WorldWideScience

Sample records for nuclear fuel behaviour

  1. Nuclear fuels

    International Nuclear Information System (INIS)

    2008-01-01

    The nuclear fuel is one of the key component of a nuclear reactor. Inside it, the fission reactions of heavy atoms, uranium and plutonium, take place. It is located in the core of the reactor, but also in the core of the whole nuclear system. Its design and properties influence the behaviour, the efficiency and the safety of the reactor. Even if it represents a weak share of the generated electricity cost, its proper use represents an important economic stake. Important improvements remain to be made to increase its residence time inside the reactor, to supply more energy, and to improve its robustness. Beyond the economical and safety considerations, strategical questions have to find an answer, like the use of plutonium, the management of resources and the management of nuclear wastes and real technological challenges have to be taken up. This monograph summarizes the existing knowledge about the nuclear fuel, its behaviour inside the reactor, its limits of use, and its R and D tracks. It illustrates also the researches in progress and presents some key results obtained recently. Content: 1 - Introduction; 2 - The fuel of water-cooled reactors: aspect, fabrication, behaviour of UO 2 and MOX fuels inside the reactor, behaviour in loss of tightness situation, microscopic morphology of fuel ceramics and evolution under irradiation - migration and localisation of fission products in UOX and MOX matrices, modeling of fuels behaviour - modeling of defects and fission products in the UO 2 ceramics by ab initio calculations, cladding and assembly materials, pellet-cladding interaction, advanced UO 2 and MOX ceramics, mechanical behaviour of the fuel assembly, fuel during a loss of coolant accident, fuel during a reactivity accident, fuel during a serious accident, fuel management inside reactor cores, fuel cycle materials balance, long-term behaviour of the spent fuel, fuel of boiling water reactors; 3 - the fuel of liquid metal fast reactors: fast neutrons radiation

  2. A study on dissolution and leaching behaviour of spent nuclear fuels

    International Nuclear Information System (INIS)

    Lee, Chang Heon; Im, Hee Jung; Kim, Jong Gu; Park, Yang Soon; Ha, Yeong Keong

    2010-12-01

    This state of the art report describes a leaching behaviour of spent nuclear fuels which should be considered for safety assessment of spent nuclear fuel disposal in a deep geological repository. A decisive factor of a dissolution of UO 2 , a matrix of the fuel, is chemical characters (redox potential, pH, concentration of inorganic anions, water radiolysis subsequent by radiation field of the fuels) of ground water expected to be in contact with the fuels after the container has failed due to corrosion as well as atmosphere condition of a deep geological repository, which can change the oxidation state of UO 2 . The release rates of radionuclides from UO 2 matrix depend largely on their location within the fuels, that is, the radionuclides fixed in the fuel/cladding gap and grain boundaries are rapidly released. However, the radionuclides within the grains of the fuel are slowly released, and then their release rate is governed by a dissolution behaviour of UO 2

  3. Predicting the behaviour or neptunium during nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Drake, V.A.

    1988-01-01

    Behaviour of Np and its distribution over reprocessing flowsheet is studied due to the necessity of improvement of reprocessing methods of wastes formed during purex-process. Valency states of Np in solutions of reprocessing cycles, Np distribution in organic and acid phases, Np(5) oxidation by nitric acid at the stage of extraction, effect of U and Pu presence on Np behaviour, are considered. Calculation and experimental data are compared; the possibility of Np behaviour forecasting in the process of nuclear fuel reprocessing, provided initial data vay, is shown. 7 refs.; 4 figs.; 1 tab

  4. Simulation of the behaviour of nuclear fuel under high burnup conditions

    International Nuclear Information System (INIS)

    Soba, Alejandro; Lemes, Martin; González, Martin Emilio; Denis, Alicia; Romero, Luis

    2014-01-01

    Highlights: • Increasing the time of nuclear fuel into reactor generates high burnup structure. • We analyze model to simulate high burnup scenarios for UO 2 nuclear fuel. • We include these models in the DIONISIO 2.0 code. • Tests of our models are in very good agreement with experimental data. • We extend the range of predictability of our code up to 60 MWd/KgU average. - Abstract: In this paper we summarize all the models included in the latest version of the DIONISIO code related to the high burnup scenario. Due to the extension of nuclear fuels permanence under irradiation, physical and chemical modifications are developed in the fuel material, especially in the external corona of the pellet. The codes devoted to simulation of the rod behaviour under irradiation need to introduce modifications and new models in order to describe those phenomena and be capable to predict the behaviour in all the range of a general pressurized water reactor. A complex group of subroutines has been included in the code in order to predict the radial distribution of power density, burnup, concentration of diverse nuclides and porosity within the pellet. The behaviour of gadolinium as burnable poison also is modelled into the code. The results of some of the simulations performed with DIONISIO are presented to show the good agreement with the data selected for the FUMEX I/II/III exercises, compiled in the NEA data bank

  5. Nuclear fuel

    International Nuclear Information System (INIS)

    D Hondt, P.

    1998-01-01

    The research and development programme on nuclear fuel at the Belgian Nuclear Research Centre SCK/CEN is described. The objective of this programme is to enhance the quantitative prediction of the operational limits of nuclear fuel and to assess the behaviour of fuel under incidental and accidental conditions. Progress is described in different domains including the modelling of fission gas release in LWR fuel, thermal conductivity, basic physical phenomena, post-irradiation examination for fuel performance assessment, and conceptual studies of incidental and accidental fuel experiments

  6. Scientific issues in fuel behaviour

    International Nuclear Information System (INIS)

    1995-01-01

    The current limits on discharge burnup in today's nuclear power stations have proven the fuel to be very reliable in its performance, with a negligibly small rate of failure. However, for reasons of economy, there are moves to increase the fuel enrichment in order to extend both the cycle time and the discharge burnup. But, longer periods of irradiation cause increased microstructural changes in the fuel and cladding, implying a larger degradation of physical and mechanical properties. This degradation may well limit the plant life, hence the NSC concluded that it is of importance to develop a predictive capability of fuel behaviour at extended burnup. This can only be achieved through an improved understanding of the basic underlying phenomena of fuel behaviour. The Task Force on Scientific Issues Related to Fuel Behaviour of the NEA Nuclear Science Committee has identified the most important scientific issues on the subject and has assigned priorities. Modelling aspects are listed in Appendix A and discussed in Part II. In addition, quality assurance process for performing and evaluating new integral experiments is considered of special importance. Main activities on fuel behaviour modelling, as carried out in OECD Member countries and international organisations, are listed in Part III. The aim is to identify common interests, to establish current coverage of selected issues, and to avoid any duplication of efforts between international agencies. (author). refs., figs., tabs

  7. Accidental behaviour of nuclear fuel in a warehousing site under air: investigation of the nuclear ceramic oxidation and of fission gas release

    International Nuclear Information System (INIS)

    Desgranges, L.

    2006-12-01

    After a brief presentation of the context of his works, i.e. the nuclear fuel, its behaviour in a nuclear reactor, and studies performed in high activity laboratory, the author more precisely presents its research topic: the behaviour of defective nuclear fuel in air. Then, he describes the researches performed in three main directions: firstly, the characterization and understanding of fission gas localisation (experimental localisation, understanding of the bubble forming mechanisms), secondly, the determination of mechanisms related to oxidation (atomic mechanisms related to UO 2 oxidation, oxidation of fragments of irradiated fuel, the CROCODILE installation). He finally presents his scientific project which notably deals with fission gas release (from UO 2 to U 3 O 7 , and from U 3 O 7 to U 3 O 8 ), and with further high activity laboratory experiments

  8. Impact of fuel chemistry on fission product behaviour

    International Nuclear Information System (INIS)

    Poortmans, C.; Van Uffelen, P.; Van den Berghe, S.

    1999-01-01

    The report contains a series of papers presented at SCK-CEN's workshop on the impact of fuel chemistry on fission product behaviour. Contributing authors discuss different processes affecting the behaviour of fission products in different types of spent nuclear fuel. In addition, a number of papers discusses the behaviour of actinides and fission products released from spent fuel and vitrified high-level waste in geological disposal conditions

  9. Nuclear fuel activities in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D S [Fuel Development Branch, Chalk River Labs., AECL (Canada)

    1997-12-01

    Nuclear fuel activities in Canada are considered in the presentation on the following directions: Canadian utility fuel performance; CANDU owner`s group fuel programs; AECL advanced fuel program (high burnup fuel behaviour and development); Pu dispositioning (MOX) activities. 1 tab.

  10. Fission gas behaviour in water reactor fuels

    International Nuclear Information System (INIS)

    2002-01-01

    During irradiation, nuclear fuel changes volume, primarily through swelling. This swelling is caused by the fission products and in particular by the volatile ones such as krypton and xenon, called fission gas. Fission gas behaviour needs to be reliably predicted in order to make better use of nuclear fuel, a factor which can help to achieve the economic competitiveness required by today's markets. These proceedings communicate the results of an international seminar which reviewed recent progress in the field of fission gas behaviour in light water reactor fuel and sought to improve the models used in computer codes predicting fission gas release. State-of-the-art knowledge is presented for both uranium-oxide and mixed-oxide fuels loaded in water reactors. (author)

  11. Nuclear Fuel Behaviour in Loss-of-coolant Accident (LOCA) Conditions

    International Nuclear Information System (INIS)

    Pettersson, Kjell; Chung, Haijung; ); Billone, Michael; Fuketa, Toyoshi; Nagase, Fumihisa; Grandjean, Claude; Hache, George; Papin, Joelle; Heins, Lothar; Hozer, Zoltan; In de Betou, Jan; Kelppe, Seppo; Mayer, Ralph; Scott, Harold; Voglewede, John; Sonnenburg, Heinz; Sunder, Sham; Valach, Mojmir; Vrtilkova, Vera; Waeckel, Nicolas; Wiesenack, Wolfgang; Zimmermann, Martin

    2009-01-01

    The NEA Working Group on Fuel Safety (WGFS) is tasked with advancing the current understanding of fuel safety issues by assessing the technical basis for current safety criteria and their applicability to high burn-up and to new fuel designs and materials. The group aims at facilitating international convergence in this area, including as regards experimental approaches and interpretation and the use of experimental data relevant for safety. In 1986, a working group of the NEA Committee on the Safety of Nuclear Installations (CSNI) issued a state-of-the-art report on water reactor fuel behaviour in design-basis accident (DBA) conditions. The 1986 report was limited to the oxidation, embrittlement and deformation of pressurised water reactor (PWR) fuel in a loss-of-coolant accident (LOCA). Since then, considerable experimental and analytical work has been performed, which has led to a broader and deeper understanding of LOCA-related phenomena. Further, new cladding alloys have been produced, which might behave differently than the previously used Zircaloy-4, both under normal operating conditions and during transients. Compared with 20 years ago, fuel burn-up has been significantly increased, which requires extending the LOCA database in order to cover the high burnup range. There was also a clear need to address LOCA performance for reactor types other than PWRs. The present report has been prepared by the WGFS and covers the following technical aspects: - Description of different LOCA scenarios for major types of reactors: BWRs, PWRs, VVERs and to a lesser extent CANDUs. - LOCA phenomena: ballooning, burst, oxidation, fuel relocation and possible fracture at quench. - Details of high-temperature oxidation behaviour of various cladding materials. - Metallurgical phase change, effect of hydrogen and oxygen on residual cladding ductility. - Methods for LOCA testing, for example two-sided oxidation and ring compression for ductility, and integral quench test for

  12. Volatile behaviour of enrichment uranium in the total nuclear fuel price

    International Nuclear Information System (INIS)

    Arnaiz, J.; Inchausti, J. M.; Tarin, F.

    2004-01-01

    In this article the historical high volatile behaviour of the total nuclear fuel price is evaluated quantitatively and it is concluded that it has been due mainly to the fluctuations of the price of the principal components of enriched uranium (concentrates and enrichment). In order to avoid the negative effects of this volatiles behaviour as far as possible, a basic strategy in the uranium procurement activities is recommended (union of buyers, diversification of supplier, stock management, optimisation of contract portfolio and suitable currency management that guarantees a reliable uranium supply at reasonable prices. These guidelines are those that ENUSA has been following on behalf of the Spanish Utilities in the Commission of Uranium Procurement (CAU in Spanish). (Author) 11 refs

  13. Micromechanical modelling of fuel viscoplastic behaviour

    International Nuclear Information System (INIS)

    Masson, R.; Blanc, V.; Gatt, J.M.; Julien, J.; Michel, B.; Largenton, R.

    2015-01-01

    To identify the effect of microstructural parameters on the viscoplastic behaviour of nuclear fuels, micromechanical (also called homogenisation) approaches are used. These approaches aim at deriving effective properties of heterogeneous material from the properties of their constituents. They stand on full-field computations of representative volume elements of microstructures as well as on mean-field semi-analytical models. For light water reactor fuels, these approaches have been applied to the modelling of the effect of two microstructural parameters: the porosity effects on the thermal creep of dioxide uranium fuels (transient conditions of irradiation) as well as the plutonium content effect on the viscoplastic behaviour (nominal conditions of irradiations) of mixed oxide fuels (MOX). (authors)

  14. Computational analysis of the behaviour of nuclear fuel under steady state, transient and accident conditions

    International Nuclear Information System (INIS)

    2007-12-01

    Accident analysis is an important tool for ensuring the adequacy and efficiency of the provision in the defence in depth concept to cope with challenges to plant safety. Accident analysis is the milestone of the demonstration that the plant is capable of meeting any prescribed limits for radioactive releases and any other acceptable limits for the safe operation of the plant. It is used, by designers, utilities and regulators, in a number of applications such as: (a) licensing of new plants, (b) modification of existing plants, (c) analysis of operational events, (d) development, improvement or justification of the plant operational limits and conditions, and (e) safety cases. According to the defence in depth concept, the fuel rod cladding constitutes the first containment barrier of the fission products. Therefore, related safety objectives and associated criteria are defined, in order to ensure, at least for normal operation and anticipated transients, the integrity of the cladding, and for accident conditions, acceptable radiological consequences with regard to the postulated frequency of the accident, as usually identified in the safety analysis reports. Therefore, computational analysis of fuel behaviour under steady state, transient and accident conditions constitutes a major link of the safety case in order to justify the design and the safety of the fuel assemblies, as far as all relevant phenomena are correctly addressed and modelled. This publication complements the IAEA Safety Report on Accident Analysis for Nuclear Power Plants (Safety Report Series No. 23) that provides practical guidance for establishing a set of conceptual and formal methods and practices for performing accident analysis. Computational analysis of the behaviour of nuclear fuel under transient and accident conditions, including normal operation (e.g. power ramp rates) is developed in this publication. For design basis accidents, depending on the type of influence on a fuel element

  15. Research problems of fission product behaviour in fuels of nuclear power plants and ways of their solution

    International Nuclear Information System (INIS)

    Sulaberidze, V.Sh.

    1988-01-01

    The most important problems of studying behaviour of fission products in fuel elements of maneouvrable nuclear power plants units are formulated. In-pile and out-of-pile investigation methods solving these problems are characterized in brief. 12 refs.; 2 figs

  16. INPR ACPR utilization in fuel behaviour studies under accidental condition

    International Nuclear Information System (INIS)

    Negut, Gheorghe; Popov, Mircea

    1990-01-01

    This paper is dedicated to the experimental program, investigating CANDU type fuel behaviour in transient condition, as well as the facilities supporting this program. The tests Reactivity Initiated Accident type. The experiments were performed within TRIGA ACPR facility, installed at INSTITUTE for NUCLEAR POWER REACTORS, Pitesti, ROMANIA. Studies of the safety issues took a great international developement during last years. In USA, Japan, owners of the similar reactors, and USSR there are a big commitment to such programs, intended to establish the nuclear fuel behaviour under RIA-conditions. In our country, too, there are programs aiming a complete testing of the CANDU type fuels. As it is known, RIA is not a CANDU specific accident, but the fuel behaviour in such conditions can give useful informations on the fuel cladding failure threshold and about reflooding post LOCA heat transfer condition. Based on some papers and specific requirements it was initiated and developed a safety research program on CANDU type fuel using the ACPR. The paper describes the reactor,test capsule, instrumentation, fuel samples, tests, post irradiation results. (orig.)

  17. Rupture behaviour of nuclear fuel cladding during loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Suman, Siddharth [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Khan, Mohd Kaleem, E-mail: mkkhan@iitp.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Pathak, Manabendra [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Singh, R.N.; Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-10-15

    Highlights: • Modelling of nuclear fuel cladding during loss-of-coolant accident transient. • Phase transformation, corrosion, and creep combined to evaluate burst criterion. • Effect of oxygen concentration on burst stress and burst strain. • Effect of heating rate, internal pressure fluctuation, shear modulus incorporated. - Abstract: A burst criterion model accounting the simultaneous phenomena of corrosion, solute-strengthening effect of oxygen, oxygen concentration based non-isothermal phase transformation, and thermal creep has been developed to predict the rupture behaviour of zircaloy-4 nuclear fuel cladding during the loss-of-coolant accident transients. The present burst criterion model has been validated using experimental data obtained from single-rod transient burst tests performed in steam environment. The predictions are in good agreement with the experimental results. A detailed computational analysis has been performed to assess the role of different parameters in the rupture of zircaloy cladding during loss-of-coolant accidents. This model reveals that at low temperatures, lower heating rates produce higher burst strains as oxidation effect is nominal. For high temperatures, the lower heating rates produce less burst strains, whereas higher heating rates yield greater burst strains.

  18. Romanian nuclear fuel fabrication and in-reactor fuel operational experience

    International Nuclear Information System (INIS)

    Budan, O.

    2003-01-01

    A review of the Romanian nuclear program since mid 60's is made. After 1990, the new Romanian nuclear power authority, RENEL-GEN, elaborated a realistic Nuclear Fuel Program. This program went through the Romanian nuclear fuel plant qualification with the Canadian (AECL and ZPI) support, restarting in January 1995 of the industrial nuclear fuel production, quality evaluation of the fuel produced before 1990 and the recovery of this fuel. This new policy produced good results. FCN is since 1995 the only CANDU fuel supplier from outside Canada recognised by AECL as an authorised CANDU fuel manufacturer. The in-reactor performances and behaviour of the fuel manufactured by FCN after its qualification have been excellent. Very low - more then five times lesser than the design value - fuel defect rate has been recorded up to now and the average discharge of this fuel was with about 9% greater than the design value. Since mid 1998 when SNN took charge of the production of nuclear generated electricity, FCN made significant progresses in development and procurement of new and more efficient equipment and is now very close to double its fuel production capacity. After the completion of the recovery of the fuel produced before June 1990, FCN is already prepared to shift its fuel production to the so-called 'heavy' bundle containing about 19.3 kg of Uranium per bundle

  19. CANDU fuel behaviour under LOCA conditions

    International Nuclear Information System (INIS)

    Kohn, E.

    1989-07-01

    This report summarizes the current understanding of CANDU fuel-element behaviour under loss-of-coolant (LOCA) accidents. It focuses on a key in-reactor verification experiment conducted at Idaho National Engineering Laboratory (INEL) and on three Canadian in-reactor tests. The in-reactor data, and the considerable body of supporting information developed from out-reactor tests, support the general conclusion that CANDU fuel behaviour during LOCA transients is well understood. Four elements of 37-element CANDU fuel-bundle design were tested under conditions typical of a large-break LOCA blowdown in a CANDU reactor. The purpose of the test was to confirm our current understanding of fuel behaviour under loss-of-coolant accident blowdown conditions. The test also provided data for comparison with predictions made with the steady-state and transient fuel-element performance codes ELESIM and ELOCA. Key components of typical LOCA transients were incorporated in the test: namely, a rapid depressurization rate of the hot coolant, a simultaneous power increase before decreasing to decay values (a power pulse), and prototype fuel element under pre-transient power and burnup conditions. The test was successfully completed in the Power Burst Facility (PBF) reactor at INEL under contract to Ontario Hydro and AECL. The three CANDU Owners Group LOCA tests performed at Chalk River Nuclear Laboratories measured both the thermal-mechanical response and fission-gas release resulting from exposure to a LOCA transient. Results from these three tests provided further confirmation that the behaviour of the fuel under LOCA conditions is understood

  20. Mathematical model of thermal and mechanical steady state fuel element behaviour TEDEF

    International Nuclear Information System (INIS)

    Dinic, N.; Kostic, Z.; Josipovic, M.

    1987-01-01

    In this paper a numerical model of thermal and thermomechanical behaviour of a cylindrical metal uranium fuel element is described. Presented are numerical method and computer program for solving the stationary temperature field and thermal stresses of a fuel element. The model development is a second phase of analysis of these phenomena, and may as well be used for analysing power nuclear reactor fuel elements behaviour. (author)

  1. Non-linear behaviour of multi-phase MOX fuels: a micro-mechanical approach

    International Nuclear Information System (INIS)

    Rousette, S.; Gatt, J.M.; Michel, J.C.

    2005-01-01

    The modelling of mechanical pellet-clad interaction requires knowledge of the thermo-mechanical behaviour of nuclear fuels. Some nuclear fuels such as MOX are composed of several phases. The mechanical properties of these phases, which are elasto-visco-plastic in-pile, are changing in-pile. The objective is to formulate a mechanical behaviour law taking all the physical phenomena into account in the different phases, which can easily be introduced into a fuel rod modelling code. Consequently, Non-uniform Transformation Field Analysis (NTFA) is used on the one hand, to correctly capture the heterogeneity of the anelastic strain in the different phases and, on the other hand, to provide a simple overall constitutive law for computational codes. This method is a good way to describe the behaviour of MOX fuel. Transformation Field Analysis (TFA), which corresponds to piecewise uniform transformation fields, is used to perform a sensitivity study. (authors)

  2. Review of the IAEA Nuclear Fuel Cycle Materials Section activities related to WWER fuel

    International Nuclear Information System (INIS)

    Killeen, J.

    2003-01-01

    The IAEA Nuclear Fuel Cycle Programme, designated as Programme B, has the main objective of supporting Member States in policy making, strategic planning, developing technology and addressing issues with respect to safe, reliable, economically efficient, proliferation resistant and environmentally sound nuclear fuel cycle. This paper is concentrated on describing the work within Sub-programme B.2 'Fuel Performance and Technology'. Two Technical Working Groups assist in the preparation of the IAEA programme in the nuclear fuel cycle area - Technical Working Group on Water Reactor Fuel Performance and Technology and Technical Working Group on Nuclear Fuel Cycle Options. The activities of the Unit within the Nuclear Fuel Cycle and Materials Section working on Fuel Performance and Technology are given, based on the sub-programme structure of the Agency programme and budget for 2002-2003. Within the framework of Co-ordinated Research Projects a study of the delayed hydride cracking (DHC) of the zirconium alloys used in pressurised heavy water reactors (PHWR) involving 10 countries has been completed. It achieved very effective transfer of know-how at the laboratory level in three technologically important areas: 1) Controlled hydriding of samples to predetermined levels; 2) Accurate measurement of hydrogen concentrations at the relatively low levels found in pressure tubes and RBMK channel tubes; and 3) In the determination of DHC rates under various conditions of temperature and stress. A new project has been started on the 'Improvement of Models used for Fuel Behaviour Simulation' (FUMEX II) to assist Member States in improving the predictive capabilities of computer codes used in modelling fuel behaviour for extended burnup. The IAEA also collaborates with organisations in the Member States to support activities and meetings on nuclear fuel cycle related topics

  3. Long term wet spent nuclear fuel storage

    International Nuclear Information System (INIS)

    1987-04-01

    The meeting showed that there is continuing confidence in the use of wet storage for spent nuclear fuel and that long-term wet storage of fuel clad in zirconium alloys can be readily achieved. The importance of maintaining good water chemistry has been identified. The long-term wet storage behaviour of sensitized stainless steel clad fuel involves, as yet, some uncertainties. However, great reliance will be placed on long-term wet storage of spent fuel into the future. The following topics were treated to some extent: Oxidation of the external surface of fuel clad, rod consolidation, radiation protection, optimum methods of treating spent fuel storage water, physical radiation effects, and the behaviour of spent fuel assemblies of long-term wet storage conditions. A number of papers on national experience are included

  4. Corrosion behaviour of zircaloy 4 fuel rod cladding in EDF power plants

    Energy Technology Data Exchange (ETDEWEB)

    Romary, H; Deydier, D [EDF, Direction de l` Equipment SEPTEN, Villeurbanne (France)

    1997-02-01

    Since the beginning of the French nuclear program, a surveillance of fuel has been carried out in order to evaluate the fuel behaviour under irradiation. Until now, nuclear fuels provided by suppliers have met EDF requirements concerning fuel behaviour and reliability. But, the need to minimize the costs and to increase the flexibility of the power plants led EDF to the definition of new targets: optimization of the core management and fuel cycle economy. The fuel behaviour experience shows that some of these new requirements cannot be fully fulfilled by the present standard fuel due to some technological limits. Particularly, burnup enhancement is limited by the oxidation and the hydriding of the Zircaloy 4 fuel rod cladding. Also, fuel suppliers and EDF need to have a better knowledge of the Zy-4 cladding behaviour in order to define the existing margins and the limiting factors. For this reason, in-reactor fuel characterization programs have been set up by fuel suppliers and EDF for a few years. This paper presents the main results and conclusions of EDF experience on Zy-4 in-reactor corrosion behaviour. Data obtained from oxide layer or zirconia thickness measurements show that corrosion performance of Zy-4 fuel rod cladding, as irradiated until now in EDF reactors, is satisfactory but not sufficient to meet the future needs. The fuel suppliers propose in order to improve the corrosion resistance of fuel rod cladding, low tin Zy-4 cladding and then optimized Zy-4 cladding. Irradiation of these claddings are ongoing. The available corrosion data show the better in-reactor corrosion resistance of optimized Zy-4 fuel rod cladding compared to the standard Zy-4 cladding. The scheduled fuel surveillance program will confirm if the optimized Zy-4 fuel rod cladding will meet the requirements for the future high burnup and high flexibility fuel. (author). 10 refs, 19 figs, 4 tabs.

  5. Preliminary analysis of the creep behaviour of nuclear fuel-waste container materials

    International Nuclear Information System (INIS)

    Dutton, R.; Leitch, B.W.; Crosthwaite, J.L.; Kasprick, G.R.

    1996-12-01

    In the Canadian Nuclear Fuel Waste Management Program, it is proposed that nuclear fuel waste be placed in a durable container and disposed of in a deep underground vault. Consideration of various disposal-container designs has identified either titanium or copper as the material suitable for constructing the container shell. As part of the R and D program to examine the structural integrity of the container, creep tests are being conducted on commercially pure titanium and oxygen-free copper. This report presents the preliminary data obtained. It also describes the evaluation of various constitutive equations to represent the creep curves, thus providing the basis for extrapolation of the creep behaviour over the design lifetime of the container. In this regard, a specific focus is placed on equations derived from the 0-Projection Concept. Recognizing that the container lifetime will be determined by the onset of tertiary creep leading to creep rupture, we present the results of the metallographic examination of creep damage. This shows that the tertiary stage in titanium is associated with the formation of transgranular cavities within the region of localized necking of the creep specimens. In contrast, creep damage in copper is in the form of intergranular cavities uniformly distributed throughout the gauge length. These results are analyzed within the context of the extant literature, and their implications for future container design are discussed. (author)

  6. Mechanistic modelling of the corrosion behaviour of copper nuclear fuel waste containers

    Energy Technology Data Exchange (ETDEWEB)

    King, F; Kolar, M

    1996-10-01

    A mechanistic model has been developed to predict the long-term corrosion behaviour of copper nuclear fuel waste containers in a Canadian disposal vault. The model is based on a detailed description of the electrochemical, chemical, adsorption and mass-transport processes involved in the uniform corrosion of copper, developed from the results of an extensive experimental program. Predictions from the model are compared with the results of some of these experiments and with observations from a bronze cannon submerged in seawater saturated clay sediments. Quantitative comparisons are made between the observed and predicted corrosion potential, corrosion rate and copper concentration profiles adjacent to the corroding surface, as a way of validating the long-term model predictions. (author). 12 refs., 5 figs.

  7. IAEA programme on nuclear fuel cycle and materials technologies

    International Nuclear Information System (INIS)

    Killeen, J.

    2006-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The coordinated research project on Improvement of Models Used For Fuel Behaviour Simulation (FUMEX II) is also presented

  8. Practice and trends in nuclear fuel licensing in France (pressurized water reactor fuels)

    International Nuclear Information System (INIS)

    Roudier, S.; Badel, D.; Beraha, R.; Champ, M.; Tricot, N.; Tran Dai, P.

    1994-01-01

    The activities of governmental French authorities responsible for safety of nuclear installations are outlined. The main bodies involved in nuclear safety are: the CSSIN (High Council for Nuclear Safety and Information), CINB (Inter-ministerial Commission for Basic Nuclear Installations) and DSIN (Nuclear Installations Safety Directorate). A brief review of the main fuel licensing issues supported by DSIN is given, which includes: 1) formal regularity procedure ensuring the safety of nuclear installations and especially the pressurized water reactors; 2) guidelines for nuclear design and manufacturing requirements related to safety and 3) safety goals and associated limits. The fuel safety documents for reloading as well as the research and development programmes in the field of technical safety are also described. The ongoing experiments in CABRI reactor, aimed at determining the high burnup fuel behaviour under reactivity initiated accidents until 65 GW d/Mt U, are one of these programs

  9. Practice and trends in nuclear fuel licensing in France (pressurized water reactor fuels)

    Energy Technology Data Exchange (ETDEWEB)

    Roudier, S [Direction de la Surete des Installations Nucleaires, Fontenay-aux-Roses (France); Badel, D; Beraha, R [Direction Regionale de l` Industrie, de la Recherche et de l` Environnement Rhone-Alpes, Lyon (France); Champ, M; Tricot, N; Tran Dai, P [CEA Centre d` Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    1994-12-31

    The activities of governmental French authorities responsible for safety of nuclear installations are outlined. The main bodies involved in nuclear safety are: the CSSIN (High Council for Nuclear Safety and Information), CINB (Inter-ministerial Commission for Basic Nuclear Installations) and DSIN (Nuclear Installations Safety Directorate). A brief review of the main fuel licensing issues supported by DSIN is given, which includes: (1) formal regularity procedure ensuring the safety of nuclear installations and especially the pressurized water reactors; (2) guidelines for nuclear design and manufacturing requirements related to safety and (3) safety goals and associated limits. The fuel safety documents for reloading as well as the research and development programmes in the field of technical safety are also described. The ongoing experiments in CABRI reactor, aimed at determining the high burnup fuel behaviour under reactivity initiated accidents until 65 GW d/Mt U, are one of these programs.

