WorldWideScience

Sample records for nuclear fuel element

  1. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1981-01-01

    An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  2. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  3. Nuclear fuel element

    International Nuclear Information System (INIS)

    Mogard, J.H.

    1977-01-01

    A nuclear fuel element is disclosed for use in power producing nuclear reactors, comprising a plurality of axially aligned ceramic cylindrical fuel bodies of the sintered type, and a cladding tube of metal or metal alloys, wherein said cladding tube on its cylindrical inner surface is provided with a plurality of slightly protruding spacing elements distributed over said inner surface

  4. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Nakai, Keiichi

    1983-01-01

    Purpose: To decrease the tensile stresses resulted in a fuel can as well as prevent decladding of fuel pellets into the bore holes by decreasing the inner pressure within the nuclear fuel element. Constitution: A fuel can is filled with hollow fuel pellets, inserted with a spring for retaining the hollow fuel pellets with an appropriate force and, thereafter, closely sealed at the both ends with end plugs. A cylindrical body is disposed into the bore holes of the hollow fuel pellets. Since initial sealing gases and/or gaseous nuclear fission products can thus be excluded from the bore holes where the temperature is at the highest level, the inner pressure of the nuclear fuel element can be reduced to decrease the tensile strength resulted to the fuel can. Furthermore, decladding of fuel pellets into the bore holes can be prevented. (Moriyama, K.)

  5. Nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding, and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  6. Nuclear fuel element

    International Nuclear Information System (INIS)

    Thompson, J.R.; Rowland, T.C.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting, fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  7. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    Klepfer, H.H.

    1974-01-01

    A nuclear fuel element is described which comprises: 1) an elongated clad container, 2) a layer of high lubricity material being disposed in and adjacent to the clad container, 3) a low neutron capture cross section metal liner being disposed in the clad container and adjacent to the layer, 4) a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, 5) an enclosure integrally secured and sealed at each end of the container, and a nuclear fuel material retaining means positioned in the cavity. (author)

  8. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Ainsworth, K.F.

    1979-01-01

    A nuclear fuel element is described having a cluster of nuclear fuel pins supported in parallel, spaced apart relationship by transverse cellular braces within coaxial, inner and outer sleeves, the inner sleeve being in at least two separate axial lengths, each of the transverse braces having a peripheral portion which is clamped peripherally between the ends of the axial lengths of the inner sleeve. (author)

  9. Nuclear fuel element

    International Nuclear Information System (INIS)

    Grossman, L.N.; Levin, H.A.

    1975-01-01

    A nuclear fuel element has disposed therein an alloy having the essential components of nickel, titanium and zirconium, and the alloy reacts with water, water vapor and reactive gases at reactor ambient temperatures. The alloy is disposed in the plenum of the fuel element in the form of particles in a hollow gas permeable container having a multiplicity of openings of size smallr than the size of the particles. The container is preferably held in the spring in the plenum of the fuel element. (E.C.B.)

  10. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Butterfield, C.E.; Waite, E.

    1982-01-01

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  11. Nuclear fuel element

    International Nuclear Information System (INIS)

    Penrose, R.T.; Thompson, J.R.

    1976-01-01

    A method of protecting the cladding of a nuclear fuel element from internal attack and a nuclear fuel element for use in the core of a nuclear reactor are disclosed. The nuclear fuel element has disposed therein an additive of a barium-containing material and the barium-containing material collects reactive gases through chemical reaction or adsorption at temperatures ranging from room temperature up to fuel element plenum temperatures. The additive is located in the plenum of the fuel element and preferably in the form of particles in a hollow container having a multiplicity of gas permeable openings in one portion of the container with the openings being of a size smaller than the size of the particles. The openings permit gases and liquids entering the plenum to contact the particles. The additive is comprised of elemental barium or a barium alloy containing one or more metals in addition to barium such as aluminum, zirconium, nickel, titanium and combinations thereof. 6 claims, 3 drawing figures

  12. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirayama, Satoshi; Kawada, Toshiyuki; Matsuzaki, Masayoshi.

    1980-01-01

    Purpose: To provide a fuel element for reducing the mechanical interactions between a fuel-cladding tube and the fuel element and for alleviating the limits of the operating conditions of a reactor. Constitution: A fuel element having mainly uranium dioxide consists of a cylindrical outer pellet and cylindrical inner pellet inserted into the outer pellet. The outer pellet contains two or more additives selected from aluminium oxide, beryllium oxide, magnesium oxide, silicon oxide, sodium oxide, phosphorus oxide, calcium oxide and iron oxide, and the inner pellet contains nuclear fuel substance solely or one additive selected from calcium oxide, silicon oxide, aluminium oxide, magnesium oxide, zirconium oxide and iron oxide. The outer pellet of the fuel thus constituted is reduced in mechanical strength and also in the mechanical interactions with the cladding tube, and the plastic fluidity of the entire pellet is prevented by the inner pellet increased in the mechanical strength. (Kamimura, M.)

  13. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a metal liner disposed between the cladding and the nuclear fuel material and a high lubricity material in the form of a coating disposed between the liner and the cladding. The liner preferably has a thickness greater than the longest fission product recoil distance and is composed of a low neutron capture cross-section material. The liner is preferably composed of zirconium, an alloy of zirconium, niobium or an alloy of niobium. The liner serves as a preferential reaction site for volatile impurities and fission products and protects the cladding from contact and reaction with such impurities and fission products. The high lubricity material acts as an interface between the liner and the cladding and reduces localized stresses on the cladding due to fuel expansion and cracking of the fuel

  14. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Kawada, Toshiyuki; Hirayama, Satoshi; Yoneya, Katsutoshi.

    1980-01-01

    Purpose: To enable load-depending operation as well as moderation for the restriction of operation conditions in the present nuclear reactors, by specifying the essential ingredients and the total weight of the additives to UO 2 fuel substances. Constitution: Two or more additives selected from Al 2 O 3 , B 2 O, CaO, MgO, SiO 2 , Na 2 O and P 2 O 5 are added by the total weight of 2 - 5% to fuel substances consisting of UO 2 or a mixture of UO 2 and PuO 2 . When the mixture is sintered, the strength of the fuel elements is decreased and the fuel-cladding interactions due to the difference in the heat expansion coefficients between the ceramic fuel elements and the metal claddings are decreased to a substantially harmless degree. (Horiuchi, T.)

  15. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirama, H.

    1978-01-01

    A nuclear fuel element comprises an elongated tube having upper and lower end plugs fixed to both ends thereof and nuclear fuel pellets contained within the tube. The fuel pellets are held against the lower end plug by a spring which is supported by a setting structure. The setting structure is maintained at a proper position at the middle of the tube by a wedge effect caused by spring force exerted by the spring against a set of balls coacting with a tapered member of the setting structure thereby wedging the balls against the inner wall of the tube, and the setting structure is moved free by pushing with a push bar against the spring force so as to release the wedge effect

  16. Vented nuclear fuel element

    International Nuclear Information System (INIS)

    Oguma, M.; Hirose, Y.

    1976-01-01

    A description is given of a vented nuclear fuel element having a plenum for accumulation of fission product gases and plug means for delaying the release of the fission product gases from the plenum, the plug means comprising a first porous body wettable with a liquid metal and a second porous body non-wettable with the liquid metal, the first porous body being impregnated with the liquid metal and in contact with the liquid metal

  17. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E. D.

    1984-01-01

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value

  18. Nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, E. D.

    1984-10-16

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value.

  19. Nuclear fuel element

    International Nuclear Information System (INIS)

    Iwano, Yoshihiko.

    1993-01-01

    Microfine cracks having a depth of less than 10% of a pipe thickness are disposed radially from a central axis each at an interval of less than 100 micron over the entire inner circumferential surface of a zirconium alloy fuel cladding tube. For manufacturing such a nuclear fuel element, the inside of the cladding tube is at first filled with an electrolyte solution of potassium chloride. Then, electrolysis is conducted using the cladding tube as an anode and the electrolyte solution as a cathode, and the inner surface of the cladding tube with a zirconium dioxide layer having a predetermined thickness. Subsequently, the cladding tube is laid on a smooth steel plate and lightly compressed by other smooth steel plate to form microfine cracks in the zirconium dioxide layer on the inner surface of the cladding tube. Such a compressing operation is continuously applied to the cladding tube while rotating the cladding tube. This can inhibit progress of cracks on the inner surface of the cladding tube, thereby enabling to prevent failure of the cladding tube even if a pellet/cladding tube mechanical interaction is applied. Accordingly, reliability of the nuclear fuel elements is improved. (I.N.)

  20. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    1980-01-01

    The invention is of a nuclear fuel element which comprises a central core of a body of nuclear fuel material selected from the group consisting of compounds of uranium, plutonium, thorium and mixtures thereof, and an elongated composite cladding container comprising a zirconium alloy tube containing constituents other than zirconium in an amount greater than about 5000 parts per million by weight and an undeformed metal barrier of moderate purity zirconium bonded to the inside surface of the alloy tube. The container encloses the core so as to leave a gap between the container and the core during use in a nuclear reactor. The metal barrier is of moderate purity zirconium with an impurity level on a weight basis of at least 1000ppm and less than 5000ppm. Impurity levels of specific elements are given. Variations of the invention are also specified. The composite cladding reduces chemical interaction, minimizes localized stress and strain corrosion and reduces the likelihood of a splitting failure in the zirconium alloy tube. Other benefits are claimed. (U.K.)

  1. Nuclear fuel element

    International Nuclear Information System (INIS)

    Armijo, J.S.

    1977-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed which has a composite cladding having a substrate, a metal barrier metallurgically bonded to the inside surface of the substrate and an inner layer metallurgically bonded to the inside surface of the metal barrier. In this composite cladding, the inner layer and the metal barrier shield the substrate from any impurities or fission products from the nuclear fuel material held within the composite cladding. The metal barrier forms about 1 to about 4 percent of the thickness of the cladding and is comprised of a metal selected from the group consisting of niobium, aluminum, copper, nickel, stainless steel, and iron. The inner layer and then the metal barrier serve as reaction sites for volatile impurities and fission products and protect the substrate from contact and reaction with such impurities and fission products. The substrate and the inner layer of the composite cladding are selected from conventional cladding materials and preferably are a zirconium alloy. Also in a preferred embodiment the substrate and the inner layer are comprised of the same material, preferably a zirconium alloy. 19 claims, 2 figures

  2. Nuclear reactor fuel element splitter

    International Nuclear Information System (INIS)

    Yeo, D.

    1976-01-01

    A method and apparatus are disclosed for removing nuclear fuel from a clad fuel element. The fuel element is power driven past laser beams which simultaneously cut the cladding lengthwise into at least two longitudinal pieces. The axially cut lengths of cladding are then separated, causing the nuclear fuel contained therein to drop into a receptacle for later disposition. The cut lengths of cladding comprise nuclear waste which is disposed of in a suitable manner. 6 claims, 10 drawing figures

  3. Integral nuclear fuel element assembly

    International Nuclear Information System (INIS)

    Schluderberg, D. C.

    1985-01-01

    An integral nuclear fuel element assembly utilizes longitudinally finned fuel pins. The continuous or interrupted fins of the fuel pins are brazed to fins of juxtaposed fuel pins or directly to the juxtaposed fuel pins or both. The integrally brazed fuel assembly is designed to satisfy the thermal and hydraulic requirements of a fuel assembly lattice having moderator to fuel atom ratios required to achieve high conversion and breeding ratios

  4. Nuclear fuel element

    International Nuclear Information System (INIS)

    Yamamoto, Seigoro.

    1994-01-01

    Ultrafine particles of a thermal neutron absorber showing ultraplasticity is dispersed in oxide ceramic fuels by more than 1% to 10% or lower. The ultrafine particles of the thermal neutron absorber showing ultrafine plasticity is selected from any one of ZrGd, HfEu, HfY, HfGd, ZrEu, and ZrY. The thermal neutron absorber is converted into ultrafine particles and solid-solubilized in a nuclear fuel pellet, so that the dispersion thereof into nuclear fuels is made uniform and an absorbing performance of the thermal neutrons is also made uniform. Moreover, the characteristics thereof, for example, physical properties such as expansion coefficient and thermal conductivity of the nuclear fuels are also improved. The neutron absorber, such as ZrGd or the like, can provide plasticity of nuclear fuels, if it is mixed into the nuclear fuels for showing the plasticity. The nuclear fuel pellets are deformed like an hour glass as burning, but, since the end portion thereof is deformed plastically within a range of a repulsive force of the cladding tube, there is no worry of damaging a portion of the cladding tube. (N.H.)

  5. Nuclear fuel element

    International Nuclear Information System (INIS)

    Knowles, A.N.

    1979-01-01

    A nuclear fuel-containing body for a high temperature gas cooled nuclear reactor is described which comprises a flat plate in which the nuclear fuel is contained as a dispersion of fission product-retaining coated fuel particles in a flat sheet of graphitic or carbonaceous matrix material. The flat sheet is clad with a relatively thin layer of unfuelled graphite bonded to the sheet by being formed initially from a number of separate preformed graphitic artefacts and then platen-pressed on to the exterior surfaces of the flat sheet, both the matrix material and the artefacts being in a green state, to enclose the sheet. A number of such flat plates are supported edge-on to the coolant flow in the bore of a tube made of neutron moderating material. Where a number of tiers of plates are superimposed on one another, the abutting edges are chamfered to reduce vibration. (author)

  6. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Obara, Hiroshi.

    1981-01-01

    Purpose: To suppress iodine release thereby prevent stress corrosion cracks in fuel cans by dispersing ferrous oxide at the outer periphery of sintered uranium dioxide pellets filled and sealed within zirconium alloy fuel cans of fuel elements. Constitution: Sintered uranium dioxide pellets to be filled and sealed within a zirconium alloy fuel can are prepared either by mixing ferric oxide powder in uranium dioxide powder, sintering and then reducing at low temperature or by mixing iron powder in uranium dioxide powder, sintering and then oxidizing at low temperature. In this way, ferrous oxide is dispersed on the outer periphery of the sintered uranium dioxide pellets to convert corrosive fission products iodine into iron iodide, whereby the iodine release is suppressed and the stress corrosion cracks can be prevented in the fuel can. (Moriyama, K.)

  7. Nuclear reactor fuel element

    International Nuclear Information System (INIS)

    D'Eye, R.W.M.; Shennan, J.V.; Ford, L.H.

    1977-01-01

    Fuel element with particles from ceramic fissionable material (e.g. uranium carbide), each one being coated with pyrolitically deposited carbon and all of them being connected at their points of contact by means of an individual crossbar. The crossbar consists of silicon carbide produced by reaction of silicon metal powder with the carbon under the influence of heat. Previously the silicon metal powder together with the particles was kneaded in a solvent and a binder (e.g. epoxy resin in methyl ethyl ketone plus setting agent) to from a pulp. The reaction temperature lies at 1750 0 C. The reaction itself may take place in a nitrogen atmosphere. There will be produced a fuel element with a high overall thermal conductivity. (DG) [de

  8. Rack for nuclear fuel elements

    International Nuclear Information System (INIS)

    Rubinstein, H.J.; Gordon, C.B.; Robison, A.; Clark, P.M.

    1977-01-01

    Disclosed is a rack for storing spent nuclear fuel elements in which a plurality of aligned rows of upright enclosures of generally square cross-sectional areas contain vertically disposed spent fuel elements. Each fuel element is supported at the lower end thereof by a respective support that rests on the floor of the spent fuel pool for a nuclear power plant. An open rack frame is employed as an upright support for the enclosures containing the spent fuel elements. Legs at the lower corners of the frame rest on the floor of the pool to support the frame. In one exemplary embodiment, the support for the fuel element is in the form of a base on which a fuel element rests and the base is supported by legs. In another exemplary embodiment, each fuel element is supported on the pool floor by a self-adjusting support in the form of a base on which a fuel element rests and the base rests on a ball or swivel joint for self-alignment. The lower four corners of the frame are supported by legs adjustable in height for leveling the frame. Each adjustable frame leg is in the form of a base resting on the pool floor and the base supports a threaded post. The threaded post adjustably engages a threaded column on which rests the lower end of the frame. 16 claims, 14 figures

  9. Nuclear fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, J S; Coffing, L F

    1979-04-05

    The fuel element with circular cross-section for BWR and PWR consists of a core surrounded by a compound jacket container where there is a gap between the core and jacket during operation in the reactor. The core consists of U, Pu, Th compounds and mixtures of these. The compound jacket consists of zircaloy 2 or 4. In order to for example prevent the corrosion of the compound jacket, its inner surface has a metal barrier with smaller neutron absorbers than the jacket material in the form of a zirconium sponge. The zirconium of this metal barrier has impurities of various elements in the order of magnitude of 1000 to 5000 ppm. The oxygen content is in the range of 200 to 1200 ppm and the thickness of the metal barrier is 1-30% of the thickness of the jacket.

  10. Nuclear Fuel elements

    International Nuclear Information System (INIS)

    Hirakawa, Hiromasa.

    1979-01-01

    Purpose: To reduce the stress gradient resulted in the fuel can in fuel rods adapted to control the axial power distribution by the combination of fuel pellets having different linear power densities. Constitution: In a fuel rod comprising a first fuel pellet of a relatively low linear power density and a second fuel pellet of a relatively high linear power density, the second fuel pellet is cut at its both end faces by an amount corresponding to the heat expansion of the pellet due to the difference in the linear power density to the adjacent first fuel pellet. Thus, the second fuel pellet takes a smaller space than the first fuel pellet in the fuel can. This can reduce the stress produced in the portion of the fuel can corresponding to the boundary between the adjacent fuel pellets. (Kawakami, Y.)

  11. Nuclear fuel element end fitting

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    A typical embodiment of the invention has an array of sockets that are welded to the intersections of the plates that form the upper and lower end fittings of a nuclear reactor fuel element. The sockets, which are generally cylindrical in shape, are oriented in directions that enable the longitudinal axes of the sockets to align with the longitudinal axes of the fuel rods that are received in the respective sockets. Detents impressed in the surfaces of the sockets engage mating grooves that are formed in the ends of the fuel rods to provide for the structural integrity of the fuel element

  12. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  13. Nuclear fuel element

    International Nuclear Information System (INIS)

    Yamanaka, Tsuneyasu.

    1976-01-01

    Purpose: To provide a mechanism for the prevention of fuel pellet dislocation in fuel can throughout fuel fablication, fuel transportation and reactor operation. Constitution: A plenum spacer as a mechanism for the prevention of fuel pellet dislocation inserted into a cladding tube comprises split bodies bundled by a frame and an expansion body being capable of inserting into the central cavity of the split bodies. The expansion body is, for example, in a conical shape and the split bodies are formed so that they define in the center portion, when disposed along the inner wall of the cladding tube, a gap capable of inserting the conical body. The plenum spacer is assembled by initially inserting the split bodies in a closed state into the cladding tube after the loading of the pellets, pressing their peripheral portions and then inserting the expansion body into the space to urge the split bodies to the inner surface of the cladding tube. (Kawakami, Y.)

  14. Nuclear fuel element

    International Nuclear Information System (INIS)

    Watarumi, Kazutoshi.

    1992-01-01

    Hollow fuel pellets are piled at multi-stages in a cladding tube to form a pellet stack. A bundle of metal fine wires made of zirconium or an alloy thereof is inserted passing through the hollow portion of each of the hollow pellets over a length of the pellet stack. The metal fine wires are bundled by securing ring at a joining portions of the pellets. Then, the portion between both of adjacent rings is expanded radially and has a spring function biasing in the radial direction. With such a constitution, even if the pellet is expanded radially due to pallet gas swelling, the hollow portion is not closed, and the gas flow channel is ensured. In addition, even if the pellet is cracked due to thermal shocks, the pellet piece is prevented from dropping to the hollow portion. In this case, the thermal conduction between the pellets and the cladding tube is kept satisfactorily by the spring function of the metal wire bundle. (I.N.)

  15. Apparatus for locating defective nuclear fuel elements

    International Nuclear Information System (INIS)

    Lawrie, W.E.

    1979-01-01

    An ultrasonic search unit for locating defective fuel elements within a fuel assembly used in a water cooled nuclear reactor is presented. The unit is capable of freely traversing the restricted spaces between the fuel elements

  16. Fuel element for nuclear reactors

    International Nuclear Information System (INIS)

    Cadwell, D.J.

    1982-01-01

    The invention concerns a fuel element for nuclear reactors with fuel rods and control rod guide tubes, where the control rod guide tubes are provided with flat projections projecting inwards, in the form of local deformations of the guide tube wall, in order to reduce the radial play between the control rod concerned and the guide tube, and to improve control rod movement. This should ensure that wear on the guide tubes is largely prevented which would be caused by lateral vibration of the control rods in the guide tubes, induced by the flow of coolant. (orig.) [de

  17. Nuclear reactor fuel element assemblies

    International Nuclear Information System (INIS)

    Raven, L.F.

    1975-01-01

    A spacer grid for a nuclear fuel element comprises a plurality of cojointed cylindrical ferrules adapted to receive a nuclear fuel pin. Each ferrule has a pair of circumferentially spaced rigid stop members extending inside the ferrule and a spring locating member attached to the ferrule and also extending from the ferrule wall inwardly thereof at such a circumferential spacing relative to the rigid stop members that the line of action of the spring locating member passes in opposition to and between the rigid stop members which lie in the same diametric plane. At least some of the cylindrical ferrules have one rim shaped to promote turbulence in fluid flowing through the grid. (Official Gazette)

  18. Nuclear fuel element and container

    International Nuclear Information System (INIS)

    Grubb, W.T.; King, L.H.

    1981-01-01

    The invention is based on the discovery that a substantial reduction in metal embrittlement or stress corrosion cracking from fuel pellet-cladding interaction can be achieved by the use of a copper layer or liner in proximity to the nuclear fuel, and an intermediate zirconium oxide barrier layer between the copper layer and the zirconium cladding substrate. The intermediate zirconia layer is a good copper diffusion barrier; also, if the zirconium cladding surface is modified prior to oxidation, copper can be deposited by electroless plating. A nuclear fuel element is described which comprises a central core of fuel material and an elongated container using the system outlined above. The method for making the container is again described. It comprises roughening or etching the surface of the zirconium or zirconium alloy container, oxidizing the resulting container, activating the oxidized surface to allow for the metallic coating of such surfaces by electroless deposition and further coating the activated-oxidized surface of the zirconium or zirconium alloy container with copper, iron or nickel or an alloy thereof. (U.K.)

  19. Getter for nuclear fuel elements

    International Nuclear Information System (INIS)

    Ross, W.T.; Williamson, H.E.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has disposed therein an improved getter capable of gettering reactive gases including a source of hydrogen. The getter comprises a composite with a substrate having thereon a coating capable of gettering reactive gases. The substrate has a greater coefficient of thermal expansion than does the coating, and over a period of time at reactor operating temperatures any protective film on the coating is fractured at various places and fresh portions of the coating are exposed to getter reactive gases. With further passage of time at reactor operating temperatures a fracture of the protective film on the coating will grow into a crack in the coating exposing further portions of the coating capable of gettering reactive gases. 13 claims, 5 drawing figures

  20. Getter for nuclear fuel elements

    International Nuclear Information System (INIS)

    Ross, W.T.; Williamson, H.E.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has disposed therein an improved getter capable of gettering reactive gases including a source of hydrogen. The getter comprises a composite with a substrate having thereon a coating capable of gettering reactive gases. The substrate has a greater coefficient of thermal expansion than does the coating, and over a period of time at reactor operating temperatures any protective film on the coating is fractured at various places and fresh portions of the coating are exposed to getter reactive gases. With further passage of time at reactor operating temperatures a fracture of the protective film on the coating will grow into a crack in the coating exposing further portions of the coating capable of gettering reactive gases

  1. Nuclear fuel element leak detection system

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1978-01-01

    Disclosed is a leak detection system integral with a wall of a building used to fabricate nuclear fuel elements for detecting radiation leakage from the nuclear fuel elements as the fuel elements exit the building. The leak detecting system comprises a shielded compartment constructed to withstand environmental hazards extending into a similarly constructed building and having sealed doors on both ends along with leak detecting apparatus connected to the compartment. The leak detecting system provides a system for removing a nuclear fuel element from its fabrication building while testing for radiation leaks in the fuel element

  2. Monitoring arrangement for vented nuclear fuel elements

    International Nuclear Information System (INIS)

    Campana, R.J.

    1981-01-01

    In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180 0 rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements

  3. Nuclear reactor fuel element assemblies

    International Nuclear Information System (INIS)

    Krawiec, D.M.; Bevilacqua, F.

    1974-01-01

    The fuel elements of each fuel element group are separated from each other by means of a multitude of thin, intersecting plates in the from of grid strips. Flow deflectors near the surface of the fuel elements are used in order to make the coolant flow more turbulent. They are designed as vanes and arranged at a distance on the grid strips. Each deflector vane has two arms stretching in opposite directions, each one into a neighbouring channel. In outward direction, the deflector vanes are converging. The strips with the vanes can be put on the supporting grid of the fuel elements. The vane structure can be reinforced by providing distortions in the strip material near the vanes. (DG) [de

  4. Nuclear fuel elements and assemblies

    International Nuclear Information System (INIS)

    Saito, Shozo; Maki, Hideo.

    1982-01-01

    Purpose: To facilitate the attainment of the uranium enrichment or gadolinia enrichment of a pellet filled in a fuel element. Constitution: The axial length of a pellet filled in a fuel element is set to predetermined sizes according to the uranium enrichment factor, gadolinia enrichment or their combination. Thus, the uranium enrichment factor or gadolinia enrichment can be identified by attaining the axial length of the pellet by using such a pellt. (Kamimura, M.)

  5. System for assembling nuclear fuel elements

    International Nuclear Information System (INIS)

    1980-01-01

    An automatic system is described for assembling nuclear fuel elements, in particular those employing mixed oxide fuels. The system includes a sealing mechanism which allows movement during the assembling of the fuel element along the assembly stations without excessive release of contaminants. (U.K.)

  6. Nuclear fuels and development of nuclear fuel elements

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Mannan, S.L.

    1989-01-01

    Safe, reliable and economic operation of nuclear fission reactors, the source of nuclear power at present, requires judicious choice, careful preparation and specialised fabrication procedures for fuels and fuel element structural materials. These aspects of nuclear fuels (uranium, plutonium and their oxides and carbides), fuel element technology and structural materials (aluminium, zircaloy, stainless steel etc.) are discussed with particular reference to research and power reactors in India, e.g. the DHRUVA research reactor at BARC, Trombay, the pressurised heavy water reactors (PHWR) at Rajasthan and Kalpakkam, and the Fast Breeder Test Reactor (FBTR) at Kalpakkam. Other reactors like the gas-cooled reactors operating in UK are also mentioned. Because of the limited uranium resources, India has opted for a three-stage nuclear power programme aimed at the ultimate utilization of her abundant thorium resources. The first phase consists of natural uranium dioxide-fuelled, heavy water-moderated and cooled PHWR. The second phase was initiated with the attainment of criticality in the FBTR at Kalpakkam. Fast Breeder Reactors (FBR) utilize the plutonium and uranium by-products of phase 1. Moreover, FBR can convert thorium into fissile 233 U. They produce more fuel than is consumed - hence, the name breeders. The fuel parameters of some of the operating or proposed fast reactors in the world are compared. FBTR is unique in the choice of mixed carbides of plutonium and uranium as fuel. Factors affecting the fuel element performance and life in various reactors e.g. hydriding of zircaloys, fuel pellet-cladding interaction etc. in PHWR and void swelling; irradiation creep and helium embrittlement of fuel element structural materials in FBR are discussed along with measures to overcome some of these problems. (author). 15 refs., 9 tabs., 23 figs

  7. Grids for nuclear fuel elements

    International Nuclear Information System (INIS)

    Nicholson, G.

    1980-01-01

    This invention relates to grids for nuclear fuel assemblies with the object of providing an improved grid, tending to have greater strength and tending to offer better location of the fuel pins. It comprises sets of generally parallel strips arranged to intersect to define a structure of cellular form, at least some of the intersections including a strip which is keyed to another strip at more than one point. One type of strip may be dimpled along its length and another type of strip may have slots for keying with the dimples. (Auth.)

  8. Inserts for nuclear fuel elements

    International Nuclear Information System (INIS)

    Cragg, P.J.

    1982-01-01

    An insert for a nuclear fuel pin which comprises a strip. The strip carries notches, which enable a coding arrangement to be carried on the strip. The notches may be of differing sizes and the coding on the strip includes identification and identification checking data. Each notch on the strip may give rise to a signal pulse which is counted by a detector to avoid errors. (author)

  9. Fundamental aspects of nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1976-01-01

    The book presented is designed to function both as a text for first-year graduate courses in nuclear materials and as a reference for workers involved in the materials design and performance aspects of nuclear power plants. The contents are arranged under the following chapter headings: statistical thermodynamics, thermal properties of solids, crystal structures, cohesive energy of solids, chemical equilibrium, point defects in solids, diffusion in solids, dislocations and grain boundaries, equation of state of UO/sub 2/, fuel element thermal performance, fuel chemistry, behavior of solid fission products in oxide fuel elements, swelling due to fission gases, pore migration and fuel restructuring kinetics, fission gas release, mechanical properties of UO/sub 2/, radiation damage, radiation effects in metals, interaction of sodium and stainless steel, modeling of the structural behavior of fuel elements and assemblies. (DG)

  10. Fundamental aspects of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Olander, D.R.

    1976-01-01

    The book presented is designed to function both as a text for first-year graduate courses in nuclear materials and as a reference for workers involved in the materials design and performance aspects of nuclear power plants. The contents are arranged under the following chapter headings: statistical thermodynamics, thermal properties of solids, crystal structures, cohesive energy of solids, chemical equilibrium, point defects in solids, diffusion in solids, dislocations and grain boundaries, equation of state of UO 2 , fuel element thermal performance, fuel chemistry, behavior of solid fission products in oxide fuel elements, swelling due to fission gases, pore migration and fuel restructuring kinetics, fission gas release, mechanical properties of UO 2 , radiation damage, radiation effects in metals, interaction of sodium and stainless steel, modeling of the structural behavior of fuel elements and assemblies

  11. Fuel element for a nuclear reactor

    International Nuclear Information System (INIS)

    Linning, D.L.

    1977-01-01

    An improvement of the fuel element for a fast nuclear reactor described in patent 15 89 010 is proposed which should avoid possible damage due to swelling of the fuel. While the fuel element according to patent 15 89 010 is made in the form of a tube, here a further metal jacket is inserted in the centre of the fuel rod and the intermediate layer (ceramic uranium compound) is provided on both sides, so that the nuclear fuel is situated in the centre of the annular construction. Ceramic uranium or plutonium compounds (preferably carbide) form the fuel zone in the form of circular pellets, which are surrounded by annular gaps, so that gaseous fission products can escape. (UWI) [de

  12. High performance nuclear fuel element

    International Nuclear Information System (INIS)

    Mordarski, W.J.; Zegler, S.T.

    1980-01-01

    A fuel-pellet composition is disclosed for use in fast breeder reactors. Uranium carbide particles are mixed with a powder of uraniumplutonium carbides having a stable microstructure. The resulting mixture is formed into fuel pellets. The pellets thus produced exhibit a relatively low propensity to swell while maintaining a high density

  13. Method for inspecting nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    A technique for disassembling a nuclear reactor fuel element without destroying the individual fuel pins and other structural components from which the element is assembled is described. A traveling bridge and trolley span a water-filled spent fuel storage pool and support a strongback. The strongback is under water and provides a working surface on which the spent fuel element is placed for inspection and for the manipulation that is associated with disassembly and assembly. To remove, in a non-destructive manner, the grids that hold the fuel pins in the proper relative positions within the element, bars are inserted through apertures in the grids with the aid of special tools. These bars are rotated to flex the adjacent grid walls and, in this way relax the physical engagement between protruding portions of the grid walls and the associated fuel pins. With the grid structure so flexed to relax the physical grip on the individual fuel pins, these pins can be withdrawn for inspection or replacement as necessary without imposing a need to destroy fuel element components

  14. Nuclear fuel element end fitting

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1980-01-01

    An invention is described whereby end fittings are formed from lattices of mutually perpendicular plates. At the plate intersections, sockets are secured to the end fittings in a manner that permits the longitudinal axes of each of the sockets to align with the respective lines of intersection of the plates. The sockets all protrude above one of the surfaces of the end fitting. Further, a detent is formed in the proturding sides of each of the sockets. Annular grooves are formed in each of the ends of the fuel rods that are to be mounted between the end fittings. The socket detents protrude into the respective annular grooves, thus engaging the grooves and retaining the fuel rods and end fittings in one integral structure. (auth)

  15. Nuclear reactor core and fuel element therefor

    International Nuclear Information System (INIS)

    Fortescue, P.

    1986-01-01

    This patent describes a nuclear reactor core. This core consists of vertical columns of disengageable fuel elements stacked one atop another. These columns are arranged in side-by-side relationship to form a substantially continuous horizontal array. Each of the fuel elements include a block of refractory material having relatively good thermal conductivity and neutron moderating characteristics. The block has a pair of parallel flat top and bottom end faces and sides which are substantially prependicular to the end faces. The sides of each block is aligned vertically within a vertical column, with the sides of vertically adjacent blocks. Each of the blocks contains fuel chambers, including outer rows containing only fuel chambers along the sides of the block have nuclear fuel material disposed in them. The blocks also contain vertical coolant holes which are located inside the fuel chambers in the outer rows and the fuel chambers which are not located in the outer rows with the fuel chambers and which extend axially completely through from end face to end face and form continuous vertical intracolumn coolant passageways in the reactor core. The blocks have vertical grooves extending along the sides of the blocks form interblock channels which align in groups to form continuous vertical intercolumn coolant passsageways in the reactor core. The blocks are in the form of a regular hexagonal prism with each side of the block having vertical gooves defining one half of one of the coolant interblock channels, six corner edges on the blocks have vertical groves defining one-third of an interblock channel, the vertical sides of the blocks defining planar vertical surfaces

  16. Nuclear fuel element nut retainer cup

    International Nuclear Information System (INIS)

    Walton, L.A.

    1977-01-01

    A typical embodiment has an end fitting for a nuclear reactor fuel element that is joined to the control rod guide tubes by means of a nut plate assembly. The nut plate assembly has an array of nuts, each engaging the respective threaded end of the control rod guide tubes. The nuts, moreover, are retained on the plate during handling and before fuel element assembly by means of hollow cylindrical locking cups that are brazed to the plate and loosely circumscribe the individual enclosed nuts. After the nuts are threaded onto the respective guide tube ends, the locking cups are partially deformed to prevent one or more of the nuts from working loose during reactor operation. The locking cups also prevent loose or broken end fitting parts from becoming entrained in the reactor coolant

  17. Determining fissile content of nuclear fuel elements

    International Nuclear Information System (INIS)

    Arya, S.P.; Grossman, L.N.; Schoenig, F.C.

    1980-01-01

    This invention relates to the determination of the fissile fuel content of fuel for nuclear reactors. A nondestructive method is described for determining rapidly, accurately and simultaneously the fissile content, enrichment and location of fuel material which may also contain amounts of burnable poison, by detecting the γ-rays emitted from the fuel material due to natural radioactive decay. (U.K.)

  18. Method of manufacturing nuclear fuel elements

    International Nuclear Information System (INIS)

    Ishida, Masao; Oguma, Masaomi.

    1980-01-01

    Purpose: To effectively prevent the bending of nuclear fuel elements in the reactor by grinding the end faces of pellets due to their mutual sliding. Method: In the manufacturing process of nuclear fuel elements, a plurality of pellets whose sides have been polished are fed one by one by way of a feeding mechanism through the central aperture in an electric motor into movable arms and retained horizontally with the central axis by being held on the side. Then, the pellet held by one of the arms is urged to another pellet held by the other of the arms by way of a pressing mechanism and the mating end faces of both of the pellets are polished by mutual sliding. Thereafter, the grinding dusts resulted are eliminated by drawing pressurized air and then the pellets are enforced into a cladding tube. Thus, the pellets are charged into the cladding tube with both polished end faces being contacted to each other, whereby the axial force is uniformly transmitted within the end faces to prevent the bending of the cladding tube. (Kawakami, Y.)

  19. Fuel element concept for long life high power nuclear reactors

    Science.gov (United States)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  20. Fuel element shipping shim for nuclear reactor

    International Nuclear Information System (INIS)

    Gehri, A.

    1975-01-01

    A shim is described for use in the transportation of nuclear reactor fuel assemblies. It comprises a member preferably made of low density polyethylene designed to have three-point contact with the fuel rods of a fuel assembly and being of sufficient flexibility to effectively function as a shock absorber. The shim is designed to self-lock in place when associated with the fuel rods. (Official Gazette)

  1. Fluid pressure method for recovering fuel pellets from nuclear fuel elements

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1979-01-01

    A method is described for removing fuel pellets from a nuclear fuel element without damaging the fuel pellets or fuel element sheath so that both may be reused. The method comprises holding the fuel element while a high pressure stream internally pressurizes the fuel element to expand the fuel element sheath away from the fuel pellets therein so that the fuel pellets may be easily removed

  2. Method of dismantling nuclear fuel elements

    International Nuclear Information System (INIS)

    Adams, G.J.

    1983-01-01

    Nuclear fuel assemblies of the kind comprising fuel pins in dimpled cellular grids are freed from the grids to aid dismantling of the assemblies by causing a rotary sleeve to pass concentrically over the pins to remove the dimples in the grids and thereby increase the freedom of the pins in the cells of the grids. (author)

  3. Fuel element for a nuclear reactor

    International Nuclear Information System (INIS)

    Tanihiro, Yasunori; Sumita, Isao.

    1970-01-01

    An improved fuel element of the heat pipe type is disclosed in which the fuel element itself is given a heat pipe structure and filled with a coated particle fuel at the section thereof having a capillary tube construction, whereby the particular advantages of heat pipes and coated fuels are combined and utilized to enhance thermal control and reactor efficiency. In an embodiment, the fuel element of the present invention is filled at its lower capillary tube section with coated fuel and at its upper section with a granurated neutron absorber. Both sections are partitioned from the central shaft by a cylindrically shaped wire mesh defining a channel through which the working liquid is vaporized from below and condensed by the coolant external to the fuel element. If the wire mesh is chosen to have a melting point lower than that of the fuel but higher than that of the operating temperature of the heat pipe, the mesh will melt and release the neutron absorbing particles should hot spots develop, thus terminating fission. (Owens, K. J.)

  4. Elements of nuclear reactor fueling theory

    International Nuclear Information System (INIS)

    Egan, M.R.

    1984-01-01

    Starting with a review of the simple batch size effect, a more general theory of nuclear fueling is derived to describe the behavior and physical requirements of operating cycle sequences and fueling strategies having practical use in the management of nuclear fuel. The generalized theory, based on linear reactivity modeling, is analytical and represents the effects of multiple-stream, multiple-depletion-batch fueling configurations in systems employing arbitrary, non-integer batch size strategies, and containing fuel with variable energy generation rates. Reactor operating cycles and cycle sequences are represented with realistic structure that includes the effects of variable cycle energy production, cycle lengths, end-of-cycle operating extensions and maneuvering allowances. Results of the analytical theory are first applied to the special case of degenerate equilibrium cycle sequences, yielding several fundamental principles related to the selection of refueling strategy, and which govern fueling decisions normally made by the fuel manager. It is also demonstrated in this application that the simple batch size effect is not valid for non-integer fueling strategies, even in the simplest sequence configurations, and that it systematically underestimates the fueling requirements of degenerate sequences in general

  5. Fuel element for a nuclear reactor

    International Nuclear Information System (INIS)

    Rau, P.

    1981-01-01

    Fuel elements which consist of parallel longitudinal fuel rods of circular crossection, can be provided with spiral distance pieces, by which the fuel rods support one another, if they are collected together by an outer enclosure. According to the invention, the enclosure includes several strips extending over a small fraction of the rod length, which are connected together by a skeleton rod instead of a fuel rod. The strips can be composed of flat parts which are connected together by the skeleton rod acting as a hinge. The invention is particularly suitable for breeder or converter reactors. (orig.) [de

  6. Nuclear fuel element recovery using PEDSCO RMI Unit

    International Nuclear Information System (INIS)

    Martin, D.G.; Pedersen, B.V.

    1984-01-01

    In September 1982, a PEDSCO Remote Mobile Investigation Unit was used to recover damaged irradiated fuel elements from a fueling machine and trolley deck at Bruce Nuclear Generating Station 'A'. This Canadian-made remote controlled vehicle was originally designed for explosive ordinance disposal by law enforcement agencies. This paper describes its adaptation to nuclear service and its first mission, within a nuclear facility

  7. Fuel element clusters for nuclear reactors

    International Nuclear Information System (INIS)

    Anthony, A.J.; Hutchinson, J.J.

    1975-01-01

    In the fuel element assembly for nuclear reactors the influence of temperature cycles upon the stability of the joints between the individual components, especially between the control rod guide tubes and the connecting rods and end plates, respectively, is reduced. For this purpose, the connection is designed as a bolted connection connecting, on the one hand, the guide tubes and guide bolts and, on the other hand, these two components and the end plates. Moreover, the materials of the guide tubes, bolts and end plates are selected so that their respective thermal expansion coefficients differ. The material which can be used for the end plates and the guide bolts is stainless steel and stainless steel plus inconel (nickel-chrome-iron alloy), respectively; for the guide tubes it is a zirconium alloy (zircaloy). In addition to some technical designs of the bolted connections the materials and lengths of the components are selected in such a way that the expansion path of the components held by a bolted connection is equal to that of the stressing part. (DG/RF) [de

  8. Reliability analysis of dispersion nuclear fuel elements

    Science.gov (United States)

    Ding, Shurong; Jiang, Xin; Huo, Yongzhong; Li, Lin an

    2008-03-01

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  9. Reliability analysis of dispersion nuclear fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Ding Shurong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)], E-mail: dsr1971@163.com; Jiang Xin [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Huo Yongzhong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)], E-mail: yzhuo@fudan.edu.cn; Li Linan [Department of Mechanics, Tianjin University, Tianjin 300072 (China)

    2008-03-15

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  10. Spacer device for nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Anthony, A.J.; Gaines, A.L.; Krawiec, D.M.

    1974-01-01

    The grid-type spacer device consists of two rows of main spacers arranged parallel to each other with some space in between, the first row extending perpendicular to the second row. Parallel to the respective rows of main spacers there are rows of secondary spacers interlocked with the main spacers. The individual spacers are welded together at their points of intersection. A large number of spring cages are installed within the spacer device to hold in place the main spacers which are oriented at right angles relative to each other. In addition, the spring cages serve for supporting the fuel elements. The spacers are made of zirconium which does not greatly influence the neutron capture cross section of the reactor. The material of the spring cages with the spring elements is a nickel alloy. It has the necessary stress relaxation properties to be able to force the fuel elements against the spacers under the action of the spring. (DG) [de

  11. Laser assisted decontamination of nuclear fuel elements

    International Nuclear Information System (INIS)

    Padma Nilaya, J.; Biswas, Dhruba J.; Kumar, Aniruddha

    2010-04-01

    Laser assisted removal of loosely bound fuel particulates from the clad surface following the process of pellet loading has decided advantages over conventional methods. It is a dry and noncontact process that generates very little secondary waste and can occur inside a glove box without any manual interference minimizing the possibility of exposure to personnel. The rapid rise of the substrate/ particulate temperature owing to the absorption of energy from the incident laser pulse results in a variety of processes that may lead to the expulsion of the particulates. As a precursor to the cleaning of the fuel elements, initial experiments were carried out on contamination simulated on commonly used clad surfaces to gain a first hand experience on the various laser parameters for which as efficient cleaning can be obtained without altering the properties of the clad surface. The cleaning of a dummy fuel element was subsequently achieved in the laboratory by integrating the laser with a work station that imparted simultaneous rotational and linear motion to the fuel element. (author)

  12. Assembly for transport and storage of radioactive nuclear fuel elements

    International Nuclear Information System (INIS)

    Myers, G.

    1978-01-01

    The invention concerns the self-control of coolant deficiencies on the transport of spent fuel elements from nuclear reactors. It guarantees that drying out of the fuel elements is prevented in case of a change of volume of the fluid contained in storage tanks and accumulators and serving as coolant and shielding medium. (TK) [de

  13. Fuel element cluster for nuclear reactors

    International Nuclear Information System (INIS)

    Anthony, A.J.; Hutchinson, J.J.

    1976-01-01

    The claim refers to the constructional design of a fuel element cluster the elements of which are held by upper and lower end plates connected to each other in upright position, the bearing being formed by a screw connection between at least one guide tube for control rods and the two end plates. The claims are directed, especially, to the connection of the parts as well as to the materials selection which are determined to a high degree by the thermal expansion coefficients. (UA) [de

  14. Elements of nuclear reactor fueling theory

    International Nuclear Information System (INIS)

    Egan, M.R.

    1984-01-01

    Starting with a review of the simple batch size effect, a more general theory of nuclear fueling is derived to describe the behaviour and physical requirements of operating cycle sequences and fueling strategies having practical use in fuel management. The generalized theory, based on linear reactivity modeling, is analytical and represents the effects of multiple-stream, multiple-depletion-batch fueling configurations in systems employing arbitrary, non-integer batch size strategies, and containing fuel with variable energy generation rates. Reactor operating cycles and cycle sequences are represented with realistic structure that includes the effects of variable cycle energy production, cycle lengths, end-of-cycle operating extensions and manoeuvering allowances. Results of the analytical theory are first applied to the special case of degenerate equilibrium cycle sequences, yielding several fundamental principles related to the selection of refueling strategy. Numerical evaluations of degenerate equilibrium cycle sequences are then performed for a typical PWR core, and accompanying fuel cycle costs are calculated. The impact of design and operational limits as constraints on the performance mappings for this reactor are also studied with respect to achieving improved cost performance from the once-through fuel cycle. The dynamics of transition cycle sequences are then examined using the generalized theory. Proof of the existence of non-degenerate equilibrium cycle sequences is presented when the mechanics of the fixed reload batch size strategy are developed analytically for transition sequences. Finally, an analysis of the fixed reload enrichment strategy demonstrates the potential for convergence of the transition sequence to a fully degenerate equilibrium sequence. (author)

  15. Nuclear reactor fuel element sub-assemblies

    International Nuclear Information System (INIS)

    Hill, G.D.; Trevalion, P.A.

    1977-01-01

    A fuel element sub-assembly for a liquid metal cooled fast reactor is described. It comprises a bundle of fuel pins enclosed by a tubular wrapper having a lower end journal for plugging into an upper aperture in a core supporting structure and a spike bar with an articulated bush for engaging a lower aperture in the core supporting structure. The articulated bush is retained on a spherical end portion of the spike bar by a pair of parallel retaining pins arranged transversely and disposed one each side of the spike bar. The pins are tubular and collapsible at a predetermined loading to enable the spherical end portion to pass between them. The articulated bush has an internal groove for engagement by a lifting grab, this groove being formed in a bore for receiving the spherical end portion of the spike bar. The construction lessens liability to rattling of the fuel element sub-assemblies and aids removal for replacement. (U.K.)

