t). The AISI 316 steel in solution annealed state was chosen as cladding material. The clad itself was supposed to deform by thermal creep due to fission gas pressure (100% release), and was affected consequently by a strain limit criteria. The importance of clad temperature ({approx}650 deg.) was considered only in connection with thermal creep, the possibility of a chemical reaction between mixed oxide and clad being at that time hardly suspected. Rapsodie had only been at full power for a few months when appeared the evidence of stainless steel swelling under a fast neutrons flux. This swelling was observed on Rapsodie pins as soon as they experienced sufficient neutrons dose, roughly one year later. This entirely new problem came immediately in the front stage (and is still of major importance today), and was at the origin of the change from the Rapsodie to the Fortissimo core in order to accelerate materials testing versus void swelling by multiplying the flux by a factor two. Even with unforeseen swelling, the design of the Rapsodie and later on Fortissimo pin, allowed not only to reach the goal burnup, but to increase it steadily to roughly 100,000 MWd/t. Since then, the French approach in fuel pin design has still retained something of its original simplicity, and technological efficiency, attitude which is justified by the following

  16. Modernization of RTC for fabrication of MOX fuel, Vibropac fuel pins and BN-600 FA with weapon grade plutonium

    International Nuclear Information System (INIS)

    Grachyov, A.F.; Kalygin, V.V.; Skiba, O.V.; Mayorshin, A. A.; Bychkov, A.V.; Kisly, V.A.; Ovsyannikov, Y.F.; Bobrov, D.A.; Mamontov, S.I.; Tsyganov, A.N.; Churutkin, E.I.; Davydov, P.I.; Samosenko, E.A; Shalak, A.R.; Ojima, Hisao

    2004-01-01

    Since mid 70's RIAR has been performing activities on plutonium involvement in fuel cycle. These activities are considered a stage within the framework of the closed fuel cycle development. Developed at RIAR fuel cycle is based on two technologies: 'dry' process of fuel reprocessing and vibro-packing method for fuel pin fabrication. Due to the available scientific capabilities and a gained experience in operating the technological facilities (ORYOL, SIC) for plutonium (various grade) blending into fuel for fast reactors, RIAR is a participant of the activities aimed at solving these tasks. Under international program RIAR with financial support of JNC (Japan) is modernizing the facility for granulated fuel production, vibro-pac fuel pins and FA fabrication to provide the BN-600 'hybrid' core. In order to provide 'hybrid' core it is necessary to produce (per year): - 1775 kg of granulated MOX-fuel, 6500 fuel pins, 50 fuel assemblies. Potential output of the facility under construction is as follows: - 1800 kg of granulated MOX-fuel per year, 40 fuel pins per shift, 200 FAs for the BN-600 reactor per year. Taking into account domestic and foreign experience in MOX-fuel production, different options were discussed of the equipment layouts in the available premises of chemical technological division of RIAR: - in the shielded manipulator boxes, in the existing hot cells. During construction of the facility in the building under operation the following requirements should be met: - facility must meet all standards and regulations set for nuclear facilities, installation work at the facility must not influence other production programs implemented in the building, engineering supply lines of the facility must be connected to the existing service lines of the building, cost of the activities must not exceed amount of JNC funding. The paper presents results of comparison between two options of the process equipment layout: in boxes and hot cells. This equipment is intended

  17. RAGRAF: a computer code for calculating temperature distributions in multi-pin fuel assemblies in a stagnant gas atmosphere

    International Nuclear Information System (INIS)

    Eastham, A.

    1979-02-01

    A method of calculating the temperature distribution in a cross-section of a multi-pin nuclear reactor fuel assembly has been computerised. It utilises the thermal radiation interchange between individual fuel pins in either a square or triangular pitched lattice. A stagnant gas atmosphere within the fuel assembly is assumed which inhibits natural convection but permits thermal conduction between adjacent fuel pins. no restriction is placed upon the shape of wrapper used, but its temperature must always be uniform. RAGRAF has great flexibility because of the many options it provides. Although, essentially, it is a transient code, steady state solutions may be readily identified from successive temperature prints. An enclosure for the assembly wrapper is available, to be included or discarded at will during transient calculations. outside the limit of the assembly wrapper, any type or combination of heat transfer mode may be included. Transient variations in boundary temperature may be included if required. (author)

  18. Nuclear fuel string assembly

    International Nuclear Information System (INIS)

    Ip, A.K.; Koyanagi, K.; Tarasuk, W.R.

    1976-01-01

    A method of fabricating rodded fuels suitable for use in pressure tube type reactors and in pressure vessel type reactors is described. Fuel rods are secured as an inner and an outer sub-assembly, each rod attached between mounting rings secured to the rod ends. The two sub-assemblies are telescoped together and positioned by spaced thimbles located between them to provide precise positioning while permittng differential axial movement between the sub-assemblies. Such sub-assemblies are particularly suited for mounting as bundle strings. The method provides particular advantages in the assembly of annular-section fuel pins, which includes booster fuel containing enriched fuel material. (LL)

  19. Report of the collaboration project for research and development of sphere-pac fuel among JNC-PSI-NRG (1). Planning, fuel design, pin fabrication

    International Nuclear Information System (INIS)

    Morihira, Masayuki; Ozawa, Takayuki; Tomita, Yutaka; Suzuki, Masahiro; Kihara, Yoshiyuki; Shigetome, Yoshiaki; Kohno, Shusaku

    2004-07-01

    The collaboration project concerning sphere-pac fuel among JNC, Swiss PSI (Paul Scherrer Institut) and Dutch NRG (Nuclear Research and Consultancy Group) is in progress. Final target of the project is comparative irradiation tests of sphere-pac fuel in the HFR (High Flux Reactor) in Petten in the Netherlands with pellet type fuel and vipack fuel. Total 16 fuel segments (8 pins) of these three types of fuel are planned to be irradiated. Two sphere-pac fuel segments contain 5%Np in addition to 20%Pu-MOX. Other segments contain no Np. The objective of the irradiation tests is to obtain the restructuring data in the early beginning of life for SPF as well as power-to-melt test data for the potential study of SPF. At the same time introduction of modeling technique for irradiation performance analysis, fuel design, fuel fabrication is also important objective for JNC. Fabrication of irradiation test pins was completed till May 2003 in PSI. After transportation of the fuel pins to Petten, two times of irradiation were performed in January to March in 2004 and now post irradiation tests are in progress. Later two irradiations will be done till the autumn in 2004. This report summarized the basic plan, fuel design, and fabrication of irradiation test pins concerning this collaboration project. (author)

  20. Limits on the experimental simulation of nuclear fuel rod response

    International Nuclear Information System (INIS)

    Hagar, R.C.

    1980-01-01

    The steady-state and transient effects of intrinxic geometric and material property differences between typical nuclear fuel pins and electric fuel pin simulators (FPSs) are identified. The effectiveness of varying the transient power supplied to the FPS in reducing the differences between the transient responses of nuclear fuel pins and FPSs is investigated. This effectiveness is shown to be limited by the heat capacity of the FPS, the allowed range of the power program, and different FPS power requirements at different positions on a full-length FPS

  1. Evaluation of integrally finned cladding for LMFBR fuel pins

    International Nuclear Information System (INIS)

    Cantley, D.A.; Sutherland, W.H.

    1975-01-01

    An integral fin design effectively reduces the coolant temperature gradients within an LMFBR subassembly by redistributing coolant flow so as to reduce the maximum cladding temperature and increase the duct wall temperature. The reduced cladding temperatures are offset by strain concentrations resulting from the fin geometry, so there is little net effect on predicted fuel pin performance. The increased duct wall temperatures, however, significantly reduce the duct design lifetime so that the final conclusion is that the integral fin design is inferior to the standard wire wrap design. This result, however, is dependent upon the material correlations used. Advanced alloys with improved irradiation properties could alter this conclusion

  2. Nuclear fuel sub-assemblies

    International Nuclear Information System (INIS)

    Dodd, J.A.; Butterfield, C.E.; Waite, E.

    1979-01-01

    A fast reactor fuel sub-assembly has honeycomb grids for laterally supporting the fuel pins. The grids are of two series and are arranged alternately along the bundle. The grids of a first series provide a discrete cell for each pin but the grids of the second series have a peripheral group of cells only. The grids of the second series provide intermediate support of the edge pins to restrain bow. (author)

  3. Nuclear fuel preheating system

    International Nuclear Information System (INIS)

    Andrea, C.

    1975-01-01

    A nuclear reactor new fuel handling system which conveys new fuel from a fuel preparation room into the reactor containment boundary is described. The handling system is provided with a fuel preheating station which is adaptd to heat the new fuel to reactor refueling temperatures in such a way that the fuel is heated from the top down so that fuel element cladding failure due to thermal expansions is avoided. (U.S.)

  4. Investigations of fuel cladding chemical interaction in irradiated LMFBR type oxide fuel pins

    International Nuclear Information System (INIS)

    Roake, W.E.; Adamson, M.G.; Hilbert, R.F.; Langer, S.

    1977-01-01

    Understanding and controlling the chemical attack of fuel pin cladding by fuel and fission products are major objectives of the U.S. LMFBR Mixed Oxide Irradiation Testing Program. Fuel-cladding chemical interaction (FCCI) has been recognized as an important factor in the ability to achieve goal peak burnups of 8% (80.MWd/kg) in FFTF and in excess of 10% (100.MWd/kg) in the LMFBR demonstration reactors while maintaining coolant bulk outlet temperatures up to ∼60 deg. C (1100 deg. F). In this paper we review pertinent parts of the irradiation program and describe recent observation of FCCI in the fuel pins of this program. One goal of the FCCI investigations is to obtain a sufficiently quantitative understanding of FCCI such that correlations can be developed relating loss of effective cladding thickness to irradiation and fuel pin fabrication parameters. Wastage correlations being developed using different approaches are discussed. Much of the early data on FCCI obtained in the U.S. Mixed Oxide Fuel Program came from capsule tests irradiated in both fast and thermal flux facilities. The fast flux irradiated encapsulated fuel pins continue to provide valuable data and insight into FCCI. Currently, however, bare pins with prototypic fuels and cladding irradiated in the fast flux Experimental Breeder Reactor-II (EBR-II) as multiple pin assemblies under prototypic powers, temperatures and thermal gradients are providing growing quantities of data on FCCI characteristics and cladding thickness losses from FCCI. A few special encapsulated fuel pin tests are being conducted in the General Electric Test Reactor (GETR) and EBR-II, but these are aimed at providing specific information under irradiation conditions not achievable in the fast flux bare pin assemblies or because EBR-II Operation or Safety requirements dictate that the pins be encapsulated. The discussion in this paper is limited to fast flux irradiation test results from encapsulated pins and multiple pin

  5. Investigations of fuel cladding chemical interaction in irradiated LMFBR type oxide fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Roake, W E [Westinghouse-Hanford Co., Richland, WA (United States); Adamson, M G [General Electric Company, Vallecitos Nuclear Center, Pleasanton, CA (United States); Hilbert, R F; Langer, S

    1977-04-01

    Understanding and controlling the chemical attack of fuel pin cladding by fuel and fission products are major objectives of the U.S. LMFBR Mixed Oxide Irradiation Testing Program. Fuel-cladding chemical interaction (FCCI) has been recognized as an important factor in the ability to achieve goal peak burnups of 8% (80.MWd/kg) in FFTF and in excess of 10% (100.MWd/kg) in the LMFBR demonstration reactors while maintaining coolant bulk outlet temperatures up to {approx}60 deg. C (1100 deg. F). In this paper we review pertinent parts of the irradiation program and describe recent observation of FCCI in the fuel pins of this program. One goal of the FCCI investigations is to obtain a sufficiently quantitative understanding of FCCI such that correlations can be developed relating loss of effective cladding thickness to irradiation and fuel pin fabrication parameters. Wastage correlations being developed using different approaches are discussed. Much of the early data on FCCI obtained in the U.S. Mixed Oxide Fuel Program came from capsule tests irradiated in both fast and thermal flux facilities. The fast flux irradiated encapsulated fuel pins continue to provide valuable data and insight into FCCI. Currently, however, bare pins with prototypic fuels and cladding irradiated in the fast flux Experimental Breeder Reactor-II (EBR-II) as multiple pin assemblies under prototypic powers, temperatures and thermal gradients are providing growing quantities of data on FCCI characteristics and cladding thickness losses from FCCI. A few special encapsulated fuel pin tests are being conducted in the General Electric Test Reactor (GETR) and EBR-II, but these are aimed at providing specific information under irradiation conditions not achievable in the fast flux bare pin assemblies or because EBR-II Operation or Safety requirements dictate that the pins be encapsulated. The discussion in this paper is limited to fast flux irradiation test results from encapsulated pins and multiple pin

  6. Nuclear reactor fuel element assemblies

    International Nuclear Information System (INIS)

    Raven, L.F.

    1975-01-01

    A spacer grid for a nuclear fuel element comprises a plurality of cojointed cylindrical ferrules adapted to receive a nuclear fuel pin. Each ferrule has a pair of circumferentially spaced rigid stop members extending inside the ferrule and a spring locating member attached to the ferrule and also extending from the ferrule wall inwardly thereof at such a circumferential spacing relative to the rigid stop members that the line of action of the spring locating member passes in opposition to and between the rigid stop members which lie in the same diametric plane. At least some of the cylindrical ferrules have one rim shaped to promote turbulence in fluid flowing through the grid. (Official Gazette)

  7. Performance of electrical contact pins near a nuclear explosion

    International Nuclear Information System (INIS)

    Ragan, C.E.; Silbert, M.G.; Ellis, A.N.; Robinson, E.E.; Daddario, M.J.

    1977-09-01

    The pressures attainable in equation-of-state studies using nuclear-explosion-driven shock waves greatly exceed those that can be reached in normal laboratory conditions. However, the diagnostic instrumentation must survive in the high-radiation environment present near such an explosion. Therefore, a set of experiments were fielded on the Redmud event to test the feasibility of using electrical contact pins in this environment. In these experiments a 60-cm-high shield of boron-lead was placed on the rack lid approximately 1 m from the device. A sample consisting of slabs of molybdenum and 238 U was placed on top of the shield, and twelve electrical contact pins were embedded to five different depths in the materials. Five different multiplexing-charging circuits were used for the pins, and a piezoelectric quartz gauge was placed on top of the uranium to obtain an estimate of the fission-energy deposition. All of the charged pins survived the radiation and produced signals indicating shock arrival. The uncertainty in determining the pin-closure time was approximately 3 ns. The signal from the quartz gauge corresponded to a pressure that was consistent with the calculated neutron fluence

  8. Fuel Coolant Interaction Results in the Fuel Pins Melting Facility (PMF)

    International Nuclear Information System (INIS)

    Urunashi, H.; Hirabayashi, T.; Mizuta, H.

    1976-01-01

    The experimental work related to FCI at PNC has been concentrated into the molten UO 2 dropping test. After the completion of molten UO 2 drop experiments, emphasis is directed toward the FCI phenomena of the initiating conditions of the accident under the more realistic geometry. The experiments are conducted within the Pin Melt Facility (PMF) in which UO 2 pellets clad in stainless steel are melted by direct electric heating under the stagnant or flowing sodium. The primary objectives of the PMF test are to: - obtain detail experimental results (heat-input, clad temperature, sodium temperature, etc.) on the FCI under TOP and LOF conditions; - observe the movement of the fuel before and after the pin failure by the X-ray cinematography; - observe the degree of coherence of the pin failures; - accumulate the experience of the FCI experiment which is applicable to the subassembly or more larger scale; - simulate the fuel behavior of the in-pile test (GETR, CABRI). The preliminary conclusions can be drawn from the foregoing observations are as follows: - Although the fuel motion and FCI of the closed test section appeared to be different from those of the open test section, the conclusion of the effect of the inside pressure on FCI needs more experimental data. - The best heating condition of the UO 2 pellet for the FCI study with PMF is established as 40 w/cm at the steady state and 1680 J/g of UO 2 during the additional transient state. The total energy deposition of the UO 2 pellet is thus estimated in the range of 2400 J/g of UO 2 -2600 J/g of UO 2 . The analytical model of the fuel pin failure and the subsequent FCI are suggested to count the following parameters: - The fuel pin failure due to the fuel vaporization due to the rapid energy deposition; - Molten fuel, clad and sodium interaction in the fuel pin after the pin failure; - The upward flow of molten fuel with molten clad or vapor sodium, as well as the slumping of molten fuel

  9. Romanian nuclear fuel program

    International Nuclear Information System (INIS)

    Budan, O.

    1999-01-01

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified and authorised CANDU-6 fuel supplier. The re-loading of the Cernavoda NGS Unit 1 started in the middle

  10. Fabrication of uranium-plutonium mixed nitride fuel pins (88F-5A) for first irradiation test at JMTR

    International Nuclear Information System (INIS)

    Suzuki, Yasufumi; Iwai, Takashi; Arai, Yasuo; Sasayama, Tatsuo; Shiozawa, Ken-ichi; Ohmichi, Toshihiko; Handa, Muneo

    1990-07-01

    A couple of uranium-plutonium mixed nitride fuel pins was fabricated for the first irradiation tests at JMTR for the purpose of understanding the irradiation behavior and establishing the feasibility of nitride fuels as advanced FBR fuels. The one of the pins was fitted with thermocouples in order to observe the central fuel temperature. In this report, the fabrication procedure of the pins such as pin design, fuel pellet fabrication and characterizations, welding of fuel pins, and inspection of pins are described, together with the outline of the new TIG welder installed recently. (author)

  11. Fuel pin bowing and related investigation of the gadolinium fuel pin influence on power release inside of neighbouring fuel pins in a WWER-440 type core

    International Nuclear Information System (INIS)

    Mikus, J.

    2006-01-01

    As known both the WWER-440 and WWER-1000 reactors are systematically modernized to enhance their safety and economical parameters of operation. For this purpose new fuel assemblies (FAs) were designed with improved technical parameters, e.g., containing fuel pins (FPs) in which Gd 2 O 3 burnable absorber is integrated into fuel. Presence of such FPs in reactor core results in a strong depression of thermal neutrons in their positions and corresponding high gradients in neighbouring FPs. Consequently, similar situation in neighbouring FPs can be expected as for both the power release and temperature gradients. The purpose of this work consists in investigation of the gadolinium FP influence on space power distribution, especially from viewpoint of the values and gradient occurrence inside of the neighbouring FPs that could result in static loads with some consequences, e.g., a contribution to FP/FA bowing. Since detailed power distributions cannot be obtained in the NPPs, needed information is provided by means of experiments on research reactors. As for the power release measurement inside of FPs, some special (e.g. track) detectors placed between fuel pellets are usually used. Since such works are relatively complicated and time consuming, an evaluation method based on mathematical modelling and numerical approximation was proposed by means of that, and using measured (integral) power release in selected FPs, needed power release values inside of investigated FPs, can be estimated. For this purpose, experimental results from light water, zero-power research reactor LR-0 obtained by measurements in a WWER-440 type core with 19 FAs at zero boron concentration and containing some FPs with gadolinium (Gd FPs) were utilized. Application of the proposed evaluation method is demonstrated on investigated FPs neighbouring a Gd FP by means of the: relative azimuthal power distribution estimation inside of investigated FPs on their fuel pellet surface in horizontal plane

  12. Thermochemistry of nuclear fuels in advanced reactors

    International Nuclear Information System (INIS)

    Agarwal, Renu

    2015-01-01

    The presence of a large number of elements, accompanied with steep temperature gradient results in dynamic chemistry during nuclear fuel burn-up. Understanding this chemistry is very important for efficient and safe usage of nuclear fuels. The radioactive nature of these fuels puts lot of constraint on regulatory bodies to ensure their accident free operation in the reactors. One of the common aims of advanced fuels is to achieve high burn-up. As burn-up of the fuel increases, chemistry of fission-products becomes increasingly more important. To understand different phenomenon taking place in-pile, many out of-pile experiments are carried out. Extensive studies of thermodynamic properties, phase analysis, thermophysical property evaluation, fuel-fission product clad compatibility are carried out with relevant compounds and simulated fuels (SIMFUEL). All these data are compiled and jointly evaluated using different computational methods to predict fuel behaviour during burn-up. Only when this combined experimental and theoretical information confirms safe operation of the pin, a test pin is prepared and burnt in a test reactor. Every fuel has a different chemistry and different constraints associated with it. In this talk, various thermo-chemical aspects of some of the advanced fuels, mixed carbide, mixed nitride, 'Pu' rich MOX, 'Th' based AHWR fuels and metallic fuels will be discussed. (author)

  13. Nuclear fuel lease accounting

    International Nuclear Information System (INIS)

    Danielson, A.H.

    1986-01-01

    The subject of nuclear fuel lease accounting is a controversial one that has received much attention over the years. This has occurred during a period when increasing numbers of utilities, seeking alternatives to traditional financing methods, have turned to leasing their nuclear fuel inventories. The purpose of this paper is to examine the current accounting treatment of nuclear fuel leases as prescribed by the Financial Accounting Standards Board (FASB) and the Federal Energy Regulatory Commission's (FERC's) Uniform System of Accounts. Cost accounting for leased nuclear fuel during the fuel cycle is also discussed

  14. Comparative analysis of different methods of modelling of most loaded fuel pin in transients

    International Nuclear Information System (INIS)

    Ovdiyenko, Y.; Khalimonchuk, V.; Ieremenko, M.

    2007-01-01

    Different methods of modeling of most loaded fuel pin are presented at the work. Calculation studies are performed on example of accident related to WWER-1000 cluster rod ejection with using of spatial kinetic code DYN3D that uses nodal method to calculate distribution of neutron flux in the core. Three methods of modeling of most loaded fuel pin are considered - flux reconstruction in fuel macrocell, pin-by-pin calculation by using of DYN3D/DERAB package and by introducing of additional 'hot channel'. Obtained results of performed studies could be used for development of calculation kinetic models during preparing of safety analysis report (Authors)

  15. Microstructure of irradiated Inconel 706 fuel pin cladding

    International Nuclear Information System (INIS)

    Yang, W.J.S.; Makenas, B.J.

    1983-08-01

    A fuel pin from the HEDL-P-60 experiment with a cladding of solution-annealed Inconel 706 breached in an apparently brittle manner at a position 12.7 cm above the bottom of the fuel column with a crack of 5.72 cm in length after 5.0 atomic percent burnup in EBR-II. Temperatures (time-averaged midwall) and fast fluences for the fractured area range from 447 0 C and 5.5 x 10 22 n/cm 2 to 526 0 C and 6.1 x 10 22 n/cm 2 (E > 0.1 MeV). Specimens of the fractured fuel pin section were successfully prepared and examined in both a scanning electron microscope and a transmission electron microscope. The fracture surfaces of the breached section showed brittle intergranular fracture characteristics for both the axial and circumferential cracks. Formation of γ' in the matrix near the breach confirmed that the irradiation temperature at the breached area was below 500 0 C, in agreement with other estimates of the temperature for the area, 447 to 526 0 C. A hexagonal eta-phase, Ni 3 (Ti,Nb), precipitated at boundaries near the breach. A more extensive eta-phase coating at grain boundaries was found in a section irradiated at 650 0 C. The eta-phase plates at grain boundaries are expected to have a detrimental effect on alloy ductility. A plane of weakness in this region along the (111) slip planes will develop in Inconel 706 because the eta-plates have a (111) habit relationship with the matrix

  16. The Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    2011-08-01

    This brochure describes the nuclear fuel cycle, which is an industrial process involving various activities to produce electricity from uranium in nuclear power reactors. The cycle starts with the mining of uranium and ends with the disposal of nuclear waste. The raw material for today's nuclear fuel is uranium. It must be processed through a series of steps to produce an efficient fuel for generating electricity. Used fuel also needs to be taken care of for reuse and disposal. The nuclear fuel cycle includes the 'front end', i.e. preparation of the fuel, the 'service period' in which fuel is used during reactor operation to generate electricity, and the 'back end', i.e. the safe management of spent nuclear fuel including reprocessing and reuse and disposal. If spent fuel is not reprocessed, the fuel cycle is referred to as an 'open' or 'once-through' fuel cycle; if spent fuel is reprocessed, and partly reused, it is referred to as a 'closed' nuclear fuel cycle.

  17. Postirradiation examinations of fuel pins from the GCFR F-1 series of mixed-oxide fuel pins at 5. 5 at. % burnup

    Energy Technology Data Exchange (ETDEWEB)

    Strain, R V; Johnson, C E

    1978-05-01

    Postirradiation examinations were performed on five fuel pins from the Gas-Cooled Fast-Breeder Reactor F-1 experiment irradiated in EBR-II to a peak burnup of approximately 5.5 at. %. These encapsulated fuel pins were irradiated at peak-power linear ratings from approximately 13 to 15 kW/ft and peak cladding inside diameter temperatures from approximately 625 to 760/sup 0/C. The maximum diametral change that occurred during irradiation was 0.2% ..delta..D/D/sub 0/. The maximum fuel-cladding chemical interaction depth was 2.6 mils in fuel pin G-1 and 1 mil or less in the other three pins examined destructively. Significant migration of the volatile fission products occurred axially to the fuel-blanket interfaces. Teh postirradiation examination data indicate that fuel melted at the inner surface of the annular fuel pellets in the two highest power rating fuel pins, but little axial movement of fuel occurred.

  18. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Nakai, Keiichi

    1983-01-01

    Purpose: To decrease the tensile stresses resulted in a fuel can as well as prevent decladding of fuel pellets into the bore holes by decreasing the inner pressure within the nuclear fuel element. Constitution: A fuel can is filled with hollow fuel pellets, inserted with a spring for retaining the hollow fuel pellets with an appropriate force and, thereafter, closely sealed at the both ends with end plugs. A cylindrical body is disposed into the bore holes of the hollow fuel pellets. Since initial sealing gases and/or gaseous nuclear fission products can thus be excluded from the bore holes where the temperature is at the highest level, the inner pressure of the nuclear fuel element can be reduced to decrease the tensile strength resulted to the fuel can. Furthermore, decladding of fuel pellets into the bore holes can be prevented. (Moriyama, K.)

  19. Nuclear fuel replacement device

    International Nuclear Information System (INIS)

    Ritz, W.C.; Robey, R.M.; Wett, J.F.

    1984-01-01

    A fuel handling arrangement for a liquid metal cooled nuclear reactor having a single rotating plug eccentric to the fuel core and a fuel handling machine radially movable along a slot in the plug with a transfer station disposed outside the fuel core but covered by the eccentric plug and within range of movement of said fuel handling machine to permit transfer of fuel assemblies between the core and the transfer station. (author)

  20. Fuel pellet relocation behavior in fast reactor uranium-plutonium mixed oxide fuel pin at beginning-of-life

    International Nuclear Information System (INIS)

    Inoue, Masaki; Ukai, Shigeharu; Asaga, Takeo

    1999-08-01

    The effects of fabrication parameters, irradiation conditions and fuel microstructural feature on fuel pellet relocation behavior in fast reactor fuel pins were investigated. This work focused only on beginning-of-life conditions, when fuel centerline temperature depends largely on the behavior. Fuel pellet relocation behavior in Joyo Mk-II driver could not be characterized because of the lack of data. And the behavior in FFTF driver and its larger diameter type fuel pins could not be characterized because of the extensive lot-by-lot scatters. The behavior both in Monju type and in Joyo power-to-melt type fuel pins were similar to each other, and depends largely on the as-fabricated gap width while the effects of linear heat rate and the extent of microstructural evolution were negligible. And fuel pellet centerline melting seems to affect slightly the behavior. The correlation, which describes the extent of relocation both in Monju type and in Joyo power-to-melt type fuel pins, were newly formulated and extrapolated for Joyo Mk-II driver, FFTF driver and its larger diameter type fuel pins. And the behavior in Joyo Mk-II driver seemed to be similar. On the contrary, the similarity with JNC fuel pins was observed case-by-case in FFTF driver and its larger diameter type fuel pins. (author)

  1. Integrated quality status and inventory tracking system for FFTF driver fuel pins

    International Nuclear Information System (INIS)

    Gottschalk, G.P.

    1979-11-01

    An integrated system for quality status and inventory tracking of Fast Flux Test Facility (FFTF) driver fuel pins has been developed. Automated fuel pin identification systems, a distributed computer network, and a data base are used to implement the tracking system

  2. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1981-01-01

    An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  3. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  4. Calculational assessment of critical experiments with mixed-oxide fuel pin arrays moderated by organic solution

    International Nuclear Information System (INIS)

    Smolen, G.R.; Funabashi, H.

    1987-01-01

    Critical experiments have been conducted with organically moderated mixed-oxide (MOX) fuel pin assemblies at the Pacific Northwest Lab. Critical Mass Lab. These experiments are part of a joint exchange program between the US Dept. of Energy and the Power Reactor and Nuclear Fuel Development Corp. of Japan in the area of criticality data development. The purpose of these experiments is to benchmark computer codes and cross-section libraries and to assess the reactivity difference between systems moderated by water and those moderated by an organic solution. Past studies have indicated that some organic mixtures may be better moderators than water. This topic is of particular importance to the criticality safety of fuel processing plants where fissile material is dissolved in organic solutions during the solvent extraction process. In the past, it has been assumed that the codes and libraries benchmarked with water-moderated experiments were adequate when performing design and licensing studies of organically moderated systems. Calculations presented in this paper indicated that the Scale code system and the 27-energy-group cross-section library accurately compute k/sub eff/ for organically moderated MOX fuel pin assemblies. Furthermore, the reactivity of an organic solution with a 32 vol % TBP/68 vol% NPH mixture in a heterogeneous configuration is the same, for practical purposes, as water

  5. Calculational assessment of critical experiments with mixed oxide fuel pin arrays moderated by organic solution

    International Nuclear Information System (INIS)

    Smolen, G.R.

    1987-01-01

    Critical experiments have been conducted with organic-moderated mixed oxide (MOX) fuel pin assemblies at the Pacific Northwest Laboratory (PNL) Critical Mass Laboratory (CML). These experiments are part of a joint exchange program between the United States Department of Energy (USDOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan in the area of criticality data development. The purpose of these experiments is to benchmark computer codes and cross-section libraries and to assess the reactivity difference between systems moderated by water and those moderated by an organic solution. Past studies have indicated that some organic mixtures may be better moderators than water. This topic is of particular importance to the criticality safety of fuel processing plants where fissile material is dissolved in organic solutions during the solvent extraction process. In the past, it has been assumed that the codes and libraries benchmarked with water-moderated experiments were adequate when performing design and licensing studies of organic-moderated systems. Calculations presented in this paper indicated that the SCALE code system and the 27-energy-group cross-section accurately compute k-effectives for organic moderated MOX fuel-pin assemblies. Furthermore, the reactivity of an organic solution with a 32-vol-% TBP/68-vol-% NPH mixture in a heterogeneous configuration is the same, for practical purposes, as water. 5 refs

  6. SIFAIL: a subprogram to calculate cladding deformation and damage for fast reactor fuel pins

    International Nuclear Information System (INIS)

    Wilson, D.R.; Dutt, D.S.

    1979-05-01

    SIFAIL is a series of subroutines used in conjunction with the thermal performance models of SIEX to assist in the evaluation of mechanical performance of mixed uranium plutonium oxide fuel pins. Cladding deformations due to swelling and creep are calculated. These have been compared to post-irradiation data from fuel pin tests in EBR-II. Several fuel pin cladding failure criteria (cumulative damage, total strain, and thermal creep strain) are evaluated to provide the fuel pin designer with a basis to select design parameters. SIFAIL allows the user many property options for cladding material. Code input is limited to geometric and environmental parameters, with a consistent set of material properties provided by the code. The simplified, yet adequate, thin wall stress--strain calculations provide a reliable estimate of fuel pin mechanical performance, while requiring a small amount of core storage and computer running time

  7. Los Alamos Hot-Cell-Facility modifications for examining FFTF fuel pins

    International Nuclear Information System (INIS)

    Campbell, B.M.; Ledbetter, J.M.

    1982-01-01

    Commissioned in 1960, the Wing 9 Hot Cell Facility at Los Alamos was recently modified to meet the needs of the 1980s. Because fuel pins from the Fast Flux Test Facility (FFTF) at the Hanford Engineering Development Laboratory (HEDL) are too long for examination in the original hot cells, we modified cells to accommodate longer fuel pins and to provide other capabilities as well. For instance, the T-3 shipping cask now can be opened in an inert atmosphere that can be maintained for all nondestructive and destructive examinations of the fuel pins. The full-length pins are visually examined and photographed, the wire wrap is removed, and fission gas is sampled. After the fuel pin is cropped, a cap is seal-welded on the section containing the fuel column. This section is then transferred to other cells for gamma-scanning, radiography, profilometry, sectioning for metallography, and chemical analysis

  8. Possible application of nonredundant pinhole arrays to fuel pin imaging

    International Nuclear Information System (INIS)

    Berzins, G.J.; Han, K.S.

    1975-11-01

    LMFBR Safety Test Facility imaging experiments rely on emission of radiation by the fuel pins and thus appear to strongly complement radiographic techniques in that they are most employable during peak excursion--a time of least favorable radiographic signal--to--noise ratio. Radiography, on the other hand, can provide information long before or after the excursion--times of below threshold signal for direct imaging techniques. An underlying premise of any imaging experiment is that, in addition to sufficient brightness, sufficient contrast exists in the scene. A further restriction is imposed by intervening materials, such as the wall of a containment vessel, that not only absorb but also scatter the radiation. These questions are approached by examining the properties of potential recording instrumentation, of pinhole apertures, and of the necessary radiation sources

  9. Nuclear fuel accounting

    International Nuclear Information System (INIS)

    Aisch, D.E.

    1977-01-01

    After a nuclear power plant has started commercial operation the actual nuclear fuel costs have to be demonstrated in the rate making procedure. For this purpose an accounting system has to be developed which comprises the following features: 1) All costs associated with nuclear fuel shall be correctly recorded; 2) it shall be sufficiently flexible to cover also deviations from proposed core loading patterns; 3) it shall be applicable to different fuel cycle schemes. (orig./RW) [de

  10. Power release estimation inside of fuel pins neighbouring fuel pin with gadolinium in a WWER-1000 type core

    International Nuclear Information System (INIS)

    Mikus, J.

    2006-01-01

    The purpose of this work consists in investigation of the gadolinium fuel pin (fps) influence on space power distribution, especially from viewpoint of the values and gradient occurrence inside of neighbouring FPs that could result in static loads with some consequences, e.g., FP bowing. Since detailed power distributions cannot be obtained in the NPPs, needed information is provided by means of experiments on research reactors. As for the power release measurement inside of FPs, some special (e.g. track) detectors placed between fuel pellets are usually used. Since such works are relatively complicated and time consuming, an evaluation method based on mathematical modelling and numerical approximation was proposed by means of that, and using measured (integral) power release in selected FPs, relevant information about power release inside of needed (investigated) FP, can be obtained. For this purpose, an experiment on light water, zero-power research reactor LR-0 was realized in a WWER-1000 type core with 7 fuel assemblies at zero boron concentration and containing gadolinium FPs. Application of the above evaluation method is demonstrated on investigated FP neighbouring a FP with gadolinium by means of the 1) Azimuthal power distribution inside of investigated FP on their fuel pellet surface in horizontal plane and 2) Gradient of the power distribution inside of investigated FP in two opposite positions on pellets surface that are situated to- and outwards a FP with gadolinium. Similar information can be relevant from the viewpoint of the FP failures occurrence investigation (Authors)

  11. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  12. Power release estimation inside of a fuel pin neighbouring a WWER-440 control rod

    International Nuclear Information System (INIS)

    Mikus, J.

    2006-01-01

    This work presents an estimation of the control rod (CR) influence in the WWER-440 core on the power release inside of a fuel pin neighbouring CR, that can have some consequences due to possible static and cyclic loads, for example fuel pin / fuel assembly bowing. For this purpose detailed (usual) axial power distribution measurements were performed in a WWER-440 type core on the light water, zero-power research reactor LR-0 in fuel pins near to an authentic CR model at zero boron concentration in moderator, modelling the conditions at the end of fuel cycle. To demonstrate the CR influence on power distribution inside of one fuel pin neighbouring CR, results of above measurements were used for estimation of the: 1) Axial power distribution inside of the investigated fuel pin in both opposite positions on its pellets surface that are situated to- and outwards CR and corresponding gradient of the (r, z) - power distribution in above opposite positions and 2) Azimuthal power distributions on pellet surface of the investigated fuel pin in horizontal planes at selected axial coordinates. Similar information can be relevant from the viewpoint of the fuel pin failures occurrence investigation

  13. Probabilistic distributions of pin gaps within a wire-spaced fuel subassembly and sensitivities of the related uncertainties to pin gap

    International Nuclear Information System (INIS)

    Sakai, K.; Hishida, H.

    1978-01-01

    Probabilistic fuel pin gap distributions within a wire-spaced fuel subassembly and sensitivities of the related uncertainties to fuel pin gaps are discussed. The analyses consist mainly of expressing a local fuel pin gap in terms of sensitivity functions of the related uncertainties and calculating the corresponding probabilistic distribution through taking all the possible combinations of the distribution of uncertainties. The results of illustrative calculations show that with the reliability level of 0.9987, the maximum deviation of the pin gap at the cladding hot spot of a center fuel subassembly is 8.05% from its nominal value and the corresponding probabilistic pin gap distribution is shifted to the narrower side due to the external confinement of a pin bundle with a wrapper tube. (Auth.)