  10. Nuclear fuels

    International Nuclear Information System (INIS)

    Gangwani, Saloni; Chakrabortty, Sumita

    2011-01-01

    Nuclear fuel is a material that can be consumed to derive nuclear energy, by analogy to chemical fuel that is burned for energy. Nuclear fuels are the most dense sources of energy available. Nuclear fuel in a nuclear fuel cycle can refer to the fuel itself, or to physical objects (for example bundles composed of fuel rods) composed of the fuel material, mixed with structural, neutron moderating, or neutron reflecting materials. Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. The following paper will also include the uses. advancements, advantages, disadvantages, various processes and behavior of nuclear fuels

  11. Behaviour of spent fuel assemblies during extended storage

    International Nuclear Information System (INIS)

    1987-04-01

    This report is the final report of the IAEA Co-ordinated Research Programme on Behaviour of Spent Fuel Assemblies During Extended Storage (BEFAST, Phase I, 1981-86). It contains the results on wet and dry spent fuel storage technologies obtained from 11 institutes (10 countries: Austria, Canada, Czechoslovakia, Finland, German Democratic Republic, Hungary, Japan, Sweden, USA and USSR) participating in the BEFAST CRP during the time period 1981-86. Names of participating institutes and chief investigators are given. The interim spent fuel storage has been recognized as an important independent step in the nuclear fuel cycle. Due to the delay in commercial reprocessing of spent fuel in some cases it should be stored up to 30-50 years or more before reprocessing or final disposal. This programme was evaluated by all its participants and observers as very important and helpful for the nuclear community and it was decided to continue it further (1986-91) as BEFAST, Phase II

  12. Models for MOX fuel behaviour. A selective review

    International Nuclear Information System (INIS)

    Massih, Ali R.

    2006-01-01

    This report reviews the basic physical properties of light water reactor mixed-oxide (MOX) fuel comprising nuclear characteristics, thermal properties such as melting temperature, thermal conductivity, thermal expansion, and heat capacity, and compares these with properties of conventional UO 2 fuel. These properties are generally well understood for MOX fuel and are well described by appropriate models developed for engineering analysis. Moreover, certain modelling approaches of MOX fuel in-reactor behaviour, regarding densification, swelling, fission product gas release, helium release, fuel creep and grain growth, are evaluated and compared with the models for UO 2 . In MOX fuel the presence of plutonium rich agglomerates adds to the complexity of fuel behaviour on the micro scale. In addition, we survey the recent fuel performance experience and post irradiation examinations on several types of MOX fuel types. We discuss the data from these examinations, regarding densification, swelling, fission product gas release and the evolution of the microstructure during irradiation. The results of our review indicate that in general MOX fuel has a higher fission gas release and helium release than UO 2 fuel. Part of this increase is due to the higher operating temperatures of MOX fuel relative to UO 2 fuel due to the lower thermal conductivity of MOX material. But this effect by itself seems to be insufficient to make for the difference in the observed fission gas release of UO 2 vs. MOX fuel. Furthermore, the irradiation induced creep rate of MOX fuel is higher than that of UO 2 . This effect can reduce the pellet-clad interaction intensity in fuel rods. Finally, we suggest that certain physical based approaches discussed in the report are implemented in the fuel performance code to account for the behaviour of MOX fuel during irradiation

  13. Models for MOX fuel behaviour. A selective review

    Energy Technology Data Exchange (ETDEWEB)

    Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park (Sweden)

    2006-12-15

    This report reviews the basic physical properties of light water reactor mixed-oxide (MOX) fuel comprising nuclear characteristics, thermal properties such as melting temperature, thermal conductivity, thermal expansion, and heat capacity, and compares these with properties of conventional UO{sub 2} fuel. These properties are generally well understood for MOX fuel and are well described by appropriate models developed for engineering analysis. Moreover, certain modelling approaches of MOX fuel in-reactor behaviour, regarding densification, swelling, fission product gas release, helium release, fuel creep and grain growth, are evaluated and compared with the models for UO{sub 2}. In MOX fuel the presence of plutonium rich agglomerates adds to the complexity of fuel behaviour on the micro scale. In addition, we survey the recent fuel performance experience and post irradiation examinations on several types of MOX fuel types. We discuss the data from these examinations, regarding densification, swelling, fission product gas release and the evolution of the microstructure during irradiation. The results of our review indicate that in general MOX fuel has a higher fission gas release and helium release than UO{sub 2} fuel. Part of this increase is due to the higher operating temperatures of MOX fuel relative to UO{sub 2} fuel due to the lower thermal conductivity of MOX material. But this effect by itself seems to be insufficient to make for the difference in the observed fission gas release of UO{sub 2} vs. MOX fuel. Furthermore, the irradiation induced creep rate of MOX fuel is higher than that of UO{sub 2}. This effect can reduce the pellet-clad interaction intensity in fuel rods. Finally, we suggest that certain physical based approaches discussed in the report are implemented in the fuel performance code to account for the behaviour of MOX fuel during irradiation.

  14. Contribution to the communication: European fuel behaviour perspective

    International Nuclear Information System (INIS)

    Pickmann, D.O.; Marin, J.F.; Weidinger, H.; Junkrans, S.; Bairiot, H.

    1981-08-01

    The safety and security problems particular to pressurized water reactors are reviewed. These problems are followed up at statutory level by the Service Central de Surete des Installations Nucleaires (Central Department of Nuclear Installation Safety) and at technical level by the Institut de Protection et de Surete Nucleaire (Nuclear Protection and Safety Institute) linked to the CEA. The safety analysis is based on the design standards and the technical specifications of reactor components and nuclear substances. They relate to the behaviour of a reactor under normal or accidental operation. The fuel elements are studied in the reactor and outside it by means of loops and power ramps. This information is embodied in models which describe the behaviour of the various parts of the reactor during the accident [fr

  15. Starting Point, Keys and Milestones of a Computer Code for the Simulation of the Behaviour of a Nuclear Fuel Rod

    Directory of Open Access Journals (Sweden)

    Armando C. Marino

    2011-01-01

    Full Text Available The BaCo code (“Barra Combustible” was developed at the Atomic Energy National Commission of Argentina (CNEA for the simulation of nuclear fuel rod behaviour under irradiation conditions. We present in this paper a brief description of the code and the strategy used for the development, improvement, enhancement, and validation of a BaCo during the last 30 years. “Extreme case analysis”, parametric (or sensitivity, probabilistic (or statistic analysis plus the analysis of the fuel performance (full core analysis are the tools developed in the structure of BaCo in order to improve the understanding of the burnup extension in the Atucha I NPP, and the design of advanced fuel elements as CARA and CAREM. The 3D additional tools of BaCo can enhance the understanding of the fuel rod behaviour, the fuel design, and the safety margins. The modular structure of the BaCo code and its detailed coupling of thermo-mechanical and irradiation-induced phenomena make it a powerful tool for the prediction of the influence of material properties on the fuel rod performance and integrity.

  16. Study of candu fuel elements irradiated in a nuclear power plant

    International Nuclear Information System (INIS)

    Ionescu, S.; Uta, O.; Mincu, M.; Anghel, D.; Prisecaru, I.

    2015-01-01

    The object of this work is the behaviour of CANDU fuel elements after service in nuclear power plant. The results are analysed and compared with previous result obtained on unirradiated samples and with the results obtained on samples irradiated in the TRIGA reactor of INR Pitesti. Zircaloy-4 is the material used for CANDU fuel sheath. The importance of studying its behaviour results from the fact that the mechanical properties of the CANDU fuel sheath suffer modifications during normal and abnormal operation. In the nuclear reactor, the fuel elements endure dimensional and structural changes as well as cladding oxidation, hydriding and corrosion. These changes can lead to defects and even to the loss of integrity of the cladding. This paper presents the results of examinations performed in the Post Irradiation Examination Laboratory (PIEL) of INR Pitesti on samples from fuel elements after they were removed out of the nuclear power plant: - dimensional and macrostructural characterization; - microstructural characterization by metallographic analyses; - determination of mechanical properties; - fracture surface analysis by scanning electron microscopy (SEM). A full set of non-destructive and destructive examinations concerning the integrity, dimensional changes, oxidation, hydriding and mechanical properties of the cladding was performed. The obtained results are typical for CANDU 6-type fuel. The obtained data could be used to evaluate the security, reliability and nuclear fuel performance, and for the improvement of the CANDU fuel. (authors)

  17. Mechanical behaviour and failure of fuel cladding zirconium alloys in nuclear power plants under accidental RIA-type situation

    International Nuclear Information System (INIS)

    Doan, D.T.

    2009-01-01

    In French Nuclear Pressurized Water Reactors (PWRs), most of structural parts of the fuel assembly consist of zirconium alloy tubes and plates. Optimizing the management of fuel in nuclear power plants led to the increase in the duration of fuel cycles and power. The use of high fuel burnups requires drastic changes in the rules for reactor design in the nuclear safety. The evaluation of nuclear reactors in accident situations is based on reference accident scenarios. One of these hypothetical accidents, examined in this study, is the 'Reactivity Initiated Accident'. In order to assess the structural integrity of these parts it is necessary to characterize both the plastic flow and fracture behaviour of the materials at various stages of the life cycle, (i.e. at increasing levels of hydriding, irradiation, oxidation or thermal mechanical loading). The purpose of this work is to provide experimental data and to develop a model of the thermo-mechanical behaviour and to propose a design analysis method in the case of non-irradiated clads, in RIA-type situations. Mechanical tests were conducted on Cold-Worked-Stress-Relieved and on Recrystallized Zircaloy-4 sheets using various kinds of samples including smooth and notched tensile specimens and small punch tests. Temperature was set to 25, 250 and 600 C with hydrogen contents between 0 and 1000 ppm. The model is based on a simplified description of a Zircaloy polycrystal in which scalar isotropic ductile damage including void nucleation and growth is added. The model is also physically based to easily transfer parameters determined for one material state to another (e.g. transfer between sheet and tube or between different levels of irradiation). The model was implemented in the Finite Element software Zebulon using either an explicit or an implicit time integration scheme. Uniaxial tension tests were used to tune the model parameters for both materials, considering various values of temperature and hydrogen levels

  18. Nuclear fuel safety studies by laser pulse heating

    International Nuclear Information System (INIS)

    Viswanadham, C.S.; Kumar, Santosh; Dey, G.K.; Kutty, T.R.G.; Khan, K.B.; Kumar, Arun; Jathar, V.P.; Sahoo, K.C.

    2009-01-01

    The behaviour of nuclear fuels under transient heating conditions is vital to nuclear safety. A laser pulse based heating system to simulate the transient heating conditions experienced by the fuel during reactor accidents like LOCA and RIA is under development at BARC, Mumbai. Some of the concepts used in this system are under testing in pilot studies. This paper describes the results of some pilot studies carried out on unirradiated UO 2 specimens by laser pulse heating, followed by metallography and X-ray diffraction measurements. (author)

  19. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    1982-01-01

    This film for a general audience deals with nuclear fuel waste management in Canada, where research is concentrating on land based geologic disposal of wastes rather than on reprocessing of fuel. The waste management programme is based on cooperation of the AECL, various universities and Ontario Hydro. Findings of research institutes in other countries are taken into account as well. The long-term effects of buried radioactive wastes on humans (ground water, food chain etc.) are carefully studied with the help of computer models. Animated sequences illustrate the behaviour of radionuclides and explain the idea of a multiple barrier system to minimize the danger of radiation hazards

  20. The modeling of fuel rod behaviour under RIA conditions in the code DYN3D

    International Nuclear Information System (INIS)

    Rohde, U.

    1998-01-01

    A description of the fuel rod behaviour and heat transfer model used in the code DYN3D for nuclear reactor core dynamic simulations is given. Besides the solution of heat conduction equations in fuel and cladding, the model comprises detailed description of heat transfer in the gas gap by conduction, radiation and fuel-cladding contact. The gas gap behaviour is modeled in a mechanistic way taking into account transient changes of the gas gap parameters based on given conditions for the initial state. Thermal, elastic and plastic deformations of fuel and cladding are taken into account within 1D approximation. Numerical studies concerning the fuel rod behaviour under RIA conditions in power reactors are reported. Fuel rod behaviour at high pressures and flow rates in power reactors is different from the behaviour under atmospheric pressure and stagnant flow conditions in the experiments. The mechanisms of fuel rod failure for fresh and burned fuel reported from the literature can be qualitatively reproduced by the DYN3D model. (author)

  1. Study of the chemical behaviour of technetium during irradiated fuels reprocessing

    International Nuclear Information System (INIS)

    Zelverte, A.

    1988-04-01

    This paper deals with the preparation of the lower oxidation states +III +IV and +V of technetium in nitric acid and its behaviour during the reprocessing of nuclear fuels (PUREX process). The first part of this work is a bibliographical study of this element in solution without any strong ligand. By chemical and electrochemical technics, pentavalent, tetravalent and trivalent technetium species, were prepared in nitric acid. The following chemical reactions are studied: - trivalent and tetravalent technetium oxidation by nitrate ion. - hydrazine and tetravalent uranium oxidation catalysed by technetium: in those reactions, we point out unequivocally the prominent part of trivalent and tetravalent technetium, - technetium behaviour towards hydroxylamine. Technetium should not cause any disturbance in the steps where hydroxylamine is employed to destroy nitrous acid and hydrazine replacement by hydroxylamine in uranium-plutonium partition could contribute to a best reprocessing of nuclear fuels [fr

  2. Classical molecular dynamics simulation of nuclear fuels

    International Nuclear Information System (INIS)

    Devanathan, R.; Krack, M.; Bertolus, M.

    2015-01-01

    Molecular dynamics simulation using forces calculated from empirical potentials, commonly called classical molecular dynamics, is well suited to study primary damage production by irradiation, defect interactions with fission gas atoms, gas bubble nucleation, grain boundary effects on defect and gas bubble evolution in nuclear fuel, and the resulting changes in thermomechanical properties. This enables one to obtain insights into fundamental mechanisms governing the behaviour of nuclear fuel, as well as parameters that can be used as inputs for mesoscale models. The interaction potentials used for the force calculations are generated by fitting properties of interest to experimental data and electronic structure calculations (see Chapter 12). We present here the different types of potentials currently available for UO 2 and illustrations of applications to the description of the behaviour of this material under irradiation. The results obtained from the present generation of potentials for UO 2 are qualitatively similar, but quantitatively different. There is a need to refine these existing potentials to provide a better representation of the performance of polycrystalline fuel under a variety of operating conditions, develop models that are equipped to handle deviations from stoichiometry, and validate the models and assumptions used. (authors)

  3. IAEA programme on nuclear fuel cycle and materials technologies

    International Nuclear Information System (INIS)

    Killeen, J.

    2008-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The coordinated research project on Improvement of Models Used For Fuel Behaviour Simulation (FUMEX II) as well as the changes, trends and main outputs of Sub-programme B.2 for 2006/2007 are discussed. The aim, composition and activities within the International Fuel Performance Experiments (IFPE) Database project are also presented

  4. Nuclear fuels with high burnup: safety requirements

    International Nuclear Information System (INIS)

    Phuc Tran Dai

    2016-01-01

    Vietnam authorities foresees to build 3 reactors from Russian design (VVER AES 2006) by 2030. In order to prepare the preliminary report on safety analysis the Vietnamese Agency for Radioprotection and Safety has launched an investigation on the behaviour of nuclear fuels at high burnups (up to 60 GWj/tU) that will be those of the new plants. This study deals mainly with the behaviour of the fuel assemblies in case of loss of coolant (LOCA). It appears that for an average burnup of 50 GWj/tU and for the advanced design of the fuel assembly (cladding and materials) safety requirements are fulfilled. For an average burnup of 60 GWj/tU, a list of issues remains to be assessed, among which the impact of clad bursting or the hydrogen embrittlement of the advanced zirconium alloys. (A.C.)

  5. Utilities' view on the fuel management of nuclear power plants

    International Nuclear Information System (INIS)

    Held, C.; Moraw, G.; Schneeberger, M.; Szeless, A.

    1977-01-01

    Utilities engagement in nuclear power requires an increasing amount of fuel management activities by the utilities in order to meet all tasks involved. These activities comprise essentially two main areas: - activities to secure the procurement of all steps of the fuel cycle from the head to the back end; - activities related to the incore fuel managment. A general survey of the different steps of the nuclear fuel cycle is presented together with the related activities and responsibilities which have to be realized by the utilities. Starting in the past, today's increasing utility involvement in the nuclear fuel management is shown, as well as future fuel management trends. The scope of utilities' fuel management activities is analyzed with respect to organizational aspects, technical aspects, safeguarding aspects, and financial aspects. Utilities taking active part in the fuel management serves to achieve high availability and flexibility of the nuclear power plant during the whole plant life as well as safe waste isolation. This can be assured by continuous optimization of all fuel management aspects of the power plant or on a larger scale of a power plant system, i.e., utility activities to minimize the effects of fuel cycle on the environment, which includes optimization of fuel behaviour, radiation exposure to public and personnel, and utility technical and economic evaluations of out- and incore fuel management. These activities of nuclear power producing utilities in the field of nuclear fuel cycle are together with a close cooperation with fuel industry as well as national and international authorities a necessary basis for the further utilization of nuclear power

  6. Thermodynamic and kinetic modelling of fuel oxidation behaviour in operating defective fuel

    International Nuclear Information System (INIS)

    Lewis, B.J.; Thompson, W.T.; Akbari, F.; Thompson, D.M.; Thurgood, C.; Higgs, J.

    2004-01-01

    A theoretical treatment has been developed to predict the fuel oxidation behaviour in operating defective nuclear fuel elements. The equilibrium stoichiometry deviation in the hyper-stoichiometric fuel has been derived from thermodynamic considerations using a self-consistent set of thermodynamic properties for the U-O system, which emphasizes replication of solubilities and three-phase invariant conditions displayed in the U-O binary phase diagram. The kinetics model accounts for multi-phase transport including interstitial oxygen diffusion in the solid and gas-phase transport of hydrogen and steam in the fuel cracks. The fuel oxidation model is further coupled to a heat conduction model to account for the feedback effect of a reduced thermal conductivity in the hyper-stoichiometric fuel. A numerical solution has been developed using a finite-element technique with the FEMLAB software package. The model has been compared to available data from several in-reactor X-2 loop experiments with defective fuel conducted at the Chalk River Laboratories. The model has also been benchmarked against an O/U profile measurement for a spent defective fuel element discharged from a commercial reactor

  7. Defect trap model of gas behaviour in UO2 fuel during irradiation

    International Nuclear Information System (INIS)

    Szuta, A.

    2003-01-01

    Fission gas behaviour is one of the central concern in the fuel design, performance and hypothetical accident analysis. The report 'Defect trap model of gas behaviour in UO 2 fuel during irradiation' is the worldwide literature review of problems studied, experimental results and solutions proposed in related topics. Some of them were described in details in the report chapters. They are: anomalies in the experimental results; fission gas retention in the UO 2 fuel; microstructure of the UO 2 fuel after irradiation; fission gas release models; defect trap model of fission gas behaviour; fission gas release from UO 2 single crystal during low temperature irradiation in terms of a defect trap model; analysis of dynamic release of fission gases from single crystal UO 2 during low temperature irradiation in terms of defect trap model; behaviour of fission gas products in single crystal UO 2 during intermediate temperature irradiation in terms of a defect trap model; modification of re-crystallization temperature of UO 2 in function of burnup and its impact on fission gas release; apparent diffusion coefficient; formation of nanostructures in UO 2 fuel at high burnup; applications of the defect trap model to the gas leaking fuel elements number assessment in the nuclear power station (VVER-PWR)

  8. Parametric study of fuel rod behaviour during the RIA using the modified FALCON code

    International Nuclear Information System (INIS)

    Khvostov, G.; Zimmermann, M.A.; Ledergerber, G.

    2010-01-01

    Presented in the paper are the results of a parametric study with the use of optimised modules of the FALCON code (FALCON-PSI) that addresses the effects of the selected characteristics of fast thermal transients (e.g., impulse width), fuel rod design (e.g., active fuel attack length) and boundary conditions (e.g., the coolant conditions) on fuel behaviour during a RIA. Specifically, the analysis of the governing processes for the fuel rod behaviour during the RIA events simulated in the experimental facility of the Nuclear Safety Research Reactor (NSRR, Japan) are in the focus of the present study. The results obtained can be useful for a better transfer of the NSRR test results in relation to the corresponding behaviour in LWRs and furthermore might also support the planning of future additional experiments. (authors)

  9. Behaviour of power and research reactor fuel in wet and dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Freire-Canosa, J [Nuclear Waste Management Organization (Canada)

    2012-07-01

    Canada has developed extensive experience in both wet and dry storage of CANDU fuel. Fuel has been stored in water pools at CANDU reactor sites for approximately 45 years, and in dry storage facilities for a large part of the past decade. Currently, Canada has 38 450 t U of spent fuel in storage, of which 8850 t U are in dry storage. In June 2007, the Government of Canada selected the Adaptive Phased Management (APM) approach, recommended by the Nuclear Waste Management Organization (NWMO), for the long-term management of Canada's nuclear-fuel waste. The Canadian utilities and AECL are conducting development work in extended storage systems as well as research on fuel behaviour under storage conditions. Both activities have as ultimate objective to establish a technical basis for assuring the safety of long-term fuel storage.

  10. Fuel Behaviour Simulations in Fumex III CRP at NRI

    International Nuclear Information System (INIS)

    Valach, M.; Klouzal, J.; Dostal, M.; Zymak, J.

    2013-01-01

    NRI Rez plc took part in the previous coordinated research projects focused on fuel behaviour modelling held by the IAEA - FUMEX-I and FUMEX-II. These were very helpful for the development and validation of various codes used in the Nuclear Research Institute Rez (NRI) for the evaluation of the fuel rod thermomechanical behaviour. Based on the considerations of our needs related to the modeling for Czech NPPs we have performed basic parametric calculations of two LOCA cases (IFA-650.1 and IFA-650.2) and detailed evaluation WWER related cases Kola MIR ramp rods. The AREVA ''Idealized case'' and 16x16 LTA cases were also calculated because of the high burnup reached. Report summarises simulated cases in the frame of FUMEX III Project at the NRI Rez plc. (author)

  11. Parameter study on the influence of prepressurization on LWR fuel rod behaviour during normal operation and hypothetical LOCA

    International Nuclear Information System (INIS)

    Fuchs, H.P.; Brzoska, B.; Depisch, F.; Sauermann, W.

    1978-01-01

    To analyse the influence of prepressurization on fuel rod behaviour, a parametric study has been performed considering the effects of the as-fabricated fuel rod internal prepressure on the normal operation and postulated LOCA red behaviour of a 1300 MWe1 KWU standard nuclear power plant pressurized water reactor. A reduction of prepressurization in the analysed range results in a negligible worsened normal operation behaviour whereas the LOCA behaviour is improved significantly. (author)

  12. Nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, H [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1976-10-01

    It is expected that nuclear power generation will reach 49 million kW in 1985 and 129 million kW in 1995, and the nuclear fuel having to be supplied and processed will increase in proportion to these values. The technical problems concerning nuclear fuel are presented on the basis of the balance between the benefit for human beings and the burden on the human beings. Recently, especially the downstream of nuclear fuel attracts public attention. Enriched uranium as the raw material for light water reactor fuel is almost monopolized by the U.S., and the technical information has not been published for fear of the diversion to nuclear weapons. In this paper, the present situations of uranium enrichment, fuel fabrication, transportation, reprocessing and waste disposal and the future problems are described according to the path of nuclear fuel cycle. The demand and supply of enriched uranium in Japan will be balanced up to about 1988, but afterwards, the supply must rely upon the early establishment of the domestic technology by centrifugal separation method. No problem remains in the fabrication of light water reactor fuel, but for the fabrication of mixed oxide fuel, the mechanization of the production facility and labor saving are necessary. The solution of the capital risk for the construction of the second reprocessing plant is the main problem. Japan must develop waste disposal techniques with all-out efforts.

  13. The Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    2011-08-01

    This brochure describes the nuclear fuel cycle, which is an industrial process involving various activities to produce electricity from uranium in nuclear power reactors. The cycle starts with the mining of uranium and ends with the disposal of nuclear waste. The raw material for today's nuclear fuel is uranium. It must be processed through a series of steps to produce an efficient fuel for generating electricity. Used fuel also needs to be taken care of for reuse and disposal. The nuclear fuel cycle includes the 'front end', i.e. preparation of the fuel, the 'service period' in which fuel is used during reactor operation to generate electricity, and the 'back end', i.e. the safe management of spent nuclear fuel including reprocessing and reuse and disposal. If spent fuel is not reprocessed, the fuel cycle is referred to as an 'open' or 'once-through' fuel cycle; if spent fuel is reprocessed, and partly reused, it is referred to as a 'closed' nuclear fuel cycle.

  14. Design, Manufacturing and Irradiation Behaviour of Fast Reactor Fuel. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2013-04-01

    Fast reactors are vital for ensuring the sustainability of nuclear energy in the long term. They offer vastly more efficient use of uranium resources and the ability to burn actinides, which are otherwise the long-lived component of high level nuclear waste. These reactors require development, qualification, testing and deployment of improved and innovative nuclear fuel and structural materials having very high radiation resistance, corrosion/erosion and other key operational properties. Several IAEA Member States have made efforts to advance the design and manufacture of technologies of fast reactor fuels, as well as to investigate their irradiation behaviour. Due to the acute shortage of fast neutron testing and post-irradiation examination facilities and the insufficient understanding of high dose radiation effects, there is a need for international exchange of knowledge and experience, generation of currently missing basic data, identification of relevant mechanisms of materials degradation and development of appropriate models. Considering the important role of nuclear fuels in fast reactor operation, the IAEA Technical Working Group on Fuel Performance and Technology (TWGFPT) proposed a Technical Meeting (TM) on 'Design, Manufacturing and Irradiation Behaviour of Fast Reactors Fuels', which was hosted by the Institute of Physics and Power Engineering (IPPE) in Obninsk, Russian Federation, from 30 May to 3 June 2011. The TM included a technical visit to the fuel production plant MSZ in Elektrostal. The purpose of the meeting was to provide a forum to share knowledge, practical experience and information on the improvement and innovation of fuels for fast reactors through scientific presentations and brainstorming discussions. The meeting brought together 34 specialists from national nuclear agencies, R and D and design institutes, fuel vendors and utilities from 10 countries. The presentations were structured into four sections: R and D Programmes on FR Fuel

  15. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  16. Technical limitations of nuclear fuel materials and structures

    International Nuclear Information System (INIS)

    Hansson, L.; Planman, T.; Vitikainen, E.

    1993-05-01

    This report gives a summary of the tasks carried out within the project 'Technical limitations of nuclear fuel materials and structures' which belongs to the Finnish national research programme called 'Systems behaviour and operational aspects of safety'. The duration of the project was three years from 1990 to 1992. Most western LWR utilities, including the two Finnish ones have an incentive to implement extended burnup fuel cycles in their nuclear power plants. The aim of this project has been authorities to support them in the assessment and licensing of new fuel designs and materials. The research work of the project was focused on collecting and qualifying fuel performance data and on performing laboratory tests on fresh and irradiated cladding and structural materials. Moreover, knowledge of the high burnup phenomena was obtained through participation in international research projects such as OECD Halden Project and several Studsvik projects. Experimental work within the framework of the VVER fuel cooperative effort was also continued. (orig.)

  17. Thermochemistry of nuclear fuels in advanced reactors

    International Nuclear Information System (INIS)

    Agarwal, Renu

    2015-01-01

    The presence of a large number of elements, accompanied with steep temperature gradient results in dynamic chemistry during nuclear fuel burn-up. Understanding this chemistry is very important for efficient and safe usage of nuclear fuels. The radioactive nature of these fuels puts lot of constraint on regulatory bodies to ensure their accident free operation in the reactors. One of the common aims of advanced fuels is to achieve high burn-up. As burn-up of the fuel increases, chemistry of fission-products becomes increasingly more important. To understand different phenomenon taking place in-pile, many out of-pile experiments are carried out. Extensive studies of thermodynamic properties, phase analysis, thermophysical property evaluation, fuel-fission product clad compatibility are carried out with relevant compounds and simulated fuels (SIMFUEL). All these data are compiled and jointly evaluated using different computational methods to predict fuel behaviour during burn-up. Only when this combined experimental and theoretical information confirms safe operation of the pin, a test pin is prepared and burnt in a test reactor. Every fuel has a different chemistry and different constraints associated with it. In this talk, various thermo-chemical aspects of some of the advanced fuels, mixed carbide, mixed nitride, 'Pu' rich MOX, 'Th' based AHWR fuels and metallic fuels will be discussed. (author)

  18. Romanian nuclear fuel program

    International Nuclear Information System (INIS)

    Budan, O.

    1999-01-01

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified and authorised CANDU-6 fuel supplier. The re-loading of the Cernavoda NGS Unit 1 started in the middle

  19. On-line system for monitoring of boiling in nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Tuerkcan, E.; Kozma, R.; Verhoef, J.P.; Nabeshima, K.

    1996-01-01

    An important goal of nuclear reactor instrumentation is the continuous monitoring of the state of the reactor and the detection of deviations from the normal behaviour at an early stage. Early detection of anomalies enables one to make the necessary steps in order to prevent further damage of nuclear fuel. In the present paper, an on-line core monitoring system is described by means of which boiling anomaly in nuclear reactor fuel assemblies can be detected. (author). 9 refs, 7 figs

  20. Nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding, and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  1. Nuclear fuel element

    International Nuclear Information System (INIS)

    Thompson, J.R.; Rowland, T.C.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting, fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  2. Viewpoint of utilities regarding fuel management of nuclear power plants

    International Nuclear Information System (INIS)

    Held, C.; Moraw, G.; Schneeberger, M.; Szeless, A.

    1977-01-01

    The engagement of utilities in nuclear power requires them to engage in an increasing amount of fuel management activities in order to carry out all the tasks involved. Essentially, these activities involve two main areas: The procurement of all steps of the fuel cycle from the head to the back end; and in-core fuel management. A general survey of the different steps of the nuclear fuel cycle is presented together with the related activities and responsibilities which have to be borne by the utilities. Today's increasing utility involvement in the nuclear fuel management is shown, as well as future fuel management trends. The fuel management activities of the utilities are analysed with respect to organizational, technical, safeguarding, and financial aspects. The active participation of the utilities in fuel management helps to achieve high availability and flexibility of the nuclear power plant during its whole life as well as safe waste isolation. This can be ensured by continuous optimization of all fuel management aspects of the power plant or, on a larger scale, of a power plant system, i.e. activities by utilities to minimize fuel-cycle effects on the environment, which include optimization of fuel behaviour, and radiation exposure to the public and personnel; and technical and economic evaluations by utilities of out- and in-core fuel management. (author)

  3. Nuclear-fuel-cycle education: Module 1. Nuclear fuel cycle overview

    International Nuclear Information System (INIS)

    Eckhoff, N.D.