  16. Production of pellets for nuclear fuel elements

    International Nuclear Information System (INIS)

    Butler, G.G.

    1982-01-01

    A method for producing nuclear fuel pellets each made up of a central portion and an outer annular portion surrounding the central portion, the two portions differing in composition. Such pellets are termed annular-layered pellets. The method comprises the steps of pressing powdered refractory material which has been granulated to form separately a central portion and an outer annular portion, assembling the portions together, compacting the assembly and sintering the compact. The portions are bonded together during sintering. The difference in composition may include a difference in density or isotopic enrichment as well as a chemical difference. (author)

  17. The nuclear fuel cycle: (2) fuel element manufacture

    International Nuclear Information System (INIS)

    Doran, J.

    1976-01-01

    Large-scale production of nuclear fuel in the United Kingdom is carried out at Springfields Works of British Nuclear Fuels Ltd., a company formed from the United Kingdom Atomic Energy Authority in 1971. The paper describes in some detail the Springfields Works processes for the conversion of uranium ore concentrate to uranium tetrafluoride, then conversion of the tetrafluoride to either uranium metal for cladding in Magnox to form fuel for the British Mk I gas-cooled reactors, or to uranium hexafluoride for enrichment of the fissile 235 U isotope content at the Capenhurst Works of BNFL. Details are given of the reconversion at Springfields Works of this enriched uranium hexafluoride to uranium dioxide, which is pelleted and then clad in either stainless steel or zircaloy containers to form the fuel assemblies for the British Mk II AGR or advanced gas-cooled reactors or for the water reactor fuels. (author)

  18. Nuclear fuel element, and method of producing same

    International Nuclear Information System (INIS)

    Armijo, J.S.; Esch, E.L.

    1986-01-01

    This invention relates to an improvement in nuclear fuel elements having a composite container comprising a cladding sheath provided with a protective barrier of zirconium metal covering the inner surface of the sheath, rendering such fuel elements more resistant to hydrogen accumulation in service. The invention specifically comprises removing substantially all zirconium metal of the barrier layer from the part of the sheath surrounding and defining the plenum region. Thus the protective barrier of zirconium metal covers only the inner surface of the fuel container in the area immediately embracing the fissionable fuel material

  19. Handling system for nuclear reactor fuel and reflector elements

    International Nuclear Information System (INIS)

    Hawke, B.C.; Goldman, L.A.

    1980-01-01

    A system for canning, inspecting and transferring to a storage area fuel and reflector elements from a nuclear reactor is described. The canning mechanism operates in a sealed gaseous environment and visual and mechanical inspection of the elements is possible by an operator from a remote shielded area. (UK)

  20. Fuel element

    International Nuclear Information System (INIS)

    Kennedy, S.T.

    1982-01-01

    A nuclear reactor fuel element wherein a stack of nuclear fuel is prevented from displacement within its sheath by a retainer comprising a tube member which is radially expanded into frictional contact with the sheath by means of a captive ball within a tapered bore. (author)

  1. Positioning device for fuel rods of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    1987-01-01

    The positioning device consists of individual containers, similar to cases, for the fuel elements. These cases are arranged vertically next to one another and are held by means of vertical support posts and horizontal arms. The openings of the cases can be individually approached by the trolleys. (DG) [de

  2. Nuclear fuel element and a method of manufacture thereof

    International Nuclear Information System (INIS)

    Wood, J.C.

    1975-01-01

    A nuclear fuel element having a sheath of zirconium or a zirconium alloy and a cross-linked siloxane lacquer coating on the inner surface of the sheath and separating the nuclear fuel material from the sheath is described. The siloxane lacquer coating retards cracking of the sheath by iodine vapor emitted by the fuel during burn-up, and acts as a lubricant for the fuel to prevent rupture of the sheath by thermal ratchetting of the fuel against the sheath and caused by differential thermal expansion between the fuel and the sheath. A silicone grease is applied as a thin layer in the sheath and then baked so that oxidative cleavage of the side chains of the grease occurs to form a cross-linked siloxane lacquer coating bonded to the sheath

  3. End plug welding of nuclear fuel elements-AFFF experience

    International Nuclear Information System (INIS)

    Bhatt, R.B.; Singh, S.; Aniruddha Kumar; Amit; Arun Kumar; Panakkal, J.P.; Kamath, H.S.

    2004-01-01

    Advanced Fuel Fabrication Facility is engaged in the fabrication of mixed oxide (U,Pu)O 2 fuel elements of various types of nuclear reactors. Fabrication of fuel elements involves pellet fabrication, stack making, stack loading and end plug welding. The requirement of helium bonding gas inside the fuel elements necessitates the top end plug welding to be carried out with helium as the shielding gas. The severity of the service conditions inside a nuclear reactor imposes strict quality control criteria, which demands for almost defect free welds. The top end plug welding being the last process step in fuel element fabrication, any rejection at this stage would lead to loss of effort prior to this step. Moreover, the job becomes all the more difficult with mixed oxide (MOX) as the entire fabrication work has to be carried out in glove box trains. In the case of weld rejection, accepted pellets are salvaged by cutting the clad tube. This is a difficult task and recovery of pellets is low (requiring scrap recovery operation) and also leads to active metallic waste generation. This paper discusses the experience gained at AFFF, in the past 12 years in the area of end plug welding for different types of MOX fuel elements

  4. Improved moulding material for addition to nuclear fuel particles to produce nuclear fuel elements

    International Nuclear Information System (INIS)

    Miertschin, G.N.; Leary, D.F.

    1976-01-01

    A suggestion is made to improve the moulding materials used to produce carbon-contained nuclear fuel particles by a coke-reducing added substance. The nuclear fuel particles are meant for the formation of fuel elements for gas-cooled high-temperature nuclear reactors. The moulding materials are above all for the formation of coated particles which are burnt in situ in nuclear fuel element chambers out of 'green' nuclear fuel bodies. The added substance improves the shape stability of the particles forming and prevents a stiding or bridge formation between the particles or with the surrounding walls. The following are named as added substances: 1) Polystyrene and styrene-butadiene-Co polymers (mol. wt. between 5oo and 1,000,000), 2) aromatic compounds (mol. wt. 75 to 300), 3) saturated hydrocarbon polymers (mol. wt. 5,000 to 1,000,000). Additional release agents further improve the properties in the same direction (e.g. alcohols, fatty acids, amines). (orig.) [de

  5. Thermomechanical analysis of nuclear fuel elements

    International Nuclear Information System (INIS)

    Hernandez L, H.

    1997-01-01

    This work presents development of a code to obtain the thermomechanical analysis of fuel rods in the fuel assemblies inserted in the core of BWR reactors. The code uses experimental correlations developed in several laboratories. The development of the code is divided in two parts: a) the thermal part and b) the mechanical part, extending both the fuel and the cladding materials. The thermal part consists of finding the radial distribution of temperatures in the pellet, from the fuel centerline up to the coolant, along the total active length, considering one and two phase flow in the coolant, as a result of the pressure drop in the system. The mechanical part analyzes the effects of temperature gradients, pressure and irradiation, to which the fuel rod is subjected. The strains produced by swelling, creep and thermal stress in the fuel material are analyzed. In the same way the strains in the cladding are analyzed, considering the effects produced by the pressure exerted on the cladding by pellet swelling, by the pressure caused by fission gas release toward the cavities, and by the strain produced on the cladding by the pressure changes of the system. (Author)

  6. Experimental study of water flow in nuclear fuel elements

    International Nuclear Information System (INIS)

    Rodrigues, Lorena Escriche; Rezende, Hugo Cesar; Mattos, Joao Roberto Loureiro de; Barros Filho, Jose Afonso; Santos, Andre Augusto Campagnole dos

    2013-01-01

    This work aims to develop an experimental methodology for investigating the water flow through rod bundles after spacer grids of nuclear fuel elements of PWR type reactors. Speed profiles, with the device LDV (Laser Doppler Velocimetry), and the pressure drop between two sockets located before and after the spacer grid, using pressure transducers were measured

  7. The fabrication of nuclear fuel elements in Mexico

    International Nuclear Information System (INIS)

    Guerrero Morillo, H.L.

    1977-01-01

    The situation of nuclear electricity generation in Mexico in 1976 is described: two nuclear reactors were under construction but no definite programme on the type and start-up dates for the next power plants existed. However, the existence of a general plan on nuclear power plants is mentioned, which, according to the latest estimates, will provide 10,000MW installed by 1990. The national intention, as laid down in an appropriate Law, is to supply domestic nuclear fuel to the power reactors operating in the country, starting with the first reloading of the two BWRs at the first national station in Laguna Verde, required at the end of 1981 and 1982, respectively. Before this can be achieved and to provide the relatively small amounts of fuel elements for the two reactors, Mexico must adopt a strategy of fuel elements fabrication. The two main options are analysed: (1) to delay local fabrication until a national nuclear programme has been defined, meanwhile purchasing abroad the necessary initial cores and refuelling; (2) to start local fabrication of fuel elements as soon as possible in order to provide the first refuelling of the first unit of Laguna Verde, confronting the economic risks of such a decision with the advantages of immediate action. Both options are analysed in detail, comparing them especially from the economic point of view. Current information from potential licensors for design and manufacture are used in the analysis. (author)

  8. Process for assembling a nuclear fuel element

    International Nuclear Information System (INIS)

    Wachtendonk, H.J. von.

    1984-01-01

    Before insertion into the spacers, the fuel rocks are coated with a self-hardening layer of water-soluble polyvinyl and/or polyether polymer to prevent scratches on the cladding tubes. After insertion, the protective conting is removed by means of water. (orig.) [de

  9. Quality assurance in nuclear fuel element component supply

    International Nuclear Information System (INIS)

    Jenkins, B.P.

    1987-01-01

    The paper describes the application of Quality Assurance to nuclear fuel element component supply. The Quality Assurance programme includes integrated procurement, purchasing, surveillance and receipt inspection functions. Purchasing policy is based on a consistent preference for competitive tendering. Multiple sourcing is used to encourage competitive pricing and increase security of supply. A receipt inspection facility is maintained to ensure the high product quality levels demanded by the nuclear industry. (U.K.)

  10. The permission of transport of irradiated nuclear fuel elements

    International Nuclear Information System (INIS)

    Klomberg, T.J.M.

    2000-01-01

    In July and October 2000 the Dutch government granted permits for the transportation of irradiated nuclear fuel elements. The environmental organization Greenpeace objected against the permit, but that was rejected by the Dutch Council of State. A brief overview is given of the judgements and the state-of-the-art with respect to the transportation of the elements from Dutch reactors and storage facilities in Petten, Dodewaard and Borssele to Cogema in La Hague, France and BNFL in Sellafield, England

  11. Brazing process in nuclear fuel element fabrication

    International Nuclear Information System (INIS)

    Katam, K.; Sudarsono

    1982-01-01

    The purpose of the brazing process is to join the spacers and pads of fuel pins, so that the process is meant as a soldering technique and not only as a hardening or reinforcing process such as in common brazing purposes. There are some preliminary processes before executing the brazing process such as: materials preparation, sand blasting, brazing metal coating tack welding the spacers and pads on the fuel cladding. The metal brazing used is beryllium in strip form which will be evaporated in vacuum condition to coat the spacers and pads. The beryllium vapor and dust is very hazardous to the workers, so all the line process of brazing needs specials safety protection and equipment to protect the workers and the processing area. Coating process temperature is 2470 deg C with a vacuum pressure of 10 -5 mmHg. Brazing process temperature process is 1060 deg C with a vacuum pressure of 10 -6 mmHg. The brazing process with beryllium coating probably will give metallurgical structural change in the fuel cladding metal at the locations of spacers and pads. The quality of brazing is highly influenced by and is depending on the chemical composition of the metal and the brazing metal, materials preparations, temperature, vacuum pressure, time of coating and brazing process. The quality control of brazing could be performed with methods of visuality geometry, radiography and metallography. (author)

  12. Review of fuel element development for nuclear rocket engines

    International Nuclear Information System (INIS)

    Taub, J.M.

    1975-06-01

    The Los Alamos Scientific Laboratory (LASL) entered the nuclear propulsion field in 1955 and began work on all aspects of a nuclear propulsion program involving uranium-loaded graphite fuels, hydrogen propellant, and a target exhaust temperature of approximately 2500 0 C. A very extensive uranium-loaded graphite fuel element technology evolved from the program. Selection and composition of raw materials for the extrusion mix had to be coupled with heat treatment studies to give optimum element properties. The highly enriched uranium in the element was incorporated as UO 2 , pyrocarbon-coated UC 2 , or solid solution UC . ZrC particles. An extensive development program resulted in successful NbC or ZrC coatings on elements to withstand hydrogen corrosion at elevated temperatures. Hot gas, thermal shock, thermal stress, and NDT evaluation procedures were developed to monitor progress in preparation of elements with optimum properties. Final evaluation was made in reactor tests at NRDS. Aerojet-General, Westinghouse Astronuclear Laboratory, and the Oak Ridge Y-12 Plant of Union Carbide Nuclear Company entered the program in the early 1960's, and their activities paralleled those of LASL in fuel element development. (U.S.)

  13. Store for burnt-up fuel elements of nuclear reactors

    International Nuclear Information System (INIS)

    Kumpf, H.

    1981-01-01

    Burnt-up fuel elements of nuclear reactors have to be cooled during storage. For this reason the boxes which surround the fuel elements can have cooling air flowing round them in natural flow. This air is taken through the walls of a storage building through zones of parallel pipes, whose diameter and spacing are in the ratio of 1 : 0.5 to 1 : 2. The pipes have dust filters. Prefilters with fan drive are situated in parallel with the inlet pipe zones. (orig.) [de

  14. FABRICATION OF TUBE TYPE FUEL ELEMENT FOR NUCLEAR REACTORS

    Science.gov (United States)

    Loeb, E.; Nicklas, J.H.

    1959-02-01

    A method of fabricating a nuclear reactor fuel element is given. It consists essentially of fixing two tubes in concentric relationship with respect to one another to provide an annulus therebetween, filling the annulus with a fissionablematerial-containing powder, compacting the powder material within the annulus and closing the ends thereof. The powder material is further compacted by swaging the inner surface of the inner tube to increase its diameter while maintaining the original size of the outer tube. This process results in reduced fabrication costs of powdered fissionable material type fuel elements and a substantial reduction in the peak core temperatures while materially enhancing the heat removal characteristics.

  15. Modeling and Simulation of a Nuclear Fuel Element Test Section

    Science.gov (United States)

    Moran, Robert P.; Emrich, William

    2011-01-01

    "The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.

  16. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    Science.gov (United States)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  17. Fuel element

    International Nuclear Information System (INIS)

    Armijo, J.S.

    1976-01-01

    A fuel element for nuclear reactors is proposed which has a higher corrosion resisting quality in reactor operations. The zirconium alloy coating around the fuel element (uranium or plutonium compound) has on its inside a protection layer of metal which is metallurgically bound to the substance of the coating. As materials are namned: Alluminium, copper, niobium, stainless steel, and iron. This protective metallic layer has another inner layer, also metallurgically bound to its surface, which consists usually of a zirconium alloy. (UWI) [de

  18. Plant Design Nuclear Fuel Element Production Capacity Optimization to Support Nuclear Power Plant in Indonesia

    International Nuclear Information System (INIS)

    Bambang Galung Susanto

    2007-01-01

    The optimization production capacity for designing nuclear fuel element fabrication plant in Indonesia to support the nuclear power plant has been done. From calculation and by assuming that nuclear power plant to be built in Indonesia as much as 12 NPP and having capacity each 1000 MW, the optimum capacity for nuclear fuel element fabrication plant is 710 ton UO 2 /year. The optimum capacity production selected, has considered some aspects such as fraction batch (cycle, n = 3), length of cycle (18 months), discharge burn-up value (Bd) 35,000 up 50,000 MWD/ton U, enriched uranium to be used in the NPP (3.22 % to 4.51 %), future market development for fuel element, and the trend of capacity production selected by advances country to built nuclear fuel element fabrication plant type of PWR. (author)

  19. Convective parameters in fuel elements for research nuclear reactors

    International Nuclear Information System (INIS)

    Lopez Martinez, C.D.

    1992-01-01

    The study of a prototype for the simulation of fuel elements for research nuclear reactors by natural convection in water is presented in this paper. This project is carry out in the thermofluids laboratory of National Institute of Nuclear Research. The fuel prototype has already been test for natural convection in air, and the first results in water are presented in this work. In chapter I, a general description of Triga Mark III is made, paying special atention to fuel-moderator components. In chapter II and III an approach to convection subject in its global aspects is made, since the intention is to give a general idea of the events occuring around fuel elements in a nuclear reactor. In chapter II, where an emphasis on forced convection is made, some basic concepts for forced convection as well as for natural convection are included. The subject of flow through cylinders is annotated only as a comparative reference with natural convection in vertical cylinders, noting the difference between used correlations and the involved variables. In chapter III a compilation of correlation found in the bibliography about natural convection in vertical cylinders is presented, since its geometry is the more suitable in the analysis of a fuel rod. Finally, in chapter IV performed experiments in the test bench are detailed, and the results are presented in form of tables and graphs, showing the used equations for the calculations and the restrictions used in each case. For the analysis of the prototypes used in the test bench, a constant and uniform flow of heat in the whole length of the fuel rod is considered. At the end of this chapter, the work conclusions and a brief explanation of the results are presented (Author)

  20. Nuclear criticality assessment of LEU and HEU fuel element storage

    International Nuclear Information System (INIS)

    Pond, R.B.; Matos, J.E.

    1984-01-01

    Criticality aspects of storing LEU (20%) and HEU (93%) fuel elements have been evaluated as a function of 235 U loading, element geometry, and fuel type. Silicide, oxide, and aluminide fuel types have been evaluated ranging in 235 U loading from 180 to 620 g per element and from 16 to 23 plates per element. Storage geometry considerations have been evaluated for fuel element separations ranging from closely packed formations to spacings of several centimeters between elements. Data are presented in a form in which interpolations may be made to estimate the eigenvalue of any fuel element storage configuration that is within the range of the data. (author)

  1. The fabrication of nuclear fuel elements in Mexico

    International Nuclear Information System (INIS)

    Guerrero Morillo, H.L.

    1977-01-01

    The situation of the nucleoelectrical generation in Mexico by 1976 is described: two nuclear reactors under construction but no defined program on the type and start-up dates for the next power plants. However the existence of a general plan on nuclear power plants is mentioned, which, according to the last estimates reaches to 10,000 MW installed by 1990. The national intension, definitely expressed in the Law, is to supply domestic nuclear fuel to the power reactors operating in the country, starting with the first reload for the two BWR's at the first national station in Laguna Verde, which will be required at the end of 1981 and of 1982, respectively. Before such circumstances and the relatively short amounts of fuel elements that should be produced for those two unique reactors, Mexico already has to adopt a strategy to follow in respect to fuel elements fabrication. The two main options are analyzed: 1. To delay the local fabrication until a National Nuclear Program may be defined, meanwhile purchasing abroad the necessary reloads and initial cores; and 2. To start as soon as possible the local fuel elements fabrication in order to supply fuel for the first reload of the first unit of Laguna Verde, confronting the economical risks of such posture with the advantages of an immediate action. Both options are analyzed in detail comparing them specially under the economic point of view, standing out immediately the big effect of some factors which are economically imponderable, as experience and independance that would be gained with the second option. Emphasis is made on the advantages and risks of any case. According to the first option and once a National Program is defined, the work would be heavy but of simple strategy. On the contrary, the second option requires the adoption of a more complicated strategy, as either the project of the factory as its initial operation should be made under transient conditions, in view of the expected future expansion still

  2. Surface coating Zr or Zr alloy nuclear fuel elements

    International Nuclear Information System (INIS)

    Donaghy, R.E.; Sherman, A.H.

    1980-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer. (author)

  3. Memory list for the ordering of nuclear fuel elements with UO2 fuel

    International Nuclear Information System (INIS)

    1977-01-01

    The memory list will help to simplify and speed up the technical procedure of fuel element supply for nuclear reactors. Operators of nuclear power plants take great interest in the latest state of thechnology, if sufficiently tested, being applied with regard to material, manufacturing and testing methods. In order to obtain an unlimited availability of the nuclear plant in the future, this application of technology should be taken care of when designing and producing fuel elements. When ordering fuel elements special attention should be drawn to the interdependence of reactor and fuel element with reqard to design and construction, about which, howevers, no further details are given. When ordering fuel elements the operator give the producer all design data of the reactor core and the fuel elements as well as the planned operation mode. He also hands in the respective graphs and the required conditions for design so that a correct and detailed offer can be supplied. An exemplary extent of supply is shown in the given memory list. The regulations required herefore on passing technical material to the fuel element producers have to be established by agreements made by the customer. The order to be given should be itemized as follows: requirements, quality controland quality assurance, warranties and conditions, limits and extent of supply, terms of delivery. (orig./HP) [de

  4. Storage ponds for fuel elements of nuclear reactors

    International Nuclear Information System (INIS)

    Kumpf, H.

    1981-01-01

    Heat exchangers are inserted in storage ponds for fuel elements of nuclear reactors, so that the heat to be removed is given up to an external coolant, without any radio-activity being emitted. The heat exchanger is a hollow body, which is connected to an air cooler, which works with a cooling circuit with natural circulation. A cooling pipe is enclosed in the hollow body, which forms a cooling circuit with forced flow with an open pond. One therefore obtains two successive separating walls for the external coolant. (orig.) [de

  5. Storage device for fuel rods of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Kempf, B.

    1983-01-01

    The storage device, which can be flexibly matched to the number of fuel rods to be stored and is not tied to a space, has a vertical support post situated on the floor and a stiff upright also situated vertically on the floor, which is used to accommodate at least one fuel rod. The stiff upright is connected directly to the support post by connections which can be undone, or form locking via another vertical stiff upright situation on the floor. (orig./HP) [de

  6. Device for manipulating a nuclear reactor fuel element in a fuel element pond containing water

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1977-01-01

    Using this device a fuel element can be manipulated inside a water filled storage pond for inspection purposes. A transport arrangement which is normally situated above such a pond is modified for this purpose. A crane bridge runs on rails on the upper edge of the pond. A type of trolley runs transversely to the direction of travel of the bridge between 2 wide flange supports forming the crane support. During movement this trolley moves a submerged combination of periscope and TV camera pendant from it at about half the pond height horizontally along the crane support. 2 vehicles move between these on 4 rollers each, on the under flanges of the crane support at spacings of about one fuel element length. A pendant arm of the same length as the periscope dips vertically into the pond from each vehicle. There is a bar of about fuel element length resting on the lower ends of both arms. The surface of a fuel element lying on this bar can be inspected through the periscope on longitudinal travel of the trolley. The bar with the fuel element can be rotated 90 0 downwards into a vertical position after removal of one or more rotating kingpins and release of a rope hanging on the end away from the kingpin. The rope is actuated by a winch on the crane support. The bar has vertical plates at both ends to hold the fuel element in its vertical position. (HP) [de

  7. Nuclear reactor fuel element with a cluster of parallel fuel pins

    International Nuclear Information System (INIS)

    Macfall, D.; Butterfield, C.E.; Butterfield, R.S.

    1977-01-01

    An improvement of the design of nuclear reactor fuel elements is described and illustrated by the example of a gas-cooled, graphite-moderated nuclear reactor. The fuel element has a cluster of parallel fuel pins with an outer can of structure material and an inner sleeve, as well as tie bars and spacing devices for all of these parts. The fuel element designed according to the invention allows lasy assembling and disassembling before and after use. During use, no relative axial motions are possible; nevertheless, the graphite sleeve is at no time subject to tensile stress: the individual parts are held in position from below by a single holding device. (UWI) [de

  8. Investigation on laser welding characteristics for appendage of bearing pads of nuclear fuel element

    International Nuclear Information System (INIS)

    Kim, S. S.; Kim, W. K.; Park, C. H.; Ko, J. H.; Lee, J. W.; Yang, M. S.

    2001-01-01

    In CANDU nuclear fuel manufacturing the brazing technology has been adopted conventionally to attach the bearing pads of nuclear fuel elements. However, in order to meet good performance of nuclear fuel and improved working efficiency, we started developing the laser welding technology for attachments of the bearing pads. Since the YAG laser can be suitable for small parts and transmit the beam through the optical fiber, the process is corresponding to mass-production with working shops. Making the most of this feature, we have developed the laser welding for appendage of the bearing pads of nuclear fuel elements, and has studied on the laser welding characterisitcs of appendages for nuclear fuel element

  9. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  10. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  11. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    International Nuclear Information System (INIS)

    Allen, G.C.; Beck, D.F.; Harmon, C.D.; Shipers, L.R.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program. 2 refs

  12. Storage device for a long nuclear reactor fuel element and/or a long nuclear reactor fuel element part

    International Nuclear Information System (INIS)

    Vogt, M.; Schoenwitz, H.P.; Dassbach, W.

    1986-01-01

    The storage device can be erected in a dry storage room for new fuel elements and also in a storage pond for irradiated fuel elements. It consists of shells, which are arranged vertically and which have a lid. A suspension for the fuel element is provided on the underside of the lid, which acts as a support against squashing or bending in case of vertical forces acting (earthquake). (DG) [de

  13. Device for a nuclear reactor. [Fuel element spacers

    Energy Technology Data Exchange (ETDEWEB)

    Foulds, R B; Kasberg, A H; Puechl, K H; Bleiberg, M L

    1972-03-08

    A spacer design for fuel element clusters for PWR type reactors is described. It consists of a frame supporting an egg-carton like grid each sector of which is provided with springs which grip the fuel pins. The spring design is such as to prevent fuel pin vibrations and at same time accommodate fuel pin deformations. Formulae for the calculation of natural frequencies, spring stiffness and friction loads are presented.

  14. Nuclear criticality assessment of Oak Ridge research fuel element storage

    International Nuclear Information System (INIS)

    Thomas, J.T.

    1978-06-01

    Spent and partially spent Oak Ridge Research Reactor (ORR) fuel elements are retained in the storage section of the ORR pool facility. Determination of a maximum expected neutron multiplication factor for the storage area is accomplished by a validated calculational method. The KENO Monte Carlo code and the Hansen-Roach 16-group neutron cross section sets were validated by calculations of critical experiments performed with early ORR fuel elements and with SPERT-D fuel elements. Calculations of various fuel element arrangements are presented which confirm the subcriticality previously inferred from critical experiments and indicate the k/sub eff/ would not exceed 0.85, were the storage area to be filled to capacity with storage racks containing elements with the fissionable material loading increased to 350 g of 235 U

  15. Fuel element loading system

    International Nuclear Information System (INIS)

    Arya, S.P; s.

    1978-01-01

    A nuclear fuel element loading system is described which conveys a plurality of fuel rods to longitudinal passages in fuel elements. Conveyor means successively position the fuel rods above the longitudinal passages in axial alignment therewith and adapter means guide the fuel rods from the conveyor means into the longitudinal passages. The fuel elements are vibrated to cause the fuel rods to fall into the longitudinal passages through the adapter means

  16. Support grid for fuel elements in a nuclear reactor

    International Nuclear Information System (INIS)

    Finch, L.M.

    1977-01-01

    A support grid is provided for holding nuclear fuel rods in a rectangular array. Intersecting sheet metal strips are interconnected using opposing slots in the strips to form a rectangular cellular grid structure for engaging the sides of a multiplicity of fuel rods. Spring and dimple supports for engaging fuel and guide rods extending through each cell in the support grid are formed in the metal strips with the springs thus formed being characterized by nonlinear spring rates

  17. Analysis of burnt nuclear fuel elements by gamma-spectrometry

    International Nuclear Information System (INIS)

    Lammer, M.

    1978-01-01

    Gamma-spectrometry allows a non-destructive determination of the fission and activation product content of spent nuclear fuel. The concentration of some of these products depends significantly on the so-called fuel parameters which describe the irradiation history and the fuel composition. The use of these dependences for deriving ''unknown fuel parameters'' from measured fission product activities is investigated in this work. Relevant application fields are burnup determination, fuel testing and inspections within the nuclear materials safeguards programme. The present thesis investigates how these dependences can be used to derive unknown fuel parameters. The possibilities and basic limitations of deriving information from a measured gamma spectrum are considered on principle. The main conclusion is that only ratios of fission product activities allow the development of an interpretation method which is generally applicable to all types of fuel from different reactors. The dependence of activity ratios on cooling time, irradiation time, integrated and final neutron flux, fuel composition, as well as fission and breeding rates are then investigated and presented graphically in a way suitable for applicaton. These relationships can be used for the analysis of spent fuel, and the detailed procedures, which depend on the applicaton field, are worked out in this work. In order to test the interpretation methods, samples of nuclear fuel have been irradiated and the gamma spectra analysed. The methods developed in this work can be applied successfully to the analysis of burnt fuel in the frame of fuel testing programmes and to safeguards verification purposes. If however, apart from a gamma spectrum, no information on the investigated fuel is available, the above-mentioned parameters can be derived with low accuracy only. (author)

  18. Nuclear reactor fuel element containing an end piece for maintaining the column of fuel pellets

    International Nuclear Information System (INIS)

    Pajot, Jacques; Rabellino, Jacques.

    1974-01-01

    The nuclear reactor fuel element described has an end piece for maintaining the column of fuel pellets in position inside the element cladding. This end piece has a central compression spring one end of which presses against the pellets and the other against a plug shaped piece fitted with a seat for the spring, a conical piece with an elastic ring around it diverging towards the end in contact with the spring and a head at the opposite end. The connection between the compression spring and the pellets is through an application piece. A central bore provided in the end piece helps balance the pressure inside the element. This element is particularly intended for liquid metal cooled fast neutron reactors [fr

  19. Transuranium element recovering method for spent nuclear fuel

    International Nuclear Information System (INIS)

    Todokoro, Akio; Kihara, Yoshiyuki; Okada, Hisashi

    1998-01-01

    Spent fuels are dissolved in nitric acid, the obtained dissolution liquid is oxidized by electrolysis, and nitric acid of transuranium elements are precipitated together with nitric acid of uranium elements from the dissolution solution and recovered. Namely, the transuranium elements are oxidized to an atomic value level at which nitric acid can be precipitated by an oxidizing catalyst, and cooled to precipitate nitric acid of transuranium elements together with nitric acid of transuranium elements, accordingly, it is not necessary to use a solvent which has been used so far upon recovering transuranium elements. Since no solvent waste is generated, a recovery method taking the circumstance into consideration can be provided. Further, nitric acid of uranium elements and nitric acid of transuranium elements precipitated and recovered together are dissolved in nitric acid again, cooled and only uranium elements are precipitated selectively, and recovered by filtration. The amount of wastes can be reduced to thereby enabling to mitigate control for processing. (N.H.)

  20. 3D finite element analysis of a nuclear fuel rod with gap elements between the pellet and the cladding

    International Nuclear Information System (INIS)

    Kang, Chang-Hak; Lee, Sung-Uk; Yang, Dong-Yol; Kim, Hyo-Chan; Yang, Yong-Sik

    2016-01-01

    Nuclear fuel rods which comprises an important component of a nuclear power plant are composed of nuclear fuel and cladding. Simulating the nuclear fuel rod using a computer program is the universal method to verify its safety. The computer program used for this is called the fuel performance code. The main objective of this study is to simulate the nuclear fuel rod behavior considering the gap conductance using three-dimensional gap elements. Gap elements are used because, unlike other methods, this approach does not require special methods or other variables such as the Lagrange multiplier. In this work, a nuclear fuel rod has been simulated and the results are compared with the experimental results. (author)

  1. Fission product release from defected nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Lewis, B.J.

    1983-01-01

    The release of gaseous (krypton and xenon) and iodine radioactive fission products from defective fuel elements is described with a semi-empirical model. The model assumes precursor-corrected 'Booth diffusional release' in the UO 2 and subsequent holdup in the fuel-to-sheath gap. Transport in the gap is separately modelled with a phenomenological rate constant (assuming release from the gap is a first order rate process), and a diffusivity constant (assuming transport in the gap is dominated by a diffusional process). Measured release data from possessing various states of defection are use in this analysis. One element (irradiated in an earlier experiment by MacDonald) was defected with a small drilled hole. A second element was machined with 23 slits while a third element (fabricated with a porous end plug) displayed through-wall sheath hydriding. Comparison of measured release data with calculated values from the model yields estimates of empirical diffusion coefficients for the radioactive species in the UO 2 (1.56 x 10 -10 to 7.30 x 10 -9 s -1 ), as well as escape rate constants (7.85 x 10 -7 to 3.44 x 10 -5 s -1 ) and diffusion coefficients (3.39 x 10 -5 to 4.88 x 10 -2 cm 2 /s) for these in the fuel-to-sheath gap. Analyses also enable identification of the various rate-controlling processes operative in each element. For the noble gas and iodine species, the rate-determining process in the multi-slit element is 'Booth diffusion'; however, for the hydrided element an additional delay results from diffusional transport in the fuel-to-heath gap. Furthermore, the iodine species exhibit an additional holdup in the drilled element because of significant trapping on the fuel and/or sheath surfaces. Using experimental release data and applying the theoretical results of this work, a systematic procedure is proposed to characterize fuel failures in commercial power reactors (i.e., the number of fuel failures and average leak size)

  2. Storage frame for long fuel elements for nuclear reactors

    International Nuclear Information System (INIS)

    Ristow, U.; Krainer, F.; Heinz, G.

    1986-01-01

    Vertical shafts with a cross section suitable for the fuel element cross section and made of metal can have corrugations for spacing from one another. These corrugations are machined parallel to the wall surface of the shafts. One thus obtains great accuracy of distancing. (orig./HP) [de

  3. Fuel element for high-temperature nuclear power reactors

    International Nuclear Information System (INIS)

    Schloesser, J.

    1974-01-01

    The fuel element of the HTGR consists of a spherical graphite body with a spherical cavity. A deposit of fissile material, e.g. coated particles of uranium carbide, is fixed to the inner wall using binders. In addition to the fissile material, there are concentric deposits of fertile material, e.g. coated thorium carbide particles. The remaining cavity is filled with a graphite mass, preferably graphite powder, and the filling opening with a graphite stopper. At the beginning of the reactor operation, the fissile material layer provides the whole power. With progressing burn-up, the energy production is taken over by the fertile layer, which provides the heat production until the end of burn-up. Due to the relatively small temperature difference between the outer wall of the outer graphite body and the maximum fuel temperature, the power of the fuel element can be increased. (DG) [de

  4. Nuclear fuel element containing strips of an alloyed Zr, Ti, and Ni getter material

    International Nuclear Information System (INIS)

    Grossman, L.N.; Packard, D.R.

    1975-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. The nuclear fuel element has disposed therein an alloy having the essential components of nickel, titanium and zirconium, and the alloy reacts with water, water vapor and reactive gases at reactor ambient temperatures. The alloy is disposed in the plenum of the fuel element in the form of strips and preferably the strips are positioned inside a helical member in the plenum. The position of the alloy strips permits gases and liquids entering the plenum to contact and react with the alloy strips. (U.S.)

  5. Preliminary Nuclear Analysis for the HANARO Fuel Element with Burnable Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Kim, So Young; In, Won Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Burnable absorber is used for reducing reactivity swing and power peaking in high performance research reactors. Development of the HANARO fuel element with burnable absorber was started in the U-Mo fuel development program at HANARO, but detailed full core analysis was not performed because the current HANARO fuel management system is uncertain to analysis the HANARO core with burnable absorber. A sophisticated reactor physics system is required to analysis the core. The McCARD code was selected and the detailed McCARD core models, in which the basic HANARO core model was developed by one of the McCARD developers, are used in this study. The development of nuclear fuel requires a long time and correct developing direction especially by the nuclear analysis. This paper presents a preliminary nuclear analysis to promote the fuel development. Based on the developed fuel, the further nuclear analysis will improve reactor performance and safety. Basic nuclear analysis for the HANARO and the AHR were performed for getting the proper fuel elements with burnable absorber. Addition of 0.3 - 0.4% Cd to the fuel meat is promising for the current HANARO fuel element. Small addition of burnable absorber may not change any fuel characteristics of the HANARO fuel element, but various basic tests and irradiation tests at the HANARO core are required.

  6. Canning and inspection system for nuclear reactor fuel and reflector elements

    International Nuclear Information System (INIS)

    Goldman, L.A.; Hawke, B.C.

    1980-01-01

    A system is disclosed for canning, inspecting and transferring to a storage area fuel and reflector elements from a nuclear reactor. The system includes a transfer chute, environmental chamber, conveyor and canning mechanism operative to remove and replace closures on containers into which fuel and reflector elements are inserted or from which stored elements are removed while maintaining a sealed gaseous environment and permitting visual and mechanical inspection of the elements by an operator located in a remote shielded area

  7. Hydraulic Design Criteria for Spacer Grids of Nuclear Fuel Element

    International Nuclear Information System (INIS)

    Juanico, Luis; Brasnarof, Daniel

    2000-01-01

    In this paper a hydraulic model for calculating the pressure drop on the CARA spacer grids is extended.This model is validated and feedback from experimental hydraulic test performed in a low pressure loop.The importance of the spacer grid geometric parameter (that is, its thickness and length, the number and kind of their fix spacer), developing hydraulic design criteria for spacer grid on fuel element

  8. Fluorine: A key enabling element in the nuclear fuel cycle

    OpenAIRE

    Crouse, P.L.

    2015-01-01

    Fluorine - in the form of hydrofluoric acid, anhydrous hydrogen fluoride, elemental gaseous fluorine, fluoropolymers, volatile inorganic fluorides, and more - has played, and still plays, a major role in the nuclear industry. In order to enrich uranium, the metal has to be in the gaseous state. While more exotic methods are known, the standard and most cost-competitive way of achieving this is by means of uranium hexafluoride (UF6). This compound sublimates at low temperatures, and the vapour...

  9. Control and repair system for radioactive nuclear fuel elements

    International Nuclear Information System (INIS)

    Shallenberger, J.M.; Hornak, L.P.; Desmarchais, W.E.

    1975-01-01

    Irradiated fuel, especially such containing Pu-239, are put in a shielding container for inspection or repair. This container consists of an inner and outer tube of, for example, stainless steel, between which there is a gap filled with water, mineral oil, or polyethylene. At the upper end of the shielding container a rotating sleeve is positioned, by means of a bearing. It contains, for instance, an access opening and an inspection opening which are shielded by means of plexiglass. The access hole is opened only for repair work. In oder to prevent radiation from escaping to the environment during withdrawal and inspection of the fuel elements a second shielding container or shielding tube may be put over the sleeve. (DG/PB) [de

  10. Theoretical basis for a transient thermal elastic-plastic stress analysis of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hsu, T.R.; Bertels, A.W.M.; Banerjee, S.; Harrison, W.C.

    1976-07-01

    This report presents the theoretical basis for a transient thermal elastic-plastic stress analysis of a nuclear reactor fuel element subject to severe transient thermo-mechanical loading. A finite element formulation is used for both the non-linear stress analysis and thermal analysis. These two major components are linked together to form an integrated program capable of predicting fuel element transient behaviour in two dimensions. Specific case studies are presented to illustrate capabilities of the analysis. (author)

  11. Nuclear fuel element containing particles of an alloyed Zr, Ti, and Ni getter material

    International Nuclear Information System (INIS)

    Grossman, L.N.; Levin, H.A.

    1975-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. The nuclear fuel element has disposed therein an alloy having the essential components of nickel, titanium and zirconium, and the alloy reacts with water, water vapor and reactive gases at reactor ambient temperatures. The alloy is disposed in the plenum of the fuel element in the form of particles in a hollow gas permeable container having a multiplicity of openings of size smaller than the size of the particles. The openings permit gases and liquids entering the plenum to contact the particles of alloy. The container is preferably held in the spring in the plenum of the fuel element. (Official Gazette)

  12. Nuclear fuels

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F.

    2009-01-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO 2 pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO 2 and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under irradiation

  13. Nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F

    2009-07-01

    nature of spent nuclear fuel, Anticipated evolution of fuel in dry storage, Anticipated evolution of fuel in deep geological disposal); Boiling-water reactor fuel (Similarities, and differences with PWR fuel, Axial and radial zoning, Rod and channel box sizes, Poisoning and reactivity control, Cladding specific characteristics, Trends in fuel evolution); 3 - Liquid-metal-cooled fast reactor fuel: Fast-neutron irradiation damage in structural materials (Fast-neutron-induced damage in metals, What materials should be used?); Fuels and targets for fast-reactor transmutation (Fast reactors: reactors affording the ability to carry out effective actinide transmutation, Recycling: homogeneous, or heterogeneous?); 4 - gas-cooled reactor fuel: Particle fuel (From the initial concept to the advanced TRISO particle concept, Kernel fabrication processes, Particle coating by chemical vapor deposition, Fuel element fabrication: particle compaction, Characterization of fuel particles, and elements, From HTR fuel to VHTR and GFR fuels: the GAIA facility at CEA/Cadarache); Irradiation behavior of particle fuels (Particle fuel: a variety of failure modes for a high-strength object, The amoeba effect, Fission product behavior, and diffusion in particle fuels); Mechanical modeling of particle fuel; Very-high-temperature reactor (VHTR) fuel; Gas-cooled fast reactor (GFR) fuel (The specifications for GFR fuel, GFR fissile material, First containment baffler materials, GFR fuel element concepts); 5 - Research reactor fuels (A considerable feedback from experience, Conversion of French reactors to low-enriched ({<=}20% U-235)U{sub 3}Si{sub 2} fuel, Conversion of all reactors: R and D requirements for high-performance reactors, An 'advanced' research reactor fuel: UMo, The startup fuel for the Jules Horowitz Reactor (JHR) will still be U{sub 3}Si{sub 2}-Al; 6 - An instrument for future fuel research: the Jules Horowitz Reactor (JHR): Fuel irradiation experiments in JHR, JHR: a flexible

  14. Quality management and quality assurance in the manufacture of nuclear fuel elements: new trends and challenges

    International Nuclear Information System (INIS)

    Baur, K.

    1998-01-01

    Modern instruments for quality assurance are applied with increasing success also in the area of fuel element supply. This new philosophy of quality management is characterized by a clear focus on processes and a commitment to continuous quality improvement. How can these new quality concepts, the application of which is desired by the companies operating nuclear power plants, be implemented and find acceptance? Is it possible that error prevention in place of error correction can increase the quality of fuel elements and at the same time reduce costs? What instruments are available to solve problems specific to fuel element technology? Efforts currently under way to answer these questions are described, particularly with regard to cooperation with fuel element suppliers. Within this context, a new guideline 'Quality System for Fuel Elements' has been developed. (orig.) [de

  15. Proposal of a system for fuel elements inspection of CDTN TRIGA nuclear reactor

    International Nuclear Information System (INIS)

    Rodrigues, Rogerio Rivail; Mesquita, Amir Zacarias

    2013-01-01

    The CDTN has in its facilities a TRIGA-type nuclear reactor. The reactor's cooling water must be treated and managed with the goal of keeping its low conductivity to minimize corrosion of the reactor components, mainly of fuel elements (FE), and reduce the level of radioactivity. The aim of this paper is to present a proposal for the development of a system for verification of some possible leaks in FE nuclear research reactors, based on the sipping test. This type of testing is a way to check for leaks of fission products from fuel element of nuclear research reactor. In the future, when the test will do, it will have a correlation between the components found in the reactor cooling water pool and integrity of nuclear fuel elements. The device development and its application will be presented here, covering results that were not previously investigated yet, giving originality to this project. (author)

  16. Store and process for intermediate or final storage of used fuel elements from a nuclear reactor

    International Nuclear Information System (INIS)

    Kumpf, H.

    1986-01-01

    The fuel elements are enclosed in boxes at the nuclear reactor and transported in these to the incoming station. Transport is a by truck, which makes it possible for the transport container to move in a vertical position, where the upper side is on the top side of the truck. The fuel elements in their boxes are handed over to a magazine there, which can be reached by a loading machine serving the storage room. (orig./HP) [de

  17. Study of candu fuel elements irradiated in a nuclear power plant

    International Nuclear Information System (INIS)

    Ionescu, S.; Uta, O.; Mincu, M.; Anghel, D.; Prisecaru, I.

    2015-01-01

    The object of this work is the behaviour of CANDU fuel elements after service in nuclear power plant. The results are analysed and compared with previous result obtained on unirradiated samples and with the results obtained on samples irradiated in the TRIGA reactor of INR Pitesti. Zircaloy-4 is the material used for CANDU fuel sheath. The importance of studying its behaviour results from the fact that the mechanical properties of the CANDU fuel sheath suffer modifications during normal and abnormal operation. In the nuclear reactor, the fuel elements endure dimensional and structural changes as well as cladding oxidation, hydriding and corrosion. These changes can lead to defects and even to the loss of integrity of the cladding. This paper presents the results of examinations performed in the Post Irradiation Examination Laboratory (PIEL) of INR Pitesti on samples from fuel elements after they were removed out of the nuclear power plant: - dimensional and macrostructural characterization; - microstructural characterization by metallographic analyses; - determination of mechanical properties; - fracture surface analysis by scanning electron microscopy (SEM). A full set of non-destructive and destructive examinations concerning the integrity, dimensional changes, oxidation, hydriding and mechanical properties of the cladding was performed. The obtained results are typical for CANDU 6-type fuel. The obtained data could be used to evaluate the security, reliability and nuclear fuel performance, and for the improvement of the CANDU fuel. (authors)

  18. New Nuclear Materials Including Non Metallic Fuel Elements. Vol. I. Proceedings of the Conference on New Nuclear Materials Technology, Including Non Metallic Fuel Elements

    International Nuclear Information System (INIS)

    1963-01-01

    One of the major aims of the International Atomic Energy Agency in furthering the peaceful uses of atomic energy is to encourage the development of economical nuclear power. Certainly, one of the more obvious methods of producing economical nuclear power is the development of economical fuels that can be used at high temperatures for long periods of time, and which have sufficient strength and integrity to operate under these conditions without permitting the release of fission products. In addition it is desirable that after irradiation these new fuels be economically reprocessed to reduce further the cost of the fuel cycle. As nuclear power becomes more and more competitive with conventional power the interest in new and more efficient higher-temperature fuels naturally increases rapidly. For these reasons, the Agency organized a Conference on New Nuclear Materials Technology, Including Non-Metallic Fuel Elements, which was held from 1 to 5 July 1963 at the International Hotel, Prague, with the assistance and co-operation of the Government of the Czechoslovak Socialist Republic. A total of 151 scientists attended, from 23 countries and 4 international organizations. The participants heard and discussed more than 60 scientific papers

  19. Study on the high-precision laser welding technology of nuclear fuel elements processing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo Sung; Yang, M. S.; Kim, W. K.; Lee, D. Y

    2001-01-01

    The proper welding method for appendage of bearing pads and spacers of PHWR nuclear fuel elements is considered important in respect to the soundness of weldments and the improvement of the performance of nuclear fuels during the operation in reactor. The probability of welding defects of the appendage parts is mostly apt to occur and it is connected directly with the safty and life prediction of the nuclear reactor in operation. Recently there has been studied all over the world to develope welding technology by laser in nuclear fuel processing, and the appendage of bearing pads and spacers of PHWR nuclear fuel elements. Therefore, the purpose of this study is to investigate the characteristics of the laser welded specimens and make some samples for the appendage of bearing pads of PHWR nuclear fuel elements. This study will be also provide the basic data for the fabrications of the appendage of bearing pads and spacers. Especially the laser welding is supposed to be used in the practical application such as precise materials manufacturing fields. In this respect this technology is not only a basic advanced technology with wide applications but also likely to be used for the development of directly applicable technologies for industries, with high potential benefits derived in the view point of economy and industry.