  14. Nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding, and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  15. Nuclear fuel element

    International Nuclear Information System (INIS)

    Thompson, J.R.; Rowland, T.C.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting, fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  16. Uncertainty analysis of light water reactor unit fuel pin cells

    Energy Technology Data Exchange (ETDEWEB)

    Kamerow, S.; Ivanov, K., E-mail: sln107@PSU.EDU, E-mail: kni1@PSU.EDU [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, PA (United States); Moreno, C. Arenas, E-mail: cristina.arenas@UPC.EDU [Department of Physics and Nuclear Engineering, Technical University of Catalonia, Barcelona (Spain)

    2011-07-01

    The study explored the calculation of uncertainty based on available covariance data and computational tools. Uncertainty due to temperature changes and different fuel compositions are the main focus of this analysis. Selected unit fuel pin cells were analyzed according to the OECD LWR UAM benchmark specifications. Criticality and uncertainty analyses were performed using TSUNAMI-1D sequence in SCALE 6.0. It was found that uncertainties increase with increasing temperature while k{sub eff} decreases. This increase in the uncertainty is due to the increase in sensitivity of the largest contributor of uncertainty, namely nuclide reaction {sup 238}U (n, gamma). The sensitivity grew larger as the capture cross-section of {sup 238}U expanded due to Doppler broadening. In addition, three different compositions (UOx, MOx, and UOxGd{sub 2}O{sub 3}) of fuel cells were analyzed. It showed a remarkable increase in uncertainty in k{sub eff} for the case of the MOx fuel cell and UOxGd{sub 2}O{sub 3} fuel cell. The increase in the uncertainty of k{sub eff} in UOxGd{sub 2}O{sub 3} fuel was nearly twice of that in MOx fuel and almost four times the amount in UOx fuel. The components of the uncertainties in k{sub eff} in each case were examined and it was found that the neutron-nuclide reaction of {sup 238}U, mainly (n,n'), contributed the most to the uncertainties in the cases of MOx and UOxGd{sub 2}O{sub 3}. At higher energy, the covariance coefficient matrix of {sup 238}U (n,n') to {sup 238}U (n,n') and {sup 238}U (n,n') cross-section showed very large values. Further, examination of the UOxGd{sub 2}O{sub 3} case found that the {sup 238}U (n,n') became the dominant contributor to the uncertainty because most of the thermal neutrons in the cell were absorbed by Gadolinium in UOxGd{sub 2}O{sub 3} case and thus shifting the neutron spectrum to higher energy. For the MOx case on other hand, {sup 239}Pu has a very strong absorption cross-section at low energy

  17. Investigation of the ramp testing behaviour of fuel pins with different diameters

    International Nuclear Information System (INIS)

    Pott, G.; Herren, M.; Wigger, B.

    1979-09-01

    The aim of these experiments was the investigation of the influence of different fuel pin diameter on the ramp testing behaviour. Fuel elements with diameter between 10,75 and 15,6 mm and different cladding thickness had been ramptested in the HBWR (Halden Boiling Water Reactor) after preirradiated in the same facility. Fuel pins with the smallest diameter of 10,75 mm failed. This was indicated by fission gas release measurement. Metallographic examination showed these failure were caused by hydride blisters. A systematic influence of fuel pin diameter and cladding thickness on the ramptesting behaviour was not observed. (orig.) [de

  18. FFTF [Fast Flux Test Facility]/IEM [Interim Examination and Maintenance] Cell Fuel Pin Weighing System

    International Nuclear Information System (INIS)

    Gibbons, P.W.

    1987-09-01

    A Fuel Pin Weighing Machine has been developed for use in the Fast Flux Test Facility (FFTF) Interim Examination and Maintenance (IEM) Cell to assist in identifying an individual breached fuel pin from its fuel assembly pin bundle. A weighing machine, originally purchased for use in the Fuels and Materials Examination Facility (FMEF) at Hanford, was used as the basis for the IEM Cell system. Design modifications to the original equipment were centered around: 1) adapting the FMEF machine for use in the IEM Cell and 2) correcting operational deficiencies discovered during functional testing in the IEM Cell Mockup

  19. The design of electrical heater pins to simulate transient dryout and post-dryout of water reactor fuel

    International Nuclear Information System (INIS)

    Burgess, M.H.; Butcher, A.A.; Sidoli, J.E.A.

    1978-11-01

    A theoretical assessment of indirect and direct filled heater simulations of nuclear reactor fuel pins is described. For reasons of fast temperature response, a direct unfilled heater, with thermocouples buried in the walls, is recommended for studies of Loss-of-Coolant Accidents leading to dryout, post-dryout and rewetting. A design of heater pins, for use in SGHWR or PWR experiments, and compatible with existing 9MW power supplies, is described. Experiments to confirm collapse pressure calculations at 1000 0 C and thermocouple response times are also reported. (author)

  20. Fabrication and characterization of MX-type fuels and fuel pins

    International Nuclear Information System (INIS)

    Richter, K.; Bartscher, W.; Benedict, U.; Gueugnon, J.F.; Kutter, H.; Sari, C.; Schmidt, H.E.

    1978-01-01

    This paper summarizes the most important fabrication parameters and characterization of fuel and fuel pins obtained during the investigation of uranium-plutonium carbides, oxicarbides, carbonitrides and nitrides in the past years at the European Institute for Transuranium Elements at Karlsruhe. All preparation methods discussed are based on carbothermic reduction of a mechanical blend of uranium-plutonium oxide and carbon powder. General data for carbothermic reduction processes are discussed (influence of starting material, homogeneity, control of degree of reaction, etc). A survey of different preparation methods investigated is given. Limitations with respect to temperature and atmosphere for both carbothermic reduction processes and sintering conditions for the different compounds are summarized. A special preparation process for mixed carbonitrides with low nitrogen content (U,Pu)sub(1-x)Nsub(x) in the range 0.1 0 C to 1400 0 C by means of a modulated electron beam technique. A scheme is proposed, which allows to predict the thermal properties of MX fuels on the basis of their chemical composition and porosity. Preparation, preirradiation characterization and final controls of fuel test pins for pellet and vibrocompacted type of pins are described and the most important data summarized for all advanced fuels irradiated at Dounreay (DN1) and Rapsodie Fast Reactor (DN2) within the TU irradiation programme

  1. Sodium Loop Safety Facility W-2 experiment fuel pin rupture detection system. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.A.; Kirchner, T.L.; Meyers, S.C.

    1980-05-01

    The objective of the Sodium Loop Safety Facility (SLSF) W-2 experiment is to characterize the combined effects of a preconditioned full-length fuel column and slow transient overpower (TOP) conditions on breeder reactor (BR) fuel pin cladding failures. The W-2 experiment will meet this objective by providing data in two technological areas: (1) time and location of cladding failure, and (2) early post-failure test fuel behavior. The test involves a seven pin, prototypic full-length fast test reactor (FTR) fuel pin bundle which will be subjected to a simulated unprotected 5 cents/s reactivity transient overpower event. The outer six pins will provide the necessary prototypic thermal-hydraulic environment for the center pin.

  2. Sodium Loop Safety Facility W-2 experiment fuel pin rupture detection system

    International Nuclear Information System (INIS)

    Hoffman, M.A.; Kirchner, T.L.; Meyers, S.C.

    1980-05-01

    The objective of the Sodium Loop Safety Facility (SLSF) W-2 experiment is to characterize the combined effects of a preconditioned full-length fuel column and slow transient overpower (TOP) conditions on breeder reactor (BR) fuel pin cladding failures. The W-2 experiment will meet this objective by providing data in two technological areas: (1) time and location of cladding failure, and (2) early post-failure test fuel behavior. The test involves a seven pin, prototypic full-length fast test reactor (FTR) fuel pin bundle which will be subjected to a simulated unprotected 5 cents/s reactivity transient overpower event. The outer six pins will provide the necessary prototypic thermal-hydraulic environment for the center pin

  3. Apparatus and process for separating end of nuclear fuel assembly

    International Nuclear Information System (INIS)

    Beneck, J.A.; Quayre, C.; Moreau, J.R.M.; Vermeille, D.E.A.

    1989-01-01

    The apparatus for cutting the guide tubes of a nuclear fuel assembly below the bottom nozzle has a framework with removable fixation and centering means on the bottom nozzle. Cutting devices in the form of hollow pins are inserted simultaneously into all the guide tubes. Each pin contains a shaft that is moved axially inside it by the expansion system to deploy or retract a cutting edge near the lower end of the pin. A single motor using a gear wheel system, rotates all the cutting pins simultaneously [fr

  4. Report on fabrication of pin components for fuel fabrication in FUJI project (Co-operation in the research and development of advanced sphere-pac fuel among PSI, JNC, and NRG)

    International Nuclear Information System (INIS)

    Suzuki, Masahiro; Hinai, Hiroshi; Shigetome, Yoshiaki; Kono, Shusaku; Matsuzaki, Masaaki

    2003-03-01

    Japan Nuclear Cycle Development Institute (JNC) has conducted the co-operation concerning vibro-packed fuels with Paul Scherrer Institut (PSI) in Switzerland and Nuclear Research and consultancy Group (NRG) in the Netherlands. The project 'Research and Development of advanced Sphere-pac Fuel' is called FUJI (FUel irradiations for JNC and PSI) Project. In this project, three types of fuels that are sphere-pac fuels, vipac fuels, and pellet fuels will be irradiated in the High Flux Reactor (HFR) to compare their performance. Based on the drawing which has been agreed among three parties, fabrication of the pin components and welding of the upper and lower connection end plugs were performed in accordance with ISO9001 in JNC. This report describes data of the fabricated pin components, results of welding qualification tests, and quality assurance of the welded components. The fabrication of pin components was successfully completed and they were delivered to PSI in October 2002. (author)

  5. Assessment of clad integrity of PHWR fuel pin following a postulated severe accident

    International Nuclear Information System (INIS)

    Dutta, B.K.; Kushwaha, H.S.; Venkat Raj, V.

    2000-01-01

    A mechanistic fuel performance analysis code FAIR has been developed. The code can analyse fuel pins with free standing as well as collapsible clad under normal, off-normal and accident conditions of reactors. The code FAIR is capable of analysing the effects of high burnup on fuel behaviour. The code incorporates finite element based thermo-mechanical module for computing transient temperature distribution and thermal-elastic-plastic stresses in the fuel pin. A number of high temperature thermo-physical and thermo-mechanical models also have been incorporated for analysing fuel pins subjected to severe accident scenario. The present paper describes salient features of code FAIR and assessment of clad integrity of PHWR fuel pins with different initial burnup subjected to severe accident scenario. (author)

  6. Development of vibropac MOX fuel pins serviceable up TP superhigh burnups

    International Nuclear Information System (INIS)

    Mayorshin, A.A.; Gadzhiev, G.I.; Kisly, V.A.; Skiba, O.V.; Tzykanov, V.A.

    1998-01-01

    The main results on investigations of fast reactor fuel pins with (UPu)O 2 vibropac fuel to substantiate their serviceability up to the super-high burnups are presented. The BOR-60 reactor fuel pins radiation behaviour in stationary, transient and designed emergency conditions has been determined from the fuel pins dimensional stability analysis having regard to the results of investigation fuel and cladding swelling as well as estimations of fuel and cladding thermal-mechanical and physico-chemical interactions. It is shown that the change of the outer diameter is minimum in fuel pins with VMOX fuel with a getter-metallic uranium powder and ferrito-martensite steel cladding, and the corrosion damage of the cladding inner surface is absent up to 26% h.a. The experiments with over-heating of the irradiated fuel pins cladding up to 850 deg. C did not lead to any changes in pins integrity. The availability of the periphery area of the vibropac fuel cure initial structure provides the minimum level of the thermal-mechanical stress at transient conditions of reactor operation. (author)

  7. Criticality safety studies for plutonium–uranium metal fuel pin fabrication facility

    International Nuclear Information System (INIS)

    Stephen, Neethu Hanna; Reddy, C.P.

    2013-01-01

    Highlights: ► Criticality safety limits for PUMP-F facility is identified. ► The fissile mass which can be handled safely during alloy preparation is 10.5 kg. ► The number of fuel slugs which can be handled safely during injection casting is 53. ► The number of fuel slugs which can be handled safely after fuel fabrication is 71. - Abstract: This study focuses on the criticality safety during the fabrication of fast reactor metal fuel pins comprising of the fuel type U–15Pu, U–19Pu and U–19Pu–6Zr in the Plutonium–Uranium Metal fuel Pin fabrication Facility (PUMP-F). Maximum amount of fissile mass which can be handled safely during master alloy preparation, Injection casting and fuel slug preparation following fuel pin fabrication were identified and fixed based on this study. In the induction melting furnace, the fissile mass can be limited to 10.5 kg. During fuel slug preparation and fuel pin fabrication, fuel slugs and pins were arranged in hexagonal and square lattices to identify the most reactive configuration. The number of fuel slugs which can be handled safely after injection casting can be fixed to be 53, whereas after fuel fabrication it is 71

  8. Nuclear fuel production

    International Nuclear Information System (INIS)

    Randol, A.G.

    1985-01-01

    The production of new fuel for a power plant reactor and its disposition following discharge from the power plant is usually referred to as the ''nuclear fuel cycle.'' The processing of fuel is cyclic in nature since sometime during a power plant's operation old or ''depleted'' fuel must be removed and new fuel inserted. For light water reactors this step typically occurs once every 12-18 months. Since the time required for mining of the raw ore to recovery of reusable fuel materials from discharged materials can span up to 8 years, the management of fuel to assure continuous power plant operation requires simultaneous handling of various aspects of several fuel cycles, for example, material is being mined for fuel to be inserted in a power plant 2 years into the future at the same time fuel is being reprocessed from a discharge 5 years prior. Important aspects of each step in the fuel production process are discussed

  9. Nuclear fuel element

    International Nuclear Information System (INIS)

    Mogard, J.H.

    1977-01-01

    A nuclear fuel element is disclosed for use in power producing nuclear reactors, comprising a plurality of axially aligned ceramic cylindrical fuel bodies of the sintered type, and a cladding tube of metal or metal alloys, wherein said cladding tube on its cylindrical inner surface is provided with a plurality of slightly protruding spacing elements distributed over said inner surface

  10. Development of disassembly and pin chopping technology for FBR spent fuels

    International Nuclear Information System (INIS)

    Kobayashi, Tsuguyuki; Namba, Takashi; Kawabe, Yukinari; Washiya, Tadahiro

    2008-01-01

    Japan Atomic Power Company (JAPC) and Japan Atomic Energy Agency (JAEA) have been developing fuel disassembly and fuel pin chopping systems for a future Japanese commercial FBR. At first, the wrapper tube is cut by the slit-cut to pull it out, then the fuel pins are cut by the crop-cut at their end-plugs to separate them from the entrance nozzle. The pins are transferred to the magazine of the chopping machine. A series of tests were performed to develop this procedure. As the result of mechanical cutting tests, the CBN wheel was selected. The slit-cut tests were carried out to evaluated the cutting performance of the wheel. The wrapper tube is normally slit-cut in the circumferential direction. One CBN wheel could cut more than 5 fuel assemblies in this direction. The slit-cut in the axial direction is prepared as provision when the tube is difficult to put out. More work is needed to cut 5mm thick PNC-FMS plate in this direction without damaging the pins beneath it. As the result of the crop-cut tests of end-plugs made of ODS steel, the CBN wheel could cut the 61 pin bundle by two strokes. More work is needed to cut the 217 pin bundle. Fuel pin handling tests were performed to transfer them from the disassembly machine to the chopping machine. The Saucer tray was selected to receive the disassembled pins. All the pins were transferred and loaded into a magazine of the chopping machine. Fuel pin loading tests were conducted to optimize the magazine configuration to make the chopping length within 1.0±0.5 cm. In order to decrease the disturbance during chopping, the width of the magazine was adjusted to be 12 cm and installation of a height adjuster is favourable to control the free space above the pins. (author)

  11. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    Status of different nuclear fuel cycle phases in 1992 is discussed including the following issues: uranium exploration, resources, supply and demand, production, market prices, conversion, enrichment; reactor fuel technology; spent fuel management, as well as trends of these phases development up to the year 2010. 10 refs, 11 figs, 15 tabs

  12. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sasaki, Y.; Tashima, J.

    1975-01-01

    A description is given of nuclear reactor fuel assemblies arranged in the form of a lattice wherein there is attached to the interface of one of two adjacent fuel assemblies a plate spring having a concave portion curved toward said interface and to the interface of the other fuel assembly a plate spring having a convex portion curved away from said interface

  13. Physics evaluation for testino. of RAPS and TAPS fuel pins in CIRUS pressurised water loop

    International Nuclear Information System (INIS)

    John, Benjamin; Paul, O.P.K.

    1976-01-01

    Relevant calculations carried out to assess the reactivity effect, heat generation and other parameters for testing of RAPS and TAPS fuel pins in the Cirus pressurised water loop are summarised. The Cirus neutron flux level being low, in order to simulate the RAPS design heat rating of ∫ Kdtheta = 40 w/cm, the required plutonium enrichment in mixed plutonium uranium oxide fuel pin was worked out. The results showed that a PuO 2 enrichment of 1.5 wt percent would be necessary to meet the above requirement. The analysis for the TAPS pin indicated that the desired heat flux of 115w/cm 2 cannot be obtained in the Cirus loop with either a 7 pin cluster geometry, or with a single pin with the enrichment level as used in TAPS pin. Lattice code DUMLAC and the core simulation code AECLHEX were used for these studies. (author)

  14. Nuclear fuel storage facility

    International Nuclear Information System (INIS)

    Matsumoto, Takashi; Isaka, Shinji.

    1987-01-01

    Purpose: To increase the spent fuel storage capacity and reduce the installation cost in a nuclear fuel storage facility. Constitution: Fuels handled in the nuclear fuel storage device of the present invention include the following four types: (1) fresh fuels, (2) 100 % reactor core charged fuels, (3) spent fuels just after taking out and (4) fuels after a certain period (for example one half-year) from taking out of the reactor. Reactivity is high for the fuels (1), and some of fuels (2), while low in the fuels (3) (4), Source intensity is strong for the fuels (3) and some of the fuels (2), while it is low for the fuels (1) and (4). Taking notice of the fact that the reactivity, radioactive source intensity and generated after heat are different in the respective fuels, the size of the pool and the storage capacity are increased by the divided storage control. While on the other hand, since the division is made in one identical pool, the control method becomes important, and the working range is restricted by means of a template, interlock, etc., the operation mode of the handling machine is divided into four, etc. for preventing errors. (Kamimura, M.)

  15. Fast reactor fuel pin behavior analyses in a LOF type transient event

    International Nuclear Information System (INIS)

    Mizuno, Tomoyasu; Koyama, Shin-ichi; Kaito, Takeji; Uwaba, Tomoyuki; Tanaka, Kenya

    2013-06-01

    In order to evaluate integrity limiting parameters of fuel pins during fast reactor core transient events, such as fuel center line temperature and cladding maximum temperature, fuel pin behavior calculations were made using the fast reactor fuel pin performance code CEDAR. The temperature histories of fuel pins during a loss of flow (LOF) type transient events was calculated based on Ross and Stoute type gap conductance model and constant gap conductance model, which is used in a core transient calculation code like HIPRAC. The calculated maximum temperatures of cladding and adjacent coolant channel were lower in the case with Ross and Stoute type model than in the case of constant gap conductance model due to the dynamic change of gap conductance of former case. It is indicated that core transient calculations with constant gap conductance give conservative cladding and coolant temperatures than that with Ross and Stoute type gap conductance model which is thought to be realistic. (author)

  16. Nuclear fuel activities in Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Bairiot, H

    1997-12-01

    In his presentation on nuclear fuel activities in belgium the author considers the following directions of this work: fuel fabrication, NPP operation, fuel performance, research and development programmes.

  17. Boosting nuclear fuels

    International Nuclear Information System (INIS)

    Demarthon, F.; Donnars, O.; Dupuy-Maury, F.

    2002-01-01

    This dossier gives a broad overview of the present day status of the nuclear fuel cycle in France: 1 - the revival of nuclear power as a solution to the global warming and to the increase of worldwide energy needs; 2 - the security of uranium supplies thanks to the reuse of weapon grade highly enriched uranium; 3 - the fabrication of nuclear fuels from the mining extraction to the enrichment processes, the fabrication of fuel pellets and the assembly of fuel rods; 4 - the new composition of present day fuels (UO x and chromium-doped pellets); 5 - the consumption of plutonium stocks and the Corail and Apa fuel assemblies for the reduction of plutonium stocks and the preservation of uranium resources. (J.S.)

  18. Fuel-cladding chemical interaction correlation for mixed-oxide fuel pins

    International Nuclear Information System (INIS)

    Lawrence, L.A.

    1986-10-01

    A revised wastage correlation was developed for FCCI with fabrication and operating parameters. The expansion of the data base to 305 data sets provided sufficient data to employ normal statistical techniques for calculation of confidence levels without unduly penalizing predictions. The correlation based on 316 SS cladding also adequately accounts for limited measured depths of interaction for fuel pins with D9 and HTq cladding

  19. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    Klepfer, H.H.

    1974-01-01

    A nuclear fuel element is described which comprises: 1) an elongated clad container, 2) a layer of high lubricity material being disposed in and adjacent to the clad container, 3) a low neutron capture cross section metal liner being disposed in the clad container and adjacent to the layer, 4) a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, 5) an enclosure integrally secured and sealed at each end of the container, and a nuclear fuel material retaining means positioned in the cavity. (author)

  20. The fuel to clad heat transfer coefficient in advanced MX-type fuel pins

    International Nuclear Information System (INIS)

    Caligara, F.; Campana, M.; Mandler, R.; Blank, H.

    1979-01-01

    Advanced fuels (mixed carbides, nitrides and carbonitrides) are characterised by a high thermal conductivity compared to that of oxide fuels (5 times greater) and their behaviour under irradiation (amount of swelling, fracture behaviour, restructuring) is far more sensitive to the design parameters and to the operating temperature than that of oxide fuels. The use of advanced fuels is therefore conditioned by the possibility of mastering the above phenomena, and the full exploitation of their favorable neutron characteristics depends upon a good understanding of the mutual relationships of the various parameters, which eventually affect the mechanical stability of the pin. By far the most important parameter is the radial temperature profile which controls the swelling of the fuel and the build-up of stress fields within the pin. Since the rate of fission gas swelling of these fuels is relatively large, a sufficient amount of free space has to be provided within the pin. This space originally appears as fabrication porosity and as fuel-to-clad clearance. Due to the large initial gap width and to the high fuel thermal conductivity, the range of the fuel operating temperatures is mainly determined by the fuel-to-clad heat transfer coefficient h, whose correct determination becomes one of the central points in modelling. During the many years of modelling activity in the field of oxide fuels, several theoretical models have been developed to calculate h, and a large amount of experimental data has been produced for the empirical adjustment of the parameters involved, so that the situation may be regarded as rather satisfactory. The analysis lead to the following conclusions. A quantitative comparison of experimental h-values with existing models for h requires rather sophisticated instrumented irradiation capsules, which permit the measurement of mechanical data (concerning fuel and clad) together with heat rating and temperatures. More and better well

  1. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Marmonier, Pierre; Mesnage, Bernard; Nervi, J.C.

    1975-01-01

    This invention refers to fuel assemblies for a liquid metal cooled fast neutron reactor. Each assembly is composed of a hollow vertical casing, of regular polygonal section, containing a bundle of clad pins filled with a fissile or fertile substance. The casing is open at its upper end and has a cylindrical foot at its lower end for positioning the assembly in a housing provided in the horizontal diagrid, on which the core assembly rests. A set of flat bars located on the external surface of the casing enables it to be correctly orientated in its housing among the other core assemblies [fr

  2. Nuclear Fuel Reprocessing

    International Nuclear Information System (INIS)

    Simpson, Michael F.; Law, Jack D.

    2010-01-01

    This is a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. Nuclear reprocessing is the chemical treatment of spent fuel involving separation of its various constituents. Principally, it is used to recover useful actinides from the spent fuel. Radioactive waste that cannot be re-used is separated into streams for consolidation into waste forms. The first known application of nuclear reprocessing was within the Manhattan Project to recover material for nuclear weapons. Currently, reprocessing has a peaceful application in the nuclear fuel cycle. A variety of chemical methods have been proposed and demonstrated for reprocessing of nuclear fuel. The two most widely investigated and implemented methods are generally referred to as aqueous reprocessing and pyroprocessing. Each of these technologies is described in detail in Section 3 with numerous references to published articles. Reprocessing of nuclear fuel as part of a fuel cycle can be used both to recover fissionable actinides and to stabilize radioactive fission products into durable waste forms. It can also be used as part of a breeder reactor fuel cycle that could result in a 14-fold or higher increase in energy utilization per unit of natural uranium. Reprocessing can also impact the need for geologic repositories for spent fuel. The volume of waste that needs to be sent to such a repository can be reduced by first subjecting the spent fuel to reprocessing. The extent to which volume reduction can occur is currently under study by the United States Department of Energy via research at various national laboratories and universities. Reprocessing can also separate fissile and non-fissile radioactive elements for transmutation.

  3. Spent nuclear fuel storage

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2005-01-01

    When a country becomes self-sufficient in part of the nuclear cycle, as production of fuel that will be used in nuclear power plants for energy generation, it is necessary to pay attention for the best method of storing the spent fuel. Temporary storage of spent nuclear fuel is a necessary practice and is applied nowadays all over the world, so much in countries that have not been defined their plan for a definitive repository, as well for those that already put in practice such storage form. There are two main aspects that involve the spent fuels: one regarding the spent nuclear fuel storage intended to reprocessing and the other in which the spent fuel will be sent for final deposition when the definitive place is defined, correctly located, appropriately characterized as to several technical aspects, and licentiate. This last aspect can involve decades of studies because of the technical and normative definitions at a given country. In Brazil, the interest is linked with the storage of spent fuels that will not be reprocessed. This work analyses possible types of storage, the international panorama and a proposal for future construction of a spent nuclear fuel temporary storage place in the country. (author)

  4. Nuclear fuel element

    International Nuclear Information System (INIS)

    Yamamoto, Seigoro.

    1994-01-01

    Ultrafine particles of a thermal neutron absorber showing ultraplasticity is dispersed in oxide ceramic fuels by more than 1% to 10% or lower. The ultrafine particles of the thermal neutron absorber showing ultrafine plasticity is selected from any one of ZrGd, HfEu, HfY, HfGd, ZrEu, and ZrY. The thermal neutron absorber is converted into ultrafine particles and solid-solubilized in a nuclear fuel pellet, so that the dispersion thereof into nuclear fuels is made uniform and an absorbing performance of the thermal neutrons is also made uniform. Moreover, the characteristics thereof, for example, physical properties such as expansion coefficient and thermal conductivity of the nuclear fuels are also improved. The neutron absorber, such as ZrGd or the like, can provide plasticity of nuclear fuels, if it is mixed into the nuclear fuels for showing the plasticity. The nuclear fuel pellets are deformed like an hour glass as burning, but, since the end portion thereof is deformed plastically within a range of a repulsive force of the cladding tube, there is no worry of damaging a portion of the cladding tube. (N.H.)

  5. Fuel transfer manipulator for liquid metal nuclear reactors

    International Nuclear Information System (INIS)

    Sturges, R.H.

    1983-01-01

    A manipulator for transferring fuel assemblies between inclined fuel chutes of a liquid metal nuclear reactor installation. Hoisting means are mounted on a mount supported by beams pivotably attached by pins to the mount and to the floor in such a manner that pivoting of the beams causes movement and tilting of a hoist tube between positions of alignment with the inclined chutes. (author)

  6. TRANSPA: a code for transient thermal analysis of a single fuel pin

    International Nuclear Information System (INIS)

    Prenger, F.C.

    1985-02-01

    An analytical model (TRANSPA) for the transient thermal analysis of a single uranium carbide fuel pin was developed. This model uses thermal boundary conditions obtained from COBRA-WC output and calculates the transient thermal response of a single fuel pin to changes in internal power generation, coolant flowrate, or fuel pin physical configuration. The model uses the MITAS finite difference thermal analyzer. MITAS provides the means to input separate conductance models through the use of a user subroutine input capability. The model is a lumped-mass representation of the fuel pin using 26 nodes and 42 conductors. Run time for each transient analysis is approximately one minute of central processor time on the NOS operating system

  7. Transportation of nuclear fuel

    International Nuclear Information System (INIS)

    Prowse, D.R.

    1979-01-01

    Shipment of used fuel from nuclear reactors to a central fuel management facility is discussed with particular emphasis on the assessment of the risk to the public due to these shipments. The methods of transporting used fuel in large shipping containers is reviewed. In terms of an accident scenario, it is demonstrated that the primary risk of transport of used fuel is due to injury and death in common road accidents. The radiological nature of the used fuel cargo is, for all practical purposes, an insignificant factor in the total risk to the public. (author)

  8. Nuclear fuel banks

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    In december 2010 IAEA gave its agreement for the creation of a nuclear fuel bank. This bank will allow IAEA to help member countries that renounce to their own uranium enrichment capacities. This bank located on one or several member countries will belong to IAEA and will be managed by IAEA and its reserve of low enriched uranium will be sufficient to fabricate the fuel for the first load of a 1000 MW PWR. Fund raising has been successful and the running of the bank will have no financial impact on the regular budget of the IAEA. Russia has announced the creation of the first nuclear fuel bank. This bank will be located on the Angarsk site (Siberia) and will be managed by IAEA and will own 120 tonnes of low-enriched uranium fuel (between 2 and 4.95%), this kind of fuel is used in most Russian nuclear power plants. (A.C.)

  9. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    This chapter explains the distinction between fissile and fertile materials, examines briefly the processes involved in fuel manufacture and management, describes the alternative nuclear fuel cycles and considers their advantages and disadvantages. Fuel management is usually divided into three stages; the front end stage of production and fabrication, the back end stage which deals with the fuel after it is removed from the reactor (including reprocessing and waste treatment) and the stage in between when the fuel is actually in the reactor. These stages are illustrated and explained in detail. The plutonium fuel cycle and thorium-uranium-233 fuel cycle are explained. The differences between fuels for thermal reactors and fast reactors are explained. (U.K.)

  10. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Merrett, G.J.; Gillespie, P.A.

    1983-07-01

    This report discusses events and processes that could adversely affect the long-term stability of a nuclear fuel waste disposal vault or the regions of the geosphere and the biosphere to which radionuclides might migrate from such a vault

  11. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Patarin, L.

    2002-01-01

    This book treats of the different aspects of the industrial operations linked with the nuclear fuel, before and after its use in nuclear reactors. The basis science of this nuclear fuel cycle is chemistry. Thus a recall of the elementary notions of chemistry is given in order to understand the phenomena involved in the ore processing, in the isotope enrichment, in the fabrication of fuel pellets and rods (front-end of the cycle), in the extraction of recyclable materials (residual uranium and plutonium), and in the processing and conditioning of wastes (back-end of the fuel cycle). Nuclear reactors produce about 80% of the French electric power and the Cogema group makes 40% of its turnover at the export. Thus this book contains also some economic and geopolitical data in order to clearly position the stakes. The last part, devoted to the management of wastes, presents the solutions already operational and also the research studies in progress. (J.S.)

  12. Nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    White, D.

    1981-01-01

    A simple friction device for cutting nuclear fuel wrappers comprising a thin metal disc clamped between two large diameter clamping plates. A stream of gas ejected from a nozzle is used as coolant. The device may be maintained remotely. (author)

  13. Beginning-of-life gap closure behaviour of experimental PFBR MOX fuel pin

    International Nuclear Information System (INIS)

    Jayaraj, V.V.; Padalakshmi, M.; Ojha, B.K.; Padma Prabu, C.; Saravanan, T.; Venkiteswaran, C.N.; Philip, John; Muralidharan, N.G.; Joseph, Jojo; Kasiviswanathan, K.V.; Jayakumar, T.

    2011-01-01

    Mixed oxide fuel with 22 % and 29% plutonium is chosen as the fuel for PFBR for the two fissile zones. Due to the fabrication tolerances in the pellet diameter, fuel has to be preconditioned at a lower linear power for a brief period before raising the power to the rated value of 450 W/cm. PIE was done on an experimental MOX fuel pin irradiated in FBTR for 13 days at a linear power of 400 W/cm for gap closure studies with the objective of optimising the duration of pre-conditioning before raising the power to the design value of 450 W/cm. X-radiography and remote metallography was done on the fuel pin to estimate the axial fuel column elongation and fuel-clad gap. Remote metallography of the fuel pin cross-sections at five axial locations of the fuel column and the subsequent fuel-clad gap measurement has indicated that the average radial gap has reduced from the pre-irradiation value of 75-110 microns to around 12-13 microns along the entire length of the fuel column. This paper will describe the details of examinations and results of the PIE carried out on the MOX fuel pin. (author)

  14. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Hayashi, Hiroshi; Watari, Yoshio; Hizahara, Hiroshi; Masuoka, Ryuzo.

    1970-01-01

    When exchanging nuclear fuel assemblies during the operation of a nuclear reactor, melting of fuel bodies, and severence of tubular claddings is halted at the time of insertion by furnishing a neutron absorbing material such as B 10 , Cd, Gd or the like at the forward end of the fuel assembly to thereby lower the power peak at the forward ends of the fuel elements to within tolerable levels and thus prevent both fuel liquification and excessive expansion. The neutron absorbing material may be attached in the form of a plate to the fuel assembly forward tie plate, or may be inserted as a pellet into the front end of the tubular cladding. (Owens, K.J.)

  15. TEMP: a computer code to calculate fuel pin temperatures during a transient

    International Nuclear Information System (INIS)

    Bard, F.E.; Christensen, B.Y.; Gneiting, B.C.

    1980-04-01

    The computer code TEMP calculates fuel pin temperatures during a transient. It was developed to accommodate temperature calculations in any system of axi-symmetric concentric cylinders. When used to calculate fuel pin temperatures, the code will handle a fuel pin as simple as a solid cylinder or as complex as a central void surrounded by fuel that is broken into three regions by two circumferential cracks. Any fuel situation between these two extremes can be analyzed along with additional cladding, heat sink, coolant or capsule regions surrounding the fuel. The one-region version of the code accurately calculates the solution to two problems having closed-form solutions. The code uses an implicit method, an explicit method and a Crank-Nicolson (implicit-explicit) method

  16. Nuclear fuel manufacture

    International Nuclear Information System (INIS)

    Costello, J.M.

    1980-09-01

    The technologies used to manufacture nuclear fuel from uranium ore are outlined, with particular reference to the light water reactor fuel cycle. Capital and operating cost estimates for the processing stages are given, and the relevance to a developing uranium industry in Australia is discussed

  17. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Butterfield, C.E.; Waite, E.

    1982-01-01

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  18. Program of quality management when fabricating fast reactor vibropack oxide fuel pins

    International Nuclear Information System (INIS)

    Mayorshin, A.A.; Kisly, V.A.; Sudakov, L.V.

    2000-01-01

    There are presented main principles of creation and operation of Quality Management Program in fabricating vibropack oxide fuel pins for BOR-60 and BN-600 being in force in SSC RF RIAR. There is given structure of documentation for QS principal elements. Under Quality System there are defined all the procedures, assuring that fuel pin meets the normative requirements. The system model is complied with the standard model IS 9001. There are shown technologic flowchart and check operation, statistic results of pin critical parameter check as well as main results of in-pile tests. (author)

  19. Nuclear fuel pellet loading apparatus

    International Nuclear Information System (INIS)

    Gerkey, K.S.

    1979-01-01

    An automatic apparatus for loading a predetermined amount of nuclear fuel pellets into a nuclear fuel element to be used in a nuclear reactor is described. The apparatus consists of a vibratory bed capable of supporting corrugated trays containing rows of nuclear fuel pellets and arranged in alignment with the open ends of several nuclear fuel elements. A sweep mechanism is arranged above the trays and serves to sweep the rows of fuel pellets onto the vibratory bed and into the fuel element. A length detecting system, in conjunction with a pellet stopping mechanism, is also provided to assure that a predetermined amount of nuclear fuel pellets are loaded into each fuel element

  20. Development of 3-Pin Fuel Test Loop and Utilization Technology

    International Nuclear Information System (INIS)

    Lee, Chung Young; Sim, B. S.; Lee, C. Y.