    1981-07-01

    This educational module is an overview of the nuclear-fule-cycle. The overview covers nuclear energy resources, the present and future US nuclear industry, the industry view of nuclear power, the International Nuclear Fuel Cycle Evaluation program, the Union of Concerned Scientists view of the nuclear-fuel-cycle, an analysis of this viewpoint, resource requirements for a model light water reactor, and world nuclear power considerations

  4. Fuel performance-REP, Seminars on nuclear fuel performance based on basic underlining phenomena, proceedings

    International Nuclear Information System (INIS)

    2008-01-01

    Description: The need for further improving the understanding of basic phenomena underlying nuclear fuel behaviour has been recognised both by fuel vendors, experts in fuel research in the different laboratories and committees and working groups coordinating international activities. The OECD/NEA Nuclear Science Committee has established an Experts Group addressing this issue. This has led to establishing an International Fuel Performance Experiments Database (IFPE) that should help model evaluation and validation. Many years ago the IAEA established an International Working Group on Fuel Performance and Technology (IWGFPT) that led to the FUMEX-I and FUMEX-II (Fuel Modelling Exercise) which has had an important impact on code improvements. Both international organisations, with the support of national organisations, co-operate in establishing and maintaining the Database and to build confidence in the predictive power of the models through international comparison exercises. But above all the different parties have agreed that seminars focussed on specific phenomena would be beneficial to exchange current knowledge, identify outstanding problems and agree on common action that would lead to improved understanding of the phenomena. A series of three seminars has been initiated by the Commissariat a l'Energie Atomique (CEA), Electricite de France (EdF), Framatome and Cogema under the aegis of the OECD/NEA and the IAEA. 1. Thermal Performance of High Burn-Up LWR Fuel at Cadarache, France, from 3 to 6 of March 1998. Thermal performance occupies the most important aspect of the fuel performance modelling. Not only is it extremely important from a safety point of view, but also many of the material properties of interest and behaviour, such as transport properties like fuel creep and fission gas release are thermally activated processes. Thus, in order to model these processes correctly, it is critical to calculate temperatures and their distribution as accurately as

  5. Hazards and control of ruthenium in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Eichholz, G.G.

    1978-01-01

    A review is presented of present information on the possible hazards of radioruthenium in the nuclear fuel cycle and its behaviour in nuclear operations and in the environment. The subject is dealt with under the following headings: basic chemical and nuclear properties of ruthenium; chemistry (including the ruthenium-nitric acid system, electrochemistry, extraction processes); ruthenium toxicity; generation of radioruthenium (fallout sources, reactor sources, fuel reprocessing operations); waste treatment (cementation and bitumenization, calcining processes, vitrification); movement in the environment (movement of airborne effluents, liquid effluents and the freshwater environment, marine environment, bottom sediments, marine organisms, terrestrial environments, uptake in vegetation and animals); conclusion. (U.K.)

  6. Long-term storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Kempe, T.F.; Martin, A.; Thorne, M.C.

    1980-06-01

    This report presents the results of a study on the storage of spent nuclear fuel, with particular reference to the options which would be available for long-term storage. Two reference programmes of nuclear power generation in the UK are defined and these are used as a basis for the projection of arisings of spent fuel and the storage capacity which might be needed. The characteristics of spent fuel which are relevant to long-term storage include the dimensions, materials and physical construction of the elements, their radioactive inventory and the associated decay heating as a function of time after removal from the reactor. Information on the behaviour of spent fuel in storage ponds is reviewed with particular reference to the corrosion of the cladding. The review indicates that, for long-term storage, both Magnox and AGR fuel would need to be packaged because of the high rate of cladding corrosion and the resulting radiological problems. The position on PWR fuel is less certain. Experience of dry storage is less extensive but it appears that the rate of corrosion of cladding is much lower than in water. Unit costs are discussed. Consideration is given to the radiological impact of fuel storage. (author)

  7. Nuclear fuel element

    International Nuclear Information System (INIS)

    Yamamoto, Seigoro.

    1994-01-01

    Ultrafine particles of a thermal neutron absorber showing ultraplasticity is dispersed in oxide ceramic fuels by more than 1% to 10% or lower. The ultrafine particles of the thermal neutron absorber showing ultrafine plasticity is selected from any one of ZrGd, HfEu, HfY, HfGd, ZrEu, and ZrY. The thermal neutron absorber is converted into ultrafine particles and solid-solubilized in a nuclear fuel pellet, so that the dispersion thereof into nuclear fuels is made uniform and an absorbing performance of the thermal neutrons is also made uniform. Moreover, the characteristics thereof, for example, physical properties such as expansion coefficient and thermal conductivity of the nuclear fuels are also improved. The neutron absorber, such as ZrGd or the like, can provide plasticity of nuclear fuels, if it is mixed into the nuclear fuels for showing the plasticity. The nuclear fuel pellets are deformed like an hour glass as burning, but, since the end portion thereof is deformed plastically within a range of a repulsive force of the cladding tube, there is no worry of damaging a portion of the cladding tube. (N.H.)

  8. Some elaborating methods of gamma scanning results on irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Sternini, E.

    1979-01-01

    Gamma scanning, as a post-irradiation examination, is a technique which provides a large number of informations on irradiated nuclear fuels. Power profile, fission products distribution, average and local burn-up of single elements structural and nuclear behaviour of fuel materials are examples of the obtained informations. In the present work experimental methods and theoretical calculations used at the CNEN hot cell laboratory for the mentioned purposes are described. Errors arising from the application of the gamma scanning technique are also discussed

  9. Nuclear Fuel Reprocessing

    International Nuclear Information System (INIS)

    Simpson, Michael F.; Law, Jack D.

    2010-01-01

    This is a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. Nuclear reprocessing is the chemical treatment of spent fuel involving separation of its various constituents. Principally, it is used to recover useful actinides from the spent fuel. Radioactive waste that cannot be re-used is separated into streams for consolidation into waste forms. The first known application of nuclear reprocessing was within the Manhattan Project to recover material for nuclear weapons. Currently, reprocessing has a peaceful application in the nuclear fuel cycle. A variety of chemical methods have been proposed and demonstrated for reprocessing of nuclear fuel. The two most widely investigated and implemented methods are generally referred to as aqueous reprocessing and pyroprocessing. Each of these technologies is described in detail in Section 3 with numerous references to published articles. Reprocessing of nuclear fuel as part of a fuel cycle can be used both to recover fissionable actinides and to stabilize radioactive fission products into durable waste forms. It can also be used as part of a breeder reactor fuel cycle that could result in a 14-fold or higher increase in energy utilization per unit of natural uranium. Reprocessing can also impact the need for geologic repositories for spent fuel. The volume of waste that needs to be sent to such a repository can be reduced by first subjecting the spent fuel to reprocessing. The extent to which volume reduction can occur is currently under study by the United States Department of Energy via research at various national laboratories and universities. Reprocessing can also separate fissile and non-fissile radioactive elements for transmutation.

  10. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Nakai, Keiichi

    1983-01-01

    Purpose: To decrease the tensile stresses resulted in a fuel can as well as prevent decladding of fuel pellets into the bore holes by decreasing the inner pressure within the nuclear fuel element. Constitution: A fuel can is filled with hollow fuel pellets, inserted with a spring for retaining the hollow fuel pellets with an appropriate force and, thereafter, closely sealed at the both ends with end plugs. A cylindrical body is disposed into the bore holes of the hollow fuel pellets. Since initial sealing gases and/or gaseous nuclear fission products can thus be excluded from the bore holes where the temperature is at the highest level, the inner pressure of the nuclear fuel element can be reduced to decrease the tensile strength resulted to the fuel can. Furthermore, decladding of fuel pellets into the bore holes can be prevented. (Moriyama, K.)

  11. Nuclear fuels and development of nuclear fuel elements

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Mannan, S.L.

    1989-01-01

    Safe, reliable and economic operation of nuclear fission reactors, the source of nuclear power at present, requires judicious choice, careful preparation and specialised fabrication procedures for fuels and fuel element structural materials. These aspects of nuclear fuels (uranium, plutonium and their oxides and carbides), fuel element technology and structural materials (aluminium, zircaloy, stainless steel etc.) are discussed with particular reference to research and power reactors in India, e.g. the DHRUVA research reactor at BARC, Trombay, the pressurised heavy water reactors (PHWR) at Rajasthan and Kalpakkam, and the Fast Breeder Test Reactor (FBTR) at Kalpakkam. Other reactors like the gas-cooled reactors operating in UK are also mentioned. Because of the limited uranium resources, India has opted for a three-stage nuclear power programme aimed at the ultimate utilization of her abundant thorium resources. The first phase consists of natural uranium dioxide-fuelled, heavy water-moderated and cooled PHWR. The second phase was initiated with the attainment of criticality in the FBTR at Kalpakkam. Fast Breeder Reactors (FBR) utilize the plutonium and uranium by-products of phase 1. Moreover, FBR can convert thorium into fissile 233 U. They produce more fuel than is consumed - hence, the name breeders. The fuel parameters of some of the operating or proposed fast reactors in the world are compared. FBTR is unique in the choice of mixed carbides of plutonium and uranium as fuel. Factors affecting the fuel element performance and life in various reactors e.g. hydriding of zircaloys, fuel pellet-cladding interaction etc. in PHWR and void swelling; irradiation creep and helium embrittlement of fuel element structural materials in FBR are discussed along with measures to overcome some of these problems. (author). 15 refs., 9 tabs., 23 figs

  12. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1980-01-01

    A bimetallic spacer means is cooperatively associated with a nuclear fuel assembly and operative to resist the occurrence of in-reactor bowing of the nuclear fuel assembly. The bimetallic spacer means in one embodiment of the invention includes a space grid formed, at least principally, of zircaloy to the external surface of which are attached a plurality of stainless steel strips. In another embodiment the strips are attached to fuel pins. In each of the embodiments, the stainless steel strips during power production expand outwardly to a greater extent than do the members to which the stainless steel strips are attached, thereby forming stiff springs which abut against like bimetallic spacer means with which the other nuclear fuel assemblies are provided in a given nuclear reactor core to thus prevent the occurrence of in-reactor bowing of the nuclear fuel assemblies. (author)

  13. Nuclear power and the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    The IAEA is organizing a major conference on nuclear power and the nuclear fuel cycle, which is to be held from 2 to 13 May 1977 in Salzburg, Austria. The programme for the conference was published in the preceding issue of the IAEA Bulletin (Vol.18, No. 3/4). Topics to be covered at the conference include: world energy supply and demand, supply of nuclear fuel and fuel cycle services, radioactivity management (including transport), nuclear safety, public acceptance of nuclear power, safeguarding of nuclear materials, and nuclear power prospects in developing countries. The articles in the section that follows are intended to serve as an introduction to the topics to be discussed at the Salzburg Conference. They deal with the demand for uranium and nuclear fuel cycle services, uranium supplies, a computer simulation of regional fuel cycle centres, nuclear safety codes, management of radioactive wastes, and a pioneering research project on factors that determine public attitudes toward nuclear power. It is planned to present additional background articles, including a review of the world nuclear fuel reprocessing situation and developments in the uranium enrichment industry, in future issues of the Bulletin. (author)

  14. Nuclear power generation and nuclear fuel

    International Nuclear Information System (INIS)

    Okajima, Yasujiro

    1985-01-01

    As of June 30, 1984, in 25 countries, 311 nuclear power plants of about 209 million kW were in operation. In Japan, 27 plants of about 19 million kW were in operation, and Japan ranks fourth in the world. The present state of nuclear power generation and nuclear fuel cycle is explained. The total uranium resources in the free world which can be mined at the cost below $130/kgU are about 3.67 million t, and it was estimated that the demand up to about 2015 would be able to be met. But it is considered also that the demand and supply of uranium in the world may become tight at the end of 1980s. The supply of uranium to Japan is ensured up to about 1995, and the yearly supply of 3000 st U 3 O 8 is expected in the latter half of 1990s. The refining, conversion and enrichment of uranium are described. In Japan, a pilot enrichment plant consisting of 7000 centrifuges has the capacity of about 50 t SWU/year. UO 2 fuel assemblies for LWRs, the working of Zircaloy, the fabrication of fuel assemblies, the quality assurance of nuclear fuel, the behavior of UO 2 fuel, the grading-up of LWRs and nuclear fuel, and the nuclear fuel business in Japan are reported. The reprocessing of spent fuel and plutonium fuel are described. (Kako, I.)

  15. Model investigation of fuel rod behaviour

    International Nuclear Information System (INIS)

    Girgis, M.M.; Wiesenack, W.; Stegemann, D.

    1985-06-01

    Thermal and mechanical behaviour of fuel rods can be explained but unsatisfactorily by models based of an axial symmetry concept. Recently developed models include, with respect to their thermal components, a simple method for the computation of the temperature distribution within the fuel, and they also take into account the influence of excentrically placed pellets for the computation of heat transfer in the cold gap. Additionally, a finite-element model is used to evaluate the effects of cracking and fragmentation on the thermal behaviour of pellets. The reaction of fuel and fuel cladding to external and internal loadings and the axial interaction between fuel and cladding are described in the mechanical portion of the model. A special case of axial coupling is the so-called random stacking interaction caused by fuel pellets placed excentrically at the cladding and sliding radially and axially. In the comparison of measurement results, both thermal and mechanical behaviour of different rods from the OECD Halden Reactor Project are subject to investigations. (RF) [de

  16. Model for the behaviour of thorium and uranium fuels at pelletization

    International Nuclear Information System (INIS)

    Ferreira Neto, Ricardo Alberto

    2000-11-01

    In this work, a model for the behaviour of thorium-uranium-mixed oxide microspheres in the pelletizing process is presented. This model was developed in a program whose objective was to demonstrate the viability of producing fissile material through the utilization of thorium in pressurized water reactors. This is important because it allows the saving of the strategic uranium reserves, and makes it possible the nuclear utilization of the large brazilian thorium reserves. The objective was to develop a model for optimizing physical properties of the microspheres, such as density, fracture strength and specific surface, so as to produce fuel pellets with microstructure, density, open porosity and impurity content, in accordance with the fuel specification. And, therefore, to adjust the sol-gel processing parameters in order to obtain these properties, and produce pellets with an optimized microstructure, adequate to a stable behaviour under irradiation. The model made it clear that to achieve this objective, it is necessary to produce microspheres with density and specific surface as small as possible. By changing the sol-gel processing parameters, microspheres with the desired properties were produced, and the model was experimentally verified by manufacturing fuel pellets with optimized microstructures, density, open porosity and impurity content, meeting the specifications for this new nuclear fuel for pressurized water reactors. Furthermore it was possible to obtain mathematical expressions that enables to calculate from the microspheres properties and the utilized compaction pressure, the sinter density that will be obtained in the sintered pellet and the necessary compaction pressure to reach the sintered density specified for the fuel. (author)

  17. Role of ion chromatograph in nuclear fuel fabrication process at Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Balaji Rao, Y.; Prasada Rao, G.; Prahlad, B.; Saibaba, N.

    2012-01-01

    The present paper discusses the different applications of ion chromatography followed in nuclear fuel fabrication process at Nuclear Fuel Complex. Some more applications of IC for characterization of nuclear materials and which are at different stages of method development at Control Laboratory, Nuclear Fuel Complex are also highlighted

  18. CANDU fuel behaviour under transient conditions

    International Nuclear Information System (INIS)

    Segel, A.W.L.

    1979-04-01

    The Canadian R and D program to understand CANDU fuel behaviour under transient conditions is described. Fuel sheath behaviour studies have led to the development of a model of transient plastic strain in inert gas, which integrates the deformation due to several mechanisms. Verification tests demonstrated that on average the model overpredicts strain by 20%. From oxidation kinetics studies a sheath failure embrittlement criterion based on oxygen distribution has been developed. We have also established a rate equation for high-temperature stress-dependent crack formation due to embrittlement of the sheath by beryllium. An electric, simulated fuel element is being used in laboratory tests to characterize the behaviour of fuel in the horizontal. In-reactor, post-dryout tests have been done for several years. There is an axially-segmented, axisymmetric fuel element model in place and a fully two-dimensional code is under development. Laboratory testing of bundles, in its early stages, deals with the effects of geometric distortion and sheath-to-sheath interaction. In-reactor, post-dryout tests of CANDU fuel bundles with extensive central UO 2 melting did not result in fuel fragmentation nor damage to the pressure tube. (author)

  19. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  20. Nuclear fuel lease accounting

    International Nuclear Information System (INIS)

    Danielson, A.H.

    1986-01-01

    The subject of nuclear fuel lease accounting is a controversial one that has received much attention over the years. This has occurred during a period when increasing numbers of utilities, seeking alternatives to traditional financing methods, have turned to leasing their nuclear fuel inventories. The purpose of this paper is to examine the current accounting treatment of nuclear fuel leases as prescribed by the Financial Accounting Standards Board (FASB) and the Federal Energy Regulatory Commission's (FERC's) Uniform System of Accounts. Cost accounting for leased nuclear fuel during the fuel cycle is also discussed

  1. Boosting nuclear fuels

    International Nuclear Information System (INIS)

    Demarthon, F.; Donnars, O.; Dupuy-Maury, F.

    2002-01-01

    This dossier gives a broad overview of the present day status of the nuclear fuel cycle in France: 1 - the revival of nuclear power as a solution to the global warming and to the increase of worldwide energy needs; 2 - the security of uranium supplies thanks to the reuse of weapon grade highly enriched uranium; 3 - the fabrication of nuclear fuels from the mining extraction to the enrichment processes, the fabrication of fuel pellets and the assembly of fuel rods; 4 - the new composition of present day fuels (UO x and chromium-doped pellets); 5 - the consumption of plutonium stocks and the Corail and Apa fuel assemblies for the reduction of plutonium stocks and the preservation of uranium resources. (J.S.)

  2. Nuclear fuel pellet loading apparatus

    International Nuclear Information System (INIS)

    Gerkey, K.S.

    1979-01-01

    An automatic apparatus for loading a predetermined amount of nuclear fuel pellets into a nuclear fuel element to be used in a nuclear reactor is described. The apparatus consists of a vibratory bed capable of supporting corrugated trays containing rows of nuclear fuel pellets and arranged in alignment with the open ends of several nuclear fuel elements. A sweep mechanism is arranged above the trays and serves to sweep the rows of fuel pellets onto the vibratory bed and into the fuel element. A length detecting system, in conjunction with a pellet stopping mechanism, is also provided to assure that a predetermined amount of nuclear fuel pellets are loaded into each fuel element

  3. Nuclear fuel

    International Nuclear Information System (INIS)

    Azevedo, J.B.L. de.

    1980-01-01

    All stages of nuclear fuel cycle are analysed with respect to the present situation and future perspectives of supply and demand of services; the prices and the unitary cost estimation of these stages for the international fuel market are also mentioned. From the world resources and projections of uranium consumption, medium-and long term analyses are made of fuel availability for several strategies of use of different reactor types. Finally, the cost of nuclear fuel in the generation of electric energy is calculated to be used in the energetic planning of the electric sector. (M.A.) [pt

  4. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hardy, C.J.; Silver, J.M.

    1985-09-01

    The report provides data and assessments of the status and prospects of nuclear power and the nuclear fuel cycle. The report discusses the economic competitiveness of nuclear electricity generation, the extent of world uranium resources, production and requirements, uranium conversion and enrichment, fuel fabrication, spent fuel treatment and radioactive waste management. A review is given of the status of nuclear fusion research

  5. Simulation and modelling of advanced Argentinian nuclear fuels

    International Nuclear Information System (INIS)

    Marino, A.; Losada, E.; Demarco, G.; Garces, J.; Marino, A.; Jaroszewicz, S.; Mosca, H.; Demarco, G.

    2011-01-01

    The BaCo code (Barra Combustible, Spanish expression for 'fuel rod') was developed to simulate the nuclear fuel rods behaviour under irradiation. The generation of nucleo electricity in Argentina is based on PHWR NPP and, as a consequence, BaCo is focused on PHWR fuels keeping full compatibility with PWR, WWER, among others type of fuels (commercial, experimental or prototypes). BaCo includes additional extensions for 3D calculations, statistical improvements, fuel design and batch analysis. Research on new fuels and cladding materials properties based on ab initio and multiscale modelling are currently under development to be included in BaCo simulations in order to be applied to Generation IV reactors. The ab initio and multiscale modelling can enhance the field of application of the code by including a strong physical basement covering the unavailable data needed for those improvements. (authors)

  6. Nuclear fuel accounting

    International Nuclear Information System (INIS)

    Aisch, D.E.

    1977-01-01

    After a nuclear power plant has started commercial operation the actual nuclear fuel costs have to be demonstrated in the rate making procedure. For this purpose an accounting system has to be developed which comprises the following features: 1) All costs associated with nuclear fuel shall be correctly recorded; 2) it shall be sufficiently flexible to cover also deviations from proposed core loading patterns; 3) it shall be applicable to different fuel cycle schemes. (orig./RW) [de

  7. Nuclear Fuel Cycle Information System. A directory of nuclear fuel cycle facilities. 2009 ed

    International Nuclear Information System (INIS)

    2009-04-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities, published online as part of the Integrated Nuclear Fuel Cycle Information System (iNFCIS: http://www-nfcis.iaea.org/). This is the fourth hardcopy publication in almost 30 years and it represents a snapshot of the NFCIS database as of the end of 2008. Together with the attached CD-ROM, it provides information on 650 civilian nuclear fuel cycle facilities in 53 countries, thus helping to improve the transparency of global nuclear fuel cycle activities

  8. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  9. Activities of the IAEA Nuclear Energy Department in the area of fuel engineering

    International Nuclear Information System (INIS)

    Bychkov, A.; ); Inozemtsev, V.; )

    2012-01-01

    The IAEA presentation provides an outlook on the current status and projections of nuclear power development in the world taking into account the affect of the Fukushima accident, as well as information about the IAEA Action Plan on Nuclear Safety that was unanimously enforced by 151 Member States at the IAEA General Conference in September 2011. Details are given about the implementation tools of the sub-programme 'Nuclear Power Reactor Fuel Engineering': Technical Meetings, Coordinated Research Projects, and Expert Reviews. This information about recent, on-going and planned IAEA activities related to fuel R and D, design, manufacturing, in-reactor behaviour and operational experience will be useful for specialists interested in corresponding publications or for those planning participation in the IAEA projects. Particular emphasis is made on CQCNF priority subjects, including preparation of the IAEA Nuclear Energy Series Guide on Quality and Reliability of Fuel for Water-Cooled Power Reactors, where the expert group from the Nuclear Fuel Complex in Hyderabad was among the key contributors. (author)

  10. Modeling of circulating nuclear fuels with Comsol Multiphysics

    International Nuclear Information System (INIS)

    Cammi, A.; Di Marcello, V.; Luzzi, L.

    2007-01-01

    This paper presents multi-physics modelling of circulating nuclear fuel in a simple geometry by means of COMSOL 3.3. Among the Circulating Fuel Reactors (CFR), the most promising is the Molten Salt Reactor (MSR). Physics of such circulating nuclear fuel requires five coupled equations of conservation laws: the momentum balance, the energy balance, the neutron balance and the precursors balance. In this complex field, represented by the coupling of thermal-hydrodynamics with neutronics, the highly non linear regime and the wide disparity of time scales, COMSOL was used to investigate the region of reactor that comprises only the flowing fluid, and a parametric study was performed by varying the size of the analyzed region and the inlet velocity of fluid. This study is sufficient to achieve a preliminary evaluation of the thermo-physical behaviour of the system and paves the way for further progress concerning a more complex and realistic MSR geometry. (authors)

  11. Nuclear fuel element

    International Nuclear Information System (INIS)

    Penrose, R.T.; Thompson, J.R.

    1976-01-01

    A method of protecting the cladding of a nuclear fuel element from internal attack and a nuclear fuel element for use in the core of a nuclear reactor are disclosed. The nuclear fuel element has disposed therein an additive of a barium-containing material and the barium-containing material collects reactive gases through chemical reaction or adsorption at temperatures ranging from room temperature up to fuel element plenum temperatures. The additive is located in the plenum of the fuel element and preferably in the form of particles in a hollow container having a multiplicity of gas permeable openings in one portion of the container with the openings being of a size smaller than the size of the particles. The openings permit gases and liquids entering the plenum to contact the particles. The additive is comprised of elemental barium or a barium alloy containing one or more metals in addition to barium such as aluminum, zirconium, nickel, titanium and combinations thereof. 6 claims, 3 drawing figures

  12. Fuel behaviour

    International Nuclear Information System (INIS)

    Fodor, M.; Matus, L.; Vigassy, J.

    1987-11-01

    A short summary of the main critical points in fuel performance of nuclear power reactors from chemical and mechanical point of view is given. A schedule for a limited research program is included. (author) 17 refs

  13. Behaviour of rock-like oxide fuels under reactivity-initiated accident conditions

    International Nuclear Information System (INIS)

    Kazuyuki, Kusagaya; Takehiko, Nakamura; Makio, Yoshinaga; Hiroshi, Akie; Toshiyuki, Yamashita; Hiroshi, Uetsuka

    2002-01-01

    Pulse irradiation tests of three types of un-irradiated rock-like oxide (ROX) fuel - yttria-stabilised zirconia (YSZ) single phase, YSZ and spinel (MgAl 2 O 4 ) homogeneous mixture and particle-dispersed YSZ/spinel - were conducted in the Nuclear Safety Research Reactor to investigate the fuel behaviour under reactivity-initiated accident conditions. The ROX fuels failed at fuel volumetric enthalpies above 10 GJ/m 3 , which was comparable to that of un-irradiated UO 2 fuel. The failure mode of the ROX fuels, however, was quite different from that of the UO 2 fuel. The ROX fuels failed with fuel pellet melting and a part of the molten fuel was released out to the surrounding coolant water. In spite of the release, no significant mechanical energy generation due to fuel/coolant thermal interaction was observed in the tested enthalpy range below∼12 GJ/m 3 . The YSZ type and homogenous YSZ/spinel type ROX fuels failed by cladding burst when their temperatures peaked, while the particle-dispersed YSZ/spinel type ROX fuel seemed to have failed by cladding local melting. (author)

  14. The modeling of fuel rod behaviour under RIA conditions in the code DYN3D

    International Nuclear Information System (INIS)

    Rohde, U.

    2001-01-01

    A description of the fuel rod behaviour and heat transfer model used in the code DYN3D for nuclear reactor core dynamic simulations is given. Besides the solution of heat conduction equations in fuel and cladding, the model comprises a detailed description of heat transfer in the gas gap by conduction, radiation and fuel-cladding contact. The gas gap behaviour is modeled in a mechanistic way taking into account transient changes of the gas gap parameters based on given conditions for the initial state. Thermal, elastic and plastic deformations of fuel and cladding are taken into account within 1D approximation. A creeping law for time-dependent estimation of plastic deformations is implemented. Metal-water reaction of the cladding material in the high temperature region is considered. The cladding-coolant heat transfer regime map covers the region from one-phase liquid convection to dispersed flow with superheated steam. Special emphasis is put on taking into account the impact of thermodynamic non-equilibrium conditions on heat transfer. For the validation of the model, experiments on fuel rod behaviour during RIAs carried out in Russian and Japanese pulsed research reactors with shortened probes of fresh fuel rods are calculated. Comparisons between calculated and measured results are shown and discussed. It is shown, that the fuel rod behaviour is significantly influenced by plastic deformation of the cladding, post crisis heat transfer with sub-cooled liquid conditions and heat release from the metal-water reaction. Numerical studies concerning the fuel rod behaviour under RIA conditions in power reactors are reported on. It is demonstrated, that the fuel rod behaviour at high pressures and flow rates in power reactors is different from the behaviour under atmospheric pressure and stagnant flow conditions in the experiments. The mechanisms of fuel rod failure for fresh and burned fuel reported from the literature can be qualitatively reproduced by the DYN3D

  15. Device for separating, purifying and recovering nuclear fuel material, impurities and materials from impurity-containing nuclear fuel materials or nuclear fuel containing material

    International Nuclear Information System (INIS)

    Sato, Ryuichi; Kamei, Yoshinobu; Watanabe, Tsuneo; Tanaka, Shigeru.

    1988-01-01

    Purpose: To separate, purify and recover nuclear fuel materials, impurities and materials with no formation of liquid wastes. Constitution: Oxidizing atmosphere gases are introduced from both ends of a heating furnace. Vessels containing impurity-containing nuclear fuel substances or nuclear fuel substance-containing material are continuously disposed movably from one end to the other of the heating furnace. Then, impurity oxides or material oxides selectively evaporated from the impurity-containing nuclear fuel substances or nuclear fuel substance-containing materials are entrained in the oxidizing atmosphere gas and the gases are led out externally from a discharge port opened at the intermediate portion of the heating furnace, filters are disposed to the exit to solidify and capture the nuclear fuel substances and traps are disposed behind the filters to solidify and capture the oxides by spontaneous air cooling or water cooling. (Sekiya, K.)

  16. Sensitivity analysis of biospheric behaviour of radionuclides released from nuclear waste repositories

    International Nuclear Information System (INIS)

    Korhonen, R.; Savolainen, I.; Suolanen, V.

    1985-01-01

    Sensitivity studies of biospheric behaviour of radionuclides released from a planned spent nuclear fuel repository are performed. Sensitivity of radionuclide concentrations in biosphere and that of radiation doses to solubility of nuclides, to sedimentation rate and to intercompartmental water exchange are studied. Solubility has pronounced effect on the sedimentation on the local scale, and in general, sediment sinks were found to be of major importance in the biospheric behaviour of radionuclides. (author)

  17. Properties of the high burnup structure in nuclear light water reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wiss, Thierry; Rondinella, Vincenzo V.; Konings, Rudy J.M. [European Commission, Joint Research Centre, Karlsruhe (Germany). Directorate Nuclear Safety and Security; and others

    2017-07-01

    The formation of the high burnup structure (HBS) is possibly the most significant example of the restructuring processes affecting commercial nuclear fuel in-pile. The HBS forms at the relatively cold outer rim of the fuel pellet, where the local burnup is 2-3 times higher than the average pellet burnup, under the combined effects of irradiation and thermo-mechanical conditions determined by the power regime and the fuel rod configuration. The main features of the transformation are the subdivision of the original fuel grains into new sub-micron grains, the relocation of the fission gas into newly formed intergranular pores, and the absence of large concentrations of extended defects in the fuel matrix inside the subdivided grains. The characterization of the newly formed structure and its impact on thermo-physical or mechanical properties is a key requirement to ensure that high burnup fuel operates within the safety margins. This paper presents a synthesis of the main findings from extensive studies performed at JRC-Karlsruhe during the last 25 years to determine properties and behaviour of the HBS. In particular, microstructural features, thermal transport, fission gas behaviour, and thermo-mechanical properties of the HBS will be discussed. The main conclusion of the experimental studies is that the HBS does not compromise the safety of nuclear fuel during normal operations.