  20. Study on the high-precision laser welding technology of nuclear fuel elements processing

    International Nuclear Information System (INIS)

    Kim, Soo Sung; Yang, M. S.; Kim, W. K.; Lee, D. Y.

    2001-01-01

    The proper welding method for appendage of bearing pads and spacers of PHWR nuclear fuel elements is considered important in respect to the soundness of weldments and the improvement of the performance of nuclear fuels during the operation in reactor. The probability of welding defects of the appendage parts is mostly apt to occur and it is connected directly with the safty and life prediction of the nuclear reactor in operation. Recently there has been studied all over the world to develope welding technology by laser in nuclear fuel processing, and the appendage of bearing pads and spacers of PHWR nuclear fuel elements. Therefore, the purpose of this study is to investigate the characteristics of the laser welded specimens and make some samples for the appendage of bearing pads of PHWR nuclear fuel elements. This study will be also provide the basic data for the fabrications of the appendage of bearing pads and spacers. Especially the laser welding is supposed to be used in the practical application such as precise materials manufacturing fields. In this respect this technology is not only a basic advanced technology with wide applications but also likely to be used for the development of directly applicable technologies for industries, with high potential benefits derived in the view point of economy and industry

  1. Spent fuels conditioning and irradiated nuclear fuel elements examination: the STAR facility and its abilities

    Energy Technology Data Exchange (ETDEWEB)

    Boussard, F.; Huillery, R. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d`Etudes des Combustibles; Averseng, J.L.; Serpantie, J.P. [Novatome Industries, 92 - Le Plessis-Robinson (France)

    1994-12-31

    This paper is a presentation of the STAR facility, a high activity laboratory located in Cadarache Nuclear Research Center (France). The purpose of the STAR facility and of the associated processes, is the treatment, cleaning and conditioning of spent fuels from Gas Cooled Reactors (GCR) and in particular of about 2300 spent GCR fuel cartridges irradiated more than 20 years ago in Electricite de France (EDF) or CEA Uranium Graphite GCR. The processes are: to separate the nuclear fuel from the clad remains, to chemically stabilize the nuclear material and to condition it in sealed canisters. An additional objective of STAR consists in non-destructive or destructive examinations and tests on PWR rods or FBR pins in the frame of fuel development programs. The paper describes the STAR facility conceptual design (safety design rules, hot cells..) and the different options corresponding to the GCR reconditioning process and to further research and development works on various fuel types. (J.S.). 3 figs.

  2. Spent fuels conditioning and irradiated nuclear fuel elements examination: the STAR facility and its abilities

    International Nuclear Information System (INIS)

    Boussard, F.; Huillery, R.

    1994-01-01

    This paper is a presentation of the STAR facility, a high activity laboratory located in Cadarache Nuclear Research Center (France). The purpose of the STAR facility and of the associated processes, is the treatment, cleaning and conditioning of spent fuels from Gas Cooled Reactors (GCR) and in particular of about 2300 spent GCR fuel cartridges irradiated more than 20 years ago in Electricite de France (EDF) or CEA Uranium Graphite GCR. The processes are: to separate the nuclear fuel from the clad remains, to chemically stabilize the nuclear material and to condition it in sealed canisters. An additional objective of STAR consists in non-destructive or destructive examinations and tests on PWR rods or FBR pins in the frame of fuel development programs. The paper describes the STAR facility conceptual design (safety design rules, hot cells..) and the different options corresponding to the GCR reconditioning process and to further research and development works on various fuel types. (J.S.). 3 figs

  3. Equipment for testing a group of nuclear reactor fuel elements for damage to the cans

    International Nuclear Information System (INIS)

    Mohm, F.

    1977-01-01

    Equipment is described for use in sodium cooled nuclear reactors, with which the fuel elements consisting of bundles of fuel and fertile rods can be examined for damage to the cans. Fission poducts occurring in the liquid coolant act as indicators. The coolant is sucked via pipelines which penetrate into the elements into a collecting container, and a special pipeline is available for every element of a group, where the highest points of individual pipelines at different hydrostatic heads are taken to the collecting container. This permits the checking of one line at a time due to pressure changes. (UWI) [de

  4. Implementation of the utilization program for the fuel elements of the Atucha I nuclear power plant

    International Nuclear Information System (INIS)

    Martin, H.R.; Serra, O.H.; Parker, Alejandro

    1981-01-01

    The programming operation for the use of the fuel elements in the Atucha-1 nuclear power plant was initially under the responsibility of the KWU Company, as part of the services rendered due for the manufacturing of said elements. This job was done with the help of the TRISIC program, developed in the early seventies by CNEA and SIEMENS staff. From april 21, 1979 on, CNEA took over the responsibility and strategy of the interchange of fuel elements. The several stages carried out for the implementation of this service are detailed. (M.E.L.) [es

  5. New Nuclear Materials Including Non Metallic Fuel Elements. Vol. II. Proceedings of the Conference on New Nuclear Materials Technology, Including Non Metallic Fuel Elements

    International Nuclear Information System (INIS)

    1963-01-01

    One of the major aims of the International Atomic Energy Agency in furthering the peaceful uses of atomic energy is to encourage the development of economical nuclear power. Certainly, one of the more obvious methods of producing economical nuclear power is the development of economical fuels that can be used at high temperatures for long periods of time, and which have sufficient strength and integrity to operate under these conditions without permitting the release of fission products. In addition it is desirable that after irradiation these new fuels be economically reprocessed to reduce further the cost of the fuel cycle. As nuclear power becomes more and more competitive with conventional power the interest in new and more efficient higher-temperature fuels naturally increases rapidly. For these reasons, the Agency organized a Conference on New Nuclear Materials Technology, Including Non-Metallic Fuel Elements, which was held from 1 to 5 July 1963 at the International Hotel, Prague, with the assistance and co-operation of the Government of the Czechoslovak Socialist Republic. A total of 151 scientists attended, from 23 countries and 4 international organizations. The participants heard and discussed more than 60 scientific papers. The Agency wishes to thank the scientists who attended this Conference for their papers and for many spirited discussions that truly mark a successful meeting. The Agency wishes also to record its gratitude for the assistance and generous hospitality accorded the Conference, the participants and the Agency's staff by the Government of the Czechoslovak Socialist Republic and by the people of Prague. The scientific information contained in these Proceedings should help to quicken the pace of progress in the fabrication of new and m ore economical fuels, and it is hoped that these proceedings will be found useful to all workers in this and related fields

  6. Nuclear fuels

    International Nuclear Information System (INIS)

    Gangwani, Saloni; Chakrabortty, Sumita

    2011-01-01

    Nuclear fuel is a material that can be consumed to derive nuclear energy, by analogy to chemical fuel that is burned for energy. Nuclear fuels are the most dense sources of energy available. Nuclear fuel in a nuclear fuel cycle can refer to the fuel itself, or to physical objects (for example bundles composed of fuel rods) composed of the fuel material, mixed with structural, neutron moderating, or neutron reflecting materials. Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. The following paper will also include the uses. advancements, advantages, disadvantages, various processes and behavior of nuclear fuels

  7. Improvements in the preparation of nuclear fuel elements with addition of a molding mixture to fuel particles

    International Nuclear Information System (INIS)

    Miertschin, G.N.; Leary, D.F.

    1975-01-01

    An improved molting mixture to be added to nuclear fuel particles for the preparation of nuclear fuel elements is presented. It consists of carbon and pitch particles and contains an additive reducing the final coke yield of the fuel mass formed. This additive is chosen from: polystyrene and copolymers of styrene and butadiene of molecular weight between 500 and 1000000; aromatic compounds of molecular weight between 75 and 300; saturated hydrocarbon polymers of molecular weight between 500 and 1000000. The additive may be camphor, naphthalene, anthracene, phenanthrene, dimethyl terephthalate or their mixtures and is present at a concentration of 5 to 50% by weight. The carbon particles used consist of powdered graphite. These fuel elements are intended for gas-cooled high-temperature reactors [fr

  8. Fuel element

    International Nuclear Information System (INIS)

    Hirose, Yasuo.

    1982-01-01

    Purpose: To increase the plenum space in a fuel element used for a liquid metal cooled reactor. Constitution: A fuel pellet is secured at one end with an end plug and at the other with a coil spring in a tubular container. A mechanism for fixing the coil spring composed of a tubular unit is mounted by friction with the inner surface of the tubular container. Accordingly, the recoiling force of the coil spring can be retained by fixing mechanism with a small volume, and since a large amount of plenum space can be obtained, the internal pressure rise in the cladding tube can be suppressed even if large quantities of fission products are discharged. (Kamimura, M.)

  9. The possibility of prediction of the lifetime of metallic nuclear fuel elements in a radiation field of thermal nuclear reactors

    International Nuclear Information System (INIS)

    Livne, Z.; Ramon, P.

    1979-01-01

    An attempt is made to clarify the possible causes of failure of irradiated nuclear fuel cartridges, in order to determine the parameters which govern the lifetime of the fuel and a way to predict it. Measurements of mechanical properties of irradiated uranium metal and cladding, can serve as a basis for failure prediction. Testing irradiated fuel elements by bending till fracture enables to evaluate the integral character of the fuel element, along the cross-section, taking into account the difference in brittleness of several zones. It is likely that the bending test, which indicates the behaviour of a stress-strain function, is a faster and more reliable way to determine the mechanical properties of irradiated nuclear fuel. Since the stresses applied to the cladding during irradiation are locally hydrostatic, its postirradiation blow-up provide information on strength and elasticity variations of the irradiated cladding material. (B.G.)

  10. Research on Elemental Technology of Advanced Nuclear Fuel Performance Verification

    International Nuclear Information System (INIS)

    Kim, Yong Soo; Lee, Dong Uk; Jean, Sang Hwan; Koo, Min

    2003-04-01

    Most of current properties models and fuel performance models used in the performance evaluation codes are based on the in-pile data up to 33,000 MWd/MtU. Therefore, international experts are investigating the properties changes and developing advanced prediction models for high burn-up application. Current research is to develop high burn-up fission gas release model for the code and to support the code development activities by collecting data and models, reviewing/assessing the data and models together, and benchmarking the selected models against the appropriate in-pile data. For high burn-up applications, two stage two step fission gas release model is developed based on the real two diffusion process in the grain lattice and grain boundaries of the fission gases and the observation of accelerated release rate in the high burn-up. It is found that the prediction of this model is in excellent agreement with the in-pile measurement results, not only in the low burn-up but also in the high burn-up. This research is found that the importance of thermal conductivity of oxide fuel, especially in the high burn-up, is focused again. It is found that even the temperature dependent models differ from one to another and most of them overestimate the conductivity in the high burn-up. An in-pile data benchmarking of high LHGR fuel rod shows that the difference can reach 30%∼40%, which predicts 400 .deg. C lower than the real fuel centerline temperature. Recent models on the thermal expansion and heat capacity of oxide fuel are found to be well-defined. Irradiation swelling of the oxide fuel are now well-understood that in most cases in LWRs solid fission product swelling is dominant. Thus, the accumulation of in-pile data can enhance the accuracy of the model prediction, rather than theoretical modeling works. Thermo-physical properties of Zircaloy cladding are also well-defined and well-understood except the thermal expansion. However, it turns out that even the

  11. Improvements in or relating to nuclear reactor fuel element assemblies

    International Nuclear Information System (INIS)

    Chetter, J.

    1975-01-01

    A description is given of a spacer grid comprising a substantially rigid grid structure formed from intersecting strip members defining cells which are penetrated by fuel pins bearing against rigid stops projecting inside the cells and spring locating members in the form of bow springs which extend longitudinally in the cells of the grid structure to hold the fuel pins against the rigid stops in the cells. The bow spring members of each line of cells extending in one direction across the grid structure have their corresponding ends interconnected by common longitudinal bridging strips to form a ladder spring assembly. (author)

  12. Fabrication of the fuel elements cladding for utilization in the fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Schaeffer, L.; Sefidvash, F.

    1986-01-01

    A method for the fabrication of cladding of the spherical fuel elements for the utilization in the fluidized bed nuclear reactor is presented. Some prelimminary experiments were performed to adopt a method which adapt itself to mass production with the desired high quality. Still methods for cladding fabrication are under study. (Author) [pt

  13. Analysis of possibilities for functional capacity for work rise of reactor fuel elements at nuclear engine regime

    International Nuclear Information System (INIS)

    Deryavko, I.I.; Perepelkin, I.G.; Pivovarov, O.S.; Storozhenko, A.N.; Tarasov, V.I.

    2000-01-01

    The principle results of carbide fuel rods testing during series of IVG.1 reactor starts up at regime simulating nuclear engine regime of nuclear moving power unit are given. Considerable degradation of initial fuel elements status increasing from start up to start up and which could resulted fail of separate technological channels is shown. Origin case of extreme degradation of fuel elements status are insufficient thermal strength of fuel elements operation in the field brittle state of sintered carbide material, Possible ways of artificial reinforce of fuel elements of low temperature sections, increasing its thermal strength up to required level

  14. The nuclear fuel elements' world market and the position of the Argentine Republic as producer

    International Nuclear Information System (INIS)

    Biondo, C.D.

    1983-01-01

    The development of the nuclear fuel elements' industry is analyzed, both in the present and projected world market, up to the year 2000, in the light of the situation affecting the nucleoelectric industry. By means of the offer/demand function, an analysis is made of the behaviour of the fuel elements' market throughout the fuel cycle structure. The regional unbalances between availability and demand of uranium resources are considered, as well as the factors having an unfavorable incidence on the fuel cycle's economic equation. The economic structure to be used for the calculation of the nucleoelectric generating cost is presented, in order to situate, within said nuclear economy, the component corresponding to the fuel cycle cost. Emphasis is placed on the 'front end' stages of the fuel cycle, but also considering those stages belonging to the 'back end'. Argentina's fuel elements market and its present and projected nucleoelectric park are analyzed, indicating their relative position in the world market. (R.J.S.) [es

  15. Operation of Atucha I nuclear power plant with 25 cooling channels without fuel elements

    International Nuclear Information System (INIS)

    Perez, R.A.; Sidelnik, J.I.; Salom, G.F.

    1987-01-01

    In view of the need of removing the irradiation probes from the reactor of Atucha I nuclear power plant, a study about the consequences of operating with 25 channels without their respective fuel elements was performed. This condition was simulated by means of the code PUMA symmetry I and the consequences were analyzed. From the study resulted a program of stepped power reduction of the nuclear plant that would take place during the process of channel emptying. (Author)

  16. Trace elements retained in washed nuclear fuel reprocessing solvents

    International Nuclear Information System (INIS)

    Gray, L.W.; MacMurdo, K.W.

    1979-09-01

    Analysis of purified TBP extractant from solvent extraction processes at Savannah River Plant showed several stable elements and several long-lived radioisotopes. Stable elements Al, Na, Br, Ce, Hg, and Sm are found in trace quantities in the solvent. The only stable metallic element consistently found in the solvent was Al, with a concentration which varies from about 30 ppM to about 10 ppM. The halogens Br and Cl appear to be found in the solvent systems as organo halides. Radionuclides found were principally 106 Ru, 129 I, 3 H, 235 U, and 239 Pu. The 129 I concentration was about 1 ppM in the first solvent extraction cycle of each facility. In the other cycles, 129 I concentration varied from about 0.1 to 0.5 ppM. Both 129 I and 3 H appear to be in the organic solvent as a result of exchange with hydrogen

  17. Application of CO2 laser beam weld for repair of fuel element of nuclear reactor 'YAYOI'

    International Nuclear Information System (INIS)

    Hashimoto, Mitsuo; Yanagi, Hideharu; Sukegawa, Toshio; Saito, Isao; Sasuga, Norihiko; Aizawa, Nagaaki; Miya, Kenzo

    1986-01-01

    The present studies are to develop CO 2 laser beam welding techniques in order to apply for repoint of nuclear reactor fuel of Fast Neutron Source Reactor YAYOI. For that purpos, many experiments were conduted to obtain various effects of laser welding variables with use of SUS 304 plates, pipes and simulated dumy fuels. These experiments provided us an optimal welding condition through metallurgical observations, non-destructive and mechanical tests. It was found that the laser welds exhibited properties equivalent to those of the base metal, in addition they provided us a favorable system than that of electron beam welds against a cladding of radioactive nuclear fuel in a hot cell. The present paper reports on the characteristics of laser welds, structural analysis of fuel element and a system design of remotely operated devices setting in a hot cell. (author)

  18. Use of molybdenum as a structural material of fuel elements for improving nuclear reactors safety

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, Anatoly N.; Kulikov, Gennady G.; Kozhahmet, Bauyrzhan K.; Kulikov, Evgeny G.; Apse, Vladimir A. [National Research Nuclear Univ., Moscow (Russian Federation). Moscow Engineering Physics Institute (MEPhI)

    2016-12-15

    Main purpose of the study is justifying the use of molybdenum as a structural material of fuel elements for improving the safety of nuclear reactors. Particularity of the used molybdenum is that its isotopic composition corresponds to molybdenum, which is obtained as tailing during operation of the separation cascade for producing a material for medical diagnostics of cancer. The following results were obtained: A method for reducing the thermal constant of fuel elements for light water and fast reactors by using dispersion fuel in cylindrical fuel rods containing, for example, granules of metallic U-Mo-alloy into Mo-matrix was proposed; the necessity of molybdenum enrichment by weakly absorbing isotopes was shown; total use of isotopic molybdenum will be more than 50 %.

  19. Experimental study of water flow in nuclear fuel elements; Estudo experimental do escoamento de agua em elementos combustiveis nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Lorena Escriche, E-mail: ler@cdtn.br [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET), Belo Horizonte, MG (Brazil); Rezende, Hugo Cesar; Mattos, Joao Roberto Loureiro de; Barros Filho, Jose Afonso; Santos, Andre Augusto Campagnole dos, E-mail: hcr@cdtn.br, E-mail: jrmattos@cdtn.br, E-mail: jabf@cdtn.br, E-mail: aacs@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    This work aims to develop an experimental methodology for investigating the water flow through rod bundles after spacer grids of nuclear fuel elements of PWR type reactors. Speed profiles, with the device LDV (Laser Doppler Velocimetry), and the pressure drop between two sockets located before and after the spacer grid, using pressure transducers were measured.

  20. Device for horizontal transfer between two enclosures of nuclear fuel elements stored in vertical position

    International Nuclear Information System (INIS)

    Faucond, J.

    1986-01-01

    The invention involves a device for horizontal transfer between two enclosures of nuclear fuel elements stored in vertical position. This device is specifically applicable to nuclear power plants of the pressurized water type (PWR), in which the fuel elements are in the form of bars with, for example, a length of two meters and a rectangular cross-section of approximately 200 x 100 mm. When they are placed in service, these elements are introduced vertically, using a loading machine, into the reactor core contained in a pressure vessel. When they are spent, they are removed by the same machine and deposited temporarily, element by element, still in the vertical position, in an unloading basin above the reactor vessel. They are then transferred to a spent fuel pit located, for example, at a distance of 10 meters from the unloading basin, at practically the same level, where they are stored in vertical position until the natural decay of their radioactivity allows them to be removed from the power plant. Water, in fact, serves the function of cooling the elements and protecting the external environment against part of the radiation

  1. CARA Project: development of the advanced ULE fuel element for heavy water nuclear power plants

    International Nuclear Information System (INIS)

    Brasnarof, Daniel O.; Marino, Armando C.; Florido, Pablo C.; Munoz, C.; Bianchi, Daniel R.; Giorgis, Miguel A.

    2006-01-01

    The CARA Project (Spanish acronym of Combustible Avanzado para Reactores Argentinos) is a national fuel element technology development, compatible with our nuclear power plants (Atucha I, Embalse and Atucha II). It takes into account the experience obtained in our nuclear organisations (CNEA-CONUAR-NASA). The goal of the CARA fuel element is the performance improvement for those reactors and the enhancing of their normal operative conditions. The CARA design allows the burnup extension by using 52 rods of the same diameter. Likewise it keeps good thermo-hydraulic behaviour. The fuel bundle can be directly used in nuclear power plants with horizontal channels. By using an additional system it can be installed in the PHWR with vertical channels. The expected profits, by the use of the CARA in our reactors, broadly guaranty the recovery of the fund for its development, due to a reduction of the NPP fuels and back end cost. We estimate a reduction in the generation cost between 20 or 25 % in relation to the present one if we use 0.85 or 0.90% SEU (Slightly Enriched Uranium). The use of the CARA fuel in our reactors will also reduce the amount of spent fuel to be treated. The shortening could be between 17 to 27 % in Atucha I in relation to the present ULE (0.85%), between 38 to 46% for Embalse, and 45 to 53% for Atucha II. The mechanical behaviour and hydraulic compatibility have been verified. Several CARA prototypes were fabricated with a new design of the end plate and with new processes for the welding for the rods. We present in this paper the current status of the CARA fuel element development. (author) [es

  2. Nuclear fuel pellet loading apparatus

    International Nuclear Information System (INIS)

    Gerkey, K.S.

    1979-01-01

    An automatic apparatus for loading a predetermined amount of nuclear fuel pellets into a nuclear fuel element to be used in a nuclear reactor is described. The apparatus consists of a vibratory bed capable of supporting corrugated trays containing rows of nuclear fuel pellets and arranged in alignment with the open ends of several nuclear fuel elements. A sweep mechanism is arranged above the trays and serves to sweep the rows of fuel pellets onto the vibratory bed and into the fuel element. A length detecting system, in conjunction with a pellet stopping mechanism, is also provided to assure that a predetermined amount of nuclear fuel pellets are loaded into each fuel element

  3. Irradiation program of slightly enriched fuel elements at the Atucha I nuclear power plant

    International Nuclear Information System (INIS)

    Casario, J.A.; Cesario, R.H.; Perez, R.A.; Sidelnik, J.I.

    1987-01-01

    An irradiation program of fuel elements with slightly enriched uranium is implemented, tending to the homogenization of core at Atucha I nuclear power plant. The main benefits of the enrichment program are: a) to extend the average discharge burnup of fuel elements, reducing the number of elements used to generate the same amount of energy. This implies a smaller annual consumption of elements and consequently the reduction of transport and replacement operations and of the storage pool systems as well as that of radioactive wastes; b) the saving of uranium and structural materials (Zircaloy and others). In the initial stage of program an homogeneous core enrichment of 0.85% by weight of U-235 is anticipated. The average discharge burnup of fuel elements, as estimated by previous studies, is approximately 11.6 MW d/kg U. The annual consumption of fuel elements is reduced from 396 of natural uranium to 205, with a load factor of 0.85. It is intended to reach the next equilibrium steps with an enrichment of 1.00 and 1.20% in U-235. (Author)

  4. Nuclear fuel

    International Nuclear Information System (INIS)

    D Hondt, P.

    1998-01-01

    The research and development programme on nuclear fuel at the Belgian Nuclear Research Centre SCK/CEN is described. The objective of this programme is to enhance the quantitative prediction of the operational limits of nuclear fuel and to assess the behaviour of fuel under incidental and accidental conditions. Progress is described in different domains including the modelling of fission gas release in LWR fuel, thermal conductivity, basic physical phenomena, post-irradiation examination for fuel performance assessment, and conceptual studies of incidental and accidental fuel experiments

  5. Development of an information systems to manage the fuel elements of a nuclear reactor

    International Nuclear Information System (INIS)

    Neira Orellana, Alicia Cristina

    1999-01-01

    The development of a computerized information system is presented that administers the fuel elements of a nuclear reactor. This system automates the mathematical calculations of the nuclear reactor's configuration, which have been manually controlled for many years, and it also manages the inventory of these elements for each one of the different deposits of nuclear materials. This system was designed and built based on an Object Oriented Focus (OOF), which fully meets the requirements requested and aims to facilitate the interaction between the user and the machine. The OOF methodology is based on that proposed by Peter Coad and Edward Yourdon and the development tool used is DELPHI version 3.0 (object oriented programming graphics tool that uses Pascal Object language and a Windows '98 platform). To implement the prepared tool the different stages as indicated by the authors of the above-mentioned methodology were carried out step by step, concluding with the practical benefits associated with the use of the proposed focus. A Graphic Interactive Tool is obtained that will be used in part by the people who directly operate the nuclear reactor and who do the mathematical calculations for the configuration of its nucleus. The system will allow them to considerably reduce the time needed for administering the fuel elements with the automated configuration of the operating cycle. The importance of the combination of these elements varies depending on experimental needs. All those processes linked to the configuration of the nucleus are very important, particularly the calculation of fuel element wear (burned) and the coefficient calculation that validates this configuration. These processes were used during the development of this thesis work. The system also manages an inventory of all the elements with their respective histories, facilitating follow-ups and analyses (C.W)

  6. Characterizing high-temperature deformation of internally heated nuclear fuel element simulators

    Energy Technology Data Exchange (ETDEWEB)

    Belov, A.I.; Fong, R.W.L.; Leitch, B.W.; Nitheanandan, T.; Williams, A., E-mail: alexander.belov@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    The sag behaviour of a simulated nuclear fuel element during high-temperature transients has been investigated in an experiment utilizing an internal indirect heating method. The major motivation of the experiment was to improve understanding of the dominant mechanisms underlying the element thermo-mechanical response under loss-of-coolant accident conditions and to obtain accurate experimental data to support development of 3-D computational fuel element models. The experiment was conducted using an electrically heated CANDU fuel element simulator. Three consecutive thermal cycles with peak temperatures up to ≈1000 {sup o}C were applied to the element. The element sag deflections and sheath temperatures were measured. On heating up to 600 {sup o}C, only minor lateral deflections of the element were observed. Further heating to above 700 {sup o}C resulted in an element multi-rate creep and significant permanent bow. Post-test visual and X-ray examinations revealed a pronounced necking of the sheath at the pellet-to-pellet interface locations. A wall thickness reduction was detected in the necked region that is interpreted as a sheath longitudinal strain localization effect. The sheath cross-sectioning showed signs of a 'hard' pellet-cladding interaction due to the applied cycles. A 3-D model of the experiment was generated using the ANSYS finite element code. As a fully coupled thermal mechanical simulation is computationally expensive, it was deemed sufficient to use the measured sheath temperatures as a boundary condition, and thus an uncoupled mechanical simulation only was conducted. The ANSYS simulation results match the experiment sag observations well up to the point at which the fuel element started cooling down. (author)

  7. Fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A new fuel can with a loose bottom and head is described. The fuel bar is attached to the loose bottom and head with two grid poles keeping the distance between bottom and head. A bow-shaped handle is attached to the head so that the fuel bar can be lifted from the can

  8. Heat transfer burnout in tube-type fuel elements of nuclear power reactors

    International Nuclear Information System (INIS)

    Subbotin, V.; Alexeev, G.; Peskov, O.; Sapankevic, A.

    1976-01-01

    The conditions are formulated under which the results of the experimental research of the boilino. water heat transfer burnout carried out on models may be applied to fuel elements of nuclear reactors. Experimental material providing data on the heat transfer burnout was expanded by the results of measurements of the uneven (cosine) longitudinal distribution of heat sources. The results of the effects of helical fins or wires on heat transfer burnout are presented. (F.M.)

  9. Heat transfer burnout in tube-type fuel elements of nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Subbotin, V; Alexeev, G; Peskov, O; Sapankevic, A

    1976-08-01

    The conditions are formulated under which the results of the experimental research of the boiling. water heat transfer burnout carried out on models may be applied to fuel elements of nuclear reactors. Experimental material providing data on the heat transfer burnout was expanded by the results of measurements of the uneven (cosine) longitudinal distribution of heat sources. The results of the effects of helical fins or wires on heat transfer burnout are presented.

  10. Metallographic examination of damaged N reactor spent nuclear fuel element SFEC5,4378

    Energy Technology Data Exchange (ETDEWEB)

    Marschman, S.C.; Pyecha, T.D.; Abrefah, J.

    1997-08-01

    N-Reactor spent nuclear fuel (SNF) is currently residing underwater in the K Basins at the Hanford site, in Richland, Washington. This report presents results of the metallographic examination of specimens cut from an SNF element (Mark IV-E) with breached cladding. The element had resided in the K-West (KW) Storage Basin for at least 10 years after it was discharged from the N-Reactor. The storage containers in the KW Basin were nominally closed, isolating the SNF elements from the open pool environment. Seven specimens from this Mark IV-E outer fuel element were examined using an optical metallograph. Included were two specimens that had been subjected to a conditioning process recommended by the Independent Technical Assessment Team, two specimens that had been subjected to a conditioning process recommended in the Integrated Process Strategy Report, and three that were in the as-received, as-cut condition. One of the as-received specimens had been cut from the damaged (or breached) end of the element. All other specimens were cut from the undamaged mid-region of the fuel element. The specimens were visually examined to (1) identify uranium hydride inclusions present in the uranium metal fuel, (2) measure the thickness of the oxide layer formed on the uranium edges and assess the apparent integrity and adhesion of the oxide layer, and (3) look for features in the microstructure that might provide an insight into the various corrosion processes that occurred during underwater storage in the KW Basin. These features included, but were not limited to, the integrity of the cladding and the fuel-to-cladding bond, obvious anomalies in the microstructure, excessive pitting or friability of the fuel matrix, and obvious anomalies in the distribution of uranium hydride or uranium carbide inclusions. Also, the observed metallographic features of the conditioned specimens were compared with those of the as-received (unconditioned) specimens. 11 refs., 93 figs., 2 tabs.

  11. Facilities for post-irradiation examination of experimental fuel elements at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Mizzan, E.; Chenier, R.J.

    1979-10-01

    Expansion of post-irradiation facilities at the Chalk River Nuclear Laboratories and steady improvement in hot-cell techniques and equipment are providing more support to Canada's reactor fuel development program. The hot-cell facility primarily used for examination of experimental fuels averages a quarterly throughput of 40 elements and 110 metallographic specimens. New developments in ultrasonic testing, metallographic sample preparation, active storage, active waste filtration, and fissile accountability are coming into use to increase the efficiency and safety of hot-cell operations. (author)

  12. Study of a Tricarbide Grooved Ring Fuel Element for Nuclear Thermal Propulsion

    Science.gov (United States)

    Taylor, Brian; Emrich, Bill; Tucker, Dennis; Barnes, Marvin; Donders, Nicolas; Benensky, Kelsa

    2018-01-01

    Deep space exploration, especially that of Mars, is on the horizon as the next big challenge for space exploration. Nuclear propulsion, through which high thrust and efficiency can be achieved, is a promising option for decreasing the cost and logistics of such a mission. Work on nuclear thermal engines goes back to the days of the NERVA program. Currently, nuclear thermal propulsion is under development again in various forms to provide a superior propulsion system for deep space exploration. The authors have been working to develop a concept nuclear thermal engine that uses a grooved ring fuel element as an alternative to the traditional hexagonal rod design. The authors are also studying the use of carbide fuels. The concept was developed in order to increase surface area and heat transfer to the propellant. The use of carbides would also raise the operating temperature of the reactor. It is hoped that this could lead to a higher thrust to weight nuclear thermal engine. This paper describes the modeling of neutronics, heat transfer, and fluid dynamics of this alternative nuclear fuel element geometry. Fabrication experiments of grooved rings from carbide refractory metals are also presented along with material characterization and interactions with a hot hydrogen environment. Results of experiments and associated analysis are discussed. The authors demonstrated success in reaching desired densities with some success in material distribution and reaching a solid solution. Future work is needed to improve distribution of material, minimize oxidation during the milling process, and define a fabrication process that will serve for constructing grooved ring fuel rods for large system tests.

  13. Bearing support for receiving used fuel elements of nuclear power stations

    International Nuclear Information System (INIS)

    Krieger, F.

    1979-01-01

    A bearing support for receiving used fuel elements of nuclear power stations includes a plurality of chambers which have square cross-sections and each include inner and outer spaced apart walls with screening plates therebetween for screening the radiating fuel elements. Each chamber is detachably secured at its underside to a common foot plate and is held in position at its upper side by spacer elements. The outer wall comprises two equal-sided angle sheets and the inner wall comprises a closed square tube. The thickness of the outer wall is smaller than that of the inner wall and the outer walls are held in spaced relationship to each other at their upper sides by detachable bar grates

  14. Nuclear fuel preheating system

    International Nuclear Information System (INIS)

    Andrea, C.

    1975-01-01

    A nuclear reactor new fuel handling system which conveys new fuel from a fuel preparation room into the reactor containment boundary is described. The handling system is provided with a fuel preheating station which is adaptd to heat the new fuel to reactor refueling temperatures in such a way that the fuel is heated from the top down so that fuel element cladding failure due to thermal expansions is avoided. (U.S.)

  15. Fusion option to dispose of spent nuclear fuel and transuranic elements

    International Nuclear Information System (INIS)

    Gohar, Y.

    2000-01-01

    The fusion option is examined to solve the disposition problems of the spent nuclear fuel and the transuranic elements. The analysis of this report shows that the top rated solution, the elimination of the transuranic elements and the long-lived fission products, can be achieved in a fusion reactor. A 167 MW of fusion power from a D-T plasma for sixty years with an availability factor of 0.75 can transmute all the transuranic elements and the long-lived fission products of the 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. The operating time can be reduced to thirty years with use of 334 MW of fusion power, a system study is needed to define the optimum time. In addition, the fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future. Fusion blankets with a liquid carrier for the transuranic elements can achieve a transmutation rate for the transuranic elements up to 80 kg/MW.y of fusion power with k eff of 0.98. In addition, the liquid blankets have several advantages relative to the other blanket options. The energy from this transmutation is utilized to produce revenue for the system. Molten salt (Flibe) and lithium-lead eutectic are identified as the most promising liquids for this application, both materials are under development for future fusion blanket concepts. The Flibe molten salt with transuranic elements was developed and used successfully as nuclear fuel for the molten salt breeder reactor in the 1960's

  16. Eddy current examination of the nuclear fuel elements of IPR-R1 research reactor

    International Nuclear Information System (INIS)

    Silva, Roger F.; Frade, Rangel T.; Oliveira, Paulo F.; Silva, Marlucio A.; Silva Junior, Silverio F.

    2015-01-01

    Tubes of AISI 304 stainless steel as well as tubes of Aluminum 1100-F are used as cladding of the fuel elements of TRIGA MARK 1 nuclear research reactor. Usually, these tubes are periodically inspected by means of visual test and sipping test. The visual test allows the detection of changes occurred at the external fuel elements surface, such as those promoted by corrosion processes. However, this test method cannot be used for detection of internal discontinuities at the tube walls. Sipping test allows the detection of fuel elements in which the cladding has failed, but it is not able to determine the place where the discontinuity is located. In turn, eddy current testing, an electromagnetic nondestructive test method, allows the detection of discontinuities and monitoring their growth. In this paper, a study about the use of eddy current testing for detection and characterization of discontinuities in the fuel elements cladding is proposed. The study involves the development of probes able to operate in underwater inspections, the design and manufacture of reference standards and the development of a test methodology to perform the evaluations. (author)

  17. Eddy current examination of the nuclear fuel elements of IPR-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Roger F.; Frade, Rangel T.; Oliveira, Paulo F.; Silva, Marlucio A.; Silva Junior, Silverio F., E-mail: rfs@cdtn.br, E-mail: rtf@cdtn.br, E-mail: pfo@cdtn.br, E-mail: mas@cdtn.br, E-mail: silvasf@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Tubes of AISI 304 stainless steel as well as tubes of Aluminum 1100-F are used as cladding of the fuel elements of TRIGA MARK 1 nuclear research reactor. Usually, these tubes are periodically inspected by means of visual test and sipping test. The visual test allows the detection of changes occurred at the external fuel elements surface, such as those promoted by corrosion processes. However, this test method cannot be used for detection of internal discontinuities at the tube walls. Sipping test allows the detection of fuel elements in which the cladding has failed, but it is not able to determine the place where the discontinuity is located. In turn, eddy current testing, an electromagnetic nondestructive test method, allows the detection of discontinuities and monitoring their growth. In this paper, a study about the use of eddy current testing for detection and characterization of discontinuities in the fuel elements cladding is proposed. The study involves the development of probes able to operate in underwater inspections, the design and manufacture of reference standards and the development of a test methodology to perform the evaluations. (author)

  18. Copper produced from powder by HIP to encapsulate nuclear fuel elements

    International Nuclear Information System (INIS)

    Ekbom, L.B.; Bogegaard, S.

    1989-02-01

    In the Swedish nuclear waste mangement program, nuclear fuel elements are proposed to be encapsulated in copper canisters. To fill the space between the fuel elements two methods have been proposed. Originally lead was proposed to be cast into the canister. According to a second method the space between the fuel rods is filled with copper powder and hot isostatic pressed (HIP) to seal the canister lid and to densify the powder to homogenous copper. This latter method has the advantage that each fuel rod is individually encapsulated in a very corrosion resistant material. This investigation was performed to find out to what extent pure copper powder can be hot isosatic pressed to full density and to achieve properties comparable to that of the oxygen free high conductivity (OFHC) copper of the canister. OFHC copper was molten under helium gas protection and atomized to a fine spherical powder in a pilot plant. The powder was transfered to a glove box with an argon atmosphere. The powder was filled into a steel container, which was evacuated and sealed. HIP was done at 550 degree C and 200 MPa for one hour. The resulting copper was found to have a good ductility and mechanical properties comparable to that of ordinary copper. The constant strainrate stress corrosion test used to test the canister copper showed that the HIP-ed copper has the same good properties as OFHC copper. (authors)

  19. Once-through reactor with smooth hollow fuel elements for a manoeuvrable nuclear power plant

    International Nuclear Information System (INIS)

    Smolin, V.N.; Esikov, V.I.; Mityaev, Yu.I.; Vasil'ev, S.A.

    1980-01-01

    Studied are results of experimental investigation of the top capacity of hollow fuel element imitators, which has been carried out to substantiate possibilities of creation of nuclear energetic once-through type installation with subcritical parameters of heat carrier and smooth hollow fuel elements designed for operation in the regulatory regime of loading. Principal technological scheme of such NPP and approximate calculation characteristics of the reactor are presented. The investigation has been made using closed circular installation. Electro-heated tubes out of corrosion-resistant steel with the wall thickness variable as to the length are used as fuel element imitators. The experiments have been conducted using imitators with inner diameter of 14.6; 18 and 22 mm and the length of 6000 mm under the pressure (P) from 7.85 to 15.7 MPa, mass rate from 250 to 2000 kg/(m 2 xs); heat-carrier temperature at the entrance from 80 deg C up to the temperature 10-15 deg C lower than saturation temperature under the given pressure. The experiments have shown that under the pressure of 7.85-9.8 MPa in the heat carrier mass rates of 250-350 kg/(cm 2 xs) deteriorated regime of heat output appears only balance mass vapor content somewhat exceeding 1. It follows from the analysis of experimental data that the following parameters of heat-carrier are optimum: (from the viewpoint of maximum capacity in crisis-free regime of fuel element work) the pressure of 6-9 MPa; mass rate - 250-300 kg/(m 2 xs) at fuel element inner diameter of 25-20 mm respectively. Conclusion is made, that the investigations conducted create precondition for manoeuvrable NPP with once-through reactor

  20. Process for changing fuel elements of a water-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Fleischmann, R.; Rau, P.

    1986-01-01

    In order to change fuel elements, a water-filled duct can be installed between the rector pressure vessel and a space for accommodating the fuel elements. The fuel elements are transported there under water by a fuelling machine. The duct is installed as watertight connection closed on all sides between the reactor pressure vessel and a fuel element transport container brought close to it. The fuelling machine works in this duct. (orig./HP) [de

  1. Neutron and thermo - hydraulic model of a reactivity transient in a nuclear power plant fuel element

    International Nuclear Information System (INIS)

    Oliva, Jose de Jesus Rivero

    2012-01-01

    A reactivity transient without reactor scram was modeled and calculated using analytical expressions for the space distributions of the temperature fields, combined with discrete numerical calculations for the time dependences of thermal power and temperatures. The transient analysis covered the time dependencies of reactivity, global thermal power, fuel heat flux and temperatures in fuel, cladding and cooling water. The model was implemented in Microsoft Office Excel, dividing the Excel file in several separated worksheets for input data, initial steady-state calculations, calculation of parameters non-depending on eigenvalues, eigenvalues determination, calculation of parameters depending on eigenvalues, transient calculation and graphical representation of intermediate and final results. The results show how the thermal power reaches a new equilibrium state due to the negative reactivity feedback derived from the fuel temperature increment. Nevertheless, the reactor mean power increases 40% during the first second and, in the hottest channel, the maximum fuel temperature goes to a significantly high value, slightly above 2100 deg C, after 8 seconds of transient. Consequently, the results confirm that certain degree of fuel damage could be expected in case of a reactor scram failure. Once the basic model has being established the scope of accidents for future analyses can be extended, modifying the nuclear power behavior (reactivity) during transient and the boundary conditions for coolant temperature. A more complex model is underway for an annular fuel element. (author)

  2. Nuclear fuels

    International Nuclear Information System (INIS)

    2008-01-01

    The nuclear fuel is one of the key component of a nuclear reactor. Inside it, the fission reactions of heavy atoms, uranium and plutonium, take place. It is located in the core of the reactor, but also in the core of the whole nuclear system. Its design and properties influence the behaviour, the efficiency and the safety of the reactor. Even if it represents a weak share of the generated electricity cost, its proper use represents an important economic stake. Important improvements remain to be made to increase its residence time inside the reactor, to supply more energy, and to improve its robustness. Beyond the economical and safety considerations, strategical questions have to find an answer, like the use of plutonium, the management of resources and the management of nuclear wastes and real technological challenges have to be taken up. This monograph summarizes the existing knowledge about the nuclear fuel, its behaviour inside the reactor, its limits of use, and its R and D tracks. It illustrates also the researches in progress and presents some key results obtained recently. Content: 1 - Introduction; 2 - The fuel of water-cooled reactors: aspect, fabrication, behaviour of UO 2 and MOX fuels inside the reactor, behaviour in loss of tightness situation, microscopic morphology of fuel ceramics and evolution under irradiation - migration and localisation of fission products in UOX and MOX matrices, modeling of fuels behaviour - modeling of defects and fission products in the UO 2 ceramics by ab initio calculations, cladding and assembly materials, pellet-cladding interaction, advanced UO 2 and MOX ceramics, mechanical behaviour of the fuel assembly, fuel during a loss of coolant accident, fuel during a reactivity accident, fuel during a serious accident, fuel management inside reactor cores, fuel cycle materials balance, long-term behaviour of the spent fuel, fuel of boiling water reactors; 3 - the fuel of liquid metal fast reactors: fast neutrons radiation

  3. Nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, H [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1976-10-01

    It is expected that nuclear power generation will reach 49 million kW in 1985 and 129 million kW in 1995, and the nuclear fuel having to be supplied and processed will increase in proportion to these values. The technical problems concerning nuclear fuel are presented on the basis of the balance between the benefit for human beings and the burden on the human beings. Recently, especially the downstream of nuclear fuel attracts public attention. Enriched uranium as the raw material for light water reactor fuel is almost monopolized by the U.S., and the technical information has not been published for fear of the diversion to nuclear weapons. In this paper, the present situations of uranium enrichment, fuel fabrication, transportation, reprocessing and waste disposal and the future problems are described according to the path of nuclear fuel cycle. The demand and supply of enriched uranium in Japan will be balanced up to about 1988, but afterwards, the supply must rely upon the early establishment of the domestic technology by centrifugal separation method. No problem remains in the fabrication of light water reactor fuel, but for the fabrication of mixed oxide fuel, the mechanization of the production facility and labor saving are necessary. The solution of the capital risk for the construction of the second reprocessing plant is the main problem. Japan must develop waste disposal techniques with all-out efforts.

  4. 17506 - Order of 20 july 1989 on the storage period for fuel elements for spanish nuclear power plants

    International Nuclear Information System (INIS)

    1989-07-01

    The Order was made in furtherance of Decree No. 813/1988 amending a Decree of 1985 on the reorganisation of activities in the nuclear fuel cycle. It establishes new requirements regarding fuel elements for PWRs and BWRs, namely by providing that their operators should stock enough fuel elements for one load at least two months prior to the planned loading. Other plants should have the number of fuel elements necessary for their continuous operation for four months at 80 per cent of their nominal power [fr

  5. Nuclear fuel

    International Nuclear Information System (INIS)

    Azevedo, J.B.L. de.

    1980-01-01

    All stages of nuclear fuel cycle are analysed with respect to the present situation and future perspectives of supply and demand of services; the prices and the unitary cost estimation of these stages for the international fuel market are also mentioned. From the world resources and projections of uranium consumption, medium-and long term analyses are made of fuel availability for several strategies of use of different reactor types. Finally, the cost of nuclear fuel in the generation of electric energy is calculated to be used in the energetic planning of the electric sector. (M.A.) [pt

  6. Research on the interfacial behaviors of plate-type dispersion nuclear fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qiming; Yan Xiaoqing [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Ding Shurong, E-mail: dsr1971@163.co [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Huo Yongzhong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)

    2010-04-01

    The three-dimensional constitutive relations are constructed, respectively, for the fuel particles, the metal matrix and the cladding of dispersion nuclear fuel elements, allowing for the effects of large deformation and thermal-elastoplasticity. According to the constitutive relations, the method of modeling their irradiation behaviors in ABAQUS is developed and validated. Numerical simulations of the interfacial performances between the fuel meat and the cladding are implemented with the developed finite element models for different micro-structures of the fuel meat. The research results indicate that: (1) the interfacial tensile stresses and shear stresses for some cases will increase with burnup, but the relative stresses will decrease with burnup for some micro-structures; (2) at the lower burnups, the interfacial stresses increase with the particle sizes and the particle volume fractions; however, it is not the case at the higher burnups; (3) the particle distribution characteristics distinctly affect the interfacial stresses, and the face-centered cubic case has the best interfacial performance of the three considered cases.