    2007-06-01

    The principal contents of this project are to design, fabricate and install the steady-state fuel test loop in HANARO for nuclear technology development. Procurement and, fabrication of main equipment, licensing and installation for fuel test loop have been performed. Following contents are described in the report. 1. Design - Design of the In-pile system and Out pile system 2. Fabrication and procurement of the equipment - Fabrication of the In-pile system and In-pool piping - Fabrication and procurement of the equipment of the out-pile system 3. Acquisition of the license - Preparation of the safety analysis report and acquisition of the license - Pre-service inspection of the facility 4. Installation and commissioning - Installation of the FTL - Development of the commissioning procedure

  1. Nuclear Fuel Cycle Objectives

    International Nuclear Information System (INIS)

    2013-01-01

    . The four Objectives publications include Nuclear General Objectives, Nuclear Power Objectives, Nuclear Fuel Cycle Objectives, and Radioactive Waste management and Decommissioning Objectives. This publication sets out the objectives that need to be achieved in the area of the nuclear fuel cycle to ensure that the Nuclear Energy Basic Principles are satisfied. Within each of these four Objectives publications, the individual topics that make up each area are addressed. The five topics included in this publication are: resources; fuel engineering and performance; spent fuel management and reprocessing; fuel cycles; and the research reactor nuclear fuel cycle

  2. Setting for technological control of vibropacked uranium-plutonium fuel pins

    International Nuclear Information System (INIS)

    Golushko, V.V.; Semenov, A.L.; Chukhlova, O.P.; Kuznetsov, A.M.; Korchkov, Yu.N.; Kandrashina, T.A.

    1991-01-01

    Scanning set-up providing for control of fuel pins by quality of fuel distribution in them is described. The gamma absorption method of fuel density measurement and the method of its own radiation registration are applied. Scintillation detection blocks are used in the measuring equipment mainly consisting of standard CAMAC blocks. Automation of measurements is performed on the basis of the computer complex MERA-60. A complex of programs for automation of the procedures under way is developed, when the facility operates within the test production line of vibroracked uranium-plutonium fuel pins. 6 refs.; 4 figs.; 1 tabs

  3. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hardy, C.J.; Silver, J.M.

    1985-09-01

    The report provides data and assessments of the status and prospects of nuclear power and the nuclear fuel cycle. The report discusses the economic competitiveness of nuclear electricity generation, the extent of world uranium resources, production and requirements, uranium conversion and enrichment, fuel fabrication, spent fuel treatment and radioactive waste management. A review is given of the status of nuclear fusion research

  4. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a metal liner disposed between the cladding and the nuclear fuel material and a high lubricity material in the form of a coating disposed between the liner and the cladding. The liner preferably has a thickness greater than the longest fission product recoil distance and is composed of a low neutron capture cross-section material. The liner is preferably composed of zirconium, an alloy of zirconium, niobium or an alloy of niobium. The liner serves as a preferential reaction site for volatile impurities and fission products and protects the cladding from contact and reaction with such impurities and fission products. The high lubricity material acts as an interface between the liner and the cladding and reduces localized stresses on the cladding due to fuel expansion and cracking of the fuel

  5. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Wakamatsu, Mitsuo.

    1974-01-01

    Object: To improve a circulating flow passage of coolant so as to be able to accurately detect the temperature of coolant, rare gases contained, and the like. Structure: A fuel assembly comprising a flow regulating lattice provided with a plurality of communication holes in an axial direction, said lattice being positioned at the upper end of an outer tube in which nuclear fuel elements are received, and a neutron shielding body having a plurality of spiral coolant flow passages disposed between the lattice and the nuclear fuel elements, whereby a coolant comprised of liquid sodium or the like, which moves up passing through the coolant flow passages and the flow regulating passage, is regulated and passed through a detector mounted at the upper part of the flow regulating lattice to detect coolant temperature, flow rate, and rare gases or the like as the origin of nuclear fission contained in the coolant due to breakage of fuel elements. (Kamimura, M.)

  6. Nuclear fuel quality assurance

    International Nuclear Information System (INIS)

    1976-01-01

    Full text: Quality assurance is used extensively in the design, construction and operation of nuclear power plants. This methodology is applied to all activities affecting the quality of a nuclear power plant in order to obtain confidence that an item or a facility will perform satisfactorily in service. Although the achievement of quality is the responsibility of all parties participating in a nuclear power project, establishment and implementation of the quality assurance programme for the whole plant is a main responsibility of the plant owner. For the plant owner, the main concern is to achieve control over the quality of purchased products or services through contractual arrangements with the vendors. In the case of purchase of nuclear fuel, the application of quality assurance might be faced with several difficulties because of the lack of standardization in nuclear fuel and the proprietary information of the fuel manufacturers on fuel design specifications and fuel manufacturing procedures. The problems of quality assurance for purchase of nuclear fuel were discussed in detail during the seminar. Due to the lack of generally acceptable standards, the successful application of the quality assurance concept to the procurement of fuel depends on how much information can be provided by the fuel manufacturer to the utility which is purchasing fuel, and in what form and how early this information can be provided. The extent of information transfer is basically set out in the individual vendor-utility contracts, with some indirect influence from the requirements of regulatory bodies. Any conflict that exists appears to come from utilities which desire more extensive control over the product they are buying. There is a reluctance on the part of vendors to permit close insight of the purchasers into their design and manufacturing procedures, but there nevertheless seems to be an increasing trend towards release of more information to the purchasers. It appears that

  7. International experience with the bundle behavior of fuel elements of sodium cooled reactors; derivation of a figure of merit for the judgement of fuel pin bundle parameters with respect to abrasion due to thermoelastic pin-pin interaction

    International Nuclear Information System (INIS)

    Toebbe, H.

    1987-10-01

    The report describes the status of experience with respect to the abrasion behavior of bundles in standard fuel elements and test elements with wire or grid spacing in the reactors Rapsodie fortissimo, Phenix, DFR, PFR, EBR-II, FFTF, JOYO and KNK II. With the help of simple considerations concerning thermoelastic pin-pin interactions a figure of merit is deduced from the different bundle parameters, which allows a comparative judgement of the parameters of different bundle concepts [de

  8. Study of fuel bundle geometry on inter subchannel flow in a 19 pin wire wrapped bundle

    International Nuclear Information System (INIS)

    Naveen Raj, M.; Velusamy, D.K.

    2015-01-01

    In typical sodium cooled fast reactor (SFR) fuel pin bundle, gap between the pins is maintained by helically wound wire wrap around each pin. The presence of wire induces large inter-subchannel transverse flow, eventually promoting mixing and heat transfer. The magnitude of the transverse flow is highly dependent on the various pin-bundle dimensions. Appropriate modeling of these transverse flows in subchannel codes is necessary to predict realistic temperature distribution in pin bundle. Hence, detailed parametric study of transverse flow on pin-bundle geometric parameters has been conducted. The parameters taken for the present study are pin diameter, wire diameter, helical wire pitch and edge gap. Towards this 3-D computational fluid dynamic analysis on a structured mesh of 19 pin bundle is carried out using k-epsilon turbulence model. Periodic oscillations along the primacy flow direction were found in subchannel transverse flow and peripheral pin clad temperatures with periodicity over one pitch length. Based on parametric studies, correlations for transverse flow in central subchannels are proposed. (author)

  9. Pressure and Temperature of the Room 1 for the Pipe Break Accidents of the 3-Pin Fuel Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, H. R

    2005-08-15

    This report deals with the prediction of the pressure and temperature of the room 1 for the pipe break accidents of the 3-pin fuel test loop. The 3-pin fuel test loop is an experimental facility for nuclear fuel tests at the operation conditions similar to those of PWR and CANDU power plants. Because the most processing systems of the 3-pin fuel test loop are placed in the room 1. The structural integrity of the room 1 should be evaluated for the postulated accident conditions. Therefore the pressures and temperatures of the room 1 needed for the structural integrity evaluation have been calculated by using MARS code. The pressures and temperatures of the room 1 have been calculated in various conditions such as the thermal hydraulic operation parameters, the locations of pipe break, and the thermal properties of the room 1 wall. It is assumed that the pipe break accident occurs in the letdown operation without regeneration, because the mass and energy release to the room 1 is expected to be the largest. As a result of the calculations the maximum pressure and temperature are predicted to be 208kPa and 369.2K(96.0 .deg. C) in case the heat transfer is considered in the room 1 wall. However the pressure and temperature are asymptotically 243kPa and 378.1K(104.9 .deg. C) assuming that the heat transfer does not occur in the room 1 wall.

  10. Reprocessing of nuclear fuels

    International Nuclear Information System (INIS)

    Hatfield, G.W.

    1960-11-01

    One of the persistent ideas concerning nuclear power is that the fuel costs are negligible. This, of course, is incorrect and, in fact, one of the major problems in the development of economic nuclear power is to get the cost of the fuel cycles down to an acceptable level. The irradiated fuel removed from the nuclear power reactors must be returned as fresh fuel into the system. Aside from the problems of handling and shipping involved in the reprocessing cycles, the two major steps are the chemical separation and the refabrication. The chemical separation covers the processing of the spent fuel to separate and recover the unburned fuel as well as the new fuel produced in the reactor. This includes the decontamination of these materials from other radioactive fission products formed in the reactor. Refabrication involves the working and sheathing of recycled fuel into the shapes and forms required by reactor design and the economics of the fabrication problem determines to a large extent the quality of the material required from the chemical treatment. At present there appear to be enough separating facilities in the United States and the United Kingdom to handle the recycling of fuel from power reactors for the next few years. However, we understand the costs of recycling fuel in these facilities will be high or low depend ing on whether or not the capital costs of the plant are included in the processing cost. Also, the present plants may not be well adapted to carry out the chemical processing of the very wide variety of power reactor fuel elements which are being considered and will continue to be considered over the years to come. (author)

  11. Nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Butterfield, R.S.; Garner, D.L.M.

    1977-01-01

    Reference is made to nuclear fuel assemblies designed for cooling on the 'tube-in-shell' principle in which the fuel is contained by a shell and is cooled by coolant passed through tubes extending through the shell. It has been proposed to employ coated particle fuel as a porous bed on the tube side and the bleed coolant from the tubes into direct contact with the fuel particles. In this way heat is extracted both by direct contact with the fuel and by heat transfer through the coolant tube walls. The system described aims to provide an improved structure of tube and shell for a fuel assembly of this kind and is particularly suitable for use in a gas cooled fast reactor, being able to withstand the neutron flux and high temperature conditions in these reactors. Constructional details are given. (U.K.)

  12. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirayama, Satoshi; Kawada, Toshiyuki; Matsuzaki, Masayoshi.

    1980-01-01

    Purpose: To provide a fuel element for reducing the mechanical interactions between a fuel-cladding tube and the fuel element and for alleviating the limits of the operating conditions of a reactor. Constitution: A fuel element having mainly uranium dioxide consists of a cylindrical outer pellet and cylindrical inner pellet inserted into the outer pellet. The outer pellet contains two or more additives selected from aluminium oxide, beryllium oxide, magnesium oxide, silicon oxide, sodium oxide, phosphorus oxide, calcium oxide and iron oxide, and the inner pellet contains nuclear fuel substance solely or one additive selected from calcium oxide, silicon oxide, aluminium oxide, magnesium oxide, zirconium oxide and iron oxide. The outer pellet of the fuel thus constituted is reduced in mechanical strength and also in the mechanical interactions with the cladding tube, and the plastic fluidity of the entire pellet is prevented by the inner pellet increased in the mechanical strength. (Kamimura, M.)

  13. Nuclear fuel deformation phenomena

    International Nuclear Information System (INIS)

    Van Brutzel, L.; Dingreville, R.; Bartel, T.J.

    2015-01-01

    Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)

  14. Development of a Fast Breeder Reactor Fuel Bundle Deformation Analysis Code - BAMBOO: Development of a Pin Dispersion Model and Verification by the Out-of-Pile Compression Test

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ito, Masahiro; Ukai, Shigeharu

    2004-01-01

    To analyze the wire-wrapped fast breeder reactor fuel pin bundle deformation under bundle/duct interaction conditions, the Japan Nuclear Cycle Development Institute has developed the BAMBOO computer code. This code uses the three-dimensional beam element to calculate fuel pin bowing and cladding oval distortion as the primary deformation mechanisms in a fuel pin bundle. The pin dispersion, which is disarrangement of pins in a bundle and would occur during irradiation, was modeled in this code to evaluate its effect on bundle deformation. By applying the contact analysis method commonly used in the finite element method, this model considers the contact conditions at various axial positions as well as the nodal points and can analyze the irregular arrangement of fuel pins with the deviation of the wire configuration.The dispersion model was introduced in the BAMBOO code and verified by using the results of the out-of-pile compression test of the bundle, where the dispersion was caused by the deviation of the wire position. And the effect of the dispersion on the bundle deformation was evaluated based on the analysis results of the code

  15. Performance of IN-706 and PE-16 cladding in mixed-oxide fuel pins

    International Nuclear Information System (INIS)

    Makenas, B.J.; Lawrence, L.A.; Jensen, B.W.

    1982-05-01

    Iron-nickel base, precipitation-strengthened alloys, IN-706 and PE-16, advanced alloy cladding considered for breeder reactor applications, were irradiated in mixed-oxide fuel pins in the HEDL-P-60 subassembly in EBR-II. Initial selection of candidate advanced alloys was done using only nonfueled materials test results. However, to establish the performance characteristics of the candidate cladding alloys, i.e., dimensional stability and structural integrity under conditions of high neutron flux, elevated temperature, and applied stress, it was necessary to irradiate fuel pins under typical operating conditions. Fuel pins were clad with solution treated IN-706 and PE-16 and irradiated to peak fluences of 6.1 x 10 22 n/cm 2 (E > .1 MeV) and 8.8 x 10 22 n/cm 2 (E > .1 MeV) respectively. Fabrication and operating parameters for the fuel pins with the advanced cladding alloy candidates are summarized. Irradiation of HEDL-P-60 was interrupted with the breach of a pin with IN-706 cladding at 5.1 at % and the test was terminated with cladding breach in a pin with PE-16 cladding at 7.6 at %

  16. Results of transient overpower events on breached and unbreached fuel pins

    International Nuclear Information System (INIS)

    Strain, R.V.; Tsai, H.C.; Neimark, L.A.; Aratani, K.

    1986-04-01

    The objective of the extended overpower tests on intact pins was to determine the pin cladding breaching thresholds vis-a-vis the Plant Protection System (PPS) trip settings, typically at ∼10 to 15% overpower. These tests emphasize slow operational-type transients in light of earlier work which suggested that irradiated mixed-oxide fuel pins may be particularly vulnerable in the slow ramp-rate regime. An overview of the extended overpower test series was previously reported. More recent results on two of the tests in this series are included in this paper. These two tests, designated TOPI-1A and TOPI-1B, were each conducted on a 19-pin assembly with various pin design, operation and burnup variables. The overpower ramp rates for the TOPI-1A and -1B tests were 0.1%/s and 10%/s, respectively

  17. Nuclear fuel storage

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1981-01-01

    A nuclear fuel storage apparatus for use in a water-filled pool is fabricated of a material such as stainless steel in the form of an egg crate structure having vertically extending openings. Fuel may be stored in this basic structure in a checkerboard pattern with high enrichment fuel, or in all openings when the fuel is of low effective enrichment. Inserts of a material such as stainless steel are adapted to fit within these openings so that a water gap and, therefore, a flux trap is formed between adjacent fuel storage locations. These inserts may be added at a later time and fuel of a higher enrichment may be stored in each opening. When it is desired to store fuel of still greater enrichment, poison plates may be added to the water gap formed by the installed insert plates, or substituted for the insert plates. Alternately, or in addition, fuel may be installed in high neutron absorption poison boxes which surround the fuel assembly. The stainless steel inserts and the poison plates are each not required until the capacity of the basic egg crate structure is approached. Purchase of these items can, therefore, be deferred for many years. Should the fuel to be stored be of higher enrichment than initially forecast, the deferred decision on the poison plates makes it possible to obtain increased poison in the plates to satisfy the newly discovered requirement

  18. FFTF/IEM [Fast Flux Test Facility/Interim Examination and Maintenance] cell fuel pin weighing system: Remote maintenance design considerations

    International Nuclear Information System (INIS)

    Gibbons, P.W.

    1986-06-01

    A Fuel Pin Weighing Machine has been developed for use in the Fast Flux Test Facility (FFTF) Interim Examination and Maintenance (IEM) Cell to assist in identifying an individual breached fuel pin from its fuel assembly pin bundle. Optimum configuration for remote maintenance was a major consideration in the design of each element of the Pin Weighing System

  19. Nuclear fuel element

    International Nuclear Information System (INIS)

    Knowles, A.N.

    1979-01-01

    A nuclear fuel-containing body for a high temperature gas cooled nuclear reactor is described which comprises a flat plate in which the nuclear fuel is contained as a dispersion of fission product-retaining coated fuel particles in a flat sheet of graphitic or carbonaceous matrix material. The flat sheet is clad with a relatively thin layer of unfuelled graphite bonded to the sheet by being formed initially from a number of separate preformed graphitic artefacts and then platen-pressed on to the exterior surfaces of the flat sheet, both the matrix material and the artefacts being in a green state, to enclose the sheet. A number of such flat plates are supported edge-on to the coolant flow in the bore of a tube made of neutron moderating material. Where a number of tiers of plates are superimposed on one another, the abutting edges are chamfered to reduce vibration. (author)

  20. Nuclear fuel strategies

    International Nuclear Information System (INIS)

    Rippon, S.

    1989-01-01

    The paper reports on two international meetings on nuclear fuel strategies, one organised by the World Nuclear Fuel Market in Seville (Spain) October 1988, and the other organised by the American and European nuclear societies in Washington (U.S.A.) November 1988. At the Washington meeting a description was given of the uranium supply and demand market, whereas free trade in uranium was considered in Seville. Considerable concern was expressed at both meetings on the effect on the uranium and enrichment services market of very low prices for spot deals being offered by China and the Soviet Union. Excess enrichment capacity, the procurement policies of the USA and other countries, and fuel cycle strategies, were also discussed. (U.K.)

  1. Developments in the LASL Fuel Pin Imaging System: PINEX-3A

    International Nuclear Information System (INIS)

    Lumpkin, A.H.; Berzins, G.J.; Cosimi, R.A.; O'Hare, T.E.; Davidson, J.R.

    1979-01-01

    The LASL Fuel Pin Imaging System was evaluated using a series of 10 TREAT transients, each of approx. 240-MW peak power. HEDL provided the fuel-ejection type capsule with annular fuel pellets. The pin visibility threshold was determined to be approx. 20-MW of TREAT power (approx. 130 W/g), almost an order of magnitude improvement over our PINEX-2 threshold. The impact of changes in instrumentation, imaging apertures, and fluors that produced the improved sensitivity are reported. Results of a time-integrated imaging technique are also presented

  2. COMETHE III J a computer code for predicting mechanical and thermal behaviour of a fuel pin

    International Nuclear Information System (INIS)

    Verbeek, P.; Hoppe, N.

    1976-01-01

    The design of fuel pins for power reactors requires a realistic evaluation of their thermal and mechanical performances throughout their irradiation life. This evaluation involves the knowledge of a number of parameters, very intricate and interconnected, for example, the temperature, the restructuring and the swelling rates of the fuel pellets, the dimensions, the stresses and the strains in the clad, the composition and the properties of gases, the inner gas pressure etc. This complex problem can only be properly handled by a computer programme which analyses the fuel pin thermal and mechanical behaviour at successive steps of its irradiation life. This report presents an overall description of the COMETHE III-J computer programme, designed to calculate the integral performance of oxide fuel pins with cylindrical metallic cladding irradiated in thermal or fast flux. (author)

  3. WWER-440 fuel rod performance analysis with PIN-Micro and TRANSURANUS codes

    International Nuclear Information System (INIS)

    Vitkova, M.; Manolova, M.; Stefanova, S.; Simeonova, V.; Passage, G.; Lassmann, K.

    1994-01-01

    PIN-micro and TRANSURANUS codes were used to analyse the WWER-440 fuel rod behaviour at normal operation conditions. Two highest loaded fuel rods of the fuel assemblies irradiated in WWER-440 with different power histories were selected. A set of the most probable average values of all geometrical and technological parameters were used. A comparison between PIN-micro and TRANSURANUS codes was performed using identical input data. The results for inner gas pressure, gap size, local linear heat rate, fuel central temperature and fission gas release as a function of time calculated for the selected fuel rods are presented. The following conclusions were drawn: 1) The PIN-micro code predicts adequately the thermal and mechanical behaviour of the two fuel rods; 2) The comparison of the results obtained by PIN-micro and TRANSURANUS shows a reasonable agreement and the discrepancies could be explained by the lack of thoroughly WWER oriented verification of TRANSURANUS; 3) The advanced TRANSURANUS code could be successfully applied for WWER fuel rod thermal and mechanical analysis after incorporation of all necessary WWER specific material properties and models for the Zr+1%Nb cladding, for the fuel rod as a whole and after validation against WWER experimental and operational data. 1 tab., 10 figs., 10 refs

  4. AGR fuel pin pellet-clad interaction failure limits and activity release fractions

    International Nuclear Information System (INIS)

    Hughes, H.; Hargreaves, R.

    1985-01-01

    The limiting conditions beyond which pellet-clad interaction can flail AGR fuel are described. They have been determined by many experiments involving post-irradiation examination and testing, loop experiments and cycling and up-rating of both individual fuel stringers and the whole WAGR core. The mechanisms causing this interaction are well understood and are quantitatively expressed in computer codes. Strain concentration effects over fuel cracks determine power cycling endurance while additional strain concentrations at clad ridges and from cross pin temperature gradients contribute to up-rating failures. An equation summarising tube burst test data so as to determine the ductility available at any transient is given. The hollow fuel and more ductile clad of the Civil AGR fuel pins leads to a much improved performance over the original fuel design. The Civil AGRs operate well within these limiting conditions and substantial increases beyond the design burn-up are confidently expected. The activity release on pin failure and its development during continued operation of failed fuel have also been investigated. A retention of radioiodine and caesium of 90-99% compared to the noble gases has been demonstrated. Measured fission gas releases into the free volume of Civil AGR fuel pins have been very low (< 0.1%)

  5. WWER-440 fuel rod performance analysis with PIN-Micro and TRANSURANUS codes

    Energy Technology Data Exchange (ETDEWEB)

    Vitkova, M; Manolova, M; Stefanova, S; Simeonova, V; Passage, G [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika; Kharalampieva, Ts [Kombinat Atomna Energetika, Kozloduj (Bulgaria); Lassmann, K [European Atomic Energy Community, Karlsruhe (Germany). European Inst. for Transuranium Elements

    1994-12-31

    PIN-micro and TRANSURANUS codes were used to analyse the WWER-440 fuel rod behaviour at normal operation conditions. Two highest loaded fuel rods of the fuel assemblies irradiated in WWER-440 with different power histories were selected. A set of the most probable average values of all geometrical and technological parameters were used. A comparison between PIN-micro and TRANSURANUS codes was performed using identical input data. The results for inner gas pressure, gap size, local linear heat rate, fuel central temperature and fission gas release as a function of time calculated for the selected fuel rods are presented. The following conclusions were drawn: (1) The PIN-micro code predicts adequately the thermal and mechanical behaviour of the two fuel rods; (2) The comparison of the results obtained by PIN-micro and TRANSURANUS shows a reasonable agreement and the discrepancies could be explained by the lack of thoroughly WWER oriented verification of TRANSURANUS; (3) The advanced TRANSURANUS code could be successfully applied for WWER fuel rod thermal and mechanical analysis after incorporation of all necessary WWER specific material properties and models for the Zr+1%Nb cladding, for the fuel rod as a whole and after validation against WWER experimental and operational data. 1 tab., 10 figs., 10 refs.

  6. Nuclear fuel element

    International Nuclear Information System (INIS)

    Penrose, R.T.; Thompson, J.R.

    1976-01-01

    A method of protecting the cladding of a nuclear fuel element from internal attack and a nuclear fuel element for use in the core of a nuclear reactor are disclosed. The nuclear fuel element has disposed therein an additive of a barium-containing material and the barium-containing material collects reactive gases through chemical reaction or adsorption at temperatures ranging from room temperature up to fuel element plenum temperatures. The additive is located in the plenum of the fuel element and preferably in the form of particles in a hollow container having a multiplicity of gas permeable openings in one portion of the container with the openings being of a size smaller than the size of the particles. The openings permit gases and liquids entering the plenum to contact the particles. The additive is comprised of elemental barium or a barium alloy containing one or more metals in addition to barium such as aluminum, zirconium, nickel, titanium and combinations thereof. 6 claims, 3 drawing figures

  7. Contamination of a PWR primary circuit by fuel pins with failed cladding

    International Nuclear Information System (INIS)

    Janvier, J.C.; Chagrot, M.

    1979-01-01

    The safety authorities in the principal nuclear countries appear to be attaching increasing importance to keeping reactor primary circuits as contamination-free as possible. Therefore, the consequences of cladding failures and especially of those resulting from fabrication defects have to be evaluated, for when these failures become systematic in nature they constitute an important source of contamination in pressurized-water reactors. The Grenoble Nuclear Research Centre is implementing a programme on the study of such failures with a view to analysing the behaviour of failed fuel elements. A distinction is made between two types of cladding failure, depending on whether the primary water enters the fuel pin as soon as the circuits are pressurized (fabrication defect) or whether the failure is caused during operation. The emission of gaseous fission products and halogens has been analysed in different operating modes (steady-state or transient), and in spite of the complexity of the phenomena involved, some results have been obtained which already enable one to evaluate fission product contamination of the primary circuit. (author)

  8. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    Niedrig, T.

    1987-01-01

    Nuclear fuel supply is viewed as a buyer's market of assured medium-term stability. Even on a long-term basis, no shortage is envisaged for all conceivable expansion schedules. The conversion and enrichment facilities developed since the mid-seventies have done much to stabilize the market, owing to the fact that one-sided political decisions by the USA can be counteracted efficiently. In view of the uncertainties concerning realistic nuclear waste management strategies, thermal recycling and mixed oxide fuel elements might increase their market share in the future. Capacities are being planned accordingly. (orig.) [de

  9. Calculation of fission gases internal pressure in nuclear fuel rods

    International Nuclear Information System (INIS)

    Vasconcelos Santana, M. de.

    1981-12-01

    Models concerning the principal phenomena, particularly thermal expansion, fuel swelling, densification, reestructuring, relocation, mechanical strain, fission gas production and release, direct or indirectly important to calculate the internal pressure in nuclear fuel rods were analysed and selected. Through these analyses a computer code was developed to calculate fuel pin internal pressure evolution. Three different models were utilized to calculate the internal pressure in order to select the best and the most conservative estimate. (Author) [pt

  10. Nuclear fuel element

    International Nuclear Information System (INIS)

    Grossman, L.N.; Levin, H.A.

    1975-01-01

    A nuclear fuel element has disposed therein an alloy having the essential components of nickel, titanium and zirconium, and the alloy reacts with water, water vapor and reactive gases at reactor ambient temperatures. The alloy is disposed in the plenum of the fuel element in the form of particles in a hollow gas permeable container having a multiplicity of openings of size smallr than the size of the particles. The container is preferably held in the spring in the plenum of the fuel element. (E.C.B.)

  11. Mechanical energy release in CABRI-2 experiments with Viggen-4 fuel pins

    International Nuclear Information System (INIS)

    Wolff, J.

    1993-07-01

    The results of mechanical energy release evaluations in CABRI-2 experiments with Viggen-4 fuel pins (12 atom % burnup) are described. In general the experience gained by the CABRI-1 experiments is confirmed. Those physical phenomena are enhanced which are influenced by the release of fission products. Especially the late blow-out of pressurized fission gases from the lower test pin plenum led to large flow variations. The corresponding mechanical power releases are low

  12. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Kawada, Toshiyuki; Hirayama, Satoshi; Yoneya, Katsutoshi.

    1980-01-01

    Purpose: To enable load-depending operation as well as moderation for the restriction of operation conditions in the present nuclear reactors, by specifying the essential ingredients and the total weight of the additives to UO 2 fuel substances. Constitution: Two or more additives selected from Al 2 O 3 , B 2 O, CaO, MgO, SiO 2 , Na 2 O and P 2 O 5 are added by the total weight of 2 - 5% to fuel substances consisting of UO 2 or a mixture of UO 2 and PuO 2 . When the mixture is sintered, the strength of the fuel elements is decreased and the fuel-cladding interactions due to the difference in the heat expansion coefficients between the ceramic fuel elements and the metal claddings are decreased to a substantially harmless degree. (Horiuchi, T.)

  13. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Domoto, Noboru; Masuda, Hiroyuki

    1989-01-01

    In a nuclear fuel assembly loaded with a plurality of fuel rods, the inside of a fuel rod disposed at a high neutron flux region is divided into an inner region and an outer region, and more burnable poisons are mixed in the inner region than in the outer region. Alternatively, the central portion of a pellet disposed in a high neutron flux region is made hollow, in which burnable poisons are charged. This can prevent neutron infinite multiplication factor from decreasing extremely at the initial burning stage. Further, the burnable poisons are not rapidly burnt completely and local peaking coefficient can be controlled. Accordingly, in a case of suppressing a predetermined excess reactivity by using a fuel rod incorporated with the burnable poison, the fuel economy can be improved more and the reactor core controllability can also be improved as compared with the usual case. (T.M.)

  14. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The papers presented at the International Conference on The Nuclear Fuel Cycle, held at Stockholm, 28 to 31 October 1975, are reviewed. The meeting, organised by the U.S. Atomic Industrial Forum, and the Swedish Nuclear Forum, was concerned more particularly with economic, political, social and commercial aspects than with tecnology. The papers discussed were considered under the subject heading of current status, uranium resources, enrichment, and reprocessing. (U.K.)

  15. Nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    1975-12-01

    The papers presented at the International Conference on The Nuclear Fuel Cycle, held at Stockholm, 28 to 31 October 1975, are reviewed. The meeting, organised by the U.S. Atomic Industrial Forum, and the Swedish Nuclear Forum, was concerned more particularly with economic, political, social and commercial aspects than with tecnology. The papers discussed were considered under the subject heading of current status, uranium resources, enrichment, and reprocessing.

  16. Encapsulating spent nuclear fuel

    International Nuclear Information System (INIS)

    Fleischer, L.R.; Gunasekaran, M.

    1979-01-01

    A system is described for encapsulating spent nuclear fuel discharged from nuclear reactors in the form of rods or multi-rod assemblies. The rods are completely and contiguously enclosed in concrete in which metallic fibres are incorporated to increase thermal conductivity and polymers to decrease fluid permeability. This technique provides the advantage of acceptable long-term stability for storage over the conventional underwater storage method. Examples are given of suitable concrete compositions. (UK)

  17. Evaluation of bundle duct interaction by out-of-pile compression test of FBR fuel pin bundles

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Kosuke; Yamamoto, Yuji; Nagamine, Tsuyoshi; Maeda, Koji [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2001-06-01

    Bundle duct interaction (BDI) caused by expansion of fuel pin bundle is a main factor to limit the fuel lifetime. Therefore, it is important for the design of fast reactor fuel assembly to understand the fuel pin deformation behavior under BDI condition. In order to understand the fuel pin deformation behavior under BDI condition, out-of-pile compression tests were conducted for FBR fuel pin bundle by use of X-ray CT equipment. In these compression tests, two kinds of fuel pin bundles were conducted. One was the fuel pin bundle with the short wire-pitch and the other was the fuel pin bundle with the short wire-pitch and large diameter claddings. The general discussions were also performed based on the results of out-of-pile compression tests obtained by use of X-ray CT equipment in the previous work. Following results were obtained. 1) The occurrence of the pin-to-duct contact depends on the wire-pitch. In the fuel pin bundle with large wire-pitch, the pin-to-duct contact occurred at the early stage of BDI. The reason of this result is due to the low bowing rigidity of the fuel pins with long wire-pitch. 2) The value of the ovalation stiffness strongly depends on the geometry of cladding (diameter, thickness) and especially on wire-pitch. This result in this work revealed that the occurrence of the pin-to-duct contact depends on the value of the ovalation stiffness. 3) The occurrence of wire dispersion and dispersive displacement of pins depends on the wire-pitch strongly. In the fuel pin bundle with the long wire-pitch, the occurrence of the above-mentioned suppression mechanism to BDI is remarkable. 4) The suppression mechanism to BDI of the fuel pin bundle with the long wire-pitch is elastic oval deformation of cladding, wire dispersion and dispersive displacement of pins. On the other hand, the elastic and plastic oval deformation of cladding is the major suppression mechanism to BDI in the fuel pin bundle with the short wire-pitch. 5) The appearance of

  18. SIEX design predictions for the PNC fuel pins in the HEDL P-E01 power-to-melt test

    International Nuclear Information System (INIS)

    1979-01-01

    During the design phase of the HEDL P-E01 power-to-melt test, a series of design predictions were generated for the three PNC pins using the SIEX fuel pin modeling code. This document tabulates a series of selected PNC pin design predictions as requested by M. Shinohara during his visit to HEDL

  19. The behaviour of Phenix fuel pin bundle under irradiation

    International Nuclear Information System (INIS)

    Marbach, G.; Millet, P.; Blanchard, P.; Huillery, R.

    1979-07-01

    An entire Phenix sub-assembly has been mounted and sectioned after irradiation. The examination of cross-sections revealed the effects of mechanical interaction in the bundle (ovalisations and contacts between clads). According to analysis of the sodium channels, cooling of the pin bundle remained uniform. (author)

  20. Analysis of metallic fuel pin behaviors under transient conditions of liquid metal reactors

    International Nuclear Information System (INIS)

    Nam, Cheol; Kwon, Hyoung Mun; Hwang, Woan

    1999-02-01

    Transient behavior of metallic fuel pins in liquid metal reactor is quite different to that in steady state conditions. Even in transient conditions, the fuel may behave differently depending on its accident situation and/or accident sequence. This report describes and identifies the possible and hypothetical transient events at the aspects of fuel pin behavior. Furthermore, the transient experiments on HT9 clad metallic fuel have been analyzed, and then failure assessments are performed based on accident classes. As a result, the failure mechanism of coolant-related accidents, such as LOF, is mainly due to plenum pressure and cladding thinning caused by eutectic penetration. In the reactivity-related accidents, such as TOP, the reason to cladding failure is believed to be the fuel swelling as well as plenum pressure. The probabilistic Weibull analysis is performed to evaluate the failure behavior of HT9 clad-metallic fuel pin on coolant related accidents.The Weibull failure function is derived as a function of cladding CDF. Using the function, a sample calculation for the ULOF accident of EBR-II fuel is performed, and the results indicate that failure probability is less the 0.3%. Further discussion on failure criteria of accident condition is provided. Finally, it is introduced the state-of-arts for developing computer codes of reactivity-related fuel pin behavior. The development efforts for a simple model to predict transient fuel swelling is described, and the preliminary calculation results compared to hot pressing test results in literature.This model is currently under development, and it is recommended in the future that the transient swelling model will be combined with the cladding model and the additional development for post-failure behavior of fuel pin is required. (Author). 36 refs., 9 tabs., 18 figs

  1. Nuclear fuel cycle information workshop

    International Nuclear Information System (INIS)

    1983-01-01

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US

  2. Comparison of reconstructed radial pin total fission rates with experimental results in full scale BWR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Giust, Flavio [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Nordostschweizerische Kraftwerke AG, Parkstrasse 23, CH-5401 Baden (Switzerland); Grimm, Peter; Jatuff, Fabian [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Chawla, Rakesh [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)

    2008-07-01

    Total fission rate measurements have been performed on full size BWR fuel assemblies of type SVEA-96+ in the zero power reactor PROTEUS at the Paul Scherrer Institute. This work presents comparisons of reconstructed 2D pin fission rates in two configurations, I-1A and I-2A. Both configurations contain, in the central test zone, an array of 3x3 SVEA-96+ fuel elements moderated with light water at 20 deg. C. In configuration I-2A, an L-shaped hafnium control blade (half of a real cruciform blade) is inserted adjacent to the NW corner of the central fuel element. To minimize the impact of the surroundings, all measurements were done in fuel pins belonging to the central assembly. The 3x3 experimental configuration was modeled using the core monitoring and design tools that are applied at the Leibstadt Nuclear Power Plant (KKL). These are the 2D transport code HELIOS, used for the cross-section generation, and the 3D, 2-group nodal diffusion code PRESTO-2. The exterior is represented, in the axial and radial directions, by 2-group albedos calculated at the test zone boundary using a full-core 3D MCNPX model. The calculated-to-experimental (C/E) ratios of the total fission rates have a standard deviation of 1.3% in configuration I-1A (uncontrolled) and 3.2% in configuration I-2A (controlled). Sensitivity cases are analyzed to show the impact of certain parameters on the calculated fission rate distribution and reactivity. It is shown that the relative pin fission rate is only weakly dependent on these parameters. In cases without a control blade, the pin power reconstruction methodology delivers the same level of accuracy as 2D transport calculations. On the other hand, significant deviations, that are inherent to the use of reflected geometry in the lattice calculations, are observed in cases when the control blade is inserted. (authors)

  3. Modeling of WWER-440 Fuel Pin Behavior at Extended Burn-up

    International Nuclear Information System (INIS)

    El-Koliel, M.S.; Abou-Zaid, A.A.; El-Kafas, A.A.