  18. Multi-scale modelling of the physicochemical-mechanical coupling of fuel behaviour at high temperature in pressurized water reactors

    International Nuclear Information System (INIS)

    Julien, Jerome

    2008-01-01

    Within the frame of the problematic of pellet-sheath interaction in a nuclear fuel rod, a good description of the fuel thermo-mechanical behaviour is required. This research thesis reports the coupling of physics-chemistry (simulation of gas transfers between different cavities) and mechanics (assessment of fuel viscoplastic strains). A new micromechanical model is developed which uses a multi-scale approach to describe the evolution of the double population of cavities (cavities with two different scales) while taking internal pressures as well as the fuel macroscopic viscoplastic behaviour into account. The author finally describes how to couple this micromechanical mode to physics-chemistry models [fr

  19. Fuel Management of WWER-1000 Reactors of Kudankulam Nuclear Power Plant, India

    International Nuclear Information System (INIS)

    Pandey, Y.; Chauhan, A.

    2008-01-01

    Two units of WWER-1000 reactors of Russian design are under construction at Kudankulam site in India. These reactors are expected to be commissioned in 2008. The fuel management services for these reactors shall be carried out using Russian Computer codes. This paper includes a brief description of the core, fuel assembly lattice and physics modeling of the lattice and core for these reactors. Presented in this paper are the salient features of the core load pattern designs and fuel performance for 8 operating cycles of these reactors. The paper describes key improvements in the core load pattern designs to enhance the fuel utilization and its thermal behaviour. Presented in the paper are also the on site fuel management strategies with regard to fuel inventory and nuclear material accounting. A computer code for Fuel Inventory and Nuclear Material Accounting (FINMAC) has been developed for this purpose. The code FINMAC takes care of receipt of fresh fuel, flow between various accounting sub areas (ASAs), burnup or production of nuclear isotopes in the reactor cores and discharge from the reactor core. The code generates Material Balance Reports (MBRs) and Composition of Ending Inventory Reports (COEIs) as per the IAEA standards. (authors)

  20. World nuclear fuel cycle requirements 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-10

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  1. World nuclear fuel cycle requirements 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, ''burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs

  2. Nuclear fuels

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F.

    2009-01-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO 2 pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO 2 and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under irradiation

  3. Nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F

    2009-07-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO{sub 2} pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO{sub 2} and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under

  4. Accidental behaviour of nuclear fuel in a warehousing site under air: investigation of the nuclear ceramic oxidation and of fission gas release; Comportement accidentel du combustible nucleaire dans un site d'entreposage sous air: Etude de l'oxydation de la ceramique nucleaire et du relachement des gaz de fission

    Energy Technology Data Exchange (ETDEWEB)

    Desgranges, L.

    2006-12-15

    After a brief presentation of the context of his works, i.e. the nuclear fuel, its behaviour in a nuclear reactor, and studies performed in high activity laboratory, the author more precisely presents its research topic: the behaviour of defective nuclear fuel in air. Then, he describes the researches performed in three main directions: firstly, the characterization and understanding of fission gas localisation (experimental localisation, understanding of the bubble forming mechanisms), secondly, the determination of mechanisms related to oxidation (atomic mechanisms related to UO{sub 2} oxidation, oxidation of fragments of irradiated fuel, the CROCODILE installation). He finally presents his scientific project which notably deals with fission gas release (from UO{sub 2} to U{sub 3}O{sub 7}, and from U{sub 3}O{sub 7} to U{sub 3}O{sub 8}), and with further high activity laboratory experiments

  5. Fuel Behaviour in Transport after Dry Storage: a Key Issue for the Management of used Nuclear Fuel

    International Nuclear Information System (INIS)

    Issard, Herve

    2014-01-01

    Interim used fuel dry storage has been developed in many countries providing an intermediate solution while waiting for evaluation and decisions concerning future use (such as recycling) or disposal sites. There is an important industrial experience feedback and excellent safety records. It appears that the duration of interim storage may become longer than initially expected. At the start of storage operations 40 years was considered sufficiently long to make a decision on either recycling or direct disposal of used nuclear fuel. Now it is said that storage time may have to be extended. Whatever the choice for the management of used fuel, it will finally have to be transported from the storage facility to another location, for recycling or final disposal. Bearing in mind the important principle that radioactive waste shall be managed in such a way that undue burdens will not be imposed on future generations, there is no guarantee that the fuel characteristics can be maintained in perpetuity. On the other hand, transport accident conditions from applicable regulation (IAEA SSR-6) are very severe for irradiated materials. Therefore, in compliance with transport regulations, the safety analysis of the fuel in transport after storage is mandatory. This paper will give an overview of the current situation related to the used fuel behaviour in transport after dry storage. On this matter there are some elements of information already available as well as some gaps of knowledge. Several national R and D programs and international teams are presently addressing these gaps. A lot of R and D work has already been done. An objective of these R and D projects is to aid decision makers. It is important to fix a limit and not to multiply intermediate operations because it means higher costs and more uncertainties. The identified gaps concern the following issues especially for high burn-up (HBU) fuels: thermal model for casks, degradation process of fuel material, cladding creep

  6. Spent nuclear fuel storage

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2005-01-01

    When a country becomes self-sufficient in part of the nuclear cycle, as production of fuel that will be used in nuclear power plants for energy generation, it is necessary to pay attention for the best method of storing the spent fuel. Temporary storage of spent nuclear fuel is a necessary practice and is applied nowadays all over the world, so much in countries that have not been defined their plan for a definitive repository, as well for those that already put in practice such storage form. There are two main aspects that involve the spent fuels: one regarding the spent nuclear fuel storage intended to reprocessing and the other in which the spent fuel will be sent for final deposition when the definitive place is defined, correctly located, appropriately characterized as to several technical aspects, and licentiate. This last aspect can involve decades of studies because of the technical and normative definitions at a given country. In Brazil, the interest is linked with the storage of spent fuels that will not be reprocessed. This work analyses possible types of storage, the international panorama and a proposal for future construction of a spent nuclear fuel temporary storage place in the country. (author)

  7. Development and application of the BISON fuel performance code to the analysis of fission gas behaviour

    International Nuclear Information System (INIS)

    Pastore, G.; Hales, J.D.; Novascone, S.R.; Perez, D.M.; Spencer, B.W.; Williamson, R.L.

    2014-01-01

    BISON is a modern finite-element based, multidimensional nuclear fuel performance code that has been under development at Idaho National Laboratory (USA) since 2009. The capabilities of BISON comprise implicit solution of the fully coupled thermo-mechanics and diffusion equations, applicability to a variety of fuel forms, and simulation of both steady-state and transient conditions. The code includes multiphysics constitutive behavior for both fuel and cladding materials, and is designed for efficient use on highly parallel computers. This paper describes the main features of BISON, with emphasis on recent developments in modelling of fission gas behaviour in LWR-UO 2 fuel. The code is applied to the simulation of fuel rod irradiation experiments from the OECD/NEA International Fuel Performance Experiments Database. The comparison of the results with the available experimental data of fuel temperature, fission gas release, and cladding diametrical strain during pellet-cladding mechanical interaction is presented, pointing out a promising potential of the BISON code with the new fission gas behaviour model. (authors)

  8. Spent fuel management and closed nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kudryavtsev, E.G.

    2012-01-01

    Strategic objectives set by Rosatom Corporation in the field of spent fuel management are given. By 2030, Russia is to create technological infrastructure for innovative nuclear energy development, including complete closure of the nuclear fuel cycle. A target model of the spent NPP nuclear fuel management system until 2030 is analyzed. The schedule for key stages of putting in place the infrastructure for spent NPP fuel management is given. The financial aspect of the problem is also discussed [ru

  9. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Hayashi, Hiroshi; Watari, Yoshio; Hizahara, Hiroshi; Masuoka, Ryuzo.

    1970-01-01

    When exchanging nuclear fuel assemblies during the operation of a nuclear reactor, melting of fuel bodies, and severence of tubular claddings is halted at the time of insertion by furnishing a neutron absorbing material such as B 10 , Cd, Gd or the like at the forward end of the fuel assembly to thereby lower the power peak at the forward ends of the fuel elements to within tolerable levels and thus prevent both fuel liquification and excessive expansion. The neutron absorbing material may be attached in the form of a plate to the fuel assembly forward tie plate, or may be inserted as a pellet into the front end of the tubular cladding. (Owens, K.J.)

  10. Regulation at nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the role of the UJD in regulation at nuclear fuel cycle is presented. The Nuclear Fuel Cycle (NFC) is a complex of activities linked with production of nuclear fuel for nuclear reactors as a source of energy used for production of electricity and heat, and of activities linked with spent nuclear fuel handling. Activities linked with nuclear fuel (NF) production, known as the Front-End of Nuclear Fuel Cycle, include (production of nuclear fuel from uranium as the most frequently used element). After discharging spent nuclear fuel (SNF) from nuclear reactor the activities follow linked with its storage, reprocessing and disposal known as the Back-End of Nuclear Fuel Cycle. Individual activity, which penetrates throughout the NFC, is transport of nuclear materials various forms during NF production and transport of NF and SNF. Nuclear reactors are installed in the Slovak Republic only in commercial nuclear power plants and the NFC is of the open type is imported from abroad and SNF is long-term supposed without reprocessing. The main mission of the area of NFC is supervision over: - assurance of nuclear safety throughout all NFC activities; - observance of provisions of the Treaty on Non-Proliferation of Nuclear Weapons during nuclear material handling; with an aim to prevent leakage of radioactive substances into environment (including deliberated danage of NFC sensitive facilities and misuse of nuclear materials to production of nuclear weapons. The UJD carries out this mission through: - assessment of safety documentation submitted by operators of nuclear installations at which nuclear material, NF and SNF is handled; - inspections concentrated on assurance of compliance of real conditions in NFC, i.e. storage and transport of NF and SNF; storage, transport and disposal of wastes from processing of SNF; with assumptions of the safety

  11. YKAe - Research programme on nuclear power plant systems behaviour and operational aspects of safety

    International Nuclear Information System (INIS)

    Mattila, L.; Vanttola, T.

    1992-01-01

    The major part of nuclear energy research in Finland has been organised as five-year nationally coordinated research programs. The research programme on Systems Behaviour and Operational Aspects of Safety is under way during 1990-1994. Its annual volume has been about 35 person-years and its annual expenditure about FIM 18 million. Studies in the field on safe operational margins of nuclear fuel and reactor core concentrate on fuel high burn-up behaviour, VVER fuel experiments, and reactor core behaviour in complex reactivity transients such as 3-D phenomena and ATWS events. The PACTEL facility is used for the thermal hydraulic studies of the Loviisa type reactors (scaled 1:305). Validation of accident analysis codes is carried out by participation in international standard problems. Advanced foreign computer codes for severe reactor accidents are implemented, modified as needed and applied to level-2 PSAs and the improvement of accident management procedures. Fire simulation methods are tested using data from experiments in the German HDR facility. A nuclear plant analyzer for efficient safety analyses is being developed using the APROS process simulation environment. Computerized operator support systems are being studied in cooperation with the OECD Halden Project. The basic factors affecting plant operator activities and the development of their competence are being investigated. A comprehensive system for the control of plant operational safety is being developed by combining living PSA and safety indicators

  12. Fast reactor fuel pin behaviour modelling in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, J R [UKAEA, Harwell, Didcot, Oxon (United Kingdom); Hughes, H [Springfields Nuclear Power Development Laboratories, Springfields, Salwick, Preston (United Kingdom)

    1979-12-01

    Two fuel behaviour codes have been applied extensively to fast reactor problems; SLEUTH developed at Sprlngfields Nuclear Laboratory and FRUMP at A.E.R.E. Harwell. The SLEUTH fuel pin endurance code was originally developed to define a programme of power cycling and power ramp experiments In Advanced Gas Cooled Reactors (AGRs) where, because of the very soft cladding, pellet clad interaction is severe. The code was required to define accelerated test conditions to generalise from the observed endurance to that under other power histories and to select for investigation the most significant design, material and operational variables. The weak clad and low coolant pressure combine to make fission gas swelling a major contributor to clad deformation while the high clad ductility renders the distribution of strain readily observable. This has led to a detailed study of strain concentrations using the SEER code. SLEUTH and SEER have subsequently been used to specify power cycling and power ramp 112 experiments in water cooled, fast and materials testing reactors with the aim of developing a unified quantitative model of pellet-clad interaction whatever the reactor system. The FRUMP fuel behaviour code was developed specifically for the interpretation of fast reactor fuel pin behaviour. Experience with earlier models was valuable In its development. Originally the model was developed to describe behaviour during normal operation, but subsequently the code has been used extensively in the field of accident studies. Much of the effort in FRUMP development has been devoted to the production of physical models of the various effects of irradiation and the temperature gradients on the structure of the fuel and clad. Each process is modelled as well as is permitted by current knowledge and the limitations of computing costs. Each sub-model has a form which reflects the underlying mechanisms, where quantities are unknown values are assigned semi-empirically, i.e. coefficients

  13. Fast reactor fuel pin behaviour modelling in the UK

    International Nuclear Information System (INIS)

    Matthews, J.R.; Hughes, H.

    1979-01-01

    Two fuel behaviour codes have been applied extensively to fast reactor problems; SLEUTH developed at Sprlngfields Nuclear Laboratory and FRUMP at A.E.R.E. Harwell. The SLEUTH fuel pin endurance code was originally developed to define a programme of power cycling and power ramp experiments In Advanced Gas Cooled Reactors (AGRs) where, because of the very soft cladding, pellet clad interaction is severe. The code was required to define accelerated test conditions to generalise from the observed endurance to that under other power histories and to select for investigation the most significant design, material and operational variables. The weak clad and low coolant pressure combine to make fission gas swelling a major contributor to clad deformation while the high clad ductility renders the distribution of strain readily observable. This has led to a detailed study of strain concentrations using the SEER code. SLEUTH and SEER have subsequently been used to specify power cycling and power ramp 112 experiments in water cooled, fast and materials testing reactors with the aim of developing a unified quantitative model of pellet-clad interaction whatever the reactor system. The FRUMP fuel behaviour code was developed specifically for the interpretation of fast reactor fuel pin behaviour. Experience with earlier models was valuable In its development. Originally the model was developed to describe behaviour during normal operation, but subsequently the code has been used extensively in the field of accident studies. Much of the effort in FRUMP development has been devoted to the production of physical models of the various effects of irradiation and the temperature gradients on the structure of the fuel and clad. Each process is modelled as well as is permitted by current knowledge and the limitations of computing costs. Each sub-model has a form which reflects the underlying mechanisms, where quantities are unknown values are assigned semi-empirically, i.e. coefficients

  14. Thoria-based nuclear fuels thermophysical and thermodynamic properties, fabrication, reprocessing, and waste management

    CERN Document Server

    Bharadwaj, S R

    2013-01-01

    This book presents the state of the art on thermophysical and thermochemical properties, fabrication methodologies, irradiation behaviours, fuel reprocessing procedures, and aspects of waste management for oxide fuels in general and for thoria-based fuels in particular. The book covers all the essential features involved in the development of and working with nuclear technology. With the help of key databases, many of which were created by the authors, information is presented in the form of tables, figures, schematic diagrams and flow sheets, and photographs. This information will be useful for scientists and engineers working in the nuclear field, particularly for design and simulation, and for establishing the technology. One special feature is the inclusion of the latest information on thoria-based fuels, especially on the use of thorium in power generation, as it has less proliferation potential for nuclear weapons. Given its natural abundance, thorium offers a future alternative to uranium fuels in nuc...

  15. Oxidation behaviour of noble-metal inclusions in used UO2 nuclear fuel

    International Nuclear Information System (INIS)

    McEachern, R.

    1997-07-01

    The literature on the chemistry of the noble-metal (Mo-Rh-Ru-Pd-Tc) inclusions found in used nuclear fuel has been reviewed. The Mo-Ru-Pd phase diagram is reasonably well understood, and the pseudoternary Mo-(Tc+Ru)-Rh+Pd) system can be used to qualitatively understand the phase chemistry of the noble-metal inclusions. The kinetics of the oxidation reaction are not particularly well understood, but they are of limited applicability to understanding the properties of used fuel. In contrast, it is important to determine the thermodynamic activity of molybdenum in noble-metal inclusions, so that analysis of their molybdenum content can be used as a probe of the local oxygen potential of the used fuel. (author)

  16. Method of manufacturing nuclear fuel pellet

    International Nuclear Information System (INIS)

    Oguma, Masaomi; Masuda, Hiroshi; Hirai, Mutsumi; Tanabe, Isami; Yuda, Ryoichi.

    1989-01-01

    In a method of manufacturing nuclear fuel pellets by compression molding an oxide powder of nuclear fuel material followed by sintering, a metal nuclear material is mixed with an oxide powder of the nuclear fuel material. As the metal nuclear fuel material, whisker or wire-like fine wire or granules of metal uranium can be used effectively. As a result, a fuel pellet in which the metal nuclear fuel is disposed in a network-like manner can be obtained. The pellet shows a great effect of preventing thermal stress destruction of pellets upon increase of fuel rod power as compared with conventional pellets. Further, the metal nuclear fuel material acts as an oxygen getter to suppress the increase of O/M ratio of the pellets. Further, it is possible to reduce the swelling of pellet at high burn-up degree. (T.M.)

  17. Nuclear fuel banks

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    In december 2010 IAEA gave its agreement for the creation of a nuclear fuel bank. This bank will allow IAEA to help member countries that renounce to their own uranium enrichment capacities. This bank located on one or several member countries will belong to IAEA and will be managed by IAEA and its reserve of low enriched uranium will be sufficient to fabricate the fuel for the first load of a 1000 MW PWR. Fund raising has been successful and the running of the bank will have no financial impact on the regular budget of the IAEA. Russia has announced the creation of the first nuclear fuel bank. This bank will be located on the Angarsk site (Siberia) and will be managed by IAEA and will own 120 tonnes of low-enriched uranium fuel (between 2 and 4.95%), this kind of fuel is used in most Russian nuclear power plants. (A.C.)

  18. South Korea's nuclear fuel industry

    International Nuclear Information System (INIS)

    Clark, R.G.

    1990-01-01

    March 1990 marked a major milestone for South Korea's nuclear power program, as the country became self-sufficient in nuclear fuel fabrication. The reconversion line (UF 6 to UO 2 ) came into full operation at the Korea Nuclear Fuel Company's fabrication plant, as the last step in South Korea's program, initiated in the mid-1970s, to localize fuel fabrication. Thus, South Korea now has the capability to produce both CANDU and pressurized water reactor (PWR) fuel assemblies. This article covers the nuclear fuel industry in South Korea-how it is structures, its current capabilities, and its outlook for the future

  19. Dissolving method for nuclear fuel oxide

    International Nuclear Information System (INIS)

    Tomiyasu, Hiroshi; Kataoka, Makoto; Asano, Yuichiro; Hasegawa, Shin-ichi; Takashima, Yoichi; Ikeda, Yasuhisa.

    1996-01-01

    In a method of dissolving oxides of nuclear fuels in an aqueous acid solution, the oxides of the nuclear fuels are dissolved in a state where an oxidizing agent other than the acid is present together in the aqueous acid solution. If chlorate ions (ClO 3 - ) are present together in the aqueous acid solution, the chlorate ions act as a strong oxidizing agent and dissolve nuclear fuels such as UO 2 by oxidation. In addition, a Ce compound which generates Ce(IV) by oxidation is added to the aqueous acid solution, and an ozone (O 3 ) gas is blown thereto to dissolve the oxides of nuclear fuels. Further, the oxides of nuclear fuels are oxidized in a state where ClO 2 is present together in the aqueous acid solution to dissolve the oxides of nuclear fuels. Since oxides of the nuclear fuels are dissolved in a state where the oxidizing agent is present together as described above, the oxides of nuclear fuels can be dissolved even at a room temperature, thereby enabling to use a material such as polytetrafluoroethylene and to dissolve the oxides of nuclear fuels at a reduced cost for dissolution. (T.M.)

  20. Nuclear fuels policy. Report of the Atlantic Council's Nuclear Fuels Policy Working Group

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Policy Paper recommends the actions deemed necessary to assure that future U.S. and non-Communist countries' nuclear fuels supply will be adequate, considering the following: estimates of modest growth in overall energy demand, electrical energy demand, and nuclear electrical energy demand in the U.S. and abroad, predicated upon the continuing trends involving conservation of energy, increased use of electricity, and moderate economic growth (Chap. I); possibilities for the development and use of all domestic resources providing energy alternatives to imported oil and gas, consonant with current environmental, health, and safety concerns (Chap. II); assessment of the traditional energy sources which provide current alternatives to nuclear energy (Chap. II); evaluation of realistic expectations for additional future energy supplies from prospective technologies: enhanced recovery from traditional sources and development and use of oil shales and synthetic fuels from coal, fusion and solar energy (Chap. II); an accounting of established nuclear technology in use today, in particular the light water reactor, used for generating electricity (Chap. III); an estimate of future nuclear technology, in particular the prospective fast breeder (Chap. IV); current and projected nuclear fuel demand and supply in the U.S. and abroad (Chaps. V and VI); the constraints encountered today in meeting nuclear fuels demand (Chap. VII); and the major unresolved issues and options in nuclear fuels supply and use (Chap. VIII). The principal conclusions and recommendations (Chap. IX) are that the U.S. and other industrialized countries should strive for increased flexibility of primary energy fuel sources, and that a balanced energy strategy therefore depends on the secure supply of energy resources and the ability to substitute one form of fuel for another

  1. Quality management of nuclear fuel

    International Nuclear Information System (INIS)

    2006-01-01

    The Guide presents the quality management requirements to be complied with in the procurement, design, manufacture, transport, receipt, storage, handling and operation of nuclear fuel. The Guide also applies to control rods and shield elements to be placed in the reactor. The Guide is mainly aimed for the licensee responsible for the procurement and operation of fuel, for the fuel designer and manufacturer and for other organisations, whose activities affect fuel quality and the safety of fuel transport, storage and operation. General requirements for nuclear fuel are presented in Section 114 of the Finnish Nuclear Energy Decree and in Section 15 of the Government Decision (395/1991). Regulatory control of the safety of fuel is described in Guides YVL6.1, YVL6.2 and YVL6.3. An overview of the regulatory control of nuclear power plants carried out by STUK (Radiation and Nuclear Safety Authority, Finland) is clarified in Guide YVL1.1

  2. Spent nuclear fuel storage device and spent nuclear fuel storage method using the device

    International Nuclear Information System (INIS)

    Tani, Yutaro

    1998-01-01

    Storage cells attachably/detachably support nuclear fuel containing vessels while keeping the vertical posture of them. A ventilation pipe which forms air channels for ventilating air to the outer circumference of the nuclear fuel containing vessel is disposed at the outer circumference of the nuclear fuel containing vessel contained in the storage cell. A shielding port for keeping the support openings gas tightly is moved, and a communication port thereof can be aligned with the upper portion of the support opening. The lower end of the transporting and containing vessel is placed on the shielding port, and an opening/closing shutter is opened. The gas tightness is kept by the shielding port, the nuclear fuel containing vessel filled with spent nuclear fuels is inserted to the support opening and supported. Then, the support opening is closed by a sealing lid. (I.N.)

  3. Nuclear fuels accounting interface: River Bend experience

    International Nuclear Information System (INIS)

    Barry, J.E.

    1986-01-01

    This presentation describes nuclear fuel accounting activities from the perspective of nuclear fuels management and its interfaces. Generally, Nuclear Fuels-River Bend Nuclear Group (RBNG) is involved on a day-by-day basis with nuclear fuel materials accounting in carrying out is procurement, contract administration, processing, and inventory management duties, including those associated with its special nuclear materials (SNM)-isotopics accountability oversight responsibilities as the Central Accountability Office for the River Bend Station. As much as possible, these duties are carried out in an integrated, interdependent manner. From these primary functions devolve Nuclear Fuels interfacing activities with fuel cost and tax accounting. Noting that nuclear fuel tax accounting support is of both an esoteric and intermittent nature, Nuclear Fuels-RBNG support of developments and applications associated with nuclear fuel cost accounting is stressed in this presentation

  4. Advances in nuclear fuel technology. 3. Development of advanced nuclear fuel recycle systems

    International Nuclear Information System (INIS)

    Arie, Kazuo; Abe, Tomoyuki; Arai, Yasuo

    2002-01-01

    Fast breeder reactor (FBR) cycle technology has a technical characteristics flexibly easy to apply to diverse fuel compositions such as plutonium, minor actinides, and so on and fuel configurations. By using this characteristics, various feasibilities on effective application of uranium resources based on breeding of uranium of plutonium for original mission of FBR, contribution to radioactive wastes problems based on amounts reduction of transuranium elements (TRU) in high level radioactive wastes, upgrading of nuclear diffusion resistance, extremely upgrading of economical efficiency, and so on. In this paper, were introduced from these viewpoints, on practice strategy survey study on FBR cycle performed by cooperation of the Japan Nuclear Cycle Development Institute (JNC) with electric business companies and so on, and on technical development on advanced nuclear fuel recycle systems carried out at the Central Research Institute of Electric Power Industry, Japan Atomic Energy Research Institute, and so on. Here were explained under a vision on new type of fuels such as nitride fuels, metal fuels, and so on as well as oxide fuels, a new recycle system making possible to use actinides except uranium and plutonium, an 'advanced nuclear fuel cycle technology', containing improvement of conventional wet Purex method reprocessing technology, fuel manufacturing technology, and so on. (G.K.)

  5. Nuclear fuel strategies

    International Nuclear Information System (INIS)

    Rippon, S.

    1989-01-01

    The paper reports on two international meetings on nuclear fuel strategies, one organised by the World Nuclear Fuel Market in Seville (Spain) October 1988, and the other organised by the American and European nuclear societies in Washington (U.S.A.) November 1988. At the Washington meeting a description was given of the uranium supply and demand market, whereas free trade in uranium was considered in Seville. Considerable concern was expressed at both meetings on the effect on the uranium and enrichment services market of very low prices for spot deals being offered by China and the Soviet Union. Excess enrichment capacity, the procurement policies of the USA and other countries, and fuel cycle strategies, were also discussed. (U.K.)

  6. Transportation of spent nuclear fuels

    International Nuclear Information System (INIS)

    Meguro, Toshiichi

    1976-01-01

    The spent nuclear fuel taken out of reactors is cooled in the cooling pool in each power station for a definite time, then transported to a reprocessing plant. At present, there is no reprocessing plant in Japan, therefore the spent nuclear fuel is shipped abroad. In this paper, the experiences and the present situation in Japan are described on the transport of the spent nuclear fuel from light water reactors, centering around the works in Tsuruga Power Station, Japan Atomic Power Co. The spent nuclear fuel in Tsuruga Power Station was first transported in Apr. 1973, and since then, about 36 tons were shipped to Britain by 5 times of transport. The reprocessing plant in Japan is expected to start operation in Apr. 1977, accordingly the spent nuclear fuel used for the trial will be transported in Japan in the latter half of this year. Among the permission and approval required for the transport of spent nuclear fuel, the acquisition of the certificate for transport casks and the approval of land and sea transports are main tasks. The relevant laws are the law concerning the regulations of nuclear raw material, nuclear fuel and reactors and the law concerning the safety of ships. The casks used in Tsuruga Power Station and EXL III type, and the charging of spent nuclear fuel, the decontamination of the casks, the leak test, land transport with a self-running vehicle, loading on board an exclusive carrier and sea transport are briefly explained. The casks and the ship for domestic transport are being prepared. (Kato, I.)

  7. Romanian nuclear fuel cycle development

    International Nuclear Information System (INIS)

    Rapeanu, S.N.; Comsa, Olivia

    1998-01-01

    Romanian decision to introduce nuclear power was based on the evaluation of electricity demand and supply as well as a domestic resources assessment. The option was the introduction of CANDU-PHWR through a license agreement with AECL Canada. The major factors in this choice have been the need of diversifying the energy resources, the improvement the national industry and the independence of foreign suppliers. Romanian Nuclear Power Program envisaged a large national participation in Cernavoda NPP completion, in the development of nuclear fuel cycle facilities and horizontal industry, in R and D and human resources. As consequence, important support was being given to development of industries involved in Nuclear Fuel Cycle and manufacturing of equipment and nuclear materials based on technology transfer, implementation of advanced design execution standards, QA procedures and current nuclear safety requirements at international level. Unit 1 of the first Romanian nuclear power plant, Cernavoda NPP with a final profile 5x700 Mw e, is now in operation and its production represents 10% of all national electricity production. There were also developed all stages of FRONT END of Nuclear Fuel Cycle as well as programs for spent fuel and waste management. Industrial facilities for uranian production, U 3 O 8 concentrate, UO 2 powder and CANDU fuel bundles, as well as heavy water plant, supply the required fuel and heavy water for Cernavoda NPP. The paper presents the Romanian activities in Nuclear Fuel Cycle and waste management fields. (authors)

  8. Nuclear Fuel Behaviour during Reactivity Initiated Accidents. Workshop Proceedings

    International Nuclear Information System (INIS)

    2010-01-01

    A reactivity initiated accident (RIA) is a nuclear reactor accident that involves an unwanted increase in fission rate and reactor power. The power increase may damage the reactor core. The main objective of the workshop was to review the current status of the experimental and analytical studies of the fuel behavior during the RIA transients in PWR and BWR reactors and the acceptance criteria for RIA in use and under consideration. The workshop was organized in an opening session and 5 technical sessions: 1) Recent experimental results and experimental techniques used; 2) Modelling and Data Interpretation; 3) Code Assessment; 4) RIA Core Analysis and 5) Revision and application of safety criteria

  9. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    2014-01-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100 th nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U 3 O 8 were replaced by U 3 Si 2 -based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to fulfill its mission that is

  10. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  11. Nuclear fuel element

    International Nuclear Information System (INIS)

    Mogard, J.H.