  7. The beginning of the LEU fuel elements manufacturing in the Chilean Commission of Nuclear Energy

    International Nuclear Information System (INIS)

    Contreras, H.; Chavez, J.C.; Marin, J.; Lisboa, J.; Olivares, L.; Jimenez, O.

    1998-01-01

    The U 3 Si 2 LEU fuel fabrication program at CCHEN has started with the assembly of four leaders fuel elements for the RECH-1 reactor. This activity has involved a stage of fuel plates qualification, to evaluate fabrication procedures and quality controls and quality assurance. The qualification extent was 50% of the fuel plates, equivalent to the number of plates required for the assembly of two fuel elements. (author)

  8. Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing

    2009-08-01

    Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.

  9. Device for replacing the rods of a fuel element of a nuclear reactor

    International Nuclear Information System (INIS)

    Nissel, B.; Kybranz, R.; Will, R.

    1977-01-01

    In order to be able to replace several separate rods (fuel rods or absorber rods), in a fuel element, a special grab is introduced, which consists of several individual gripping devices and is operated by spring loading. (TK) [de

  10. C A R A fuel element for Atucha nuclear power plants and development plan

    International Nuclear Information System (INIS)

    Brasnarof, D. O; Marino, A. C; Bianchi, D; Giorgis M A; Orlando, O; Munoz, C; Taboada, H; Florido, P. C

    2006-01-01

    This paper presents the current state and the development plan of the C A R A fuel element.Main activities were carried out towards to welding of the end plates of the C A R A fuel element by a new process, and the assembling and hanging of the C A R A fuel element in its Atucha configuration, by using an external basket [es

  11. Temperature measurements of the aluminium claddings of fuel elements in nuclear reactor

    International Nuclear Information System (INIS)

    Chen Daolong

    1986-01-01

    A method for embedding the sheathed thermocouples in the aluminium claddings of some fuel elements of experimental reactors by ultrasonic welding technique is described. The measurement results of the cladding temperature of fuel elements in reactors are given. By means of this method, the joint between the sheathed thermocouples and the cladding of fuel elements can be made very tight, there are no bulges on the cladding surfaces, and the sheathed thermocouples are embedded strongly and reliably. Therefore an essential means is provided for acquiring the stable and dynamic state data of the cladding temperature of in-core fuel elements

  12. REACTOR FUEL ELEMENTS TESTING CONTAINER

    Science.gov (United States)

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  13. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong

    2011-06-01

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent

  14. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Yijie; Wang Qiming; Cui Yi; Huo Yongzhong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Ding Shurong, E-mail: dsr1971@163.com [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)

    2011-06-15

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent

  15. Nuclear fuel and/or fertile material element suitable for non-destructive determination of burn-up

    International Nuclear Information System (INIS)

    Muench, E.

    1976-01-01

    The invention refers to a nuclear fuel and/or fertile material element suitable for non-destructive burn-up analysis, where an isotope or a mixture of isotopes capable of being activated is provided for measuring the intensity of radiation emitted from radioactive nuclides, especially the intensity of gamma rays. The half-life of radioactive decay of the isotope or the mixture mentioned above after being activated is sufficiently large compared with the irradiation of the fuel and/or fertile material element in the nuclear reactor. (orig.) [de

  16. Economical benefits for the use of slightly enriched fuel elements at the Atucha-I nuclear power plant

    International Nuclear Information System (INIS)

    Sidelnik, J.I.; Sosa, M.A.

    1987-01-01

    The fuel represents a very important factor in the operative cost of the Atucha I nuclear power plant. This cost is drastically reduced with the use of fuel elements of slightly enriched uranium. The annual saving is analyzed with actual values for fuel elements with an enrichment of 0.85% by weight of U-235. With the reactor core in equilibrium state the annual saving achieved is approximately 7.5-10 u$s. According to the present irradiation plan, the benefit for the transition period is studied. An analysis of the sensitivity to differential increments in factors determining the cost of fuel elements or to changes in manufacturing losses is also performed, calculating its effect on the waste, the storage of irradiated elements and the amount of UO 2 required. (Author)

  17. Modular nuclear fuel element, modular capsule for a such element and fabrication process for a modular capsule

    International Nuclear Information System (INIS)

    Chotard, A.

    1988-01-01

    The nuclear fuel rod is made by a tubular casing closed at both ends and containing a series of modular capsules with little play with the casing and made by a jacket closed by porous plugs at both ends and containing a stack of fuel pellets [fr

  18. Method and apparatus for the handling and inspection of a nuclear reactor fuel element

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1975-01-01

    The non-destructive inspection, for instance, of spent fuel elements and their dismantling are carried out under water in a pool. For this purpose, the fuel elements are attached to a bar which can be moved under water from the vertical into horizontal directions by means of a winch. The bar proper is suspended from a bridge spanning the pool. On one side, the bar is pivoted in a pin installed in components suspended from the bridge, whilst the movement of the bar is limited by a horizontal stop. In the vertical position, the fuel elements and components, respectively, such as fuel elements, are taken up and inspected in the horizontal position by means of TV systems or periscopes. The fuel elements are conveyed by a trolley. Dismantling of the fuel elements under water is carried out by special tools, such as cranks and connecting rods which, inter alia, put the individual fuel rods onto grids prior to inspection, disengage the clamps by means of grid disconnecting systems, remove the fuel rods from the grids and put them on the bars. (DG/RF) [de

  19. Examination on the safety of handling the fuel elements in the nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    1977-01-01

    This is the report of the Examination Committee on Total Inspection and Repair Technologies for Mutsu to the Director of Science and Technology Agency and the Minister of Transport dated July 29, 1977. The committee concluded before that the total inspection on safety and the repair of shielding can be carried out as the fuel elements are loaded, and the safety can be secured sufficiently. It was decided at the meeting of ministers concerned with Mutsu on May 17 that the safety concerning handling the fuel elements of Mutsu should be examined by the committee. Under the premise that the fuel elements are loaded again and used after the total inspection on safety and the repair of shielding, the committee examined the methods and the basic concept of safety about the taking-out, transport and preservation of the fuel elements, and the conclusions obtained are reported. The contents of the examination are the outline of the fuel elements, the present condition of the fuel elements, the safety concerning taking-out, transport and preservation of the fuel elements, and the other measures required for securing safety. The committee thinks that the safety can be secured sufficiently if the works are carried out carefully. (Kako, I.)

  20. Experimental evaluation of different mixing promoter for nuclear fuel element by means of a new thermal tracing technique

    International Nuclear Information System (INIS)

    Silin, Nicolas; Juanico, Luis; Delmastro, Dario

    2004-01-01

    In this work a new experimental method is used to experimentally evaluate the performance of different appendages promoting the turbulent mixing between the coupled subchannels of nuclear fuel elements.The method used will be introduced in another presentation and consists in the generation and measurement of small thermal traces in the refrigerating water flow between the fuel rods.Because it is suitable for heterogeneous and compact subchannels (as Argentinean fuels) with high water flows in simple and affordable tests at atmospheric pressure, this new method is specially well suited for the design of fuel elements, while it offers advantages over other methods of mixing measurement.The experiments carried out on a small test section proved that the buttons brazed to the fuel rods (similar to the 'turbulence promoters' of the Canflex fuel) had an excellent thermohydraulic performance as compared to different mixing vane designs studied.The thermal traces method developed has shown its potential as a thermohydraulic design tool for the development of advanced nuclear fuels, that eventually incorporate mixing promoter elements. In the case of CARA, and as it includes spacer grids, it could be possible to use them to incorporate these elements without the need of brazing them to the rods (as is the case in Canflex), and therefore without penalizing its integrity [es

  1. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Wakamatsu, Mitsuo.

    1974-01-01

    Object: To improve a circulating flow passage of coolant so as to be able to accurately detect the temperature of coolant, rare gases contained, and the like. Structure: A fuel assembly comprising a flow regulating lattice provided with a plurality of communication holes in an axial direction, said lattice being positioned at the upper end of an outer tube in which nuclear fuel elements are received, and a neutron shielding body having a plurality of spiral coolant flow passages disposed between the lattice and the nuclear fuel elements, whereby a coolant comprised of liquid sodium or the like, which moves up passing through the coolant flow passages and the flow regulating passage, is regulated and passed through a detector mounted at the upper part of the flow regulating lattice to detect coolant temperature, flow rate, and rare gases or the like as the origin of nuclear fission contained in the coolant due to breakage of fuel elements. (Kamimura, M.)

  2. Nuclear criticality safety assessment of ORR, NBS, and HFBR fuel element shipping package

    International Nuclear Information System (INIS)

    Thomas, J.T.

    1979-01-01

    A fuel element shipping package employing a borated-phenolic foam as a thermal insulating material is designed to transport as many as seven fuel elements for use in the Oak Ridge Research Reactor, the Brookhaven Fast Beam Reactor, or the National Bureau of Standards Reactor. This report presents the criticality safety evaluation and demonstrates that the requirements for a Fissile Class I package are satisfied by the design

  3. Special equipment for the fabrication and quality control of nuclear fuel elements

    International Nuclear Information System (INIS)

    Guse, K.; Herbert, W.; Jaeger, K.

    1989-01-01

    For the fabrication of LWR fuel elements, columns are packed of up to 4 m in length, consisting of fuel pellets with different uranium enrichment, their weight and total length to be measured prior to further processing to fuel rods. An automated column packing device has been developed for this purpose. The packing jobs and other tasks are computer-controlled, measured data are stored and are printed out for quality documentation. The forces in the springs of fuel spacers of LWR fuel elements are to be measured and compared with the standard requirements, deviations to be documented. For this task, another computer-controlled, automated device has been developed for measuring the spring forces at all required positions after positioning and fixation of the spacers. (orig./DG) [de

  4. Compilation of papers presented to the KTG conference on 'Advanced LWR fuel elements: Design, performance and reprocessing', 17-18 November 1988, Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Bahm, W.

    1989-05-01

    The two expert groups of the Nuclear Society (KTG), 'chemistry and waste disposal' and 'fuel elements' discussed interdisciplinary problems concerning the development and reprocessing of advanced fuel elements. The 10 lectures deal with waste disposal, mechanical layout, operating behaviour, operating experiences and new developments of fuel elements for water moderated reactors as well as operational experiences of the Karlsruhe reprocessing plant (WAK) with reprocessing of high burnup LWR and MOX fuel elements, the distribution of fission products, the condition of the fission products during dissolution and with the effects of the higher burnup of fuel elements on the PUREX process. (DG) [de

  5. Suggestions of radiation protection instruments in ships used for transporting spent fuel elements from nuclear power plants to central stores and further to fuel reprocessing plants

    International Nuclear Information System (INIS)

    Warenmo, G.

    1979-01-01

    Some radiation protection measures are necessary in ships which will be used for transporting spent fuel elements from nuclear power plants to central stores and further to fuel reprocessing plants in order to protect the crew from unnecessarily high radiation doses and to ensure that not allowable values occur. Such measures are discussed in this report as well as suitable radiation protection instruments for such ships. (E.R.)

  6. Tests of experimental fuel elements by the method of nuclear-thermal pulse loadings in 'HYDRA' reactor

    International Nuclear Information System (INIS)

    Nastoyashchaya, O.V.; Lebedev, Yu. M.; Chechurov, A.M.; Khvostionov, Ye

    1997-01-01

    The results of tests of experimental fuel elements with uranium dioxide fuel composition embedded in Al and Zr matrix with the enrichment from 90% to 36% in respect to U-235 performed at the pulse 'HYDRA' reactor are presented in this paper. Testing is performed in the frame-work of extensive research program studying the behavior of fuel elements (FE) of research and mini nuclear power systems in case of practically immediate energy release in the fuel taking place during the RIA-type accidents. Duration of the neutron pulse when testing in 'HYDRA' reactor is from 7 to 20 ms. The methods of diagnostics of the state of FE prior to and after testing in the reactor are developed and verified. Mathematical model describing temperature fields inside the FE in the process of testing. and accounting for non-uniformity of fuel composition has been developed in order to summarize experimental results. Experimental data on the limiting values of the energy density leading to deformation and degradation of FE depending on the type of fuel composition have been obtained and the mechanisms for the development of these processes have been determined. The nature of physical-chemical processes taking place in the fuel composition and fuel cladding depending on material composition under different levels of energy deposition is demonstrated. The data on hydrogen generation and radioactive product release out of fuel after failure of FE are presented. (author)

  7. Experimental and numerical investigation of water flow through spacer grids of nuclear fuel elements using the Open FOAM code

    International Nuclear Information System (INIS)

    Vidal, Guilherme A.M.; Vieira, Tiago A.S.; Castro, Higor F.P.

    2017-01-01

    With the advancement and development of computational tools, the studies of thermofluidodynamic behavior in nuclear fuel elements have been developed in recent years. Of the devices present in these elements, the spacing grids received more attention. They have kept the fuel rods equally spaced and have fins that aim to improve the heat transfer process between the water and the fuel element. Therefore, the grids present an important structural and thermal function. This work was carried out with the purpose of verifying and validating simulations of spacer grids using OpenFOAM (2017) software of Computational Fluid Dynamics (CFD). The simulations were validated using results obtained through the commercial CFD program, Ansys CFX, and experiments available in the literature and obtained in test sections assembled on the Water-Air Circuit (CCA) of the CDTN thermo-hydraulic laboratory

  8. Absorption of plant-incorporated nuclear fuel cycle elements from the gastro-intestinal tract

    International Nuclear Information System (INIS)

    Sullivan, M.F.; Garland, T.R.; Cataldo, D.A.; Schreckhise, R.G.

    1979-01-01

    Soybean plants (Glycine max cv Williams) grown hydroponically on solutions containing ammonium pertechnetate ( 95 Tcsup(m)O - 4 ) were fed to rats (omnivores) and guinea pigs (herbivores). Absorption of plant-incorporated technetium was compared with absorption of inorganic 95 Tcsup(m) from a gavaged solution or with absorption of 95 Tcsup(m) added to non-radioactive soybean tissues. In a second study absorption of plutonium from alfalfa (Medicago sativa cv Ladak) grown on soil amended with either 238 Pu nitrate or 238 Pu-DTPA was compared with absorption of gavaged 238 Pu solutions and 238 Pu mixed with non-radioactive alfalfa. Incorporation of 95 Tcsup(m) into soybean tissues resulted in decreased absorption by both animal species. In contrast, incorporation of 238 Pu in alfalfa resulted in an increased absorption when compared with controls that were administered inorganic 238 Pu. These results suggest that organic binding may alter, in either direction, absorption of nuclear fuel cycle elements. (author)

  9. Process and device for cooling of nuclear reactor fuel elements enclosed in a transport container

    International Nuclear Information System (INIS)

    Stiefel, M.

    1986-01-01

    In order to remove the post-decay heat of the fuel elements contained in them, transport containers for burnt-up fuel elements can be connected to a water cooling circuit. In order to avoid thermal shocks, a tenside forming foam and air are introduced into the cooling circuit before its entry into the transport container in the direction of flow. The tenside and air continue to be supplied until the temperature inside the transport container has fallen below the temperature at which the foam is destroyed. By adding tenside and air, a two phase mixture is produced, which foams greatly when it enters the transport container and which cools the fuel elements so as to protect them.(orig./HP) [de

  10. Gas-cooled nuclear reactor with a filling of spherical fuel elements

    International Nuclear Information System (INIS)

    Hantke, H.J.

    1978-01-01

    In order to protect the reflector blanket of a pebble bed reactor against radiation damage a filling of graphite spheres is arranged between blanket and fuel elements, having got a smaller diameter than fuel spheres. Before reaching unduely high irradiation values caused by fast neutrons these graphite spheres are removed from the core, together with the usual discharge of spheres, and replaced by new spheres. (TK) [de

  11. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Hayashi, Hiroshi; Watari, Yoshio; Hizahara, Hiroshi; Masuoka, Ryuzo.

    1970-01-01

    When exchanging nuclear fuel assemblies during the operation of a nuclear reactor, melting of fuel bodies, and severence of tubular claddings is halted at the time of insertion by furnishing a neutron absorbing material such as B 10 , Cd, Gd or the like at the forward end of the fuel assembly to thereby lower the power peak at the forward ends of the fuel elements to within tolerable levels and thus prevent both fuel liquification and excessive expansion. The neutron absorbing material may be attached in the form of a plate to the fuel assembly forward tie plate, or may be inserted as a pellet into the front end of the tubular cladding. (Owens, K.J.)

  12. Acceptance of spent nuclear fuel in multiple element sealed canisters by the Federal Waste Management System

    International Nuclear Information System (INIS)

    1990-03-01

    This report is one of a series of eight prepared by E.R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high level waste will be accepted in the following categories: (1) failed fuel; (2) consolidated fuel and associated structural parts; (3) non-fuel-assembly hardware; (4) fuel in metal storage casks; (5) fuel in multi-element sealed canisters; (6) inspection and testing requirements for wastes; (7) canister criteria; (8) spent fuel selection for delivery; and (9) defense and commercial high-level waste packages. 14 refs., 27 figs

  13. Tubes of stainless steel - Welding of fuel elements for nuclear industry

    International Nuclear Information System (INIS)

    Bittencourt, M.S.Q.; Carvalho Perdigao, S. de

    1984-01-01

    Aiming at welding fuel elements of 316 AISI alloy steel by the TIG self generating process, the welding parameters which could provide. The major total penetration / width of welded fillet relation, were selected. Tensile tests at room temperature and at 650 0 C were done in the obtained welds. (M.C.K.) [pt

  14. Criticality calculation of the deposits for the fuel elements in RP-10 nuclear research reactor

    International Nuclear Information System (INIS)

    Aguirre, Alvaro; Bruna, Ruben

    2013-01-01

    This paper shows the results of the criticality calculation of the deposits for irradiated and non-irradiated fuel elements in the RP-10 research reactor with MCNP5 code. In all cases and for normal and incidental conditions, the effective multiplication factor (K eff ) results less than 0,90 according to the acceptance criterion. (authors).

  15. Nuclear Fuel Reprocessing

    International Nuclear Information System (INIS)

    Simpson, Michael F.; Law, Jack D.

    2010-01-01

    This is a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. Nuclear reprocessing is the chemical treatment of spent fuel involving separation of its various constituents. Principally, it is used to recover useful actinides from the spent fuel. Radioactive waste that cannot be re-used is separated into streams for consolidation into waste forms. The first known application of nuclear reprocessing was within the Manhattan Project to recover material for nuclear weapons. Currently, reprocessing has a peaceful application in the nuclear fuel cycle. A variety of chemical methods have been proposed and demonstrated for reprocessing of nuclear fuel. The two most widely investigated and implemented methods are generally referred to as aqueous reprocessing and pyroprocessing. Each of these technologies is described in detail in Section 3 with numerous references to published articles. Reprocessing of nuclear fuel as part of a fuel cycle can be used both to recover fissionable actinides and to stabilize radioactive fission products into durable waste forms. It can also be used as part of a breeder reactor fuel cycle that could result in a 14-fold or higher increase in energy utilization per unit of natural uranium. Reprocessing can also impact the need for geologic repositories for spent fuel. The volume of waste that needs to be sent to such a repository can be reduced by first subjecting the spent fuel to reprocessing. The extent to which volume reduction can occur is currently under study by the United States Department of Energy via research at various national laboratories and universities. Reprocessing can also separate fissile and non-fissile radioactive elements for transmutation.

  16. Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements

    International Nuclear Information System (INIS)

    Walton, J.T.

    1992-11-01

    This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code

  17. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  18. Nuclear reactor fuel element assembly spacer grid and method of making

    International Nuclear Information System (INIS)

    Chetter, J.

    1975-01-01

    A cellular fuel element assembly spacer grid is described which provides for resilient bracing of fuel pins in the cells of the grid by bow spring locating members projecting inside the cells of the grid to hold the fuel pins against opposed rigid stops also projecting inside the cells of the grid. The grid comprises two tiers each formed from intersecting strip members defining cells which are penetrated by the fuel pins and arranged parallel to one another but spaced apart. The bow spring locating members extend longitudinally between the two tiers and have end ferrules which are a sliding fit on locating members which extend longitudinally from the facing inner edges of the strip members forming the two tiers. The grid tiers are fabricated individually by heat bonding the intersecting strip members prior to assembling the tiers into the spacer grid. (U.S.)

  19. Process for surface treatment of zirconium-containing cladding materials for fuel element or other components for nuclear reactors

    International Nuclear Information System (INIS)

    Videm, K.G.; Lunde, L.R.; Kooyman, H.H.

    1975-01-01

    A process for the surface treatment of zirconium-base cladding materials for fuel elements or other components for nuclear reactors is described. The treatment includes pickling the cladding material in a fluoride-containing bath, and then applying a protective coating through oxidation to the pickled cladding material. The fluoride-containing contaminants which remain on the surface of the cladding material during pickling are removed or rendered harmless by anodic oxidation

  20. Transfer of elements relevant to nuclear fuel cycle from soil to boreal plants and animals in experimental meso- and microcosms

    Energy Technology Data Exchange (ETDEWEB)

    Tuovinen, Tiina S., E-mail: tiina.tuovinen@uef.fi [Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Kasurinen, Anne; Häikiö, Elina [Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Tervahauta, Arja [Department of Biology, University of Eastern Finland, P.O. Box FI-70211, Kuopio (Finland); Makkonen, Sari; Holopainen, Toini; Juutilainen, Jukka [Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland)

    2016-01-01

    Uranium (U), cobalt (Co), molybdenum (Mo), nickel (Ni), lead (Pb), thorium (Th) and zinc (Zn) occur naturally in soil but their radioactive isotopes can also be released into the environment during the nuclear fuel cycle. The transfer of these elements was studied in three different trophic levels in experimental mesocosms containing downy birch (Betula pubescens), narrow buckler fern (Dryopteris carthusiana) and Scandinavian small-reed (Calamagrostis purpurea ssp. Phragmitoides) as producers, snails (Arianta arbostorum) as herbivores, and earthworms (Lumbricus terrestris) as decomposers. To determine more precisely whether the element uptake of snails is mainly via their food (birch leaves) or both via soil and food, a separate microcosm experiment was also performed. The element uptake of snails did not generally depend on the presence of soil, indicating that the main uptake route was food, except for U, where soil contact was important for uptake when soil U concentration was high. Transfer of elements from soil to plants was not linear, i.e. it was not correctly described by constant concentration ratios (CR) commonly applied in radioecological modeling. Similar nonlinear transfer was found for the invertebrate animals included in this study: elements other than U were taken up more efficiently when element concentration in soil or food was low. - Highlights: • We studied transfer of elements in boreal food chain using meso- and microcosms. • Elements related to nuclear fuel cycle and mining were examined. • Higher uptake at lower soil concentrations was observed for primary producers. • Snails took up elements mainly from food but for U also soil was an element source. • Non-linear transfer of essential elements was observed for herbivore and decomposer.

  1. Expected returns from a tax on nuclear fuel elements in the context of longer service lives of German nuclear power plants

    International Nuclear Information System (INIS)

    Kondziella, Hendrik; Bruckner, Thomas

    2010-01-01

    To what extent will the fuel element tax introduced by the German government in combination with the longer service life of nuclear power stations reduce the profits of public utilities? A qualitative assessment suggests that the tax will not equal the full profits. Using an electricity market model, various scenarios can be calculated for an eight-year prolongation of the residual service life of existing nuclear power plants. (orig.)

  2. Chilean fuel elements fabrication progress report

    International Nuclear Information System (INIS)

    Baeza, J.; Contreras, H.; Chavez, J.; Klein, J.; Mansilla, R.; Marin, J.; Medina, R.

    1993-01-01

    Due to HEU-LEU core conversion necessity for the Chilean MTR reactors, the Fuel Elements Plant is being implemented to LEU nuclear fuel elements fabrication. A glove box line for powder-compact processing designed at CCHEN, which supposed to operate under an automatic control system, is at present under initial tests. Results of first natural uranium fuel plates manufacturing runs are shown

  3. A follow-up test of failed fuel element of a nuclear reactor

    International Nuclear Information System (INIS)

    Peerasathien, W.

    1974-01-01

    This thesis is a result of test of a number of nuclear fuel rods which have not been used for a long time due to leakage of radioactivity. Water was circulated through each fuel rod in a test cylinder and radioactivity in water was measured. It was found that the detection of Cesium-137 which has a long half-life, does not indicate the extent of leakage of short-lived radioisotopes, some of which are gaseous. These gases are harmful to the reactor operators and users. A better result was obtained by placing the failed fuel rod in the test cylinder close to the reactor to induce fission. Short half-life gases or other nuclides of the same series were then directly measured

  4. Fuel element services

    International Nuclear Information System (INIS)

    Marta, H.; Alvarez, P.; Jimenez, J.

    2006-01-01

    Refuelling outages comprise a number of maintenance tasks scheduled long in advance to assure a reliable operation throughout the next cycle and, in the long run, a safer and more efficient plant. Most of these tasks are routine service of mechanical and electrical system and likewise fuel an be considered a critical component as to handling, inspection, cleaning and repair. ENUSA-ENWESA AIE has been working in this area since 1995 growing from fuel repair to a more integrated service that includes new and spent fuel handling, inserts, failed fuel rod detection systems, ultrasonic fuel cleaning, fuel repair and a comprehensive array of inspection and tests related to the reliability of the mechanical components in the fuel assembly, all this, performed in compliance with quality, safety, health physics and any other nuclear standard. (Author)

  5. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    Niedrig, T.

    1987-01-01

    Nuclear fuel supply is viewed as a buyer's market of assured medium-term stability. Even on a long-term basis, no shortage is envisaged for all conceivable expansion schedules. The conversion and enrichment facilities developed since the mid-seventies have done much to stabilize the market, owing to the fact that one-sided political decisions by the USA can be counteracted efficiently. In view of the uncertainties concerning realistic nuclear waste management strategies, thermal recycling and mixed oxide fuel elements might increase their market share in the future. Capacities are being planned accordingly. (orig.) [de

  6. Method of measuring distance between fuel element

    International Nuclear Information System (INIS)

    Urata, Megumu.

    1991-01-01

    The distance between fuel elements contained in a pool is measured in a contactless manner even for a narrow distance less than 1 mm. That is, the equipment for measuring the distance between spent fuel elements of a spent fuel assembly in a nuclear reactor comprises a optical fiber scope, a lens, an industrial TV camera and a monitor TV. The top end of the optical fiber scope is inserted between fuel elements to be measured. The state thereof is displayed on the TV screen to measure the distance between the fuel elements. The measured results are compared with a previously formed calibration curve to determine the value between the fuel elements. Then, the distance between the fuel elements can be determined in the pool of a power plant without dismantling the fuel assembly, to investigate the state of the bending and estimate the fuel working life. (I.S.)

  7. Modeling transient thermal hydraulic behavior of a thermionic fuel element for nuclear space reactors

    International Nuclear Information System (INIS)

    Al-Kheliewi, A.S.; Klein, A.C.

    1994-01-01

    A transient code (TFETC) for determining the temperature distribution throughout the radial and axial positions of a thermionic fuel element (TFE) during changes in operating conditions has been successfully developed and tested. A fully implicit method is used to solve the system of equations for temperatures at each time step. Presently, TFETC has the ability to handle the following transients: startup, loss of flow accidents, and shutdown. The code has been applied to the startup of the ATI single cell configuration which appears to start up and shut down in an orderly and reasonable fashion. No unexpected transient features were observed. The TFE also appears to function robustly under loss of flow accident conditions. It appears hat sufficient time is available to shut the reactor down safely without melting point the fuel. The model shows that during a complete loss of flow accident (without shutdown) the coolant reaches its boiling point in approximately 35 seconds. The fuel may exceed its melting point after this time as the NaK coolant will boil if the reactor is not shut down. For 1/2, 1/3, and 1/4 pump failures, the fuel temperatures never exceed the fuel melting point even if the reactor is not shut down

  8. Sensitivity analysis for heat diffusion in a fin on a nuclear fuel element

    International Nuclear Information System (INIS)

    Tito, Max Werner de Carvalho

    2001-11-01

    The modern thermal systems generally present a growing complexity, as is in the case of nuclear power plants. It seems that is necessary the use of complex computation and mathematical tools in order to increase the efficiency of the operations, reduce costs and maximize profits while maintaining the integrity of its components. The use of sensitivity calculations plays an important role in this process providing relevant information regarding the resultant influence of variation or perturbation of its parameters as the system works. This technique is better known as sensitivity analysis and through its use makes possible the understanding of the effects of the parameters, which are fundamental for the project preparation, and for the development of preventive and corrective handling measurements of many pieces of equipment of modern engineering. The sensitivity calculation methodology is based generally on the response surface technique (graphic description of the functions of interest based in the results obtained from the system parameter variation). This method presents a lot of disadvantages and sometimes is even impracticable since many parameters can cause alterations or perturbations to the system and the model to analyse it can be very complex as well. The utilization of perturbative methods result appropriate as a practical solution to this problem especially in the presence of complex equations. Also it reduces the resultant computational calculus time considerably. The use of these methods becomes an essential tool to simplify the sensitivity analysis. In this dissertation, the differential perturbative method is applied in a heat conduction problem within a thermal system, made up of a one-dimensional circumferential fin on a nuclear fuel element. The fins are used to extend the thermal surfaces where convection occurs; thus increasing the heat transfer to many thermal pieces of equipment in order to obtain better results. The finned claddings are

  9. Research of heat releasing element of an active zone of gaseous nuclear reactor with pumped through nuclear fuel - uranium hexafluoride (UF6)

    International Nuclear Information System (INIS)

    Batyrbekov, G.; Batyrbekov, E.; Belyakova, E.; Kunakov, S.; Koltyshev, S.

    1996-01-01

    The purpose of the offered project is learning physics and substantiation of possibility of creation gaseous nuclear reactor with pumped through nuclear fuel-hexafluoride of uranium (Uf6).Main problems of this work are'. Determination of physic-chemical, spectral and optical properties of non-equilibrium nuclear - excited plasma of hexafluoride of uranium and its mixtures with other gases. Research of gas dynamics of laminar, non-mixing two-layer current of gases of hexafluoride of uranium and helium at availability and absence of internal energy release in hexafluoride of uranium with the purpose to determinate a possibility of isolation of hexafluoride of uranium from walls by inert helium. Creation and research of gaseous heat releasing element with pumped through fuel Uf6 in an active zone of research nuclear WWR-K reactor. Objects of a research: Non-equilibrium nuclear - excited plasma of hexafluoride of uranium and its mixtures with other gases. With use of specially created ampoules will come true in-reactor probe and spectral diagnostics of plasma. Calculations of kinetics with the account of main elementary processes proceeding in it, will be carried out. Two-layer non-mixed streams of hexafluoride of uranium and helium at availability and absence of internal energy release. Conditions of obtaining and characteristics of such streams will be investigated. Gaseous heat releasing element with pumped through fuel - Uf6 in an active zone of nuclear WWR-K reactor

  10. Nuclear safety of the ten-well insert for the SRP fuel element dissolver

    International Nuclear Information System (INIS)

    Perkins, W.C.; Forstner, J.L.

    1977-06-01

    Mass limits are developed and presented for safe dissolution of fissile materials in the Ten-Well Insert, an improved device for limiting the configuration of fuel in SRP dissolvers. This insert permits high-capacity dissolution of SRP fuels, offsite fuels, and scrap fissile materials with adequate margins of nuclear safety. Limits were developed by calculating the safe (subcritical) mass per well as a function of the concentration of fissile material in the dissolver solution. Safe mass values were then selected for use as well-loading limits so as to ensure subcriticality throughout the dissolution. Well-loading limits are presented for uranium metal, uranium-aluminum alloy, U 3 O 8 -aluminum cermet, plutonium-aluminum alloy, and uranium-plutonium-aluminum alloy. With these limits, the maximum k/sub eff/ is 0.95. Nuclear safety is maintained in process operations by conforming to well-loading limits calculated from the safe mass values, conforming to dissolver-loading limits, and maintaining the concentration of fissile material in solution below 4.0 g/l. 9 figures, 14 tables

  11. NARCISS critical stand experiments for studying the nuclear safety in accident water immersion of highly enriched uranium dioxide fuel elements

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoj, N.N.; Glushkov, E.S.; Bubelev, V.G.

    2005-01-01

    A brief description of the Topaz-2 SNPS designed under scientific supervision of RRC KI in Russia, and of the NARCISS critical facility, is given. At the NARCISS critical facility, neutronic peculiarities and nuclear safety issues of the Topaz-2 system reactor were studied experimentally. This work is devoted to a detailed description of experiments on investigation of criticality safety in accident water immersion og highly enriched uranium dioxide fuel elements, performed at the NARCISS facility. The experiments were carried out at water-moderated critical assemblies with varying height, number, and spacing of fuel elements. The results obtained in the critical experiments, computational models of the investigated critical configurations, and comparison of the computational and experimental results are given [ru

  12. Process and container system for transferring or transporting fuel elements from a nuclear power station to a store

    International Nuclear Information System (INIS)

    Vox, A.J.

    1984-01-01

    A system of containers with three types of containers (an inside container, a transport container and a storage container) is used. One either sets the inside container open on the lid side into the transport container first in the water pond of the nuclear power station, and one then sets the fuel elements into the inside container, or one places the inside container, loaded with fuel elements away from the transport container, into the transport container. Both containers are then closed and are transported to the store as a unit. The storage container open on the lid side is prepared there, the floor of the transport container is opened and this, together with the inside container, is lifted above the storage container or set above the storage container. The inside container is then lowered onto the storage container, the transport container is removed and the lid of the storage container is closed. (orig./HP) [de

  13. EURATOM work on standard defects and dimensional measurements in neutron radiography of nuclear fuel elements

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1981-10-01

    In 1979 a working group on neutron radiography was formed at Euratom. The purpose of this group is the standardization of neutron radiographic methods in the field of nuclear fuel. First priority was given to the development of image quality indicators and standard objects for the determination of accuracy of dimensional measurements from neutron radiographs. For that purpose beam purity and sensitivity indicators as well as a calibration fuel pin were designed and fabricated at Risoe. All the Euratom neutron radiography centers have recieved the above items for comparative neutron radiography. The measuring results obtained, using various measuring apparatus, will form the basis to formulate conclusions about the best measuring methods and instruments to be used in that field. (author)

  14. Reprocessing of nuclear fuels

    International Nuclear Information System (INIS)

    Hatfield, G.W.

    1960-11-01

    One of the persistent ideas concerning nuclear power is that the fuel costs are negligible. This, of course, is incorrect and, in fact, one of the major problems in the development of economic nuclear power is to get the cost of the fuel cycles down to an acceptable level. The irradiated fuel removed from the nuclear power reactors must be returned as fresh fuel into the system. Aside from the problems of handling and shipping involved in the reprocessing cycles, the two major steps are the chemical separation and the refabrication. The chemical separation covers the processing of the spent fuel to separate and recover the unburned fuel as well as the new fuel produced in the reactor. This includes the decontamination of these materials from other radioactive fission products formed in the reactor. Refabrication involves the working and sheathing of recycled fuel into the shapes and forms required by reactor design and the economics of the fabrication problem determines to a large extent the quality of the material required from the chemical treatment. At present there appear to be enough separating facilities in the United States and the United Kingdom to handle the recycling of fuel from power reactors for the next few years. However, we understand the costs of recycling fuel in these facilities will be high or low depend ing on whether or not the capital costs of the plant are included in the processing cost. Also, the present plants may not be well adapted to carry out the chemical processing of the very wide variety of power reactor fuel elements which are being considered and will continue to be considered over the years to come. (author)

  15. Manipulator for fuel elements and control rods in a nuclear reactor

    International Nuclear Information System (INIS)

    Voss, S.H.K.; Kipp, T.

    1974-01-01

    The manipulator serves for the transport and shuffling of fuel elements or control rods. It has a two-piece grab telescope which can be vertically rotated and on which an interior telescopic tube can be moved within a telescopic jacket if the grab head is raised or lowered. For unlimited rotation of the grab telescope a lifting traverse with supporting rocker and control rocker is used, on which the grab head is mounted by means of a hook suspension. On the grab head, two double pawls are arranged which are operated together and which open and close each other. The pawl device is operated by the control rocker. If the grab head is lowered, the double pawls, swinging outwards, with the aid of carrier bolts lock the rotating pawls of a guide matrix with the interior telescopic tube. The guide matrix has slots and bore holes for guiding the elements as well as centering bars for the heads of the fuel elements or control rods to be gripped. In the lowest position, it rests on the centering collar of the telescopic tube. (DG) [de

  16. Manipulator for fuel elements and control rods in a nuclear reactor

    International Nuclear Information System (INIS)

    Voss, S.H.K.; Kipp, T.

    1977-01-01

    The manipulator serves for the transport and shuffling of fuel elements or control rods. It has a two-piece grab telescope which can be vertically rotated and on which an interior telescopic tube can be moved within a telescopic jacket if the grab head is raised or lowered. For unlimited rotation of the grab telescope a lifting traverse with supporting rocker and control rocker is used, on which the grab head is mounted by means of a hook suspension. On the grab head, two double pawls are arranged which are operated together and which open and close each other. The pawl device is operated by the control rocker. If the grab head is lowered, the double pawls, swinging outward with the aid of carrier bolts lock the rotating pawls of a guide matrix with the interior telescopic tube. The guide matrix has slots and bore holes for guiding the elements as well as centering bars for the heads of the fuel elements or control rods to be gripped. In the lowest position, it rests on the centering collar of the telescopic tube. (DG) [de

  17. Study of the mixture in an assembly of clustered fuel elements of a nuclear reactor

    International Nuclear Information System (INIS)

    Tofani, Paulo de Carvalho

    1970-01-01

    An improvement of thermal performance of fuel clusters in a nuclear reactor is closely related to the knowledge of heat transmission in the solid part and of heat exchanges in the fluid. This research thesis thus aimed at studying the mixture effects in simple phase between sub-canals in order to adjust laws which govern these effects in analytical codes. After a review of published works on flows and heat exchanges in clusters, the author presents an experimental device, reports and analyses the obtained results [fr

  18. Testing external surface of fuel element tubes for power nuclear reactors

    International Nuclear Information System (INIS)

    Naugol'nykh, O.G.; Nelyubin, Yu.V.

    1987-01-01

    Optical methods are regarded perspective for discovery and detection of flaws of external surfaces of fuel element tubes. The TV method has highest information content among them. Two mock-ups of facilities based on the TV method using a ''dissector'' type TV device and a TV tube with charge accumulation (vidikon) have been developed. It is concluded that complex testing - combination of ultrasonic, photoelectric and TV methods in a facility is necessary for discovery and analysis of the whole variety of flaws, though sensitivity of the TV method is enough for disclosure of all the main defects

  19. Storage rack for holding spent fuel elements from nuclear power plants

    International Nuclear Information System (INIS)

    Krieger, F.

    1978-01-01

    In the fuel rack containing a great number of compartments with square cross-sections, the structural elements required by the system are statically designed in such a way, that optimal utilization of space as well as shielding of the compartments with respect to each other is guaranteed. In order to achieve this the compartments may be formed by profiled sheets having got trapezoidal edges taken off. Two sheets, each running parallel with respect to each other, form a double shell. The compartments are formed by another double shell, also consisting of two sheets and lying mirror-inverted with respect to the first shell touching this one. (DG) [de

  20. Control device for can failures of liquid cooled nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Althaus, D.; Mohm, F.; Nyhof, M.

    1974-01-01

    Checking of the fuel or breeding elements of, e.g., sodium-cooled reactors is done by detecting fission products in the coolant, with a flushing gas like argon removing the fission products from the coolant and carrying them to a detector system. In order to increase the escape rate of the fission products from the elements, these are lifted by a hoisting unit into a pit reaching down below the coolant level and are then heated. Heating is achieved by the decay heat or by an additional heating in the receiving pit which at this point is thermically insulated from the exterior. The flushing gas is blown radially into the receiving pit from below. The rising bubbles take along the fission products to a scintillation counter mounted on the head of the receiving vessel. This vessel may have double walls with coolant flowing through the interspace. (DG) [de

  1. Fuel element transport container

    International Nuclear Information System (INIS)

    Benna, P.; Neuenfeldt, W.

    1979-01-01

    The reprocessing system includes a large number of waterfilled ponds next to each other for the intermediate storage of fuel elements from LWR's. The fuel element transport device is allocated to a middle pond. The individual ponds are separated from each other by walls, and are only accessible from the middle pond via narrow passages. The transport device includes a telescopic running rail for a trolley with a grab device for the fuel element. The running rail is supported in turn by a second trolley, which can be moved by wheels on rails. Part of the drive of the first trolley is arranged on the second one. Using this transport device, adjacent ponds can be served through the passage openings. (DG) [de

  2. Fuel Element Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Burley, H.H. [ed.

    1956-08-01

    It is the purpose of the Fuel Element Technical Manual to Provide a single document describing the fabrication processes used in the manufacture of the fuel element as well as the technical bases for these processes. The manual will be instrumental in the indoctrination of personnel new to the field and will provide a single data reference for all personnel involved in the design or manufacture of the fuel element. The material contained in this manual was assembled by members of the Engineering Department and the Manufacturing Department at the Hanford Atomic Products Operation between the dates October, 1955 and June, 1956. Arrangement of the manual. The manual is divided into six parts: Part I--introduction; Part II--technical bases; Part III--process; Part IV--plant and equipment; Part V--process control and improvement; and VI--safety.

  3. Quality management of nuclear fuel

    International Nuclear Information System (INIS)

    2006-01-01

    The Guide presents the quality management requirements to be complied with in the procurement, design, manufacture, transport, receipt, storage, handling and operation of nuclear fuel. The Guide also applies to control rods and shield elements to be placed in the reactor. The Guide is mainly aimed for the licensee responsible for the procurement and operation of fuel, for the fuel designer and manufacturer and for other organisations, whose activities affect fuel quality and the safety of fuel transport, storage and operation. General requirements for nuclear fuel are presented in Section 114 of the Finnish Nuclear Energy Decree and in Section 15 of the Government Decision (395/1991). Regulatory control of the safety of fuel is described in Guides YVL6.1, YVL6.2 and YVL6.3. An overview of the regulatory control of nuclear power plants carried out by STUK (Radiation and Nuclear Safety Authority, Finland) is clarified in Guide YVL1.1

  4. Nuclear fuel

    International Nuclear Information System (INIS)

    Quinauk, J.P.

    1990-01-01

    Since 1985, Fragema has been marketing and selling the Advanced Fuel Assemby AFA whose main features are its zircaloy grids and removable top and bottom nozzles. It is this product, which exists for several different fuel assembly arrays and heights, that will be employed in the reactors at Daya Bay. Fragema employs gadolinium as the consumable poison to enable highperformance fuel management. More recently, the company has supplied fuel assemblies of the mixed-oxide(MOX) and enriched reprocessed uranium type. The reliability level of the fuel sold by Fragema is one of the highest in the world, thanks in particular to the excellence of the quality assurance and quality control programs that have been implemented at all stages of its design and manufacture

  5. Report on the fuel cycle centre for spent fuel elements from nuclear power plants in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    1977-01-01

    The report takes into account the contents of the safety report which was presented on March 31st, 1977 to the Social Minister of Lower Saxony by the Deutsche Gesellschaft fuer Wiederaufbereitung von Kernbrennstoffen mbH, Hanover, together with the application for a licence for the construction and operation of a fuel cycle centre. However, the report is not to be seen as the brief description of the facility, as it is required according to section 3, sub-section 3 of the AtVfV (Nuclear Installations Ordinance). It is more introductory information. Statements and drafts are preliminary; they have neither been decided on nor have they been licensed. However, the report gives a survey of the present state-of-the-art and of planning activities concerning the nuclear fuel cycle centre, while paying special attention to data relevant to the site. The government of Lower Saxony has proposed as a preliminary site on Febr. 22nd, 1977 an area near Gorleben in the rural district of Luechow-Dannenberg. The Federal government has adopted this proposal on July 5th, 1977. (orig.) [de

  6. Investigation on Nd:YAG laser weldability of zircaloy-4 end cap closure for nuclear fuel elements

    International Nuclear Information System (INIS)

    Kim, Soo Sung; Lee, Chul Yung; Yang, Myung Seung

    2001-01-01

    Various welding processes are now available for end cap closure of nuclear fuel element such as TIG(Tungsten Inert Gas) welding, magnetic resistance welding and laser welding. Even though the resistance and TIG welding processes are widely used for manufacturing commercial fuel elements, they can not be recommended for the remote seal welding of a fuel element at a hot cell facility due to the complexity of electrode alignment, difficulty in the replacement of parts in the remote manner and a large heat input for a thin sheath. Therefore, the Nd:YAG laser system using optical fiber transmission was selected for Zircaloy-4 end cap welding inside hot cell. The laser welding apparatus was developed using a pulsed Nd:YAG laser of 500 watt average power with optical fiber transmission. The weldability of laser welding was satisfactory with respect to the microstructures and mechanical properties comparing with TIG and resistance welding. The optimum operation processes of laser welding and the optical fiber transmission system for hot cell operation in a remote manner have been developed. The effects of irradiation on the properties of the laser apparatus were also being studied

  7. Application of photoelasticity to study stress in component of the fuel element of nuclear reator

    International Nuclear Information System (INIS)

    Diniz, S.M.C.

    1987-11-01

    The fuel assembly, in the core of the nuclear reactor, is submitted to a system of forces (weight, buoyancy and hydraulic lift-up) with a resultant oriented in the direction of the coolant flow. To assure the assembly stability, under all operation conditions of the nuclear reactor, a holding-down device composed of four leaf springs is used. The safe/operation of the reactor depends on the capacity of such springs to support the maximum loads applied on them. The strictly mathematical methods for stress analysis of these springs are very complex, due to several factors such as: tri-dimensional geometry, changing loading, plastic strains and stress concentration. The stress analysis of these springs was performed using the photoelastic method. This technique has been proved to be adequate to the leaf spring analysis. In order to permit the evaluation of the potentialities of the employed method the Photoelasticity is decribed in its multiples purposes; that is, two-dimensional problems, stress frozen technique and reflection photoelasticity. The results obtained certify the role of the Photoelasticity, as a powerfull tool to the stress analyst and to the nuclear industry as well. (author) [pt

  8. Fuel element store

    International Nuclear Information System (INIS)

    Wieser, R.

    1987-01-01

    The spherical fuel elements are stored dry in cans. The cans themselves are stacked in parallel storage shafts, which are combined into a rectangular storage space. The storage space is made earthquake-proof by surrounding it with concrete. It consists of a ceiling assembled from several steel parts, which is connected to the floor by support elements. A cooling air ventilation station supplies the individual storage shaft and therefore the cans with cooling air via incoming and outgoing pipes. (DG) [de

  9. A Multi-Dimensional Heat Transfer Model of a Tie-Tube and Hexagonal Fuel Element for Nuclear Thermal Propulsion

    Science.gov (United States)

    Gomez, C. F.; Mireles, O. R.; Stewart, E.