    2004-01-01

    Currently, there is an ongoing effort to increase fuel discharge burn-up of all LWRs fuel including WWER's as much as possible in order to decrease power production cost. Therefore, burn-up is expected to be increased to 60 to 70 Mwd/kg U. The change in the fuel radial power distribution as a function of fuel burn up can affect the radial fuel temperature distribution as well as the fuel microstructure in the fuel pellet rim. In this paper, the radial burn-up and fissile products distributions of WWER-440 UO 2 fuel pin were evaluated using MCNP 4B and ORIGEN2 codes. The impact of the thermal conductivity on predicted fission gas release calculations is needed. For the analysis, a typical WWER-440 fuel pin and surrounding water moderator are considered in a hexagonal pin cell well. The thermal release and the athermal release from the pellet rim were modeled separately. The fraction of the rim structure and the excessive porosity in the rim structure in isothermal irradiation as a function of the fuel burn-up was predicted. a computer program; RIMSC-01, is developed to perform the required FGR calculations. Finally, the relevant phenomena and the corresponding models together with their validation are presented

  4. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Hirano, Yasushi; Hirukawa, Koji; Sakurada, Koichi.

    1994-01-01

    A bundle of fuel rods is divided into four fuel rod group regions of small fuel rod bundles by a cross-shaped partitioning structure consisting of paired plate-like structures which connect two opposing surfaces of a channel box. A water removing material with less neutron absorption (for example, Zr or a Zr alloy) or a solid moderator is inserted and secured to a portion of a non-boiling water region interposed between the paired plate-like structure. It has a structure that light water flows to the region in the plate-like structure. The volume, density or composition of the water removing material is controlled depending on the composition of the fuels, to change the moderating characteristics of neutrons in the non-boiling water region. This can easily moderate the difference of nuclear characteristics between each of fuel assemblies using fuel materials of different fuel compositions. Further, the reactivity control effect of the burnable poisons can be enhanced without worsening fuel economy or linear power density. (I.N.)

  5. Nuclear fuel pellets

    International Nuclear Information System (INIS)

    Larson, R.I.; Brassfield, H.C.

    1981-01-01

    Increased strength and physical durability in green bodies or pellets formed of particulate nuclear fuel oxides is achieved by inclusion of a fugitive binder which is ammonium bicarbonate, bicarbonate carbomate, carbomate, sesquicarbonate or mixtures thereof. Ammonium oxadate may be included as pore former. (author)

  6. Irradiation of a 19 pin subassembly with mixed carbide fuel in KNK II

    Science.gov (United States)

    Geithoff, D.; Mühling, G.; Richter, K.

    1992-06-01

    The presentation deals with the fabrication, irradiation and nondestructive postirradiation examinations of LMR fuel pins with mixed (U, Pu)-carbide fuels. The mixed carbide fuel was fabricated by the European Institute of Transuranium Elements using various fabrication procedures. Fuel composition varied therefore in a wide range of tolerances with respect to oxygen and phase content and microstructure. The 19 carbide pins were irradiated in the fast neutron flux of the KNK II reactor to a burn-up of about 7 at% without any failure in the centre of a KNK "carrier element" at a maximum linear rating of 800 W/cm. After dismantling in the Hot Cells of KfK nondestructive examinations were carried out comprising dimensional controls, radiography, γ-scanning and eddy-current testing. The results indicate differences in fuel behaviour with respect to composition of the fuel.

  7. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Ito, Arata; Wakamatsu, Mitsuo.

    1976-01-01

    Object: To permit the coolant in an FBR type reactor to enter from the entrance nozzle into a nuclear fuel assembly without causing cavitation. Structure: In a nuclear fuel assembly, which comprises a number of thin fuel pines bundled together at a uniform spacing and enclosed within an outer cylinder, with a handling head connected to an upper portion of the outer cylinder and an entrance nozzle connected to a lower portion of the cylinder, the inner surface of the entrance nozzle is provided with a buffer member and an orifice successively in the direction of flow of the coolant. The coolant entering from a low pressure coolant chamber into the entrance nozzle strikes the buffer member and is attenuated, and thereafter flows through an orifice into the outer cylinder. (Horiuchi, T.)

  8. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirama, H.

    1978-01-01

    A nuclear fuel element comprises an elongated tube having upper and lower end plugs fixed to both ends thereof and nuclear fuel pellets contained within the tube. The fuel pellets are held against the lower end plug by a spring which is supported by a setting structure. The setting structure is maintained at a proper position at the middle of the tube by a wedge effect caused by spring force exerted by the spring against a set of balls coacting with a tapered member of the setting structure thereby wedging the balls against the inner wall of the tube, and the setting structure is moved free by pushing with a push bar against the spring force so as to release the wedge effect

  9. Position-dependency of Fuel Pin Homogenization in a Pressurized Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Woong; Kim, Yonghee [Korea Advanced Institute of Science and Technolgy, Daejeon (Korea, Republic of)

    2016-05-15

    By considering the multi-physics effects more comprehensively, it is possible to acquire precise local parameters which can result in a more accurate core design and safety assessment. A conventional approach of the multi-physics neutronics calculation for the pressurized water reactor (PWR) is to apply nodal methods. Since the nodal methods are basically based on the use of assembly-wise homogenized parameters, additional pin power reconstruction processes are necessary to obtain local power information. In the past, pin-by-pin core calculation was impractical due to the limited computational hardware capability. With the rapid advancement of computer technology, it is now perhaps quite practical to perform the direct pin-by-pin core calculation. As such, fully heterogeneous transport solvers based on both stochastic and deterministic methods have been developed for the acquisition of exact local parameters. However, the 3-D transport reactor analysis is still challenging because of the very high computational requirement. Position-dependency of the fuel pin homogenized cross sections in a small PWR core has been quantified via comparison of infinite FA and 2-D whole core calculations with the use of high-fidelity MC simulations. It is found that the pin environmental affect is especially obvious in FAs bordering the baffle reflector regions. It is also noted that the downscattering cross section is rather sensitive to the spectrum changes of the pins. It is expected that the pinwise homogenized cross sections need to be corrected somehow for accurate pin-by-pin core calculations in the peripheral region of the reactor core.

  10. Advanced control system for the Integral Fast Reactor fuel pin processor

    International Nuclear Information System (INIS)

    Lau, L.D.; Randall, P.F.; Benedict, R.W.; Levinskas, D.

    1993-01-01

    A computerized control system has been developed for the remotely-operated fuel pin processor used in the Integral Fast Reactor Program, Fuel Cycle Facility (FCF). The pin processor remotely shears cast EBR- reactor fuel pins to length, inspects them for diameter, straightness, length, and weight, and then inserts acceptable pins into new sodium-loaded stainless-steel fuel element jackets. Two main components comprise the control system: (1) a programmable logic controller (PLC), together with various input/output modules and associated relay ladder-logic associated computer software. The PLC system controls the remote operation of the machine as directed by the OCS, and also monitors the machine operation to make operational data available to the OCS. The OCS allows operator control of the machine, provides nearly real-time viewing of the operational data, allows on-line changes of machine operational parameters, and records the collected data for each acceptable pin on a central data archiving computer. The two main components of the control system provide the operator with various levels of control ranging from manual operation to completely automatic operation by means of a graphic touch screen interface

  11. Nuclear fuel cycle techniques

    International Nuclear Information System (INIS)

    Pecqueur, Michel; Taranger, Pierre

    1975-01-01

    The production of fuels for nuclear power plants involves five principal stages: prospecting of uranium deposits (on the ground, aerial, geochemical, geophysical, etc...); extraction and production of natural uranium from the deposits (U content of ores is not generally high and a chemical processing is necessary to obtain U concentrates); production of 235 U enriched uranium for plants utilizing this type of fuel (a description is given of the gaseous diffusion process widely used throughout the world and particularly in France); manufacture of suitable fuel elements for the different plants; reprocessing of spent fuels for the purpose of not only recovering the fissile materials but also disposing safely of the fission products and other wastes [fr

  12. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Vikhorev, Yu.V.; Biryukov, G.I.; Kirilyuk, N.A.; Lobanov, V.N.

    1977-01-01

    A fuel assembly is proposed for nuclear reactors allowing remote replacement of control rod bundles or their shifting from one assembly to another, i.e., their multipurpose use. This leads to a significant increase in fuel assembly usability. In the fuel assembly the control rod bundle is placed in guide tube channels to which baffles are attached for fuel element spacing. The remote handling of control rods is provided by a hollow cylinder with openings in its lower bottom through which the control rods pass. All control rods in a bundle are mounted to a cross beam which in turn is mounted in the cylinder and is designed for grasping the whole rod bundle by a remotely controlled telescopic mechanism in bundle replacement or shifting. (Z.M.)

  13. Experience with nuclear fuel utilization in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Harizanov, Y [Committee on the Use of Atomic Energy for Peaceful Purposes, Sofia (Bulgaria)

    1997-12-01

    The presentation on experience with nuclear fuel utilization in Bulgaria briefly reviews the situation with nuclear energy in Bulgaria and then discusses nuclear fuel performance (amount of fuel loaded, type of fuel, burnup, fuel failures, assemblies deformation). 2 tabs.

  14. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  15. FEA stress analysis considering cavity formation of metallic fuel pin under transient state

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyun-Woo; Oh, Young-Ryun; Kim, Yun-Jae [Korea University, Seoul (Korea, Republic of)

    2016-05-15

    The aim of this research is to study the stress state of the fuel and the cladding under transient state using the commercial finite element analysis software, ABAQUS v6.13. It is checked out that the gap distance between the fuel and the cladding is a major factor determining FCMI stress. In this regard, initial boundary condition of the fuel pin such as the initial gap distance should be set carefully when the stress analysis of the fuel pin under transient state is conducted. In case of simulating cavity formation, it is confirmed that the new cavity simulation model that elements in cavity region lose their stiffness is valid. There is a great deal of research into SFR, which is one of GEN IV reactors. When it comes to the accidents of SFR, there are two cases of accident process. One of them is In-pin process that molten fuel is discharged into upper plenum. The other is Ex-pin process that the molten fuel is discharged into coolant because of breakage of cladding.

  16. Tests of the SNR fuel pin behaviour in case of operational transients in the HFR Petten

    International Nuclear Information System (INIS)

    Plitz, H.

    1989-05-01

    The loadings on fast reactor fuel pins under operational transients (power and temperature increases in the design area) have been studied in the High-Flux-Reactor HFR in Petten with sodium cooled irradiation capsules. The results of the first campaign of transient experiments are described in the report. No cladding defects have been observed, and the fuel pins of the Mark-I and Mark-II type resisted to linear power levels of more than 800 W/cm, thus demonstrating the required design margins. The plans for further experiments are outlined

  17. High dose stainless steel swelling data on interior and peripheral oxide fuel pins

    International Nuclear Information System (INIS)

    Boltax, A.; Foster, J.P.; Nayak, U.P.

    1983-01-01

    High dose (2 x 10 23 n/cm 2 , E > 0.1 Mev) swelling data obtained on 20% cold-worked AISI 316 stainless steel (N-lot) cladding from mixed-oxide fuel pins show large differences in swelling incubation dose due to pre-incubation dose temperature changes. Circumferential swelling variations of 1.5 to 4 times were found in peripheral fuel pin cladding which experienced 30 to 60 deg C temperature changes due to movement in a temperature gradient. Consideration is given to the implications of these results to low swelling materials development and core design. (author)

  18. Metallographic examinations of the wear-marks on fuel pins of the KNK II/2 fuel assembly NY-308

    International Nuclear Information System (INIS)

    Patzer, G.

    1987-12-01

    On the fuel pins and pin spacers of the fuel assembly NY-308 of the second core of KNK II pronounced wear marks had been found in the area of the contact points. In order to determine the exact form of the marks, metallographic investigations were performed on two test pieces of fuel pins in the Hot Cells of the KfK Karlsruhe. It was found that the wear marks did show the already observed stratified structure. Next to the unchanged cladding area there is a peripheral zone with modified grain structure, followed by a layer of moved material and finally there is a flake-like zone of accumulated cladding material at the lower end of the wear marks. Longitudinal cuts do not show grain deformations, which could indicate axial friction forces between pin and spacer. The wear marks are rapidly dropping to their maximum depth at the ends and the depth shows a relatively uniform pattern between both. The findings are confirming the picture, that a stirring movement of the fuel pins took place, which caused adhesive wear [de

  19. Fuel pins irradiation: experimental devices and analytical behaviour

    International Nuclear Information System (INIS)

    Lemaignan, C.

    1996-01-01

    In this text we present the general characteristics of adapted irradiation loops in research reactors and the main results that we can expected with these loops in the behaviour field of PWR and LMFBR fuels( fuel densification, fuel cladding interactions, fission products release, reactor accidents)

  20. High burnup, high power irradiation behavior of helium-bonded mixed carbide fuel pins

    International Nuclear Information System (INIS)

    Levine, P.J.; Nayak, U.P.; Boltax, A.

    1983-01-01

    Large diameter (9.4 mm) helium-bonded mixed carbide fuel pins were successfully irradiated in EBR-II to high burnup (12%) at high power levels (100 kW/m) with peak cladding midwall temperatures of 550 0 C. The wire-wrapped pins were clad with 0.51-mm-thick, 20% cold-worked Type 316 stainless steel and contained hyperstoichiometric (Usub(0.8)Pusub(0.2))C fuel covering the smeared density range from 75-82% TD. Post-irradiation examinations revealed: extensive fuel-cladding mechanical interaction over the entire length of the fuel column, 35% fission gas release at 12% burnup, cladding carburization and fuel restructuring. (orig.)

  1. On the behaviour of dissolved fission gases prior to transient testing of fuel pins

    International Nuclear Information System (INIS)

    Wood, M.H.; Matthews, J.R.

    1978-10-01

    The TREAT and CABRI series of reactor safety experiments on irradiated fuel require the transfer of fuel pins from the reactor in which the fuel has achieved some burn-up to the test facility. Subsequently, the fuel is restored to power in the test facility for some time before transient heating is initiated. Such pre-test manoeuvres, where the fuel is subjected to changes in the fission rate and temperature, may have important consequences for the fission gas behaviour during the transient experiment. The results of rate theory calculations are used to assess these effects. (author)

  2. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    1982-01-01

    This film for a general audience deals with nuclear fuel waste management in Canada, where research is concentrating on land based geologic disposal of wastes rather than on reprocessing of fuel. The waste management programme is based on cooperation of the AECL, various universities and Ontario Hydro. Findings of research institutes in other countries are taken into account as well. The long-term effects of buried radioactive wastes on humans (ground water, food chain etc.) are carefully studied with the help of computer models. Animated sequences illustrate the behaviour of radionuclides and explain the idea of a multiple barrier system to minimize the danger of radiation hazards

  3. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E. D.

    1984-01-01

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value

  4. Nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, E. D.

    1984-10-16

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value.

  5. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    1975-01-01

    The nuclear fuel assembly described includes a cluster of fuel elements supported at a distance from each other so that their axes are parallel in order to establish secondary channels between them reserved for the coolant. Several ducts for an auxiliary cooling fluid are arranged in the cluster. The wall of each duct is pierced with coolant ejection holes which are placed circumferentially to a pre-determined pattern established according to the position of the duct in the cluster and by the axial distance of the ejection hole along the duct. This assembly is intended for reactors cooled by light or heavy water [fr

  6. Infinite fuel element simulation of pin power distributions and control blade history in a BWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Nuenighoff, K.; Allelein, H.J. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energie- und Klimaforschung (IEK), Sicherheitsforschung und Reaktortechnik (IEK-6)

    2011-07-01

    Pellet-Cladding Interaction (PCI) is a well known effect in fuel pins. One possible reason for PCI-effects could be local power excursions in the fuel pins, which can led to a rupture of the fuel cladding tube. From a reactor safety point of view this has to be considered as a violence of the barrier principal in order to retain fission products in the fuel pins. This paper focuses on the pin power distributions in a 2D infinite lattice of a BWR fuel element. Lots of studies related PCI effect can be found in the literature. In this compact, coupled neutronic depletion calculations taking the control history effect into account are described. Depletion calculations of an infinite fuel element of a BWR were carried out with controlled, uncontrolled and temporarily controlled scenarios. Later ones are needed to describe the control blade history (CBH) effect. A Monte-Carlo approach is mandatory to simulate the neutron physics. The VESTA code was applied to couple the Monte-Carlo-Code MCNP(X) with the burnup code ORIGEN. Additionally, CASMO-4 is also employed to verify the method of simulation results from VESTA. The cross sections for Monte Carlo and burn-up calculations are derived from ENDF/B-VII.0. (orig.)

  7. Test Specifications and the Design of the Wire Wrapped 37-Pin Fuel Assembly for Hydrodynamic Experiments

    International Nuclear Information System (INIS)

    Chang, S. K.; Euh, D. J.; Bae, H.; Lee, H. Y.; Choi, S. R.

    2013-01-01

    Most influencing parameters on uncertainties and sensitivities of the CFD analyses are the friction coefficient and the mixing coefficient. The friction coefficient is related to the flow distribution in reactor sub-channels. The mixing coefficient is defined with the cross flow between neighboring sub-channels. The eventual purpose of the thermal hydraulic design considering these parameters is to guarantee the fuel cladding integrity as the design limit parameter. At the moment, the experimental program is being undertaken to quantify these friction and mixing parameters which characterize the flow distribution in sub-channels, and the wire wrapped 37-pin rod assembly and its hexagonal test rig have been designed and fabricated. The quantified thermal hydraulic experimental data from this program are utilized primarily to estimate the accuracy of the safety analysis codes and their thermal hydraulic model. A wire wrapped 37 pin fuel assembly has been designed for the measurements of the flow distribution, where the measurements are utilized to quantify the friction coefficient and the mixing coefficient. The test rig of the wire wrapped 37 pin fuel assembly has been fabricated considering the geometric and flow dynamic similarities. It comprises four components i. e., the upper plenum, the fuel housing, the lower plenum, and the wire wrapped 37 pin fuel assembly. At further works, the quantified friction and mixing coefficients through the experiments are going to be utilized for insuring the reliability of the CFD analysis results

  8. Nuclear fuel activities in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D S [Fuel Development Branch, Chalk River Labs., AECL (Canada)

    1997-12-01

    Nuclear fuel activities in Canada are considered in the presentation on the following directions: Canadian utility fuel performance; CANDU owner`s group fuel programs; AECL advanced fuel program (high burnup fuel behaviour and development); Pu dispositioning (MOX) activities. 1 tab.

  9. Thermal behaviour of pressure tube under fully and partially voided heating conditions using 19 pin fuel element simulator

    International Nuclear Information System (INIS)

    Yadav, Ashwini K.; Kumar, Ravi; Gupta, Akhilesh; Chatterjee, B.; Mukhopadhya, D.; Lele, H.G.

    2011-01-01

    In a nuclear reactor temperature can rise drastically during LOCA due to failure of heat transportation system and subsequently leads to mechanical deformations like sagging, ballooning and breaching of pressure tube. To understand the phenomenon an experiment has been carried out using 19 pin fuel element simulator. Main purpose of the experiment was to trace temperature profiles over the pressure tube, calandria tube and clad tubes of 220 MWe Indian Pressurised Heavy Water Reactor (IPHWR). The symmetrical heating of pressure tube of 1 m length was done through resistance heating of 19 pins under 13.5 kW power using a rectifier and the variation of temperatures over the circumference of pressure tube (PT), calandria tube (CT) and clad tubes were measured. The sagging of pressure tube was initiated at 460 deg C temperature and highest temperature attained was 650 deg C. The highest temperature attained by clad tubes was 680 deg C (over outer ring) and heat is dissipated to calandria vessel mainly due to radiation and natural convection. Again to simulate partially voided conditions, asymmetrical heating of pressure was carried out by injecting 8 kW power to upper 8 pins of fuel simulator. A maximum temperature difference of 295 deg C was observed over the circumference of pressure tube which highlights the magnitude of thermal stresses and its role in breaching of pressure tube under partially voided conditions. Integrity of pressure tube was retained during both symmetrical and asymmetrical heatup conditions. (author)

  10. Comparative prediction of irradiation test of CNFT and Cise prototypes of CIRENE fuel pins, a prediction by transuranus M1V1J12 code

    International Nuclear Information System (INIS)

    Suwardi

    2014-01-01

    A prototype of fuel pin design for HWR by CIRENE has been realized by Center for Nuclear Fuel Technology CNFT-BATAN. The prototype will be irradiated in PRTF Power Ramp Test (PRTF). The facility has been installed inside RSG-GA Siwabessy at Serpong. The present paper reports the preparation of experimentation and prediction of irradiation test. One previous PCI test report is found in, written by Lysell G and Valli G in 1973. The CNFT fuel irradiation test parameter is adapted to both PRTF and power loop design for RSG-GAS reactor in Serpong mainly the maxima of: rod length, neutrons flux, total power of rod, and power ramp rate. The CNFT CIRENE prototype design has been reported by Futichah et al 2007 and 2010. The AEC-India HWR fuel pin is of 19/22 fuel bundle design has also been evaluated as comparison. The first PCI test prediction has experiment comparison for Cise pin. The second prediction will be used for optimizing the design of ramp test for CNFT CIRENE fuel pin prototype. (author)

  11. Nuclear fuel brokerage

    International Nuclear Information System (INIS)

    Hoffman, J.; Schreiber, K.

    1985-01-01

    Making available nuclear fuels on the spot market, especially uranium in various compounds and processing stages, has become an important service rendered nuclear power plant operators. A secondary market has grown, both for natural uranium and for separative work, the conditions and transactions of which require a comprehensive overview of what is going on, especially also in connection with possibilities to terminate in a profitable manner existing contracts. This situation has favored the activity of brokers with excellent knowledge of the market, who are able to handle the complicated terms and conditions in an optimum way. (orig.) [de

  12. Compact nuclear fuel storage

    International Nuclear Information System (INIS)

    Kiselev, V.V.; Churakov, Yu.A.; Danchenko, Yu.V.; Bylkin, B.K.; Tsvetkov, S.V.

    1983-01-01

    Different constructions of racks for compact storage of spent fuel assemblies (FA) in ''coolin''g pools (CP) of NPPs with the BWR and PWR type reactors are described. Problems concerning nuclear and radiation safety and provision of necessary thermal conditions arising in such rack design are discussed. It is concluded that the problem of prolonged fuel storage at NPPs became Very actual for many countries because of retapdation of the rates of fuel reprocessing centers building. Application of compact storage racks is a promising solution of the problem of intermediate FA storage at NPPs. Such racks of stainless boron steel and with neutron absorbers in the from of boron carbide panels enable to increase the capacity of the present CP 2-2.6 times, and the period of FA storage in them up to 5-10 years

  13. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a nuclear reactor fuel assembly comprising a cluster of fuel elements supported by transversal grids so that their axes are parallel to and at a distance from each other, in order to establish interstices for the axial flow of a coolant. At least one of the interstices is occupied by an axial duct reserved for an auxiliary cooling fluid and is fitted with side holes through which the auxiliary cooling fluid is sprayed into the cluster. Deflectors extend as from a transversal grid in a position opposite the holes to deflect the cooling fluid jet towards those parts of the fuel elements that are not accessible to the auxiliary coolant. This assembly is intended for reactors cooled by light or heavy water [fr

  14. Alternative nuclear fuel cycles

    International Nuclear Information System (INIS)

    Till, C.E.

    1979-01-01

    This diffuse subject involves value judgments that are political as well as technical, and is best understood in that context. The four questions raised here, however, are mostly from the technical viewpoints: (1) what are alternative nuclear fuel cycles; (2) what generalizations are possible about their characteristics; (3) what are the major practical considerations; and (4) what is the present situation and what can be said about the outlook for the future

  15. Vented nuclear fuel element

    International Nuclear Information System (INIS)

    Oguma, M.; Hirose, Y.

    1976-01-01

    A description is given of a vented nuclear fuel element having a plenum for accumulation of fission product gases and plug means for delaying the release of the fission product gases from the plenum, the plug means comprising a first porous body wettable with a liquid metal and a second porous body non-wettable with the liquid metal, the first porous body being impregnated with the liquid metal and in contact with the liquid metal

  16. Nuclear reactor fuel element splitter

    International Nuclear Information System (INIS)

    Yeo, D.

    1976-01-01

    A method and apparatus are disclosed for removing nuclear fuel from a clad fuel element. The fuel element is power driven past laser beams which simultaneously cut the cladding lengthwise into at least two longitudinal pieces. The axially cut lengths of cladding are then separated, causing the nuclear fuel contained therein to drop into a receptacle for later disposition. The cut lengths of cladding comprise nuclear waste which is disposed of in a suitable manner. 6 claims, 10 drawing figures

  17. Mechanical behavior of fast reactor fuel pin cladding subjected to simulated overpower transients

    International Nuclear Information System (INIS)

    Johnson, G.D.; Hunter, C.W.

    1978-06-01

    Cladding mechanical property data for analysis and prediction of fuel pin transient behavior were obtained under experimental conditions in which the temperature ramps of reactor transients were simulated. All cladding specimens were 20% CW Type 316 stainless steel and were cut from EBR-II irradiated fuel pins. It was determined that irradiation degraded the cladding ductility and failure strength. Specimens that had been adjacent to the fuel exhibited the poorest properties. Correlations were developed to describe the effect of neutron fluence on the mechanical behavior of the cladding. Metallographic examinations were conducted to characterize the failure mode and to establish the nature of internal and external surface corrosion. Various mechanisms for the fuel adjacency effect were examined and results for helium concentration profiles were presented. Results from the simulated transient tests were compared with TREAT test results

  18. Fuel pin behaviour under conditions of control rod withdrawal accident in CABRI-2 experiments

    International Nuclear Information System (INIS)

    Papin, Joelle; Lemoine, Francette; Sato, Ikken; Struwe, Dankward; Pfrang, Werner

    1994-01-01

    Simulation of the control rod withdrawal accident has been performed in the international CABRI-2 experimental programme. The tests realized with industrial pins led to clarification of the influence of the pellet design and have shown the important role of fission products on the solid fuel swelling which promotes early pin failure with solid fuel pellet. With annular pellet design, large fuel swelling combined to low smear density leads to degradation of fuel thermal conductivity and thus reduces power to melt. However, the high margin to deterministic failure is confirmed with hollow pellets. Improvements of the modelling were necessary to describe such behaviours in computer codes as SAS-4A, PAPAS-2S and PHYSURAC. (author)

  19. Fuel pin behavior of a pressurizer water reactor with load following

    International Nuclear Information System (INIS)

    Perrotta, J.A.

    1980-10-01

    The performance of a PWR fuel pin was evaluated, during power cycles that occur in normal operations, excluding accident cases. A code to perform the mechanical analysis of the cladding was developed using the Finite Element Method to take into account local effects of pellet-cladding interaction (PCI). (E.G.) [pt

  20. Nuclear fuel handling apparatus

    International Nuclear Information System (INIS)

    Andrea, C.; Dupen, C.F.G.; Noyes, R.C.

    1977-01-01

    A fuel handling machine for a liquid metal cooled nuclear reactor in which a retractable handling tube and gripper are lowered into the reactor to withdraw a spent fuel assembly into the handling tube. The handling tube containing the fuel assembly immersed in liquid sodium is then withdrawn completely from the reactor into the outer barrel of the handling machine. The machine is then used to transport the spent fuel assembly directly to a remotely located decay tank. The fuel handling machine includes a decay heat removal system which continuously removes heat from the interior of the handling tube and which is capable of operating at its full cooling capacity at all times. The handling tube is supported in the machine from an articulated joint which enables it to readily align itself with the correct position in the core. An emergency sodium supply is carried directly by the machine to provide make up in the event of a loss of sodium from the handling tube during transport to the decay tank. 5 claims, 32 drawing figures

  1. The deformation analysis of the KALIMER breakeven core driver fuel pin based on the axial power profile during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Uk; Lee, Byoung Oon; Kim, Young Kyun; Hong, Ser Gi; Chang, Jin Wook; Lee, Ki Bok; Kim, Young Il

    2003-03-01

    In this study, material properties such as coolant specific heat, film heat transfer coefficient, cladding thermal conductivity, surface diffusion coefficient of the multi-bubble are improved in MACSIS-Mod1. The axial power and flux profile module was also incorporated with irradiation history. The performance and feasibility of the driver fuel pin have been analyzed for nominal parameters based on the conceptual design for the KALIMER breakeven core by MACSIS-MOD1 code. The fuel slug centerline temperature takes the maximum at 700mm from the bottom of the slug in spite of the nearly symmetric axial power distribution. The cladding mid-wall and coolant temperatures take the maximum at the top of the pin. Temperature of the fuel slug surface over the entire irradiation life is much lower than the fuel-clad eutectic reaction temperature. The fission gas release of the driver fuel pin at the End Of Life(EOL) is predicted to be 68.61% and plenum pressure is too low to cause cladding yielding. The probability that the fuel pin would fail is estimated to be much less than that allowed in the design criteria. The maximum radial deformation of the fuel pin is 1.928%, satisfying the preliminary design criterion (3%) for fuel pin deformation. Therefore the conceptual design parameters of the driver fuel pin for the KALIMER breakeven core are expected to satisfy the preliminary criteria on temperature, fluence limit, deformation limit etc.

  2. The deformation analysis of the KALIMER breakeven core driver fuel pin based on the axial power profile during irradiation

    International Nuclear Information System (INIS)

    Lee, Dong Uk; Lee, Byoung Oon; Kim, Young Kyun; Hong, Ser Gi; Chang, Jin Wook; Lee, Ki Bok; Kim, Young Il

    2003-03-01

    In this study, material properties such as coolant specific heat, film heat transfer coefficient, cladding thermal conductivity, surface diffusion coefficient of the multi-bubble are improved in MACSIS-Mod1. The axial power and flux profile module was also incorporated with irradiation history. The performance and feasibility of the driver fuel pin have been analyzed for nominal parameters based on the conceptual design for the KALIMER breakeven core by MACSIS-MOD1 code. The fuel slug centerline temperature takes the maximum at 700mm from the bottom of the slug in spite of the nearly symmetric axial power distribution. The cladding mid-wall and coolant temperatures take the maximum at the top of the pin. Temperature of the fuel slug surface over the entire irradiation life is much lower than the fuel-clad eutectic reaction temperature. The fission gas release of the driver fuel pin at the End Of Life(EOL) is predicted to be 68.61% and plenum pressure is too low to cause cladding yielding. The probability that the fuel pin would fail is estimated to be much less than that allowed in the design criteria. The maximum radial deformation of the fuel pin is 1.928%, satisfying the preliminary design criterion (3%) for fuel pin deformation. Therefore the conceptual design parameters of the driver fuel pin for the KALIMER breakeven core are expected to satisfy the preliminary criteria on temperature, fluence limit, deformation limit etc

  3. Cesium relocation in mixed-oxide fuel pins resulting from increased temperature reirradiation

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Woodley, R.E.; Weber, E.T.

    1976-06-01

    Mixed-oxide fuel pins from EBR-II test subassemblies PNL-3 and PNL-4 were reirradiated in the GETR to study effects of increased fuel and cladding temperatures on chemical and thermomechanical behavior. Radial and axial distributions of cesium were obtained using postirradiation nondestructive precision gamma-scanning techniques. Data presented relate to the dependence of cesium distribution and transport processes on temperature gradients which were altered after substantial steady-state operation

  4. Course of pin fuel test In WWR-M reactor core

    International Nuclear Information System (INIS)

    Zakharov, A.S.; Kirsanov, G.A.; Konoplev, K.A.

    2005-01-01

    Pin type fuel element (FE) of square form with twisted ribs was developed in VNIINM as an alternative for tube type FE of research reactors. Two variants of full-scale fuel assemblies (FA) are under test in the core of PNPI WWR-M reactor. One FA contains FE with UO 2 LEU and other - UMo LEU. Both types of FE have an aluminum matrix. Results of the first stages of the test are presented. (author)

  5. Fuel and coolant motions following pin failure: EPIC models and the PBE-5S experiment

    International Nuclear Information System (INIS)

    Garner, P.L.; Abramson, P.B.

    1979-01-01

    The EPIC computer code has been used to analyze the post-fuel-pin-failure behavior in the PBE-5S experiment performed at Sandia Laboratories. The effects of modeling uncertainties on the calculation are examined. The calculations indicate that the majority of the piston motion observed in the test is due to the initial pressurization of the coolant channel by fuel vapor at cladding failure. A more definitive analysis requires improvements in calculational capabilities and experiment diagnostics

  6. South Korea's nuclear fuel industry

    International Nuclear Information System (INIS)

    Clark, R.G.

    1990-01-01

    March 1990 marked a major milestone for South Korea's nuclear power program, as the country became self-sufficient in nuclear fuel fabrication. The reconversion line (UF 6 to UO 2 ) came into full operation at the Korea Nuclear Fuel Company's fabrication plant, as the last step in South Korea's program, initiated in the mid-1970s, to localize fuel fabrication. Thus, South Korea now has the capability to produce both CANDU and pressurized water reactor (PWR) fuel assemblies. This article covers the nuclear fuel industry in South Korea-how it is structures, its current capabilities, and its outlook for the future

  7. Nuclear fuel rod loading apparatus

    International Nuclear Information System (INIS)

    King, H.B.

    1981-01-01

    A nuclear fuel loading apparatus, incorporating a microprocessor control unit, is described which automatically loads nuclear fuel pellets into dual fuel rods with a minimum of manual involvement and in a manner and sequence to ensure quality control and accuracy. (U.K.)

  8. Parallel two-phase-flow-induced vibrations in fuel pin model

    International Nuclear Information System (INIS)

    Hara, Fumio; Yamashita, Tadashi

    1978-01-01

    This paper reports the experimental results of vibrations of a fuel pin model -herein meaning the essential form of a fuel pin from the standpoint of vibration- in a parallel air-and-water two-phase flow. The essential part of the experimental apparatus consisted of a flat elastic strip made of stainless steel, both ends of which were firmly supported in a circular channel conveying the two-phase fluid. Vibrational strain of the fuel pin model, pressure fluctuation of the two-phase flow and two-phase-flow void signals were measured. Statistical measures such as power spectral density, variance and correlation function were calculated. The authors obtained (1) the relation between variance of vibrational strain and two-phase-flow velocity, (2) the relation between variance of vibrational strain and two-phase-flow pressure fluctuation, (3) frequency characteristics of variance of vibrational strain against the dominant frequency of the two-phase-flow pressure fluctuation, and (4) frequency characteristics of variance of vibrational strain against the dominant frequency of two-phase-flow void signals. The authors conclude that there exist two kinds of excitation mechanisms in vibrations of a fuel pin model inserted in a parallel air-and-water two-phase flow; namely, (1) parametric excitation, which occurs when the fundamental natural frequency of the fuel pin model is related to the dominant travelling frequency of water slugs in the two-phase flow by the ratio 1/2, 1/1, 3/2 and so on; and (2) vibrational resonance, which occurs when the fundamental frequency coincides with the dominant frequency of the two-phase-flow pressure fluctuation. (auth.)

  9. Future trends in nuclear fuels

    International Nuclear Information System (INIS)

    Guitierrez, J.E.

    2006-01-01

    This series of transparencies presents: the fuel management cycle and key areas (security of supplies, strategies and core management, reliability, spent fuel management), the world nuclear generating capacity, concentrate capacity, enrichment capacity, and manufacturing capacity forecasts, the fuel cycle strategies and core management (longer cycles, higher burnups, power up-rates, higher enrichments), the Spanish nuclear generation cost, the fuel reliability (no defects, robust designs, operational margins, integrated fuel and core design), spent fuel storage (design and safety criteria, fuel performance and integrity). (J.S.)

  10. Nuclear fuel element

    International Nuclear Information System (INIS)

    Iwano, Yoshihiko.

    1993-01-01

    Microfine cracks having a depth of less than 10% of a pipe thickness are disposed radially from a central axis each at an interval of less than 100 micron over the entire inner circumferential surface of a zirconium alloy fuel cladding tube. For manufacturing such a nuclear fuel element, the inside of the cladding tube is at first filled with an electrolyte solution of potassium chloride. Then, electrolysis is conducted using the cladding tube as an anode and the electrolyte solution as a cathode, and the inner surface of the cladding tube with a zirconium dioxide layer having a predetermined thickness. Subsequently, the cladding tube is laid on a smooth steel plate and lightly compressed by other smooth steel plate to form microfine cracks in the zirconium dioxide layer on the inner surface of the cladding tube. Such a compressing operation is continuously applied to the cladding tube while rotating the cladding tube. This can inhibit progress of cracks on the inner surface of the cladding tube, thereby enabling to prevent failure of the cladding tube even if a pellet/cladding tube mechanical interaction is applied. Accordingly, reliability of the nuclear fuel elements is improved. (I.N.)

  11. Emission computer tomography on a Dodewaard mixed oxide fuel pin

    International Nuclear Information System (INIS)

    Buurveld, H.A.; Dassel, G.

    1993-12-01

    A nondestructive technique as well as a destructive PIE technique have been used to verify the results obtained with a newly 8-e computer tomography (GECT) system. Multi isotope Scanning (MIS), electron probe micro analysis (EPMA) and GECT were used on a mixed oxide (MOX) fuel rod from the Dodewaard reactor with an average burnup of 24 MWd/kg fuel. GECT shows migration of Cs to the periphery of fuel pellets and to radial cracks and pores in the fuel, whereas MIS shows Cs migration to pellet interfaces. The EPMA technique appeared not to be useful to show migration of Cs but, it shows the distribution of fission products from Pu. EPMA clearly shows the distribution of fission products from Pu, but did not reveal the Cs-migration. (orig./HP)

  12. Nuclear fuel element

    International Nuclear Information System (INIS)

    Armijo, J.S.