    1977-01-01

    A nuclear fuel element is disclosed for use in power producing nuclear reactors, comprising a plurality of axially aligned ceramic cylindrical fuel bodies of the sintered type, and a cladding tube of metal or metal alloys, wherein said cladding tube on its cylindrical inner surface is provided with a plurality of slightly protruding spacing elements distributed over said inner surface

  12. Nuclear Fuel Cycle Objectives

    International Nuclear Information System (INIS)

    2013-01-01

    . The four Objectives publications include Nuclear General Objectives, Nuclear Power Objectives, Nuclear Fuel Cycle Objectives, and Radioactive Waste management and Decommissioning Objectives. This publication sets out the objectives that need to be achieved in the area of the nuclear fuel cycle to ensure that the Nuclear Energy Basic Principles are satisfied. Within each of these four Objectives publications, the individual topics that make up each area are addressed. The five topics included in this publication are: resources; fuel engineering and performance; spent fuel management and reprocessing; fuel cycles; and the research reactor nuclear fuel cycle

  13. Financing the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Stephany, M.

    1975-01-01

    While conventional power stations usually have fossil fuel reserves for only a few weeks, nuclear power stations, because of the relatively long time required for uranium processing from ore extraction to the delivery of the fuel elements and their prolonged in-pile time, require fuel reserves for a period of several years. Although the specific fuel costs of nuclear power stations are much lower than those of conventional power stations, this results in consistently higher financial requirements. But the problems involved in financing the nuclear fuel do not only include the aspect of financing the requirements of reactor operators, but also of financing the facilities of the nuclear fuel cycle. As far as the fuel supply is concerned, the true financial requirements greatly exceed the mere purchasing costs because the costs of financing are rather high as a consequence of the long lead times. (orig./UA) [de

  14. Corrosion Behaviour of Mg Alloys in Various Basic Media: Application of Waste Encapsulation of Fuel Decanning from UNGG Nuclear Reactor

    Science.gov (United States)

    Lambertin, David; Frizon, Fabien; Blachere, Adrien; Bart, Florence

    The dismantling of UNGG nuclear reactor generates a large volume of fuel decanning. These materials are based on Mg-Zr alloy. The dismantling strategy could be to encapsulate these wastes into an ordinary Portland cement (OPC) or geopolymer (aluminosilicate material) in a form suitable for storage. Studies have been performed on Mg or Mg-Al alloy in basic media but no data are available on Mg-Zr behaviour. The influence of representative pore solution of both OPC and geopolymer with Mg-Zr alloy has been studied on corrosion behaviour. Electrochemical methods have been used to determine the corrosion densities at room temperature. Results show that the corrosion densities of Mg-Zr alloy in OPC solution is one order of magnitude more important than in a geopolymer solution environment and the effect of an inhibiting agent has been undertaken with Mg-Zr alloy. Evaluation of corrosion hydrogen production during the encapsulation of Mg-Zr alloy in both OPC and geopolymer has also been done.

  15. Improved moulding material for addition to nuclear fuel particles to produce nuclear fuel elements

    International Nuclear Information System (INIS)

    Miertschin, G.N.; Leary, D.F.

    1976-01-01

    A suggestion is made to improve the moulding materials used to produce carbon-contained nuclear fuel particles by a coke-reducing added substance. The nuclear fuel particles are meant for the formation of fuel elements for gas-cooled high-temperature nuclear reactors. The moulding materials are above all for the formation of coated particles which are burnt in situ in nuclear fuel element chambers out of 'green' nuclear fuel bodies. The added substance improves the shape stability of the particles forming and prevents a stiding or bridge formation between the particles or with the surrounding walls. The following are named as added substances: 1) Polystyrene and styrene-butadiene-Co polymers (mol. wt. between 5oo and 1,000,000), 2) aromatic compounds (mol. wt. 75 to 300), 3) saturated hydrocarbon polymers (mol. wt. 5,000 to 1,000,000). Additional release agents further improve the properties in the same direction (e.g. alcohols, fatty acids, amines). (orig.) [de

  16. Dynamics of nuclear fuel assemblies in vertical flow channels

    International Nuclear Information System (INIS)

    Mason, V.A.

    1988-01-01

    DYNMOD is a computer program designed to predict the dynamic behaviour of nuclear fuel assemblies in axial flow. The calculations performed by DYNMOD and the input data required by the program are described in this report. Examples of DYNMOD usage and a brief assessment of the accuracy of the dynamic model are also presented. It is intended that the report will be used as a reference manual by users of DYNMOD

  17. Thermal behaviour of high burnup PWR fuel under different fill gas conditions

    International Nuclear Information System (INIS)

    Tverberg, T.

    2001-01-01

    During its more than 40 years of existence, a large number of experiments have been carried out at the Halden Reactor Project focusing on different aspects related to nuclear reactor fuel. During recent years, the fuels testing program has mainly been focusing on aspects related to high burnup, in particular in terms of fuel thermal performance and fission gas release, and often involving reinstrumentation of commercially irradiated fuel. The paper describes such an experiment where a PWR rod, previously irradiated in a commercial reactor to a burnup of ∼50 MWd/kgUO 2 , was reinstrumented with a fuel central oxide thermocouple and a cladding extensometer together with a high pressure gas flow line, allowing for different fill gas compositions and pressures to be applied. The paper focuses on the thermal behaviour of such LWR rods with emphasis on how different fill gas conditions influence the fuel temperatures and gap conductance. Rod growth rate was also monitored during the irradiation in the Halden reactor. (author)

  18. Dynamic behaviour of solvent contactors in fuel reprocessing plants- an analysis

    Energy Technology Data Exchange (ETDEWEB)

    Raju, R P; Siddiqui, H R [Nuclear Waste Management Group, Bhabha Atomic Research Centre, Mumbai (India); Murthy, K K; Kansra, V P [Fuel Reprocessing Group, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Fuel reprocessing plants carry out separation of useful fissile and fertile materials from spent nuclear fuels by isolating highly radioactive fission products using solvent extraction method. In the fuel reprocessing step of nuclear fuel cycle, optimisation of process parameters in the PUREX flowsheet design is of great importance particularly on account of the need to realize high degree of recovery of fissile and fertile materials and to ensure proper control on concentrations of fissile element in process streams for avoidance of criticality. In counter-current solvent contactors of PUREX flowsheet there are a variety of processes conditions which may cause plutonium accumulations that requires attention to ascertain safe Pu concentrations within the contactors. A study was carried out using the PUREX process mathematical model Solvent Extraction Program Having Interacting Solutes (SEPHIS) for pulsed solvent contactors in PREFRE-1, Tarapur and PREFRE-2, Kalpakkam flowsheets for optimising the process parameters in plutonium purification cycles. The study was extended to predict the behaviour of contactors handling plutonium bearing solutions under certain anticipated deviations in the process parameters. Modifications wherever necessary were carried out to the original SEPHIS code. This paper discusses the results obtained during this analysis. (author). 2 figs., 2 tabs.

  19. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Wakamatsu, Mitsuo.

    1974-01-01

    Object: To improve a circulating flow passage of coolant so as to be able to accurately detect the temperature of coolant, rare gases contained, and the like. Structure: A fuel assembly comprising a flow regulating lattice provided with a plurality of communication holes in an axial direction, said lattice being positioned at the upper end of an outer tube in which nuclear fuel elements are received, and a neutron shielding body having a plurality of spiral coolant flow passages disposed between the lattice and the nuclear fuel elements, whereby a coolant comprised of liquid sodium or the like, which moves up passing through the coolant flow passages and the flow regulating passage, is regulated and passed through a detector mounted at the upper part of the flow regulating lattice to detect coolant temperature, flow rate, and rare gases or the like as the origin of nuclear fission contained in the coolant due to breakage of fuel elements. (Kamimura, M.)

  20. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Scurr, I.F.; Silver, J.M.

    1990-01-01

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  1. Operation of Nuclear Fuel Based on Reprocessed Uranium for VVER-type Reactors in Competitive Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Troyanov, V.; Molchanov, V.; Tuzov, A. [TVEL Corporation, 49 Kashirskoe shosse, Moscow 115409 (Russian Federation); Semchenkov, Yu.; Lizorkin, M. [RRC ' Kurchatov Institute' (Russian Federation); Vasilchenko, I.; Lushin, V. [OKB ' Gidropress' (Russian Federation)

    2009-06-15

    Current nuclear fuel cycle of Russian nuclear power involves reprocessed low-enriched uranium in nuclear fuel production for some NPP units with VVER-type LWR. This paper discusses design and performance characteristics of commercial nuclear fuel based on natural and reprocessed uranium. It presents the review of results of commercial operation of nuclear fuel based on reprocessed uranium on Russian NPPs-unit No.2 of Kola NPP and unit No.2 of Kalinin NPP. The results of calculation and experimental validation of safe fuel operation including necessary isotope composition conformed to regulation requirements and results of pilot fuel operation are also considered. Meeting the customer requirements the possibility of high burn-up achieving was demonstrated. In addition the paper compares the characteristics of nuclear fuel cycles with maximum length based on reprocessed and natural uranium considering relevant 5% enrichment limitation and necessity of {sup 236}U compensation. The expedience of uranium-235 enrichment increasing over 5% is discussed with the aim to implement longer fuel cycles. (authors)

  2. Nuclear fuel pellet charging device

    International Nuclear Information System (INIS)

    Komuro, Kojiro.

    1990-01-01

    The present invention concerns a nuclear fuel pellet loading device, in which nuclear fuel pellets are successively charged from an open end of a fuel can while rotating the can. That is, a fuel can sealed at one end with an end plug and opened at the other end is rotated around its pipe axis as the center on a rotationally diriving table. During rotation of the fuel can, nuclear fuel pellets are successively charged by means of a feed rod of a feeding device to the inside of the fuel can. The fuel can is rotated while being supported horizontally and the fuel pellets are charged from the open end thereof. Alternatively, the fuel can is rotated while being supported obliquely and the fuel pellets are charged gravitationally into the fuel can. In this way, the damages to the barrier of the fuel can can be reduce. Further, since the fuel pellets can be charged gravitationally by rotating the fuel can while being supported obliquely, the damages to the barrier can be reduced remarkably. (I.S.)

  3. A general evaluation of the irradiation behaviour of dispersion fuels

    International Nuclear Information System (INIS)

    Hofman, G.L.

    1995-01-01

    The irradiation behaviour of aluminum-based dispersion fuels is evaluated with emphasis on metallurgical processes that control the dispersion behaviour. Phase transformations and microstructural changes resulting from fuel-matrix interactions and the effect of fissioning in fuel are discussed. (author)

  4. The status of nuclear fuel cycle system analysis for the development of advanced nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Seong Ki; Lee, Hyo Jik; Chang, Hong Rae; Kwon, Eun Ha; Lee, Yoon Hee; Gao, Fanxing [KAERI, Daejeon (Korea, Republic of)

    2011-11-15

    The system analysis has been used with different system and objectives in various fields. In the nuclear field, the system can be applied from uranium mining to spent fuel reprocessing or disposal which is called the nuclear fuel cycle. The analysis of nuclear fuel cycle can be guideline for development of advanced fuel cycle through integrating and evaluating the technologies. For this purpose, objective approach is essential and modeling and simulation can be useful. In this report, several methods which can be applicable for development of advanced nuclear fuel cycle, such as TRL, simulation and trade analysis were explained with case study

  5. Nuclear reactor fuel element splitter

    International Nuclear Information System (INIS)

    Yeo, D.

    1976-01-01

    A method and apparatus are disclosed for removing nuclear fuel from a clad fuel element. The fuel element is power driven past laser beams which simultaneously cut the cladding lengthwise into at least two longitudinal pieces. The axially cut lengths of cladding are then separated, causing the nuclear fuel contained therein to drop into a receptacle for later disposition. The cut lengths of cladding comprise nuclear waste which is disposed of in a suitable manner. 6 claims, 10 drawing figures

  6. Modelling of WWER-440 fuel rod behaviour under operational conditions with the PIN-micro code

    International Nuclear Information System (INIS)

    Stefanova, S.; Vitkova, M.; Simeonova, V.; Passage, G.; Manolova, M.; Haralampieva, Z.; Scheglov, A.; Proselkov, V.

    1997-01-01

    The report summarizes the first practical experience obtained by fuel rod performance modelling at the Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences. The results of application of the PIN-micro code and the code modification PINB1 for thermomechanical analysis of WWER-440 fuel assemblies (FAs) are presented. The aim of this analysis is to study the fuel rod behaviour of the operating WWER reactors. The performance of two FAs with maximal linear power and varying geometrical and technological parameters is analyzed. On the basis of recent publications on WWER fuel performance modelling at extended burnup, a modified PINB1 version of the standard PIN-micro code is shortly described and applied for the selected FAs. Comparison of the calculated results is performed. The PINB1 version predicts higher fuel temperatures and more adequate FGR rate, accounting for the extended burnup. The results presented in this paper prove the existence of sufficient safety margins, for the fuel performance limiting parameters during the whole considered period of core operation. (author). 8 refs, 16 figs, 1 tab

  7. Modelling of WWER-440 fuel rod behaviour under operational conditions with the PIN-micro code

    Energy Technology Data Exchange (ETDEWEB)

    Stefanova, S; Vitkova, M; Simeonova, V; Passage, G; Manolova, M [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Haralampieva, Z [National Electric Company Ltd., Kozloduy (Bulgaria); Scheglov, A; Proselkov, V [Institute of Nuclear Reactors, RSC Kurchatov Inst., Moscow (Russian Federation)

    1997-08-01

    The report summarizes the first practical experience obtained by fuel rod performance modelling at the Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences. The results of application of the PIN-micro code and the code modification PINB1 for thermomechanical analysis of WWER-440 fuel assemblies (FAs) are presented. The aim of this analysis is to study the fuel rod behaviour of the operating WWER reactors. The performance of two FAs with maximal linear power and varying geometrical and technological parameters is analyzed. On the basis of recent publications on WWER fuel performance modelling at extended burnup, a modified PINB1 version of the standard PIN-micro code is shortly described and applied for the selected FAs. Comparison of the calculated results is performed. The PINB1 version predicts higher fuel temperatures and more adequate FGR rate, accounting for the extended burnup. The results presented in this paper prove the existence of sufficient safety margins, for the fuel performance limiting parameters during the whole considered period of core operation. (author). 8 refs, 16 figs, 1 tab.

  8. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Ainsworth, K.F.

    1979-01-01

    A nuclear fuel element is described having a cluster of nuclear fuel pins supported in parallel, spaced apart relationship by transverse cellular braces within coaxial, inner and outer sleeves, the inner sleeve being in at least two separate axial lengths, each of the transverse braces having a peripheral portion which is clamped peripherally between the ends of the axial lengths of the inner sleeve. (author)

  9. A Path Forward to Advanced Nuclear Fuels: Spectroscopic Calorimetry of Nuclear Fuel Materials

    International Nuclear Information System (INIS)

    Tobin, J.G.

    2009-01-01

    The goal is to relieve the shortage of thermodynamic and kinetic information concerning the stability of nuclear fuel alloys. Past studies of the ternary nuclear fuel UPuZr have demonstrated constituent redistribution when irradiated or with thermal treatment. Thermodynamic data is key to predicting the possibilities of effects such as constituent redistribution within the fuel rods and interaction with cladding materials

  10. The possibility of prediction of the lifetime of metallic nuclear fuel elements in a radiation field of thermal nuclear reactors

    International Nuclear Information System (INIS)

    Livne, Z.; Ramon, P.

    1979-01-01

    An attempt is made to clarify the possible causes of failure of irradiated nuclear fuel cartridges, in order to determine the parameters which govern the lifetime of the fuel and a way to predict it. Measurements of mechanical properties of irradiated uranium metal and cladding, can serve as a basis for failure prediction. Testing irradiated fuel elements by bending till fracture enables to evaluate the integral character of the fuel element, along the cross-section, taking into account the difference in brittleness of several zones. It is likely that the bending test, which indicates the behaviour of a stress-strain function, is a faster and more reliable way to determine the mechanical properties of irradiated nuclear fuel. Since the stresses applied to the cladding during irradiation are locally hydrostatic, its postirradiation blow-up provide information on strength and elasticity variations of the irradiated cladding material. (B.G.)

  11. Spent nuclear fuel disposal liability insurance

    International Nuclear Information System (INIS)

    Martin, D.W.

    1984-01-01

    This thesis examines the social efficiency of nuclear power when the risks of accidental releases of spent fuel radionuclides from a spent fuel disposal facility are considered. The analysis consists of two major parts. First, a theoretical economic model of the use of nuclear power including the risks associated with releases of radionuclides from a disposal facility is developed. Second, the costs of nuclear power, including the risks associated with a radionuclide release, are empirically compared to the costs of fossil fuel-fired generation of electricity. Under the provisions of the Nuclear Waste Policy Act of 1982, the federally owned and operated spent nuclear fuel disposal facility is not required to maintain a reserve fund to cover damages from an accidental radionuclide release. Thus, the risks of a harmful radionuclide release are not included in the spent nuclear fuel disposal fee charged to the electric utilities. Since the electric utilities do not pay the full, social costs of spent fuel disposal, they use nuclear fuel in excess of the social optimum. An insurance mechanism is proposed to internalize the risks associated with spent fueled disposal. Under this proposal, the Federal government is required to insure the disposal facility against any liabilities arising from accidental releases of spent fuel radionuclides

  12. Nuclear fuel deformation phenomena

    International Nuclear Information System (INIS)

    Van Brutzel, L.; Dingreville, R.; Bartel, T.J.

    2015-01-01

    Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)

  13. IAEA activities on nuclear fuel cycle 1997

    Energy Technology Data Exchange (ETDEWEB)

    Oi, N [International Atomic Energy Agency, Vienna (Austria). Nuclear Fuel Cycle and Materials Section

    1997-12-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme.

  14. IAEA activities on nuclear fuel cycle 1997

    International Nuclear Information System (INIS)

    Oi, N.

    1997-01-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme

  15. Nuclear fuel rod loading apparatus

    International Nuclear Information System (INIS)

    King, H.B.

    1981-01-01

    A nuclear fuel loading apparatus, incorporating a microprocessor control unit, is described which automatically loads nuclear fuel pellets into dual fuel rods with a minimum of manual involvement and in a manner and sequence to ensure quality control and accuracy. (U.K.)

  16. Experience with nuclear fuel utilization in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Harizanov, Y [Committee on the Use of Atomic Energy for Peaceful Purposes, Sofia (Bulgaria)

    1997-12-01

    The presentation on experience with nuclear fuel utilization in Bulgaria briefly reviews the situation with nuclear energy in Bulgaria and then discusses nuclear fuel performance (amount of fuel loaded, type of fuel, burnup, fuel failures, assemblies deformation). 2 tabs.

  17. Nuclear fuel cycle information workshop

    International Nuclear Information System (INIS)

    1983-01-01

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US

  18. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    Klepfer, H.H.

    1974-01-01

    A nuclear fuel element is described which comprises: 1) an elongated clad container, 2) a layer of high lubricity material being disposed in and adjacent to the clad container, 3) a low neutron capture cross section metal liner being disposed in the clad container and adjacent to the layer, 4) a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, 5) an enclosure integrally secured and sealed at each end of the container, and a nuclear fuel material retaining means positioned in the cavity. (author)

  19. IAEA activities on nuclear fuel

    International Nuclear Information System (INIS)

    Basak, U.

    2011-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The following Coordinated Research Projects: 1) FUel performance at high burn-up and in ageing plant by management and optimisation of WAter Chemistry Technologies (FUWAC ); 2) Near Term and Promising Long Term Options for Deployment of Thorium Based Nuclear Energy; 3) Fuel Modelling (FUMEX-III) are shortly described. The data collected by the IAEA Expert Group of Fuel Failures in Water Cooled Reactors including information about fuel failure cause for PWR (1994-2006) and failure mechanisms for BWR fuel (1994-2006) are shown. The just published Fuel Failure Handbook as well as preparation of a Monograph on Zirconium including an overview of Zirconium for nuclear applications are presented. The current projects in Sub-programme B2 - Power Reactor Fuel Engineering are also listed

  20. Future trends in nuclear fuels

    International Nuclear Information System (INIS)

    Guitierrez, J.E.

    2006-01-01

    This series of transparencies presents: the fuel management cycle and key areas (security of supplies, strategies and core management, reliability, spent fuel management), the world nuclear generating capacity, concentrate capacity, enrichment capacity, and manufacturing capacity forecasts, the fuel cycle strategies and core management (longer cycles, higher burnups, power up-rates, higher enrichments), the Spanish nuclear generation cost, the fuel reliability (no defects, robust designs, operational margins, integrated fuel and core design), spent fuel storage (design and safety criteria, fuel performance and integrity). (J.S.)

  1. The fuel of nuclear reactors

    International Nuclear Information System (INIS)

    1995-03-01

    This booklet is a presentation of the different steps of the preparation of nuclear fuels performed by Cogema. The documents starts with a presentation of the different French reactor types: graphite moderated reactors, PWRs using MOX fuel, fast breeder reactors and research reactors. The second part describes the fuel manufacturing process: conditioning of nuclear materials and fabrication of fuel assemblies. The third part lists the different companies involved in the French nuclear fuel industry while part 4 gives a short presentation of the two Cogema's fuel fabrication plants at Cadarache and Marcoule. Part 5 and 6 concern the quality assurance, the safety and reliability aspects of fuel elements and the R and D programs. The last part presents some aspects of the environmental and personnel protection performed by Cogema. (J.S.)

  2. Nuclear fuel cycle scenarios at CGNPC

    International Nuclear Information System (INIS)

    Xiao, Min; Zhou, Zhou; Nie, Li Hong; Mao, Guo Ping; Hao, Si Xiong; Shen, Kang

    2008-01-01

    Established in 1994, China Guangdong Nuclear Power Holding Co. (CGNPC) now owns two power stations GNPS and LNPS Phase I, with approximate 4000 MWe of installed capacity. With plant upgrades, advanced fuel management has been introduced into the two plants to improve the plant economical behavior with the high burnup fuel implemented. For the purpose of sustainable development, some preliminary studies on nuclear fuel cycle, especially on the back-end, have been carried out at CGNPC. According to the nuclear power development plan of China, the timing for operation and the capacity of the reprocessing facility are studied based on the amount of the spent fuel forecast in the future. Furthermore, scenarios of the fuel cycles in the future in China with the next generation of nuclear power were considered. Based on the international experiences on the spent fuel management, several options of spent fuel reprocessing strategies are investigated in detail, for example, MOX fuel recycling in light water reactor, especially in the current reactors of CGNPC, spent fuel intermediated storage, etc. All the investigations help us to draw an overall scheme of the nuclear fuel cycle, and to find a suitable road-map to achieve the sustainable development of nuclear power. (authors)

  3. Evolution of fuel rod support under irradiation impact on the mechanical behaviour of fuel assemblies

    International Nuclear Information System (INIS)

    Billerey, Antoine; Waeckel, Nicolas

    2005-01-01

    New fuel management targets imply to increase fuel assembly discharge burnup. Therefore, the prediction of the mechanical behaviour of the irradiated fuel assembly is essential such as excessive fuel assembly distortion induce incomplete Rod Cluster Control Assembly insertion problems (safety issue) or fuel rod vibration induced wear leading to leaking rods (plant operation problems). Within this framework, one of the most important parameter is the knowledge of the fuel rod support in the grid cell because it directly governs the mechanical behaviour of the fuel assembly and consequently allows to predict the behaviour of irradiated structures in terms of (1) axial and lateral deformation (global behaviour of the assembly) and (2) rod vibration induced wear (local behaviour of the rod). Generally, fuel rod support is provided by a spring-dimple system fixed to the grid. During irradiation, the spring force decreases and a gap between the rod and the spring may occur. This phenomenon is due to (1) stress relieving in the spring and in the dimples, (2) grid growth and (3) reduction of the rod diameter. Two models have been developed to predict the behaviour of the rod in the cell. The first model is dedicated to the evaluation of the spring force relaxation during irradiation. The second one can assess the rotation characteristic of the fuel rod in the cell, function of the spring force. The main input parameters are (1) the creep laws of the grid materials, (2) the growth law of the grid, (3) the evolution of rod diameter and (4) the design of the fuel rod support. The aim of this paper is to: (1) evaluate the consequences of grid support design modifications on the rod vibration sensitivity in terms of predicted rod to grid maximum gap during irradiation and time in operation with an open rod to grid gap, (2) evaluate, using a linear or non-linear Finite Element assembly model, the impact of the evolution of grid support under irradiation on the overall mechanical

  4. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Kidd, S.

    2008-01-01

    The closed fuel cycle is the most sustainable approach for nuclear energy, as it reduces recourse to natural uranium resources and optimises waste management. The advantages and disadvantages of used nuclear fuel reprocessing have been debated since the dawn of the nuclear era. There is a range of issues involved, notably the sound management of wastes, the conservation of resources, economics, hazards of radioactive materials and potential proliferation of nuclear weapons. In recent years, the reprocessing advocates win, demonstrated by the apparent change in position of the USA under the Global Nuclear Energy Partnership (GNEP) program. A great deal of reprocessing has been going on since the fourties, originally for military purposes, to recover plutonium for weapons. So far, some 80000 tonnes of used fuel from commercial power reactors has been reprocessed. The article indicates the reprocessing activities and plants in the United Kigdom, France, India, Russia and USA. The aspect of plutonium that raises the ire of nuclear opponents is its alleged proliferation risk. Opponents of the use of MOX fuels state that such fuels represent a proliferation risk because the plutonium in the fuel is said to be 'weapon-use-able'. The reprocessing of used fuel should not give rise to any particular public concern and offers a number of potential benefits in terms of optimising both the use of natural resources and waste management.

  5. Review of oxidation rates of DOE spent nuclear fuel : Part 1 : nuclear fuel

    International Nuclear Information System (INIS)

    Hilton, B.A.

    2000-01-01

    The long-term performance of Department of Energy (DOE) spent nuclear fuel (SNF) in a mined geologic disposal system depends highly on fuel oxidation and subsequent radionuclide release. The oxidation rates of nuclear fuels are reviewed in this two-volume report to provide a baseline for comparison with release rate data and technical rationale for predicting general corrosion behavior of DOE SNF. The oxidation rates of nuclear fuels in the DOE SNF inventory were organized according to metallic, Part 1, and non-metallic, Part 2, spent nuclear fuels. This Part 1 of the report reviews the oxidation behavior of three fuel types prototypic of metallic fuel in the DOE SNF inventory: uranium metal, uranium alloys and aluminum-based dispersion fuels. The oxidation rates of these fuels were evaluated in oxygen, water vapor, and water. The water data were limited to pure water corrosion as this represents baseline corrosion kinetics. Since the oxidation processes and kinetics discussed in this report are limited to pure water, they are not directly applicable to corrosion rates of SNF in water chemistry that is significantly different (such as may occur in the repository). Linear kinetics adequately described the oxidation rates of metallic fuels in long-term corrosion. Temperature dependent oxidation rates were determined by linear regression analysis of the literature data. As expected the reaction rates of metallic fuels dramatically increase with temperature. The uranium metal and metal alloys have stronger temperature dependence than the aluminum dispersion fuels. The uranium metal/water reaction exhibited the highest oxidation rate of the metallic fuel types and environments that were reviewed. Consequently, the corrosion properties of all DOE SNF may be conservatively modeled as uranium metal, which is representative of spent N-Reactor fuel. The reaction rate in anoxic, saturated water vapor was essentially the same as the water reaction rate. The long-term intrinsic

  6. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Patarin, L.

    2002-01-01

    This book treats of the different aspects of the industrial operations linked with the nuclear fuel, before and after its use in nuclear reactors. The basis science of this nuclear fuel cycle is chemistry. Thus a recall of the elementary notions of chemistry is given in order to understand the phenomena involved in the ore processing, in the isotope enrichment, in the fabrication of fuel pellets and rods (front-end of the cycle), in the extraction of recyclable materials (residual uranium and plutonium), and in the processing and conditioning of wastes (back-end of the fuel cycle). Nuclear reactors produce about 80% of the French electric power and the Cogema group makes 40% of its turnover at the export. Thus this book contains also some economic and geopolitical data in order to clearly position the stakes. The last part, devoted to the management of wastes, presents the solutions already operational and also the research studies in progress. (J.S.)

  7. A comprehensive review on the methodologies to simulate the nuclear fuel bundle for the thermal hydraulic experiments

    International Nuclear Information System (INIS)

    Vishnoi, A.K.; Chandraker, D.K.; Pal, A.K.; Vijayan, P.K.; Saha, D.

    2011-01-01

    The designer of a nuclear reactor system has to ensure its safety during normal operation as well as accidental conditions. This requires, among other things, a proper understanding of the various thermal hydraulic phenomena occurring in the reactor core. In a nuclear reactor core the fuel elements are the heat source and highly loaded components of the reactor system. Therefore their behaviour under normal and accidental conditions must be extensively investigated. Data generation for Critical heat flux (CHF) in full scale bundle and parallel channel instability studies with at least two full size channels are required in order to evaluate the thermal margin and stability margin of the reactor. The complex nature of these phenomena calls for exhaustive experimental investigations. Fuel Rod Cluster Simulator (FRCS) is a very important component required for the experimental investigation of the thermal hydraulic behaviour of reactor fuel elements under normal and accidental conditions. This paper brings out a comprehensive review of the FRCS elaborating the challenges and important design aspects of the FRCS. Some of the main features and analysis results on the performance of the developed FRCS with respect to the actual nuclear fuel bundle will be presented in the paper. (author)

  8. Social awareness on nuclear fuel cycle

    International Nuclear Information System (INIS)

    Tanigaki, Toshihiko

    2006-01-01

    In the present we surveyed public opinion regarding the nuclear fuel cycle to find out about the social awareness about nuclear fuel cycle and nuclear facilities. The study revealed that people's image of nuclear power is more familiar than the image of the nuclear fuel cycle. People tend to display more recognition and concern towards nuclear power and reprocessing plants than towards other facilities. Comparatively speaking, they tend to perceive radioactive waste disposal facilities and nuclear power plants as being highly more dangerous than reprocessing plants. It is found also that with the exception of nuclear power plants don't know very much whether nuclear fuel cycle facilities are in operation in Japan or not. The results suggests that 1) the relatively mild image of the nuclear fuel cycle is the result of the interactive effect of the highly dangerous image of nuclear power plants and the less dangerous image of reprocessing plants; and 2) that the image of a given plant (nuclear power plant, reprocessing plant, radioactive waste disposal facility) is influenced by the fact of whether the name of the plant suggests the presence of danger or not. (author)

  9. International issue: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    In this special issue a serie of short articles of informations are presented on the following topics: the EEC's medium term policy regarding the reprocessing and storage of spent fuel, France's natural uranium supply, the Pechiney Group in the nuclear field, zircaloy cladding for nuclear fuel elements, USSI: a major French nuclear engineering firm, gaseous diffusion: the only commercial enrichment process, the transport of nuclear materials in the fuel cycle, Cogema and spent fuel reprocessing, SGN: a leader in the fuel cycle, quality control of mechanical, thermal and termodynamic design in nuclear engineering, Sulzer's new pump testing station in Mantes, the new look of the Ateliers et Chantiers de Bretagne, tubes and piping in nuclear power plants, piping in pressurized water reactor. All these articles are written in English and in French [fr

  10. Fuel element structure - design, production and operational behaviour

    International Nuclear Information System (INIS)

    Pott, G.; Dietz, W.