    2016-01-01

    The Space Capable Cryogenic Thermal Engine (SCCTE) effort considers a nuclear thermal rocket design based around a Low-Enriched Uranium (LEU) design fission reactor. The reactor core is comprised of bundled hexagonal fuel elements that directly heat hydrogen for expansion in a thrust chamber and hexagonal tie-tubes that house zirconium hydride moderator mass for the purpose of thermalizing fast neutrons resulting from fission events. Created 3D steady state Hex fuel rod model with 1D flow channels. Hand Calculation were used to set up initial conditions for fluid flow. The Hex Fuel rod uses 1D flow paths to model the channels using empirical correlations for heat transfer in a pipe. Created a 2-D axisymmetric transient to steady state model using the CFD turbulent flow and Heat Transfer module in COMSOL. This model was developed to find and understand the hydrogen flow that might effect the thermal gradients axially and at the end of the tie tube where the flow turns and enters an annulus. The Hex fuel rod and Tie tube models were made based on requirements given to us by CSNR and the SCCTE team. The models helped simplify and understand the physics and assumptions. Using pipe correlations reduced the complexity of the 3-D fuel rod model and is numerically more stable and computationally more time-efficient compared to the CFD approach. The 2-D axisymmetric tie tube model can be used as a reference "Virtual test model" for comparing and improving 3-D Models.

  10. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a nuclear reactor fuel assembly comprising a cluster of fuel elements supported by transversal grids so that their axes are parallel to and at a distance from each other, in order to establish interstices for the axial flow of a coolant. At least one of the interstices is occupied by an axial duct reserved for an auxiliary cooling fluid and is fitted with side holes through which the auxiliary cooling fluid is sprayed into the cluster. Deflectors extend as from a transversal grid in a position opposite the holes to deflect the cooling fluid jet towards those parts of the fuel elements that are not accessible to the auxiliary coolant. This assembly is intended for reactors cooled by light or heavy water [fr

  11. Grid for a fuel element

    International Nuclear Information System (INIS)

    1975-01-01

    An illustrative embodiment of the invention has one or more corrugations formed in the surface of a fuel element grid for a nuclear reactor. Not only does the corrugation enhance the strength of the grid plate in which it is formed, but it also provides a simple and convenient means for regulating the reactor coolant pressure drop through an appropriate choice of the corrugation depth

  12. Transportation of irradiated fuel elements

    International Nuclear Information System (INIS)

    Preece, A.H.

    1980-01-01

    The report falls under the headings: introduction (explaining the special interest of the London Borough of Brent, as forming part of the route for transportation of irradiated fuel elements); nuclear power (with special reference to transport of spent fuel and radioactive wastes); the flask aspect (design, safety regulations, criticisms, tests, etc.); the accident aspect (working manual for rail staff, train formation, responsibility, postulated accident situations); the emergency arrangements aspect; the monitoring aspect (health and safety reports); legislation; contingency plans; radiation - relevant background information. (U.K.)

  13. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    1975-01-01

    The nuclear fuel assembly described includes a cluster of fuel elements supported at a distance from each other so that their axes are parallel in order to establish secondary channels between them reserved for the coolant. Several ducts for an auxiliary cooling fluid are arranged in the cluster. The wall of each duct is pierced with coolant ejection holes which are placed circumferentially to a pre-determined pattern established according to the position of the duct in the cluster and by the axial distance of the ejection hole along the duct. This assembly is intended for reactors cooled by light or heavy water [fr

  14. Substitution of chlorinated and fluorinated solvents by biodegradable detergent solution in components cleaning of nuclear fuel elements

    International Nuclear Information System (INIS)

    Vieira, Andre Luiz Pinto da Silva

    2000-01-01

    As the auxiliary oils used in machining evolved from integral into aqueous emulsion, and later on into aqueous-solution synthetic oils, the components cleaning process with organic solvents, originally adopted at the Fuel Element Factory (FEC), Industrias Nucleares do Brasil S.A. (INB) began to present problems in removing oil residues from machined components, due to the incompatibility between aqueous and organic media. In order to eliminate such incompatibility and adapt the process to the environmental laws restricting production and use of chlorinated or fluorinated solvents as a measure for preserving the atmosphere's ozone layer, in 1995 INB initiated the development of a components cleaning process using biodegradable aqueous detergent. The effort was completed in 2000 with the construction of a machine in keeping with the specific geometry of the fuel-assembly components and the operating conditions required for working with the new process. (author)

  15. Nuclear fuel cycle techniques

    International Nuclear Information System (INIS)

    Pecqueur, Michel; Taranger, Pierre

    1975-01-01

    The production of fuels for nuclear power plants involves five principal stages: prospecting of uranium deposits (on the ground, aerial, geochemical, geophysical, etc...); extraction and production of natural uranium from the deposits (U content of ores is not generally high and a chemical processing is necessary to obtain U concentrates); production of 235 U enriched uranium for plants utilizing this type of fuel (a description is given of the gaseous diffusion process widely used throughout the world and particularly in France); manufacture of suitable fuel elements for the different plants; reprocessing of spent fuels for the purpose of not only recovering the fissile materials but also disposing safely of the fission products and other wastes [fr

  16. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Vikhorev, Yu.V.; Biryukov, G.I.; Kirilyuk, N.A.; Lobanov, V.N.

    1977-01-01

    A fuel assembly is proposed for nuclear reactors allowing remote replacement of control rod bundles or their shifting from one assembly to another, i.e., their multipurpose use. This leads to a significant increase in fuel assembly usability. In the fuel assembly the control rod bundle is placed in guide tube channels to which baffles are attached for fuel element spacing. The remote handling of control rods is provided by a hollow cylinder with openings in its lower bottom through which the control rods pass. All control rods in a bundle are mounted to a cross beam which in turn is mounted in the cylinder and is designed for grasping the whole rod bundle by a remotely controlled telescopic mechanism in bundle replacement or shifting. (Z.M.)

  17. Financing the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Stephany, M.

    1975-01-01

    While conventional power stations usually have fossil fuel reserves for only a few weeks, nuclear power stations, because of the relatively long time required for uranium processing from ore extraction to the delivery of the fuel elements and their prolonged in-pile time, require fuel reserves for a period of several years. Although the specific fuel costs of nuclear power stations are much lower than those of conventional power stations, this results in consistently higher financial requirements. But the problems involved in financing the nuclear fuel do not only include the aspect of financing the requirements of reactor operators, but also of financing the facilities of the nuclear fuel cycle. As far as the fuel supply is concerned, the true financial requirements greatly exceed the mere purchasing costs because the costs of financing are rather high as a consequence of the long lead times. (orig./UA) [de

  18. Fuel elements handling device and method

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1976-01-01

    This invention relates to nuclear equipment and more particularly to methods and apparatus for the non-destructive inspection, manipulation, disassembly and assembly of reactor fuel elements and the like. (author)

  19. Automated Fuel Element Closure Welding System

    International Nuclear Information System (INIS)

    Wahlquist, D.R.

    1993-01-01

    The Automated Fuel Element Closure Welding System is a robotic device that will load and weld top end plugs onto nuclear fuel elements in a highly radioactive and inert gas environment. The system was developed at Argonne National Laboratory-West as part of the Fuel Cycle Demonstration. The welding system performs four main functions, it (1) injects a small amount of a xenon/krypton gas mixture into specific fuel elements, and (2) loads tiny end plugs into the tops of fuel element jackets, and (3) welds the end plugs to the element jackets, and (4) performs a dimensional inspection of the pre- and post-welded fuel elements. The system components are modular to facilitate remote replacement of failed parts. The entire system can be operated remotely in manual, semi-automatic, or fully automatic modes using a computer control system. The welding system is currently undergoing software testing and functional checkout

  20. A CAREM type fuel element dynamic analysis

    International Nuclear Information System (INIS)

    Magoia, J.E.

    1990-01-01

    A first analysis on the dynamic behaviour of a fuel element designed for the CAREM nuclear reactor (Central Argentina de Elementos Modulares) was performed. The model used to represent this dynamic behaviour was satisfactorily evaluated. Using primary estimations for some of its numerical parameters, a first approximation to its natural vibrational modes was obtained. Results obtained from fuel elements frequently used in nuclear power plants of the PWR (Pressurized Water Reactors) type, are compared with values resulting from similar analysis. (Author) [es

  1. Transfer flask for hot active fuel elements

    International Nuclear Information System (INIS)

    Aubert, Roger; Moutard, Daniel.

    1980-01-01

    This invention concerns a flask for transporting active fuel elements removed from a nuclear reactor vessel, after only a few days storage and hence cooling, either within a nuclear power station itself or between such a station and a near-by storage area. This containment system is not a flask for conveyance over long and medium distances. Specifically, the invention concerns a transport flask that enables hot fuel elements to be cooled, even in the event of accidents [fr

  2. Nuclear power fuel cycle

    International Nuclear Information System (INIS)

    Havelka, S.; Jakesova, L.

    1982-01-01

    Economic problems are discussed of the fuel cycle (cost of the individual parts of the fuel cycle and the share of the fuel cycle in the price of 1 kWh), the technological problems of the fuel cycle (uranium ore mining and processing, uranium isotope enrichment, the manufacture of fuel elements, the building of long-term storage sites for spent fuel, spent fuel reprocessing, liquid and gaseous waste processing), and the ecologic aspects of the fuel cycle. (H.S.)

  3. The fuel of nuclear reactors

    International Nuclear Information System (INIS)

    1995-03-01

    This booklet is a presentation of the different steps of the preparation of nuclear fuels performed by Cogema. The documents starts with a presentation of the different French reactor types: graphite moderated reactors, PWRs using MOX fuel, fast breeder reactors and research reactors. The second part describes the fuel manufacturing process: conditioning of nuclear materials and fabrication of fuel assemblies. The third part lists the different companies involved in the French nuclear fuel industry while part 4 gives a short presentation of the two Cogema's fuel fabrication plants at Cadarache and Marcoule. Part 5 and 6 concern the quality assurance, the safety and reliability aspects of fuel elements and the R and D programs. The last part presents some aspects of the environmental and personnel protection performed by Cogema. (J.S.)

  4. In-pile modelling of nuclear fuel element for the MTR type reactors. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Farhadi, Kazem [AEOI, Tehran (Iran, Islamic Republic of). Radiations Application Research School

    2014-06-15

    In part two of the present paper, neutronic properties of the pool-type research reactor core are used to assess the similitude laws derived for out-of-pile modelling of the fuel element. The benchmark reactor used for this purpose is an IAEA 5 MW thermal pool-type research reactor currently in operation. The neutronic properties analysis are based on typical 2 200 m/sec and neutrons having 0.025 eV energy. The non-leakage capability of the system is estimated in terms of diffusion length. Also the slowing down power and the moderating ratio of the modelled methanol coolant are calculated in terms of lethargy of the diffusing medium. It is shown that the Iron which is substituted for Aluminium cladding is a relatively low absorber of neutrons but has a high neutron leakage. Methanol which replaced ordinary water as coolant is not a suitable coolant due to high neutrons absorbing substance. It is concluded that although Iron as a cladding material and methanol as a coolant meet the modelling out-of-pile criteria but are not satisfying neutronic properties. Therefore, use of them as a model clad and coolant are not suggested for research reactors. (orig.)

  5. Flow instability tests for a particle bed reactor nuclear thermal rocket fuel element

    Science.gov (United States)

    Lawrence, Timothy J.

    1993-05-01

    Recent analyses have focused on the flow stability characteristics of a particle bed reactor (PBR). These laminar flow instabilities may exist in reactors with parallel paths and are caused by the heating of the gas at low Reynolds numbers. This phenomena can be described as follows: several parallel channels are connected at the plenum regions and are stabilized by some inlet temperature and pressure; a perturbation in one channel causes the temperature to rise and increases the gas viscosity and reduces the gas density; the pressure drop is fixed by the plenum regions, therefore, the mass flow rate in the channel would decrease; the decrease in flow reduces the ability to remove the energy added and the temperature increases; and finally, this process could continue until the fuel element fails. Several analyses based on different methods have derived similar curves to show that these instabilities may exist at low Reynolds numbers and high phi's ((Tfinal Tinitial)/Tinitial). These analyses need to be experimentally verified.

  6. Critical heat fluxes in tubular fuel elements of nuclear power reactors

    International Nuclear Information System (INIS)

    Subbotin, V.I.; Alekseev, G.V.; Peskov, O.L.

    1974-01-01

    The results of the experiments carried out show that with appropriate choice of tube, type and dimensions of intensifier the attainment of critical conditions at certain parameters is not accompanied by sharp or considerable increases in temperature of the heat removing surface. Increase in power to above critical under these conditions does not lead to considerable variation in temperature either. Thus, it appears possible to change from heat removal by steam-water mixture to convective heat removal by wet steam without manifestation of intolerable temperature conditions of the heating surface (Fig. 6). A change to convective heat removal by wet steam is possible at different levels of heat fluxes which depend during constant conditions at the inlet on tube length and the degree of the disturbing influence on the flow. This is especially important since in principle the possibility arises for developing a power reactor with tubular fuel elements, in which a once-through cycle with steam superheat involving no intermediate separation can be realised

  7. Regulation at nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the role of the UJD in regulation at nuclear fuel cycle is presented. The Nuclear Fuel Cycle (NFC) is a complex of activities linked with production of nuclear fuel for nuclear reactors as a source of energy used for production of electricity and heat, and of activities linked with spent nuclear fuel handling. Activities linked with nuclear fuel (NF) production, known as the Front-End of Nuclear Fuel Cycle, include (production of nuclear fuel from uranium as the most frequently used element). After discharging spent nuclear fuel (SNF) from nuclear reactor the activities follow linked with its storage, reprocessing and disposal known as the Back-End of Nuclear Fuel Cycle. Individual activity, which penetrates throughout the NFC, is transport of nuclear materials various forms during NF production and transport of NF and SNF. Nuclear reactors are installed in the Slovak Republic only in commercial nuclear power plants and the NFC is of the open type is imported from abroad and SNF is long-term supposed without reprocessing. The main mission of the area of NFC is supervision over: - assurance of nuclear safety throughout all NFC activities; - observance of provisions of the Treaty on Non-Proliferation of Nuclear Weapons during nuclear material handling; with an aim to prevent leakage of radioactive substances into environment (including deliberated danage of NFC sensitive facilities and misuse of nuclear materials to production of nuclear weapons. The UJD carries out this mission through: - assessment of safety documentation submitted by operators of nuclear installations at which nuclear material, NF and SNF is handled; - inspections concentrated on assurance of compliance of real conditions in NFC, i.e. storage and transport of NF and SNF; storage, transport and disposal of wastes from processing of SNF; with assumptions of the safety

  8. Ultimate storage of spent fuel elements from the AVR experimental nuclear power plant in the Asse Salt Mine

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, J.

    1975-02-15

    The present paper is intended to serve as the basis for the licensing procedures both in respect of the transport and storage techniques and also for the ultimate storage itself. In regard to the technique it will be shown on the basis of design drawings and calculations that the handling, transport and storage of the fuel elements can be safely carried out in accordance with the regulations in force. In regard to the ultimate storage itself, since no highly radioactive wastes with a long-lived actinide content have yet been stored, it will be necessary to show that an unacceptable contamination of the biosphere will be avoided even in the long term under all anticipated conditions. It will further be necessary to show by calculations and suitable tests, in view of the radioactive gas and fissile material content, that no danger due to gas release from the fuel elements will arise during the operating life of the mine and that a nuclear criticality risk can be excluded for all time.

  9. Catalogue of fuel elements - 1. addendum October 1958

    International Nuclear Information System (INIS)

    Even, A.

    1957-01-01

    This document contains sheets presenting various characteristics of nuclear fuel elements which are distinguished with respect to their shape: cylinder bar, plate, tube. Each sheet comprises an indication of the atomic pile in which the fuel element is used, dimensions, cartridge data, data related to cooling, to combustion rate, and to fuel handling. A drawing of the fuel element is also given

  10. Procedure for filling with gas and sealing a nuclear fuel element consisting of a container

    International Nuclear Information System (INIS)

    Boyko, E.S.; Campbell, J.; Wiggins, R.J.

    1971-01-01

    A procedure for sealing the end plug of a fuel pin of a zirconium alloy or stainless steel within a pressure container, which contains an inert gas (preferably helium) atmosphere at a pressure of 35-133 kp/cm 2 , is described. The internal pressure in the fuel pin allows detection of leakages by means of a helium spectrometer and reduces the compressive stresses to which the fuel is subjected in the reactor. (JIW)

  11. Calculation of mass flow and steam quality distribution on fuel elements of light-water cooled boiling water nuclear reactors

    International Nuclear Information System (INIS)

    Hermanns, H.J.

    1977-04-01

    By the example of light-water cooled nuclear reactors, the state of the calculation methods at disposal for calculating mass flow and steam quality distribution (sub-channel analysis) is indicated. Particular regard was paid to the transport phenomena occurring in reactor fuel elements in the range of two phase flow. Experimentally determined values were compared with recalculations of these experiments with the sub-channel code COBRA; from the results of these comparing calculations, conclusions could be drawn on the suitability of this code for defined applications. Limits of reliability could be determined to some extent. Based on the experience gained and the study of individual physical model concepts, recognized as being important, a sub-channel model was drawn up and the corresponding numerical computer code (SIEWAS) worked out. Experiments made at GE could be reproduced with the code SIEWAS with sufficient accuracy. (orig.) [de

  12. ELM - A SIMPLE TOOL FOR THERMAL-HYDRAULIC ANALYSIS OF SOLID-CORE NUCLEAR ROCKET FUEL ELEMENTS

    Science.gov (United States)

    Walton, J. T.

    1994-01-01

    ELM is a simple computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in nuclear thermal rockets. Written for the nuclear propulsion project of the Space Exploration Initiative, ELM evaluates the various heat transfer coefficient and friction factor correlations available for turbulent pipe flow with heat addition. In the past, these correlations were found in different reactor analysis codes, but now comparisons are possible within one program. The logic of ELM is based on the one-dimensional conservation of energy in combination with Newton's Law of Cooling to determine the bulk flow temperature and the wall temperature across a control volume. Since the control volume is an incremental length of tube, the corresponding pressure drop is determined by application of the Law of Conservation of Momentum. The size, speed, and accuracy of ELM make it a simple tool for use in fuel element parametric studies. ELM is a machine independent program written in FORTRAN 77. It has been successfully compiled on an IBM PC compatible running MS-DOS using Lahey FORTRAN 77, a DEC VAX series computer running VMS, and a Sun4 series computer running SunOS UNIX. ELM requires 565K of RAM under SunOS 4.1, 360K of RAM under VMS 5.4, and 406K of RAM under MS-DOS. Because this program is machine independent, no executable is provided on the distribution media. The standard distribution medium for ELM is one 5.25 inch 360K MS-DOS format diskette. ELM was developed in 1991. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.

  13. Romanian nuclear fuel program

    International Nuclear Information System (INIS)

    Budan, O.

    1999-01-01

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified and authorised CANDU-6 fuel supplier. The re-loading of the Cernavoda NGS Unit 1 started in the middle

  14. Interim storage of spent fuel elements in the Paks Nuclear Power Plant, Hungary

    International Nuclear Information System (INIS)

    Szabo, B.

    1998-01-01

    The interim storage of spent fuel cassettes of the Paks NPP provides storage for 50 years at the Paks NPP site. The modular dry storage technology is presented. The technological design and the licensing of the facility has been made by the GEC Alsthom ESL firm. This storage facility can accommodate 450 fuel cassettes until their final disposal. (R.P.)

  15. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  16. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    2014-01-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100 th nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U 3 O 8 were replaced by U 3 Si 2 -based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to fulfill its mission that is

  17. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Tomihiro.

    1970-01-01

    The present invention relates to fuel assemblies employing wire wrap spacers for retaining uniform spatial distribution between fuel elements. Clad fuel elements are helically wound in the oxial direction with a wave-formed wire strand. The strand is therefore provided with spring action which permits the fuel elements to expand freely in the axial and radial directions so as to retain proper spacing and reduce stresses due to thermal deformation. (Ownes, K.J.)

  18. Nuclear fuel lease accounting

    International Nuclear Information System (INIS)

    Danielson, A.H.

    1986-01-01

    The subject of nuclear fuel lease accounting is a controversial one that has received much attention over the years. This has occurred during a period when increasing numbers of utilities, seeking alternatives to traditional financing methods, have turned to leasing their nuclear fuel inventories. The purpose of this paper is to examine the current accounting treatment of nuclear fuel leases as prescribed by the Financial Accounting Standards Board (FASB) and the Federal Energy Regulatory Commission's (FERC's) Uniform System of Accounts. Cost accounting for leased nuclear fuel during the fuel cycle is also discussed

  19. Quality assurance of nuclear fuel

    International Nuclear Information System (INIS)

    1994-01-01

    The guide presents the quality assurance requirements to be completed with in the procurement, design, manufacture, transport, handling and operation of the nuclear fuel. The guide also applies to the procurement of the control rods and the shield elements to be placed in the reactor. The guide is mainly aimed for the licensee responsible for the procurement and operation of fuel, for the fuel designer and manufacturer and for other organizations whose activities affect fuel quality, the safety of fuel transport, storage and operation. (2 refs.)

  20. The Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    2011-08-01

    This brochure describes the nuclear fuel cycle, which is an industrial process involving various activities to produce electricity from uranium in nuclear power reactors. The cycle starts with the mining of uranium and ends with the disposal of nuclear waste. The raw material for today's nuclear fuel is uranium. It must be processed through a series of steps to produce an efficient fuel for generating electricity. Used fuel also needs to be taken care of for reuse and disposal. The nuclear fuel cycle includes the 'front end', i.e. preparation of the fuel, the 'service period' in which fuel is used during reactor operation to generate electricity, and the 'back end', i.e. the safe management of spent nuclear fuel including reprocessing and reuse and disposal. If spent fuel is not reprocessed, the fuel cycle is referred to as an 'open' or 'once-through' fuel cycle; if spent fuel is reprocessed, and partly reused, it is referred to as a 'closed' nuclear fuel cycle.

  1. Nuclear fuel replacement device

    International Nuclear Information System (INIS)

    Ritz, W.C.; Robey, R.M.; Wett, J.F.

    1984-01-01

    A fuel handling arrangement for a liquid metal cooled nuclear reactor having a single rotating plug eccentric to the fuel core and a fuel handling machine radially movable along a slot in the plug with a transfer station disposed outside the fuel core but covered by the eccentric plug and within range of movement of said fuel handling machine to permit transfer of fuel assemblies between the core and the transfer station. (author)

  2. Transportation of irradiated fuel elements

    International Nuclear Information System (INIS)

    1980-01-01

    A critique is presented of current methods of transporting spent nuclear fuel and the inadequacies of the associated contingency plans, with particular reference to the transportation of irradiated fuel through London. Anti-nuclear and pro-nuclear arguments are presented on a number of factors, including tests on flasks, levels of radiation exposure, routine transport arrangements and contingency arrangements. (U.K.)

  3. Hydrogen in CANDU fuel elements

    International Nuclear Information System (INIS)

    Sejnoha, R.; Manzer, A.M.; Surette, B.A.

    1995-01-01

    Unirradiated and irradiated CANDU fuel cladding was tested to compare the role of stress-corrosion cracking and of hydrogen in the development of fuel defects. The results of the tests are compared with information on fuel performance in-reactor. The role of hydriding (deuteriding) from the coolant and from the fuel element inside is discussed, and the control of 'hydrogen gas' content in the element is confirmed as essential for defect-free fuel performance. Finally, implications for fuel element design are discussed. (author)

  4. Instrumentation of fuel elements and fuel plates

    International Nuclear Information System (INIS)

    Durand, J.P.; Fanjas, Y.

    1993-01-01

    When controlling the behaviour of a reactor or developing a new fuel concept, it is of utmost interest to have the possibility to confirm the thermohydraulic calculations by actual measurements in the fuel elements or in the fuel plates. For years, CERCA has developed the technology and supplied its customers with fuel elements equipped with pressure or temperature measuring devices according to the requirements. Recent customer projects have led to the development of a new method to introduce thermocouples directly into the fuel plate meat instead of the cladding. The purpose of this paper is to review the various instrumentation possibilities available at CERCA. (author)

  5. Instrumentation of fuel elements and fuel plates

    International Nuclear Information System (INIS)

    Durand, J.P.; Fanjas, Y.

    1994-01-01

    When controlling the behaviour of a reactor or developing a new fuel concept, it is of utmost interest to have the possibility to confirm the thermohydraulic calculations by actual measurements in the fuel elements or in the fuel plates. For years, CERCA has developed the technology and supplied its customers with fuel elements equipped with pressure or temperature measuring devices according to the requirements. Recent customer projects have lead to the development of a new method to introduce thermocouples directly into the fuel plate meat instead of the cladding. The purpose of this paper is to review the various instrumentation possibilities available at CERCA. (author)

  6. 37-Active rods fuel element for Atucha 1 nuclear power plant. Effects of this change in design over the neutronic behavior, decay power and radioactive inventory

    International Nuclear Information System (INIS)

    Villar, Javier E.

    1999-01-01

    The influence of the use of 37-rods fuel element on the behavior of the Atucha 1 nuclear power plant homogeneous core with slightly enriched fuel to 0.85 w % were studied through representative parameters such as average discharge burnup, channel powers, reactivity coefficients, kinetic parameters, radioactive inventory and decay power. In general, the values of mentioned parameters are similar to those corresponding to a core with the 36-rods fuel element actually in use, although it must be emphasized a decrease both in linear power and, in minor degree, in the efficiency of shut-off and control rods and a slight increase in the discharge burnup. The fuel management strategy developed for a core with 36-rods elements can be maintained. (author)

  7. Nuclear fuel accounting

    International Nuclear Information System (INIS)

    Aisch, D.E.

    1977-01-01

    After a nuclear power plant has started commercial operation the actual nuclear fuel costs have to be demonstrated in the rate making procedure. For this purpose an accounting system has to be developed which comprises the following features: 1) All costs associated with nuclear fuel shall be correctly recorded; 2) it shall be sufficiently flexible to cover also deviations from proposed core loading patterns; 3) it shall be applicable to different fuel cycle schemes. (orig./RW) [de

  8. Neutron Flux Interpolation with Finite Element Method in the Nuclear Fuel Cell Calculation using Collision Probability Method

    International Nuclear Information System (INIS)

    Shafii, M. Ali; Su'ud, Zaki; Waris, Abdul; Kurniasih, Neny; Ariani, Menik; Yulianti, Yanti

    2010-01-01

    Nuclear reactor design and analysis of next-generation reactors require a comprehensive computing which is better to be executed in a high performance computing. Flat flux (FF) approach is a common approach in solving an integral transport equation with collision probability (CP) method. In fact, the neutron flux distribution is not flat, even though the neutron cross section is assumed to be equal in all regions and the neutron source is uniform throughout the nuclear fuel cell. In non-flat flux (NFF) approach, the distribution of neutrons in each region will be different depending on the desired interpolation model selection. In this study, the linear interpolation using Finite Element Method (FEM) has been carried out to be treated the neutron distribution. The CP method is compatible to solve the neutron transport equation for cylindrical geometry, because the angle integration can be done analytically. Distribution of neutrons in each region of can be explained by the NFF approach with FEM and the calculation results are in a good agreement with the result from the SRAC code. In this study, the effects of the mesh on the k eff and other parameters are investigated.

  9. Improved CVD Coatings for Carbide Based Nuclear Thermal Propulsion Fuel Elements, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the great hurdles to further development and evaluation of nuclear thermal propulsion systems is the issue surrounding the release of radioactive material...

  10. Design and installation of high-temperature ultrasonic measuring system and grinder for nuclear fuel containing trans-uranium elements

    International Nuclear Information System (INIS)

    Serizawa, Hiroyuki; Kikuchi, Hironobu; Iwai, Takashi; Arai, Yasuo; Kurosawa, Makoto; Mimura, Hideaki; Abe, Jiro

    2005-07-01

    A high-temperature ultrasonic measuring system had been designed and installed in a glovebox (711-DGB) to study a mechanical property of nuclear fuel containing trans-uranium (TRU) elements. A figuration apparatus for the cylinder-type sample preparation had also been modified and installed in an established glovebox (142-D). The system consists of an ultrasonic probe, a heating furnace, cooling water-circulating system, a cooling air compressor, vacuum system, gas supplying system and control system. An A/D converter board and an pulsar/receiver board for the measurement of wave velocity were installed in a personal computer. The apparatus was modified to install into the glovebox. Some safety functions were supplied to the control system. The shape and size of the sample was revised to minimize the amount of TRU elements for the use of the measurement. The maximum sample temperature is 1500degC. The performance of the installed apparatuses and the glovebox were confirmed through a series of tests. (author)

  11. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  12. Nuclear fuel management in JMTR

    International Nuclear Information System (INIS)

    Naka, Michihiro; Miyazawa, Masataka; Sato, Hiroshi; Nakayama, Fusao; Ito, Haruhiko

    1999-01-01

    The Japan Materials Testing Reactor (JMTR) is the largest scale materials (author)ted the fission gas release compared with the steady state opkW/l in Japan. JMTR as a multi-purpose reactor has been contributing to research and development on nuclear field with a wide variety of irradiation for performing engineering tests and safety research on fuel and component for light water reactor as well as fast breeder reactor, high temperature gas-cooled reactor etc., for research and development on blanket material for fusion reactor, for fundamental research, and for radio-isotope (RI) production. The driver nuclear fuel used in JMTR is aluminum based MTR type fuel. According to the Reduced Enrichment for Research and Test Reactors (RERTR) Program, the JMTR fuel elements had been converted from 93% high enriched uranium (HEU) fuel to 45% medium enriched uranium (MEU) fuel in 1986, and then to 20% low enriched uranium (LEU) fuel in 1994. The cumulative operation cycles until March 1999 reached to 127 cycles since the first criticality in 1968. JMTR has used 1,628 HEU, 688 MEU and 308 LEU fuel elements for these operation cycles. After these spent fuel elements were cooled in the JMTR water canal more than one year after discharged from the JMTR core, they had been transported to reprocessing plants in Europe, and then to plants in USA in order to extract the uranium remaining in the spent fuel. The JMTR spent fuel transportation for reprocessing had been continued until the end of 1988. However, USA had ceased spent fuel reprocessing in 1989, while USDOE committed to prepare an environmental review of the impacts of accepting spent fuels from foreign research reactors. After that, USDOE decided to implement a new acceptance policy in 1996, the spent fuel transportation from JMTR to Savannah River Site was commenced in 1997. It was the first transportation not only in Japan but in Asia also. Until resuming the transportation, the spent fuel elements stored in JMTR

  13. Strategies of management of the nuclear fuel

    International Nuclear Information System (INIS)

    Leon, J.R.; Perez, A.; Filella, J.M.

    1996-01-01

    The management of nuclear fuel is depending on several factors: - Regulatory commission. The enterprises owner of the NPPs.The enterprise owner of the energy distribution. These factors are considered for the management of nuclear fuel. The design of fuel elements, the planning of cycles, the design of core reactors and the costs are analyzed. (Author)

  14. Nuclear fuel financing

    International Nuclear Information System (INIS)

    Lurf, G.

    1975-01-01

    Fuel financing is only at its beginning. A logical way of developing financing model is a step by step method starting with the financing of pre-payments. The second step will be financing of natural uranium and enrichment services to the point where the finished fuel elements are delivered to the reactor operator. The third step should be the financing of fuel elements during the time the elements are inserted in the reactor. (orig.) [de

  15. Transport of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    1980-01-01

    In response to public interest in the transport by rail through London of containers of irradiated fuel elements on their way from nuclear power stations to Windscale, the Central Electricity Generating Board and British Rail held three information meetings in London in January 1980. One meeting was for representatives of London Borough Councils and Members of Parliament with a known interest in the subject, and the others were for press, radio and television journalists. This booklet contains the main points made by the principal speakers from the CEGB and BR. (The points covered include: brief description of the fuel cycle; effect of the fission process in producing plutonium and fission products in the fuel element; fuel transport; the fuel flasks; protection against accidents; experience of transporting fuel). (U.K.)

  16. Storage, handling and internal transport of radioactive materials (fuel elements excepted) in nuclear power plants

    International Nuclear Information System (INIS)

    1983-06-01

    The rule applies to storage and handling as well as to transport within the plant and to the exchange of - solid radioactive wastes, - liquid radioactive wastes, except for those covered by the rule KTA 3603, - radioactive components and parts which are planned to be mounted and dismounted until shutdown of the plant, - radioactive-contaminated tools and appliances, - radioactive preparations. The rule is to be applied within the fenced-in sites of stationary nuclear power plants with LWR or HTR including their transport load halls, as fas as these are situated so as to be approachable from the nuclear power station by local transport systems. (orig./HP) [de

  17. Equipment to take up the axial forces occuring on fuel elements in the operation of a nuclear reactor

    International Nuclear Information System (INIS)

    Sankovich, M.

    1977-01-01

    A constructive solution for the spring support of fuel elements between a lower and upper grid is given which prevents vibrations from the influence of axial forces due to thermal expansion and/or coolant flow with the least possible resistance to the coolant flow. As plate or screw springs usually allow certain vibrations or even encourage these, and to compensate for the flow resistance thus caused nominal increase of the total cooling power is necessary, i.e. the total efficiency of the plants is lowered; therefore a combined torsion and spring was constructed. 4 each of these springs surround in an approximately horizontal plane the head of a fuel element containing the usual number of fuel rods. Each spring forms a U seen from above and surrounds the fuel element head on one side completely and about half the length of the two adjacent sides. The three sides of the spring are inbedded in the openings of the fuel element end pieces so as not to cause any nominal resistance for the coolant flow rising from the fuel elements. (HP) [de

  18. Neutron measurement method for the detection of transuranic elements in the nuclear fuel cycle; Neutronenmessverfahren fuer den Nachweis von Transuranen im Kernbrennstoff-Kreislauf

    Energy Technology Data Exchange (ETDEWEB)

    Sokcic-Kostic, Marina; Schultheis, Roland [NUKEM Technologies GmbH, Alzenau (Germany)

    2014-07-01

    By handling and storing burned-down fuel elements operators are obliged to measure the existing nuclear fuel content. Due to high penetration of matter and its origin from decay or spontaneous fission of transuranic elements neutron verification methods are suited best for the proof of fission material as long as it has been burned-down beforehand. A highly improved measuring quality can be achieved by comparing measurement results with the results of computer-aided simulations such as e.g. burn-up programs or MCNP- calculations. (orig.)

  19. Neutron measurement method for the detection of transuranic elements in the nuclear fuel cycle; Neutronenmessverfahren fuer den Nachweis von Transuranen im Kernbrennstoff-Kreislauf

    Energy Technology Data Exchange (ETDEWEB)

    Sokcic-Kostic, Marina; Schultheis, Roland [NUKEM Technologies GmbH, Alzenau (Germany)

    2014-04-15

    By handling and storing burned-down fuel elements it is duty to measure the existing nuclear fuel content. For the criticality analysis of the interim storage, for instance, it is imperative to know the nuclear fuel inventory in order to give a detailed description on the safety of storage to the supervisory authority. Among other things, it is necessary to consider that the possibility of mixing up stored fuel elements in the fuel pool was not able to be excluded. Due to high penetration of matter and its origin from decay or spontaneous fission of transuranic elements neutron verification methods are suited best for the proof of fission material as long as it has been burned-down beforehand. If fission chambers are additionally used as detectors, measurements can be even carried out in environments with high gamma levels. A highly improved measuring quality can be achieved, by comparing measurement results with the results of computer-aided simulations such as e.g. burn-up programs or MCNP- calculations. Hereby the impact on the measurement result by special marginal conditions of the measuring environment (e.g. addition of boric acid into the water of the fuel pool) can be estimated and thus revised. It is shown, that the passive neutron measurement is much easier to manage as an active measurement. As restriction it is to be considered, that measurements refer essentially to transuranic elements. Uranium such as U-235, however, is difficult to detect. For fuel elements applies, that the creation of transuranic elements is directly linked to the burn-up of U-235. Hence direct conclusions to the burn-up of U-235 can be drawn, by measuring transuranic content. (orig.)

  20. Grab structure of a lifting structure in particular for use in a nuclear reactor for lifting and lowering of fuel elements and fuel rods

    International Nuclear Information System (INIS)

    Dose, G.

    1979-01-01

    A guide tower projects perpendicularly downward from the carriage of the charging machine. It can be rotated about its perpendicular axis. The tower is used to displace a hollow grab structure with two grabs. They can be opened and closed, the closed position being retained as long as they carry the fuel elements or rods. The power and interlocking equipment is installed one unit above the other in the joint grab housing. The tower with the integrated fuel element grab and the rod grab is rotated about its perpendicular axis for inspection of the fuel elements or rods. (DG) [de

  1. Nuclear fuel production

    International Nuclear Information System (INIS)

    Randol, A.G.

    1985-01-01

    The production of new fuel for a power plant reactor and its disposition following discharge from the power plant is usually referred to as the ''nuclear fuel cycle.'' The processing of fuel is cyclic in nature since sometime during a power plant's operation old or ''depleted'' fuel must be removed and new fuel inserted. For light water reactors this step typically occurs once every 12-18 months. Since the time required for mining of the raw ore to recovery of reusable fuel materials from discharged materials can span up to 8 years, the management of fuel to assure continuous power plant operation requires simultaneous handling of various aspects of several fuel cycles, for example, material is being mined for fuel to be inserted in a power plant 2 years into the future at the same time fuel is being reprocessed from a discharge 5 years prior. Important aspects of each step in the fuel production process are discussed

  2. Process and device for fastening and removing fuel-absorber rods in fuel elements of nuclear reactors

    International Nuclear Information System (INIS)

    Edwards, G.T.; Schluderberg, D.C.

    1980-01-01

    This is concerned with an improvement of the fixing of absorber rods in a nuclear reactor. It is important that the rod should not be damaged during removal from the reactor, and that no particles of material are shed during this process. According to the invention, the rod has a stalk which is pressed into a hole in the star shaped arms and welded in. During removal, the stalk is broken at a preferred position. Details of construction are described. (UWI) [de

  3. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    Status of different nuclear fuel cycle phases in 1992 is discussed including the following issues: uranium exploration, resources, supply and demand, production, market prices, conversion, enrichment; reactor fuel technology; spent fuel management, as well as trends of these phases development up to the year 2010. 10 refs, 11 figs, 15 tabs

  4. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sasaki, Y.; Tashima, J.

    1975-01-01

    A description is given of nuclear reactor fuel assemblies arranged in the form of a lattice wherein there is attached to the interface of one of two adjacent fuel assemblies a plate spring having a concave portion curved toward said interface and to the interface of the other fuel assembly a plate spring having a convex portion curved away from said interface

  5. System for the identification of objects, for example nuclear fuel elements

    International Nuclear Information System (INIS)

    Crutzen, S.; Dal Cero, J.; Denis, R.

    1983-01-01

    This invention provides a system for identifying objects (eg. fuel rods) or providing an indication of tampering with the objects which consists of a hollow body adopted for attachment to an object, a matrix material such as 'ARALDITE' or aluminum with inclusions in a random configuration. The inclusions may be a mixture of bronze or tungsten or voids and at least one must be a piezoelectric transducer. The transducer(s) on connection to an exterior ultrasonic testing apparatus will provide an output indicative of the structure of the seal and particularly the configuration of the various inclusions. Tampering with the seal or removal of the cap will alter its structure so subsequent testing will produce a different result indicating the occurrence of such an unauthorized event

  6. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1980-01-01

    A bimetallic spacer means is cooperatively associated with a nuclear fuel assembly and operative to resist the occurrence of in-reactor bowing of the nuclear fuel assembly. The bimetallic spacer means in one embodiment of the invention includes a space grid formed, at least principally, of zircaloy to the external surface of which are attached a plurality of stainless steel strips. In another embodiment the strips are attached to fuel pins. In each of the embodiments, the stainless steel strips during power production expand outwardly to a greater extent than do the members to which the stainless steel strips are attached, thereby forming stiff springs which abut against like bimetallic spacer means with which the other nuclear fuel assemblies are provided in a given nuclear reactor core to thus prevent the occurrence of in-reactor bowing of the nuclear fuel assemblies. (author)

  7. Cycle for fuel elements. Uranium production, programs for nuclear power stations and capital expenditure involved

    International Nuclear Information System (INIS)

    Andriot, J.; Gaussens, J.

    1958-01-01

    A number of different possible programs for nuclear power stations of various types are presented in this survey. These programs are established in relation to the use of uranium and thorium in amounts similar to those that shall probably be produced in France during the next fifteen years. As it is possible to draw plans for nuclear power stations in which several processes exist simultaneously, an unlimited number of variations being thinkable, this survey is limited to successive analysis of the results obtained by use of only one of each of the following three systems: - system natural uranium-graphite, - system natural uranium-heavy water, -system enriched uranium-pressurised light water. All schemes are considered as assemblages of these three simple systems. The effects of plutonium recycling are also considered for each system. The electric power installed and the capacity of stations situated up-stream and down-stream have been calculated by this method and an attempt has been made to establish the sum to be invested during the fifteen years necessary for the launching of the programs scheduled. A table of timing for the investments groups the results obtained. Considering the fact that French availabilities in capital shall not be unlimited during the coming years, this way of presenting the results seems to be interesting. (author) [fr

  8. Analysis of the nine-point finite difference approximation for the heat conduction equation in a nuclear fuel element

    International Nuclear Information System (INIS)

    Kadri, M.

    1983-01-01

    The time dependent heat conduction equation in the x-y Cartesian geometry is formulated in terms of a nine-point finite difference relation using a Taylor series expansion technique. The accuracy of the nine-point formulation over the five-point formulation has been tested and evaluated for various reactor fuel-cladding plate configurations using a computer program. The results have been checked against analytical solutions for various model problems. The following cases were considered in the steady-state condition: (a) The thermal conductivity and the heat generation were uniform. (b) The thermal conductivity was constant, the heat generation variable. (c) The thermal conductivity varied linearly with the temperature, the heat generation was uniform. (d) Both thermal conductivity and heat generation vary. In case (a), approximately, for the same accuracy, 85% fewer grid points were needed for the nine-point relation which has a 14% higher convergence rate as compared to the five-point relation. In case (b), on the average, 84% fewer grid points were needed for the nine-point relation which has a 65% higher convergence rate as compared to the five-point relation. In case (c) and (d), there is significant accuracy (91% higher than the five-point relation) for the nine-point relation when a worse grid was used. The numerical solution of the nine-point formula in the time dependent case was also more accurate and converges faster than the numerical solution of the five-point formula for all comparative tests related to heat conduction problems in a nuclear fuel element

  9. Nuclear fuel storage facility

    International Nuclear Information System (INIS)

    Matsumoto, Takashi; Isaka, Shinji.

    1987-01-01

    Purpose: To increase the spent fuel storage capacity and reduce the installation cost in a nuclear fuel storage facility. Constitution: Fuels handled in the nuclear fuel storage device of the present invention include the following four types: (1) fresh fuels, (2) 100 % reactor core charged fuels, (3) spent fuels just after taking out and (4) fuels after a certain period (for example one half-year) from taking out of the reactor. Reactivity is high for the fuels (1), and some of fuels (2), while low in the fuels (3) (4), Source intensity is strong for the fuels (3) and some of the fuels (2), while it is low for the fuels (1) and (4). Taking notice of the fact that the reactivity, radioactive source intensity and generated after heat are different in the respective fuels, the size of the pool and the storage capacity are increased by the divided storage control. While on the other hand, since the division is made in one identical pool, the control method becomes important, and the working range is restricted by means of a template, interlock, etc., the operation mode of the handling machine is divided into four, etc. for preventing errors. (Kamimura, M.)

  10. An improved assembly for the transport of fuel elements

    International Nuclear Information System (INIS)

    Myers, G.

    1979-01-01

    An improved assembly for the transport and storage of radioactive nuclear fuel elements is described. The fuel element transport canister is of the type in which the fuel elements are submerged in liquid with a self regulating ullage system, so that the fuel elements are always submerged in the liquid even when the assembly is used in one orientation during loading and another orientation during transportation. (UK)

  11. Thermal insulation of fuel elements

    International Nuclear Information System (INIS)

    Dubrovcak, P.; Pec, V.; Pitonak, J.

    1978-01-01

    The claim of the invention concerns thermal insulation of fuel elements heated for measurement of uranium fuel physical properties. For this, layers of aluminium film and of glass fibre are wound onto the inner tube of the element cladding. The space between the inner and the outer tubes is evacuated and the tubes are spaced using spacer wires. (M.S.)

  12. Increased burnup of fuel elements

    International Nuclear Information System (INIS)

    Ahlf, J.

    1983-01-01

    The specialists' group for fuel elements of the Kerntechnische Gesellschaft e.V. held a meeting on ''Increased Burnup of Fuel Elements'' on 9th and 10th of November 1982 at the GKSS Research Center Geesthacht. Most papers dealt with the problems of burnup increase of fuel elements for light water reactors with respect to fuel manufacturing, power plant operation and reprocessing. Review papers were given on the burnup limits for high temperature gas cooled reactors and sodium fast breeder reactors. The meeting ended with a presentation of the technical equipment of the hot laboratory of the GKSS and the programs which are in progress there. (orig.) [de

  13. Behavior of UO2-Zy fuel elements of nuclear power plants up to 40000 MWj/t U

    International Nuclear Information System (INIS)

    Atabek, R.; Contenson, G. de; Houdaille, B.; Lestiboudois, G.; Vignesoult, N.

    1979-01-01

    The two principal types of fuel elements studied are unstable oxide elements in 15x15 geometry and stable oxide elements in 17x17. Semi-statistical processing of the fission gas amounts released was performed on different fuel elements at specific burn-up varying between 2000 and 40,000 MWd/t U and linear powers between 250 and 600 W/cm. This study enabled the following essential points to be stated at this burn-up level: the swelling of the oxide appears to be less than predicted by the linear law (S=0.75 %/10,000 MWd/t U); the migration of volatile fission products is relatively low and without effect on the behavior of the fuel element; strong zircaloy 4 claddings exhibit little creep and their hydriding is insignificant. On a more general level, the analyses of the fission gases performed in the fuel elements after irradiation show an increase of the fraction released with specific burn-up at a given linear power or central temperature [fr

  14. Device having expandable mandrel for making nuclear fuel element storage tubes

    International Nuclear Information System (INIS)

    Krieger, F.; Weis, O.