    1977-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed which has a composite cladding having a substrate, a metal barrier metallurgically bonded to the inside surface of the substrate and an inner layer metallurgically bonded to the inside surface of the metal barrier. In this composite cladding, the inner layer and the metal barrier shield the substrate from any impurities or fission products from the nuclear fuel material held within the composite cladding. The metal barrier forms about 1 to about 4 percent of the thickness of the cladding and is comprised of a metal selected from the group consisting of niobium, aluminum, copper, nickel, stainless steel, and iron. The inner layer and then the metal barrier serve as reaction sites for volatile impurities and fission products and protect the substrate from contact and reaction with such impurities and fission products. The substrate and the inner layer of the composite cladding are selected from conventional cladding materials and preferably are a zirconium alloy. Also in a preferred embodiment the substrate and the inner layer are comprised of the same material, preferably a zirconium alloy. 19 claims, 2 figures

  13. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    1980-01-01

    The invention is of a nuclear fuel element which comprises a central core of a body of nuclear fuel material selected from the group consisting of compounds of uranium, plutonium, thorium and mixtures thereof, and an elongated composite cladding container comprising a zirconium alloy tube containing constituents other than zirconium in an amount greater than about 5000 parts per million by weight and an undeformed metal barrier of moderate purity zirconium bonded to the inside surface of the alloy tube. The container encloses the core so as to leave a gap between the container and the core during use in a nuclear reactor. The metal barrier is of moderate purity zirconium with an impurity level on a weight basis of at least 1000ppm and less than 5000ppm. Impurity levels of specific elements are given. Variations of the invention are also specified. The composite cladding reduces chemical interaction, minimizes localized stress and strain corrosion and reduces the likelihood of a splitting failure in the zirconium alloy tube. Other benefits are claimed. (U.K.)

  14. Quality management of nuclear fuel

    International Nuclear Information System (INIS)

    2006-01-01

    The Guide presents the quality management requirements to be complied with in the procurement, design, manufacture, transport, receipt, storage, handling and operation of nuclear fuel. The Guide also applies to control rods and shield elements to be placed in the reactor. The Guide is mainly aimed for the licensee responsible for the procurement and operation of fuel, for the fuel designer and manufacturer and for other organisations, whose activities affect fuel quality and the safety of fuel transport, storage and operation. General requirements for nuclear fuel are presented in Section 114 of the Finnish Nuclear Energy Decree and in Section 15 of the Government Decision (395/1991). Regulatory control of the safety of fuel is described in Guides YVL6.1, YVL6.2 and YVL6.3. An overview of the regulatory control of nuclear power plants carried out by STUK (Radiation and Nuclear Safety Authority, Finland) is clarified in Guide YVL1.1

  15. Development of a FBR fuel pin bundle deformation analysis code 'BAMBOO' . Development of a dispersion model and its validation

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ukai, Shigeharu; Asaga, Takeo

    2002-03-01

    Bundle Duct Interaction (BDI) is one of the life limiting factors of a FBR fuel subassembly. Under the BDI condition, the fuel pin dispersion would occur mainly by the deviation of the wire position due to the irradiation. In this study the effect of the dispersion on the bundle deformation was evaluated by using the BAMBOO code and following results were obtained. (1) A new contact analysis model was introduced in BAMBOO code. This model considers the contact condition at the axial position other than the nodal point of the beam element that composes the fuel pin. This improvement made it possible in the bundle deformation analysis to cause fuel pin dispersion due to the deviations of the wire position. (2) This model was validated with the results of the out-of-pile compression test with the wire deviation. The calculated pin-to-duct and pin-to-pin clearances with the dispersion model almost agreed with the test results. Therefore it was confirmed that the BAMBOO code reasonably predicts the bundle deformation with the dispersion. (3) In the dispersion bundle the pin-to-pin clearances widely scattered. And the minimum pin-to-duct clearance increased or decreased depending on the dispersion condition compared to the no-dispersion bundle. This result suggests the possibility that the considerable dispersion would affect the thermal integrity of the bundle. (author)

  16. Nuclear power and the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    The IAEA is organizing a major conference on nuclear power and the nuclear fuel cycle, which is to be held from 2 to 13 May 1977 in Salzburg, Austria. The programme for the conference was published in the preceding issue of the IAEA Bulletin (Vol.18, No. 3/4). Topics to be covered at the conference include: world energy supply and demand, supply of nuclear fuel and fuel cycle services, radioactivity management (including transport), nuclear safety, public acceptance of nuclear power, safeguarding of nuclear materials, and nuclear power prospects in developing countries. The articles in the section that follows are intended to serve as an introduction to the topics to be discussed at the Salzburg Conference. They deal with the demand for uranium and nuclear fuel cycle services, uranium supplies, a computer simulation of regional fuel cycle centres, nuclear safety codes, management of radioactive wastes, and a pioneering research project on factors that determine public attitudes toward nuclear power. It is planned to present additional background articles, including a review of the world nuclear fuel reprocessing situation and developments in the uranium enrichment industry, in future issues of the Bulletin. (author)

  17. Nuclear fuel supplies

    International Nuclear Information System (INIS)

    1960-01-01

    When the International Atomic Energy Agency was set up nearly three years ago, it was widely believed that it would soon become a world bank or broker for the supply of nuclear fuel. Some observers now seem to feel that this promise has been rather slow to come to fruition. A little closer analysis would, however, show that the promise can be fulfilled only in a certain objective context, and to the extent that this context exists, the development of the Agency's role has been commensurate with the actual needs of the situation

  18. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Allan, C.J.

    1993-01-01

    The Canadian concept for nuclear fuel waste disposal is based on disposing of the waste in a vault excavated 500-1000 m deep in intrusive igneous rock of the Canadian Shield. The author believes that, if the concept is accepted following review by a federal environmental assessment panel (probably in 1995), then it is important that implementation should begin without delay. His reasons are listed under the following headings: Environmental leadership and reducing the burden on future generations; Fostering public confidence in nuclear energy; Forestalling inaction by default; Preserving the knowledge base. Although disposal of reprocessing waste is a possible future alternative option, it will still almost certainly include a requirement for geologic disposal

  19. Electric arc apparatus for severing split-pin assemblies of guide tubes of nuclear reactors

    International Nuclear Information System (INIS)

    Burns, D.C.; Kauric, C.E.; Persang, J.C.

    1987-01-01

    This patent describes an apparatus for use in the replacement of an old split-pin assembly of a guide tube of a nuclear reactor by a new split-pin assembly, the old split-pin assembly including an old split pin and an old nut securing the old split pin to the guide tube, the old split-pin assembly and the guide tube being radioactive. The apparatus includes a metal disintegration machining tool, the tool having an electrode, means for mounting the tool submerged in a pool of water in engagement with the guide tube and with the old split-pin assembly secured to the guide tube, the tool being so mounted with the electrode in position to coact electrically with the last-named old split-pin assembly but not with the guide tube, and means, connected to the tool, for firing a disintegrating arc between the electrode and the assembly to disintegrate the assembly into readily removable fragments

  20. Thermal analysis of the IDENT 1578 fuel pin shipping container

    International Nuclear Information System (INIS)

    Ingham, J.G.

    1980-01-01

    The IDENT 1578 container, which is a 110-in. long 5.5-in. OD tube, is designed for shipping FFTF fuel elements in T-3 casks between HEDL, HFEF, and other laboratories. The thermal analysis was conducted to evaluate whether or not the container satisfies its thermal design criteria

  1. Using graphitic foam as the bonding material in metal fuel pins for sodium fast reactors

    International Nuclear Information System (INIS)

    Karahan, Aydın; Kazimi, Mujid S.

    2013-01-01

    The study evaluates the possible use of graphite foam as the bonding material between U–Pu–Zr metallic fuel and steel clad for sodium fast reactor applications using FEAST-METAL fuel performance code. Furthermore, the applicability of FEAST-METAL to the advanced fuel designs is demonstrated. Replacing the sodium bond with a chemically stable foam material would eliminate fuel clad metallurgical interactions, and allow for fuel swelling under low external stress. Hence, a significant improvement is expected for the steady state and transient performance. FEAST-METAL was used to assess the thermo-mechanical behavior of the new fuel form and a reference metallic fuel pin. Nearly unity conversion ratio, 75% smear density U–15Pu–6Zr metallic fuel pin with sodium bond, and T91 cladding was selected as a reference case. It was found that operating the reference case at high clad temperatures (600–660 °C) results in (1) excessive clad wastage formation/clad thinning due to lanthanide migration and formation of brittle phases at clad inner surface, and (2) excessive clad hoop strain at the upper axial section due mainly to the occurrence of thermal creep. The combination of these two factors may lead to cladding breach. The work concludes that replacing the sodium bond with 80% porous graphite foam and reducing the fuel smear density to 70%, it is likely that the fuel clad metallurgical interaction would be eliminated while the fuel swelling is allowed without excessive fuel clad mechanical interaction. The suggested design appears as an alternative for a high performance metallic fuel design for sodium fast reactors

  2. Using graphitic foam as the bonding material in metal fuel pins for sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydın, E-mail: karahan@alum.mit.edu; Kazimi, Mujid S.

    2013-10-15

    The study evaluates the possible use of graphite foam as the bonding material between U–Pu–Zr metallic fuel and steel clad for sodium fast reactor applications using FEAST-METAL fuel performance code. Furthermore, the applicability of FEAST-METAL to the advanced fuel designs is demonstrated. Replacing the sodium bond with a chemically stable foam material would eliminate fuel clad metallurgical interactions, and allow for fuel swelling under low external stress. Hence, a significant improvement is expected for the steady state and transient performance. FEAST-METAL was used to assess the thermo-mechanical behavior of the new fuel form and a reference metallic fuel pin. Nearly unity conversion ratio, 75% smear density U–15Pu–6Zr metallic fuel pin with sodium bond, and T91 cladding was selected as a reference case. It was found that operating the reference case at high clad temperatures (600–660 °C) results in (1) excessive clad wastage formation/clad thinning due to lanthanide migration and formation of brittle phases at clad inner surface, and (2) excessive clad hoop strain at the upper axial section due mainly to the occurrence of thermal creep. The combination of these two factors may lead to cladding breach. The work concludes that replacing the sodium bond with 80% porous graphite foam and reducing the fuel smear density to 70%, it is likely that the fuel clad metallurgical interaction would be eliminated while the fuel swelling is allowed without excessive fuel clad mechanical interaction. The suggested design appears as an alternative for a high performance metallic fuel design for sodium fast reactors.

  3. Regulation at nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the role of the UJD in regulation at nuclear fuel cycle is presented. The Nuclear Fuel Cycle (NFC) is a complex of activities linked with production of nuclear fuel for nuclear reactors as a source of energy used for production of electricity and heat, and of activities linked with spent nuclear fuel handling. Activities linked with nuclear fuel (NF) production, known as the Front-End of Nuclear Fuel Cycle, include (production of nuclear fuel from uranium as the most frequently used element). After discharging spent nuclear fuel (SNF) from nuclear reactor the activities follow linked with its storage, reprocessing and disposal known as the Back-End of Nuclear Fuel Cycle. Individual activity, which penetrates throughout the NFC, is transport of nuclear materials various forms during NF production and transport of NF and SNF. Nuclear reactors are installed in the Slovak Republic only in commercial nuclear power plants and the NFC is of the open type is imported from abroad and SNF is long-term supposed without reprocessing. The main mission of the area of NFC is supervision over: - assurance of nuclear safety throughout all NFC activities; - observance of provisions of the Treaty on Non-Proliferation of Nuclear Weapons during nuclear material handling; with an aim to prevent leakage of radioactive substances into environment (including deliberated danage of NFC sensitive facilities and misuse of nuclear materials to production of nuclear weapons. The UJD carries out this mission through: - assessment of safety documentation submitted by operators of nuclear installations at which nuclear material, NF and SNF is handled; - inspections concentrated on assurance of compliance of real conditions in NFC, i.e. storage and transport of NF and SNF; storage, transport and disposal of wastes from processing of SNF; with assumptions of the safety

  4. Nuclear power generation and nuclear fuel

    International Nuclear Information System (INIS)

    Okajima, Yasujiro

    1985-01-01

    As of June 30, 1984, in 25 countries, 311 nuclear power plants of about 209 million kW were in operation. In Japan, 27 plants of about 19 million kW were in operation, and Japan ranks fourth in the world. The present state of nuclear power generation and nuclear fuel cycle is explained. The total uranium resources in the free world which can be mined at the cost below $130/kgU are about 3.67 million t, and it was estimated that the demand up to about 2015 would be able to be met. But it is considered also that the demand and supply of uranium in the world may become tight at the end of 1980s. The supply of uranium to Japan is ensured up to about 1995, and the yearly supply of 3000 st U 3 O 8 is expected in the latter half of 1990s. The refining, conversion and enrichment of uranium are described. In Japan, a pilot enrichment plant consisting of 7000 centrifuges has the capacity of about 50 t SWU/year. UO 2 fuel assemblies for LWRs, the working of Zircaloy, the fabrication of fuel assemblies, the quality assurance of nuclear fuel, the behavior of UO 2 fuel, the grading-up of LWRs and nuclear fuel, and the nuclear fuel business in Japan are reported. The reprocessing of spent fuel and plutonium fuel are described. (Kako, I.)

  5. Financing the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Stephany, M.

    1975-01-01

    While conventional power stations usually have fossil fuel reserves for only a few weeks, nuclear power stations, because of the relatively long time required for uranium processing from ore extraction to the delivery of the fuel elements and their prolonged in-pile time, require fuel reserves for a period of several years. Although the specific fuel costs of nuclear power stations are much lower than those of conventional power stations, this results in consistently higher financial requirements. But the problems involved in financing the nuclear fuel do not only include the aspect of financing the requirements of reactor operators, but also of financing the facilities of the nuclear fuel cycle. As far as the fuel supply is concerned, the true financial requirements greatly exceed the mere purchasing costs because the costs of financing are rather high as a consequence of the long lead times. (orig./UA) [de

  6. Performance of LMFBR fuel pins with (Pu,Th)O/sub 2-x/ and UO2

    International Nuclear Information System (INIS)

    Lawrence, L.A.

    1983-09-01

    The irradiation performance of (Pu,Th)O/sub 2-x/ and UO 2 fueled pins for breeder reactor application were compared to the extensive performance data base for the (U,Pu)O/sub 2-x/ fuel system. Th-Pu and 238 U- 233 U based fuel systems were candidate fuel fertile/fissile isotopic combinations for development of alternatives to the current LMFBR fuel cycle. Initial screening tests were conducted in the EBR-II to obtain comparative performance data because of the limited experience with these fuel systems. In some cases, 235 U was used as a substitute for 233 U because of the difficulties in fabrication of available 233 U due to its high gamma ray emission rate

  7. Criticality experiments with fast flux test facility fuel pins

    International Nuclear Information System (INIS)

    Bierman, S.R.

    1990-11-01

    A United States Department of Energy program was initiated during the early seventies at the Hanford Critical Mass Laboratory to obtain experimental criticality data in support of the Liquid Metal Fast Breeder Reactor Program. The criticality experiments program was to provide basic physics data for clean well defined conditions expected to be encountered in the handling of plutonium-uranium fuel mixtures outside reactors. One task of this criticality experiments program was concerned with obtaining data on PuO 2 -UO 2 fuel rods containing 20--30 wt % plutonium. To obtain this data a series of experiments were performed over a period of about twelve years. The experimental data obtained during this time are summarized and the associated experimental assemblies are described. 8 refs., 7 figs

  8. IAEA activities on nuclear fuel

    International Nuclear Information System (INIS)

    Basak, U.

    2011-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The following Coordinated Research Projects: 1) FUel performance at high burn-up and in ageing plant by management and optimisation of WAter Chemistry Technologies (FUWAC ); 2) Near Term and Promising Long Term Options for Deployment of Thorium Based Nuclear Energy; 3) Fuel Modelling (FUMEX-III) are shortly described. The data collected by the IAEA Expert Group of Fuel Failures in Water Cooled Reactors including information about fuel failure cause for PWR (1994-2006) and failure mechanisms for BWR fuel (1994-2006) are shown. The just published Fuel Failure Handbook as well as preparation of a Monograph on Zirconium including an overview of Zirconium for nuclear applications are presented. The current projects in Sub-programme B2 - Power Reactor Fuel Engineering are also listed

  9. Target-fueled nuclear reactor for medical isotope production

    Science.gov (United States)

    Coats, Richard L.; Parma, Edward J.

    2017-06-27

    A small, low-enriched, passively safe, low-power nuclear reactor comprises a core of target and fuel pins that can be processed to produce the medical isotope .sup.99Mo and other fission product isotopes. The fuel for the reactor and the targets for the .sup.99Mo production are the same. The fuel can be low enriched uranium oxide, enriched to less than 20% .sup.235U. The reactor power level can be 1 to 2 MW. The reactor is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days.

  10. Specialists' meeting on theoretical modelling of LMFBR fuel pin behaviour. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-12-01

    The purpose of the meeting was to provide an opportunity for exchanging views of theoretical modelling of LMFBR fuel pin behaviour and to summarise the IWGFR member countries' knowledge in this field. The special emphasis was placed on normal operating conditions. The technical part of the meeting was divided into six sessions, as follows: An overview of fuel modelling studies; Key factors and basic phenomena relevant to fuel pin behaviour modelling; Application to steady state operation and normal transients; Experimental validation through pins in service and specific irradiation experiments; Advanced fuels; and Brief review of existing codes. During the meeting, papers were presented by the delegates on behalf of their countries or organization. The papers, which are included in this report, were either in the form of a general survey of the subject, or on specific technical subjects. In each subject area presentations appropriate to the subject were made from the submitted papers. The presentations were followed by discussions of the questions raised and summary is made.

  11. Specialists' meeting on theoretical modelling of LMFBR fuel pin behaviour. Summary report

    International Nuclear Information System (INIS)

    1979-12-01

    The purpose of the meeting was to provide an opportunity for exchanging views of theoretical modelling of LMFBR fuel pin behaviour and to summarise the IWGFR member countries' knowledge in this field. The special emphasis was placed on normal operating conditions. The technical part of the meeting was divided into six sessions, as follows: An overview of fuel modelling studies; Key factors and basic phenomena relevant to fuel pin behaviour modelling; Application to steady state operation and normal transients; Experimental validation through pins in service and specific irradiation experiments; Advanced fuels; and Brief review of existing codes. During the meeting, papers were presented by the delegates on behalf of their countries or organization. The papers, which are included in this report, were either in the form of a general survey of the subject, or on specific technical subjects. In each subject area presentations appropriate to the subject were made from the submitted papers. The presentations were followed by discussions of the questions raised and summary is made

  12. Investigations of flow and temperature field development in bare and wire-wrapped reactor fuel pin bundles cooled by sodium

    International Nuclear Information System (INIS)

    Govindha Rasu, N.; Velusamy, K.; Sundararajan, T.; Chellapandi, P.

    2013-01-01

    Highlights: ► We study sodium flow and temperature development in fuel pin bundles. ► Pin diameter, number of pins, wire wrap and ligament gap are varied as parameters. ► Flow development is achieved within ∼30–40 hydraulic diameters. ► Thermal development is attained only for small pin diameter and less number of pins. ► Wire wrap and ligament gap strongly influence Nusselt number. - Abstract: Simultaneous development of liquid sodium flow and temperature fields in the heat generating pin bundles of reactor has been investigated. Development characteristics are seen to be strongly influenced by pin diameter, number of pins, helical wire-wrap, ligament gap between the last row of pins and hexcan wall and Reynolds number. Flow development is achieved within an axial length of ∼125 hydraulic diameters, for all the pin bundle configurations considered. But temperature development is attained only if the pin diameter is small or the number of pins is less. In the case of large pin diameter with more pins, temperature development could not be achieved even after a length of ∼1000 hydraulic diameters. The reason for this behavior is traced to be the weak communication among sub-channels in tightly packed bundles. It is seen that the pin Nusselt number decreases from center to periphery in a bundle. Also, if the ligament gap is narrow, the Nusselt number is large and more uniform. Flow development length is short if the Reynolds number is large and the converse is true for thermal development length. Helical wire-wrap shortens the thermal entry length and significantly enhances the global Nusselt number. But, its influence on hydrodynamic entry length is not significant

  13. Nuclear fuel pellet charging device

    International Nuclear Information System (INIS)

    Komuro, Kojiro.

    1990-01-01

    The present invention concerns a nuclear fuel pellet loading device, in which nuclear fuel pellets are successively charged from an open end of a fuel can while rotating the can. That is, a fuel can sealed at one end with an end plug and opened at the other end is rotated around its pipe axis as the center on a rotationally diriving table. During rotation of the fuel can, nuclear fuel pellets are successively charged by means of a feed rod of a feeding device to the inside of the fuel can. The fuel can is rotated while being supported horizontally and the fuel pellets are charged from the open end thereof. Alternatively, the fuel can is rotated while being supported obliquely and the fuel pellets are charged gravitationally into the fuel can. In this way, the damages to the barrier of the fuel can can be reduce. Further, since the fuel pellets can be charged gravitationally by rotating the fuel can while being supported obliquely, the damages to the barrier can be reduced remarkably. (I.S.)

  14. Nuclear power fuel cycle

    International Nuclear Information System (INIS)

    Havelka, S.; Jakesova, L.

    1982-01-01

    Economic problems are discussed of the fuel cycle (cost of the individual parts of the fuel cycle and the share of the fuel cycle in the price of 1 kWh), the technological problems of the fuel cycle (uranium ore mining and processing, uranium isotope enrichment, the manufacture of fuel elements, the building of long-term storage sites for spent fuel, spent fuel reprocessing, liquid and gaseous waste processing), and the ecologic aspects of the fuel cycle. (H.S.)

  15. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Scurr, I.F.; Silver, J.M.

    1990-01-01

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  16. Plant-scale anodic dissolution of unirradiated IFR fuel pins

    International Nuclear Information System (INIS)

    Gay, E.C.; Tomczuk, Z.; Miller, W.E.

    1993-01-01

    This report discusses anodic dissolution which is a major operation in the pyrometallurgical process for recycling spent metal fuels from the Integral Fast Reactor (IFR), an advanced reactor design developed at Argonne National Laboratory. This process involves electrorefining the heavy metals (uranium and plutonium) from chopped, steel-clad fuel segments. The heavy metals are electrotransported from anodic dissolution baskets to solid and liquid cathodes in a molten salt electrolyte (LiCl-KCI) at 500 degrees C. Uranium is recovered on a solid cathode mandrel, while a uranium-plutonium mixture is recovered in a liquid cadmium cathode. The anode configuration consists of four baskets mounted on an anode shaft. These baskets provide parallel circuits in the electrolyte and salt flow through the chopped fuelbed as the baskets are rotated. The baskets for the engineering-scale tests were sized to contain up to 2.5 kg of heavy metal. Anodic dissolution of 10 kg batches of chopped, steel-clad simulated tuel (U-10% Zr and U-Zr-Fs alloy) was demonstrated

  17. Materials properties utilization in a cumulative mechanical damage function for LMFBR fuel pin failure analysis

    International Nuclear Information System (INIS)

    Jacobs, D.C.

    1977-01-01

    An overview is presented of one of the fuel-pin analysis techniques used in the CRBRP program, the cumulative mechanical damage function. This technique, as applied to LMFBR's, was developed along with the majority of models used to describe the mechanical properties and environmental behavior of the cladding (i.e., 20 percent cold-worked, 316 stainless steel). As it relates to fuel-pin analyses the Cumulative Mechanical Damage Function (CDF) continually monitors cladding integrity through steady state and transient operation; it is a time dependent function of temperature and stress which reflects the effects of both the prior mechanical history and the variations in mechanical properties caused by exposure to the reactor environment

  18. Romanian nuclear fuel cycle development

    International Nuclear Information System (INIS)

    Rapeanu, S.N.; Comsa, Olivia

    1998-01-01

    Romanian decision to introduce nuclear power was based on the evaluation of electricity demand and supply as well as a domestic resources assessment. The option was the introduction of CANDU-PHWR through a license agreement with AECL Canada. The major factors in this choice have been the need of diversifying the energy resources, the improvement the national industry and the independence of foreign suppliers. Romanian Nuclear Power Program envisaged a large national participation in Cernavoda NPP completion, in the development of nuclear fuel cycle facilities and horizontal industry, in R and D and human resources. As consequence, important support was being given to development of industries involved in Nuclear Fuel Cycle and manufacturing of equipment and nuclear materials based on technology transfer, implementation of advanced design execution standards, QA procedures and current nuclear safety requirements at international level. Unit 1 of the first Romanian nuclear power plant, Cernavoda NPP with a final profile 5x700 Mw e, is now in operation and its production represents 10% of all national electricity production. There were also developed all stages of FRONT END of Nuclear Fuel Cycle as well as programs for spent fuel and waste management. Industrial facilities for uranian production, U 3 O 8 concentrate, UO 2 powder and CANDU fuel bundles, as well as heavy water plant, supply the required fuel and heavy water for Cernavoda NPP. The paper presents the Romanian activities in Nuclear Fuel Cycle and waste management fields. (authors)

  19. Reactor Structure Materials: Nuclear Fuel

    International Nuclear Information System (INIS)

    Sannen, L.; Verwerft, M.

    2000-01-01

    Progress and achievements in 1999 in SCK-CEN's programme on applied and fundamental nuclear fuel research in 1999 are reported. Particular emphasis is on thermochemical fuel research, the modelling of fission gas release in LWR fuel as well as on integral experiments

  20. Burnable absorber coated nuclear fuel

    International Nuclear Information System (INIS)

    Chubb, W.; Radford, K.C.; Parks, B.H.

    1984-01-01

    A nuclear fuel body which is at least partially covered by a burnable neutron absorber layer is provided with a hydrophobic overcoat generally covering the burnable absorber layer and bonded directly to it. In a method for providing a UO 2 fuel pellet with a zirconium diboride burnable poison layer, the fuel body is provided with an intermediate niobium layer. (author)

  1. HEDL empirical correlation of fuel pin top failure thresholds, status 1976

    International Nuclear Information System (INIS)

    Baars, R.E.

    1976-01-01

    The Damage Parameter (DP) empirical correlation of fuel pin cladding failure thresholds for TOP events has been revised and recorrelated to the results of twelve TREAT tests. The revised correlation, called the Failure Potential (FP) correlation, predicts failure times for the tests in the data base with an average error of 35 ms for $3/s tests and of 150 ms for 50 cents/s tests

  2. Neutron coincidence counter for MOX fuel pins in storage trays: users' manual

    International Nuclear Information System (INIS)

    Cowder, L.; Menlove, H.

    1982-08-01

    The neutron coincidence counter for measurement of mixed-oxide fuel pins in storage trays is described. The special detector head has been designed so that the detectors, high-voltage junction boxes, and electronics are interchangeable with those of the high-level neutron coincidence counter system. This manual describes the system components and the operation and maintenance of the counter. The counter was developed at Los Alamos National Laboratory for in-plant inspection applications by the International Atomic Energy Agency

  3. The fuel of nuclear reactors

    International Nuclear Information System (INIS)

    1995-03-01

    This booklet is a presentation of the different steps of the preparation of nuclear fuels performed by Cogema. The documents starts with a presentation of the different French reactor types: graphite moderated reactors, PWRs using MOX fuel, fast breeder reactors and research reactors. The second part describes the fuel manufacturing process: conditioning of nuclear materials and fabrication of fuel assemblies. The third part lists the different companies involved in the French nuclear fuel industry while part 4 gives a short presentation of the two Cogema's fuel fabrication plants at Cadarache and Marcoule. Part 5 and 6 concern the quality assurance, the safety and reliability aspects of fuel elements and the R and D programs. The last part presents some aspects of the environmental and personnel protection performed by Cogema. (J.S.)

  4. PIN99W, Modelling of VVER and PWR Fuel Rod Thermomechanical Behaviour

    International Nuclear Information System (INIS)

    Valach, M.; Strizhov, P.; Svoboda, R.

    2000-01-01

    1 - Description of program or function: The Code is developed to describe fuel rod thermomechanical behaviour in operational conditions. The main goal of this code is to calculate fuel temperature, gap conductivity, fission gas release and inner gas pressure. 2 - Methods: - fuel rod temperature response is solved by using one-dimensional finite element method combined with weighted residuals method; - the code involves models describing physical phenomena typical for the fuel irradiated in Light Water Power Reactors (densification, restructuring, fission gas release, swelling and relocation) ; - this code is updated and improves PIN-micro code. 3 - Restrictions on the complexity of the problem: - simplified mechanistic solution; - only steady-state solution; - no cladding failure criterion; - no model for axial fuel-cladding interaction

  5. Modelling of the thermomechanical and physical processes in FR fuel pins using the GERMINAL code

    International Nuclear Information System (INIS)

    Roche, L.; Pelletier, M.

    2000-01-01

    In the frame of the R and D on Fast Reactor mixed oxide fuels, CEA/DEC has developed the computer code GERMINAL for studying fuel pin thermal and mechanical behaviour, both during steady-state and incidental conditions, up to high burn-up (25 at%). The first part of this paper is devoted to the description of the main models: fuel evolution (central hole and porosity evolution, Plutonium redistribution, O/M radial profile, transient gas swelling, melting fuel behaviour, minor actinides production), high burn-up models (fission gas, volatile fission products and JOG formation), fuel-cladding heat transfer, fuel-cladding mechanical interaction. The second part gives some examples of calculation results taken from the GERMINAL validation data base (more than 40 experiments from PHENIX, PFR, CABRI reactors), with special emphasis on: local fission gas retention and global release, fuel geometry evolution, radial redistribution of plutonium for high burn-up fuels, solid and annular fuel behaviour during power ramps including fuel melting, helium formation from MA (Am and Np) doped homogeneous fuels. (author)

  6. The evolving nuclear fuel cycle

    International Nuclear Information System (INIS)

    Gale, J.D.; Hanson, G.E.; Coleman, T.A.

    1993-01-01

    Various economics and political pressures have shaped the evolution of nuclear fuel cycles over the past 10 to 15 yr. Future trends will no doubt be similarly driven. This paper discusses the influences that long cycles, high discharge burnups, fuel reliability, and costs will have on the future nuclear cycle. Maintaining the economic viability of nuclear generation is a key issue facing many utilities. Nuclear fuel has been a tremendous bargain for utilities, helping to offset major increases in operation and maintenance (O ampersand M) expenses. An important factor in reducing O ampersand M costs is increasing capacity factor by eliminating outages

  7. Nuclear Fuel elements

    International Nuclear Information System (INIS)

    Hirakawa, Hiromasa.

    1979-01-01

    Purpose: To reduce the stress gradient resulted in the fuel can in fuel rods adapted to control the axial power distribution by the combination of fuel pellets having different linear power densities. Constitution: In a fuel rod comprising a first fuel pellet of a relatively low linear power density and a second fuel pellet of a relatively high linear power density, the second fuel pellet is cut at its both end faces by an amount corresponding to the heat expansion of the pellet due to the difference in the linear power density to the adjacent first fuel pellet. Thus, the second fuel pellet takes a smaller space than the first fuel pellet in the fuel can. This can reduce the stress produced in the portion of the fuel can corresponding to the boundary between the adjacent fuel pellets. (Kawakami, Y.)

  8. A comparative CFD investigation of helical wire-wrapped 7, 19 and 37 fuel pin bundles and its extendibility to 217 pin bundle

    International Nuclear Information System (INIS)

    Gajapathy, R.; Velusamy, K.; Selvaraj, P.; Chellapandi, P.; Chetal, S.C.

    2009-01-01

    Preliminary investigations of sodium flow and temperature distributions in heat generating fuel pin bundles with helical spacer wires have been carried out. Towards this, the 3D conservation equations of mass, momentum and energy have been solved using a commercial computational fluid dynamics (CFD) code. Turbulence has been accounted through the use of high Reynolds number version of standard k-ε model, with uniform mesh density respecting wall function requirements. The geometric details of the bundle and the heat flux in are similar to that of the Indian Prototype Fast Breeder Reactor (PFBR) that is currently under construction. The mixing characteristics of the flow among the peripheral and central zones are compared for 7, 19 and 37 fuel pin bundles and the characteristics are extended to a 217 pin bundle. The friction factors of the pin bundles obtained from the present study is seen to agree well with the values derived from experimental correlations. It is found that the normalized outlet velocities in the peripheral and central zones are nearly equal to 1.1-0.9, respectively which is in good agreement with the published hydraulic experimental measurements of 1.1-0.85 for a 91 pin bundle. The axial velocity is the maximum in the peripheral zone where spacer wires are located and minimum in the zones which are diametrically opposite to the respective zone of maximum velocity. The sodium temperature is higher in the zones where the flow area and mass flow rates are less due to the presence of the spacer wires though the axial velocity is higher there. It is the minimum in the peripheral zones where the circumferential flow is larger. Based on the flow and temperature distributions obtained for 19 and 37 pin bundles, a preliminary extrapolation procedure has been established for estimating the temperatures of peripheral and central zones of 217 pin bundle.

  9. Preparation of a thermal-hydraulic design method for driver core fuel pins of a new in-pile experimental reactor for FBR safety research

    International Nuclear Information System (INIS)

    Mizuno, Masahiro; Yamaguchi, Katsuhisa; Uto, Nariaki

    1999-07-01

    A design study of a new in-pile experimental reactor, SERAPH (Safety Engineering Reactor for Accident PHenomenology), for FBR safety research has progressed at JNC (Japan Nuclear Cycle Development Institute). SERAPH is intended for various in-pile experiments to be performed under quasi-steady state and various transient operation modes. In order to evaluate the driver core performance in conducting such experiments, clarify the relating design issues to be resolved and refine the experimental needs, it is indispensable to comprehend the allowable margin for the thermal-hydraulic fuel pin design since it largely affects the strategy for the driver core design. This report presents a thermal-hydraulic design method for the driver core fuel pins, which is a combination of a two-dimensional time-dependent heat transfer analysis code TAC-2D and a general non-linear finite-element structural analysis code FINAS. In TAC-2D, the allowable spatial mesh and the time step sizes are evaluated. The code is modified so as to treat time-dependent thermal properties, include an improved gap heat-transfer model and treat the change of intra-pin gap width under transient modes, for the purpose of improving the accuracy of evaluating heat transfer characteristics which gives a significant impact on the thermal-hydraulic design. As for FINAS, the number of element nodes and spatial meshes required to obtain adequate accuracy for the thermal stress characteristics of a fuel pellet during transient modes are investigated. In addition, post-processing tools are newly developed to process the calculation results obtained from these codes. The results of this work contribute to advancing the fuel pin design study for SERAPH as well with the investigation on the technique of manufacturing fuel pins. (author)

  10. Thorium in nuclear fuel

    International Nuclear Information System (INIS)

    Stankevicius, Alejandro

    2012-01-01

    We revise the advantages and possible problems on the use of thorium as a nuclear fuel instead of uranium. The following aspects are considered: 1) In the world there are three times more thorium than uranium 2) In spite that thorium in his natural form it is not a fisil, under neutron irradiation, is possible to transform it to uranium 233, a fisil of a high quality. 3) His ceramic oxides properties are superior to uranium or plutonium oxides. 4) During the irradiation the U 233 due to n,2n reaction produce small quantities of U 232 and his decay daughters' bismuth 212 and thallium 208 witch are strong gamma source. In turn thorium 228 and uranium 232 became, in time anti-proliferate due to there radiation intensity. 5) As it is described in here and experiments done in several countries reactors PHWR can be adapted to the use of thorium as a fuel element 6) As a problem we should mentioned that the different steps in the process must be done under strong radiation shielding and using only automatized equipment s (author)

  11. Development of end plug welding method in the fabrication of FBR fuel pins

    International Nuclear Information System (INIS)

    Ohtani, Seiji; Sawayama, Takeo; Tateishi, Yoshinori

    1977-01-01

    As a part of the development of the automatic and remote controlled fabrication of FBR fuel pins, welding of fuel pin end plugs has been examined. Cladding tubes and end plugs used for this experiment are made of SUS 316, and they are the components of fuel pins for the prototype fast breeder reactor (Monju) or the second core of Joyo (Joyo MK-II). The welding tests of cladding tubes and four kinds of end plugs were carried out by means of two techniques; tungsten inert gas welding and laser welding. It can be said that no considerable difference was observed in weld penetration, occurrence rate of weld defects and breaking strength between the tight fit and the loose fit plugs. The face-to-face fit welding requires the least welding heat input, but involves much difficulty in the control of weld penetration and bead zone diameter. The good concentrative property and high energy density of laser beam make the face of weld hollow due to the vaporization of weld metal. However, this problem can be easily solved by changing the shape of end plugs. Good results in the other characteristics of the weld also were obtained by this laser welding. Further experiment is needed in connection with the compatibility of weld metal with sodium and neutron irradiation before final judgement is made on the laser welding technique. (Nakai, Y.)