    1985-01-01

    The lectures held at the meeting of the fuel element section of the Kerntechnische Gesellschaft gives a survey of developments in fuel element structure design for PWR-type, BWR-type and fast breeder reactors. For better utilization of the fuel, concepts have been developed for re-usable, removable and thus repairable fuel elements. Furthermore, the manufacturing methods for fuel element structures were refined to achieve better quality and more efficient manufacturing methods. Statements on the dimensional behaviour and on the mechanical stability of fuel element structures in normal and accident operation could be made on the basis of post-irradiation inspections. Finally, the design, manufacture and irradiation behaviour of graphite reflectors in HTGR-type reactors are described. The 12 lectures have been recorded in the data base separately. (RF) [de

  11. IFPE/TRIBULATION R1, Fuel Rod Behaviour at High Burnup

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    2002-01-01

    Description: The TRIBULATION (Tests Relative to High Burnup Limitations Arising Normally in LWRs) International Programme started in July 1980 and was organized jointly by BelgoNucleaire and the Nuclear Energy Centre at Mol (CEN/SCK) with the co-sponsorship of 14 participating organizations. The objectives of the programme were twofold. It was primarily a demonstration programme aimed at assessing the fuel rod behaviour at high burn-up, when an earlier transient had occurred in the power plant. The second objective was to investigate the behaviour of different fuel rod designs and manufacturers when subjected to a steady state irradiation history to high burn-up. The first objective was met by irradiating fuel rods under steady state conditions in the BR3 reactor and under transient conditions in BR2. The effect of the transient was determined by comparing data from 4 identical rods tested as follows: i) BR3 irradiation followed by PIE; ii) BR3 irradiation followed by BR2 transient then PIE; iii) BR3 irradiation followed by BR2 transient and re-irradiated in BR3 before PIE; iv) BR3 irradiation and continued BR3 irradiation to maximum burn-up before PIE. The Database contains data from 19 cases using rods fabricated by BelgoNucleaire (BN) (11) and Brown Boveri Reactor GmbH (BBR) (8)

  12. Fission gas release behaviour in MOX fuels

    International Nuclear Information System (INIS)

    Viswanathan, U.K.; Anantharaman, S.; Sahoo, K.C.

    2002-01-01

    As a part of plutonium recycling programme MOX (U,Pu)O 2 fuels will be used in Indian boiling water reactors (BWR) and pressurised heavy water reactors (PHWR). Based on successful test irradiation of MOX fuel in CIRUS reactor, 10 MOX fuel assemblies have been loaded in the BWR of Tarapur Atomic Power Station (TAPS). Some of these MOX fuel assemblies have successfully completed the initial target average burnup of ∼16,000 MWD/T. Enhancing the burnup target of the MOX fuels and increasing loading of MOX fuels in TAPS core will depend on the feedback information generated from the measurement of released fission gases. Fission gas release behaviour has been studied in the experimental MOX fuel elements (UO 2 - 4% PuO 2 ) irradiated in pressurised water loop (PWL) of CIRUS. Eight (8) MOX fuel elements irradiated to an average burnup of ∼16,000 MWD/T have been examined. Some of these fuel elements contained controlled porosity pellets and chamfered pellets. This paper presents the design details of the experimental set up for studying fission gas release behaviour including measurement of gas pressure, void volume and gas composition. The experimental data generated is compared with the prediction of fuel performance modeling codes of PROFESS and GAPCON THERMAL-3. (author)

  13. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    Status of different nuclear fuel cycle phases in 1992 is discussed including the following issues: uranium exploration, resources, supply and demand, production, market prices, conversion, enrichment; reactor fuel technology; spent fuel management, as well as trends of these phases development up to the year 2010. 10 refs, 11 figs, 15 tabs

  14. Performance of candu-6 fuel bundles manufactured in romania nuclear fuel plant

    International Nuclear Information System (INIS)

    Bailescu, A.; Barbu, A.; Din, F.; Dinuta, G.; Dumitru, I.; Musetoiu, A.; Serban, G.; Tomescu, A.

    2013-01-01

    The purpose of this article is to present the performance of nuclear fuel produced by Nuclear Fuel Plant (N.F.P.) - Pitesti during 1995 - 2012 and irradiated in units U1 and U2 from Nuclear Power Plant (N.P.P.) Cernavoda and also present the Nuclear Fuel Plant (N.F.P.) - Pitesti concern for providing technology to prevent the failure causes of fuel bundles in the reactor. This article presents Nuclear Fuel Plant (N.F.P.) - Pitesti experience on tracking performance of nuclear fuel in reactor and strategy investigation of fuel bundles notified as suspicious and / or defectives both as fuel element and fuel bundle, it analyzes the possible defects that can occur at fuel bundle or fuel element and can lead to their failure in the reactor. Implementation of modern technologies has enabled optimization of manufacturing processes and hence better quality stability of achieving components (end caps, chamfered sheath), better verification of end cap - sheath welding. These technologies were qualified by Nuclear Fuel Plant (N.F.P.) - Pitesti on automatic and Computer Numerical Control (C.N.C.) programming machines. A post-irradiation conclusive analysis which will take place later this year (2013) in Institute for Nuclear Research Pitesti (the action was initiated earlier this year by bringing a fuel bundle which has been reported defective by pool visual inspection) will provide additional information concerning potential damage causes of fuel bundles due to manufacturing processes. (authors)

  15. Development of high burnup nuclear fuel technology

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Kang, Young Hwan; Jung, Jin Gone; Hwang, Won; Park, Zoo Hwan; Ryu, Woo Seog; Kim, Bong Goo; Kim, Il Gone

    1987-04-01

    The objectives of the project are mainly to develope both design and manufacturing technologies for 600 MWe-CANDU-PHWR-type high burnup nuclear fuel, and secondly to build up the foundation of PWR high burnup nuclear fuel technology on the basis of KAERI technology localized upon the standard 600 MWe-CANDU- PHWR nuclear fuel. So, as in the first stage, the goal of the program in the last one year was set up mainly to establish the concept of the nuclear fuel pellet design and manufacturing. The economic incentives for high burnup nuclear fuel technology development are improvement of fuel utilization, backend costs plant operation, etc. Forming the most important incentives of fuel cycle costs reduction and improvement of power operation, etc., the development of high burnup nuclear fuel technology and also the research on the incore fuel management and safety and technologies are necessary in this country

  16. Experimental irradiation of UMo fuel: Pie results and modeling of fuel behaviour

    International Nuclear Information System (INIS)

    Languille, A.; Plancq, D.; Huet, F.; Guigon, B.; Lemoine, P.; Sacristan, P.; Hofman, G.; Snelgrove, J.; Rest, J.; Hayes, S.; Meyer, M.; Vacelet, H.; Leborgne, E.; Dassel, G.

    2002-01-01

    Seven full-sized U Mo plates containing ca. 8 g/cm 3 of uranium in the fuel meat have been irradiated since the beginning of the French U Mo development program. The first three of them with 20% 235 U enrichment were irradiated at maximum surfacic power under 150 W/cm 2 in the OSIRIS reactor up to 50% burn-up and are under examination. Their global behaviour is satisfactory: no failure and a low swelling. The other four plates were irradiated in the HFR Petten at maximum surfacic power between 150 and 250 W/cm 2 with two enrichments 20 and 35%. The experiment was stopped after two cycles due to a fuel failure. The post- irradiation examinations were completed in 2001 in Petten. Examinations showed a correct behaviour of 20% enriched plates and an abnormal behaviour of the two other plates (35%-enriched) with a clad failure on the plate 4. The fuel failure appears to result from a combination of factors that led to high corrosion cladding and high fuel meat temperatures. (author)

  17. Study Of Thorium As A Nuclear Fuel.

    Directory of Open Access Journals (Sweden)

    Prakash Humane

    2017-10-01

    Full Text Available Conventional fuel sources for power generation are to be replacing by nuclear power sources like nuclear fuel Uranium. But Uranium-235 is the only fissile fuel which is in 0.72 found in nature as an isotope of Uranium-238. U-238 is abundant in nature which is not fissile while U-239 by alpha decay naturally converted to Uranium- 235. For accompanying this nuclear fuel there is another nuclear fuel Thorium is present in nature is abundant can be used as nuclear fuel and is as much as safe and portable like U-235.

  18. Nuclear fuel burn-up economy

    International Nuclear Information System (INIS)

    Matausek, M.

    1984-01-01

    In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)

  19. Nuclear power and its fuel cycle

    International Nuclear Information System (INIS)

    Wymer, R.G.

    1986-01-01

    A series of viewgraphs describes the nuclear fuel cycle and nuclear power, covering reactor types, sources of uranium, enrichment of uranium, fuel fabrication, transportation, fuel reprocessing, and radioactive wastes

  20. Nuclear fuel quality assurance

    International Nuclear Information System (INIS)

    1976-01-01

    Full text: Quality assurance is used extensively in the design, construction and operation of nuclear power plants. This methodology is applied to all activities affecting the quality of a nuclear power plant in order to obtain confidence that an item or a facility will perform satisfactorily in service. Although the achievement of quality is the responsibility of all parties participating in a nuclear power project, establishment and implementation of the quality assurance programme for the whole plant is a main responsibility of the plant owner. For the plant owner, the main concern is to achieve control over the quality of purchased products or services through contractual arrangements with the vendors. In the case of purchase of nuclear fuel, the application of quality assurance might be faced with several difficulties because of the lack of standardization in nuclear fuel and the proprietary information of the fuel manufacturers on fuel design specifications and fuel manufacturing procedures. The problems of quality assurance for purchase of nuclear fuel were discussed in detail during the seminar. Due to the lack of generally acceptable standards, the successful application of the quality assurance concept to the procurement of fuel depends on how much information can be provided by the fuel manufacturer to the utility which is purchasing fuel, and in what form and how early this information can be provided. The extent of information transfer is basically set out in the individual vendor-utility contracts, with some indirect influence from the requirements of regulatory bodies. Any conflict that exists appears to come from utilities which desire more extensive control over the product they are buying. There is a reluctance on the part of vendors to permit close insight of the purchasers into their design and manufacturing procedures, but there nevertheless seems to be an increasing trend towards release of more information to the purchasers. It appears that

  1. Vibratory-compacted (vipac/sphere-pac) nuclear fuels - a comparison with pelletized nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, K.; Rubin, J. [Los Alamos National Lab., NM (United States); Thompson, M

    2001-07-01

    In order to achieve the packing densities required for nuclear fuel stability, economy and performance, the fuel material must be densified. This has traditionally been performed by high-temperature sintering. (At one time, fuel densification was investigated using cold/hot swaging. However, this fabrication method has become uncommon.) Alternatively, fuel can be densified by vibratory compaction (VIPAC). During the late 1950's and into the 1970's, in the U.S., vibratory compaction fuel was fabricated and test irradiated to evaluate its applicability compared to the more traditional pelletized fuel for nuclear reactors. These activities were primarily focused on light water reactors (LWR) but some work was performed for fast reactors. This paper attempts to summarize these evaluations and proposes to reconsider VIPAC fuel for future use. (author)

  2. Vibratory-compacted (vipac/sphere-pac) nuclear fuels - a comparison with pelletized nuclear fuels

    International Nuclear Information System (INIS)

    Chidester, K.; Rubin, J.; Thompson, M.

    2001-01-01

    In order to achieve the packing densities required for nuclear fuel stability, economy and performance, the fuel material must be densified. This has traditionally been performed by high-temperature sintering. (At one time, fuel densification was investigated using cold/hot swaging. However, this fabrication method has become uncommon.) Alternatively, fuel can be densified by vibratory compaction (VIPAC). During the late 1950's and into the 1970's, in the U.S., vibratory compaction fuel was fabricated and test irradiated to evaluate its applicability compared to the more traditional pelletized fuel for nuclear reactors. These activities were primarily focused on light water reactors (LWR) but some work was performed for fast reactors. This paper attempts to summarize these evaluations and proposes to reconsider VIPAC fuel for future use. (author)

  3. Nuclear fuel element

    International Nuclear Information System (INIS)

    Knowles, A.N.

    1979-01-01

    A nuclear fuel-containing body for a high temperature gas cooled nuclear reactor is described which comprises a flat plate in which the nuclear fuel is contained as a dispersion of fission product-retaining coated fuel particles in a flat sheet of graphitic or carbonaceous matrix material. The flat sheet is clad with a relatively thin layer of unfuelled graphite bonded to the sheet by being formed initially from a number of separate preformed graphitic artefacts and then platen-pressed on to the exterior surfaces of the flat sheet, both the matrix material and the artefacts being in a green state, to enclose the sheet. A number of such flat plates are supported edge-on to the coolant flow in the bore of a tube made of neutron moderating material. Where a number of tiers of plates are superimposed on one another, the abutting edges are chamfered to reduce vibration. (author)

  4. The evolving nuclear fuel cycle

    International Nuclear Information System (INIS)

    Gale, J.D.; Hanson, G.E.; Coleman, T.A.

    1993-01-01

    Various economics and political pressures have shaped the evolution of nuclear fuel cycles over the past 10 to 15 yr. Future trends will no doubt be similarly driven. This paper discusses the influences that long cycles, high discharge burnups, fuel reliability, and costs will have on the future nuclear cycle. Maintaining the economic viability of nuclear generation is a key issue facing many utilities. Nuclear fuel has been a tremendous bargain for utilities, helping to offset major increases in operation and maintenance (O ampersand M) expenses. An important factor in reducing O ampersand M costs is increasing capacity factor by eliminating outages

  5. Nuclear fuel cycle modelling using MESSAGE

    International Nuclear Information System (INIS)

    Guiying Zhang; Dongsheng Niu; Guoliang Xu; Hui Zhang; Jue Li; Lei Cao; Zeqin Guo; Zhichao Wang; Yutong Qiu; Yanming Shi; Gaoliang Li

    2017-01-01

    In order to demonstrate the possibilities of application of MESSAGE tool for the modelling of a Nuclear Energy System at the national level, one of the possible open nuclear fuel cycle options based on thermal reactors has been modelled using MESSAGE. The steps of the front-end and back-end of nuclear fuel cycle and nuclear reactor operation are described. The optimal structure for Nuclear Power Development and optimal schedule for introducing various reactor technologies and fuel cycle options; infrastructure facilities, nuclear material flows and waste, investments and other costs are demonstrated. (author)

  6. International Summer School on Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures.

  7. Nuclear Fusion Fuel Cycle Research Perspectives

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin; Yun, Sei-Hun

    2015-01-01

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants

  8. Material input of nuclear fuel

    International Nuclear Information System (INIS)

    Rissanen, S.; Tarjanne, R.

    2001-01-01

    The Material Input (MI) of nuclear fuel, expressed in terms of the total amount of natural material needed for manufacturing a product, is examined. The suitability of the MI method for assessing the environmental impacts of fuels is also discussed. Material input is expressed as a Material Input Coefficient (MIC), equalling to the total mass of natural material divided by the mass of the completed product. The material input coefficient is, however, only an intermediate result, which should not be used as such for the comparison of different fuels, because the energy contents of nuclear fuel is about 100 000-fold compared to the energy contents of fossil fuels. As a final result, the material input is expressed in proportion to the amount of generated electricity, which is called MIPS (Material Input Per Service unit). Material input is a simplified and commensurable indicator for the use of natural material, but because it does not take into account the harmfulness of materials or the way how the residual material is processed, it does not alone express the amount of environmental impacts. The examination of the mere amount does not differentiate between for example coal, natural gas or waste rock containing usually just sand. Natural gas is, however, substantially more harmful for the ecosystem than sand. Therefore, other methods should also be used to consider the environmental load of a product. The material input coefficient of nuclear fuel is calculated using data from different types of mines. The calculations are made among other things by using the data of an open pit mine (Key Lake, Canada), an underground mine (McArthur River, Canada) and a by-product mine (Olympic Dam, Australia). Furthermore, the coefficient is calculated for nuclear fuel corresponding to the nuclear fuel supply of Teollisuuden Voima (TVO) company in 2001. Because there is some uncertainty in the initial data, the inaccuracy of the final results can be even 20-50 per cent. The value

  9. The Nuclear Fuel Cycle Information System

    International Nuclear Information System (INIS)

    1987-02-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities. Its purpose is to identify existing and planned nuclear fuel cycle facilities throughout the world and to indicate their main parameters. It includes information on facilities for uranium ore processing, refining, conversion and enrichment, for fuel fabrication, away-from-reactor storage of spent fuel and reprocessing, and for the production of zirconium metal and Zircaloy tubing. NFCIS currently covers 271 facilities in 32 countries and includes 171 references

  10. World nuclear fuel cycle requirements 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under two nuclear supply scenarios. These two scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries in the World Outside Centrally Planned Economic Areas (WOCA). A No New Orders scenarios is also presented for the Unites States. This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the WOCA projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel; discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2020 for the Lower and Upper Reference cases and through 2036, the last year in which spent fuel is discharged, for the No New Orders case

  11. Commercialization of nuclear fuel cycle business

    International Nuclear Information System (INIS)

    Yakabe, Hideo

    1998-01-01

    Japan depends on foreign countries almost for establishing nuclear fuel cycle. Accordingly, uranium enrichment, spent fuel reprocessing and the safe treatment and disposal of radioactive waste in Japan is important for securing energy. By these means, the stable supply of enriched uranium, the rise of utilization efficiency of uranium and making nuclear power into home-produced energy can be realized. Also this contributes to the protection of earth resources and the preservation of environment. Japan Nuclear Fuel Co., Ltd. operates four business commercially in Rokkasho, Aomori Prefecture, aiming at the completion of nuclear fuel cycle by the technologies developed by Power Reactor and Nuclear Fuel Development Corporation and the introduction of technologies from foreign countries. The conditions of location of nuclear fuel cycle facilities and the course of the location in Rokkasho are described. In the site of about 740 hectares area, uranium enrichment, burying of low level radioactive waste, fuel reprocessing and high level waste control have been carried out, and three businesses except reprocessing already began the operation. The state of operation of these businesses is reported. Hereafter, efforts will be exerted to the securing of safety through trouble-free operation and cost reduction. (K.I.)

  12. Spent Nuclear Fuel project, project management plan

    International Nuclear Information System (INIS)

    Fuquay, B.J.

    1995-01-01

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  13. The impact of the multilateral approach to the nuclear fuel cycle in Malaysia's nuclear fuel cycle policy

    International Nuclear Information System (INIS)

    Baharuddin, B.; Ferdinand, P.

    2014-01-01

    Since the Pakistan-India nuclear weapon race, the North Korean nuclear test and the September 11 attack revealed Abdul Qadeer Khan's clandestine nuclear black market and the fear that Iran's nuclear program may be used for nuclear weapon development, scrutiny of activities related to nuclear technologies, especially technology transfer has become more stringent. The nuclear supplier group has initiated a multilateral nuclear fuel cycle regime with the purpose of guaranteeing nuclear fuel supply and at the same time preventing the spread of nuclear proliferation. Malaysia wants to develop a programme for the peaceful use of nuclear energy and it needs to accommodate itself to this policy. When considering developing a nuclear fuel cycle policy, the key elements that Malaysia needs to consider are the extent of the fuel cycle technologies that it intends to acquire and the costs (financial and political) of acquiring them. Therefore, this paper will examine how the multilateral approach to the nuclear fuel cycle may influence Malaysia's nuclear fuel cycle policy, without jeopardising the country's rights and sovereignty as stipulated under the NPT. (authors)

  14. Alternatives for nuclear fuel disposal

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Badillo A, V.; Palacios H, J.; Celis del Angel, L.

    2010-10-01

    The spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments in the construction of repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution? or, What is the best technology for a specific solution? Many countries have deferred the decision on selecting an option, while other works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However, currently is under process an extended power up rate to 20% of their original power and also there are plans to extend operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. So this work describes some different alternatives that have been studied in Mexico to define which will be the best alternative to follow. (Author)

  15. Fission products and nuclear fuel behaviour under severe accident conditions part 1: Main lessons learnt from the first VERDON test

    Science.gov (United States)

    Pontillon, Y.; Geiger, E.; Le Gall, C.; Bernard, S.; Gallais-During, A.; Malgouyres, P. P.; Hanus, E.; Ducros, G.

    2017-11-01

    This paper describes the first VERDON test performed at the end of September 2011 with special emphasis on the behaviour of fission products (FP) and actinides during the accidental sequence itself. Two other papers discuss in detail the post-test examination results (SEM, EPMA and SIMS) of the VERDON-1 sample. The first VERDON test was devoted to studying UO2 fuel behaviour and fission product releases under reducing conditions at very high temperature (∼2883 K), which was able to confirm the very good performance of the VERDON loop. The fuel sample did not lose its integrity during this test. According to the FP behaviour measured by the online gamma station (fuel sight), the general classification of the FP in relation to their released fraction is very accurate, and the burn-up effect on the release rate is clearly highlighted.

  16. Development of a microindentation technique to determine the fuel mechanical behaviour at high burnup

    International Nuclear Information System (INIS)

    Baron, D.; Leclercq, S.; Spino, J.; Taheri, S.

    1998-01-01

    One of the major problems that face the conceptors and users of nuclear power plants is the demonstration of the cladding integrity (the Zircaloy clad that contains the fuel pellets), particularly in class I and II operating conditions. A long term collaboration between EDF and the Applied Mechanics Laboratory (LMA) of Besancon (France) has existed for several years, and a unified modelling of the cladding has been developed in this frame. But a good understanding of the cladding response is not of total use if the mechanical solicitation applied to this clad by the fuel pellet is not completely known. The potential evolution and the non-homogeneity of the fuel stiffness was recently demonstrated by Spino (TUI) on Vickers micro-hardness tests at room temperature. Thus, in order to get furthermore data, TUI and EDF decided to build a specific microindentation device able to perform the tests needed by the modelers. After a brief recall of what the effects of irradiation are on the fuel pellet mechanical behaviour, this paper presents the microindentation device to be built, as well as the principles that underline its use. Finally, the way the experimental results will be used to determine the mechanical behaviour of the fuel pellet under irradiation is pointed out. (author)

  17. Perspective of nuclear fuel cycle for sustainable nuclear energy

    International Nuclear Information System (INIS)

    Fukuda, K.; Bonne, A.; Kagramanian, V.

    2001-01-01

    Nuclear power, on a life-cycle basis, emits about the same level of carbon per unit of electricity generated as wind and solar power. Long-term energy demand and supply analysis projects that global nuclear capacities will expand substantially, i.e. from 350 GW today to more than 1,500 GW by 2050. Uranium supply, spent fuel and waste management, and a non-proliferation nuclear fuel cycle are essential factors for sustainable nuclear power growth. An analysis of the uranium supply up to 2050 indicates that there is no real shortage of potential uranium available if based on the IIASA/WEC scenario on medium nuclear energy growth, although its market price may become more volatile. With regard to spent fuel and waste management, the short term prediction foresees that the amount of spent fuel will increase from the present 145,000 tHM to more than 260,000 tHM in 2015. The IPCC scenarios predicted that the spent fuel quantities accumulated by 2050 will vary between 525 000 tHM and 3 210 000 tHM. Even according to the lowest scenario, it is estimated that spent fuel quantity in 2050 will be double the amount accumulated by 2015. Thus, waste minimization in the nuclear fuel cycle is a central tenet of sustainability. The proliferation risk focusing on separated plutonium and resistant technologies is reviewed. Finally, the IAEA Project INPRO is briefly introduced. (author)

  18. Spent nuclear fuel in Bulgaria

    International Nuclear Information System (INIS)

    Peev, P.; Kalimanov, N.

    1999-01-01

    The development of the nuclear energy sector in Bulgaria is characterized by two major stages. The first stage consisted of providing a scientific basis for the programme for development of the nuclear energy sector in the country and was completed with the construction of an experimental water-water reactor. At present, spent nuclear fuel from this reactor is placed in a water filled storage facility and will be transported back to Russia. The second stage consisted of the construction of the 6 NPP units at the Kozloduy site. The spent nuclear fuel from the six units is stored in at reactor pools and in an additional on-site storage facility which is nearly full. In order to engage the government of the country with the on-site storage problems, the new management of the National Electric Company elaborated a policy on nuclear fuel cycle and radioactive waste management. The underlying policy is de facto the selection of the 'deferred decision' option for its spent fuel management. (author)

  19. The nuclear fuel elements' world market and the position of the Argentine Republic as producer

    International Nuclear Information System (INIS)

    Biondo, C.D.

    1983-01-01

    The development of the nuclear fuel elements' industry is analyzed, both in the present and projected world market, up to the year 2000, in the light of the situation affecting the nucleoelectric industry. By means of the offer/demand function, an analysis is made of the behaviour of the fuel elements' market throughout the fuel cycle structure. The regional unbalances between availability and demand of uranium resources are considered, as well as the factors having an unfavorable incidence on the fuel cycle's economic equation. The economic structure to be used for the calculation of the nucleoelectric generating cost is presented, in order to situate, within said nuclear economy, the component corresponding to the fuel cycle cost. Emphasis is placed on the 'front end' stages of the fuel cycle, but also considering those stages belonging to the 'back end'. Argentina's fuel elements market and its present and projected nucleoelectric park are analyzed, indicating their relative position in the world market. (R.J.S.) [es

  20. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a metal liner disposed between the cladding and the nuclear fuel material and a high lubricity material in the form of a coating disposed between the liner and the cladding. The liner preferably has a thickness greater than the longest fission product recoil distance and is composed of a low neutron capture cross-section material. The liner is preferably composed of zirconium, an alloy of zirconium, niobium or an alloy of niobium. The liner serves as a preferential reaction site for volatile impurities and fission products and protects the cladding from contact and reaction with such impurities and fission products. The high lubricity material acts as an interface between the liner and the cladding and reduces localized stresses on the cladding due to fuel expansion and cracking of the fuel

  1. Nuclear fuel storage facility

    International Nuclear Information System (INIS)

    Matsumoto, Takashi; Isaka, Shinji.

    1987-01-01

    Purpose: To increase the spent fuel storage capacity and reduce the installation cost in a nuclear fuel storage facility. Constitution: Fuels handled in the nuclear fuel storage device of the present invention include the following four types: (1) fresh fuels, (2) 100 % reactor core charged fuels, (3) spent fuels just after taking out and (4) fuels after a certain period (for example one half-year) from taking out of the reactor. Reactivity is high for the fuels (1), and some of fuels (2), while low in the fuels (3) (4), Source intensity is strong for the fuels (3) and some of the fuels (2), while it is low for the fuels (1) and (4). Taking notice of the fact that the reactivity, radioactive source intensity and generated after heat are different in the respective fuels, the size of the pool and the storage capacity are increased by the divided storage control. While on the other hand, since the division is made in one identical pool, the control method becomes important, and the working range is restricted by means of a template, interlock, etc., the operation mode of the handling machine is divided into four, etc. for preventing errors. (Kamimura, M.)

  2. Reconstruction of the size of nuclear fuel particle aerosol by the investigation of a radionuclide behaviour in body of the Chernobyl accident witnesses

    International Nuclear Information System (INIS)

    Kutkov, V.A.

    1996-01-01

    As a result of the Chernobyl NPP (ChNPP) accident aerosol particles of dispersed nuclear fuel were released to the atmosphere. Inhalation of those aerosol became the source of internal exposure for witnesses of the Chernobyl accident. To assess correctly internal doses from a mixture of radionuclides present in air in the form of aerosol particles one mast assign each radionuclide to a certain inhalation class by its chemical speciation in aerosol and define the airborne characteristics (the activity median aerodynamic diameter, AMAD and the standard geometric deviation, fig) of that particular aerosol. Moreover, information on any particular radionuclide is useless for other components since, in such a mixture, the radionuclides are generally independent and may belong to different particles. On the contrary, all nuclear fuel particle (NFP) radionuclides belong to the same particle, being matrix-bound. The collective behaviour of the matrix-bound radionuclides in the environment and in the human barrier organs makes it possible to spread to the aerosol of NFP any estimates of AMAD and β g obtained for any particular NFP radionuclide. This is principal feature of NFP aerosol as distinguished from a mere mixture of aerosol particles carry different radionuclides. (author)

  3. World nuclear fuel cycle requirements 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management

  4. Proceeding of the Fifth Scientific Presentation on Nuclear Fuel Cycle: Development of Nuclear Fuel Cycle Technology in Third Millennium

    International Nuclear Information System (INIS)

    Suripto, A.; Sastratenaya, A.S.; Sutarno, D.

    2000-01-01

    The proceeding contains papers presented in the Fifth Scientific Presentation on Nuclear Fuel Element Cycle with theme of Development of Nuclear Fuel Cycle Technology in Third Millennium, held on 22 February in Jakarta, Indonesia. These papers were divided by three groups that are technology of exploration, processing, purification and analysis of nuclear materials; technology of nuclear fuel elements and structures; and technology of waste management, safety and management of nuclear fuel cycle. There are 35 papers indexed individually. (id)

  5. Elements of nuclear reactor fueling theory

    International Nuclear Information System (INIS)

    Egan, M.R.

    1984-01-01

    Starting with a review of the simple batch size effect, a more general theory of nuclear fueling is derived to describe the behaviour and physical requirements of operating cycle sequences and fueling strategies having practical use in fuel management. The generalized theory, based on linear reactivity modeling, is analytical and represents the effects of multiple-stream, multiple-depletion-batch fueling configurations in systems employing arbitrary, non-integer batch size strategies, and containing fuel with variable energy generation rates. Reactor operating cycles and cycle sequences are represented with realistic structure that includes the effects of variable cycle energy production, cycle lengths, end-of-cycle operating extensions and manoeuvering allowances. Results of the analytical theory are first applied to the special case of degenerate equilibrium cycle sequences, yielding several fundamental principles related to the selection of refueling strategy. Numerical evaluations of degenerate equilibrium cycle sequences are then performed for a typical PWR core, and accompanying fuel cycle costs are calculated. The impact of design and operational limits as constraints on the performance mappings for this reactor are also studied with respect to achieving improved cost performance from the once-through fuel cycle. The dynamics of transition cycle sequences are then examined using the generalized theory. Proof of the existence of non-degenerate equilibrium cycle sequences is presented when the mechanics of the fixed reload batch size strategy are developed analytically for transition sequences. Finally, an analysis of the fixed reload enrichment strategy demonstrates the potential for convergence of the transition sequence to a fully degenerate equilibrium sequence. (author)

  6. Romanian nuclear fuel program: past, present and future

    International Nuclear Information System (INIS)

    Budan, O.; Rotaru, I.; Galeriu, C.A.

    1997-01-01

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. In this paper the word 'past' refers to the period before 1990 and 'present' to the 1990-1997 period. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. - ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified

  7. Fuel pins irradiation: experimental devices and analytical behaviour

    International Nuclear Information System (INIS)

    Lemaignan, C.