    1984-01-01

    A device for manufacturing containers for storing nuclear materials. The purpose of the device is to maintain angular sheet metals in the precise position required during the welding operation which is performed along the outer edges of their flange portions. The device includes a core, a thrust bearing and a counter-pressure bearing. The core is sub-divided into two separate core portions. Spring means tend to draw the core portions toward each other. Fluid operated cylinder-piston units tend to separate the core portions against the action of said spring means. Adjustment screw means provided with abutment means and screwed into one of said core portions project into the other of said core portions with the abutment means thereof. The second core portion has abutment means cooperating with the abutment means on said adjustment screw means

  15. Coextrusion of 60 to 80 wt % U3O8 nuclear fuel elements

    International Nuclear Information System (INIS)

    Peacock, H.B.

    1980-01-01

    Aluminum-clad billets with up to 80 wt % U 3 O 8 in U 3 O 8 -Al cores have been coextruded at SRP. However, above 70 wt % U 3 O 8 , yields are low because of core-cracking. Proper selection of materials and extrusion parameters will give process conditions for successful fabrication. Studies were begun of the effects of these parameters on the flow of metal during coextrusion. In coextruded tubes, cracks are formed in large uranium oxide particles. Cracking is caused by the high tensile deformation of these particles that occurs as the cermet material flows through the die. Lower extrusion ratios and larger die angles appear to reduce severe particle cracking and increase fabrication yields. The particle size distribution of the ceramic fuel phase also influences fabricability. Six P/M assemblies with up to 57 wt % U 3 O 8 in U 3 O 8 -Al cores were successfully irradiated to 1.6 x 10 21 fissions per cm 3 of core. No swelling or blistering of the tubes occurred

  16. Apparatus and method for assembling fuel elements

    International Nuclear Information System (INIS)

    Arya, S.P.

    1978-01-01

    A nuclear fuel element assembling method and apparatus is preferably operable under programmed control unit to receive fuel rods from storage, arrange them into axially aligned stacks of closely monitored length, and transfer the stacks of fuel rods to a loading device for insertion into longitudinal passages in the fuel elements. In order to handle large numbers of one or more classifications of fuel rods or other cylindrical parts, the assembling apparatus includes at least two feed troughs each formed by a pair of screw members with a movable table having a plurality of stacking troughs for alignment with the feed troughs and with a conveyor for delivering the stacks to the loading device, the fuel rods being moved along the stacking troughs upon a fluid cushion. 23 claims, 6 figures

  17. Eddy current examination of the nuclear fuel elements with aluminum 1100-F cladding of IPR-R1 research reactor: An initial study

    International Nuclear Information System (INIS)

    Silva, Roger F. da; Silva Júnior, Silvério F. da; Frade, Rangel T.; Rodrigues, Juliano S.

    2017-01-01

    Tubes of aluminum 1100-F as well as tubes of AISI 304 stainless steel are used as cladding of the fuel elements of TRIGA IPR-R1 nuclear research reactor. Usually, these tubes are inspected by means of visual test and sipping test. The visual test allows the detection of changes occurred at the external fuel elements surface, such as those promoted by corrosion processes. However, this test method cannot be used for detection of internal discontinuities at the tube walls. Sipping test allows the detection of fuel elements whose cladding has failed, but it is not able to determine the place where the discontinuity is located. On the other hand, eddy current testing, an electromagnetic nondestructive test method, allows the detection of discontinuities and monitoring their growth. In previous works, the application of eddy current testing to evaluate the AISI 304 cladding fuel elements of TRIGA IPR-R1 was studied. In this paper, it is proposed an initial study about the use of eddy current testing for detection and characterization of discontinuities in the aluminum 1100-F fuel elements cladding. The study includes the development of probes and the design and manufacture of reference standards. (author)

  18. Eddy current examination of the nuclear fuel elements with aluminum 1100-F cladding of IPR-R1 research reactor: An initial study

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Roger F. da; Silva Júnior, Silvério F. da; Frade, Rangel T. [Centro de Desenvolvimento da Tecnologia Nucelar (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Rodrigues, Juliano S., E-mail: rfs@cdtn.br, E-mail: silvasf@cdtn.br, E-mail: rtf@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Tubes of aluminum 1100-F as well as tubes of AISI 304 stainless steel are used as cladding of the fuel elements of TRIGA IPR-R1 nuclear research reactor. Usually, these tubes are inspected by means of visual test and sipping test. The visual test allows the detection of changes occurred at the external fuel elements surface, such as those promoted by corrosion processes. However, this test method cannot be used for detection of internal discontinuities at the tube walls. Sipping test allows the detection of fuel elements whose cladding has failed, but it is not able to determine the place where the discontinuity is located. On the other hand, eddy current testing, an electromagnetic nondestructive test method, allows the detection of discontinuities and monitoring their growth. In previous works, the application of eddy current testing to evaluate the AISI 304 cladding fuel elements of TRIGA IPR-R1 was studied. In this paper, it is proposed an initial study about the use of eddy current testing for detection and characterization of discontinuities in the aluminum 1100-F fuel elements cladding. The study includes the development of probes and the design and manufacture of reference standards. (author)

  19. Ionization of selected elements of interest in the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Delmore, J. E.

    1978-07-01

    Three most common methods of ionizing the actinides using thermal ionization are discussed. The first and most commonly used technique involves evaporating the oxide from a side filament and ionizing it on a hot rhenium center filament. The second method, which is used almost as frequently as the first, involves loading the sample onto a rhenium single filament and reducing the sample. This method gives excellent sensitivity for small samples using a multiplier as the detector, but is less suitable for large samples and Faraday cup detectors. The first method is well suited for large samples on instruments with Faraday cup detectors. The third technique involves loading the sample onto a single tantalum filament, flashing to red heat in the air, and analyzing the oxide or dioxide ion beam. This technique gives reasonably stable ion beams for the lighter actinides and all of the lanthanides. It is not as sensitive as the other methods and is mentioned mainly for historical interest as it was widely used 25 years ago. The suitability of these methods for thorium, uranium, plutonium and americium, as well as for the lanthanides and other fission product elements are covered in detail. Besides these three methods, the resin bead technique and the silica gel technique are mentioned. The conclusion is that there is a great deal of work which needs to be carried out before a complete understanding of these ionization processes are understood.

  20. Nuclear fuel activities in Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Bairiot, H

    1997-12-01

    In his presentation on nuclear fuel activities in belgium the author considers the following directions of this work: fuel fabrication, NPP operation, fuel performance, research and development programmes.

  1. Boosting nuclear fuels

    International Nuclear Information System (INIS)

    Demarthon, F.; Donnars, O.; Dupuy-Maury, F.

    2002-01-01

    This dossier gives a broad overview of the present day status of the nuclear fuel cycle in France: 1 - the revival of nuclear power as a solution to the global warming and to the increase of worldwide energy needs; 2 - the security of uranium supplies thanks to the reuse of weapon grade highly enriched uranium; 3 - the fabrication of nuclear fuels from the mining extraction to the enrichment processes, the fabrication of fuel pellets and the assembly of fuel rods; 4 - the new composition of present day fuels (UO x and chromium-doped pellets); 5 - the consumption of plutonium stocks and the Corail and Apa fuel assemblies for the reduction of plutonium stocks and the preservation of uranium resources. (J.S.)

  2. Spent nuclear fuel shipping basket

    International Nuclear Information System (INIS)

    Wells, A.H.

    1990-01-01

    This patent describes a basket for a cask for transporting nuclear fuel elements. It comprises: sleeve members, each of the sleeve members having interior cross-section dimensions for receiving a nuclear fuel assembly such that the assembly is restrained from lateral movement within the sleeve member, apertured disk members, means for axially aligning the apertures in the disk members, and means for maintaining the disk members in fixed spaced relationship to form a disk assembly, comprising an array of disks, the aligned apertures of the disks being adapted to receive the sleeve members and maintain them in fixed spaced relationship

  3. Nuclear fuel for light water reactors. Part 2 and conclusion

    International Nuclear Information System (INIS)

    1983-01-01

    The article gives brief descriptions of a new cycle for nuclear fuel in the core and, in particular, fuel replacement, stock pool management for irradiated fuel elements, transport containers for irradiated nuclear fuels, treatment of low activity waste, the Climax system for long-term stocking of irradiated fuel, and transport of irradiated fuel over the Nevada Test Site. (A.E.W.)

  4. Spent nuclear fuel storage

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2005-01-01

    When a country becomes self-sufficient in part of the nuclear cycle, as production of fuel that will be used in nuclear power plants for energy generation, it is necessary to pay attention for the best method of storing the spent fuel. Temporary storage of spent nuclear fuel is a necessary practice and is applied nowadays all over the world, so much in countries that have not been defined their plan for a definitive repository, as well for those that already put in practice such storage form. There are two main aspects that involve the spent fuels: one regarding the spent nuclear fuel storage intended to reprocessing and the other in which the spent fuel will be sent for final deposition when the definitive place is defined, correctly located, appropriately characterized as to several technical aspects, and licentiate. This last aspect can involve decades of studies because of the technical and normative definitions at a given country. In Brazil, the interest is linked with the storage of spent fuels that will not be reprocessed. This work analyses possible types of storage, the international panorama and a proposal for future construction of a spent nuclear fuel temporary storage place in the country. (author)

  5. Evaluation of thermal conductivity of multi-component and multi-phase nuclear fuels by the finite element method

    International Nuclear Information System (INIS)

    Kurosaki, K.

    2015-01-01

    The effects of the shape and distribution state of voids on the thermal conductivity of UO 2 , and the temperature distribution and heat flow within the irradiated MOX fuel were evaluated by finite element analysis. Although the work is still in progress, some preliminary results are presented. (author)

  6. Fuel assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Tower, S.N.; Huckestein, E.A.

    1982-01-01

    A fuel assembly for a nuclear reactor comprises a 5x5 array of guide tubes in a generally 20x20 array of fuel elements, the guide tubes being arranged to accommodate either control rods or water displacer rods. The fuel assembly has top and bottom Inconel (Registered Trade Mark) grids and intermediate Zircaloy grids in engagement with the guide tubes and supporting the fuel elements and guide tubes while allowing flow of reactor coolant through the assembly. (author)

  7. Dispersion fuel for nuclear research facilities

    International Nuclear Information System (INIS)

    Kushtym, A.V.; Belash, M.M.; Zigunov, V.V.; Slabospitska, O.O.; Zuyok, V.A.

    2017-01-01

    Designs and process flow sheets for production of nuclear fuel rod elements and assemblies TVS-XD with dispersion composition UO_2+Al are presented. The results of fuel rod thermal calculation applied to Kharkiv subcritical assembly and Kyiv research reactor VVR-M, comparative characteristics of these fuel elements, the results of metallographic analyses and corrosion tests of fuel pellets are given in this paper

  8. Finite element analysis of optimized H shape spring in a nuclear fuel spacer grid by using contact definition

    International Nuclear Information System (INIS)

    Kim, Jae-Yong; Yoon, Kyung-Ho

    2007-01-01

    The primary role of the grid springs in spacer grid is to hold the fuel rods in an appropriate position using friction force and to prevent the fuel rods dropping during reactor operation. The spring force decreases as the fuel burn-up increases since the spring stiffness is degraded due to the high temperature and the irradiation effect in the reactor core. So this phenomenon has to be considered when the initial spring force of grid spring is designed. To check whether the spring have suitable spring force, the characterization test of spring is conducted. In this paper, finite element analysis using contact definition is established for prediction the spring stiffness without test. The test and analysis results are compared to check the availability of finite element model for investing the spring characteristics in assembly condition. (author)

  9. Transportation of nuclear fuel

    International Nuclear Information System (INIS)

    Prowse, D.R.

    1979-01-01

    Shipment of used fuel from nuclear reactors to a central fuel management facility is discussed with particular emphasis on the assessment of the risk to the public due to these shipments. The methods of transporting used fuel in large shipping containers is reviewed. In terms of an accident scenario, it is demonstrated that the primary risk of transport of used fuel is due to injury and death in common road accidents. The radiological nature of the used fuel cargo is, for all practical purposes, an insignificant factor in the total risk to the public. (author)

  10. Nuclear fuel banks

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    In december 2010 IAEA gave its agreement for the creation of a nuclear fuel bank. This bank will allow IAEA to help member countries that renounce to their own uranium enrichment capacities. This bank located on one or several member countries will belong to IAEA and will be managed by IAEA and its reserve of low enriched uranium will be sufficient to fabricate the fuel for the first load of a 1000 MW PWR. Fund raising has been successful and the running of the bank will have no financial impact on the regular budget of the IAEA. Russia has announced the creation of the first nuclear fuel bank. This bank will be located on the Angarsk site (Siberia) and will be managed by IAEA and will own 120 tonnes of low-enriched uranium fuel (between 2 and 4.95%), this kind of fuel is used in most Russian nuclear power plants. (A.C.)

  11. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    This chapter explains the distinction between fissile and fertile materials, examines briefly the processes involved in fuel manufacture and management, describes the alternative nuclear fuel cycles and considers their advantages and disadvantages. Fuel management is usually divided into three stages; the front end stage of production and fabrication, the back end stage which deals with the fuel after it is removed from the reactor (including reprocessing and waste treatment) and the stage in between when the fuel is actually in the reactor. These stages are illustrated and explained in detail. The plutonium fuel cycle and thorium-uranium-233 fuel cycle are explained. The differences between fuels for thermal reactors and fast reactors are explained. (U.K.)

  12. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Merrett, G.J.; Gillespie, P.A.

    1983-07-01

    This report discusses events and processes that could adversely affect the long-term stability of a nuclear fuel waste disposal vault or the regions of the geosphere and the biosphere to which radionuclides might migrate from such a vault

  13. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Patarin, L.

    2002-01-01

    This book treats of the different aspects of the industrial operations linked with the nuclear fuel, before and after its use in nuclear reactors. The basis science of this nuclear fuel cycle is chemistry. Thus a recall of the elementary notions of chemistry is given in order to understand the phenomena involved in the ore processing, in the isotope enrichment, in the fabrication of fuel pellets and rods (front-end of the cycle), in the extraction of recyclable materials (residual uranium and plutonium), and in the processing and conditioning of wastes (back-end of the fuel cycle). Nuclear reactors produce about 80% of the French electric power and the Cogema group makes 40% of its turnover at the export. Thus this book contains also some economic and geopolitical data in order to clearly position the stakes. The last part, devoted to the management of wastes, presents the solutions already operational and also the research studies in progress. (J.S.)

  14. Nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    White, D.

    1981-01-01

    A simple friction device for cutting nuclear fuel wrappers comprising a thin metal disc clamped between two large diameter clamping plates. A stream of gas ejected from a nozzle is used as coolant. The device may be maintained remotely. (author)

  15. Participation in benchmark MATIS-H of NEA/OCDE: uses CFD codes applied to nuclear safety. Study of the spacer grids in the fuel elements

    International Nuclear Information System (INIS)

    Pena-Monferrer, C.; Chiva, S.; Munoz-cobo, J. L.; Vela, E.

    2012-01-01

    This paper develops participation in benchmark MATIS-H, promoted by the NEA / OECD-KAERI, involving the study of turbulent flow in a rod beam with spacers in an experimental installation. Its aim is the analysis of hydraulic behavior of turbulent flow in the subchannels of the fuel elements, essential for the improvement of safety margins in normal and transient operations and to maximize the use of nuclear energy through an optimal design of grids.

  16. Thorium in nuclear fuel

    International Nuclear Information System (INIS)

    Stankevicius, Alejandro

    2012-01-01

    We revise the advantages and possible problems on the use of thorium as a nuclear fuel instead of uranium. The following aspects are considered: 1) In the world there are three times more thorium than uranium 2) In spite that thorium in his natural form it is not a fisil, under neutron irradiation, is possible to transform it to uranium 233, a fisil of a high quality. 3) His ceramic oxides properties are superior to uranium or plutonium oxides. 4) During the irradiation the U 233 due to n,2n reaction produce small quantities of U 232 and his decay daughters' bismuth 212 and thallium 208 witch are strong gamma source. In turn thorium 228 and uranium 232 became, in time anti-proliferate due to there radiation intensity. 5) As it is described in here and experiments done in several countries reactors PHWR can be adapted to the use of thorium as a fuel element 6) As a problem we should mentioned that the different steps in the process must be done under strong radiation shielding and using only automatized equipment s (author)

  17. Nuclear fuel manufacture

    International Nuclear Information System (INIS)

    Costello, J.M.

    1980-09-01

    The technologies used to manufacture nuclear fuel from uranium ore are outlined, with particular reference to the light water reactor fuel cycle. Capital and operating cost estimates for the processing stages are given, and the relevance to a developing uranium industry in Australia is discussed

  18. Fuel element box inspection device

    International Nuclear Information System (INIS)

    Ortmayer, R.M.; Pick, W.

    1985-01-01

    The invention concerns a device for inspecting the outer geometry of a long fuel element box by measuring the surface contours over its longitudinal crossection and along its length by sensors. These are kept in a sledge which can be moved along the fuel element guide in a slot guide. The measurement signals reach an evaluation device outside the longitudinal box. (orig./HP) [de

  19. Nuclear Fuel Cycle Objectives

    International Nuclear Information System (INIS)

    2013-01-01

    . The four Objectives publications include Nuclear General Objectives, Nuclear Power Objectives, Nuclear Fuel Cycle Objectives, and Radioactive Waste management and Decommissioning Objectives. This publication sets out the objectives that need to be achieved in the area of the nuclear fuel cycle to ensure that the Nuclear Energy Basic Principles are satisfied. Within each of these four Objectives publications, the individual topics that make up each area are addressed. The five topics included in this publication are: resources; fuel engineering and performance; spent fuel management and reprocessing; fuel cycles; and the research reactor nuclear fuel cycle

  20. Proceeding of the Fifth Scientific Presentation on Nuclear Fuel Cycle: Development of Nuclear Fuel Cycle Technology in Third Millennium

    International Nuclear Information System (INIS)

    Suripto, A.; Sastratenaya, A.S.; Sutarno, D.

    2000-01-01

    The proceeding contains papers presented in the Fifth Scientific Presentation on Nuclear Fuel Element Cycle with theme of Development of Nuclear Fuel Cycle Technology in Third Millennium, held on 22 February in Jakarta, Indonesia. These papers were divided by three groups that are technology of exploration, processing, purification and analysis of nuclear materials; technology of nuclear fuel elements and structures; and technology of waste management, safety and management of nuclear fuel cycle. There are 35 papers indexed individually. (id)

  1. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hardy, C.J.; Silver, J.M.

    1985-09-01

    The report provides data and assessments of the status and prospects of nuclear power and the nuclear fuel cycle. The report discusses the economic competitiveness of nuclear electricity generation, the extent of world uranium resources, production and requirements, uranium conversion and enrichment, fuel fabrication, spent fuel treatment and radioactive waste management. A review is given of the status of nuclear fusion research

  2. Nuclear fuel element design and thermal-hydraulic analysis of Wolsung-1, 600 MWe CANDU-PHWR (Part II)

    International Nuclear Information System (INIS)

    Suk, H.C; Lee, J.C.; Suh, K.S.; Yuk, K.E.; Whang, W.; Park, J.S.; Eim, J.S.; Bang, K.H.; Eim, M.S.; Rim, C.S.

    1982-01-01

    The main objective of the present thermal hydraulic analysis is to determine the thermal hydraulic characteristics of Wolsung-1 600 MWe CANDU-PHW reactor under normal operation. This is to verify and expedite the development of the nuclear fuel design and fabrication as well as the management. The computer program package developed for the stated objective are DOD81, CANREPP, PLOC81 and COBRA-CANDU. (Author)

  3. Fuel elements and safety engineering goals

    International Nuclear Information System (INIS)

    Schulten, R.; Bonnenberg, H.

    1990-01-01

    There are good prospects for silicon carbide anti-corrosion coatings on fuel elements to be realised, which opens up the chance to reduce the safety engineering requirements to the suitable design and safe performance of the ceramic fuel element. Another possibility offered is combined-cycle operation with high efficiencies, and thus good economic prospects, as with this design concept combining gas and steam turbines, air ingress due to turbine malfunction is an incident that can be managed by the system. This development will allow economically efficient operation also of nuclear power reactors with relatively small output, and hence contribute to reducing CO 2 emissions. (orig./DG) [de

  4. Nondestructive examination techniques on Candu fuel elements

    International Nuclear Information System (INIS)

    Gheorghe, G.; Man, I.

    2013-01-01

    During irradiation in nuclear reactor, fuel elements undergo dimensional and structural changes, and changes of surface conditions sheath as well, which can lead to damages and even loss of integrity. Visual examination and photography of Candu fuel elements are among the non-destructive examination techniques, next to dimensional measurements that include profiling (diameter, bending, camber) and length, sheath integrity control with eddy currents, measurement of the oxide layer thickness by eddy current techniques. Unirradiated Zircaloy-4 tubes were used for calibration purposes, whereas irradiated Zircaloy-4 tubes were actually subjected to visual inspection and dimensional measurements. We present results of measurements done by eddy current techniques on Zircaloy- 4 tubes, unirradiated, but oxidized in an autoclave prior to examinations. The purpose of these nondestructive examination techniques is to determine those parameters that characterize the behavior and performance of nuclear fuel operation. (authors)

  5. Nuclear fuel quality assurance

    International Nuclear Information System (INIS)

    1976-01-01

    Full text: Quality assurance is used extensively in the design, construction and operation of nuclear power plants. This methodology is applied to all activities affecting the quality of a nuclear power plant in order to obtain confidence that an item or a facility will perform satisfactorily in service. Although the achievement of quality is the responsibility of all parties participating in a nuclear power project, establishment and implementation of the quality assurance programme for the whole plant is a main responsibility of the plant owner. For the plant owner, the main concern is to achieve control over the quality of purchased products or services through contractual arrangements with the vendors. In the case of purchase of nuclear fuel, the application of quality assurance might be faced with several difficulties because of the lack of standardization in nuclear fuel and the proprietary information of the fuel manufacturers on fuel design specifications and fuel manufacturing procedures. The problems of quality assurance for purchase of nuclear fuel were discussed in detail during the seminar. Due to the lack of generally acceptable standards, the successful application of the quality assurance concept to the procurement of fuel depends on how much information can be provided by the fuel manufacturer to the utility which is purchasing fuel, and in what form and how early this information can be provided. The extent of information transfer is basically set out in the individual vendor-utility contracts, with some indirect influence from the requirements of regulatory bodies. Any conflict that exists appears to come from utilities which desire more extensive control over the product they are buying. There is a reluctance on the part of vendors to permit close insight of the purchasers into their design and manufacturing procedures, but there nevertheless seems to be an increasing trend towards release of more information to the purchasers. It appears that

  6. Quality assurance of fuel elements

    International Nuclear Information System (INIS)

    Hoerber, J.

    1980-01-01

    The quality assurance activities for reactor fuel elements are based on a quality assurance system which implies the requirements resulting from the specifications, regulations of the authorities, national standards and international rules and regulations. The quality assurance related to production of reactor fuel will be shown for PWR fuel elements in all typical fabrication steps as conversion into UO 2 -powder, pelletizing, rodmanufacture and assembling. A wide range of destructive and nondestructive techniques is applied. Quality assurance is not only verified by testing techniques but also by process monitoring by means of parameter control in production and testing procedures. (RW)

  7. Manufacturing at industrial level of UO2 pellets for the fuel elements of the Atucha I Nuclear Power Plant

    International Nuclear Information System (INIS)

    Dyment, I.G.; Noguera Rojas, Francisco

    1982-01-01

    The interest to produce fuel elements within a policy of self sufficiency arose with the installation of Atucha I. The first steps towards this goal consisted in processing the uranium oxide, transforming it into fuel pellets of high density. The developments towards the fabrication of said pellets, performed by CNEA since 1968, first at a laboratory level and afterwards on an industrial scale, allowed CNEA to obtain its own technological capability to produce 400 kg of UO 2 per day. The fuel pellets manufacturing method developed by CNEA is a powder-metallurgical process, which, besides conventional equipment, involves the use of special equipment that required the performance of systematic testing programmes, as well as special training at operational level. The developed processes respond to a modern and advanced technology. A general scheme of the process, starting with a directly sinterable UO 2 powder, is described, including compacting of the powder into pellets, sintering, control of the temperature in the sintering and reduction zones and of the time of permanence in both zones, and cylindric rectifying of the pellets. During the whole process, specialized personnel controls the operations, after which the material is released by the Quality Control Department. The national contribution to the manufacturing technology of the pellets for fuel elements of power and research reactors was of 100%. (M.E.L.) [es

  8. Fuel element tomography by gammametry

    International Nuclear Information System (INIS)

    Simonet, G.; Pineira, T.

    1982-03-01

    As from transversal gamma determinations of a cylindrical fuel element, the TOMOGAM program reconstitutes the distribution of fission products in a section. This direct, fast and non destructive method, makes it possible to have access to the behaviour of the fuel at any time: - the soluble fission products in the matrix represent the fuel itself and the distribution of the fissions, - the migrating elements inform on the temperature reached in accordance with the permitted powers, - the volatile nuclides build up in particular points where physical-chemical phenomena of fuel-cladding interaction are liable to corrode the latter. Hence, gamma spectrometry extends its possibilities of analysis relative to the performance of reactor elements [fr

  9. Nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Butterfield, R.S.; Garner, D.L.M.

    1977-01-01

    Reference is made to nuclear fuel assemblies designed for cooling on the 'tube-in-shell' principle in which the fuel is contained by a shell and is cooled by coolant passed through tubes extending through the shell. It has been proposed to employ coated particle fuel as a porous bed on the tube side and the bleed coolant from the tubes into direct contact with the fuel particles. In this way heat is extracted both by direct contact with the fuel and by heat transfer through the coolant tube walls. The system described aims to provide an improved structure of tube and shell for a fuel assembly of this kind and is particularly suitable for use in a gas cooled fast reactor, being able to withstand the neutron flux and high temperature conditions in these reactors. Constructional details are given. (U.K.)

  10. HTGR fuel element structural design consideration

    International Nuclear Information System (INIS)

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1987-01-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabilistic stress analysis techniques coupled with probabilistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistant with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the U.S.A. is discussed in the context of stress analysis uncertainty and structural criteria development. (author)

  11. HTGR fuel element structural design considerations

    International Nuclear Information System (INIS)

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1986-09-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabalistic stress analysis techniques coupled with probabalistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistent with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the USA is discussed in the context of stress analysis uncertainty and structural criteria development

  12. Nuclear fuel deformation phenomena

    International Nuclear Information System (INIS)

    Van Brutzel, L.; Dingreville, R.; Bartel, T.J.

    2015-01-01

    Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)

  13. Nuclear fuel fabrication in India

    Energy Technology Data Exchange (ETDEWEB)

    Kondal Rao, N

    1975-01-01

    The important role of a nuclear power program in meeting the growing needs of power in India is explained. The successful installation of Tarapur Atomic Power Station and Rajasthan Atomic Power Station as well as the work at Madras Atomic Power Station are described. The development of the Atomic Fuels Division and the Nuclear Fuel Complex, Hyderabad which is mainly concerned with the fabrication of fuel elements and the reprocessing of fuels are explained. The N.F.C. essentially has the following constituent units : Zirconium Plant (ZP) comprising of Zirconium Oxide Plant, Zirconium Sponge Plant and Zirconium Fabrication Plant; Natural Uranium Oxide Plant (UOP); Ceramic Fuel Fabrication Plant (CFFP); Enriched Uranium Oxide Plant (EUOP); Enriched Fuel Fabrication Plant (EEFP) and Quality Control Laboratory for meeting the quality control requirements of all plants. The capacities of various plants at the NFC are mentioned. The work done on mixed oxide fuels and FBTR core with blanket assemblies, nickel and steel assemblies, thermal research reactor of 100 MW capacity, etc. are briefly mentioned.

  14. Nuclear fuel fabrication in India

    International Nuclear Information System (INIS)

    Kondal Rao, N.

    1975-01-01

    The important role of a nuclear power programme in meeting the growing needs of power in India is explained. The successful installation of Tarapur Atomic Power Station and Rajasthan Atomic Power Station as well as the work at Madras Atomic Power Station are described. The development of the Atomic Fuels Division and the Nuclear Fuel Complex, Hyderabad which is mainly concerned with the fabrication of fuel elements and the reprocessing of fuels are explained. The N.F.C. essentially has the following constituent units : Zirconium Plant (ZP) comprising of Zirconium Oxide Plant, Zirconium Sponge Plant and Zirconium Fabrication Plant; Natural Uranium Oxide Plant (UOP); Ceramic Fuel Fabrication Plant (CFFP); Enriched Uranium Oxide Plant (EUOP); Enriched Fuel Fabrication Plant (EEFP) and Quality Control Laboratory for meeting the quality control requirements of all plants. The capacities of various plants at the NFC are mentioned. The work done on mixed oxide fuels and FBTR core with blanket assemblies, nickel and steel assemblies, thermal research reactor of 100 MW capacity, etc. are briefly mentioned. (K.B.)

  15. Reactor fuel element and fuel assembly

    International Nuclear Information System (INIS)

    Okada, Seiji; Ishida, Tsuyoshi; Ikeda, Atsuko.

    1997-01-01

    A mixture of fission products and burnable poisons is disposed at least to a portion between MOX pellets to form a burnable poison-incorporated fuel element without mixing burnable poisons to the MOX pellets. Alternatively, a mixture of materials other than the fission products and burnable poisons is formed into disks, a fuel lamination portion is divided into at least to two regions, and the ratio of number of the disks of the mixture relative to the volume of the region is increased toward the lower portion of the fuel lamination portion. With such a constitution, the axial power distribution of fuels can be made flat easily. Alternatively, the thickness of the disk of the mixture is increased toward the lower region of the fuel lamination portion to flatten the axial power distribution of the fuels in the same manner easily. The time and the cost required for the manufacture are reduced, and MOX fuels filled with burnable poisons with easy maintenance and control can be realized. (N.H.)

  16. Financial aspects of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Lurf, G.

    1975-01-01

    A nuclear power plant has a forward supply of several years as a consequence of the long processing time of the uranium from mining to delivery of fabricated fuel elements and of the long insertion time in the reactor. This leads to a considerable capital requirement although the specific fuel costs for nuclear fuel are considerably lower then for a conventional power plant and present only 15% of the total generating costs. (orig./RW) [de

  17. Fast breeder fuel element development

    International Nuclear Information System (INIS)

    Marth, W.; Muehling, G.

    1983-08-01

    This report is a compilation of the papers which have been presented during a seminar ''Fast Breeder Fuel Element Development'' held on November 15/16, 1982 at KfK. The papers give a survey of the status, of the obtained results and of the necessary work, which still has to be done in the frame of various development programmes for fast breeder fuel elements. In detail the following items were covered by the presentations: - the requirements and boundary conditions for the design of fuel pins and elements both for the reference concept of the SNR 300 core and for the large, commercial breeder type of the future (presentation 1,2 and 6); - the fabrication, properties and characterization of various mixed oxide fuel types (presentations 3,4 and 5); - the operational fuel pin behaviour, limits of different design concepts and possible mechanism for fuel pin failures (presentations (7 and 8); - the situation of cladding- and wrapper materials development especially with respect to the high burn-up values of commercial reactors (presentations 9 and 10); - the results of the irradiation experiments performed under steady-state and non-stationary operational conditions and with failed fuel pins (presentations 11, 12, 13 and 14). (orig./RW) [de

  18. Nuclear fuel storage

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1981-01-01

    A nuclear fuel storage apparatus for use in a water-filled pool is fabricated of a material such as stainless steel in the form of an egg crate structure having vertically extending openings. Fuel may be stored in this basic structure in a checkerboard pattern with high enrichment fuel, or in all openings when the fuel is of low effective enrichment. Inserts of a material such as stainless steel are adapted to fit within these openings so that a water gap and, therefore, a flux trap is formed between adjacent fuel storage locations. These inserts may be added at a later time and fuel of a higher enrichment may be stored in each opening. When it is desired to store fuel of still greater enrichment, poison plates may be added to the water gap formed by the installed insert plates, or substituted for the insert plates. Alternately, or in addition, fuel may be installed in high neutron absorption poison boxes which surround the fuel assembly. The stainless steel inserts and the poison plates are each not required until the capacity of the basic egg crate structure is approached. Purchase of these items can, therefore, be deferred for many years. Should the fuel to be stored be of higher enrichment than initially forecast, the deferred decision on the poison plates makes it possible to obtain increased poison in the plates to satisfy the newly discovered requirement

  19. Impact of thermal conductivity models on the coupling of heat transport, oxygen diffusion, and deformation in (U, Pu)O nuclear fuel elements

    Science.gov (United States)

    Mihaila, Bogdan; Stan, Marius; Crapps, Justin; Yun, Di

    2013-02-01

    We study the coupled thermal transport, oxygen diffusion, and thermal expansion in a generic nuclear fuel rod consisting of a (U) fuel pellet separated by a helium gap from zircaloy cladding. Steady-state and time-dependent finite-element simulations with a variety of initial- and boundary-value conditions are used to study the effect of the Pu content, y, and deviation from stoichiometry, x, on the temperature and deformation profiles in this fuel element. We find that the equilibrium radial temperature and deformation profiles are most sensitive to x at small values of y. For larger values of y, the effects of oxygen and Pu content are equally important. Following a change in the heat-generation rate, the centerline temperature, the radial deformation of the fuel pellet, and the centerline deviation from stoichiometry track each other closely in (U,Pu)O, as the characteristic time scales of the heat transport and oxygen diffusion are similar. This result is different from the situation observed in the case of UO fuels.

  20. Nuclear fuel strategies

    International Nuclear Information System (INIS)

    Rippon, S.

    1989-01-01

    The paper reports on two international meetings on nuclear fuel strategies, one organised by the World Nuclear Fuel Market in Seville (Spain) October 1988, and the other organised by the American and European nuclear societies in Washington (U.S.A.) November 1988. At the Washington meeting a description was given of the uranium supply and demand market, whereas free trade in uranium was considered in Seville. Considerable concern was expressed at both meetings on the effect on the uranium and enrichment services market of very low prices for spot deals being offered by China and the Soviet Union. Excess enrichment capacity, the procurement policies of the USA and other countries, and fuel cycle strategies, were also discussed. (U.K.)

  1. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Domoto, Noboru; Masuda, Hiroyuki

    1989-01-01

    In a nuclear fuel assembly loaded with a plurality of fuel rods, the inside of a fuel rod disposed at a high neutron flux region is divided into an inner region and an outer region, and more burnable poisons are mixed in the inner region than in the outer region. Alternatively, the central portion of a pellet disposed in a high neutron flux region is made hollow, in which burnable poisons are charged. This can prevent neutron infinite multiplication factor from decreasing extremely at the initial burning stage. Further, the burnable poisons are not rapidly burnt completely and local peaking coefficient can be controlled. Accordingly, in a case of suppressing a predetermined excess reactivity by using a fuel rod incorporated with the burnable poison, the fuel economy can be improved more and the reactor core controllability can also be improved as compared with the usual case. (T.M.)

  2. Nuclear fuel burn-up economy

    International Nuclear Information System (INIS)

    Matausek, M.

    1984-01-01

    In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)

  3. International issue: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    In this special issue a serie of short articles of informations are presented on the following topics: the EEC's medium term policy regarding the reprocessing and storage of spent fuel, France's natural uranium supply, the Pechiney Group in the nuclear field, zircaloy cladding for nuclear fuel elements, USSI: a major French nuclear engineering firm, gaseous diffusion: the only commercial enrichment process, the transport of nuclear materials in the fuel cycle, Cogema and spent fuel reprocessing, SGN: a leader in the fuel cycle, quality control of mechanical, thermal and termodynamic design in nuclear engineering, Sulzer's new pump testing station in Mantes, the new look of the Ateliers et Chantiers de Bretagne, tubes and piping in nuclear power plants, piping in pressurized water reactor. All these articles are written in English and in French [fr

  4. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The papers presented at the International Conference on The Nuclear Fuel Cycle, held at Stockholm, 28 to 31 October 1975, are reviewed. The meeting, organised by the U.S. Atomic Industrial Forum, and the Swedish Nuclear Forum, was concerned more particularly with economic, political, social and commercial aspects than with tecnology. The papers discussed were considered under the subject heading of current status, uranium resources, enrichment, and reprocessing. (U.K.)

  5. Nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    1975-12-01

    The papers presented at the International Conference on The Nuclear Fuel Cycle, held at Stockholm, 28 to 31 October 1975, are reviewed. The meeting, organised by the U.S. Atomic Industrial Forum, and the Swedish Nuclear Forum, was concerned more particularly with economic, political, social and commercial aspects than with tecnology. The papers discussed were considered under the subject heading of current status, uranium resources, enrichment, and reprocessing.

  6. Encapsulating spent nuclear fuel

    International Nuclear Information System (INIS)

    Fleischer, L.R.; Gunasekaran, M.

    1979-01-01

    A system is described for encapsulating spent nuclear fuel discharged from nuclear reactors in the form of rods or multi-rod assemblies. The rods are completely and contiguously enclosed in concrete in which metallic fibres are incorporated to increase thermal conductivity and polymers to decrease fluid permeability. This technique provides the advantage of acceptable long-term stability for storage over the conventional underwater storage method. Examples are given of suitable concrete compositions. (UK)

  7. Highlights of 50 years of nuclear fuel development

    International Nuclear Information System (INIS)

    Simnad, M.T.

    1989-01-01

    The development of nuclear fuels since the discovery of nuclear fission is briefly surveyed in this paper. The fabrication of the uranium fuel for the first nuclear pile, CP-1, is described. The research and development studies and fabrication of the different types of nuclear fuels for the variety of research and power reactors are reviewed. The important factors involved to achieve low fuel-cycle costs and reliable performance in the fuel elements are discussed in the historical context. 10 refs

  8. Highlights of 50 years of nuclear fuels developments

    International Nuclear Information System (INIS)

    Simnad, M.T.

    1989-01-01

    The development of nuclear fuels since the discovery of nuclear fission is briefly surveyed in this paper. The fabrication of the uranium fuel for the first nuclear pile, CP-1, is described. The research and development studies and fabrication of the different types of nuclear fuels for the variety of research and power reactors are reviewed. The important factors involved to achieve low fuel cycle costs and reliable performance in the fuel elements are discussed in the historical context

  9. Effects of alloys elements, impurities and microstructural factors in austenitic stainless steel to utilize in fuel rod of nuclear reactors

    International Nuclear Information System (INIS)

    Yoshimoto, A.

    1988-08-01

    Austenitic Stainless Steel is used as cladding material of pressurized water reactor fuel rods because of its good performance. The addition of alloy elements and the control of impurities make this to happen. Fission products do not contribute to corrosion. Dimensional changes are not critical up to 1,0 x 10 22 n/cm 2 (E>0,1 MeV) of neutronic doses. The hydrogen does not cause embrittlement in the reactor operation temperatures, and helium contributes to embrittlement if the material is warmed upon 650 0 C. (author) [pt

  10. Spacer grid for fuel elements

    International Nuclear Information System (INIS)

    Hensolt, T.; Huenner, M.; Rau, P.; Veca, A.

    1978-01-01

    The spacer grid for fuel elements of a gas-cooled fast breeder reactor (but also for PWRs and BWRs) consists of a lattice field with dodecagonal meshes. These meshes are formed by three each adjacent hexagons grouped arround a central axis. The pairs of legs extending into the dodecagon and being staggered by 120 0 are designed as knubs with inclined abutting surfaces for the fuel rods. By this means there is formed a three-point bearing for centering the fuel rods. The spacer grid mentioned above is rough-worked from a single disc- resp. plate-shaped body (unfinished piece). (DG) [de

  11. Spacer grid for fuel elements

    International Nuclear Information System (INIS)

    Hensolt, T.; Huenner, M.; Rau, P.; Veca, A.

    1980-01-01

    The spacer grid for fuel elements of a gas-cooled fast breeder reactor (but also for PWRs and BWRs) consists of a lattice field with dodecagonal meshes. These meshes are formed by three each adjacent hexagons grouped arround a central axis. The pairs of legs extending into the dodecagon and being staggered by 120 are designed as knubs with inclined abutting surfaces for the fuel rods. By this means there is formed a three-point bearing for centering the fuel rods. The spacer grid mentioned above is rough-worked from a single disc- resp. plate-shaped body (unfinished piece). (orig.)

  12. Nuclear fuel cycle information workshop

    International Nuclear Information System (INIS)

    1983-01-01

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US

  13. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Hirano, Yasushi; Hirukawa, Koji; Sakurada, Koichi.

    1994-01-01

    A bundle of fuel rods is divided into four fuel rod group regions of small fuel rod bundles by a cross-shaped partitioning structure consisting of paired plate-like structures which connect two opposing surfaces of a channel box. A water removing material with less neutron absorption (for example, Zr or a Zr alloy) or a solid moderator is inserted and secured to a portion of a non-boiling water region interposed between the paired plate-like structure. It has a structure that light water flows to the region in the plate-like structure. The volume, density or composition of the water removing material is controlled depending on the composition of the fuels, to change the moderating characteristics of neutrons in the non-boiling water region. This can easily moderate the difference of nuclear characteristics between each of fuel assemblies using fuel materials of different fuel compositions. Further, the reactivity control effect of the burnable poisons can be enhanced without worsening fuel economy or linear power density. (I.N.)

  14. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Delafosse, Jacques.

    1977-01-01

    This invention relates to a nuclear fuel assembly for a light or heavy water reactor, or for a fast reactor of the kind with a bundle of cladded pins, maintained parallel to each other in a regular network by an assembly of separate supporting grids, fitted with elastic bearing surfaces on these pins [fr

  15. Nuclear fuel pellets

    International Nuclear Information System (INIS)

    Larson, R.I.; Brassfield, H.C.

    1981-01-01

    Increased strength and physical durability in green bodies or pellets formed of particulate nuclear fuel oxides is achieved by inclusion of a fugitive binder which is ammonium bicarbonate, bicarbonate carbomate, carbomate, sesquicarbonate or mixtures thereof. Ammonium oxadate may be included as pore former. (author)

  16. Nonproliferation norms in civilian nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kawata, Tomio

    2005-01-01

    For sustainable use of nuclear energy in large scale, it seems inevitable to choose a closed cycle option. One of the important questions is, then, whether we can really achieve the compatibility between civilian nuclear fuel cycle and nonproliferation norms. In this aspect, Japan is very unique because she is now only one country with full-scope nuclear fuel cycle program as a non-nuclear weapon state in NPT regime. In June 2004 in the midst of heightened proliferation concerns in NPT regime, the IAEA Board of Governors concluded that, for Japanese nuclear energy program, non-diversion of declared nuclear material and the absence of undeclared nuclear material and activities were verified through the inspections and examinations under Comprehensive Safeguards and the Additional Protocol. Based on this conclusion, the IAEA announced the implementation of Integrated Safeguards in Japan in September 2004. This paper reviews how Japan has succeeded in becoming the first country with full-scope nuclear fuel cycle program to qualify for integrated Safeguards, and identifies five key elements that have made this achievement happen: (1) Obvious need of nuclear fuel cycle program, (2) Country's clear intention for renunciation of nuclear armament, (3) Transparency of national nuclear energy program, (4) Record of excellent compliance with nonproliferation obligations for many decades, and (5) Numerous proactive efforts. These five key elements will constitute a kind of an acceptance model for civilian nuclear fuel cycle in NNWS, and may become the basis for building 'Nonproliferation Culture'. (author)

  17. Pre-irradiation testing of experimental fuel elements

    International Nuclear Information System (INIS)

    Basova, B.G.; Davydov, E.F.; Dvoretskij, V.G.; Ivanov, V.B.; Syuzev, V.N.; Timofeev, G.A.; Tsykanov, V.A.

    1979-01-01

    The problems of testing of experimental fuel elements of nuclear reactors on the basis of complex accountancy of the factors defining operating capacity of the fuel elements are considered. The classification of the parameters under control and the methods of initial technological testing, including testing of the fuel product, cladding and fished fuel element, is given. The requirements to the apparatus used for complex testing are formulated. One of the possible variants of representation of the information obtained in the form of the input certificate of a single fuel element under study is proposed. The processing flowsheet of the gathered information using the computer is given. The approach under consideration is a methodological basis of investigation of fuel element operating life at the testing stage of the experimental fuel elements

  18. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Ito, Arata; Wakamatsu, Mitsuo.

    1976-01-01

    Object: To permit the coolant in an FBR type reactor to enter from the entrance nozzle into a nuclear fuel assembly without causing cavitation. Structure: In a nuclear fuel assembly, which comprises a number of thin fuel pines bundled together at a uniform spacing and enclosed within an outer cylinder, with a handling head connected to an upper portion of the outer cylinder and an entrance nozzle connected to a lower portion of the cylinder, the inner surface of the entrance nozzle is provided with a buffer member and an orifice successively in the direction of flow of the coolant. The coolant entering from a low pressure coolant chamber into the entrance nozzle strikes the buffer member and is attenuated, and thereafter flows through an orifice into the outer cylinder. (Horiuchi, T.)

  19. Unified fuel elements development for research reactors

    International Nuclear Information System (INIS)

    Vatulin, A.; Stetsky, Y.; Dobrikova, I.

    1998-01-01

    Square cross-section rod type fuel elements have been developed for russian pool-type research reactors. new fuel elements can replace the large nomenclature of tubular fuel elements with around, square and hexahedral cross-sections and to solve a problem of enrichment reduction. the fuel assembly designs with rod type fuel elements have been developed. The overall dimensions of existing the assemblies are preserved in this one. the experimental-industrial fabricating process of fuel elements, based on a joint extrusion method has been developed. The fabricating process has been tested in laboratory conditions, 150 experimental fuel element samples of the various sizes were produced. (author)

  20. Experience gathered from the transport of a fuel element prototype of the CNA-II (Atucha-II nuclear power plant) type

    International Nuclear Information System (INIS)

    Pastorini, A.; Belinco, C.G.; El Bis, E.D.; Sacchi, M.A.; Mayans, C.O.; Martin Ghiselli, A.; Marcora, G.R.

    1990-01-01

    This work describes the needs to materialize the transport of a fuel element prototype of the CNA-II (Atucha-II nuclear power plant) type, under special conditions, from the Fabrication Pilot Plant sited at the Constituyentes Atomic Center and the Ezeiza Atomic Center, for its subsequent analysis at the High Pressure Experimental Loop. The special conditions under which the transport has been made responded to the fact that the prototype presents a fragile adjustment between rods and separators, necessary to be preserved. (Author) [es

  1. Automatic inspection for remotely manufactured fuel elements

    International Nuclear Information System (INIS)

    Reifman, J.; Vitela, J.E.; Gibbs, K.S.; Benedict, R.W.