  12. Three-dimensional flow phenomena in a wire-wrapped 37-pin fuel bundle for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Ho; Yoo, Jin; Lee, Kwi Lim; Ha, Kwi Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-08-15

    Three-dimensional flow phenomena in a wire-wrapped 37-pin fuel assembly mock-up of a Japanese loop-type sodium-cooled fast reactor, Monju, were investigated with a numerical analysis using a general-purpose commercial computational fluid dynamics code, CFX. Complicated and vortical flow phenomena in the wire-wrapped 37-pin fuel assembly were captured by a Reynolds-averaged Navier-Stokes flow simulation using a shear stress transport turbulence model. The main purpose of the current study is to understand the three-dimensional complex flow phenomena in a wire-wrapped fuel assembly to support the license issue for the core design. Computational fluid dynamics results show good agreement with friction factor correlation models. The secondary flow in the corner and edge subchannels is much stronger than that in an interior subchannel. The axial velocity averaged in the corner and edge subchannels is higher than that averaged in the interior subchannels. Three-dimensional multiscale vortex structures start to be formed by an interaction between secondary flows around each wire-wrapped pin. Behavior of the large-scale vortex structures in the corner and edge subchannels is closely related to the relative position between the hexagonal duct wall and the helically wrapped wire spacer. The small-scale vortex is axially developed in the interior subchannels. Furthermore, a driving force on each wire spacer surface is closely related to the relative position between the hexagonal duct wall and the wire spacer.

  13. Fast breeder fuel pin bundle tests in the KNK II-reactor

    International Nuclear Information System (INIS)

    Haefner, H.E.; Bojarsky, E.

    1986-11-01

    Three variants of ring elements with test bundles will be reported in this paper: In a first step a ring element was built with a permanently integrated test bundle (19 carbide pins of the Karlsruhe reference concept) while the proven fuel element components have been largely maintained. This irradiation will be completed in autumn 1986 after 380 full power days of operation. The central topic of this paper will be the technique of reloadable ring elements with replaceable test bundles. A first experiment, TOAST, is in preparation. For this experiment, above all the components of the fuel element head and foot had to be newly developed and tested. A special version of double-walled replaceable test bundles to be used in the TETRA temperature transient experiments will be briefly mentioned. It is envisaged in these experiments to vary in a defined manner the coolant flow at remotely assembled test bundles consisting of 19 KNK pins each having undergone a high burnup and to use a measuring and control plug placed on the test bundle so that a variety of fuel pin temperature programs can be realized. Finally, some additional aspects of bundle design will be indicated. (orig./GL) [de

  14. Development of a numerical experimentation method for thermal hydraulics design and evaluation of high burn-up and innovative fuel pins

    International Nuclear Information System (INIS)

    Ninokata, Hisashi; Misawa, Takeharu; Baglietto, Emilio; Sorokin, A.P.; Maekawa, Isamu; Ohshima, Hiroyuki; Yamaguchi, Akira

    2003-03-01

    A method of large scale direct numerical simulation of turbulent flows in a high burn-up fuel pin bundle is proposed to evaluate wall shear stress and temperature distributions on the pin surfaces as well as detailed coolant velocity and temperature distributions inside subchannels under various thermal hydraulic conditions. This simulation is aimed at providing a tool to confirm margins to thermal hydraulics design limits of the nuclear fuels and at the same time to be used in design-by-analysis approaches. The method will facilitate thermal hydraulic design of high performance LMFR core fuels characterized by high burn-up, ultra long life, high reliable and safe performances, easiness of operation and maintenance, minimization of radio active wastes, without much relying on such empirical approach as hot spot factor and sub-factors, and above all the high cost mock up experiments. A pseudo direct numerical simulation of turbulence (DNS) code is developed, first on the Cartesian coordinates and then on the curvilinear boundary fit coordinates that enables us to reproduce thermal hydraulics phenomena in such a complicated flow channel as subchannels in a nuclear fuel pin assembly. The coordinate transformation is evaluated and demonstrated to yield correct physical quantities by carrying out computations and comparisons with experimental data with respect to the distributions of various physical quantities and turbulence statistics for fluid flow and heat transfers in various kinds of simple flow channel geometry. Then the boundary fitted pseudo DNS for flows inside an infinite pin array configuration is carried out and compared with available detailed experimental data. In parallel similar calculations are carried out using a commercial code STAR-CD to cross-check the DNS performances. As a results, the pseudo DNS showed reasonable comparisons with experiments as well as the STAR-CD results. Importance of the secondary flow influences is emphasized on the momentum

  15. British Nuclear Fuels (Warrington)

    International Nuclear Information System (INIS)

    Hoyle, D.; Cryer, B.; Bellotti, D.

    1992-01-01

    This adjournment debate is about British Nuclear Fuels plc and the 750 redundancies due to take place by the mid-1990s at BNFL, Risley. The debate was instigated by the Member of Parliament for Warrington, the constituency in which BNFL, Risley is situated. Other members pointed out that other industries, such as the textile industry are also suffering job losses due to the recession. However the MP for Warrington argued that the recent restructuring of BNFL restricted the financial flexibility of BNFL so that the benefits of contracts won for THORP at Sellafield could not help BNFL, Risley. The debate became more generally about training, apprentices and employment opportunities. The Parliamentary Under-Secretary of State for Energy explained the position as he saw it and said BNFL may be able to offer more help to its apprentices. Long- term employment prospects at BNFL are dependent on the future of the nuclear industry in general. The debate lasted about half an hour and is reported verbatim. (U.K)

  16. Spent fuels conditioning and irradiated nuclear fuel elements examination: the STAR facility and its abilities

    Energy Technology Data Exchange (ETDEWEB)

    Boussard, F.; Huillery, R. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d`Etudes des Combustibles; Averseng, J.L.; Serpantie, J.P. [Novatome Industries, 92 - Le Plessis-Robinson (France)

    1994-12-31

    This paper is a presentation of the STAR facility, a high activity laboratory located in Cadarache Nuclear Research Center (France). The purpose of the STAR facility and of the associated processes, is the treatment, cleaning and conditioning of spent fuels from Gas Cooled Reactors (GCR) and in particular of about 2300 spent GCR fuel cartridges irradiated more than 20 years ago in Electricite de France (EDF) or CEA Uranium Graphite GCR. The processes are: to separate the nuclear fuel from the clad remains, to chemically stabilize the nuclear material and to condition it in sealed canisters. An additional objective of STAR consists in non-destructive or destructive examinations and tests on PWR rods or FBR pins in the frame of fuel development programs. The paper describes the STAR facility conceptual design (safety design rules, hot cells..) and the different options corresponding to the GCR reconditioning process and to further research and development works on various fuel types. (J.S.). 3 figs.

  17. Spent fuels conditioning and irradiated nuclear fuel elements examination: the STAR facility and its abilities

    International Nuclear Information System (INIS)

    Boussard, F.; Huillery, R.

    1994-01-01

    This paper is a presentation of the STAR facility, a high activity laboratory located in Cadarache Nuclear Research Center (France). The purpose of the STAR facility and of the associated processes, is the treatment, cleaning and conditioning of spent fuels from Gas Cooled Reactors (GCR) and in particular of about 2300 spent GCR fuel cartridges irradiated more than 20 years ago in Electricite de France (EDF) or CEA Uranium Graphite GCR. The processes are: to separate the nuclear fuel from the clad remains, to chemically stabilize the nuclear material and to condition it in sealed canisters. An additional objective of STAR consists in non-destructive or destructive examinations and tests on PWR rods or FBR pins in the frame of fuel development programs. The paper describes the STAR facility conceptual design (safety design rules, hot cells..) and the different options corresponding to the GCR reconditioning process and to further research and development works on various fuel types. (J.S.). 3 figs

  18. UO2-PuO2 fuel pin capsule-irradiations of the test series FR 2-5a

    International Nuclear Information System (INIS)

    Dienst, W.; Goetzmann, O.; Schulz, B.

    1975-06-01

    In the capsule-irradiation test series FR 2-5a, short UO 2 -PuO 2 fuel pins (80 mm fuel length) of 7 mm diameter were irradiated in a thermal neutron flux at mean rod powers of 400 - 450 W/cm and mean cladding surface temperatures of 500 - 550 0 C to burnups of 0.6, 1.8 and 5.0 at% (U + Pu). Void volume redistribution in the fuel pins was examined in micrographs of cross-sections by measuring crack widths, central void diameters, and fuel porosity. The width of the radial cracks at the outer fuel rim was taken as a basis for measuring the irradiation-induced densification of the UO 2 -PuO 2 fuel. The result was that the final fuel density after irradiation-induced densification amounted to 92 - 94% TD and had already been reached after 0.6 at% burnup. The porosity measurement on fuel cross-sections was to show a possible dependence of the radial porosity redistribution on the initial sintered density. Examining the fuel pin diameters after irradiation showed permanent cladding strains after 5 at% burnup, which must be due to mechanical interaction with the fuel. To judge if the chemical compatibility between the fuel and the cladding of Cr-Ni-stainless steel 1.4988, the depths of chemical attack on the cladding inside was measured by micrographs of fuel pin cross-sections. (orig./GSC) [de

  19. Fuel pin transient behavior technology applied to safety analyses. Presentation to AEC Regulatory Staff 4th Regulatory Briefing on safety technology, Washington, D.C., November 19--20, 1974

    International Nuclear Information System (INIS)

    1974-11-01

    Information is presented concerning LMFBR fuel pin performance requirements and evaluation; fuels behavior codes with safety interfaces; performance evaluations; ex-reactor materials and simulation tests; models for fuel pin failure; and summary of continuing fuels technology tasks. (DCC)

  20. A device for supporting a pin bundle in a nuclear reactor assembly casing

    International Nuclear Information System (INIS)

    Marmonier, Pierre; Mesnage, Bernard; Teulon, Jean; Vayra, Jean; Venobre, Henri.

    1974-01-01

    Description is given of a device for supporting a pin-bundle in a nuclear reactor assembly casing. That device comprises a member coaxially mounted at the bottom of the vertically mounted casing, adapted to support a plurality of parallel rails along whose edges slide grooves made in the pin-plugs. It is characterized in that said supporting member is provided with a lateral groove open toward its periphery, cooperating with clamping-lugs that form extensions of the rail-sides and comprise an inwardly directed portion adapted to be engaged in the groove. This can be applied to fast neutron nuclear reactors [fr

  1. Nuclear fuel tax in court

    International Nuclear Information System (INIS)

    Leidinger, Tobias

    2014-01-01

    Besides the 'Nuclear Energy Moratorium' (temporary shutdown of eight nuclear power plants after the Fukushima incident) and the legally decreed 'Nuclear Energy Phase-Out' (by the 13th AtG-amendment), also the legality of the nuclear fuel tax is being challenged in court. After receiving urgent legal proposals from 5 nuclear power plant operators, the Hamburg fiscal court (4V 154/13) temporarily obliged on 14 April 2014 respective main customs offices through 27 decisions to reimburse 2.2 b. Euro nuclear fuel tax to the operating companies. In all respects a remarkable process. It is not in favour of cleverness to impose a political target even accepting immense constitutional and union law risks. Taxation 'at any price' is neither a statement of state sovereignty nor one for a sound fiscal policy. Early and serious warnings of constitutional experts and specialists in the field of tax law with regard to the nuclear fuel tax were not lacking. (orig.)

  2. The investigation of fast reactor fuel pin start up behaviour in the irradiation experiment DUELL II

    International Nuclear Information System (INIS)

    Freund, D.; Geithoff, D.

    1988-04-01

    The irradiation experiments DUELL-II within the SNR-300 operational Transient Experimental Program deal with the investigation of fresh mixed oxide fuel behaviour at start-up. The irradiation has been carried out in the HFR Petten in four so-called DUELL capsules with two fuel pin samples each. The fuel pins with a total length of 453 mm contained a fuel column of 150 mm length, consisting of high dense (U,Pu)O 2-x fuel with an initial porosity of 4%, a Pu-content of 20.9%, and an O/Me ratio of 1.96. The fuel pellet diameter was 6.37 mm, the outer diameter of the SS cladding, material No. 1.4970, was 7.6 mm. The irradiation included four phases, consisting of preconditioning at 85% nominal power (corresponds to 550 W/cm), a following increase to full power, and two following full power periods of 1 and 10 days, respectively. Post irradiation examination showed incomplete fuel restructuring in the first capsules with central void diameters of 800 μm in the hot plane, complete restructuring in the last capsule, leading to central voids of approximately 1 mm diameter. The residual gaps between fuel and clad varied between 25 and 44 μm. The clad inner surface did not show any corrosion attack. The analysis of fuel restructuring has been carried out with the computer code SATURN-S showing good agreement with the PIE results. The analysis led to a series of model improvements, especially for crack volume and relocation modelling. (orig./GL) [de

  3. A thermodynamic model for the attack behaviour in stainless steel clad oxide fuel pins

    International Nuclear Information System (INIS)

    Goetzmann, O.

    1979-01-01

    So far, post irradiation examination of burnt fuel pins has not revealed a clear cut picture of the cladding attack situation. For seemingly same conditions sometimes attack occurs, sometimes not. This model tries to depict the reaction possibilities along the inner cladding wall on the basis of thermodynamic facts in the fuel pin. It shows how the thermodynamic driving force for attack changes along the fuel column, and with different initial and operational conditions. Two criteria for attack are postulated: attack as a result of the direct reaction of reactive elements with cladding components; and attack as a result of the action of a special agent (CsOH). In defining a reaction potenial the oxygen potential, the temperature conditions (cladding temperature and fuel surface temperature), and the fission products are involved. For the determination of the oxygen potential at the cladding, three models for the redistribution of oxygen across the fuel/clad gap are offered. The effect of various parameters, like rod power, gap conductance, oxygen potential, inner wall temperature, on the thermodynamic potential for attack is analysed. (Auth.)

  4. The velocity dependent dissolution of spent nuclear fuel in a geologic repository

    International Nuclear Information System (INIS)

    Nutt, W.M.

    1990-02-01

    A model describing the dissolution of fission products and transuranic isotopes from spent nuclear fuel into flowing ground water has been developed. This model is divided into two parts. The first part of the model calculates the temperature within a consolidated spent fuel waste form at a given time and ground water velocity. This model was used to investigate whether water flowing at rates representative of a geological repository located at Yucca Mountain, Nevada, will cool a wasteform consisting of consolidated spent nuclear fuel pins. Time and velocity dependent temperature profiles were generated. These profiles were input into the second model, which calculates the dissolution rate of waste isotopes from a spent fuel pin. Two dissolution limiting processes were modeled; the processes are dissolution limited by the solubility limit of an isotopes in the ground water, and dissolution limited by the diffusion of waste isotopes from the interior of a spent fuel pin to the surface where dissolution can occur

  5. Post-irradiation examination of fifteen UO2/PuO2-fuel pins from the experiment DFR-350

    International Nuclear Information System (INIS)

    Geithoff, D.

    1975-06-01

    Within the framework of the fuel pin development for a sodium-cooled fast reactor a subassembly containing 77 fuel pins has been irradiated up to 5.65% fima in the Dounreay fast reactor. The pins were prototypes in terms of fuel and cladding material. The fuel consisted of mechanically mixed UO 2 (80%) and PuO 2 (20%) pressed into pellets whereas austenitic steels (W.-No. 1,4961 and 1,4988) were used as cladding material. Furthermore a blanket column of UO 2 pellets and a gas plenum were incorporated in the pin. For irradiation the conditions in a fast breeder were simulated by a linear rod power of 450 W/cm and a maximum cladding temperature of 630 0 C. After the successful completion of the irradiation, the subassembly was dismantled and fifteen pins were selected for a nondestructive and destructive examination. The tests included visual control, measurement of external dimensions, γ-spectroscopy, X-ray radiography, fission gas measurement, ceramography, radiochemical burn-up measurement. The results are presented. The most important results of the examinations seem to be the migration of fission product cesium and the fact that no signs of impending pin failure have been found. Thus the pin specification tested in this experiment is capable of achieving higher burnups under the irradiation conditions described above. (orig./AK) [de

  6. Encapsulation of spent nuclear fuel in ceramic materials

    International Nuclear Information System (INIS)

    Forberg, S.; Westermark, T.

    1983-03-01

    The international situation with regard to deposition of spent nuclear fuel is surveyed, with emphasis on encapsulation in ceramic materials. The feasibility and advantages of ceramic containers, thermodynamic stable in groundwater, are discussed as well as the possibility to ensure that stability for longevity by engineered measures. The design prerequisite are summarized and suggestions are made for a conceptual design, comprising rutile containers with stacks of coiled fuel pins. A novel technique is suggested for the homogeneous sealing of rutile containers at low temperatures. acceptable also for the fuel pin package. Key points are given for research, demonstration and verifications of the design foundations and for future improvements. Of which a few ideas are exemplified. (author)

  7. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  8. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    2014-01-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100 th nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U 3 O 8 were replaced by U 3 Si 2 -based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to fulfill its mission that is

  9. Design, fabrication, and operation of capsules for the irradiation testing of candidate advanced space reactor fuel pins

    International Nuclear Information System (INIS)

    Thoms, K.R.

    1975-04-01

    Fuel irradiation experiments were designed, built, and operated to test uranium mononitride (UN) fuel clad in tungsten-lined T-111 (Ta-8 percent W-2 percent Hf) and uranium dioxide (UO 2 ) fuel clad in both tungsten-lined T-111 and tungsten-lined Nb-1 percent Zr. A total of nine fuel pins was irradiated (four containing porous UN, two containing dense, nonporous UN, and three containing dense UO 2 ) at average cladding temperatures ranging from 931 to 1015 0 C. The UN experiments, capsules UN-4 and -5, operated for 10,480 and 10,037 hr, respectively, at an average linear heat generation rate of 10 kW/ft. The UO 2 experiment, capsule UN-6, operated for 8333 hr at an average linear heat generation rate of approximately 5 kW/ft. Following irradiation, the nine fuel pins were removed from their capsules, externally examined, and sent to the NASA Plum Brook Facility for more detailed postirradiation examination. During visual examination, it was discovered that the cladding of the fuel pin containing dense UN in each of capsules UN-4 and -5 had failed, exposing the UN fuel to the NaK in which the pins were submerged and permitting the release of fission gas from the failed pins. A rough analysis of the fission gas seen in samples of the gas in the fuel pin region indicated fission gas release-to-birth rates from these fuel pins in the range of 10 -5 . (U.S.)

  10. Innovate pin design for Sphere-pac fuel in sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Pouchon, Manuel A.; Niceno, Bojan; Krepel, Jiri

    2011-01-01

    The paper discusses a new fuel element type, which combines a particle fuel concept, the Sphere-pac, with a new pin design which features internal cooling. Particle fuels are auspicious when considering a closed fuel cycle, where minor actinide containing fuels must be fabricated. The principle advantage lies in their production simplicity with much less maintenance intensive mechanical devices. Furthermore the Sphere-pac is usually produced by a wet and therefore powder-less route. Therefore the implementation in a remotely controlled and heavily shielded environment becomes easier to realize. Besides the advantages in the production process, the Sphere-pac bears one important disadvantage: the lower thermal conductivity of the particle arrangement, and the therefore higher peak temperatures in the fuel. Consequently a new fuel design is suggested in this paper. It offers an internal cooling channel and therefore smaller maximal fuel distances to the coolant. As the concept is new, the most important aspects are studied; these are the neutronics, the temperature profile in the fuel plus thermal-hydraulics aspects. (author)

  11. SIEX3: A correlated computer code for prediction of fast reactor mixed oxide fuel and blanket pin performance

    International Nuclear Information System (INIS)

    Baker, R.B.; Wilson, D.R.

    1986-04-01

    The SIEX3 computer program was developed to calculate the fuel and cladding performance of oxide fuel and oxide blanket pins irradiated in the fast neutron environment of a liquid metal cooled reactor. The code is uniquely designed to be accurate yet quick running and use a minimum of computer core storage. This was accomplished through the correlation of physically based models to very large data bases of irradiation test results. Data from over 200 fuel pins and over 800 transverse fuel microscopy samples were used in the calibrations

  12. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Kidd, S.

    2008-01-01

    The closed fuel cycle is the most sustainable approach for nuclear energy, as it reduces recourse to natural uranium resources and optimises waste management. The advantages and disadvantages of used nuclear fuel reprocessing have been debated since the dawn of the nuclear era. There is a range of issues involved, notably the sound management of wastes, the conservation of resources, economics, hazards of radioactive materials and potential proliferation of nuclear weapons. In recent years, the reprocessing advocates win, demonstrated by the apparent change in position of the USA under the Global Nuclear Energy Partnership (GNEP) program. A great deal of reprocessing has been going on since the fourties, originally for military purposes, to recover plutonium for weapons. So far, some 80000 tonnes of used fuel from commercial power reactors has been reprocessed. The article indicates the reprocessing activities and plants in the United Kigdom, France, India, Russia and USA. The aspect of plutonium that raises the ire of nuclear opponents is its alleged proliferation risk. Opponents of the use of MOX fuels state that such fuels represent a proliferation risk because the plutonium in the fuel is said to be 'weapon-use-able'. The reprocessing of used fuel should not give rise to any particular public concern and offers a number of potential benefits in terms of optimising both the use of natural resources and waste management.

  13. Laser pulse heating of nuclear fuels for simulation of reactor power ...

    Indian Academy of Sciences (India)

    As a prelude to work on irradiated nuclear fuel specimens, pilot studies on ... But facilities for making such fuel pins, and carrying out test irradiations for the .... To graduate to a complete simulation set-up, the following are needed: (a) A means.

  14. Nuclear fuel storage

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1979-01-01

    A method and apparatus for the storage of fuel in a stainless steel egg crate structure within a storage pool are described. Fuel is initially stored in a checkerboard pattern or in each opening if the fuel is of low enrichment. Additional fuel (or fuel of higher enrichment) is later stored by adding stainless steel angled plates within each opening, thereby forming flux traps between the openings. Still higher enrichment fuel is later stored by adding poison plates either with or without the stainless steel angles. 8 claims

  15. Transportation of spent nuclear fuels

    International Nuclear Information System (INIS)

    Meguro, Toshiichi

    1976-01-01

    The spent nuclear fuel taken out of reactors is cooled in the cooling pool in each power station for a definite time, then transported to a reprocessing plant. At present, there is no reprocessing plant in Japan, therefore the spent nuclear fuel is shipped abroad. In this paper, the experiences and the present situation in Japan are described on the transport of the spent nuclear fuel from light water reactors, centering around the works in Tsuruga Power Station, Japan Atomic Power Co. The spent nuclear fuel in Tsuruga Power Station was first transported in Apr. 1973, and since then, about 36 tons were shipped to Britain by 5 times of transport. The reprocessing plant in Japan is expected to start operation in Apr. 1977, accordingly the spent nuclear fuel used for the trial will be transported in Japan in the latter half of this year. Among the permission and approval required for the transport of spent nuclear fuel, the acquisition of the certificate for transport casks and the approval of land and sea transports are main tasks. The relevant laws are the law concerning the regulations of nuclear raw material, nuclear fuel and reactors and the law concerning the safety of ships. The casks used in Tsuruga Power Station and EXL III type, and the charging of spent nuclear fuel, the decontamination of the casks, the leak test, land transport with a self-running vehicle, loading on board an exclusive carrier and sea transport are briefly explained. The casks and the ship for domestic transport are being prepared. (Kato, I.)

  16. Carbon deposition on 20/25/Nb steel using an electrically heated AGR fuel pin

    International Nuclear Information System (INIS)

    Blanchard, A.; Campion, P.

    1980-01-01

    The radiolysis of carbon dioxide in gas-cooled reactors leads to the production of active species capable of reacting with the graphite moderator to form carbon monoxide with a resultant gradual loss of moderator. In the early days of gas-cooled reactor design, the intention was to allow the carbon monoxide concentration to increase and use this reaction product to inhibit the initial radiolysis of the carbon dioxide. Exploratory irradiation experiments using 4 to 7% carbon monoxide revealed that low density deposits ranging in colour from light grey through brown to black were found in the temperature range 470 to 600 K. In view of the fact that this type of deposition could adversely affect heat transfer processes in both fuel channels and heat exchangers, together with the fact that carbon monoxide was not sufficiently powerful as a graphite oxidation inhibitor, methane was selected as the primary inhibitor for the AGR series of power stations. This paper describes some carbon deposition experiments using an electrically heated 'dummy fuel element' linked to a recirculating carbon dioxide irradiation loop in which carbon monoxide concentration, methane concentration, fuel pin temperature and the chemical nature of the fuel pin surface were varied. (author)

  17. Investigation of velocity distribution in an inner subchannel of wire wrapped fuel pin bundle of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Nishimura, Masahiro; Kamide, Hideki; Ohshima, Hiroyuki; Kobayashi, Jun; Sato, Hiroyuki

    2011-01-01

    A sodium cooled fast reactor is designed to attain a high burn-up of core fuel in commercialized fast reactor cycle systems. In high burn-up fuel subassemblies, deformation of fuel pin due to the swelling and thermal bowing may decrease local flow velocity via change of flow area in the subassembly and influence the heat removal capability. Therefore, it is important to obtain the detail of flow velocity distribution in a wire wrapped pin bundle. In this study, water experiments were carried out to investigate the detailed velocity distribution in a subchannel of nominal pin geometry as the first step. These basic data are not only useful for understanding of pin bundle thermal hydraulics but also a code validation. A wire-wrapped 3-pin bundle water model was applied to investigate the detailed velocity distribution in the subchannel which is surrounded by 3 pins with wrapping wire. The test section consists of an irregular hexagonal acrylic duct tube and three pins made of fluorinated resin pins which has nearly the same refractive index with that of water and a high light transmission rate. This enables to visualize the central subchannel through the pins. The velocity distribution in the central subchannel with the wrapping wire was measured by PIV (Particle Image Velocimetry) through a side wall of the duct tube. Typical flow velocity conditions in the pin bundle were 0.36m/s (Re=2,700) and 1.6m/s (Re=13,500). Influence of the wrapping wire on the velocity distributions in vertical and horizontal directions was confirmed. A clockwise swirl flow around the wire was found in subchannel. Significant differences were not recognized between the two cases of Re=2,700 and 13,500 concerning flow patterns. (author)

  18. Quality assurance of nuclear fuel

    International Nuclear Information System (INIS)

    1994-01-01

    The guide presents the quality assurance requirements to be completed with in the procurement, design, manufacture, transport, handling and operation of the nuclear fuel. The guide also applies to the procurement of the control rods and the shield elements to be placed in the reactor. The guide is mainly aimed for the licensee responsible for the procurement and operation of fuel, for the fuel designer and manufacturer and for other organizations whose activities affect fuel quality, the safety of fuel transport, storage and operation. (2 refs.)

  19. Performance evaluation of CPF shredder type mechanical crusher with simulated core fuel pin

    International Nuclear Information System (INIS)

    Nakahara, Masaumi; Sano, Yuichi; Aose, Shin-ichi

    2006-12-01

    In the advanced aqueous reprocessing system, powder fuel dissolution has been investigated, which is quite effective on the dissolution for highly concentrated solution. As one of the effective means that powder the irradiated MOX fuel, we have been developing shredder type mechanical crusher. This apparatus can automatically crush the sheared fuel pieces by twin-shaft disk blades, powder the crushed fragments by disk blades and screen blade, and recover the powdered fuel. The shredder type mechanical crusher was developed for using in a hot cell in Chemical Processing Facility, and the first crush experiment with this crusher was carried out at July 2004 using the simulated core fuel pin. This experiment showed that the crushed fragments could not be grinded efficiency because screen blade vibrated up and down during the operation. Additionally, the strength of screen blade block was insufficient to crush the sheared fuel pieces stably. Therefore, about 70% of fuel was recovered in maximum. Based on the results of the first experiment, screen blade was fixed up mainly and the second experiment was carried out with improved apparatus at September 2005. In this experiment, about 96% of fuel could be recovered in maximum because screen blade was stable during the operation. (J.P.N.)

  20. Nuclear Fuel Cycle & Vulnerabilities

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Brian D. [Los Alamos National Laboratory

    2012-06-18

    The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

  1. Prediction of the Long Term Cooling Performance for the 3-Pin Fuel Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, H. R

    2005-12-15

    In the long term cooling phase that the emergency cooling water injection ends, the performance of the residual heat removal for the 3-pin fuel test loop has been predicted by a simplified heat transfer model. In the long term cooling phase the residual heat is 1323W for PWR fuel test mode and 1449W for CANDU fuel test mode. The each residual heat is assumed as 2% of the fission power of the test fuel used in the anticipated operational occurrence and design basis accident analyses. The each fission power used for the analyses is 105% of the rated fission power in the normal operation. In the long term cooling phase the residual heat is removed to the HANARO pool through the double pressure vessels of the in-pile test section. Saturate pooling boiling is assumed on the test fuel and condensation heat transfer is expected on the inner wall of the fuel carrier and the flow divider. Natural convection heat transfer on a heated vertical wall is also assumed on the outer wall of the outer pressure vessel. The conduction heat transfer is only considered in the gap between the double pressure vessels charged with neon gas and in the downcomer filled with coolant. The heat transfer rate between the coolant temperature of 152 .deg. C in the in-pile test section and the water temperature of 45 .deg. C in the HANARO pool is predicted as about 1666W. The 152 .deg. C is the saturate temperature of the coolant pressure predicted from the MARS code. The cooling capacity of 1666W is greater than the residual heats of 1323W and 1449W. Consequently the long term cooling performance of the 3-pin fuel test loop is sufficient for the anticipated operational occurrences and design basis accidents.

  2. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Tomihiro.

    1970-01-01

    The present invention relates to fuel assemblies employing wire wrap spacers for retaining uniform spatial distribution between fuel elements. Clad fuel elements are helically wound in the oxial direction with a wave-formed wire strand. The strand is therefore provided with spring action which permits the fuel elements to expand freely in the axial and radial directions so as to retain proper spacing and reduce stresses due to thermal deformation. (Ownes, K.J.)

  3. Tracking of fuel particles after pin failure in nominal, loss-of-flow and shutdown conditions in the MYRRHA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, Sophia; Planquart, Philippe [von Karman Institute, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse (Belgium); Van Tichelen, Katrien [SCK- CEN, Boeretang 200, 2400 Mol (Belgium)

    2017-02-15

    Highlights: • Quantification of the design and safety of the MYRRHA reactor in the event of a pin failure. • Simulation of different accident scenarios in both forced and natural convection regime. • The accumulation areas at the free-surface in case of the least dense particles depend on the flow regime. • The densest particles form an important deposit at the bottom of the vessel. • Further study of the risk of core blockage requires a detailed model of the core. - Abstract: This work on fuel dispersion aims at quantifying the design and safety of the MYRRHA nuclear reactor. A number of accidents leading to the release of a secondary phase into the primary coolant loop are investigated. Among these scenarios, an incident leading to the failure of one or more of the fuel pins is simulated while the reactor is operating in nominal conditions, but also in natural convection regime either during accident transients such as loss-of-flow or during the normal shut-down of the reactor. Two single-phase CFD models of the MYRRHA reactor are constructed in ANSYS Fluent to represent the reactor in nominal and natural convection conditions. An Euler–Lagrange approach with one-way coupling is used for the flow and particle tracking. Firstly, a steady state RANS solution is obtained for each of the three conditions. Secondly, the particles are released downstream from the core outlet and particle distributions are provided over the coolant circuit. Their size and density are defined such that test cases represent potential extremes that may occur. Analysis of the results highlights different particle behaviors, depending essentially on gravity forces and kinematic effects. Statistical distributions highlight potential accumulation regions that may form at the free-surfaces, on top of the upper diaphragm plate or at the bottom of the vessel. These results help to localize regions of fuel accumulation in order to provide insight for development of strategies for

  4. Fuel pin behavior under slow ramp-type transient-overpower conditions in the CABRI-FAST experiments

    International Nuclear Information System (INIS)

    Fukano, Yoshitaka; Onoda, Yuichi; Sato, Ikken; Charpenel, Jean

    2009-01-01

    In the CABRI-FAST experimental program, four in-pile tests were performed with slow power-ramp-type transient-overpower conditions (called hereafter as 'slow TOP') to study transient fuel pin behavior under inadvertent control rod withdrawal events in liquid metal cooled fast breeder reactors. Annular-pellet fuel pins were used in three tests, while a solid-pellet fuel pin was used in the other test. All of these pins were pre-irradiated in Phenix. The slow TOP test with a solid-pellet fuel pin was realized as a comparatory test against an existing test (E12) in the CABRI-2 program. In the CABRI-FAST test (BCF1), a power ramp rate of 3% Po/s was applied, while in the CABRI-2 test, 1% Po/s was adopted. Moreover, overpower condition was maintained for a few seconds beyond the observed pin failure in the BCF1 test. In spite of the different power ramp rates, evaluated fuel thermal conditions at the observed failure time are quite similar. The continued overpower condition in the BCF1 test resulted in gradual degradation of the pin structure providing information effective for evaluation of various accident scenarios. Three slow TOP tests with the annular fuel in the CABRI-FAST program resulted in no pin failure showing high failure threshold. Based on post-test examination data and a theoretical evaluation, it was concluded that intra-pin free spaces, such as central hole, macroscopic cracks and fuel-cladding gap effectively mitigated fuel cladding mechanical interaction. It was also clarified that cavity pressurization became effective only in case of very large amount of fuel melting. Furthermore, such cavity pressurization was effectively mitigated by a molten-fuel squirting into the upper blanket region pushing the blanket pellets upward. These CABRI FAST slow TOP tests, in combination with the existing CABRI and TREAT tests, provided an extended slow TOP test database with various fuel and transient conditions. (author)

  5. Nuclear fuel rod loading apparatus

    International Nuclear Information System (INIS)

    King, H.B.; Macivergan, R.; Mckenzie, G.W.

    1980-01-01

    An apparatus incorporating a microprocessor control is provided for automatically loading nuclear fuel pellets into fuel rods commonly used in nuclear reactor cores. The apparatus comprises a split ''v'' trough for assembling segments of fuel pellets in rows and a shuttle to receive the fuel pellets from the split ''v'' trough when the two sides of the split ''v'' trough are opened. The pellets are weighed while in the shuttle, and the shuttle then moves the pellets into alignment with a fuel rod. A guide bushing is provided to assist the transfer of the pellets into the fuel rod. A rod carousel which holds a plurality of fuel rods presents the proper rod to the guide bushing at the appropriate stage in the loading sequence. The bushing advances to engage the fuel rod, and the shuttle advances to engage the guide bushing. The pellets are then loaded into the fuel rod by a motor operated push rod. The guide bushing includes a photocell utilized in conjunction with the push rod to measure the length of the row of fuel pellets inserted in the fuel rod

  6. Spent Nuclear Fuel project, project management plan

    International Nuclear Information System (INIS)

    Fuquay, B.J.

    1995-01-01

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  7. IAEA activities on nuclear fuel cycle 1997

    International Nuclear Information System (INIS)

    Oi, N.

    1997-01-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme

  8. IAEA activities on nuclear fuel cycle 1997

    Energy Technology Data Exchange (ETDEWEB)

    Oi, N [International Atomic Energy Agency, Vienna (Austria). Nuclear Fuel Cycle and Materials Section

    1997-12-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme.

  9. Alternatives for nuclear fuel disposal

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Badillo A, V.; Palacios H, J.; Celis del Angel, L.

    2010-10-01

    The spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments in the construction of repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution? or, What is the best technology for a specific solution? Many countries have deferred the decision on selecting an option, while other works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However, currently is under process an extended power up rate to 20% of their original power and also there are plans to extend operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. So this work describes some different alternatives that have been studied in Mexico to define which will be the best alternative to follow. (Author)

  10. Nuclear Fuel in Cofrentes NPP

    International Nuclear Information System (INIS)

    2002-01-01

    Fuel is an essential in the nuclear power generating business because of its direct implications on safety, generating costs and the operating conditions and limitations of the facility. Fuel management in Cofrentes NPP has been targeted at optimized operation, enhanced reliability and the search for an in-depth knowledge of the design and licensing processes that will provide Iberdrola,as the responsible operator, with access to independent control of safety aspects related to fuel and free access to manufacturing markets. (Author)

  11. Conditioning of nuclear reactor fuel

    International Nuclear Information System (INIS)

    1975-01-01

    A method of conditioning the fuel of a nuclear reactor core to minimize failure of the fuel cladding comprising increasing the fuel rod power to a desired maximum power level at a rate below a critical rate which would cause cladding damage is given. Such conditioning allows subsequent freedom of power changes below and up to said maximum power level with minimized danger of cladding damage. (Auth.)

  12. UO2 - Zr chemical interaction of PHWR fuel pins under high temperature

    International Nuclear Information System (INIS)

    Majumdar, P.; Mukhopadhyay, D.; Gupta, S.K.