    1996-01-01

    In this text we present the general characteristics of adapted irradiation loops in research reactors and the main results that we can expected with these loops in the behaviour field of PWR and LMFBR fuels( fuel densification, fuel cladding interactions, fission products release, reactor accidents)

  8. International guidelines for fire protection at nuclear installations including nuclear fuel plants, nuclear fuel stores, teaching reactors, research establishments

    International Nuclear Information System (INIS)

    The guidelines are recommended to designers, constructors, operators and insurers of nuclear fuel plants and other facilities using significant quantities of radioactive materials including research and teaching reactor installations where the reactors generally operate at less than approximately 10 MW(th). Recommendations for elementary precautions against fire risk at nuclear installations are followed by appendices on more specific topics. These cover: fire protection management and organization; precautions against loss during construction alterations and maintenance; basic fire protection for nuclear fuel plants; storage and nuclear fuel; and basic fire protection for research and training establishments. There are numerous illustrations of facilities referred to in the text. (U.K.)

  9. Nuclear fuel element leak detection system

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1978-01-01

    Disclosed is a leak detection system integral with a wall of a building used to fabricate nuclear fuel elements for detecting radiation leakage from the nuclear fuel elements as the fuel elements exit the building. The leak detecting system comprises a shielded compartment constructed to withstand environmental hazards extending into a similarly constructed building and having sealed doors on both ends along with leak detecting apparatus connected to the compartment. The leak detecting system provides a system for removing a nuclear fuel element from its fabrication building while testing for radiation leaks in the fuel element

  10. Spent nuclear fuel storage - Basic concept

    International Nuclear Information System (INIS)

    Krempel, Ascanio; Santos, Cicero D. Pacifici dos; Sato, Heitor Hitoshi; Magalhaes, Leonardo de

    2009-01-01

    According to the procedures adopted in others countries in the world, the spent nuclear fuel elements burned to produce electrical energy in the Brazilian Nuclear Power Plant of Angra do Reis, Central Nuclear Almirante Alvaro Alberto - CNAAA will be stored for a long time. Such procedure will allow the next generation to decide how they will handle those materials. In the future, the reprocessing of the nuclear fuel assemblies could be a good solution in order to have additional energy resource and also to decrease the volume of discarded materials. This decision will be done in the future according to the new studies and investigations that are being studied around the world. The present proposal to handle the nuclear spent fuel is to storage it for a long period of time, under institutional control. Therefore, the aim of this paper is to introduce a proposal of a basic concept of spent fuel storage, which involves the construction of a new storage building at site, in order to increase the present storage capacity of spent fuel assemblies in CNAAA installation; the concept of the spent fuel transportation casks that will transfer the spent fuel assemblies from the power plants to the Spent Fuel Complementary Storage Building and later on from this building to the Long Term Intermediate Storage of Spent Fuel; the concept of the spent fuel canister and finally the basic concept of the spent fuel long term storage. (author)

  11. Chemical characterization of nuclear fuel materials

    International Nuclear Information System (INIS)

    Ramakumar, K.L.

    2011-01-01

    India is fabricating nuclear fuels for various types of reactors, for example, (U-Pu) MOX fuel of varying Pu content for boiling water reactors (BWRs), pressurized heavy water reactors (PHWRs), prototype fast breeder reactors (PFBRs), (U-Pu) carbide fuel fast breeder test reactor (FBTR), and U-based fuels for research reactors. Nuclear fuel being the heart of the reactor, its chemical and physical characterisation is an important component of this design. Both the fuel materials and finished fuel products are to be characterised for this purpose. Quality control (both chemical and physical) provides a means to ensure that the quality of the fabricated fuel conforms to the specifications for the fuel laid down by the fuel designer. Chemical specifications are worked out for the major and minor constituents which affect the fuel properties and hence its performance under conditions prevailing in an operating reactor. Each fuel batch has to be subjected to comprehensive chemical quality control for trace constituents, stoichiometry and isotopic composition. A number of advanced process and quality control steps are required to ensure the quality of the fuels. Further more, in the case of Pu-based fuels, it is necessary to extract maximum quality data by employing different evaluation techniques which would result in minimum scrap/waste generation of valuable plutonium. The task of quality control during fabrication of nuclear fuels of various types is both challenging and difficult. The underlying philosophy is total quality control of the fuel by proper mix of process and quality control steps at various stages of fuel manufacture starting from the feed materials. It is also desirable to adapt more than one analytical technique to increase the confidence and reliability of the quality data generated. This is all the most required when certified reference materials are not available. In addition, the adaptation of non-destructive techniques in the chemical quality

  12. Nuclear fuel preheating system

    International Nuclear Information System (INIS)

    Andrea, C.

    1975-01-01

    A nuclear reactor new fuel handling system which conveys new fuel from a fuel preparation room into the reactor containment boundary is described. The handling system is provided with a fuel preheating station which is adaptd to heat the new fuel to reactor refueling temperatures in such a way that the fuel is heated from the top down so that fuel element cladding failure due to thermal expansions is avoided. (U.S.)

  13. AN ANALYTICAL FRAMEWORK FOR ASSESSING RELIABLE NUCLEAR FUEL SERVICE APPROACHES: ECONOMIC AND NON-PROLIFERATION MERITS OF NUCLEAR FUEL LEASING

    International Nuclear Information System (INIS)

    Kreyling, Sean J.; Brothers, Alan J.; Short, Steven M.; Phillips, Jon R.; Weimar, Mark R.

    2010-01-01

    The goal of international nuclear policy since the dawn of nuclear power has been the peaceful expansion of nuclear energy while controlling the spread of enrichment and reprocessing technology. Numerous initiatives undertaken in the intervening decades to develop international agreements on providing nuclear fuel supply assurances, or reliable nuclear fuel services (RNFS) attempted to control the spread of sensitive nuclear materials and technology. In order to inform the international debate and the development of government policy, PNNL has been developing an analytical framework to holistically evaluate the economics and non-proliferation merits of alternative approaches to managing the nuclear fuel cycle (i.e., cradle-to-grave). This paper provides an overview of the analytical framework and discusses preliminary results of an economic assessment of one RNFS approach: full-service nuclear fuel leasing. The specific focus of this paper is the metrics under development to systematically evaluate the non-proliferation merits of fuel-cycle management alternatives. Also discussed is the utility of an integrated assessment of the economics and non-proliferation merits of nuclear fuel leasing.

  14. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirama, H.

    1978-01-01

    A nuclear fuel element comprises an elongated tube having upper and lower end plugs fixed to both ends thereof and nuclear fuel pellets contained within the tube. The fuel pellets are held against the lower end plug by a spring which is supported by a setting structure. The setting structure is maintained at a proper position at the middle of the tube by a wedge effect caused by spring force exerted by the spring against a set of balls coacting with a tapered member of the setting structure thereby wedging the balls against the inner wall of the tube, and the setting structure is moved free by pushing with a push bar against the spring force so as to release the wedge effect

  15. Nuclear fuel tax in court

    International Nuclear Information System (INIS)

    Leidinger, Tobias

    2014-01-01

    Besides the 'Nuclear Energy Moratorium' (temporary shutdown of eight nuclear power plants after the Fukushima incident) and the legally decreed 'Nuclear Energy Phase-Out' (by the 13th AtG-amendment), also the legality of the nuclear fuel tax is being challenged in court. After receiving urgent legal proposals from 5 nuclear power plant operators, the Hamburg fiscal court (4V 154/13) temporarily obliged on 14 April 2014 respective main customs offices through 27 decisions to reimburse 2.2 b. Euro nuclear fuel tax to the operating companies. In all respects a remarkable process. It is not in favour of cleverness to impose a political target even accepting immense constitutional and union law risks. Taxation 'at any price' is neither a statement of state sovereignty nor one for a sound fiscal policy. Early and serious warnings of constitutional experts and specialists in the field of tax law with regard to the nuclear fuel tax were not lacking. (orig.)

  16. Nuclear fuel cycle simulation system (VISTA)

    International Nuclear Information System (INIS)

    2007-02-01

    The Nuclear Fuel Cycle Simulation System (VISTA) is a simulation system which estimates long term nuclear fuel cycle material and service requirements as well as the material arising from the operation of nuclear fuel cycle facilities and nuclear power reactors. The VISTA model needs isotopic composition of spent nuclear fuel in order to make estimations of the material arisings from the nuclear reactor operation. For this purpose, in accordance with the requirements of the VISTA code, a new module called Calculating Actinide Inventory (CAIN) was developed. CAIN is a simple fuel depletion model which requires a small number of input parameters and gives results in a very short time. VISTA has been used internally by the IAEA for the estimation of: spent fuel discharge from the reactors worldwide, Pu accumulation in the discharged spent fuel, minor actinides (MA) accumulation in the spent fuel, and in the high level waste (HLW) since its development. The IAEA decided to disseminate the VISTA tool to Member States using internet capabilities in 2003. The improvement and expansion of the simulation code and the development of the internet version was started in 2004. A website was developed to introduce the simulation system to the visitors providing a simple nuclear material flow calculation tool. This website has been made available to Member States in 2005. The development work for the full internet version is expected to be fully available to the interested parties from IAEA Member States in 2007 on its website. This publication is the accompanying text which gives details of the modelling and an example scenario

  17. Nuclear fuel manufacture

    International Nuclear Information System (INIS)

    Costello, J.M.

    1980-09-01

    The technologies used to manufacture nuclear fuel from uranium ore are outlined, with particular reference to the light water reactor fuel cycle. Capital and operating cost estimates for the processing stages are given, and the relevance to a developing uranium industry in Australia is discussed

  18. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    Niedrig, T.

    1987-01-01

    Nuclear fuel supply is viewed as a buyer's market of assured medium-term stability. Even on a long-term basis, no shortage is envisaged for all conceivable expansion schedules. The conversion and enrichment facilities developed since the mid-seventies have done much to stabilize the market, owing to the fact that one-sided political decisions by the USA can be counteracted efficiently. In view of the uncertainties concerning realistic nuclear waste management strategies, thermal recycling and mixed oxide fuel elements might increase their market share in the future. Capacities are being planned accordingly. (orig.) [de

  19. On behaviour of fuel elements subject to combined cyclic thermomechanical loads

    International Nuclear Information System (INIS)

    Hsu, T.R.

    1980-01-01

    This paper presents detailed finite element formulations on the kinematic hardening rule of plasticity included in an existing thermoelastoplastic stress analysis code primarily designed to predict the thermomechanical behaviour of nuclear reactor fuel elements. The kinematic hardening rule is considered to be important for structures subject to repeated (or cyclic) loads. The start-up/operation/shut-down and various power excursions in a reactor all can be classified as cyclic loadings. In addition to the shifting of material yield surfaces as usually handled by the kinematic hardening rule, the thermal effect and temperature-dependent material properties have also been included in the present work for the first time. A case study related to an in-reactor experiment on a single fuel element indicated that significantly higher cumulative sheath residual strains after two load cycles was obtained by the present scheme than those calculated by the usual isotropic hardening rule. This observation may alert fuel modellers to select proper hardening rules in their analyses. (orig.)

  20. Sustainability Features of Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Stefano Passerini

    2012-09-01

    Full Text Available The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis, the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.

  1. Nuclear fuel cycle and legal regulations

    International Nuclear Information System (INIS)

    Shimoyama, Shunji; Kaneko, Koji.

    1980-01-01

    Nuclear fuel cycle is regulated as a whole in Japan by the law concerning regulation of nuclear raw materials, nuclear fuel materials and reactors (hereafter referred to as ''the law concerning regulation of reactors''), which was published in 1957, and has been amended 13 times. The law seeks to limit the use of atomic energy to peaceful objects, and nuclear fuel materials are controlled centering on the regulation of enterprises which employ nuclear fuel materials, namely regulating each enterprise. While the permission and report of uses are necessary for the employment of nuclear materials under Article 52 and 61 of the law concerning regulation of reactors, the permission provisions are not applied to three kinds of enterprises of refining, processing and reprocessing and the persons who install reactors as the exceptions in Article 52, when nuclear materials are used for the objects of the enterprises themselves. The enterprises of refining, processing and reprocessing and the persons who install reactors are stipulated respectively in the law. Accordingly the nuclear material regulations are applied only to the users of small quantity of such materials, namely universities, research institutes and hospitals. The nuclear fuel materials used in Japan which are imported under international contracts including the nuclear energy agreements between two countries are mostly covered by the security measures of IAEA as internationally controlled substances. (Okada, K.)

  2. CARA Project: development of the advanced ULE fuel element for heavy water nuclear power plants

    International Nuclear Information System (INIS)

    Brasnarof, Daniel O.; Marino, Armando C.; Florido, Pablo C.; Munoz, C.; Bianchi, Daniel R.; Giorgis, Miguel A.

    2006-01-01

    The CARA Project (Spanish acronym of Combustible Avanzado para Reactores Argentinos) is a national fuel element technology development, compatible with our nuclear power plants (Atucha I, Embalse and Atucha II). It takes into account the experience obtained in our nuclear organisations (CNEA-CONUAR-NASA). The goal of the CARA fuel element is the performance improvement for those reactors and the enhancing of their normal operative conditions. The CARA design allows the burnup extension by using 52 rods of the same diameter. Likewise it keeps good thermo-hydraulic behaviour. The fuel bundle can be directly used in nuclear power plants with horizontal channels. By using an additional system it can be installed in the PHWR with vertical channels. The expected profits, by the use of the CARA in our reactors, broadly guaranty the recovery of the fund for its development, due to a reduction of the NPP fuels and back end cost. We estimate a reduction in the generation cost between 20 or 25 % in relation to the present one if we use 0.85 or 0.90% SEU (Slightly Enriched Uranium). The use of the CARA fuel in our reactors will also reduce the amount of spent fuel to be treated. The shortening could be between 17 to 27 % in Atucha I in relation to the present ULE (0.85%), between 38 to 46% for Embalse, and 45 to 53% for Atucha II. The mechanical behaviour and hydraulic compatibility have been verified. Several CARA prototypes were fabricated with a new design of the end plate and with new processes for the welding for the rods. We present in this paper the current status of the CARA fuel element development. (author) [es

  3. Development of nuclear fuel cycle technologies - bases of long-term provision of fuel and environmental safety of nuclear power

    International Nuclear Information System (INIS)

    Solonin, M.I.; Polyakov, A.S.; Zakharkin, B.S.; Smelov, V.S.; Nenarokomov, E.A.; Mukhin, I.V.

    2000-01-01

    To-day nuclear power is one of the options, however, to-morrow it may become the main source of the energy, thus, providing for the stable economic development for the long time to come. The availability of the large-scale nuclear power in the foreseeable future is governed by not only the safe operation of nuclear power plants (NPP) but also by the environmentally safe management of spent nuclear fuel, radioactive waste conditioning and long-term storage. More emphasis is to be placed to the closing of the fuel cycle in view of substantial quantities of spent nuclear fuel arisings. The once-through fuel cycle that is cost effective at the moment cannot be considered to be environmentally safe even for the middle term since the substantial build-up of spent nuclear fuel containing thousands of tons Pu will require the resolution of the safe management problem in the nearest future and is absolutely unjustified in terms of moral ethics as a transfer of the responsibility to future generations. The minimization of radioactive waste arisings and its radioactivity is only feasible with the closed fuel cycle put into practice and some actinides and long-lived fission radionuclides burnt out. The key issues in providing the environmentally safe fuel cycle are efficient processes of producing fuel for NPP, radionuclide after-burning included, a long-term spent nuclear fuel storage and reprocessing as well as radioactive waste management. The paper deals with the problems inherent in producing fuel for NPP with a view for the closed fuel cycle. Also discussed are options of the fuel cycle, its effectiveness and environmental safety with improvements in technologies of spent nuclear fuel reprocessing and long-lived radionuclide partitioning. (authors)

  4. Development of nuclear fuel cycle technologies - bases of long-term provision of fuel and environmental safety of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Solonin, M I; Polyakov, A S; Zakharkin, B S; Smelov, V S; Nenarokomov, E A; Mukhin, I V [SSC, RF, A.A. Bochvar ALL-Russia Research Institute of Inorganic Materials, Moscow (Russian Federation)

    2000-07-01

    To-day nuclear power is one of the options, however, to-morrow it may become the main source of the energy, thus, providing for the stable economic development for the long time to come. The availability of the large-scale nuclear power in the foreseeable future is governed by not only the safe operation of nuclear power plants (NPP) but also by the environmentally safe management of spent nuclear fuel, radioactive waste conditioning and long-term storage. More emphasis is to be placed to the closing of the fuel cycle in view of substantial quantities of spent nuclear fuel arisings. The once-through fuel cycle that is cost effective at the moment cannot be considered to be environmentally safe even for the middle term since the substantial build-up of spent nuclear fuel containing thousands of tons Pu will require the resolution of the safe management problem in the nearest future and is absolutely unjustified in terms of moral ethics as a transfer of the responsibility to future generations. The minimization of radioactive waste arisings and its radioactivity is only feasible with the closed fuel cycle put into practice and some actinides and long-lived fission radionuclides burnt out. The key issues in providing the environmentally safe fuel cycle are efficient processes of producing fuel for NPP, radionuclide after-burning included, a long-term spent nuclear fuel storage and reprocessing as well as radioactive waste management. The paper deals with the problems inherent in producing fuel for NPP with a view for the closed fuel cycle. Also discussed are options of the fuel cycle, its effectiveness and environmental safety with improvements in technologies of spent nuclear fuel reprocessing and long-lived radionuclide partitioning. (authors)

  5. Nuclear fuel replacement device

    International Nuclear Information System (INIS)

    Ritz, W.C.; Robey, R.M.; Wett, J.F.

    1984-01-01

    A fuel handling arrangement for a liquid metal cooled nuclear reactor having a single rotating plug eccentric to the fuel core and a fuel handling machine radially movable along a slot in the plug with a transfer station disposed outside the fuel core but covered by the eccentric plug and within range of movement of said fuel handling machine to permit transfer of fuel assemblies between the core and the transfer station. (author)

  6. Device for reprocessing nuclear fuels

    International Nuclear Information System (INIS)

    Hatano, Mamoru.

    1981-01-01

    Purpose: To readily discharge a nuclear fuel by burning the nuclear fuel as it is without a pulverizing step and removing the graphite and other coated fuel particles. Constitution: An oxygen supply pipe is connected to the lower portion of a discharge chamber having an inlet for the fuel, and an exhaust pipe is connected to the upper portion of the chamber. The fuel mounted on a metallic gripping member made of metallic material is inserted from the inlet, the gripping member is connected through a conductor to a voltage supply unit, oxygen is then supplied through the oxygen supply tube to the discharge chamber, the voltage supply unit is subsequently operated, and discharge takes place among the fuels. Thus, high heat is generated by the discharge, the graphite carbon of the fuel is burnt, silicon carbide is destroyed and decomposed, the isolated nuclear fuel particles are discharged from the exhaust port, and the combustion gas and small embers are exhausted from the exhaust tube. Accordingly, radioactive dusts are not so much generated as when using a mechanical pulverizing means, and prescribed objective can be achieved. (Yoshino, Y.)

  7. Regional and global environmental behaviour of radionuclides from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1983-02-01

    The operation of nuclear fuel cycle facilities entails the discharge of radioactive effluents to both the atmosphere and aquatic environment. These effluents may contain radionuclides which may be subject of concern for their long-range environmental consequences, in particular, in assessing the health detriment to populations in regions beyond the local environment. The present document reviews information on radionuclides, their environmental pathways and processes and related models and summarizes experiences and studies in this field

  8. Reprocessing of nuclear fuels

    International Nuclear Information System (INIS)

    Hatfield, G.W.

    1960-11-01

    One of the persistent ideas concerning nuclear power is that the fuel costs are negligible. This, of course, is incorrect and, in fact, one of the major problems in the development of economic nuclear power is to get the cost of the fuel cycles down to an acceptable level. The irradiated fuel removed from the nuclear power reactors must be returned as fresh fuel into the system. Aside from the problems of handling and shipping involved in the reprocessing cycles, the two major steps are the chemical separation and the refabrication. The chemical separation covers the processing of the spent fuel to separate and recover the unburned fuel as well as the new fuel produced in the reactor. This includes the decontamination of these materials from other radioactive fission products formed in the reactor. Refabrication involves the working and sheathing of recycled fuel into the shapes and forms required by reactor design and the economics of the fabrication problem determines to a large extent the quality of the material required from the chemical treatment. At present there appear to be enough separating facilities in the United States and the United Kingdom to handle the recycling of fuel from power reactors for the next few years. However, we understand the costs of recycling fuel in these facilities will be high or low depend ing on whether or not the capital costs of the plant are included in the processing cost. Also, the present plants may not be well adapted to carry out the chemical processing of the very wide variety of power reactor fuel elements which are being considered and will continue to be considered over the years to come. (author)

  9. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Ito, Arata; Wakamatsu, Mitsuo.

    1976-01-01

    Object: To permit the coolant in an FBR type reactor to enter from the entrance nozzle into a nuclear fuel assembly without causing cavitation. Structure: In a nuclear fuel assembly, which comprises a number of thin fuel pines bundled together at a uniform spacing and enclosed within an outer cylinder, with a handling head connected to an upper portion of the outer cylinder and an entrance nozzle connected to a lower portion of the cylinder, the inner surface of the entrance nozzle is provided with a buffer member and an orifice successively in the direction of flow of the coolant. The coolant entering from a low pressure coolant chamber into the entrance nozzle strikes the buffer member and is attenuated, and thereafter flows through an orifice into the outer cylinder. (Horiuchi, T.)

  10. Crushing method for nuclear fuel powder

    International Nuclear Information System (INIS)

    Hasegawa, Shin-ichi; Tsuchiya, Haruo.

    1997-01-01

    A crushing medium is contained in mill pots disposed at the circumferential periphery of a main axis. The diameter of each mill pot is determined such that powdery nuclear fuels containing aggregated powders and ground and mixed powders do not reach criticality. A plurality of mill pots are revolved in the direction of the main axis while each pots rotating on its axis. Powdery nuclear fuels containing aggregated powders are conveyed to a supply portion of the moll pot, and an inert gas is supplied to the supply portion. The powdery nuclear fuels are supplied from the supply portion to the inside of the mill pots, and the powdery nuclear fuels containing aggregated powders are crushed by centrifugal force caused by the rotation and the revolving of the mill pots by means of the crushing medium. UO 2 powder in uranium oxide fuels can be crushed continuously. PuO 2 powder and UO 2 powder in MOX fuels can be crushed and mixed continuously. (I.N.)

  11. World nuclear fuel cycle requirements, 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the (WOCA) World Outside Centrally Planned Economic Areas projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix E includes aggregated domestic spent fuel projections through the year 2020 for the Lower and Upper References cases and through 2037, the last year in which spent fuel is discharged, for the No New Orders case. Annual projections of spent fuel discharges through the year 2037 for individual US reactors in the No New Orders cases are included for the first time in Appendix H. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management

  12. Nuclear fuel cycles : description, demand and supply estimates

    International Nuclear Information System (INIS)

    Gadallah, A.A.; Abou Zahra, A.A.; Hammad, F.H.

    1985-01-01

    This report deals with various nuclear fuel cycles description as well as the world demand and supply estimates of materials and services. Estimates of world nuclear fuel cycle requirements: nuclear fuel, heavy water and other fuel cycle services as well as the availability and production capabilities of these requirements, are discussed for several reactor fuel cycle strategies, different operating and under construction fuel cycle facilities in some industrialized and developed countries are surveyed. Various uncertainties and bottlenecks which are recently facing the development of some fuel cycle components are also discussed, as well as various proposals concerning fuel cycle back-end concepts. finally, the nuclear fuel cycles activities in some developing countries are reviewed with emphasis on the egyptian plans to introduce nuclear power in the country. 11 fig., 16 tab

  13. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-01-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the ''front end'' and ''back end'' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of the Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  14. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-10-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the 'front end' and 'back end' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of The Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  15. Nuclear fuel activities in Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Bairiot, H

    1997-12-01

    In his presentation on nuclear fuel activities in belgium the author considers the following directions of this work: fuel fabrication, NPP operation, fuel performance, research and development programmes.

  16. Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS

    Energy Technology Data Exchange (ETDEWEB)

    Barani, T.; Bruschi, E.; Pizzocri, D. [Politecnico di Milano, Department of Energy, Nuclear Engineering Division, Via La Masa 34, I-20156 Milano (Italy); Pastore, G. [Fuel Modeling and Simulation Department, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Van Uffelen, P. [European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, P.O. Box 2340, 76125 Karlsruhe (Germany); Williamson, R.L. [Fuel Modeling and Simulation Department, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Luzzi, L., E-mail: Lelio.Luzzi@polimi.it [Politecnico di Milano, Department of Energy, Nuclear Engineering Division, Via La Masa 34, I-20156 Milano (Italy)

    2017-04-01

    The modelling of fission gas behaviour is a crucial aspect of nuclear fuel performance analysis in view of the related effects on the thermo-mechanical performance of the fuel rod, which can be particularly significant during transients. In particular, experimental observations indicate that substantial fission gas release (FGR) can occur on a small time scale during transients (burst release). To accurately reproduce the rapid kinetics of the burst release process in fuel performance calculations, a model that accounts for non-diffusional mechanisms such as fuel micro-cracking is needed. In this work, we present and assess a model for transient fission gas behaviour in oxide fuel, which is applied as an extension of conventional diffusion-based models to introduce the burst release effect. The concept and governing equations of the model are presented, and the sensitivity of results to the newly introduced parameters is evaluated through an analytic sensitivity analysis. The model is assessed for application to integral fuel rod analysis by implementation in two structurally different fuel performance codes: BISON (multi-dimensional finite element code) and TRANSURANUS (1.5D code). Model assessment is based on the analysis of 19 light water reactor fuel rod irradiation experiments from the OECD/NEA IFPE (International Fuel Performance Experiments) database, all of which are simulated with both codes. The results point out an improvement in both the quantitative predictions of integral fuel rod FGR and the qualitative representation of the FGR kinetics with the transient model relative to the canonical, purely diffusion-based models of the codes. The overall quantitative improvement of the integral FGR predictions in the two codes is comparable. Moreover, calculated radial profiles of xenon concentration after irradiation are investigated and compared to experimental data, illustrating the underlying representation of the physical mechanisms of burst release

  17. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  18. Inspection of nuclear fuel transport in Spain

    International Nuclear Information System (INIS)

    Lobo Mendez, J.

    1977-01-01

    The experience acquired in inspecting nuclear fuel shipments carried out in Spain will serve as a basis for establishing the regulations wich must be adhered to for future transports, as the transport of nuclear fuels in Spain will increase considerably within the next years as a result of the Spanish nuclear program. The experience acquired in nuclear fuel transport inspection is described. (author) [es

  19. State-of-the-Art Report on Multi-scale Modelling of Nuclear Fuels

    International Nuclear Information System (INIS)

    Bartel, T.J.; Dingreville, R.; Littlewood, D.; Tikare, V.; Bertolus, M.; Blanc, V.; Bouineau, V.; Carlot, G.; Desgranges, C.; Dorado, B.; Dumas, J.C.; Freyss, M.; Garcia, P.; Gatt, J.M.; Gueneau, C.; Julien, J.; Maillard, S.; Martin, G.; Masson, R.; Michel, B.; Piron, J.P.; Sabathier, C.; Skorek, R.; Toffolon, C.; Valot, C.; Van Brutzel, L.; Besmann, Theodore M.; Chernatynskiy, A.; Clarno, K.; Gorti, S.B.; Radhakrishnan, B.; Devanathan, R.; Dumont, M.; Maugis, P.; El-Azab, A.; Iglesias, F.C.; Lewis, B.J.; Krack, M.; Yun, Y.; Kurata, M.; Kurosaki, K.; Largenton, R.; Lebensohn, R.A.; Malerba, L.; Oh, J.Y.; Phillpot, S.R.; Tulenko, J. S.; Rachid, J.; Stan, M.; Sundman, B.; Tonks, M.R.; Williamson, R.; Van Uffelen, P.; Welland, M.J.; Valot, Carole; Stan, Marius; Massara, Simone; Tarsi, Reka

    2015-10-01

    Fuels is to document the development of multi-scale modelling approaches for fuels in support of current fuel optimisation programmes and innovative fuel designs. The objectives of the effort are: - assess international multi-scale modelling approaches devoted to nuclear fuels from the atomic to the macroscopic scale in order to share and promote such approaches; - address all types of fuels: both current (mainly oxide fuels) and advanced fuels (such as minor actinide containing oxide, carbide, nitride, or metal fuels); - address key engineering issues associated with each type of fuel; - assess the quality of existing links between the various scales and list needs for strengthening multi-scale modelling approaches; - identify the most relevant experimental data or experimental characterisation techniques that are missing for validation of fuel multi-scale modelling; - promote exchange between the actors involved at various scales; - promote exchange between multi-scale modelling experts and experimentalists; - exchange information with other expert groups of the WPMM. This report is organised as follows: - Part I lays out the different classes of phenomena relevant to nuclear fuel behaviour. Each chapter is further divided into topics relevant for each class of phenomena. - Part II is devoted to a description of the techniques used to obtain material properties necessary for describing the phenomena and their assessment. - Part III covers details relative to the principles and limits behind each modelling/computational technique as a reference for more detailed information. Included within the appropriate sections are critical analyses of the mid- and long-term challenges for the future (i.e., approximations, methods, scales, key experimental data, characterisation techniques missing or to be strengthened)

  20. World Nuclear Association position statement: Safe management of nuclear waste and used nuclear fuel

    International Nuclear Information System (INIS)

    Saint-Pierre, Sylvain

    2006-01-01

    This WNA Position Statement summarises the worldwide nuclear industry's record, progress and plans in safely managing nuclear waste and used nuclear fuel. The global industry's safe waste management practices cover the entire nuclear fuel-cycle, from the mining of uranium to the long-term disposal of end products from nuclear power reactors. The Statement's aim is to provide, in clear and accurate terms, the nuclear industry's 'story' on a crucially important subject often clouded by misinformation. Inevitably, each country and each company employs a management strategy appropriate to a specific national and technical context. This Position Statement reflects a confident industry consensus that a common dedication to sound practices throughout the nuclear industry worldwide is continuing to enhance an already robust global record of safe management of nuclear waste and used nuclear fuel. This text focuses solely on modern civil programmes of nuclear-electricity generation. It does not deal with the substantial quantities of waste from military or early civil nuclear programmes. These wastes fall into the category of 'legacy activities' and are generally accepted as a responsibility of national governments. The clean-up of wastes resulting from 'legacy activities' should not be confused with the limited volume of end products that are routinely produced and safely managed by today's nuclear energy industry. On the significant subject of 'Decommissioning of Nuclear Facilities', which is integral to modern civil nuclear power programmes, the WNA will offer a separate Position Statement covering the industry's safe management of nuclear waste in this context. The paper's conclusion is that the safe management of nuclear waste and used nuclear fuel is a widespread, well-demonstrated reality. This strong safety record reflects a high degree of nuclear industry expertise and of industry responsibility toward the well-being of current and future generations. Accumulating

  1. OECD - HRP Summer School on Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures.

  2. OECD - HRP Summer School on Nuclear Fuel

    International Nuclear Information System (INIS)

    2000-01-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures

  3. Highlights of 50 years of nuclear fuels developments

    International Nuclear Information System (INIS)

    Simnad, M.T.