    1995-01-01

    Two classification techniques, standard control charts and artificial neural networks, are studied as a means for automating the visual inspection of the welding of end plugs onto the top of remotely manufactured reprocessed nuclear fuel element jackets. Classificatory data are obtained through measurements performed on pre- and post-weld images captured with a remote camera and processed by an off-the-shelf vision system. The two classification methods are applied in the classification of 167 dummy stainless steel (HT9) fuel jackets yielding comparable results

  2. Fuel element database: developer handbook

    International Nuclear Information System (INIS)

    Dragicevic, M.

    2004-09-01

    The fuel elements database which was developed for Atomic Institute of the Austrian Universities is described. The software uses standards like HTML, PHP and SQL. For the standard installation freely available software packages such as MySQL database or the PHP interpreter from Apache Software Foundation and Java Script were used. (nevyjel)

  3. Automatic welding of fuel elements

    International Nuclear Information System (INIS)

    Briola, J.

    1958-01-01

    The welding process depends on the type of fuel element, the can material and the number of cartridges to be welded: - inert-gas welding (used for G2 and the 1. set of EL3), - inert atmosphere arc welding (used for welding uranium and zirconium), - electronic welding (used for the 2. set of EL3 and the tank of Proserpine). (author) [fr

  4. Experience with nuclear fuel utilization in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Harizanov, Y [Committee on the Use of Atomic Energy for Peaceful Purposes, Sofia (Bulgaria)

    1997-12-01

    The presentation on experience with nuclear fuel utilization in Bulgaria briefly reviews the situation with nuclear energy in Bulgaria and then discusses nuclear fuel performance (amount of fuel loaded, type of fuel, burnup, fuel failures, assemblies deformation). 2 tabs.

  5. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  6. Impurities determination on nuclear fuel element components for the IEA-R1 research reactor by analytical methods based on ED-XRF and ICP-OES

    International Nuclear Information System (INIS)

    Reis, Edson Luis Tocaia dos; Scapin, Marcos; Cotrim, Marycel Elena Barboza; Salvador, Vera Lucia; Pires, Maria Aparecida Faustino

    2009-01-01

    The production of nuclear fuel used in the research reactor at Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) requires a series of chemical and metallurgical processes. The quality of the end product depends on the control over all the stages of the manufacturing process and over the quality of raw materials employed. In fact, spectrometric methods are increasingly used as quantitative analytical techniques applicable to uranium compounds because of simultaneous determination of several elements with minimum amounts of sample. However, the main obstacle of uranium compounds analysis by spectrometric techniques such as optical emission spectrometry with inductively coupled plasma (ICP-OES) is the complex emission spectrum of uranium. The ICP-OES is not appropriately capable of determining the major elements of interest without initial chemical separation of uranium. In this sense, the use of X-ray fluorescence spectrometry (XRF) has been considered for quantitative determination of main elements with the advantage of not being destructive and not requiring a prior preparation of samples for analysis. Due to the simplicity of this technique, its applicability includes research and quality control in universities, research institutions, petrochemical industries, metallurgy, mining, etc. In this work, some components considered impurities in nuclear fuel element samples used in the IEA-R1 research reactor of IPEN/CNEN-SP were chemically characterized by ICP-OES analysis after chromatography extraction separation by using TBP/XAD-14 system and compared to results obtained by energy dispersive X-ray fluorescence spectrometry (EDXRF) and wavelength dispersive X-ray fluorescence (WDXRF). (author)

  7. Further developments of PWR and BWR fuel elements

    International Nuclear Information System (INIS)

    Sofer, G.A.; Busselman, G.J.; Federico, L.J.

    1988-01-01

    The performance, safety, and economy of nuclear power plants in inluenced very decisively by the quality of their fuel elements. This is why quality assurance in fuel fabrication has been a factor of great importance from the outset. Operating experince and more stringent performance requirements have resulted in a continuous process of further development of fuel elements, which has been reflected also in lower and lower failure rates and increasingly higher burn-ups. Next to further development also innovation has been an important factor contributing to the present high quality level of fuel elements, which also has allowed fuel cycle costs to be decreased quite considerably. (orig.) [de

  8. Nuclear reactor fuel assembly spacer grids

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1977-01-01

    Designs of nuclear reactor fuel assembly spacer grids for supporting and spacing fuel elements are described which do not utilize resilient grid plate protrusions in the peripheral band but retain the advantages inherent in the combination resilient and rigid protrusion cells. (U.K.)

  9. A standardized procedure for eddy-current testing of stainless steel, thin-walled nuclear fuel element cladding tubes

    International Nuclear Information System (INIS)

    Barat, P.; Raj, B.; Bhattacharya, D.K.

    1982-01-01

    Thin-walled nuclear fuel cladding tubes made of AISI 316 stainless steel have been examined by eddy-current testing. Standardization of the procedures has required investigations on optimizing the test frequency, finding a method to locate a defect with respect to the probe reference end, and the use of standard defects and sequential metallography of natural defects detected by eddy-current testing, to understand the influence of the nature of defects on the impedance output signals. Test frequency and method of locating the defect were optimized by the use of standard defects made by machining in reference cladding tubes. Subsequent metallography of natural defects detected by eddy-current testing revealed mainly clusters of inclusions but also other types of defects. The effect of the distribution of inclusions along the length of the tube on the impedance output is discussed. (author)

  10. Standardized procedure for eddy-current testing of stainless steel, thin-walled nuclear fuel element cladding tubes

    Energy Technology Data Exchange (ETDEWEB)

    Barat, P; Raj, B; Bhattacharya, D K [Reactor Research Centre, Kalpakkam (India)

    1982-10-01

    Thin-walled nuclear fuel cladding tubes made of AISI 316 stainless steel have been examined by eddy-current testing. Standardization of the procedures has required investigations on optimizing the test frequency, finding a method to locate a defect with respect to the probe reference end, and the use of standard defects and sequential metallography of natural defects detected by eddy-current testing, to understand the influence of the nature of defects on the impedance output signals. Test frequency and method of locating the defect were optimized by the use of standard defects made by machining in reference cladding tubes. Subsequent metallography of natural defects detected by eddy-current testing revealed mainly clusters of inclusions but also other types of defects. The effect of the distribution of inclusions along the length of the tube on the impedance output is discussed.

  11. Method of reprocessing spent nuclear fuels

    International Nuclear Information System (INIS)

    Kamiyama, Hiroaki; Inoue, Tadashi; Miyashiro, Hajime.

    1987-01-01

    Purpose: To facilitate the storage management for the wastes resulting from reprocessing by chemically separating transuranium elements such as actionoid elements together with uranium and plutonium. Method: Spent fuels from a nuclear reactor are separated into two groups, that is, a mixture of uranium, plutonium and transuranium elements and cesium, strontium and other nuclear fission products. Virgin uranium is mixed to adjust the mixture of uranium, plutonium and transuranium elements in the first group, which is used as the fuels for the nuclear reactor. After separating to recover useful metals such as cesium and strontium are separated from short half-decay nuclear fission products of the second group, other nuclear fission products are stored and managed. This enables to shorten the storage period and safety storage and management for the wastes. (Takahashi, M.)

  12. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    1982-01-01

    This film for a general audience deals with nuclear fuel waste management in Canada, where research is concentrating on land based geologic disposal of wastes rather than on reprocessing of fuel. The waste management programme is based on cooperation of the AECL, various universities and Ontario Hydro. Findings of research institutes in other countries are taken into account as well. The long-term effects of buried radioactive wastes on humans (ground water, food chain etc.) are carefully studied with the help of computer models. Animated sequences illustrate the behaviour of radionuclides and explain the idea of a multiple barrier system to minimize the danger of radiation hazards

  13. Low content uranium alloys for nuclear fuels; Alliages d'uranium a faible teneur pour elements combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, H.; Laniesse, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    A description is given of the structure and the properties of low content alloys containing from 0.1 to 0.5 per cent by weight of Al, Fe, Cr, Si, Mo or a combination of these elements. A study of the kinetics and of the mode of transformation has made it possible to choose the most satisfactory thermal treatment. An attempt has been made to prepare alloys suitable for an economical industrial development having a small {alpha} grain structure without marked preferential orientation, with very fine and stable precipitates as well as a high creep-resistance. The physical properties and the mechanical strength of these alloys are given for temperatures of 20 to 600 deg C. These alloys proved very satisfactory when irradiated in the form of normal size fuel elements. (authors) [French] Sont decrits la structure et les proprietes d'alliages a faible teneur, contenant de 0,1 a 0,5 pour cent en poids de Al, Fe, Cr, Si, Mo ou une combinaison de ces elements. L'etude des cinetiques et du mode de transformation permet de choisir le traitement thermique le plus favorable. On a cherche a mettre, au point des alliages se pretant a une mise en oeuvre industrielle economique et presentant une structure a petits grains {alpha}, sans orientation preferentielle marquee, avec des precipites tres fins et stables ainsi qu'une bonne resistance au fluage. Les proprietes physiques et la resistance mecanique de ces alliages sont decrites entre la temperature ambiante et 600 deg C. Irradies sous forme d'elements combustibles de dimensions normales, ces alliages ont montre un bon comportement. (auteurs)

  14. Low content uranium alloys for nuclear fuels; Alliages d'uranium a faible teneur pour elements combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, H; Laniesse, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    A description is given of the structure and the properties of low content alloys containing from 0.1 to 0.5 per cent by weight of Al, Fe, Cr, Si, Mo or a combination of these elements. A study of the kinetics and of the mode of transformation has made it possible to choose the most satisfactory thermal treatment. An attempt has been made to prepare alloys suitable for an economical industrial development having a small {alpha} grain structure without marked preferential orientation, with very fine and stable precipitates as well as a high creep-resistance. The physical properties and the mechanical strength of these alloys are given for temperatures of 20 to 600 deg C. These alloys proved very satisfactory when irradiated in the form of normal size fuel elements. (authors) [French] Sont decrits la structure et les proprietes d'alliages a faible teneur, contenant de 0,1 a 0,5 pour cent en poids de Al, Fe, Cr, Si, Mo ou une combinaison de ces elements. L'etude des cinetiques et du mode de transformation permet de choisir le traitement thermique le plus favorable. On a cherche a mettre, au point des alliages se pretant a une mise en oeuvre industrielle economique et presentant une structure a petits grains {alpha}, sans orientation preferentielle marquee, avec des precipites tres fins et stables ainsi qu'une bonne resistance au fluage. Les proprietes physiques et la resistance mecanique de ces alliages sont decrites entre la temperature ambiante et 600 deg C. Irradies sous forme d'elements combustibles de dimensions normales, ces alliages ont montre un bon comportement. (auteurs)

  15. Nuclear fuel activities in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D S [Fuel Development Branch, Chalk River Labs., AECL (Canada)

    1997-12-01

    Nuclear fuel activities in Canada are considered in the presentation on the following directions: Canadian utility fuel performance; CANDU owner`s group fuel programs; AECL advanced fuel program (high burnup fuel behaviour and development); Pu dispositioning (MOX) activities. 1 tab.

  16. Proceedings of the Third Scientific Presentation on Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    1998-02-01

    The proceeding contains papers presented in the Third Scientific Presentation on nuclear Fuel Element Cycle held on 4-5 Nov 1997 in Jakarta, Indonesia. These papers were divided by three groups that are technology of exploration, processing, purification and analysis of nuclear materials; technology of nuclear fuel elements and structures; and technology of waste management, safety and nuclear fuel cycle. There are 38 papers indexed individually. (ID)

  17. Spent nuclear fuel storage - Basic concept

    International Nuclear Information System (INIS)

    Krempel, Ascanio; Santos, Cicero D. Pacifici dos; Sato, Heitor Hitoshi; Magalhaes, Leonardo de

    2009-01-01

    According to the procedures adopted in others countries in the world, the spent nuclear fuel elements burned to produce electrical energy in the Brazilian Nuclear Power Plant of Angra do Reis, Central Nuclear Almirante Alvaro Alberto - CNAAA will be stored for a long time. Such procedure will allow the next generation to decide how they will handle those materials. In the future, the reprocessing of the nuclear fuel assemblies could be a good solution in order to have additional energy resource and also to decrease the volume of discarded materials. This decision will be done in the future according to the new studies and investigations that are being studied around the world. The present proposal to handle the nuclear spent fuel is to storage it for a long period of time, under institutional control. Therefore, the aim of this paper is to introduce a proposal of a basic concept of spent fuel storage, which involves the construction of a new storage building at site, in order to increase the present storage capacity of spent fuel assemblies in CNAAA installation; the concept of the spent fuel transportation casks that will transfer the spent fuel assemblies from the power plants to the Spent Fuel Complementary Storage Building and later on from this building to the Long Term Intermediate Storage of Spent Fuel; the concept of the spent fuel canister and finally the basic concept of the spent fuel long term storage. (author)

  18. Nuclear fuel brokerage

    International Nuclear Information System (INIS)

    Hoffman, J.; Schreiber, K.

    1985-01-01

    Making available nuclear fuels on the spot market, especially uranium in various compounds and processing stages, has become an important service rendered nuclear power plant operators. A secondary market has grown, both for natural uranium and for separative work, the conditions and transactions of which require a comprehensive overview of what is going on, especially also in connection with possibilities to terminate in a profitable manner existing contracts. This situation has favored the activity of brokers with excellent knowledge of the market, who are able to handle the complicated terms and conditions in an optimum way. (orig.) [de

  19. Compact nuclear fuel storage

    International Nuclear Information System (INIS)

    Kiselev, V.V.; Churakov, Yu.A.; Danchenko, Yu.V.; Bylkin, B.K.; Tsvetkov, S.V.

    1983-01-01

    Different constructions of racks for compact storage of spent fuel assemblies (FA) in ''coolin''g pools (CP) of NPPs with the BWR and PWR type reactors are described. Problems concerning nuclear and radiation safety and provision of necessary thermal conditions arising in such rack design are discussed. It is concluded that the problem of prolonged fuel storage at NPPs became Very actual for many countries because of retapdation of the rates of fuel reprocessing centers building. Application of compact storage racks is a promising solution of the problem of intermediate FA storage at NPPs. Such racks of stainless boron steel and with neutron absorbers in the from of boron carbide panels enable to increase the capacity of the present CP 2-2.6 times, and the period of FA storage in them up to 5-10 years

  20. Nuclear fuel pin

    International Nuclear Information System (INIS)

    Hartley, Kenneth; Moulding, T.L.J.; Rostron, Norman.

    1979-01-01

    Fuel pin for use in fast breeder nuclear reactors containing fissile and fertile areas of which the fissile and fertile materials do not mix. The fissile material takes the shape of large and small diameter microspheres (the small diameter microspheres can pass through the interstices between the large microspheres). The barrier layers being composed of microspheres with a diameter situated between those of the large and small microspheres ensure that the materials do not mix [fr

  1. Alternative nuclear fuel cycles

    International Nuclear Information System (INIS)

    Till, C.E.

    1979-01-01

    This diffuse subject involves value judgments that are political as well as technical, and is best understood in that context. The four questions raised here, however, are mostly from the technical viewpoints: (1) what are alternative nuclear fuel cycles; (2) what generalizations are possible about their characteristics; (3) what are the major practical considerations; and (4) what is the present situation and what can be said about the outlook for the future

  2. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Schmitt, D.

    1985-01-01

    How should the decision in favour of reprocessing and against alternative waste management concepts be judged from an economic standpoint. Reprocessing is not imperative neither for resource-economic reasons nor for nuclear energy strategy reasons. On the contrary, the development of an ultimate storage concept representing a real alternative promising to close, within a short period of time, the nuclear fuel cycle at low cost. At least, this is the result of an extensive economic efficiency study recently submitted by the Energy Economics Institute which investigated all waste management concepts relevant for the Federal Republic of Germany in the long run, i.e. direct ultimate storage of spent fuel elements (''Other waste disposal technologies'' - AE) as well as reprocessing of spent fuel elements where re-usable plutonium and uranium are recovered and radioactive waste goes to ultimate storage (''Integrated disposal'' - IE). Despite such fairly evident results, the government of the Federal Republic of Germany has favoured the construction of a reprocessing plant. From an economic point of view there is no final answer to the question whether or not the argumentation is sufficient to justify the decision to construct a reprocessing plant. This is true for both the question of technical feasibility and issues of overriding significance of a political nature. (orig./HSCH) [de

  3. Coherence of reactor design and fuel element design

    International Nuclear Information System (INIS)

    Vom Scheidt, S.

    1995-01-01

    Its background of more than 25 years of experience makes Framatome the world's leading company in the design and sales of fuel elements for pressurized water reactors (PWR). In 1994, the fuel fabrication units were incorporated as subsidiaries, which further strengthens the company's position. The activities in the fuel sector comprise fuel element design, selection and sourcing of materials, fuel element fabrication, and the services associated with nuclear fuel. Design responsibility lies with the Design and sales Management, which closely cooperates with the engineers of the reactor plant for which the fuel elements are being designed, for fuel elements are inseparable parts of the respective reactors. The Design and Sales Management also has developed a complete line of services associated with fuel element inspection and repair. As far as fuel element sales are concerned, Framatome delivers the first core in order to be able to assume full responsibility vis-a-vis the customer for the performance of the nuclear steam supply system. Reloads are sold through the Fragema Association established by Framatome and Cogema. (orig.) [de

  4. Sensitivity analysis for heat diffusion in a fin on a nuclear fuel element; Analise de sensitividade na difusao de calor em uma aleta de um elemento combustivel nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Tito, Max Werner de Carvalho

    2001-11-15

    The modern thermal systems generally present a growing complexity, as is in the case of nuclear power plants. It seems that is necessary the use of complex computation and mathematical tools in order to increase the efficiency of the operations, reduce costs and maximize profits while maintaining the integrity of its components. The use of sensitivity calculations plays an important role in this process providing relevant information regarding the resultant influence of variation or perturbation of its parameters as the system works. This technique is better known as sensitivity analysis and through its use makes possible the understanding of the effects of the parameters, which are fundamental for the project preparation, and for the development of preventive and corrective handling measurements of many pieces of equipment of modern engineering. The sensitivity calculation methodology is based generally on the response surface technique (graphic description of the functions of interest based in the results obtained from the system parameter variation). This method presents a lot of disadvantages and sometimes is even impracticable since many parameters can cause alterations or perturbations to the system and the model to analyse it can be very complex as well. The utilization of perturbative methods result appropriate as a practical solution to this problem especially in the presence of complex equations. Also it reduces the resultant computational calculus time considerably. The use of these methods becomes an essential tool to simplify the sensitivity analysis. In this dissertation, the differential perturbative method is applied in a heat conduction problem within a thermal system, made up of a one-dimensional circumferential fin on a nuclear fuel element. The fins are used to extend the thermal surfaces where convection occurs; thus increasing the heat transfer to many thermal pieces of equipment in order to obtain better results. The finned claddings are

  5. Nuclear fuel handling apparatus

    International Nuclear Information System (INIS)

    Andrea, C.; Dupen, C.F.G.; Noyes, R.C.

    1977-01-01

    A fuel handling machine for a liquid metal cooled nuclear reactor in which a retractable handling tube and gripper are lowered into the reactor to withdraw a spent fuel assembly into the handling tube. The handling tube containing the fuel assembly immersed in liquid sodium is then withdrawn completely from the reactor into the outer barrel of the handling machine. The machine is then used to transport the spent fuel assembly directly to a remotely located decay tank. The fuel handling machine includes a decay heat removal system which continuously removes heat from the interior of the handling tube and which is capable of operating at its full cooling capacity at all times. The handling tube is supported in the machine from an articulated joint which enables it to readily align itself with the correct position in the core. An emergency sodium supply is carried directly by the machine to provide make up in the event of a loss of sodium from the handling tube during transport to the decay tank. 5 claims, 32 drawing figures

  6. Fuel elements of research reactors in China

    International Nuclear Information System (INIS)

    Zhou Yongmao; Chen Dianshan; Tan Jiaqiu

    1987-01-01

    This paper describes the current status of design, fabrication of fuel elements for research reactors in China, emphasis is placed on the technology of fuel elements for the High Flux Engineering Test Reactor (HFETR). (author)

  7. Fuel element radiometry system for quality control

    International Nuclear Information System (INIS)

    Bhattacharya, Sadhana; Gaur, Swati; Sridhar, Padmini; Mukhopadhyay, P.K.; Vaidya, P.R.; Das, Sanjoy; Sinha, A.K.; Bhatt, Sameer

    2010-01-01

    An indigenous and fully automatic PC based radiometry system has been designed and developed. The system required a vibration free scanning with various automated sequential movements to scan the fuel pin of size 5.8 mm (OD) x 1055 mm (L) along its full length. A mechanical system with these requirements and precision controls has been designed. The system consists of a tightly coupled and collimated radiation source-detector unit and data acquisition and control system. It supports PLC based control electronics to control and monitor the movement of fuel element, nuclear data acquisition and analysis system and feedback system to the mechanical scanner to physically accept or reject the fuel pin based on the decision derived by the software algorithms. (author)

  8. South Korea's nuclear fuel industry

    International Nuclear Information System (INIS)

    Clark, R.G.

    1990-01-01

    March 1990 marked a major milestone for South Korea's nuclear power program, as the country became self-sufficient in nuclear fuel fabrication. The reconversion line (UF 6 to UO 2 ) came into full operation at the Korea Nuclear Fuel Company's fabrication plant, as the last step in South Korea's program, initiated in the mid-1970s, to localize fuel fabrication. Thus, South Korea now has the capability to produce both CANDU and pressurized water reactor (PWR) fuel assemblies. This article covers the nuclear fuel industry in South Korea-how it is structures, its current capabilities, and its outlook for the future

  9. Nuclear fuel rod loading apparatus

    International Nuclear Information System (INIS)

    King, H.B.

    1981-01-01

    A nuclear fuel loading apparatus, incorporating a microprocessor control unit, is described which automatically loads nuclear fuel pellets into dual fuel rods with a minimum of manual involvement and in a manner and sequence to ensure quality control and accuracy. (U.K.)

  10. Modeling the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Jacobson, Jacob J.; Dunzik-Gougar, Mary Lou; Juchau, Christopher A.

    2010-01-01

    A review of existing nuclear fuel cycle systems analysis codes was performed to determine if any existing codes meet technical and functional requirements defined for a U.S. national program supporting the global and domestic assessment, development and deployment of nuclear energy systems. The program would be implemented using an interconnected architecture of different codes ranging from the fuel cycle analysis code, which is the subject of the review, to fundamental physical and mechanistic codes. Four main functions are defined for the code: (1) the ability to characterize and deploy individual fuel cycle facilities and reactors in a simulation, while discretely tracking material movements, (2) the capability to perform an uncertainty analysis for each element of the fuel cycle and an aggregate uncertainty analysis, (3) the inclusion of an optimization engine able to optimize simultaneously across multiple objective functions, and (4) open and accessible code software and documentation to aid in collaboration between multiple entities and facilitate software updates. Existing codes, categorized as annualized or discrete fuel tracking codes, were assessed according to the four functions and associated requirements. These codes were developed by various government, education and industrial entities to fulfill particular needs. In some cases, decisions were made during code development to limit the level of detail included in a code to ease its use or to focus on certain aspects of a fuel cycle to address specific questions. The review revealed that while no two of the codes are identical, they all perform many of the same basic functions. No code was able to perform defined function 2 or several requirements of functions 1 and 3. Based on this review, it was concluded that the functions and requirements will be met only with development of a new code, referred to as GENIUS.

  11. Improved techniques for appendage attachment to PHWR fuel elements

    International Nuclear Information System (INIS)

    Raj, R.N.J.; Laxminarayana, B.; Narayanan, P.S.A.; Gupta, U.C.; Varma, B.P.; Sinha, K.K.

    1995-01-01

    Nuclear Fuel Complex, India switched-over to split-wart type PHWR fuel bundles in mid-80s. Since then over 60,000 bundles of this type have been fabricated for Indian PHWRs. After considering various technical aspects, resistance welding was chosen for appendage attachment to the fuel elements. The paper describes experiences in scaling up of the technique to industrial production of PHWR fuel bundles, design and development of special-purpose equipment for this purpose, and the QA procedures employed for regular production. It also deals with appendage welding of 37 Element fuel bundles and improvements planned in the appendage welding process. (author)

  12. Future trends in nuclear fuels

    International Nuclear Information System (INIS)

    Guitierrez, J.E.

    2006-01-01

    This series of transparencies presents: the fuel management cycle and key areas (security of supplies, strategies and core management, reliability, spent fuel management), the world nuclear generating capacity, concentrate capacity, enrichment capacity, and manufacturing capacity forecasts, the fuel cycle strategies and core management (longer cycles, higher burnups, power up-rates, higher enrichments), the Spanish nuclear generation cost, the fuel reliability (no defects, robust designs, operational margins, integrated fuel and core design), spent fuel storage (design and safety criteria, fuel performance and integrity). (J.S.)

  13. The so-called 'Castor-Crisis': Transport of spent nuclear fuel elements and German 'Angst'. How to prevent the public relations catastrophe

    International Nuclear Information System (INIS)

    Suess, Werner

    1999-01-01

    Full text: 1. 'Castor-Crisis' - The Real Facts. - the background: radioactive contamination on the surface of transport containers for spent nuclear fuel elements; - legal aspects: transport limit values and notification obligations; - health aspects: radioactive contamination and ionising radiation; - the news media: divergence between technical facts and public perception. 2. 'Castor-Crisis' - The Reactions. 2.1 Technical measures: - 'action plan' of the Federal Ministry for Environment Protection and Reactor Safety; - IT-based European Information and Report System for the transport of nuclear combustibles => 'Transparent Transport Procedures'; - optimisation of decontamination procedures and transport organisation; - simplification of logistics, clearer responsibilities. 2.2 Communications measures: - defense strategy: 'we made a mistake...'; - information campaign: 'we owe you some answers...'; - regaining credibility: public testimonials of employees in newspaper ads, brochures etc.; - regaining credibility: neutral investigation of all relevant circumstances by KPMG. 3. 'Castor-Crisis' - The Lessons: - internal crisis management: improved co-ordination at company and branch level; - pro-active strategy: 'The benefits of nuclear energy' (avoidance Of CO 2 -emissions); - limits of communications; - communications efforts for nuclear energy - the European context. (author)

  14. Repurposing an irradiated instrumented TRIGA fuel element for regular use

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Paulo F.; Souza, Luiz C.A., E-mail: pfo@cdtn.br, E-mail: lcas@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    TRIGA IPR-R1 is a research reactor also used for training and radioisotope production, located at the Centro de Desenvolvimento da Tecnologia Nuclear da Comissao Nacional de Energia Nuclear (Nuclear Technology Development Centre, Brazilian National Nuclear Energy Commission - CDTN/CNEN). Its first criticality occurred in November 1960. All original fuel elements were aluminum-clad. In 1971 nine new fuel elements, stainless steel-clad were acquired. One of them was an instrumented fuel element (IFE), equipped with 3 thermocouples. The IFE was introduced into the core only on August 2004, and remained there until July 2007. It was removed from the core after the severing of contacts between the thermocouples and their extension cables. After an unsuccessful attempt to recover electrical access to the thermocouples the IFE was transferred from the reactor pool to an auxiliary spent fuel storage well, with water, in the reactor room. In December 2011 the IFE was transferred to an identical well, dry, where it remains so far. This work is a proposal for recovery of this instrumented fuel element, by removing the cable guide rod and adaptation of a superior terminal plug similar to conventional fuel elements. This will enable its handling through the same tool used for regular fuel elements and its return to the reactor core. This is a delicate intervention in terms of radiological protection, and will require special care to minimize the exposure of operators. (author)

  15. Azimuthally anisotropic hydride lens structures in Zircaloy 4 nuclear fuel cladding: High-resolution neutron radiography imaging and BISON finite element analysis

    Science.gov (United States)

    Lin, Jun-Li; Zhong, Weicheng; Bilheux, Hassina Z.; Heuser, Brent J.

    2017-12-01

    High-resolution neutron radiography has been used to image bulk circumferential hydride lens particles in unirradiated Zircaloy 4 tubing cross section specimens. Zircaloy 4 is a common light water nuclear reactor (LWR) fuel cladding; hydrogen pickup, hydride formation, and the concomitant effect on the mechanical response are important for LWR applications. Ring cross section specimens with three hydrogen concentrations (460, 950, and 2830 parts per million by weight) and an as-received reference specimen were imaged. Azimuthally anisotropic hydride lens particles were observed at 950 and 2830 wppm. The BISON finite element analysis nuclear fuel performance code was used to model the system elastic response induced by hydride volumetric dilatation. The compressive hoop stress within the lens structure becomes azimuthally anisotropic at high hydrogen concentrations or high hydride phase fraction. This compressive stress anisotropy matches the observed lens anisotropy, implicating the effect of stress on hydride formation as the cause of the observed lens azimuthal asymmetry. The cause and effect relation between compressive stress and hydride lens anisotropy represents an indirect validation of a key BISON output, the evolved hoop stress associated with hydride formation.

  16. Nuclear power and the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    The IAEA is organizing a major conference on nuclear power and the nuclear fuel cycle, which is to be held from 2 to 13 May 1977 in Salzburg, Austria. The programme for the conference was published in the preceding issue of the IAEA Bulletin (Vol.18, No. 3/4). Topics to be covered at the conference include: world energy supply and demand, supply of nuclear fuel and fuel cycle services, radioactivity management (including transport), nuclear safety, public acceptance of nuclear power, safeguarding of nuclear materials, and nuclear power prospects in developing countries. The articles in the section that follows are intended to serve as an introduction to the topics to be discussed at the Salzburg Conference. They deal with the demand for uranium and nuclear fuel cycle services, uranium supplies, a computer simulation of regional fuel cycle centres, nuclear safety codes, management of radioactive wastes, and a pioneering research project on factors that determine public attitudes toward nuclear power. It is planned to present additional background articles, including a review of the world nuclear fuel reprocessing situation and developments in the uranium enrichment industry, in future issues of the Bulletin. (author)

  17. Detector for failed fuel elements

    International Nuclear Information System (INIS)

    Ito, Masaru.

    1979-01-01

    Purpose: To provide automatic monitor for the separation or reactor water and sampling water, in a failed fuel element detector using a sipping chamber. Constitution: A positional detector for the exact mounting of a sipping chamber on a channel box and a level detector for the detection of complete discharge of cooling water in the sipping chamber are provided in the sipping chamber. The positional detector is contacted to the upper end of the channel box and operated when the sipping chamber is correctly mounted to the fuel assemblies. The level detector comprises a float and a limit switch and it is operated when the water in the sipping chamber is discharged by a predetermined amount. Isolation of reactor water and sampling water are automatically monitored by the signal from these two detectors. (Ikeda, J.)

  18. Nuclear fuel supplies

    International Nuclear Information System (INIS)

    1960-01-01

    When the International Atomic Energy Agency was set up nearly three years ago, it was widely believed that it would soon become a world bank or broker for the supply of nuclear fuel. Some observers now seem to feel that this promise has been rather slow to come to fruition. A little closer analysis would, however, show that the promise can be fulfilled only in a certain objective context, and to the extent that this context exists, the development of the Agency's role has been commensurate with the actual needs of the situation

  19. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Allan, C.J.

    1993-01-01

    The Canadian concept for nuclear fuel waste disposal is based on disposing of the waste in a vault excavated 500-1000 m deep in intrusive igneous rock of the Canadian Shield. The author believes that, if the concept is accepted following review by a federal environmental assessment panel (probably in 1995), then it is important that implementation should begin without delay. His reasons are listed under the following headings: Environmental leadership and reducing the burden on future generations; Fostering public confidence in nuclear energy; Forestalling inaction by default; Preserving the knowledge base. Although disposal of reprocessing waste is a possible future alternative option, it will still almost certainly include a requirement for geologic disposal

  20. Grooved Fuel Rings for Nuclear Thermal Rocket Engines

    Science.gov (United States)

    Emrich, William

    2009-01-01

    An alternative design concept for nuclear thermal rocket engines for interplanetary spacecraft calls for the use of grooved-ring fuel elements. Beyond spacecraft rocket engines, this concept also has potential for the design of terrestrial and spacecraft nuclear electric-power plants. The grooved ring fuel design attempts to retain the best features of the particle bed fuel element while eliminating most of its design deficiencies. In the grooved ring design, the hydrogen propellant enters the fuel element in a manner similar to that of the Particle Bed Reactor (PBR) fuel element.

  1. CARA, new concept of advanced fuel element for HWR

    International Nuclear Information System (INIS)

    Florido, P.C.; Crimello, R.O.; Bergallo, J.E.; Marino, A.C.; Delmastro, D.F.; Brasnarof, D.O.; Gonzalez, J.H.

    1999-01-01

    All Argentinean NPPs (2 in operation, 1 under construction), use heavy water as coolant and moderator. With very different reactor concepts (pressure Vessel and CANDU type designs), the fuel elements are completely different in its concepts too. Argentina produces both types of fuel elements at a manufacturing fuel element company, called CONUAR. The very different fuel element's designs produce a very complex economical behavior in this company, due to the low production scale. The competitiveness of the Argentinean electric system (Argentina has a market driven electric system) put another push towards to increase the economical competitiveness of the nuclear fuel cycle. At present, Argentina has a very active Slightly Enriched Uranium (SEU) Program for the pressure vessel HWR type, but without strong changes in the fuel concept itself. Then, the Atomic Energy Commission in Argentina (CNEA) has developed a new concept of fuel element, named CARA, trying to achieve very ambitious goals, and substantially improved the competitiveness of the nuclear option. The ambitious targets for CARA fuel element are compatibility (a single fuel element for all Argentinean's HWR) using a single diameter fuel rod, improve the security margins, increase the burnup and do not exceed the CANDU fabrication costs. In this paper, the CARA concept will be presented, in order to explained how to achieve all together these goals. The design attracted the interest of the nuclear power operator utility (NASA), and the fuel manufacturing company (CONUAR). Then a new Project is right now under planning with the cooperation of three parts (CNEA - NASA - CONUAR) in order to complete the whole development program in the shortest time, finishing in the commercial production of CARA fuel bundle. At the end of the this paper, future CARA development program will be described. (author)

  2. FOIL ELEMENT FOR NUCLEAR REACTOR

    Science.gov (United States)

    Noland, R.A.; Walker, D.E.; Spinrad, B.I.

    1963-07-16

    A method of making a foil-type fuel element is described. A foil of fuel metal is perforated in; regular design and sheets of cladding metal are placed on both sides. The cladding metal sheets are then spot-welded to each other through the perforations, and the edges sealed. (AEC)

  3. CERCA's fuel elements instrumentation manufacturing

    International Nuclear Information System (INIS)

    Harbonnier, G.; Jarousse, C.; Pin, T.; Febvre, M.; Colomb, P.

    2005-01-01

    When research and test reactors wish to further understand the Fuel Elements behavior when operating as well as mastering their irradiation conditions, operators carry out neutron and thermo hydraulic analysis. For thermal calculation, the codes used have to be preliminary validated, at least in the range of the reactor safety operational limits. When some further investigations are requested either by safety authorities or for its own reactor needs, instrumented tools are the ultimate solution for providing representative measurements. Such measurements can be conducted for validating thermal calculation codes, at nominal operating condition as well as during transients ones, or for providing numerous and useful data in the frame of a new products qualification program. CERCA, with many years of experience for implanting thermocouples in various products design, states in this poster his manufacturing background on instrumented elements, plates or targets. (author)

  4. COBRA - 3C/KFKI: a digital computer program for steady and transient thermal-hydraulic analysis of rod bundle nuclear fuel elements

    International Nuclear Information System (INIS)

    Vigassy, J.; Kovacs, L.M.

    1977-11-01

    COBRA-3C/KFKI is a digital computer program for the CDC-3300 computer in FORTRAN language. The program is a revised version of the original COBRA-3C code. The code calculates steady-state and transient flow and enthalpy transport in rod-bundle nuclear fuel elements in both boiling and nonboiling conditions. The mathematical model is formulated by dividing the bundle flow area into flow subchannels that are assumed to contain one-dimensional flow and are coupled to each other by turbulent and diversion crossflow mixing. The program neglects sonic velocity propagation but allows for a temporal and spatial acceleration of the diversion crossflow in the transverse momentum equation. A semiexplicit finite-difference scheme is used to perform a boundary-value solution where the boundary conditions are the inlet enthalpy, inlet flow rate and exit pressure. (D.P.)

  5. Analysed a defective of the machine for a cap-tube nuclear fuel element ME-27 from its electricity point of view

    International Nuclear Information System (INIS)

    Achmad Suntoro

    2009-01-01

    It has been analysed a defective of the machine for a cap-tube nuclear fuel element ME-27 from its electricity point of view. The machine uses magnetic force resistance welding technique. A short circuit was happened within the machine because the nut for tightening high voltage cable for welding transformer was broken so that the cable touched the machine body and produced the short circuit. This condition made both the primary circuit breaker in the building down and produced high voltage pulse induction to the electronic circuit within the machine so that one of its electronic components was defective. This case becomes warnings on how important of tightening a nut according to its strength specification (using wrench torque) and the necessity of voltage transient limitation circuit to be installed. Both of the warnings are necessary for any equipment consuming high electric current oriented such as the ME-27 machine. (author)

  6. Human Resources Capacity Building as a Strategy in Strengthening Nuclear Knowledge Sustainability in the Experimental Fuel Element Installation of BATAN-Indonesia

    International Nuclear Information System (INIS)

    Ratih Langenati; Bambang, Herutomo; Arief Sasongko Adhi

    2014-01-01

    Strategy in Strengthening Nuclear Knowledge Sustainability: • In order to maintain human resources capacity related to nuclear fuel production technology, a nuclear knowledge preservation program is implemented in the EFEI. • The program includes coaching/training, mentoring and documenting important knowledge. • The program activities are monitored and evaluated quarterly for its improvement in the following year

  7. Nuclear reactor fuel assembly spacer grid

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1977-01-01

    A spacer grid for a nuclear fuel assembly is comprised of a lattice of grid plates forming multiple cells that are penetrated by fuel elements. Resilient protrusions and rigid protrusions projecting into the cells from the plates bear against the fuel element to effect proper support and spacing. Pairs of intersecting grid plates, disposed in a longitudinally spaced relationship, cooperate with other plates to form a lattice wherein each cell contains adjacent panels having resilient protrusions arranged opposite adjacent panels having rigid protrusions. The peripheral band bounding the lattice is provided solely with rigid protrusions projecting into the peripheral cells. (Auth.)

  8. Nuclear power generation and nuclear fuel

    International Nuclear Information System (INIS)

    Okajima, Yasujiro

    1985-01-01

    As of June 30, 1984, in 25 countries, 311 nuclear power plants of about 209 million kW were in operation. In Japan, 27 plants of about 19 million kW were in operation, and Japan ranks fourth in the world. The present state of nuclear power generation and nuclear fuel cycle is explained. The total uranium resources in the free world which can be mined at the cost below $130/kgU are about 3.67 million t, and it was estimated that the demand up to about 2015 would be able to be met. But it is considered also that the demand and supply of uranium in the world may become tight at the end of 1980s. The supply of uranium to Japan is ensured up to about 1995, and the yearly supply of 3000 st U 3 O 8 is expected in the latter half of 1990s. The refining, conversion and enrichment of uranium are described. In Japan, a pilot enrichment plant consisting of 7000 centrifuges has the capacity of about 50 t SWU/year. UO 2 fuel assemblies for LWRs, the working of Zircaloy, the fabrication of fuel assemblies, the quality assurance of nuclear fuel, the behavior of UO 2 fuel, the grading-up of LWRs and nuclear fuel, and the nuclear fuel business in Japan are reported. The reprocessing of spent fuel and plutonium fuel are described. (Kako, I.)

  9. Post irradiation examination of HANARO nucler mini-element fuel (metallographic and density test)

    International Nuclear Information System (INIS)

    Yoo, Byung Ok; Hong, K. P.; Park, D. G.; Choo, Y. S.; Baik, S. J.; Kim, K. H.; Kim, H. C.; Jung, Y. H.

    2001-05-01

    The post irradiation examination of a HANARO mini-element nuclear fuel, KH96C-004, was done in June 6, 2000. The purpose of this project is to evaluate the in-core performance and reliability of mini-element nuclear fuel for HANARO developed by the project T he Nuclear Fuel Material Development of Research Reactor . And, in order to examine the performance of mini-element nuclear fuel in normal output condition, the post irradiation examination of a nuclear fuel bundle composed by 6 mini nuclear fuel rods and 12 dummy fuel rods was performed. Based on these examination results, the safety and reliability of HANARO fuel and the basic data on the design of HANARO nuclear fuel can be ensured and obtained,

  10. Nuclear reactor seismic fuel assembly grid

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1977-01-01

    The strength of a nuclear reactor fuel assembly is enhanced by increasing the crush strength of the zircaloy spacer grids which locate and support the fuel elements in the fuel assembly. Increased resistance to deformation as a result of laterally directed forces is achieved by increasing the section modulus of the perimeter strip through bending the upper and lower edges thereof inwardly. The perimeter strip is further rigidized by forming, in the central portion thereof, dimples which extend inwardly with respect to the fuel assembly. The integrity of the spacer grid may also be enhanced by providing back-up arches for some or all of the integral fuel element locating springs and the strength of the fuel assembly may be further enhanced by providing, intermediate its ends, a steel seismic grid. 13 claims, 6 figures

  11. IAEA activities on nuclear fuel

    International Nuclear Information System (INIS)

    Basak, U.

    2011-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The following Coordinated Research Projects: 1) FUel performance at high burn-up and in ageing plant by management and optimisation of WAter Chemistry Technologies (FUWAC ); 2) Near Term and Promising Long Term Options for Deployment of Thorium Based Nuclear Energy; 3) Fuel Modelling (FUMEX-III) are shortly described. The data collected by the IAEA Expert Group of Fuel Failures in Water Cooled Reactors including information about fuel failure cause for PWR (1994-2006) and failure mechanisms for BWR fuel (1994-2006) are shown. The just published Fuel Failure Handbook as well as preparation of a Monograph on Zirconium including an overview of Zirconium for nuclear applications are presented. The current projects in Sub-programme B2 - Power Reactor Fuel Engineering are also listed

  12. Nuclear fuel pellet charging device

    International Nuclear Information System (INIS)

    Komuro, Kojiro.

    1990-01-01

    The present invention concerns a nuclear fuel pellet loading device, in which nuclear fuel pellets are successively charged from an open end of a fuel can while rotating the can. That is, a fuel can sealed at one end with an end plug and opened at the other end is rotated around its pipe axis as the center on a rotationally diriving table. During rotation of the fuel can, nuclear fuel pellets are successively charged by means of a feed rod of a feeding device to the inside of the fuel can. The fuel can is rotated while being supported horizontally and the fuel pellets are charged from the open end thereof. Alternatively, the fuel can is rotated while being supported obliquely and the fuel pellets are charged gravitationally into the fuel can. In this way, the damages to the barrier of the fuel can can be reduce. Further, since the fuel pellets can be charged gravitationally by rotating the fuel can while being supported obliquely, the damages to the barrier can be reduced remarkably. (I.S.)

  13. Mire succession and balance of key elements in relation to crustal uplift and spent nuclear fuel disposal

    Energy Technology Data Exchange (ETDEWEB)

    Aro, L. [Finnish Forest Research Institute (Finland); Ikonen, A.T.K. [Environmental Research and Assessment EnviroCase Ltd (Finland)

    2014-07-01

    Olkiluoto Island on the western coast of Finland has been selected as a repository site for spent nuclear fuel disposal. Olkiluoto is subjected to post-glacial crustal uplift, 6-8 mm/year. This changes landscape and creates new ecosystems, e.g. mires, to be developed further due to changes in groundwater table, site properties and prevailing vegetation in future. The biosphere assessment demonstrating the long-term safety of the repository is developed into more and more site specific. In the biosphere assessment, terrestrial ecosystems are divided into upland forests (three biotopes) and mires. Mires are not well represented at the site at present. However, over the assessment timeframe, 10,000 years, there will be a succession of mire development stages that need to be considered. There are various stages ranging from brackish marshes through minerotrophic treed and treeless mires to ombrotrophic bogs that can ultimately be overgrown by terrestrial plants. At this final stage of development there are no connections to ground or surface waters so the only source of water is from precipitation. Hence, there are very different properties between the different mires. The properties of the future mire ecosystems surrounding Olkiluoto Island can be projected from the past and radionuclide transport models applied based on the properties of present mires, both on Olkiluoto Island and in a reference area. A set of reference mires have therefore been selected on the basis that they are as similar as possible to the types that are expected to develop during the next 10,000 years. The most important radionuclides in transport models are long-lived C-14, Cl-36, I-129, Mo-93, Se-79, Cs-135, Ni-59 and Nb-94. Due to low or non-existent concentrations of many of these nuclides in the environment, stable isotopes are used as analogues in certain cases, e.g. Ni instead of Ni-59. In this presentation we demonstrate the subject by estimating distribution of stable Ni in mires at

  14. Thermochemistry of nuclear fuels in advanced reactors

    International Nuclear Information System (INIS)

    Agarwal, Renu

    2015-01-01

    The presence of a large number of elements, accompanied with steep temperature gradient results in dynamic chemistry during nuclear fuel burn-up. Understanding this chemistry is very important for efficient and safe usage of nuclear fuels. The radioactive nature of these fuels puts lot of constraint on regulatory bodies to ensure their accident free operation in the reactors. One of the common aims of advanced fuels is to achieve high burn-up. As burn-up of the fuel increases, chemistry of fission-products becomes increasingly more important. To understand different phenomenon taking place in-pile, many out of-pile experiments are carried out. Extensive studies of thermodynamic properties, phase analysis, thermophysical property evaluation, fuel-fission product clad compatibility are carried out with relevant compounds and simulated fuels (SIMFUEL). All these data are compiled and jointly evaluated using different computational methods to predict fuel behaviour during burn-up. Only when this combined experimental and theoretical information confirms safe operation of the pin, a test pin is prepared and burnt in a test reactor. Every fuel has a different chemistry and different constraints associated with it. In this talk, various thermo-chemical aspects of some of the advanced fuels, mixed carbide, mixed nitride, 'Pu' rich MOX, 'Th' based AHWR fuels and metallic fuels will be discussed. (author)

  15. Vertical integration in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Mommsen, J.T.

    1977-01-01

    Vertical integration in the nuclear fuel cycle and its contribution to market power of integrated fuel suppliers were studied. The industry subdivision analyzed is the uranium raw materials sector. The hypotheses demonstrated are that (1) this sector of the industry is trending toward vertical integration between production of uranium raw materials and the manufacture of nuclear fuel elements, and (2) this vertical integration confers upon integrated firms a significant market advantage over non-integrated fuel manufacturers. Under microeconomic concepts the rationale for vertical integration is the pursuit of efficiency, and it is beneficial because it increases physical output and decreases price. The Market Advantage Model developed is an arithmetical statement of the relative market power (in terms of price) between non-integrated nuclear fuel manufacturers and integrated raw material/fuel suppliers, based on the concept of the ''squeeze.'' In operation, the model compares net profit and return on sales of nuclear fuel elements between the competitors, under different price and cost circumstances. The model shows that, if integrated and non-integrated competitors sell their final product at identical prices, the non-integrated manufacturer returns a net profit only 17% of the integrated firm. Also, the integrated supplier can price his product 35% below the non-integrated producer's price and still return the same net profit. Vertical integration confers a definite market advantage to the integrated supplier, and the basic source of that advantage is the cost-price differential of the raw material, uranium

  16. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Scurr, I.F.; Silver, J.M.