    2001-01-01

    At high temperature Zircaloy clad interacts with the UO 2 fuel as well as with the steam to produce oxide layer of a-Zr(O) and ZrO 2 . This layer formation significantly reduces the structural strength of the clad. A computer code SFDCPA/MOD1 has been developed to simulate the interaction and predict the oxide layer thickness for any accidental transient condition. It is well validated with published experimental data on the isothermal and transient temperature condition. The program is applied to Indian Pressurized Heavy Water Reactor (PHWR) fuel pin under certain severe transient condition where it experiences temperature above 1000 C. The study gives an idea of the un-oxidized thickness of Zircaloy, which is an important criterion for fuel integrity. (author)

  13. Fuel pin failure root causes and power distribution gradients in WWER cores

    International Nuclear Information System (INIS)

    Mikus, J.

    2008-01-01

    The purpose of this work is to investigate the influence of some core heterogeneities and reactor construction materials on space power distribution in WWER type cores, especially from viewpoint of the values and gradient occurrence that could result in static loads with some consequences, e.g., fuel pin (FP) or fuel assembly (FA) bowing and possible contribution to the FP failure root causes. Presented information were obtained by means of experiments on research reactor LR-0 concerning the: 1) Power distribution estimation on pellet surface of the FPs neighbouring a FP containing gadolinium (Gd 2 O 3 ) burnable absorber integrated into fuel in WWER-440 and -1000 type cores; 2) Power distribution measurement in periphery FAs neighbouring the baffle in WWER-1000 type cores and 3) Power distribution in FAs neighbouring the control rod absorbing part in a WWER-440 type core. (author)

  14. Nuclear fuel pellet loading machine

    International Nuclear Information System (INIS)

    Dazen, J.R.; Denero, J.V.

    1976-01-01

    A nuclear fuel pellet loading machine is described including an inclined rack mounted on a base and having parallel spaced grooves on its upper surface arranged to support fuel rods. A fuel pellet tray is adapted to be placed on a table spaced from the rack, the tray having columns of fuel pellets which are in alignment with the open ends of fuel rods located in the rack grooves. A transition plate is mounted between the fuel rod rack and the fuel pellet tray to receive and guide the pellets into the open ends of the fuel rods. The pellets are pushed into the fuel rods by a number of mechanical fingers mounted on a motor operated block which is moved along the pellet tray length by a drive screw driven by the motor. To facilitate movement of the pellets in the fuel rods the rack is mounted on a number of spaced vibrators which vibrate the fuel rods during fuel pellet insertion. A pellet sensing device movable into an end of each fuel rod indicates to an operator when each rod has been charged with the correct number of pellets

  15. Nuclear power and its fuel cycle

    International Nuclear Information System (INIS)

    Wymer, R.G.

    1986-01-01

    A series of viewgraphs describes the nuclear fuel cycle and nuclear power, covering reactor types, sources of uranium, enrichment of uranium, fuel fabrication, transportation, fuel reprocessing, and radioactive wastes

  16. Computational and experimental analysis of causes for local deformation of research reactor U-Mo fuel pin claddings in case of high burn-ups

    International Nuclear Information System (INIS)

    Popov, V.V.; Khmelevsky, M.Ya.; Lukichev, V.A.; Golosov, O.A.

    2005-01-01

    Post-reactor investigations of (U-Mo) fuel pins irradiated in the IVV-2M reactor have allowed to determine: the change in a fuel pin volume; the dimensions and the kind of the local deformation of fuel pin claddings; the amount of gases released under the cladding from the fuel composition, the thickness and appearance of the interaction layer of between the (U-Mo) particles and aluminium as a matrix material. The computational analysis of the stressed-strained state of fuel pins has shown that the major contribution to the increase of the fuel pin volume is made by the fuel swelling caused by the solid products of fission being formed in the process of operation. The emergence of the (U-Mo) fuel-aluminium matrix interaction layers around the (U-Mo) particles results in formation and evolution of lamination cavities inside the fuel composition under the joint action of the pressure of process gases and gaseous fission products. In case of high burn-up a local bulge of a fuel pin cladding is being formed in the fuel lamination area caused by the pressure of gases in the presence of creep in the fuel pin cladding material. The computational results relating to the local strain in a research reactor (U-Mo) fuel pin are in a good accordance with the results of the post-reactor investigations. (author)

  17. Establishment of technological basis for fabrication of U-Pu-Zr ternary alloy fuel pins for irradiation tests in Japan

    International Nuclear Information System (INIS)

    Kikuchi, Hironobu; Iwai, Takashi; Nakajima, Kunihisa; Arai, Yasuo; Nakamura, Kinya; Ogata, Takanari

    2011-01-01

    A high-purity Ar gas atmosphere glove box accommodating injection casting and sodium-bonding apparatuses was newly installed in the Plutonium Fuel Research Facility of Oarai Research and Development Center, Japan Atomic Energy Agency, in which several nitride and carbide fuel pins were fabricated for irradiation tests. The experiences led to the establishment of the technological basis of the fabrication of U-Pu-Zr alloy fuel pins for the first time in Japan. After the injection casting of the U-Pu-Zr alloy, the metallic fuel pins were fabricated by welding upper and lower end plugs with cladding tubes of ferritic-martensitic steel. Subsequent to the sodium bonding for filling the annular gap region between the U-Pu-Zr alloy and the cladding tube with the melted sodium, the fuel pins for irradiation tests are inspected. This paper shows the apparatuses and the technological basis for the fabrication of U-Pu-Zr alloy fuel pins for the irradiation test planned at the experimental fast test reactor Joyo. (author)

  18. Nuclear fuels and development of nuclear fuel elements

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Mannan, S.L.

    1989-01-01

    Safe, reliable and economic operation of nuclear fission reactors, the source of nuclear power at present, requires judicious choice, careful preparation and specialised fabrication procedures for fuels and fuel element structural materials. These aspects of nuclear fuels (uranium, plutonium and their oxides and carbides), fuel element technology and structural materials (aluminium, zircaloy, stainless steel etc.) are discussed with particular reference to research and power reactors in India, e.g. the DHRUVA research reactor at BARC, Trombay, the pressurised heavy water reactors (PHWR) at Rajasthan and Kalpakkam, and the Fast Breeder Test Reactor (FBTR) at Kalpakkam. Other reactors like the gas-cooled reactors operating in UK are also mentioned. Because of the limited uranium resources, India has opted for a three-stage nuclear power programme aimed at the ultimate utilization of her abundant thorium resources. The first phase consists of natural uranium dioxide-fuelled, heavy water-moderated and cooled PHWR. The second phase was initiated with the attainment of criticality in the FBTR at Kalpakkam. Fast Breeder Reactors (FBR) utilize the plutonium and uranium by-products of phase 1. Moreover, FBR can convert thorium into fissile 233 U. They produce more fuel than is consumed - hence, the name breeders. The fuel parameters of some of the operating or proposed fast reactors in the world are compared. FBTR is unique in the choice of mixed carbides of plutonium and uranium as fuel. Factors affecting the fuel element performance and life in various reactors e.g. hydriding of zircaloys, fuel pellet-cladding interaction etc. in PHWR and void swelling; irradiation creep and helium embrittlement of fuel element structural materials in FBR are discussed along with measures to overcome some of these problems. (author). 15 refs., 9 tabs., 23 figs

  19. Analysis of th SBLOCAs in the room 1 for the 3-pin fuel test loop

    International Nuclear Information System (INIS)

    Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, Y. J.

    2004-10-01

    Fuel Test Loop(FTL) has been developed to meet the increasing demand on fuel irradiation and burn up test required the development of new fuels in Korea. It is designed to provide the test conditions of high pressure and temperature like the commercial PWR and CANDU power plants. And also the FTL have the cooling capability to sufficiently remove the thermal power of the in-pile test section for normal operation, Anticipated Operational Occurrences(AOOs), and Design Basis Accidents(DBAs). This report deals with the Small Break Loss of Coolant Accidents (SBLOCAs) in the Room 1 for the 3-pin fuel test loop. The MARS code has been used for the prediction of the emergency core cooling capability of the FTL and the peak cladding temperature of the test fuels for the SBLOCAs. The location of the pipe break is assumed at the downstream of the main cooling water pump and the upstream of the main cooler in the room 1. The break size is also assumed less than 20% of the cross section area of the pipe. The test fuels are heated up when the cold leg break occur. However, they are not heated up when the hot leg break occur. The maximum Peak Cladding Temperature (PCT) is predicted to be about 931.4 .deg. C for the cold leg break accident in PWR fuel test mode and 931.6 .deg. C in CANDU fuel test mode respectively. The critical break size is about the 8% of the cross section area of the pipe for PWR fuel test mode and the 10% for CANDU fuel test mode. The PCTs meet the design criterion of commercial PWR fuel that the maximum PCT is lower than 1204 .deg. C

  20. Analysis of the SBLOCAs in HANARO pool for the 3-pin fuel test loop

    International Nuclear Information System (INIS)

    Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, Y. J.

    2004-09-01

    Fuel Test Loop(FTL) has been developed to meet the increasing demand on fuel irradiation and burn up test required the development of new fuels in Korea. It is designed to provide the test conditions of high pressure and temperature like the commercial PWR and CANDU power plants. And also the FTL have the cooling capability to sufficiently remove the thermal power of the in-pile test section for normal operation, Anticipated Operational Occurrences(AOOs), and Design Basis Accidents(DBAs). This report deals with the Small Break Loss Of Coolant Accidents (SBLOCAs) in HANARO pool for the 3-pin fuel test loop. The MARS code has been used for the prediction of the emergency core cooling capability of the FTL and the peak cladding temperature of the test fuels for the SBLOCAs. The location of the pipe break is assumed at the hill taps connecting the cold and hot legs in HANARO pool to the inlet and outlet nozzles of the In-Pile test Section (IPS). The break size is also assumed less than 20% of the cross section area of the pipe. The test fuels are heated up when the cold leg break occur. However, they are not heated up when the hot leg break occur. The maximum Peak Cladding Temperatures (PCT) are predicted to be about 906.9 .deg. C for the cold leg break accident in PWR fuel test mode and 971.9 .deg. C in CANDU fuel test mode respectively. The critical break size is about the 6% of the cross section area of the pipe for PWR fuel test mode and the 8% for CANDU fuel test mode. The PCTs meet the design criterion of commercial PWR fuel that the maximum PCT is lower than 1204 .deg. C

  1. Features of the Numerical Solution of Thermal Destruction Fuel Pins Problems in the Fast Reactor

    Science.gov (United States)

    Usov, E. V.; Butov, A. A.; Klimonov, I. A.; Chuhno, V. I.; Nikolaenko, A. V.; Zhdanov, V. S.; Pribaturin, N. A.; Strizhov, V. F.

    2017-11-01

    In this paper the description of the basic equations which can be used for calculation of melting of fuel and cladding of the fast reactor, moving of the melt on a fuel pin surface and its solidification is presented. The special attention is given speed of calculation algorithms and fidelity of the phenomena which are observed at a stage of severe accidents in fast reactors. For check of working capacity of initial models, numerical calculations of Stefan-type problems on front movement of melting/solidification in cylindrical geometry are presented. Comparison with the solutions received by known analytical methods is executed. For validation of the numerical realization of calculation algorithms the analysis is carried out and experiments in which melting of the model fuel pins of fast reactors was studied are chosen. On the basis of the chosen experiments calculation schemes taking into account initial and boundary conditions are prepared and modeling is performed. Modeling results are shown in the present paper. Estimation of calculation error of the basic physical parameters is done by results of the modeling and conclusions are drawn on a correctness of algorithms operation.

  2. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Betten, P.R.

    1976-01-01

    Under the invention the fuel assembly is particularly suitable for liquid metal cooled fast neutron breeder reactors. Hence, according to the invention a fuel assembly cladding includes inward corrugations with respect to the remainder of the cladding according to a recurring pattern determined by the pitch of the metal wire helically wound round the fuel rods of the assembly. The parts of the cladding pressed inwards correspond to the areas in which the wire encircling the peripheral fuel rods is generally located apart from the cladding, thereby reducing the play between the cladding and the peripheral fuel rods situated in these areas. The reduction in the play in turn improves the coolant flow in the internal secondary channels of the fuel assembly to the detriment of the flow in the peripheral secondary channels and thereby establishes a better coolant fluid temperature profile [fr

  3. Nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Natori, Hisahide; Kurihara, Kunitoshi.

    1982-01-01

    Purpose: To increase the fuel safety by decreasing the gap conductance between fuels and cladding tubes, as well as improve the reactor core controllability by rendering the void coefficient negative. Constitution: Fuel assemblies in a pressure tube comprise a tie-rod, fuel rods in a central region, and fuel rods with burnable poison in the outer circumference region. Here, B 4 C is used as the burnable poison by 1.17 % by weight ratio. The degrees of enrichment for the fissile plutonium as PuO 2 -UO 2 fuel used in the assemblies are 2.7 %, 2.7 % and 1.5 % respectively in the innermost layer, the intermediate layer and the outermost layer. This increases the burn-up degree to improve the plant utilizability, whereby the void coefficient is rendered negative to improve the reactor core controllability. (Horiuchi, T.)

  4. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sakurai, Shungo; Ogiya, Shunsuke.

    1990-01-01

    In a fuel assembly, if the entire fuels comprise mixed oxide fuels, reactivity change in cold temperature-power operation is increased to worsen the reactor shutdown margin. The reactor shutdown margin has been improved by increasing the burnable poison concentration thereby reducing the reactivity of the fuel assembly. However, since unburnt poisons are present at the completion of the reactor operation, the reactivity can not be utilized effectively to bring about economical disadvantage. In view of the above, the reactivity change between lower temperature-power operations is reduced by providing a non-boiling range with more than 9.1% of cross sectional area at the inside of a channel at the central portion of the fuel assembly. As a result, the amount of the unburnt burnable poisons is decreased, the economy of fuel assembly is improved and the reactor shutdown margin can be increase. (N.H.)

  5. International Nuclear Fuel Cycle Evaluation

    International Nuclear Information System (INIS)

    Carnesale, A.

    1980-01-01

    As nuclear power expands globally, so too expands the capability for producing nuclear weapons. The International Nuclear Fuel Cycle Evaluation (INFCE) was organized in 1977 for the purpose of exploring two areas: (1) ways in which nuclear energy can be made available to help meet world energy needs, and (2) means by which the attendant risk of weapons proliferation can be held to a minimum. INFCE is designed for technical and analytical study rather than negotiation. Its organizational structure and issues under consideration are discussed. Some even broader issues that emerge from consideration of the relationships between the peaceful and military use of nuclear energy are also discussed. These are different notions of the meaning of nuclear proliferation, nuclear export policy, the need of a nuclear policy to be both a domestic as well as a foreign one, and political-military measures that can help reduce incentives of countries to acquire nuclear weapons of their own

  6. Nuclear fuel financing

    International Nuclear Information System (INIS)

    Lurf, G.

    1975-01-01

    Fuel financing is only at its beginning. A logical way of developing financing model is a step by step method starting with the financing of pre-payments. The second step will be financing of natural uranium and enrichment services to the point where the finished fuel elements are delivered to the reactor operator. The third step should be the financing of fuel elements during the time the elements are inserted in the reactor. (orig.) [de

  7. Device for a nuclear reactor. [Fuel element spacers

    Energy Technology Data Exchange (ETDEWEB)

    Foulds, R B; Kasberg, A H; Puechl, K H; Bleiberg, M L

    1972-03-08

    A spacer design for fuel element clusters for PWR type reactors is described. It consists of a frame supporting an egg-carton like grid each sector of which is provided with springs which grip the fuel pins. The spring design is such as to prevent fuel pin vibrations and at same time accommodate fuel pin deformations. Formulae for the calculation of natural frequencies, spring stiffness and friction loads are presented.

  8. Nuclear fuel cycle. V. 1

    International Nuclear Information System (INIS)

    1983-01-01

    Nuclear fuel cycle information in the main countries that develop, supply or use nuclear energy is presented. Data about Japan, FRG, United Kingdom, France and Canada are included. The information is presented in a tree-like graphic way. (C.S.A.) [pt

  9. Nuclear Fuel Cycle Introductory Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.

  10. Nuclear Fuel Cycle Introductory Concepts

    International Nuclear Information System (INIS)

    Karpius, Peter Joseph

    2017-01-01

    The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.

  11. Nuclear fuel cycle. V. 2

    International Nuclear Information System (INIS)

    1984-01-01

    Nuclear fuel cycle information in some countries that develop, supply or use nuclear energy is presented. Data about Argentina, Australia, Belgium, Netherlands, Italy, Denmarmark, Norway, Sweden, Switzerland, Finland, Spain and India are included. The information is presented in a tree-like graphic way. (C.S.A.) [pt

  12. Immersed multiple device for the control of the irradiated PWR fuel pins in the reloadable loop in the OSIRIS pond

    International Nuclear Information System (INIS)

    Farny, G.

    1983-01-01

    With respect to the dynamics of the degradation of the PWR fuel in transient, normal and abnormal regions, a new multi-device immersed in the cooling pond of the OSIRIS reactor, is studied. The multiple device is subjected to three examinations: (1) visual studying and video-recording of the appearance of the fuel pins, (2) metrology of the pins, (3) investigation of the induced Foucault currents in the fuel cans. Attention is chiefly paid to the last point; the other ones - being closely related - are only touched on whenever needed. It is concluded that quality control of the fuel pins is possible by means of Foucault currents without applying mechanical constraints and without interfering with the cooling rate. (Auth.)

  13. COVE-1: a finite difference creep collapse code for oval fuel pin cladding material

    International Nuclear Information System (INIS)

    Mohr, C.L.

    1975-03-01

    COVE-1 is a time-dependent incremental creep collapse code that estimates the change in ovality of a fuel pin cladding tube. It uses a finite difference method of solving the differential equations which describe the deflection of the tube walls as a function of time. The physical problem is nonlinear, both with respect to geometry and material properties, which requires the use of an incremental, analytical, path-dependent solution. The application of this code is intended primarily for tubes manufactured from Zircaloy. Therefore, provision has been made to include some of the effects of anisotropy in the flow equations for inelastic incremental deformations. 10 references. (U.S.)

  14. Mechanical behavior of irradiated fuel-pin cladding evaluated under transient heating and pressure conditions

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Johnson, G.D.; Hunter, C.W.; Duncan, D.R.

    1982-11-01

    Fast breeder fuel-pin cladding has been tested under experimental conditions simulating the temperature and pressure history characteristic of anticipated transient events. Irradiation induces severe reductions in both strength and ductility. Ductility losses are independent of the rate of temperature increase and saturate by a fluence of approx. 2 x 10 22 n/cm 2 (E > 0.1 MeV). Losses in strength are dependent on the rate of temperature increase but saturate at a fluence of approx.5 x 10 22 n/cm 2 . Evidence is presented to show that fission products are probably responsible for the degradation in mechanical properties

  15. Fuel assembly for a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, H M; Miller, D L; Tong, L S

    1973-09-06

    The subject of the patent is a spacer design applicable, primarily, to LWR, and especially, though not specifically PWR, fuel assemblies. The spacer consists of an egg-box type of assembly formed of interlocking pressed plates giving a square lattice whose openings accommodate fuel pins or regulating rods. The pressed plates are formed to provide pressed-out spring-like flanges which hold the fuel pins in position and guide the regulating rods. Additional pressed-out flanges ensure the correct configuration of the spacer structure. The spacer is designed to present as little resistance as possible to coolant flow.

  16. Spent Nuclear Fuel Project Safety Management Plan

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities

  17. Device for reprocessing nuclear fuels

    International Nuclear Information System (INIS)

    Hatano, Mamoru.

    1981-01-01

    Purpose: To readily discharge a nuclear fuel by burning the nuclear fuel as it is without a pulverizing step and removing the graphite and other coated fuel particles. Constitution: An oxygen supply pipe is connected to the lower portion of a discharge chamber having an inlet for the fuel, and an exhaust pipe is connected to the upper portion of the chamber. The fuel mounted on a metallic gripping member made of metallic material is inserted from the inlet, the gripping member is connected through a conductor to a voltage supply unit, oxygen is then supplied through the oxygen supply tube to the discharge chamber, the voltage supply unit is subsequently operated, and discharge takes place among the fuels. Thus, high heat is generated by the discharge, the graphite carbon of the fuel is burnt, silicon carbide is destroyed and decomposed, the isolated nuclear fuel particles are discharged from the exhaust port, and the combustion gas and small embers are exhausted from the exhaust tube. Accordingly, radioactive dusts are not so much generated as when using a mechanical pulverizing means, and prescribed objective can be achieved. (Yoshino, Y.)

  18. Diametral strain of fast reactor MOX fuel pins with austenitic stainless steel cladding irradiated to high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Uwaba, Tomoyuki, E-mail: uwaba.tomoyuki@jaea.go.jp [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan); Ito, Masahiro; Maeda, Koji [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan)

    2011-09-30

    Highlights: > We evaluated diametral strain of fast reactor MOX fuel pins irradiated to 130 GWd/t. > The strain was due to cladding void swelling and irradiation creep. > The irradiation creep was caused by internal gas pressure and PCMI. > The PCMI was associated with pellet swelling by rim structure or by cesium uranate. > The latter effect tended to increase the cumulative damage fraction of the cladding. - Abstract: The C3M irradiation test, which was conducted in the experimental fast reactor, 'Joyo', demonstrated that mixed oxide (MOX) fuel pins with austenitic steel cladding could attain a peak pellet burnup of about 130 GWd/t safely. The test fuel assembly consisted of 61 fuel pins, whose design specifications were similar to those of driver fuel pins of a prototype fast breeder reactor, 'Monju'. The irradiated fuel pins exhibited diametral strain due to cladding void swelling and irradiation creep. The cladding irradiation creep strain were due to the pellet-cladding mechanical interaction (PCMI) as well as the internal gas pressure. From the fuel pin ceramographs and {sup 137}Cs gamma scanning, it was found that the PCMI was associated with the pellet swelling which was enhanced by the rim structure formation or by cesium uranate formation. The PCMI due to cesium uranate, which occurred near the top of the MOX fuel column, significantly affected cladding hoop stress and thermal creep, and the latter effect tended to increase the cumulative damage fraction (CDF) of the cladding though the CDF indicated that the cladding still had some margin to failure due to the creep damage.

  19. Nuclear fuel element end fitting

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    A typical embodiment of the invention has an array of sockets that are welded to the intersections of the plates that form the upper and lower end fittings of a nuclear reactor fuel element. The sockets, which are generally cylindrical in shape, are oriented in directions that enable the longitudinal axes of the sockets to align with the longitudinal axes of the fuel rods that are received in the respective sockets. Detents impressed in the surfaces of the sockets engage mating grooves that are formed in the ends of the fuel rods to provide for the structural integrity of the fuel element

  20. Nuclear fuel recycling system

    International Nuclear Information System (INIS)

    Lee, H.R.; Koch, A.K.; Krawczyk, A.

    1981-01-01

    A process is provided for recycling sintered uranium dioxide fuel pellets rejected during fuel manufacture and the swarf from pellet grinding. The scrap material is prepared mechanically by crushing and milling as a high solids content slurry, using scrap sintered UO 2 pellets as the grinding medium under an inert atmosophere

  1. Passive measurements of mixed-oxide fuel for nuclear nonproliferation

    International Nuclear Information System (INIS)

    Dolan, Jennifer L.; Flaska, Marek; Pozzi, Sara A.; Chichester, David L.

    2013-01-01

    We present new results on passive measurements and simulations of mixed-oxide fuel-pin assemblies. Potential tools for mixed-oxide fuel pin characterization are discussed for future nuclear-nonproliferation applications. Four EJ-309 liquid scintillation detectors coupled with an accurate pulse timing and digital, offline and optimized pulse-shape discrimination method were used. Measurement analysis included pulse-height distributions to distinguish between purely fission neutron sources and alpha-n plus fission neutrons sources. Time-dependent cross-correlation functions were analyzed to measure the fission neutron contribution to the measured sample's neutron source. The use of Monte Carlo particle transport code MCNPX-PoliMi is discussed in conjunction with the measurements

  2. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Obara, Hiroshi.

    1981-01-01

    Purpose: To suppress iodine release thereby prevent stress corrosion cracks in fuel cans by dispersing ferrous oxide at the outer periphery of sintered uranium dioxide pellets filled and sealed within zirconium alloy fuel cans of fuel elements. Constitution: Sintered uranium dioxide pellets to be filled and sealed within a zirconium alloy fuel can are prepared either by mixing ferric oxide powder in uranium dioxide powder, sintering and then reducing at low temperature or by mixing iron powder in uranium dioxide powder, sintering and then oxidizing at low temperature. In this way, ferrous oxide is dispersed on the outer periphery of the sintered uranium dioxide pellets to convert corrosive fission products iodine into iron iodide, whereby the iodine release is suppressed and the stress corrosion cracks can be prevented in the fuel can. (Moriyama, K.)

  3. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Borrman, B.; Nylund, O.

    1984-01-01

    A fuel assembly with a fuel channel which surrounds a plurality of fuel rods and which is divided, by means of a stiffening device of cruciform cross-section and four wings, into four sub-channels each of which comprises a bundle of fuel rods. Each fuel channel side has a plurality of stamped, inwardly-directed projections, arranged vertically one after the other, aid projections being welded to one and the same stiffening wing. Each one of the wall portions located between the projections defines, together with two adjacently positioned projections and a portion of the stiffening wing, a communiation opening between two bundles located on on one side each of the stiffening wing. (Author)

  4. Nuclear fuel element

    International Nuclear Information System (INIS)

    Yamanaka, Tsuneyasu.

    1976-01-01

    Purpose: To provide a mechanism for the prevention of fuel pellet dislocation in fuel can throughout fuel fablication, fuel transportation and reactor operation. Constitution: A plenum spacer as a mechanism for the prevention of fuel pellet dislocation inserted into a cladding tube comprises split bodies bundled by a frame and an expansion body being capable of inserting into the central cavity of the split bodies. The expansion body is, for example, in a conical shape and the split bodies are formed so that they define in the center portion, when disposed along the inner wall of the cladding tube, a gap capable of inserting the conical body. The plenum spacer is assembled by initially inserting the split bodies in a closed state into the cladding tube after the loading of the pellets, pressing their peripheral portions and then inserting the expansion body into the space to urge the split bodies to the inner surface of the cladding tube. (Kawakami, Y.)

  5. Nuclear fuels accounting interface: River Bend experience

    International Nuclear Information System (INIS)

    Barry, J.E.

    1986-01-01

    This presentation describes nuclear fuel accounting activities from the perspective of nuclear fuels management and its interfaces. Generally, Nuclear Fuels-River Bend Nuclear Group (RBNG) is involved on a day-by-day basis with nuclear fuel materials accounting in carrying out is procurement, contract administration, processing, and inventory management duties, including those associated with its special nuclear materials (SNM)-isotopics accountability oversight responsibilities as the Central Accountability Office for the River Bend Station. As much as possible, these duties are carried out in an integrated, interdependent manner. From these primary functions devolve Nuclear Fuels interfacing activities with fuel cost and tax accounting. Noting that nuclear fuel tax accounting support is of both an esoteric and intermittent nature, Nuclear Fuels-RBNG support of developments and applications associated with nuclear fuel cost accounting is stressed in this presentation

  6. Development of a coupling scheme between MCNP5 and subchanflow for the PIN- and fuel Assembly-Wise simulation of LWR and innovative reactors

    International Nuclear Information System (INIS)

    Ivanov, A.; Sanchez, V.; Imke, U.

    2011-01-01

    In order to increase the accuracy and the degree of spatial resolution of core design studies, coupled 3D neutronic (deterministic and Monte Carlo) and 3D thermal hydraulics (CFD and subchannel) codes are being developed worldwide. At KIT both deterministic and Monte Carlo codes were coupled with subchannel codes and applied to predict the safety-related design parameters such as pin power, maximal cladding and fuel temperature, DNB. These coupling approaches were revised and improved based on the experience gained. One particular example is replacing COBRA-TF with SUBCHANFLOW, in-house development subchannel code, in the COBRA-TF/MCNP coupling, accompanied with new way of radial mapping between the neutronic and thermal hydraulic domains. The new coupled system MCNP5/SUBCHANFLOW makes it possible to investigate variety of fuel assembly types (BWR, PWR or SCFR). Key issues in such a coupled system are the way in which thermal-hydraulic/neutronic feedbacks, accuracy of the Monte Carlo solutions and observation of convergence during the iterative solution are handled. Another key issue that might be considered is the optimal application of parallel computing. Using multi-processor computer architectures, it is possible to reduce the Monte- Carlo running time and obtain converged results within reasonable time limit. In particular it is shown that by exploiting the capabilities of multi-processor calculation, it is possible to investigate large fuel assemblies in a pin-by-pin manner with a resolution at pin and subchannel level. One of the most important issues addressed in the current work is the temperature effects on nuclear data. For the particular studies pseudo material approach was used, which produces interpolated results for Doppler broadened cross sections from NJOY pre-generated nuclear data. (author)

  7. Rack for nuclear fuel elements

    International Nuclear Information System (INIS)

    Rubinstein, H.J.; Gordon, C.B.; Robison, A.; Clark, P.M.

    1977-01-01

    Disclosed is a rack for storing spent nuclear fuel elements in which a plurality of aligned rows of upright enclosures of generally square cross-sectional areas contain vertically disposed spent fuel elements. Each fuel element is supported at the lower end thereof by a respective support that rests on the floor of the spent fuel pool for a nuclear power plant. An open rack frame is employed as an upright support for the enclosures containing the spent fuel elements. Legs at the lower corners of the frame rest on the floor of the pool to support the frame. In one exemplary embodiment, the support for the fuel element is in the form of a base on which a fuel element rests and the base is supported by legs. In another exemplary embodiment, each fuel element is supported on the pool floor by a self-adjusting support in the form of a base on which a fuel element rests and the base rests on a ball or swivel joint for self-alignment. The lower four corners of the frame are supported by legs adjustable in height for leveling the frame. Each adjustable frame leg is in the form of a base resting on the pool floor and the base supports a threaded post. The threaded post adjustably engages a threaded column on which rests the lower end of the frame. 16 claims, 14 figures

  8. Nuclear fuel rods

    International Nuclear Information System (INIS)

    Wada, Toyoji.

    1979-01-01

    Purpose: To remove failures caused from combination of fuel-cladding interactions, hydrogen absorptions, stress corrosions or the likes by setting the quantity ratio of uranium or uranium and plutonium relative to oxygen to a specific range in fuel pellets and forming a specific size of a through hole at the center of the pellets. Constitution: In a fuel rods of a structure wherein fuel pellets prepared by compacting and sintering uranium dioxide, or oxide mixture consisting of oxides of plutonium and uranium are sealed with a zirconium metal can, the ratio of uranium or uranium and plutonium to oxygen is specified as 1 : 2.01 - 1 : 2.05 in the can and a passing hole of a size in the range of 15 - 30% of the outer diameter of the fuel pellet is formed at the center of the pellet. This increases the oxygen partial pressure in the fuel rod, oxidizes and forms a protection layer on the inner surface of the can to control the hydrogen absorption and stress corrosion. Locallized stress due to fuel cladding interaction (PCMI) can also be moderated. (Horiuchi, T.)

  9. Material input of nuclear fuel

    International Nuclear Information System (INIS)

    Rissanen, S.; Tarjanne, R.

    2001-01-01

    The Material Input (MI) of nuclear fuel, expressed in terms of the total amount of natural material needed for manufacturing a product, is examined. The suitability of the MI method for assessing the environmental impacts of fuels is also discussed. Material input is expressed as a Material Input Coefficient (MIC), equalling to the total mass of natural material divided by the mass of the completed product. The material input coefficient is, however, only an intermediate result, which should not be used as such for the comparison of different fuels, because the energy contents of nuclear fuel is about 100 000-fold compared to the energy contents of fossil fuels. As a final result, the material input is expressed in proportion to the amount of generated electricity, which is called MIPS (Material Input Per Service unit). Material input is a simplified and commensurable indicator for the use of natural material, but because it does not take into account the harmfulness of materials or the way how the residual material is processed, it does not alone express the amount of environmental impacts. The examination of the mere amount does not differentiate between for example coal, natural gas or waste rock containing usually just sand. Natural gas is, however, substantially more harmful for the ecosystem than sand. Therefore, other methods should also be used to consider the environmental load of a product. The material input coefficient of nuclear fuel is calculated using data from different types of mines. The calculations are made among other things by using the data of an open pit mine (Key Lake, Canada), an underground mine (McArthur River, Canada) and a by-product mine (Olympic Dam, Australia). Furthermore, the coefficient is calculated for nuclear fuel corresponding to the nuclear fuel supply of Teollisuuden Voima (TVO) company in 2001. Because there is some uncertainty in the initial data, the inaccuracy of the final results can be even 20-50 per cent. The value

  10. Transport of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    1980-01-01

    In response to public interest in the transport by rail through London of containers of irradiated fuel elements on their way from nuclear power stations to Windscale, the Central Electricity Generating Board and British Rail held three information meetings in London in January 1980. One meeting was for representatives of London Borough Councils and Members of Parliament with a known interest in the subject, and the others were for press, radio and television journalists. This booklet contains the main points made by the principal speakers from the CEGB and BR. (The points covered include: brief description of the fuel cycle; effect of the fission process in producing plutonium and fission products in the fuel element; fuel transport; the fuel flasks; protection against accidents; experience of transporting fuel). (U.K.)

  11. Nuclear fuel management in JMTR

    International Nuclear Information System (INIS)

    Naka, Michihiro; Miyazawa, Masataka; Sato, Hiroshi; Nakayama, Fusao; Ito, Haruhiko

    1999-01-01

    The Japan Materials Testing Reactor (JMTR) is the largest scale materials (author)ted the fission gas release compared with the steady state opkW/l in Japan. JMTR as a multi-purpose reactor has been contributing to research and development on nuclear field with a wide variety of irradiation for performing engineering tests and safety research on fuel and component for light water reactor as well as fast breeder reactor, high temperature gas-cooled reactor etc., for research and development on blanket material for fusion reactor, for fundamental research, and for radio-isotope (RI) production. The driver nuclear fuel used in JMTR is aluminum based MTR type fuel. According to the Reduced Enrichment for Research and Test Reactors (RERTR) Program, the JMTR fuel elements had been converted from 93% high enriched uranium (HEU) fuel to 45% medium enriched uranium (MEU) fuel in 1986, and then to 20% low enriched uranium (LEU) fuel in 1994. The cumulative operation cycles until March 1999 reached to 127 cycles since the first criticality in 1968. JMTR has used 1,628 HEU, 688 MEU and 308 LEU fuel elements for these operation cycles. After these spent fuel elements were cooled in the JMTR water canal more than one year after discharged from the JMTR core, they had been transported to reprocessing plants in Europe, and then to plants in USA in order to extract the uranium remaining in the spent fuel. The JMTR spent fuel transportation for reprocessing had been continued until the end of 1988. However, USA had ceased spent fuel reprocessing in 1989, while USDOE committed to prepare an environmental review of the impacts of accepting spent fuels from foreign research reactors. After that, USDOE decided to implement a new acceptance policy in 1996, the spent fuel transportation from JMTR to Savannah River Site was commenced in 1997. It was the first transportation not only in Japan but in Asia also. Until resuming the transportation, the spent fuel elements stored in JMTR

  12. Application of core structural design guidelines in conceptual fuel pin design

    International Nuclear Information System (INIS)

    Patel, M.R.; Stephen, J.D.

    1979-01-01

    The paper describes an application of the Draft RDT Standards F9-7, -8, and -9 to conceptual design of Fast Breeder Reactor (FBR) fuel pins. The Standards are being developed to provide guidelines for structural analysis and design of the FBR core components which have limited ductility at high fluences and are not addressed by the prevalent codes. The development is guided by a national working group sponsored by the Division of Reactor Researcch and Technology of the Department of Energy. The development program summarized in the paper includes establishment of design margins consistent with the test data and component performance requirements, and application of the design rules in various design activities. The application program insures that the quantities required for proper application of the design rules are available from the analysis methods and test data, and that the use of the same design rules in different analysis tools used at different stages of a component design producees consistent results. This is illustrated in the paper by application of the design rules in the analysis methods developed for conceptual and more detailed designs of an FBR fuel pin

  13. Masses of exotic calcium isotopes pin down nuclear forces

    CERN Document Server

    Wienholtz, F; Blaum, K; Borgmann, Ch; Breitenfeldt, M; Cakirli, R B; George, S; Herfurth, F; Holt, J D; Kowalska, M; Kreim, S; Lunney, D; Manea, V; Menéndez, J; Neidherr, D; Rosenbusch, M; Schweikhard, L; Schwenk, A; Simonis, J; Stanja, J; Wolf, R N; Zuber, K

    2013-01-01

    The properties of exotic nuclei on the verge of existence play a fundamental part in our understanding of nuclear interactions. Exceedingly neutron-rich nuclei become sensitive to new aspects of nuclear forces. Calcium, with its doubly magic isotopes $^{40}$Ca and $^{48}$Ca, is an ideal test for nuclear shell evolution, from the valley of stability to the limits of existence. With a closed proton shell, the calcium isotopes mark the frontier for calculations with three-nucleon forces from chiral effective field theory. Whereas predictions for the masses of $^{51}$Ca and $^{52}$Ca have been validated by direct measurements$^4$, it is an open question as to how nuclear masses evolve for heavier calcium isotopes. Here we report the mass determination of the exotic calcium isotopes $^{53}$Ca and $^{54}$Ca, using the multi-reflection time-of-flight mass spectrometer of ISOLTRAP at CERN. The measured masses unambiguously establish a prominent shell closure at neutron number N = 32, in excellent agreement with our t...

  14. Pinning down nuclear. To the core of the matter

    International Nuclear Information System (INIS)

    Boeck, Helmut; Gerstmayr, Michael; Radde, Eileen

    2014-01-01

    The nuclear disaster in Fukushima shocked the world tremendously. The call to pull out of nuclear energy is getting louder - and more often than not by politicians trying to lure the favour of voters. Through the media there are half-truths and false information floating about the global consequences of the disaster and sensational prognoses for the future, all of which are in turn unsettling for the general public. Are the opposers to nuclear energy playing with the fear of the public or is the threat real? This book tells, in a captivating manner - authenticated with examples and incidents not known by many - what the threat for the area actually looks like. They confront the level of truth in the frightening scenarios and inform about the situation in case of emergency. Furthermore, they examine factors that preceded the disaster and broach the subject of the incredible hunger for energy, which dominates the world and continues to drive the commercial use of nuclear energy. Also the ghost of Chernobyl and its aftermath, which has been dismissed from our minds, is re-examined based on current knowledge. The book impresses with insider know-how, latest detailed knowledge, amazing facts and an entertaining narrative style.

  15. Pinning down nuclear. To the core of the matter

    Energy Technology Data Exchange (ETDEWEB)

    Boeck, Helmut; Gerstmayr, Michael [Technische Univ., Vienna (Austria); International Atomic Energy Agency, Vienna (Austria); Radde, Eileen [Nuclear Engineering Seibersdorf GmbH (Austria); International Atomic Energy Agency, Vienna (Austria)

    2014-07-01

    The nuclear disaster in Fukushima shocked the world tremendously. The call to pull out of nuclear energy is getting louder - and more often than not by politicians trying to lure the favour of voters. Through the media there are half-truths and false information floating about the global consequences of the disaster and sensational prognoses for the future, all of which are in turn unsettling for the general public. Are the opposers to nuclear energy playing with the fear of the public or is the threat real? This book tells, in a captivating manner - authenticated with examples and incidents not known by many - what the threat for the area actually looks like. They confront the level of truth in the frightening scenarios and inform about the situation in case of emergency. Furthermore, they examine factors that preceded the disaster and broach the subject of the incredible hunger for energy, which dominates the world and continues to drive the commercial use of nuclear energy. Also the ghost of Chernobyl and its aftermath, which has been dismissed from our minds, is re-examined based on current knowledge. The book impresses with insider know-how, latest detailed knowledge, amazing facts and an entertaining narrative style.

  16. Fuel assembly for nuclear reactor

    International Nuclear Information System (INIS)

    Yamanaka, Akihiro; Haikawa, Katsumasa; Haraguchi, Yuko; Nakamura, Mitsuya; Aoyama, Motoo; Koyama, Jun-ichi.

    1996-01-01

    In a BWR type fuel assembly comprising first fuel rods filled with nuclear fission products and second fuel rods filled with burnable poisons and nuclear fission products, the concentration of the burnable poisons mixed to a portion of the second fuel rods is controlled so that it is reduced at the upper portion and increased at the lower portion in the axial direction. In addition, a product of the difference of an average concentration of burnable poisons between the upper portion and the lower portion and the number of fuel rods is determined to higher than a first set value determined corresponding to the limit value of a maximum linear power density. The sum of the difference of the average concentration of the burnable poisons between the upper portion and the lower portion of the second fuel rod and the number of the second fuel rods is determined to lower than a second set value determined corresponding to a required value of a surplus reactivity. If the number of the fuel rods mixed with the burnable poisons is increased, the infinite multiplication factor at an initial stage of the burning is lowered and, if the concentration of the mixed burnable poisons is increased, the time of exhaustion of the burnable poisons is delayed. As a result, the maximum value of the infinite multiplication factor is suppressed thereby enabling to control surplus reactivity. (N.H.)

  17. X-ray cinematography on the nuclear fuel and cladding motion diagnostics

    International Nuclear Information System (INIS)

    Mizuta, Hiroshi; Uruwashi, Shinichi.

    1979-01-01

    X-ray cinematography has been used for monitoring fuel motion in the out-of-pile fuel pin joule melting experiments for nuclear, liquid metal cooled fast breeder reactor, safety studies related to fuel pin failure, initial fuel motion and thermal fuel-coolant interaction (FCI) of the hypothetical core distractive accident. In order to visually observe the nuclear fuel motion, the X-ray cinematography system consists of an X-ray source located about 5 cm from the test section and an image intensifier located at a corresponding position on the opposite side of the test section. The image from the image intensifier has been recorded both with a high speed camera and video recorder. (author)

  18. Subchannel analysis of sodium-cooled reactor fuel assemblies with annular fuel pins

    International Nuclear Information System (INIS)

    Memmott, Matthew; Buongiorno, Jacopo; Hejzlar, Pavel

    2009-01-01

    Using a RELAP5-3D subchannel analysis model, the thermal-hydraulic behavior of sodium-cooled fuel assemblies with internally and externally cooled annular fuel rods was investigated, in an effort to enhance the economic performance of sodium-fast reactors by increasing the core power density, decreasing the core pressure drop, and extending the fuel discharge burnup. Both metal and oxide fuels at high and low conversion ratios (CR=0.25 and CR=1.00) were investigated. The externally and internally cooled annular fuel design is most beneficial when applied to the low CR core, as clad temperatures are reduced by up to 62.3degC for the oxide fuel, and up to 18.5degC for the metal fuel. This could result in a power uprates of up to ∼44% for the oxide fuel, and up to ∼43% for the metal fuel. The use of duct ribs was explored to flatten the temperature distribution at the core outlet. Subchannel analyses revealed that no fuel melting would occur in the case of complete blockage of the hot interior-annular channel for both metal and oxide fuels. Also, clad damage would not occur for the metal fuel if the power uprate is 38% or less, but would indeed occur for the oxide fuel. (author)

  19. Characterization of fuel swelling in helium-bonded carbide fuel pins

    International Nuclear Information System (INIS)

    Louie, D.L.Y.

    1987-08-01

    This work is not only the first attempt at characterizing the swelling of (U,Pu)C fuel pellets, but it also represents the only detailed examinations on carbide fuel swelling at high fuel burnups (4 to 16 at. %). This characterization includes the contributions of fission gases, cracks and solid fission products to fuel swelling. Significantly, the contributions of fission gases and cracks were determined by using the image analysis technique (IAT) which allows researchers to take areal measurements of the irradiated fuel porosity and cracks from the photographs of metallographic fuel samples. However, because areal measurements for varying depths in the fuel pellet could not be obtained, the crack areal measurements could not be converted into volumetric quantities. Consequently, in this situation, an areal fuel swelling analysis was used. The macroscopic fission-gas induced fuel swelling (MAS) caused by fission-gas bubbles and pores > 1 μm was determined using the measured irradiated fuel porosity because the measuring range of IAT is limited to bubbles and pores >1 μm. Conversely, for fuel swelling induced by fission-gas bubbles < 1 μm, the microscopic fission-gas induced fuel swelling (MIS) was estimated using an areal fuel swelling model

  20. Analysis of the LBLOCAs in the HANARO pool for the 3-pin fuel test loop

    International Nuclear Information System (INIS)

    Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, Y. J.

    2004-12-01

    The Fuel Test Loop(FTL) has been developed to meet the increasing demand on fuel irradiation and burn up test required the development of new fuels in Korea. It is designed to provide the test conditions of high pressure and temperature like the commercial PWR and CANDU power plants. And also the FTL have the cooling capability to sufficiently remove the thermal power of the in-pile test section for normal operation, Anticipated Operational Occurrences(AOOs), and Design Basis Accidents(DBAs). This report deals with the Large Break Loss of Coolant Accidents (LBLOCAs) in HANARO pool for the 3-pin fuel test loop. The MARS code has been used for the prediction of the emergency core cooling capability of the FTL and the peak cladding temperature of the test fuels for the LBLOCAs. The location of the pipe break is assumed at the hill taps connecting the cold and hot legs in HANARO pool to the inlet and outlet nozzles of the In-Pile test Section (IPS). Double ended guillotine break is assumed for the large break loss of coolant accidents. The discharge coefficients of 0.1, 0.33, 0.67, 1.0 are investigated for the LBLOCAs. The test fuels for PWR and CANDU test modes are not heated up for the LBLOCAs caused by the double ended guillotine break in the HANARO pool. The reason is that the sufficient emergency cooling water to cool down the test fuels is supplied continuously to the in-pile test section. Therefore the PCTs for the LBLOCAs in the HANARO pool meet the design criterion of commercial PWR fuel that maximum PCT is lower than 1204 .deg. C

  1. Analysis of the LBLOCAs in the room 1 for the 3-pin fuel test loop

    International Nuclear Information System (INIS)

    Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, Y. J.

    2004-12-01

    Fuel Test Loop(FTL) has been developed to meet the increasing demand on fuel irradiation and burn up test required the development of new fuels in Korea. It is designed to provide the test conditions of high pressure and temperature like the commercial PWR and CANDU power plants. And also the FTL have the cooling capability to sufficiently remove the thermal power of the in-pile test section for normal operation, Anticipated Operational Occurrences(AOOs), and Design Basis Accidents(DBAs). This report deals with the Large Break Loss of Coolant Accidents (LBLOCAs) in the Room 1 for the 3-pin fuel test loop. The MARS code has been used for the prediction of the emergency core cooling capability of the FTL and the peak cladding temperature of the test fuels for the LBLOCAs. The location of the pipe break is assumed at the downstream of the main cooling water pump and the upstream of the main cooler in the room 1. Double ended guillotine break is assumed for the large break loss of coolant accidents. The discharge coefficients of 0.1, 0.33, 0.67, 1.0 are investigated for the LBLOCAs. The maximum Peak Cladding Temperature (PCT) is predicted to be about 734.7 .deg. C for the PWR fuel test mode and 850.4 .deg. C for the CANDU fuel test mode respectively. The maximum peak cladding temperatures meet the design criterion of commercial PWR fuel that the maximum PCT is lower than 1204 .deg. C

  2. Inspection of nuclear fuel transport in Spain

    International Nuclear Information System (INIS)

    Lobo Mendez, J.

    1977-01-01

    The experience acquired in inspecting nuclear fuel shipments carried out in Spain will serve as a basis for establishing the regulations wich must be adhered to for future transports, as the transport of nuclear fuels in Spain will increase considerably within the next years as a result of the Spanish nuclear program. The experience acquired in nuclear fuel transport inspection is described. (author) [es

  3. Proliferation Resistant Nuclear Reactor Fuel

    International Nuclear Information System (INIS)

    Gray, L.W.; Moody, K.J.; Bradley, K.S.; Lorenzana, H.E.

    2011-01-01

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and

  4. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  5. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Takeda, Tadashi; Sato, Kenji; Goto, Masakazu.

    1984-01-01

    Purpose: To facilitate identification of a fuel assembly upon fuel exchange in BWR type reactors. Constitution: Fluorescent material is coated or metal plating is applied to the impressed portion of a upper tie plate handle of a fuel assembly, and the fluorescent material or the metal plating surface is covered with a protective membrane made of transparent material. This enables to distinguish the impressed surface from a distant place and chemical reaction between the impressed surface and the reactor water can be prevented. Furthermore, since the protective membrane is formed such that it protrudes toward the upper side relative to the impressed surface, there is no risk of depositions of claddings thereover. (Moriyama, K.)

  6. Nuclear fuel cladding material

    International Nuclear Information System (INIS)

    Nakahigashi, Shigeo.

    1982-01-01

    Purpose: To largely improve the durability and the safety of fuel cladding material. Constitution: Diffusion preventive layers, e.g., aluminum or the like are covered on both sides of a zirconium alloy base layer of thin material, and corrosion resistant layers, e.g., copper or the like are covered thereon. This thin plate material is intimately wound in a circularly tubular shape in a plurality of layers to form a fuel cladding tube. With such construction, corrosion of the tube due to fuel and impurity can be prevented by the corrosion resistant layers, and the diffusion of the corrosion resistant material to the zirconium alloy can be prevented by the diffusion preventive layers. Since a plurality of layers are cladded, even if the corrosion resistant layers are damaged or cracked due to stress corrosion, only one layer is damaged or cracked, but the other layers are not affected. (Sekiya, K.)

  7. Nuclear reactor fuel rod

    International Nuclear Information System (INIS)

    Busch, H.; Mindnich, F.R.

    1973-01-01

    The fuel rod consists of a can with at least one end cap and a plenum spring between this cap and the fuel. To prevent the hazard that a eutectic mixture is formed during welding of the end cap, a thermal insulation is added between the end cap and plenum spring. It consists of a comical extension of the end cap with a terminal disc against which the spring is supported. The end cap, the extension, and the disc may be formed by one or several pieces. If the disc is separated from the other parts it may be manufactured from chrome steel or VA steel. (DG) [de

  8. Modular nuclear fuel assembly rack

    International Nuclear Information System (INIS)

    Davis, C.J.

    1982-01-01

    A modular nuclear fuel assembly rack constructed of an array of identical cells, each cell constructed of a plurality of identical flanged plates. The unique assembly of the plates into a rigid rack provides a cellular compartment for nuclear fuel assemblies and a cavity between the cells for accepting neutron absorbing materials thus allowing a closely spaced array. The modular rack size can be easily adapted to conform with available storage space. U-shaped flanges at the edges of the plates are nested together at the intersection of four cells in the array. A bar is placed at the intersection to lock the cells together

  9. Spent nuclear fuel shipping basket

    International Nuclear Information System (INIS)

    Wells, A.H.

    1990-01-01

    This patent describes a basket for a cask for transporting nuclear fuel elements. It comprises: sleeve members, each of the sleeve members having interior cross-section dimensions for receiving a nuclear fuel assembly such that the assembly is restrained from lateral movement within the sleeve member, apertured disk members, means for axially aligning the apertures in the disk members, and means for maintaining the disk members in fixed spaced relationship to form a disk assembly, comprising an array of disks, the aligned apertures of the disks being adapted to receive the sleeve members and maintain them in fixed spaced relationship

  10. Development and testing of high-performance fuel pin simulators for boiling experiments in liquid metal flow

    International Nuclear Information System (INIS)

    Casal, V.

    1976-01-01

    There are unknown phenomena, about local and integral boiling events in the core of sodium cooled fast breeder reactors. Therefore at GfK depend out-of-pile boiling experiments have been performed using electrically heated dummies of fuel element bundles. The success of these tests and the amount of information derived from them depend exclusively on the successful simulation of the fuel pins by electrically heated rods as regards the essential physical properties. The report deals with the development and testing of heater rods for sodium boiling experiments in bundles including up to 91 heated pins

  11. Spent nuclear fuel in Bulgaria

    International Nuclear Information System (INIS)

    Peev, P.; Kalimanov, N.

    1999-01-01

    The development of the nuclear energy sector in Bulgaria is characterized by two major stages. The first stage consisted of providing a scientific basis for the programme for development of the nuclear energy sector in the country and was completed with the construction of an experimental water-water reactor. At present, spent nuclear fuel from this reactor is placed in a water filled storage facility and will be transported back to Russia. The second stage consisted of the construction of the 6 NPP units at the Kozloduy site. The spent nuclear fuel from the six units is stored in at reactor pools and in an additional on-site storage facility which is nearly full. In order to engage the government of the country with the on-site storage problems, the new management of the National Electric Company elaborated a policy on nuclear fuel cycle and radioactive waste management. The underlying policy is de facto the selection of the 'deferred decision' option for its spent fuel management. (author)

  12. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  13. Fuel bundle for nuclear reactor

    International Nuclear Information System (INIS)

    Long, J.W.; Flora, B.S.; Ford, K.L.

    1977-01-01

    The invention concerns a new, simple and inexpensive system for assembling and dismantling a nuclear reactor fuel bundle. Several fuel rods are fitted in parallel rows between two retaining plates which secure the fuel rods in position and which are maintained in an assembled position by means of several stays fixed to the two end plates. The invention particularly refers to an improved apparatus for fixing the stays to the upper plate by using locking fittings secured to rotating sleeves which are applied against this plate [fr

  14. Improvements in nuclear fuel assembly cages

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, C.W.; Seeley, T.A.; Ince, G.; Speakman, W.T.

    1986-03-12

    The fuel pin/guide tube supporting grids of an assembly cage for a multi pin fuel element or a reflector element for a stringer are mounted in the moderator sleeve by way of mounting assemblies engaged in grooves machined into the interior surface of the sleeve, each mounting assembly including a split ring which is assembled into its groove by being radially contracted, pushed along the sleeve into registry with the groove and allowed to radially expand. The split ring may carry burnable neutron absorber. The region of the sleeve between two adjacent grids may be of smaller internal diameter than the remainder of the sleeve.

  15. Regulating nuclear fuel waste

    International Nuclear Information System (INIS)

    1995-01-01

    When Parliament passed the Atomic Energy Control Act in 1946, it erected the framework for nuclear safety in Canada. Under the Act, the government created the Atomic Energy Control Board and gave it the authority to make and enforce regulations governing every aspect of nuclear power production and use in this country. The Act gives the Control Board the flexibility to amend its regulations to adapt to changes in technology, health and safety standards, co-operative agreements with provincial agencies and policy regarding trade in nuclear materials. This flexibility has allowed the Control Board to successfully regulate the nuclear industry for more than 40 years. Its mission statement 'to ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment' concisely states the Control Board's primary objective. The Atomic Energy Control Board regulates all aspects of nuclear energy in Canada to ensure there is no undue risk to health, safety, security or the environment. It does this through a multi-stage licensing process

  16. World nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    A coloured pull-out wall chart is presented showing the fuel cycle interests of the world. Place names are marked and symbols are used to indicate regions associated with uranium or thorium deposits, mining, milling, enrichment, reprocessing and fabrication. (UK)

  17. Contracting for nuclear fuels

    International Nuclear Information System (INIS)

    Schuessler, C.M.

    1981-10-01

    This paper deals with uranium sales contracts, i.e. with contractual arrangements in the first steps of the fuel cycle, which cover uranium production and conversion. The various types of contract are described and, where appropriate, their underlying business philosophy and their main terms and conditions. Finally, the specific common features of such contracts are reviewed. (NEA) [fr

  18. Nuclear fuel cycle studies

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    For the metal-matrix encapsulation of radioactive waste, brittle-fracture, leach-rate, and migration studies are being conducted. For fuel reprocessing, annular and centrifugal contactors are being tested and modeled. For the LWBR proof-of-breeding project, the full-scale shear and the prototype dissolver were procured and tested. 5 figures

  19. Axially alignable nuclear fuel pellets

    International Nuclear Information System (INIS)

    Johansson, E.B.; Klahn, D.H.; Marlowe, M.O.

    1978-01-01

    An axially alignable nuclear fuel pellet of the type stacked in end-to-end relationship within a tubular cladding is described. Fuel cladding failures can occur at pellet interface locations due to mechanical interaction between misaligned fuel pellets and the cladding. Mechanical interaction between the cladding and the fuel pellets loads the cladding and causes increased cladding stresses. Nuclear fuel pellets are provided with an end structure that increases plastic deformation of the pellets at the interface between pellets so that lower alignment forces are required to straighten axially misaligned pellets. Plastic deformation of the pellet ends results in less interactions beween the cladding and the fuel pellets and significantly lowers cladding stresses. The geometry of pellets constructed according to the invention also reduces alignment forces required to straighten fuel pellets that are tilted within the cladding. Plastic deformation of the pellets at the pellet interfaces is increased by providing pellets with at least one end face having a centrally-disposed raised area of convex shape so that the mean temperature and shear stress of the contact area is higher than that of prior art pellets

  20. Nuclear fuel fabrication in India

    Energy Technology Data Exchange (ETDEWEB)

    Kondal Rao, N

    1975-01-01

    The important role of a nuclear power program in meeting the growing needs of power in India is explained. The successful installation of Tarapur Atomic Power Station and Rajasthan Atomic Power Station as well as the work at Madras Atomic Power Station are described. The development of the Atomic Fuels Division and the Nuclear Fuel Complex, Hyderabad which is mainly concerned with the fabrication of fuel elements and the reprocessing of fuels are explained. The N.F.C. essentially has the following constituent units : Zirconium Plant (ZP) comprising of Zirconium Oxide Plant, Zirconium Sponge Plant and Zirconium Fabrication Plant; Natural Uranium Oxide Plant (UOP); Ceramic Fuel Fabrication Plant (CFFP); Enriched Uranium Oxide Plant (EUOP); Enriched Fuel Fabrication Plant (EEFP) and Quality Control Laboratory for meeting the quality control requirements of all plants. The capacities of various plants at the NFC are mentioned. The work done on mixed oxide fuels and FBTR core with blanket assemblies, nickel and steel assemblies, thermal research reactor of 100 MW capacity, etc. are briefly mentioned.

  1. Nuclear fuel fabrication in India

    International Nuclear Information System (INIS)

    Kondal Rao, N.

    1975-01-01

    The important role of a nuclear power programme in meeting the growing needs of power in India is explained. The successful installation of Tarapur Atomic Power Station and Rajasthan Atomic Power Station as well as the work at Madras Atomic Power Station are described. The development of the Atomic Fuels Division and the Nuclear Fuel Complex, Hyderabad which is mainly concerned with the fabrication of fuel elements and the reprocessing of fuels are explained. The N.F.C. essentially has the following constituent units : Zirconium Plant (ZP) comprising of Zirconium Oxide Plant, Zirconium Sponge Plant and Zirconium Fabrication Plant; Natural Uranium Oxide Plant (UOP); Ceramic Fuel Fabrication Plant (CFFP); Enriched Uranium Oxide Plant (EUOP); Enriched Fuel Fabrication Plant (EEFP) and Quality Control Laboratory for meeting the quality control requirements of all plants. The capacities of various plants at the NFC are mentioned. The work done on mixed oxide fuels and FBTR core with blanket assemblies, nickel and steel assemblies, thermal research reactor of 100 MW capacity, etc. are briefly mentioned. (K.B.)

  2. Annual report of the working group 'fuel pin and fuel element mechanics' of the Institut fuer Reaktortechnik (IRT) of the Technische Hochschule Darmstadt for the Fast Breeder Project

    International Nuclear Information System (INIS)

    Fabian, H.; Humbach, W.; Lassmann, K.; Mueller, J.J.; Preusser, T.; Schmelz, K.

    1978-09-01

    This report comprises six single lectures given at an information meeting organized by the Institut fuer Reaktortechnik der Technischen Hochschule Darmstadt (IRT) in Darmstadt on April 24, 1978. The lectures are an account of work performed at IRT on the mechanics of fuel pins and fuel elements and supported by the Fast Breeder Project (PSB) of KfK. These activities can be broken down into studies of the integral fuel pin (URANUS computer code) and into multidimensional studies of the fuel pin using the finite-element method (FINEL and ZIDRIG computer codes). Moreover, a report is presented of the status of the test facility for simulation of out-of-pile cladding tube loads and of the IRT project on the simulation and analysis of radiation damage. (orig./GL) [de

  3. Cause of defect in the end plug welding of the JOYO fuel pin

    International Nuclear Information System (INIS)

    Ouchi, Masaru; Otani, Seiji; Onisi, Koichi; Tateisi, Yoshinori; Ikawa, Yukio.

    1976-01-01

    About twelve thousand fuel pins for the JOYO core fuel were fabricated, and their end plug welding was inspected by X-ray radiography. The defect fractions were 0.2 percent for the lower end plugs and 1.8 percent for the upper, respectively. It had been known that the defect was due to ''line porosity''. In this study, the cause of the ''line porosity defect'' was investigated by the welding experiment performed on some dummy specimens of three different types; open end; closed end; and closed end with dummy pellets and a spring. The position of electrodes was varied for changing the arc gap from 0.3 mm to 1.2 mm. The experimental results are summarized in tables. The results showed that no defect was found in the open end type specimens even with the arc gap of 1.2 mm. Whereas in the other two types of specimens, the defect fraction of 60 to 75 percent was observed with the same arc gap. As for the effect of the arc gap, it was shown that 0.3 mm is the best among 0.3 mm, 0.5 mm and 1.2 mm. No defect was observed in the third type of specimens with the arc gap of 0.3 mm. In summary, it was found that the line porosity defect did not depend on the shape of the end plugs. It is considered to be dependent on both the structure of dummy fuel pins and the position of electrodes. (Aoki, K.)

  4. Design of FCI Experiments to Understand Fuel Out-Pin Phenomena in the SFR

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Park, Seong Dae [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Jerng, Dong Wook; Bang, In Cheol [Chungang Univ., Seoul (Korea, Republic of)

    2014-05-15

    It is important to guarantee a passive nuclear safety regarding enhanced negative reactivity by fragmenting the molten fuel. In the SFR, it has a strong point that the negative reactivity is immediately introduced when the metal fuel is melted by the UTOP or ULOP accident. These characteristics of the metal fuel can prevent from progressing in severe accidents such as core disruptive accidents (CDA). As key phenomena in the accidents, fuel-coolant interaction (FCI) phenomena have been studied over the last few decades. Especially, several previous researches focused on instability and fragmentation of a core melt jet in water. However, the studies showed too limited phenomena to fully understand. In the domestic SFR technology development, researches for severe accidents tend to lag behind ones of other countries. Or, South Korea has a very basic level of the research such as literature survey. Recently, the SAS4A code, which was developed at Argonne National Laboratory (ANL) for thermal-hydraulic and neutronic analyses of power and flow transients in liquid-metal-cooled nuclear reactors (LMRs), is still under development to consider for a metal fuel. The other countries carried out basic experiments for molten fuel and coolant interactions. However, in a high temperature condition, methods for analysis of structural interaction between molten fuel and fuel cladding are very limited. The ultimate objective of the study is to evaluate the possibility of recriticality accident induced by fuel-coolant interaction in the SFR adopting metal fuel. It is a key point to analyze the molten-fuel behavior based on the experimental results which show fuel-coolant interaction with the simulant materials. It is necessary to establish the test facility, to build database, and to develop physical models to understand the FCI phenomena in the SFR; molten fuel-coolant interaction as soon as the molten fuel is ejected to the sodium coolant channel and molten fuel-coolant interaction

  5. THE APPLICATION OF MAMMOTH FOR A DETAILED TIGHTLY COUPLED FUEL PIN SIMULATION WITH A STATION BLACKOUT

    Energy Technology Data Exchange (ETDEWEB)

    Gleicher, Frederick; Ortensi, Javier; DeHart, Mark; Wang, Yaqi; Schunert, Sebastian; Novascone, Stephen; Hales, Jason; Williamson, Rich; Slaughter, Andrew; Permann, Cody; Andrs, David; Martineau, Richard

    2016-09-01

    Accurate calculation of desired quantities to predict fuel behavior requires the solution of interlinked equations representing different physics. Traditional fuels performance codes often rely on internal empirical models for the pin power density and a simplified boundary condition on the cladding edge. These simplifications are performed because of the difficulty of coupling applications or codes on differing domains and mapping the required data. To demonstrate an approach closer to first principles, the neutronics application Rattlesnake and the thermal hydraulics application RELAP-7 were coupled to the fuels performance application BISON under the master application MAMMOTH. A single fuel pin was modeled based on the dimensions of a Westinghouse 17x17 fuel rod. The simulation consisted of a depletion period of 1343 days, roughly equal to three full operating cycles, followed by a station blackout (SBO) event. The fuel rod was depleted for 1343 days for a near constant total power loading of 65.81 kW. After 1343 days the fission power was reduced to zero (simulating a reactor shut-down). Decay heat calculations provided the time-varying energy source after this time. For this problem, Rattlesnake, BISON, and RELAP-7 are coupled under MAMMOTH in a split operator approach. Each system solves its physics on a separate mesh and, for RELAP-7 and BISON, on only a subset of the full problem domain. Rattlesnake solves the neutronics over the whole domain that includes the fuel, cladding, gaps, water, and top and bottom rod holders. Here BISON is applied to the fuel and cladding with a 2D axi-symmetric domain, and RELAP-7 is applied to the flow of the circular outer water channel with a set of 1D flow equations. The mesh on the Rattlesnake side can either be 3D (for low order transport) or 2D (for diffusion). BISON has a matching ring structure mesh for the fuel so both the power density and local burn up are copied accurately from Rattlesnake. At each depletion time

  6. Nuclear reactor fuel element

    International Nuclear Information System (INIS)

    D'Eye, R.W.M.; Shennan, J.V.; Ford, L.H.

    1977-01-01

    Fuel element with particles from ceramic fissionable material (e.g. uranium carbide), each one being coated with pyrolitically deposited carbon and all of them being connected at their points of contact by means of an individual crossbar. The crossbar consists of silicon carbide produced by reaction of silicon metal powder with the carbon under the influence of heat. Previously the silicon metal powder together with the particles was kneaded in a solvent and a binder (e.g. epoxy resin in methyl ethyl ketone plus setting agent) to from a pulp. The reaction temperature lies at 1750 0 C. The reaction itself may take place in a nitrogen atmosphere. There will be produced a fuel element with a high overall thermal conductivity. (DG) [de

  7. Computer modelling of the WWER fuel elements under high burnup conditions by the computer codes PIN-W and RODQ2D

    International Nuclear Information System (INIS)

    Valach, M.; Zymak, J.; Svoboda, R.

    1997-01-01

    This paper presents the development status of the computer codes for the WWER fuel elements thermomechanical behavior modelling under high burnup conditions at the Nuclear Research Institute Rez. The accent is given on the analysis of the results from the parametric calculations, performed by the programmes PIN-W and RODQ2D, rather than on their detailed theoretical description. Several new optional correlations for the UO2 thermal conductivity with degradation effect caused by burnup were implemented into the both codes. Examples of performed calculations document differences between previous and new versions of both programmes. Some recommendations for further development of the codes are given in conclusion. (author). 6 refs, 9 figs

  8. Computer modelling of the WWER fuel elements under high burnup conditions by the computer codes PIN-W and RODQ2D

    Energy Technology Data Exchange (ETDEWEB)

    Valach, M; Zymak, J; Svoboda, R [Nuclear Research Inst. Rez plc, Rez (Czech Republic)

    1997-08-01

    This paper presents the development status of the computer codes for the WWER fuel elements thermomechanical behavior modelling under high burnup conditions at the Nuclear Research Institute Rez. The accent is given on the analysis of the results from the parametric calculations, performed by the programmes PIN-W and RODQ2D, rather than on their detailed theoretical description. Several new optional correlations for the UO2 thermal conductivity with degradation effect caused by burnup were implemented into the both codes. Examples of performed calculations document differences between previous and new versions of both programmes. Some recommendations for further development of the codes are given in conclusion. (author). 6 refs, 9 figs.

  9. Spent nuclear fuel transport problems

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kosarev, Yu.A.; Yulikov, E.I.

    1977-01-01

    The paper considers the problems of shipping spent fuel from nuclear power stations to reprocessing plants and also the principal ways of solving these problems with a view to achieving maximum economy and safety in transport. The increase in the number of nuclear power plants in the USSR will entail an intensification of spent-fuel shipments. Higher burnup and the need to reduce cooling time call for heavier and more complex shipping containers. The problem of shipping spent fuel should be tackled comprehensively, bearing in mind the requirements of safety and economy. One solution to these problems is to develop rational and cheap designs of such containers. In addition, the world-wide trend towards more thorough protection of the environment against pollution and of the health of the population requires the devotion of constant attention to improving the reliability and safety of shipments. The paper considers the prospects for nuclear power development in the USSR and in other member countries of the CMEA (1976-1980), the composition and design of some Soviet packaging assemblies, the appropriate cooling time for spent fuel from thermal reactor power stations, procedures for reducing fuel-shipping costs, some methodological problems of container calculation and design, and finally problems of testing and checking containers on test rigs. (author)

  10. Disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    1979-12-01

    This report addresses the topic of the mined geologic disposal of spent nuclear fuel from Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). Although some fuel processing options are identified, most of the information in this report relates to the isolation of spent fuel in the form it is removed from the reactor. The characteristics of the waste management system and research which relate to spent fuel isolation are discussed. The differences between spent fuel and processed HLW which impact the waste isolation system are defined and evaluated for the nature and extent of that impact. What is known and what needs to be determined about spent fuel as a waste form to design a viable waste isolation system is presented. Other waste forms and programs such as geologic exploration, site characterization and licensing which are generic to all waste forms are also discussed. R and D is being carried out to establish the technical information to develop the methods used for disposal of spent fuel. All evidence to date indicates that there is no reason, based on safety considerations, that spent fuel should not be disposed of as a waste

  11. Fire resistant nuclear fuel cask

    International Nuclear Information System (INIS)

    Heckman, R.C.; Moss, M.

    1979-01-01

    The disclosure is directed to a fire resistant nuclear fuel cask employing reversibly thermally expansible bands between adjacent cooling fins such that normal outward flow of heat is not interfered with, but abnormal inward flow of heat is impeded or blocked

  12. Storage arrangements for nuclear fuel

    International Nuclear Information System (INIS)

    Ealing, C.J.

    1985-01-01

    A storage arrangement for nuclear fuel has a plurality of storage tubes connected by individual pipes to manifolds which are connected, in turn, to an exhaust system for maintaining the tubes at sub-atmospheric pressure, and means for producing a flow of a cooling fluid, such as air, over the exterior surfaces of the tubes. (author)

  13. World nuclear fuel cycle requirements 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-10

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  14. World nuclear fuel cycle requirements 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, ''burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs

  15. Study Of Thorium As A Nuclear Fuel.

    Directory of Open Access Journals (Sweden)

    Prakash Humane

    2017-10-01

    Full Text Available Conventional fuel sources for power generation are to be replacing by nuclear power sources like nuclear fuel Uranium. But Uranium-235 is the only fissile fuel which is in 0.72 found in nature as an isotope of Uranium-238. U-238 is abundant in nature which is not fissile while U-239 by alpha decay naturally converted to Uranium- 235. For accompanying this nuclear fuel there is another nuclear fuel Thorium is present in nature is abundant can be used as nuclear fuel and is as much as safe and portable like U-235.

  16. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    International Nuclear Information System (INIS)

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho

    2014-01-01

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests

  17. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests.

  18. Innovative microstructures in nuclear fuels

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Kumar, Arun; Kamath, H.S.

    2009-01-01

    For cleaner and safe nuclear power, new processes are required to design better nuclear fuels and make more efficient reactors to generate nuclear power. Therefore, one must understand how the microstructure changes during reactor operation. Accordingly, the materials scientists and engineers can then design and fabricate fuels with higher reliability and performance. Microstructure and its evolution are big unknowns in nuclear fuel. The basic requirements for the high performance of a fuel are: a) Soft pellets - To reduce Pellet clad mechanical interaction (PCMI) b) Large grain size - To reduce fission gas release (FGR). The strength of the pellet at room temperature is related to grain size by the Hall-Petch relation. Accordingly, the lower grain sized pellets will have high strength. But at high temperature (above equicohesive temperature) the grain boundaries becomes weaker than grain matrix. Since the small grain sized pellets have more grain boundary areas, these pellet become softer than pellet that have large grain sizes. Also as grain size decreases, creep rate of the fuel increases. Therefore, pellets with small grain size have higher creep rate and better plasticity. Therefore, these pellets will be useful to reduce the PCMI. On the other hand, pellet with large grain size is beneficial to reduce the fission gas release. In developing thermal reactor fuels for high burn-up, this factor should be taken into consideration. The question being asked is whether the microstructure can be tailored for irradiation hardening, fracture resistance, fission-gas release. This paper deals with the role played by microstructure for better irradiation performance. (author)

  19. Apparatus for locating defective nuclear fuel elements

    International Nuclear Information System (INIS)

    Lawrie, W.E.

    1979-01-01

    An ultrasonic search unit for locating defective fuel elements within a fuel assembly used in a water cooled nuclear reactor is presented. The unit is capable of freely traversing the restricted spaces between the fuel elements

  20. Fuel containing vessel for transporting nuclear fuel

    International Nuclear Information System (INIS)

    Yoshizawa, Hiroyasu; Shimizu, Fukuzo; Tanaka, Nobuyuki.

    1996-01-01

    A shock absorbing mechanism is disposed on an inner bottom of a vessel main body. The shock absorbing mechanism comprises a shock absorbing member disposed on the upper surface of a bottom wall, an annular metal plate disposed on the upper surface of the shock absorbing member and an annular spacer disposed on the upper surface of the metal plate. The shock absorbing member is made of a material such as of wood, lead, metal honeycomb or a metal mesh, which plastically deforms when applied with load higher than a predetermined level, and is formed in a square block-like form covering the upper surface of the bottom wall. The spacer is made of a thin soft material such as tetrafluoroethylene, and is formed in such a shape as capable of preventing direct contact of the lower end of the cylindrical member in a lower tie plate of nuclear fuels with the metal portion. This can ensure integrity of nuclear fuels even when they fall from a high place upon an assumed dropping accident. (I.N.)