    1990-01-01

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  17. Advanced nuclear fuel cycles activities in IAEA

    International Nuclear Information System (INIS)

    Nawada, H.P.; Ganguly, C.

    2007-01-01

    Full text of publication follows. Of late several developments in reprocessing areas along with advances in fuel design and robotics have led to immense interest in partitioning and transmutation (P and T). The R and D efforts in the P and T area are being paid increased attention as potential answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. Any fuel cycle studies that integrate partitioning and transmutation are also known as ''advanced fuel cycles'' (AFC), that could incinerate plutonium and minor actinide (MA) elements (namely Am, Np, Cm, etc.) which are the main contributors to long-term radiotoxicity. The R and D efforts in developing these innovative fuel cycles as well as reactors are being co-ordinated by international initiatives such as Innovative Nuclear Power Reactors and Fuel Cycles (INPRO), the Generation IV International Forum (GIF) and the Global Nuclear Energy Partnership (GENP). For these advanced nuclear fuel cycle schemes to take shape, the development of liquid-metal-cooled reactor fuel cycles would be the most essential step for implementation of P and T. Some member states are also evaluating other concepts involving the use of thorium fuel cycle or inert-matrix fuel or coated particle fuel. Advanced fuel cycle involving novel partitioning methods such as pyrochemical separation methods to recover the transuranic elements are being developed by some member states which would form a critical stage of P and T. However, methods that can achieve a very high reduction (>99.5%) of MA and long-lived fission products in the waste streams after partitioning must be achieved to realize the goal of an improved protection of the environment. In addition, the development of MA-based fuel is also an essential and crucial step for transmutation of these transuranic elements. The presentation intends to describe progress of the IAEA activities encompassing the following subject-areas: minimization of

  18. Design of experiments for test of fuel element reliability

    International Nuclear Information System (INIS)

    Boehmert, J.; Juettner, C.; Linek, J.

    1989-01-01

    Changes of fuel element design and modifications of the operational conditions have to be tested in experiments and pilot projects for nuclear safety. Experimental design is an useful statistical method minimizing costs and risks for this procedure. The main problem of our work was to investigate the connection between failure rate of fuel elements, sample size, confidence interval, and error probability. Using the statistic model of the binomial distribution appropriate relations were derived and discussed. A stepwise procedure based on a modified sequential analysis according to Wald was developed as a strategy of introduction for modifications of the fuel element design and of the operational conditions. (author)

  19. Development of Nuclear Fuel Remote Fabrication Technology

    International Nuclear Information System (INIS)

    Lee, Jung Won; Yang, M. S.; Kim, S. S. and others

    2005-04-01

    The aim of this study is to develop the essential technology of dry refabrication using spent fuel materials in a laboratory scale on the basis of proliferation resistance policy. The emphasis is placed on the assessment and the development of the essential technology of dry refabrication using spent fuel materials. In this study, the remote fuel fabrication technology to make a dry refabricated fuel with an enhanced quality was established. And the instrumented fuel pellets and mini-elements were manufactured for the irradiation testing in HANARO. The design and development technology of the remote fabrication equipment and the remote operating and maintenance technology of the equipment in hot cell were also achieved. These achievements will be used in and applied to the future back-end fuel cycle and GEN-IV fuel cycle and be a milestone for Korea to be an advanced nuclear country in the world

  20. Determining reactor fuel elements broken by Cerenkov counting

    International Nuclear Information System (INIS)

    Guo Juhao; Dong Shiyuan; Feng Yuying

    1996-01-01

    The basis and method of determining fuel elements broken in a reactor by Cerenkov counting measured with liquid scintillation spectrometer are introduced. The radioactive characteristic of the radiation nuclides generating Cherenkov radiation in the primary water of 200 MW nuclear district heating reactor is analyzed. The activity of the activation products in the primary water and the fission products in the fuel elements are calculated. A feasibility of Cerenkov counting measure was analyzed. This method is simple and quick

  1. Romanian nuclear fuel cycle development

    International Nuclear Information System (INIS)

    Rapeanu, S.N.; Comsa, Olivia

    1998-01-01

    Romanian decision to introduce nuclear power was based on the evaluation of electricity demand and supply as well as a domestic resources assessment. The option was the introduction of CANDU-PHWR through a license agreement with AECL Canada. The major factors in this choice have been the need of diversifying the energy resources, the improvement the national industry and the independence of foreign suppliers. Romanian Nuclear Power Program envisaged a large national participation in Cernavoda NPP completion, in the development of nuclear fuel cycle facilities and horizontal industry, in R and D and human resources. As consequence, important support was being given to development of industries involved in Nuclear Fuel Cycle and manufacturing of equipment and nuclear materials based on technology transfer, implementation of advanced design execution standards, QA procedures and current nuclear safety requirements at international level. Unit 1 of the first Romanian nuclear power plant, Cernavoda NPP with a final profile 5x700 Mw e, is now in operation and its production represents 10% of all national electricity production. There were also developed all stages of FRONT END of Nuclear Fuel Cycle as well as programs for spent fuel and waste management. Industrial facilities for uranian production, U 3 O 8 concentrate, UO 2 powder and CANDU fuel bundles, as well as heavy water plant, supply the required fuel and heavy water for Cernavoda NPP. The paper presents the Romanian activities in Nuclear Fuel Cycle and waste management fields. (authors)

  2. Reactor Structure Materials: Nuclear Fuel

    International Nuclear Information System (INIS)

    Sannen, L.; Verwerft, M.

    2000-01-01

    Progress and achievements in 1999 in SCK-CEN's programme on applied and fundamental nuclear fuel research in 1999 are reported. Particular emphasis is on thermochemical fuel research, the modelling of fission gas release in LWR fuel as well as on integral experiments

  3. Burnable absorber coated nuclear fuel

    International Nuclear Information System (INIS)

    Chubb, W.; Radford, K.C.; Parks, B.H.

    1984-01-01

    A nuclear fuel body which is at least partially covered by a burnable neutron absorber layer is provided with a hydrophobic overcoat generally covering the burnable absorber layer and bonded directly to it. In a method for providing a UO 2 fuel pellet with a zirconium diboride burnable poison layer, the fuel body is provided with an intermediate niobium layer. (author)

  4. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    International Nuclear Information System (INIS)

    Emrich, William J. Jr.

    2008-01-01

    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts

  5. Theoretical analysis and numerical modelling of heat transfer and fuel migration in underlying soils and constructive elements of nuclear plants during an accident release from the core

    International Nuclear Information System (INIS)

    Arutunjan, R.V.; Bolshov, L.A.; Vitukov, V.V.; Goloviznin, V.M.; Dykhne, A.M.; Kiselev, V.P.; Klementova, S.V.; Krayushkin, I.E.; Moskovchenko, A.V.; Pismennii, V.D.; Popkov, A.G.; Chernov, S.Y.; Chudanov, V.V.; Khoruzhii, O.V.; Yudin, A.I.

    1990-01-01

    Migration of fuel fragments and core fission products during severe accidents on nuclear plants is studied analytically and numerically. The problems of heat transfer and migration of volume heat sources in construction materials and underlying soils are considered

  6. Laser pulse heating of nuclear fuels for simulation of reactor power

    Indian Academy of Sciences (India)

    Laser applications; nuclear fuel elements; nuclear safety. ... accident (LOCA) and reactivity initiated accident (RIA), a laser pulse heating system is under ... As a prelude to work on irradiated nuclear fuel specimens, pilot studies on unirradiated ...

  7. Method of making a graphite fuel element having carbonaceous fuel bodies

    International Nuclear Information System (INIS)

    Miertschin, G.N.; Leary, D.F.

    1977-01-01

    Particulate nuclear fuel material, particulate carbon and pitch are combined with an additive which is effective to reduce the coke yield upon carbonization to mold a green fuel body. The additive may be polystyrene, a styrene-butadiene copolymer, an aromatic hydrocarbon having a molecular weight between about 75 and 300 or a saturated hydrocarbon polymer. The green fuel body is inserted in a complementary cavity within a porous nuclear fuel element body and heated in situ to decompose the pitch and additive, leaving a relatively close-fitting fuel body in the cavity

  8. The evolving nuclear fuel cycle

    International Nuclear Information System (INIS)

    Gale, J.D.; Hanson, G.E.; Coleman, T.A.

    1993-01-01

    Various economics and political pressures have shaped the evolution of nuclear fuel cycles over the past 10 to 15 yr. Future trends will no doubt be similarly driven. This paper discusses the influences that long cycles, high discharge burnups, fuel reliability, and costs will have on the future nuclear cycle. Maintaining the economic viability of nuclear generation is a key issue facing many utilities. Nuclear fuel has been a tremendous bargain for utilities, helping to offset major increases in operation and maintenance (O ampersand M) expenses. An important factor in reducing O ampersand M costs is increasing capacity factor by eliminating outages

  9. Nuclear fuel in a reactor accident.

    Science.gov (United States)

    Burns, Peter C; Ewing, Rodney C; Navrotsky, Alexandra

    2012-03-09

    Nuclear accidents that lead to melting of a reactor core create heterogeneous materials containing hundreds of radionuclides, many with short half-lives. The long-lived fission products and transuranium elements within damaged fuel remain a concern for millennia. Currently, accurate fundamental models for the prediction of release rates of radionuclides from fuel, especially in contact with water, after an accident remain limited. Relatively little is known about fuel corrosion and radionuclide release under the extreme chemical, radiation, and thermal conditions during and subsequent to a nuclear accident. We review the current understanding of nuclear fuel interactions with the environment, including studies over the relatively narrow range of geochemical, hydrological, and radiation environments relevant to geological repository performance, and discuss priorities for research needed to develop future predictive models.

  10. Nuclear chemistry of transactinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Nagame, Yuichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    The current status on the nuclear chemistry studies of transactinide elements is reviewed. The production of transactinides in heavy ion reactions is briefly discussed, and nuclear properties on the stability of transactinides are presented. Chemical properties of the trans-actinide elements 104, 105 and 106, and a typical experimental technique used to study these properties on an atom-at-a-time base are introduced. (author)

  11. Spacer for supporting fuel element boxes

    International Nuclear Information System (INIS)

    Wild, E.

    1979-01-01

    A spacer plate unit arranged externally on each side and at a predetermined level of a polygonal fuel element box for mutually supporting, with respect to one another, a plurality of the fuel element boxes forming a fuel element bundle, is formed of a first and a second spacer plate part each having the same length and the same width and being constituted of unlike first and second materials, respectively. The first and second spacer plate parts of the several spacer plate units situated at the predetermined level are arranged in an alternating continuous series when viewed in the peripheral direction of the fuel element box, so that any two spacer plate units belonging to face-to-face oriented sides of two adjoining fuel element boxes in the fuel element bundle define interfaces of unlike materials

  12. Fuel handling system of nuclear reactor plants

    International Nuclear Information System (INIS)

    Faulstich, D.L.

    1991-01-01

    This patent describes a fuel handing system for nuclear reactor plants comprising a reactor vessel having an openable top and removable cover for refueling and containing therein, submerged in coolant water substantially filling the reactor vessel, a fuel core including a multiplicity of fuel bundles formed of groups of sealed tube elements enclosing fissionable fuel assembled into units. It comprises a fuel bundle handing platform moveable over the open top of the reactor vessel; a fuel bundle handing mast extendable downward from the platform with a lower end projecting into the open top reactor vessel to the fuel core submerged in water; a grapple head mounted on the lower end of the mast provided with grappling hook means for attaching to and transporting fuel bundles into and out from the fuel core; and a camera with a prismatic viewing head surrounded by a radioactive resisting quartz cylinder and enclosed within the grapple head which is provided with at least three windows with at least two windows provided with an angled surface for aiming the camera prismatic viewing head in different directions and thereby viewing the fuel bundles of the fuel core from different perspectives, and having a cable connecting the camera with a viewing monitor located above the reactor vessel for observing the fuel bundles of the fuel core and for enabling aiming of the camera prismatic viewing head through the windows by an operator

  13. British Nuclear Fuels (Warrington)

    International Nuclear Information System (INIS)

    Hoyle, D.; Cryer, B.; Bellotti, D.

    1992-01-01

    This adjournment debate is about British Nuclear Fuels plc and the 750 redundancies due to take place by the mid-1990s at BNFL, Risley. The debate was instigated by the Member of Parliament for Warrington, the constituency in which BNFL, Risley is situated. Other members pointed out that other industries, such as the textile industry are also suffering job losses due to the recession. However the MP for Warrington argued that the recent restructuring of BNFL restricted the financial flexibility of BNFL so that the benefits of contracts won for THORP at Sellafield could not help BNFL, Risley. The debate became more generally about training, apprentices and employment opportunities. The Parliamentary Under-Secretary of State for Energy explained the position as he saw it and said BNFL may be able to offer more help to its apprentices. Long- term employment prospects at BNFL are dependent on the future of the nuclear industry in general. The debate lasted about half an hour and is reported verbatim. (U.K)

  14. Unification of fuel elements for research reactors

    International Nuclear Information System (INIS)

    Vatulyn, A.V.; Stetskyi, Y.A.; Dobrikova, I.V.

    1997-01-01

    To the purpose of fuel elements unification the possibility of rod fuel assembly (FA) using in the cores of research reactors have been considered in this paper. The calculation results of geometric, hydraulic and thermotechnical parameters of rod assembly are submitted. Several designs of finned square fuel element and fuel assembly are proposed on base of analysis of rod FA characteristics in compare of tube ones. The fuel elements specimens and the model assembly are manufactured. The developed designs are the basis for further optimization after neutron-physical calculations of cores. (author)

  15. Hydriding failure in water reactor fuel elements

    International Nuclear Information System (INIS)

    Sah, D.N.; Ramadasan, E.; Unnikrishnan, K.

    1980-01-01

    Hydriding of the zircaloy cladding has been one of the important causes of failure in water reactor fuel elements. This report reviews the causes, the mechanisms and the methods for prevention of hydriding failure in zircaloy clad water reactor fuel elements. The different types of hydriding of zircaloy cladding have been classified. Various factors influencing zircaloy hydriding from internal and external sources in an operating fuel element have been brought out. The findings of post-irradiation examination of fuel elements from Indian reactors, with respect to clad hydriding and features of hydriding failure are included. (author)

  16. Gamma irradiation plants using reactor fuel elements

    International Nuclear Information System (INIS)

    Suckow, W.

    1976-11-01

    Recent irradiation plants utilizing fuel elements are described. Criteria for optimizing such plants, evaluation of the plants realized so far, and applications for the facilities are discussed. (author)

  17. Computer-assisted nuclear fuel manufacture

    International Nuclear Information System (INIS)

    Maloney, J.P.; Schaumann, S.M.; Stone, E.

    1976-01-01

    At the ERDA Savannah River Plant, a process monitor, which incorporates an online digital computer, assists in manufacturing fuel elements used to produce nuclides such as plutonium, tritium, and californium in the plant's nuclear reactors. Also, inventory functions assist in safeguarding fissile material and protecting against accidental nuclear criticality. Terminals at strategic locations throughout the process area enable production operators to send and receive instructions and information on each manufacturing step

  18. Computer-assisted nuclear fuel manufacture

    International Nuclear Information System (INIS)

    Maloney, J.P.; Schaumann, C.M.; Stone, E.

    1976-06-01

    At the ERDA Savannah River Plant, a process monitor, which incorporates an online digital computer, assists in manufacturing fuel elements used to produce nuclides such as plutonium, tritium, and californium in the plant's nuclear reactors. Also, inventory functions assist in safeguarding fissile material and protecting against accidental nuclear criticality. Terminals at strategic locations throughout the process area enable production operators to send and receive instructions and information on each manufacturing step. 11 fig

  19. Nuclear fuel tax in court

    International Nuclear Information System (INIS)

    Leidinger, Tobias

    2014-01-01

    Besides the 'Nuclear Energy Moratorium' (temporary shutdown of eight nuclear power plants after the Fukushima incident) and the legally decreed 'Nuclear Energy Phase-Out' (by the 13th AtG-amendment), also the legality of the nuclear fuel tax is being challenged in court. After receiving urgent legal proposals from 5 nuclear power plant operators, the Hamburg fiscal court (4V 154/13) temporarily obliged on 14 April 2014 respective main customs offices through 27 decisions to reimburse 2.2 b. Euro nuclear fuel tax to the operating companies. In all respects a remarkable process. It is not in favour of cleverness to impose a political target even accepting immense constitutional and union law risks. Taxation 'at any price' is neither a statement of state sovereignty nor one for a sound fiscal policy. Early and serious warnings of constitutional experts and specialists in the field of tax law with regard to the nuclear fuel tax were not lacking. (orig.)

  20. Elements of nuclear safety

    CERN Document Server

    Libmann, Jacques

    1996-01-01

    This basically educational book is intended for all involved in nuclear facility safety. It dissects the principles and experiences conducive to the adoption of attitudes compliant with what is now known as "safety culture". This book is accessible to a wide range of readers.

  1. Performance of candu-6 fuel bundles manufactured in romania nuclear fuel plant

    International Nuclear Information System (INIS)

    Bailescu, A.; Barbu, A.; Din, F.; Dinuta, G.; Dumitru, I.; Musetoiu, A.; Serban, G.; Tomescu, A.

    2013-01-01

    The purpose of this article is to present the performance of nuclear fuel produced by Nuclear Fuel Plant (N.F.P.) - Pitesti during 1995 - 2012 and irradiated in units U1 and U2 from Nuclear Power Plant (N.P.P.) Cernavoda and also present the Nuclear Fuel Plant (N.F.P.) - Pitesti concern for providing technology to prevent the failure causes of fuel bundles in the reactor. This article presents Nuclear Fuel Plant (N.F.P.) - Pitesti experience on tracking performance of nuclear fuel in reactor and strategy investigation of fuel bundles notified as suspicious and / or defectives both as fuel element and fuel bundle, it analyzes the possible defects that can occur at fuel bundle or fuel element and can lead to their failure in the reactor. Implementation of modern technologies has enabled optimization of manufacturing processes and hence better quality stability of achieving components (end caps, chamfered sheath), better verification of end cap - sheath welding. These technologies were qualified by Nuclear Fuel Plant (N.F.P.) - Pitesti on automatic and Computer Numerical Control (C.N.C.) programming machines. A post-irradiation conclusive analysis which will take place later this year (2013) in Institute for Nuclear Research Pitesti (the action was initiated earlier this year by bringing a fuel bundle which has been reported defective by pool visual inspection) will provide additional information concerning potential damage causes of fuel bundles due to manufacturing processes. (authors)

  2. Nuclear fuel assembly seismic amplitude limiter

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1977-01-01

    The ability of a nuclear reactor to withstand high seismic loading is enhanced by including, on each fuel assembly, at least one seismic grid which reduces the magnitude of the possible lateral deflection of the individual fuel elements and the entire fuel assembly. The reduction in possible deflection minimizes the possibility of impact of the spacer grids of one fuel assembly on those of an adjacent fuel assembly and reduces the magnitude of forces associated with any such impact thereby minimizing the possibility of fuel assembly damage as a result of high seismic loading. The seismic grid is mounted from the fuel assembly guide tubes, has greater external dimensions when compared to the fuel assembly spacer grids and normally does not support or otherwise contact the fuel elements. The reduction in possible deflection is achieved through reduction of the clearance between adjacent fuel assemblies made possible by the use in the seismic grid of a high strength material characterized by favorable thermal expansion characteristics and minimal irradiation induced expansion

  3. Flow induced deformation and collapse of a thin rectangular plate with application to the Engineering Test Reactor nuclear fuel elements

    International Nuclear Information System (INIS)

    Davis, C.D.

    1981-01-01

    This work examines a single flat fuel plate bounded by two channels and determines static plate deflections, resultant forces and bending stresses due to pressure differential and hydrodynamic loadings. The classical then reactangular plate equations are used to model the fuel plate. These equations contain as an input the hydrodynamic loading function for modeling the fluid-structural interaction. Two models of the channel flow are developed. One assumes the accelerating potential core flow is laminar with developing two-dimensional laminar boundary layers being formed on the channel walls. The Schlichting entry length solution for developing laminar flow is found to be valid the entire length of the channel. The second model assumes the core flow is fully-developed turbulent the entire length of the channel. Hydrodynamic loading functions are developed for both flow models containing parameters for fluid density, fluid velocity, Reynolds number and channel and plate dimensions. Hence the effects of each parameter can be examined independently. A criterion is developed for predicting ETR fuel plate collapse at high channel flow velocities, 1067 cm/s (420 in/sec) (R/sub e/ = 60,000). The criterion predicts that in order to prevent ETR plate collapse the inlet velocities between channels must not differ by more than 2%

  4. Operational requirements of spherical HTR fuel elements and their performance

    International Nuclear Information System (INIS)

    Roellig, K.; Theymann, W.

    1985-01-01

    The German development of spherical fuel elements with coated fuel particles led to a product design which fulfils the operational requirements for all HTR applications with mean gas exit temperatures from 700 deg C (electricity and steam generation) up to 950 deg C (supply of nuclear process heat). In spite of this relatively wide span for a parameter with strong impact on fuel element behaviour, almost identical fuel specifications can be used for the different reactor purposes. For pebble bed reactors with relatively low gas exit temperatures of 700 deg C, the ample design margins of the fuel elements offer the possibility to enlarge the scope of their in-service duties and, simultaneously, to improve fuel cycle economics. This is demonstrated for the HTR-500, an electricity and steam generating 500 MWel eq plant presently proposed as follow-up project to the THTR-300. Due to the low operating temperatures of the HTR-500 core, the fuel can be concentrated in about 70% of the pebbles of the core thus saving fuel cycle costs. Under all design accident conditions fuel temperatures are maintained below 1250 deg C. This allows a significant reduction in the engineered activity barriers outside the primary circuit, in particular for the loss of coolant accident. Furthermore, access to major primary circuit components and the reuse of the fuel elements after any design accident are possible. (author)

  5. The advanced neutron source three-element-core fuel grading

    International Nuclear Information System (INIS)

    Gehin, J.C.

    1995-01-01

    The proposed Advanced Neutron Source (ANS) pre-conceptual design consists of a two-element 330 MW f nuclear reactor fueled with highly-enriched uranium and is cooled, moderated, and reflected with heavy water. Recently, the ANS design has been changed to a three-element configuration in order to permit a reduction of the enrichment, if required, while maintaining or improving the thermal-hydraulic margins. The core consists of three annular fuel elements composed of involute-shaped fuel plates. Each fuel plate has a thickness of 1.27 mm and consists of a fuel meat region Of U 3 Si 2 -Al (50% enriched in one case that was proposed) and an aluminum filler region between aluminum cladding. The individual plates are separated by a 1.27 mm coolant channel. The three element core has a fuel loading of 31 kg of 235 U which is sufficient for a 17-day fuel cycle. The goal in obtaining a new fuel grading is to maximize important temperature margins. The limits imposed axe: (1) Limit the temperature drop over the cladding oxide layer to less than 119 degrees C to avoid oxide spallation. (2) Limit the fuel centerline temperature to less than 400 degrees C to avoid fuel damage. (3) Limit the cladding wall temperature to less than the coolant. incipient-boiling temperature to avoid coolant boiling. Other thermal hydraulic conditions, such as critical heat flux, are also considered

  6. Grid structure for nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Wachter, W.J.; Akey, J.G.

    1975-01-01

    Described is a nuclear fuel element support system comprising an egg-crate-type grid made up of slotted vertical portions interconnected at right angles to each other, the vertical portions being interconnected by means of cross straps which are dimpled midway between their ends to engage fuel elements disposed within openings formed in the egg-crate assembly. The cross straps are disposed at an angle, other than a right angle, to the vertical portions of the assembly whereby their lengths are increased for a given span, and the total elastic deflection capability of the cell is increased. The assembly is particularly adapted for computer design and automated machine tool fabrication

  7. Solvent extraction in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Eccles, H.; Naylor, A.

    1987-01-01

    Solvent extraction techniques have been used in the uranium nuclear fuel cycle in three main areas; concentration of uranium from ore leach liquor, purification of ore concentrates and fuel reprocessing. Solvent extraction has been extended to the removal of transuranic elements from active waste liquor, the recovery of uranium from natural sources and the recovery of noble metals from active waste liquor. Schemes are presented for solvent extraction of uranium using the Amex or Dapex process; spent fuel reprocessing and the Purex process. Recent and future developments of the techniques are outlined. (UK)

  8. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Kidd, S.

    2008-01-01

    The closed fuel cycle is the most sustainable approach for nuclear energy, as it reduces recourse to natural uranium resources and optimises waste management. The advantages and disadvantages of used nuclear fuel reprocessing have been debated since the dawn of the nuclear era. There is a range of issues involved, notably the sound management of wastes, the conservation of resources, economics, hazards of radioactive materials and potential proliferation of nuclear weapons. In recent years, the reprocessing advocates win, demonstrated by the apparent change in position of the USA under the Global Nuclear Energy Partnership (GNEP) program. A great deal of reprocessing has been going on since the fourties, originally for military purposes, to recover plutonium for weapons. So far, some 80000 tonnes of used fuel from commercial power reactors has been reprocessed. The article indicates the reprocessing activities and plants in the United Kigdom, France, India, Russia and USA. The aspect of plutonium that raises the ire of nuclear opponents is its alleged proliferation risk. Opponents of the use of MOX fuels state that such fuels represent a proliferation risk because the plutonium in the fuel is said to be 'weapon-use-able'. The reprocessing of used fuel should not give rise to any particular public concern and offers a number of potential benefits in terms of optimising both the use of natural resources and waste management.

  9. Nuclear fuel storage

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1979-01-01

    A method and apparatus for the storage of fuel in a stainless steel egg crate structure within a storage pool are described. Fuel is initially stored in a checkerboard pattern or in each opening if the fuel is of low enrichment. Additional fuel (or fuel of higher enrichment) is later stored by adding stainless steel angled plates within each opening, thereby forming flux traps between the openings. Still higher enrichment fuel is later stored by adding poison plates either with or without the stainless steel angles. 8 claims

  10. Reactor fuel element heat conduction via numerical Laplace transform inversion

    International Nuclear Information System (INIS)

    Ganapol, Barry D.; Furfaro, Roberto

    2001-01-01

    A newly developed numerical Laplace transform inversion (NLTI) will be presented to determine the transient temperature distribution within a nuclear reactor fuel element. The NLTI considered in this presentation has evolved to its present state over the past 10 years of application. The methodology adopted is one that relies on acceleration of the convergence of an infinite series towards its limit. The inversion will be applied to the prediction of the transient temperature distribution within an MTR type nuclear fuel element through a novel formulation of the solution to the transformed heat conduction equation. (author)

  11. Reactor fuel element heat conduction via numerical Laplace transform inversion

    Energy Technology Data Exchange (ETDEWEB)

    Ganapol, Barry D.; Furfaro, Roberto [University of Arizona, Tucson, AZ (United States). Dept. of Aerospace and Mechanical Engineering], e-mail: ganapol@cowboy.ame.arizona.edu

    2001-07-01

    A newly developed numerical Laplace transform inversion (NLTI) will be presented to determine the transient temperature distribution within a nuclear reactor fuel element. The NLTI considered in this presentation has evolved to its present state over the past 10 years of application. The methodology adopted is one that relies on acceleration of the convergence of an infinite series towards its limit. The inversion will be applied to the prediction of the transient temperature distribution within an MTR type nuclear fuel element through a novel formulation of the solution to the transformed heat conduction equation. (author)

  12. Hot fuel examination facility element spacer wire-wrap machine

    International Nuclear Information System (INIS)

    Tobias, D.A.; Sherman, E.K.

    1989-01-01

    Nondestructive examinations of irradiated experimental fuel elements conducted in the Argonne National Laboratory Hot Fuel Examination Facility/North (HFEF/N) at the Idaho National Engineering Laboratory include laser and contact profilometry (element diameter measurements), electrical eddy-current testing for cladding and thermal bond defects, bow and length measurements, neutron radiography, gamma scanning, remote visual exam, and photography. Profilometry was previously restricted to spiral profilometry of the element to prevent interference with the element spacer wire wrapped in a helix about the Experimental Breeder Reactor II (EBR-II)-type fuel element from end to end. By removing the spacer wire prior to conducting profilometry examination, axial profilometry techniques may be used, which are considerably faster than spiral techniques and often result in data acquisition more important to experiment sponsors. Because the element must often be reinserted into the nuclear reactor (EBR-II) for additional irradiation, however, the spacer wire must be reinstalled on the highly irradiated fuel element by remote means after profilometry of the wireless elements. The element spacer wire-wrap machine developed at HFEF is capable of helically wrapping fuel elements with diameters up to 1.68 cm (0.660 in.) and 2.44-m (96-in.) lengths. The machine can accommodate almost any desired wire pitch length by simply inserting a new wrapper gear module

  13. Transportation of spent nuclear fuels

    International Nuclear Information System (INIS)

    Meguro, Toshiichi

    1976-01-01

    The spent nuclear fuel taken out of reactors is cooled in the cooling pool in each power station for a definite time, then transported to a reprocessing plant. At present, there is no reprocessing plant in Japan, therefore the spent nuclear fuel is shipped abroad. In this paper, the experiences and the present situation in Japan are described on the transport of the spent nuclear fuel from light water reactors, centering around the works in Tsuruga Power Station, Japan Atomic Power Co. The spent nuclear fuel in Tsuruga Power Station was first transported in Apr. 1973, and since then, about 36 tons were shipped to Britain by 5 times of transport. The reprocessing plant in Japan is expected to start operation in Apr. 1977, accordingly the spent nuclear fuel used for the trial will be transported in Japan in the latter half of this year. Among the permission and approval required for the transport of spent nuclear fuel, the acquisition of the certificate for transport casks and the approval of land and sea transports are main tasks. The relevant laws are the law concerning the regulations of nuclear raw material, nuclear fuel and reactors and the law concerning the safety of ships. The casks used in Tsuruga Power Station and EXL III type, and the charging of spent nuclear fuel, the decontamination of the casks, the leak test, land transport with a self-running vehicle, loading on board an exclusive carrier and sea transport are briefly explained. The casks and the ship for domestic transport are being prepared. (Kato, I.)

  14. Loads on pebble bed fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Teuchert, E.; Maly, V.

    1974-03-15

    A comparison is made of key parameters for multi-recycle pebbles and single-pass once-through (OTTO) pebbles. The parameters analyzed include heat transfer characteristics with burn-up, temperature profiles, power per element as a function of axial position in the core, and burn-up. For the OTTO-scheme, the comparisons addressed the use of the conventional fuel element and the advanced "shell ball" designed to reduce the peak fuel temperature in the center of the fuel element. All studies addressed the uranium-thorium fuel cycle.

  15. Transuranium element transport in agricultural systems (soil to food chain transfer of nuclear fuel cycle radionuclides). Annual progress report

    International Nuclear Information System (INIS)

    Wallace, A.

    1977-10-01

    Progress is reported on the following research projects: preparation of bibliography covering literature on plant uptake of transuranium elements; development of techniques for growth of agricultural crops in large containers that simulate field conditions; equipment for counting of alpha-emitting transuranium elements; studies on variability in concentration ratio of 241 Am under different environmental conditions; alpha radiation burn in bush beans exposed to 241 Am in solution; constancy of concentration ratio as a measure of plant uptake of 241 Am; growth of radishes in soil with and without DTPA, and radish peel as source of radionuclides; effects of varying levels of DTPA in loam soil on concentration ratio values; and a plant species (Atriplex hymenelytra--desert holly) with high C.R. values and search for other plants with high C.R. values

  16. Super ODS steel R and D for fuel cladding of next generation nuclear systems. 2) Effect of minor alloying elements

    International Nuclear Information System (INIS)

    Ohnuki, S.; Hashimoto, N.; Ukai, S.; Kimura, A.; Inoue, Masaki; Kaito, Takeji; Fujisawa, T.; Okuda, T.; Abe, F.

    2009-01-01

    For development of advanced ferritic ODS steels including high concentration of Cr and Al, the effect of minor alloying elements on fine dispersion of oxide particle was investigated. Microstructural analysis for Fe-16Cr-4Al-mY 2 O 3 -nZr or mHf due to TEM indicated that 0.3Zr or 0.6Hf are the optimum concentration. The mechanism of nano-sized oxide formation was also discussed. (author)

  17. Sipping test on a failed MTR fuel element

    International Nuclear Information System (INIS)

    Terremoto, Luis Antonio Albiac; Zeituni, Carlos Alberto; Silva, Antonio Teixeira e; Perrotta, Jose Augusto; Silva, Jose Eduardo Rosa da

    2002-01-01

    This work describes sipping tests performed on MTR fuel elements of the IEA-R1 research reactor, in order to determinate which one failed in the core during a routine operation of the reactor. radioactive iodine isotopes 131 I and 133 I, employed as failure indicators, were detected in samples corresponding to the fuel element IEA-156. The specific activity of each sample, as well as the average leaking rate, were measured for 137 Cs. The nuclear fuels U 3 O 8 - Al dispersion and U - Al alloy were compared concerning their measured average leaking rates of 137 Cs. (author)

  18. Nuclear Fuel Cycle & Vulnerabilities

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Brian D. [Los Alamos National Laboratory

    2012-06-18

    The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

  19. International experience in conditioning spent fuel elements

    International Nuclear Information System (INIS)

    Ashton, P.

    1991-04-01

    The purpose of this report is to compile and present in a clear form international experience (USA, Canada, Sweden, FRG, UK, Japan, Switzerland) gained to date in conditioning spent fuel elements. The term conditioning is here taken to mean the handling and packaging of spent fuel elements for short- or long-term storage or final disposal. Plants of a varying nature fall within this scope, both in terms of the type of fuel element treated and the plant purpose eg. experimental or production plant. Emphasis is given to plants which bear some similarity to the concept developed in Germany for direct disposal of spent fuel elements. Worldwide, however, relatively few conditioning plants are in existence or have been conceived. Hence additional plants have been included where aspects of the experience gained are also of relevance eg. plants developed for the consolidation of spent fuel elements. (orig./HP) [de

  20. Dose and dose commitment calculations from groundwaterborne radio-active elements released from a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Bergstroem, U.

    1983-05-01

    The turnover of radioactive matter entering the biosphere with groundwater has been studied with regard to exposure and doses to critical groups and populations. Two main recipients, a well and a lake, have been considered for the inflow of groundwaterborne nuclides. Mathematical models of a set of coupled ecosystems on regional, intermediate and global levels have been used for calculations of doses. The intermediate system refers to the Baltic Sea. The mathematical treatment of the model is based upon compartment theory with first order kinetics and also includes products in decay chains. The time-dependent exposures have been studied for certain long-lived nuclides of radiological interest in waste from disposed fuel. Dose and dose commitment have been calculated for different episodes for inflow to the biosphere. (author)

  1. Nuclear fuel string assembly

    International Nuclear Information System (INIS)

    Ip, A.K.; Koyanagi, K.; Tarasuk, W.R.

    1976-01-01

    A method of fabricating rodded fuels suitable for use in pressure tube type reactors and in pressure vessel type reactors is described. Fuel rods are secured as an inner and an outer sub-assembly, each rod attached between mounting rings secured to the rod ends. The two sub-assemblies are telescoped together and positioned by spaced thimbles located between them to provide precise positioning while permittng differential axial movement between the sub-assemblies. Such sub-assemblies are particularly suited for mounting as bundle strings. The method provides particular advantages in the assembly of annular-section fuel pins, which includes booster fuel containing enriched fuel material. (LL)

  2. Nuclear fuel rod loading apparatus

    International Nuclear Information System (INIS)

    King, H.B.; Macivergan, R.; Mckenzie, G.W.

    1980-01-01

    An apparatus incorporating a microprocessor control is provided for automatically loading nuclear fuel pellets into fuel rods commonly used in nuclear reactor cores. The apparatus comprises a split ''v'' trough for assembling segments of fuel pellets in rows and a shuttle to receive the fuel pellets from the split ''v'' trough when the two sides of the split ''v'' trough are opened. The pellets are weighed while in the shuttle, and the shuttle then moves the pellets into alignment with a fuel rod. A guide bushing is provided to assist the transfer of the pellets into the fuel rod. A rod carousel which holds a plurality of fuel rods presents the proper rod to the guide bushing at the appropriate stage in the loading sequence. The bushing advances to engage the fuel rod, and the shuttle advances to engage the guide bushing. The pellets are then loaded into the fuel rod by a motor operated push rod. The guide bushing includes a photocell utilized in conjunction with the push rod to measure the length of the row of fuel pellets inserted in the fuel rod

  3. Spent Nuclear Fuel project, project management plan

    International Nuclear Information System (INIS)

    Fuquay, B.J.

    1995-01-01

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  4. IAEA activities on nuclear fuel cycle 1997

    International Nuclear Information System (INIS)

    Oi, N.

    1997-01-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme

  5. IAEA activities on nuclear fuel cycle 1997

    Energy Technology Data Exchange (ETDEWEB)

    Oi, N [International Atomic Energy Agency, Vienna (Austria). Nuclear Fuel Cycle and Materials Section

    1997-12-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme.

  6. Alternatives for nuclear fuel disposal

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Badillo A, V.; Palacios H, J.; Celis del Angel, L.

    2010-10-01

    The spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments in the construction of repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution? or, What is the best technology for a specific solution? Many countries have deferred the decision on selecting an option, while other works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However, currently is under process an extended power up rate to 20% of their original power and also there are plans to extend operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. So this work describes some different alternatives that have been studied in Mexico to define which will be the best alternative to follow. (Author)

  7. Nuclear Fuel in Cofrentes NPP

    International Nuclear Information System (INIS)

    2002-01-01

    Fuel is an essential in the nuclear power generating business because of its direct implications on safety, generating costs and the operating conditions and limitations of the facility. Fuel management in Cofrentes NPP has been targeted at optimized operation, enhanced reliability and the search for an in-depth knowledge of the design and licensing processes that will provide Iberdrola,as the responsible operator, with access to independent control of safety aspects related to fuel and free access to manufacturing markets. (Author)

  8. Conditioning of nuclear reactor fuel

    International Nuclear Information System (INIS)

    1975-01-01

    A method of conditioning the fuel of a nuclear reactor core to minimize failure of the fuel cladding comprising increasing the fuel rod power to a desired maximum power level at a rate below a critical rate which would cause cladding damage is given. Such conditioning allows subsequent freedom of power changes below and up to said maximum power level with minimized danger of cladding damage. (Auth.)

  9. Prevention of nuclear fuel cladding materials corrosion

    International Nuclear Information System (INIS)

    Yang, K.R.; Yang, J.C.; Lee, I.C.; Kang, H.D.; Cho, S.W.; Whang, C.K.

    1983-01-01

    The only way which could be performed by the operator of nuclear power plant to minimizing the degradation of nuclear fuel cladding material is to control the water quality of primary coolant as specified standard conditions which dose not attack the cladding material. If the water quality of reactor coolant does not meet far from the specification, the failure will occure not only cladding material itself but construction material of primary system which contact with the coolant. The corrosion product of system material are circulate through the whole primary system with the coolant and activated by the neutron near the reactor core. The activated corrosion products and fission products which released from fuel rod to the coolant, so called crud, will repeate deposition and redeposition continuously on the fuel rod and construction material surface. As a result we should consider heat transfer problem. In this study following activities were performed; 1. The crud sample was taken from the spent fuel rod surface of Kori unit one and analized for radioactive element and non radioactive chemical species. 2. The failure mode of nuclear fuel cladding material was estimated by the investigation of releasing type of fission products from the fuel rod to the reactor coolant using the iodine isotopes concentration of reactor coolants. 3. A study was carried out on the sipping test results of spent fuel and a discussion was made on the water quality control records through the past three cycle operation period of Kori unit one plant. (Author)

  10. Uranium density reduction on fuel element side plates assessment

    International Nuclear Information System (INIS)

    Rios, Ilka A.; Andrade, Delvonei A.; Domingos, Douglas B.; Umbehaun, Pedro E.

    2011-01-01

    During operation of IEA-R1 research reactor, located at Instituto de Pesquisas Energeticas e Nucleares, IPEN - CNEN/SP, an abnormal oxidation on some fuel elements was noted. It was also verified, among the possible causes of the problem, that the most likely one was insufficient cooling of the elements in the core. One of the propositions to solve or minimize the problem is to reduce uranium density on fuel elements side plates. In this paper, the influence of this change on neutronic and thermal hydraulic parameters for IEA-R1 reactor is verified by simulations with the codes HAMMER and CITATION. Results are presented and discussed. (author)

  11. Uranium density reduction on fuel element side plates assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Ilka A. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Andrade, Delvonei A.; Domingos, Douglas B.; Umbehaun, Pedro E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    During operation of IEA-R1 research reactor, located at Instituto de Pesquisas Energeticas e Nucleares, IPEN - CNEN/SP, an abnormal oxidation on some fuel elements was noted. It was also verified, among the possible causes of the problem, that the most likely one was insufficient cooling of the elements in the core. One of the propositions to solve or minimize the problem is to reduce uranium density on fuel elements side plates. In this paper, the influence of this change on neutronic and thermal hydraulic parameters for IEA-R1 reactor is verified by simulations with the codes HAMMER and CITATION. Results are presented and discussed. (author)

  12. Nuclear fuel pellet loading machine

    International Nuclear Information System (INIS)

    Dazen, J.R.; Denero, J.V.

    1976-01-01

    A nuclear fuel pellet loading machine is described including an inclined rack mounted on a base and having parallel spaced grooves on its upper surface arranged to support fuel rods. A fuel pellet tray is adapted to be placed on a table spaced from the rack, the tray having columns of fuel pellets which are in alignment with the open ends of fuel rods located in the rack grooves. A transition plate is mounted between the fuel rod rack and the fuel pellet tray to receive and guide the pellets into the open ends of the fuel rods. The pellets are pushed into the fuel rods by a number of mechanical fingers mounted on a motor operated block which is moved along the pellet tray length by a drive screw driven by the motor. To facilitate movement of the pellets in the fuel rods the rack is mounted on a number of spaced vibrators which vibrate the fuel rods during fuel pellet insertion. A pellet sensing device movable into an end of each fuel rod indicates to an operator when each rod has been charged with the correct number of pellets

  13. Nuclear power and its fuel cycle

    International Nuclear Information System (INIS)

    Wymer, R.G.

    1986-01-01

    A series of viewgraphs describes the nuclear fuel cycle and nuclear power, covering reactor types, sources of uranium, enrichment of uranium, fuel fabrication, transportation, fuel reprocessing, and radioactive wastes

  14. Fuel elements for LWR power plants

    International Nuclear Information System (INIS)

    Roepenack, H.

    1977-01-01

    About five times more expensive than the fabrication of a fuel element is the enriched uranium contained therein; soon the monthly interest charges for the uranium value of a fuel element reload will account for five percent of the fabrication costs, and much more expensive than all this together can it be if reactor operation has to be interrupted because of damaged elements. Thus, quality assurance comes first. (orig.) [de

  15. Simulated nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Berta, V.T.

    1993-01-01

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end

  16. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    Science.gov (United States)

    Emrich, William J. Jr.; Moran, Robert P.; Pearson, J. Boise

    2012-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities

  17. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Abdul Aziz, E-mail: azizM@uniten.edu.my; Rahman, Shaik Mohmmed Haikhal Abdul [Universiti Tenaga Nasional. Jalan Ikram-UNITEN, 43000 Kajang, Selangor (Malaysia); Pauzi, Anas Muhamad, E-mail: anas@uniten.edu.my; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 ({sup 233}U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  18. Overview of the US spent nuclear fuel program

    International Nuclear Information System (INIS)

    Hurt, W.L.

    1999-01-01

    This report, Overview of the United States Spent Nuclear Fuel Program, December, 1997, summarizes the U.S. strategy for interim management and ultimate disposition of spent nuclear fuel from research and test reactors. The key elements of this strategy include consolidation of this spent nuclear fuel at three sites, preparation of the fuel for geologic disposal in road-ready packages, and low-cost dry interim storage until the planned geologic repository is opened. The U.S. has a number of research programs in place that are intended to Provide data and technologies to support both characterization and disposition of the fuel. (author)

  19. Advances in nuclear fuel technology. 3. Development of advanced nuclear fuel recycle systems

    International Nuclear Information System (INIS)

    Arie, Kazuo; Abe, Tomoyuki; Arai, Yasuo

    2002-01-01

    Fast breeder reactor (FBR) cycle technology has a technical characteristics flexibly easy to apply to diverse fuel compositions such as plutonium, minor actinides, and so on and fuel configurations. By using this characteristics, various feasibilities on effective application of uranium resources based on breeding of uranium of plutonium for original mission of FBR, contribution to radioactive wastes problems based on amounts reduction of transuranium elements (TRU) in high level radioactive wastes, upgrading of nuclear diffusion resistance, extremely upgrading of economical efficiency, and so on. In this paper, were introduced from these viewpoints, on practice strategy survey study on FBR cycle performed by cooperation of the Japan Nuclear Cycle Development Institute (JNC) with electric business companies and so on, and on technical development on advanced nuclear fuel recycle systems carried out at the Central Research Institute of Electric Power Industry, Japan Atomic Energy Research Institute, and so on. Here were explained under a vision on new type of fuels such as nitride fuels, metal fuels, and so on as well as oxide fuels, a new recycle system making possible to use actinides except uranium and plutonium, an 'advanced nuclear fuel cycle technology', containing improvement of conventional wet Purex method reprocessing technology, fuel manufacturing technology, and so on. (G.K.)

  20. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Betten, P.R.

    1976-01-01

    Under the invention the fuel assembly is particularly suitable for liquid metal cooled fast neutron breeder reactors. Hence, according to the invention a fuel assembly cladding includes inward corrugations with respect to the remainder of the cladding according to a recurring pattern determined by the pitch of the metal wire helically wound round the fuel rods of the assembly. The parts of the cladding pressed inwards correspond to the areas in which the wire encircling the peripheral fuel rods is generally located apart from the cladding, thereby reducing the play between the cladding and the peripheral fuel rods situated in these areas. The reduction in the play in turn improves the coolant flow in the internal secondary channels of the fuel assembly to the detriment of the flow in the peripheral secondary channels and thereby establishes a better coolant fluid temperature profile [fr