    1989-01-01

    The development of nuclear fuels since the discovery of nuclear fission is briefly surveyed in this paper. The fabrication of the uranium fuel for the first nuclear pile, CP-1, is described. The research and development studies and fabrication of the different types of nuclear fuels for the variety of research and power reactors are reviewed. The important factors involved to achieve low fuel cycle costs and reliable performance in the fuel elements are discussed in the historical context

  4. On recycling of nuclear fuel in Japan

    International Nuclear Information System (INIS)

    1992-01-01

    In Japan, atomic energy has become to accomplish the important role in energy supply. Recently the interest in the protection of global environment heightened, and the anxiety on oil supply has been felt due to the circumstances in Mideast. Therefore, the importance of atomic energy as an energy source for hereafter increased, and the future plan of nuclear fuel recycling in Japan must be promoted on such viewpoint. At present in Japan, the construction of nuclear fuel cycle facilities is in progress in Rokkasho, Aomori Prefecture. The prototype FBR 'Monju' started the general functional test in May, this year. The transport of the plutonium reprocessed in U.K. and France to Japan will be carried out in near future. This report presents the concrete measures of nuclear fuel recycling in Japan from the long term viewpoint up to 2010. The necessity and meaning of nuclear fuel recycling in Japan, the effort related to nuclear nonproliferation, the plan of nuclear fuel recycling for hereafter in Japan, the organization of MOX fuel fabrication in Japan and abroad, the method of utilizing recovered uranium and the reprocessing of spent MOX fuel are described. (K.I.)

  5. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  6. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  7. Fuel Cycle Services The Heart of Nuclear Energy

    International Nuclear Information System (INIS)

    Soedyartomo-Soentono

    2007-01-01

    Fuel is essential for development whether for survival and or wealth creation purposes. In this century the utilization of fuels need to be improved although energy mix is still to be the most rational choice. The large amount utilization of un-renewable fossil has some disadvantages since its low energy content requires massive extraction, transport, and processing while emitting CO 2 resulting degradation of the environment. In the mean time the advancement of nuclear science and technology has improved significantly the performance of nuclear power plant management of radioactive waste, enhancement of proliferation resistance, and more economic competitiveness. Ever since the last decade of the last century the nuclear renaissance has taken place. This is also due to the fact that nuclear energy does not emit GHG. Although the nuclear fuel offers a virtually limitless source of economic energy, it is only so if the nuclear fuel is reprocessed and recycled. Consequently, the fuel cycle is to be even more of paramount important in the future. The infrastructure of the fuel cycle services world wide has been adequately available. Various International Initiatives to access the fuel cycle services are also offered. However, it is required to put in place the International Arrangements to guaranty secured sustainable supply of services and its peaceful use. Relevant international cooperations are central for proceeding with the utilization of nuclear energy, while this advantagous nuclear energy utilization relies on the fuel cycle services. It is therefore concluded that the fuel cycle services are the heart of nuclear energy, and the international nuclear community should work together to maintain the availability of this nuclear fuel cycle services timely, sufficiently, and economically. (author)

  8. Fuel Cycle Services the Heart of Nuclear Energy

    Directory of Open Access Journals (Sweden)

    S. Soentono

    2007-01-01

    Full Text Available Fuel is essential for development whether for survival and or wealth creation purposes. In this century the utilization of fuels need to be improved although energy mix is still to be the most rational choice. The large amount utilization of un-renewable fossil has some disadvantages since its low energy content requires massive extraction, transport, and processing while emitting CO2 resulting degradation of the environment. In the mean time the advancement of nuclear science and technology has improved significantly the performance of nuclear power plant, management of radioactive waste, enhancement of proliferation resistance, and more economic competitiveness. Ever since the last decade of the last century the nuclear renaissance has taken place. This is also due to the fact that nuclear energy does not emit GHG. Although the nuclear fuel offers a virtually limitless source of economic energy, it is only so if the nuclear fuel is reprocessed and recycled. Consequently, the fuel cycle is to be even more of paramount important in the future. The infrastructure of the fuel cycle services worldwide has been adequately available. Various International Initiatives to access the fuel cycle services are also offered. However, it is required to put in place the International Arrangements to guaranty secured sustainable supply of services and its peaceful use. Relevant international co-operations are central for proceeding with the utilization of nuclear energy, while this advantageous nuclear energy utilization relies on the fuel cycle services. It is therefore concluded that the fuel cycle services are the heart of nuclear energy, and the international nuclear community should work together to maintain the availability of this nuclear fuel cycle services timely, sufficiently, and economically.

  9. Coupling of channel thermalhydraulics and fuel behaviour in ACR-1000 safety analyses

    International Nuclear Information System (INIS)

    Huang, F.L.; Lei, Q.M.; Zhu, W.; Bilanovic, Z.

    2008-01-01

    Channel thermalhydraulics and fuel thermal-mechanical behaviour are interlinked. This paper describes a channel thermalhydraulics and fuel behaviour coupling methodology that has been used in ACR-1000 safety analyses. The coupling is done for all 12 fuel bundles in a fuel channel using the channel thermalhydraulics code CATHENA MOD-3.5d/Rev 2 and the transient fuel behaviour code ELOCA 2.2. The coupling approach can be used for every fuel element or every group of fuel elements in the channel. Test cases are presented where a total of 108 fuel element models are set up to allow a full coupling between channel thermalhydraulics and detailed fuel analysis for a channel containing a string of 12 fuel bundles. An additional advantage of this coupling approach is that there is no need for a separate detailed fuel analysis because the coupling analysis, once done, provides detailed calculations for the fuel channel (fuel bundles, pressure tube, and calandria tube) as well as all the fuel elements (or element groups) in the channel. (author)

  10. Highlights of 50 years of nuclear fuel development

    International Nuclear Information System (INIS)

    Simnad, M.T.

    1989-01-01

    The development of nuclear fuels since the discovery of nuclear fission is briefly surveyed in this paper. The fabrication of the uranium fuel for the first nuclear pile, CP-1, is described. The research and development studies and fabrication of the different types of nuclear fuels for the variety of research and power reactors are reviewed. The important factors involved to achieve low fuel-cycle costs and reliable performance in the fuel elements are discussed in the historical context. 10 refs

  11. Modification in fuel processing of Mitsubishi Nuclear Fuel's Tokai Works

    International Nuclear Information System (INIS)

    1976-01-01

    Results of the study by the Committee for Examination of Fuel Safety, reported to the AEC of Japan, are presented, concerning safety of the modifications of Tokai Works, Mitsubishi Nuclear Fuel Co., Ltd. Safety has been confirmed thereof. The modifications covered are the following: storage facility of nuclear fuel in increase, analytical facility in transfer, fuel assemblage equipment in addition, incineration facility of combustible solid wastes in installation, experimental facility of uranium recovery in installation, and warehouse in installation. (Mori, K.)

  12. Nuclear fuel production

    International Nuclear Information System (INIS)

    Randol, A.G.

    1985-01-01

    The production of new fuel for a power plant reactor and its disposition following discharge from the power plant is usually referred to as the ''nuclear fuel cycle.'' The processing of fuel is cyclic in nature since sometime during a power plant's operation old or ''depleted'' fuel must be removed and new fuel inserted. For light water reactors this step typically occurs once every 12-18 months. Since the time required for mining of the raw ore to recovery of reusable fuel materials from discharged materials can span up to 8 years, the management of fuel to assure continuous power plant operation requires simultaneous handling of various aspects of several fuel cycles, for example, material is being mined for fuel to be inserted in a power plant 2 years into the future at the same time fuel is being reprocessed from a discharge 5 years prior. Important aspects of each step in the fuel production process are discussed

  13. Advanced LWR Nuclear Fuel Cladding Development

    International Nuclear Information System (INIS)

    Bragg-Sitton, S.; Griffith, G.

    2012-01-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R and D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental enhancements are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction to allow improved fuel economy via power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an 'accident tolerant' fuel system that would offer improved coping time under accident scenarios. In a staged development approach, the LWRS program will engage stakeholders throughout the development process to ensure commercial viability of the investigated technologies. Applying minimum performance criteria, several of the top-ranked materials and fabrication concepts will undergo a rigorous series of mechanical, thermal and chemical characterization tests to better define their properties and operating potential in a relatively low-cost, nonnuclear test series. A reduced number of options will be recommended for test rodlet fabrication and in-pile nuclear testing under steady-state, transient and accident conditions. (author)

  14. Numerical verification of equilibrium chemistry software within nuclear fuel performance codes

    International Nuclear Information System (INIS)

    Piro, M.H.; Lewis, B.J.; Thompson, W.T.; Simunovic, S.; Besmann, T.M.

    2010-01-01

    A numerical tool is in an advanced state of development to compute the equilibrium compositions of phases and their proportions in multi-component systems of importance to the nuclear industry. The resulting software is being conceived for direct integration into large multi-physics fuel performance codes, particularly for providing transport source terms, material properties, and boundary conditions in heat and mass transport modules. Consequently, any numerical errors produced in equilibrium chemistry computations will be propagated in subsequent heat and mass transport calculations, thus falsely predicting nuclear fuel behaviour. The necessity for a reliable method to numerically verify chemical equilibrium computations is emphasized by the requirement to handle the very large number of elements necessary to capture the entire fission product inventory. A simple, reliable and comprehensive numerical verification method called the Gibbs Criteria is presented which can be invoked by any equilibrium chemistry solver for quality assurance purposes. (author)

  15. National Policy on Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Soedyartomo, S.

    1996-01-01

    National policy on nuclear fuel cycle is aimed at attaining the expected condition, i.e. being able to support optimality the national energy policy and other related Government policies taking into account current domestic nuclear fuel cycle condition and the trend of international nuclear fuel cycle development, the national strength, weakness, thread and opportunity in the field of energy. This policy has to be followed by the strategy to accomplish covering the optimization of domestic efforts, cooperation with other countries, and or purchasing licences. These policy and strategy have to be broken down into various nuclear fuel cycle programmes covering basically assesment of the whole cycle, performing research and development of the whole cycle without enrichment and reprocessing being able for weapon, as well as programmes for industrialization of the fuel cycle stepwisery commencing with the middle part of the cycle and ending with the edge of the back-end of the cycle

  16. Management of Spent Nuclear Fuel from Nuclear Power Plant Reactor

    International Nuclear Information System (INIS)

    Wati, Nurokhim

    2008-01-01

    Management of spent nuclear fuel from Nuclear Power Plant (NPP) reactor had been studied to anticipate program of NPP operation in Indonesia. In this paper the quantity of generated spent nuclear fuel (SNF) is predicted based on the national electrical demand, power grade and type of reactor. Data was estimated using Pressurized Water Reactor (PWR) NPP type 1.000 MWe and the SNF management overview base on the experiences of some countries that have NPP. There are four strategy nuclear fuel cycle which can be developed i.e: direct disposal, reprocessing, DUPlC (Direct Use of Spent PWR Fuel In Candu) and wait and see. There are four alternative for SNF management i.e : storage at the reactor building (AR), away from reactor (AFR) using wet centralized storage, dry centralized storage AFR and prepare for reprocessing facility. For the Indonesian case, centralized facility of the wet type is recommended for PWR or BWR spent fuel. (author)

  17. Proceedings of the 2006 International Meeting on LWR fuel performance 'Nuclear Fuel: Addressing the future' - TopFuel 2006 Transactions

    International Nuclear Information System (INIS)

    2006-01-01

    From 22-26 October, 340 researchers, nuclear engineers and scientists from across Europe and beyond congregated in the ancient university city of Salamanca, Spain, to discuss the challenges facing the developers and manufacturers of new high-performance nuclear fuels-fuels that will help meet current and future energy demand and reduce man's over dependence upon CO 2 -emitting fossil fuels. TopFuel is an annual topical meeting organised by ENS, the American Nuclear Society and the Atomic Energy Society of Japan. This year it was co-sponsored by the IAEA, the OECD/NEA and the Spanish Nuclear Society (SNE). TopFuel's primary objective was to bring together leading specialists in the field from around the world to analyse advances in nuclear fuel management technology and to use the findings of the latest cutting-edge research to help manufacture the high performance nuclear fuels of today and tomorrow. The TopFuel 2006 agenda revolved around ten technical sessions dedicated to priority issues such as security of supply, new fuel and reactor core designs, fuel cycle strategies and spent fuel management. Among the many topics under discussion were new developments in fuel performance modelling, advanced fuel assembly design and the improved conditioning and processing of spent fuel. During the week, a poster exhibition also gave delegates the opportunity to display and discuss the results of their latest work and to network with fellow professionals. One important statement to emerge from TopFuel 2006 was that the world has enough reserves of uranium to support the large-scale and long-term production of nuclear energy. The OECD/NEA and the IAEA recently published a report entitled Uranium 2005: Resources, Production and Demand (the Red Book). The report, which makes a comprehensive assessment of uranium supplies and projected demand up until the year 2025, concludes by saying 'the uranium resource base is adequate to meet projected future requirements'. With the

  18. Integral nuclear fuel element assembly

    International Nuclear Information System (INIS)

    Schluderberg, D. C.

    1985-01-01

    An integral nuclear fuel element assembly utilizes longitudinally finned fuel pins. The continuous or interrupted fins of the fuel pins are brazed to fins of juxtaposed fuel pins or directly to the juxtaposed fuel pins or both. The integrally brazed fuel assembly is designed to satisfy the thermal and hydraulic requirements of a fuel assembly lattice having moderator to fuel atom ratios required to achieve high conversion and breeding ratios

  19. Modelling of phenomena associated with high burnup fuel behaviour during overpower transients

    International Nuclear Information System (INIS)

    Sills, H.E.; Langman, V.J.; Iglesias, F.C.

    1995-01-01

    Phenomena of importance to the behaviour of high burnup fuel subjected to conditions of rapid overpower (i.e., LWR RIAs) include the change in cladding material properties due to irradiation, pellet-clad interaction (PCI) and 'rim' effects associated with the periphery of high burnup fuel. 'Rim' effects are postulated to be caused by changes in fuel morphology at high burnup. Typical discharge burnups for CANDU fuel are low compared to LWRs. Maximum linear ratings for CANDU fuel are higher than those for LWRs. However, under normal operating conditions, the Zircaloy-4 clad of the CANDU fuel is collapsed onto the fuel stack. Thus, the CANDU fuel performance codes model the transient behaviour of the fuel-to-clad interface and are capable of assessing the potential for pellet-clad mechanical interaction (PCMI) failures for a wide range of overpower conditions. This report provides a discussion of the modelling of the phenomena of importance to high burnup fuel behaviour during rapid overpower transients. (author)

  20. Critical review of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kuster, N.

    1996-01-01

    Transmutation of long-lived radionuclides is considered as an alternative to the in-depth disposal of spent nuclear fuel, in particular, on the final stage of the nuclear fuel cycle. The majority of conclusions is the result of the common work of the Karlsruhe FZK and the Commissariat on nuclear energy of France (CEA)

  1. Characterisation and final disposal behaviour of theoria-based fuel kernels in aqueous phases

    International Nuclear Information System (INIS)

    Titov, M.

    2005-08-01

    Two high-temperature reactors (AVR and THTR) operated in Germany have produced about 1 million spent fuel elements. The nuclear fuel in these reactors consists mainly of thorium-uranium mixed oxides, but also pure uranium dioxide and carbide fuels were tested. One of the possible solutions of utilising spent HTR fuel is the direct disposal in deep geological formations. Under such circumstances, the properties of fuel kernels, and especially their leaching behaviour in aqueous phases, have to be investigated for safety assessments of the final repository. In the present work, unirradiated ThO 2 , (Th 0.906 ,U 0.094 )O 2 , (Th 0.834 ,U 0.166 )O 2 and UO 2 fuel kernels were investigated. The composition, crystal structure and surface of the kernels were investigated by traditional methods. Furthermore, a new method was developed for testing the mechanical properties of ceramic kernels. The method was successfully used for the examination of mechanical properties of oxide kernels and for monitoring their evolution during contact with aqueous phases. The leaching behaviour of thoria-based oxide kernels and powders was investigated in repository-relevant salt solutions, as well as in artificial leachates. The influence of different experimental parameters on the kernel leaching stability was investigated. It was shown that thoria-based fuel kernels possess high chemical stability and are indifferent to presence of oxidative and radiolytic species in solution. The dissolution rate of thoria-based materials is typically several orders of magnitude lower than of conventional UO 2 fuel kernels. The life time of a single intact (Th,U)O 2 kernel under aggressive conditions of salt repository was estimated as about hundred thousand years. The importance of grain boundary quality on the leaching stability was demonstrated. Numerical Monte Carlo simulations were performed in order to explain the results of leaching experiments. (orig.)

  2. Characteristics and behaviour of the PHENIX fuel element

    International Nuclear Information System (INIS)

    Delpeyroux, P.; Balloffet, Y.; Blanchard, P.; Courcon, P.; Jallade, M.; Millet, P.; Rousseau, J.; Carteret, Y.; Coulon, P.

    1977-01-01

    The Phenix reactor has been in regular industrial operation for two years and has functioned very satisfactorily thanks in particular to the very good behaviour of the fuel element. A brief description is given of the fuel element and the operating conditions which were set for the fuel at the time of start-up (50000 MWd/t). The surveillance scheme is then described with the examinations in the hot laboratory on the basis of which it was possible to achieve the nominal specific burn-up and then to clear the Phenix fuel for a specific burn-up of 60000 MWd/t or 7 at.%. The behaviour of the mixed oxide (U, Pu)O 2 is quite normal and conforms to predictions as regards the heat conditions, swelling and fission gas release. The corrosion reaction between the oxide and the clad is progressing slowly and affects only small thicknesses of cladding. The mechanical integrity of the clad under thermal stresses and the stresses produced by swelling and fission gas pressure do not pose any special problem. The present limitation of the irradiation level is essentially based on the permissible deformations due to swelling and irradiation creep in the fuel pin cladding and in the hexagonal tube. This corresponds to damage to the steel of the order of 80 dpa. The mechanical behaviour of the bundle of pins, its interaction with the hexagonal tube and the thermohydraulic consequences of the deformations are all satisfactory to date. The absence of fuel failures is also worth noting; the only burst can detected to date did not affect either the operation of the fuel assembly or the performance of the reactor [fr

  3. On the nuclear fuel and fossil fuel reserves

    International Nuclear Information System (INIS)

    Fettweis, G.

    1978-01-01

    A short discussion of the nuclear fuel and fossil fuel reserves and the connected problem of prices evolution is presented. The need to regard fuel production under an economic aspect is emphasized. Data about known and assessed fuel reserves, world-wide and with special consideration of Austria, are reviewed. It is concluded that in view of the fuel reserves situation an energy policy which allows for a maximum of options seems adequate. (G.G.)

  4. Improvement of Computer Codes Used for Fuel Behaviour Simulation (FUMEX-III). Report of a Coordinated Research Project 2008-2012

    International Nuclear Information System (INIS)

    2013-03-01

    It is fundamental to the future of nuclear power that reactors can be run safely and economically to compete with other forms of power generation. As a consequence, it is essential to develop the understanding of fuel performance and to embody that knowledge in codes to provide best estimate predictions of fuel behaviour. This in turn leads to a better understanding of fuel performance, a reduction in operating margins, flexibility in fuel management and improved operating economics. The IAEA has therefore embarked on a series of programmes addressing different aspects of fuel behaviour modelling with the following objectives: - To assess the maturity and prediction capabilities of fuel performance codes, and to support interaction and information exchange between countries with code development and application needs (FUMEX series); - To build a database of well defined experiments suitable for code validation in association with the OECD Nuclear Energy Agency (OECD/NEA); - To transfer a mature fuel modelling code to developing countries, to support teams in these countries in their efforts to adapt the code to the requirements of particular reactors, and to provide guidance on applying the code to reactor operation and safety assessments; - To provide guidelines for code quality assurance, code licensing and code application to fuel licensing. This report describes the results of the coordinated research project on the ''Improvement of computer codes used for fuel behaviour simulation (FUMEX-III)''. This programme was initiated in 2008 and completed in 2012. It followed previous programmes on fuel modelling: D-COM 1982-1984, FUMEX 1993-1996 and FUMEX-II 2002-2006. The participants used a mixture of data derived from commercial and experimental irradiation histories, in particular data designed to investigate the mechanical interactions occurring in fuel during normal, transient and severe transient operation. All participants carried out calculations on priority

  5. The nuclear fuel cycle: (2) fuel element manufacture

    International Nuclear Information System (INIS)

    Doran, J.

    1976-01-01

    Large-scale production of nuclear fuel in the United Kingdom is carried out at Springfields Works of British Nuclear Fuels Ltd., a company formed from the United Kingdom Atomic Energy Authority in 1971. The paper describes in some detail the Springfields Works processes for the conversion of uranium ore concentrate to uranium tetrafluoride, then conversion of the tetrafluoride to either uranium metal for cladding in Magnox to form fuel for the British Mk I gas-cooled reactors, or to uranium hexafluoride for enrichment of the fissile 235 U isotope content at the Capenhurst Works of BNFL. Details are given of the reconversion at Springfields Works of this enriched uranium hexafluoride to uranium dioxide, which is pelleted and then clad in either stainless steel or zircaloy containers to form the fuel assemblies for the British Mk II AGR or advanced gas-cooled reactors or for the water reactor fuels. (author)

  6. Theoretical basis for a transient thermal elastic-plastic stress analysis of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hsu, T.R.; Bertels, A.W.M.; Banerjee, S.; Harrison, W.C.

    1976-07-01

    This report presents the theoretical basis for a transient thermal elastic-plastic stress analysis of a nuclear reactor fuel element subject to severe transient thermo-mechanical loading. A finite element formulation is used for both the non-linear stress analysis and thermal analysis. These two major components are linked together to form an integrated program capable of predicting fuel element transient behaviour in two dimensions. Specific case studies are presented to illustrate capabilities of the analysis. (author)

  7. FERC perspectives on nuclear fuel accounting issues

    International Nuclear Information System (INIS)

    McDanal, M.W.

    1986-01-01

    The purpose of the presentation is to discuss the treatment of nuclear fuel and problems that have evolved in industry practices in accounting for fuel. For some time, revisions to the Uniform System of Accounts have been considered with regard to the nuclear fuel accounts. A number of controversial issues have been encountered on audits, including treatment of nuclear fuel enrichment charges, costs associated with delays in enrichment services, the treatment and recognition of fuel inventories in excess of current or projected needs, and investments in and advances to mining and milling companies for future deliveries of nuclear fuel materials. In an effort to remedy the problems and to adapt the Federal Energy Regulatory Commission's accounting to more easily provide for or point out classifications for each problem area, staff is reevaluating the need for contemplated amendments to the Uniform System of Accounts

  8. Thermal-hydraulics analysis for advanced fuel to be used in Candu 600 nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Catana, Alexandru [RAAN, Institute for Nuclear Research, Str. Campului Nr. 1, Pitesti, Arges (Romania); Danila, Nicolae; Prisecaru, Ilie; Dupleac, Daniel [University POLITEHNICA of Bucharest (Romania)

    2008-07-01

    Two Candu 600 pressure tube nuclear reactors cover about 17% of Romania's electricity demand. These nuclear reactors are moderated/cooled with D{sub 2}O, fuelled on-power with Natural Uranium (NU) dioxide encapsulated in a standard (STD37) fuel bundle. High neutron economy is achieved using D{sub 2}O as moderator and coolant in separated systems. To reduce fuel cycle costs, programs were initiated in Canada, S.Korea, Argentina and Romania for the design and build new fuel bundles able to accommodate different fuel compositions. Candu core structure and modular fuel bundles, permits flexible fuel cycles. The main expected achievements are: reduced fuel cycle costs, increased discharge burn-up, plutonium and minor actinides management, thorium cycle, use of recycled PWR and in the same time waste minimization and operating cost reduction. These new fuel bundles are to be used in already operated Candu reactors. Advanced fuel bundle were proposed: CANFLEX bundle (Canada, S-Korea); the Romanian 'SEU43' bundle (Fig 1). In this paper thermal-hydraulic analysis in sub-channel approach is presented for SEU43. Comparisons with standard (STD37) fuel bundles are made using SEU-NU for NU fuel composition and SEU-0.96, for recycled uranium (RU) fuel with 0.96% U-235. Extended and comprehensive analysis must be made in order to assess the TH behaviour of SEU43. In this paper, considering STD37, SEU43-NU and SEU43-0.96 fuel bundles, main TH parameters were analysed: pressure drop, fuel highest temperatures, coolant density, critical heat flux. Differences between these fuel types are outlined. Benefits are: fuel costs reduction, spent fuel waste minimization, increase in competitiveness of nuclear power. Safety margins must be, at least, conserved. (authors)

  9. Thermal-hydraulics analysis for advanced fuel to be used in Candu 600 nuclear reactors

    International Nuclear Information System (INIS)

    Catana, Alexandru; Danila, Nicolae; Prisecaru, Ilie; Dupleac, Daniel

    2008-01-01

    Two Candu 600 pressure tube nuclear reactors cover about 17% of Romania's electricity demand. These nuclear reactors are moderated/cooled with D 2 O, fuelled on-power with Natural Uranium (NU) dioxide encapsulated in a standard (STD37) fuel bundle. High neutron economy is achieved using D 2 O as moderator and coolant in separated systems. To reduce fuel cycle costs, programs were initiated in Canada, S.Korea, Argentina and Romania for the design and build new fuel bundles able to accommodate different fuel compositions. Candu core structure and modular fuel bundles, permits flexible fuel cycles. The main expected achievements are: reduced fuel cycle costs, increased discharge burn-up, plutonium and minor actinides management, thorium cycle, use of recycled PWR and in the same time waste minimization and operating cost reduction. These new fuel bundles are to be used in already operated Candu reactors. Advanced fuel bundle were proposed: CANFLEX bundle (Canada, S-Korea); the Romanian 'SEU43' bundle (Fig 1). In this paper thermal-hydraulic analysis in sub-channel approach is presented for SEU43. Comparisons with standard (STD37) fuel bundles are made using SEU-NU for NU fuel composition and SEU-0.96, for recycled uranium (RU) fuel with 0.96% U-235. Extended and comprehensive analysis must be made in order to assess the TH behaviour of SEU43. In this paper, considering STD37, SEU43-NU and SEU43-0.96 fuel bundles, main TH parameters were analysed: pressure drop, fuel highest temperatures, coolant density, critical heat flux. Differences between these fuel types are outlined. Benefits are: fuel costs reduction, spent fuel waste minimization, increase in competitiveness of nuclear power. Safety margins must be, at least, conserved. (authors)

  10. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1981-01-01

    An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  11. A nuclear fuel cycle system dynamic model for spent fuel storage options

    International Nuclear Information System (INIS)

    Brinton, Samuel; Kazimi, Mujid

    2013-01-01

    Highlights: • Used nuclear fuel management requires a dynamic system analysis study due to its socio-technical complexity. • Economic comparison of local, regional, and national storage options is limited due to the public financial information. • Local and regional options of used nuclear fuel management are found to be the most economic means of storage. - Abstract: The options for used nuclear fuel storage location and affected parameters such as economic liabilities are currently a focus of several high level studies. A variety of nuclear fuel cycle system analysis models are available for such a task. The application of nuclear fuel cycle system dynamics models for waste management options is important to life-cycle impact assessment. The recommendations of the Blue Ribbon Committee on America’s Nuclear Future led to increased focus on long periods of spent fuel storage [1]. This motivated further investigation of the location dependency of used nuclear fuel in the parameters of economics, environmental impact, and proliferation risk. Through a review of available literature and interactions with each of the programs available, comparisons of post-reactor fuel storage and handling options will be evaluated based on the aforementioned parameters and a consensus of preferred system metrics and boundary conditions will be provided. Specifically, three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module (WMM) which provides an easy to use interface for education on fuel cycle waste management economic impacts. Initial results of baseline cases point to positive benefits of regional storage locations with local regional storage options continuing to offer the lowest cost

  12. The economy of the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, W [Alpha Chemie und Metallurgie G.m.b.H. (ALKEM), Hanau (Germany, F.R.)

    1989-07-01

    Heat extracted from nuclear fuel costs by a factor of 3 to 7 less than heat from conventional fossile fuel. So, nuclear fuel per se has an economical advantage, decreased however partly by higher nuclear plant investment costs. The standard LWR design does not allow all the fission energy stored in the fuel during on cycle to be used. It is therefore the most natural approach to separate fissionable species from fission products and consume them by fissioning. Whether this is economically justified as opposed by storing them indefinitely with spent fuel has widely been debated. The paper outlines the different approaches taken by nuclear communities worldwide and their perceived or proven rational arguments. It will balance economic and other factors for the near and distant future including advanced reactor concepts. The specific solution within the German nuclear programme will be explained, including foreseeable future trends. (orig.).

  13. Nonproliferation norms in civilian nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kawata, Tomio

    2005-01-01

    For sustainable use of nuclear energy in large scale, it seems inevitable to choose a closed cycle option. One of the important questions is, then, whether we can really achieve the compatibility between civilian nuclear fuel cycle and nonproliferation norms. In this aspect, Japan is very unique because she is now only one country with full-scope nuclear fuel cycle program as a non-nuclear weapon state in NPT regime. In June 2004 in the midst of heightened proliferation concerns in NPT regime, the IAEA Board of Governors concluded that, for Japanese nuclear energy program, non-diversion of declared nuclear material and the absence of undeclared nuclear material and activities were verified through the inspections and examinations under Comprehensive Safeguards and the Additional Protocol. Based on this conclusion, the IAEA announced the implementation of Integrated Safeguards in Japan in September 2004. This paper reviews how Japan has succeeded in becoming the first country with full-scope nuclear fuel cycle program to qualify for integrated Safeguards, and identifies five key elements that have made this achievement happen: (1) Obvious need of nuclear fuel cycle program, (2) Country's clear intention for renunciation of nuclear armament, (3) Transparency of national nuclear energy program, (4) Record of excellent compliance with nonproliferation obligations for many decades, and (5) Numerous proactive efforts. These five key elements will constitute a kind of an acceptance model for civilian nuclear fuel cycle in NNWS, and may become the basis for building 'Nonproliferation Culture'. (author)

  14. Electrical generation of nuclear origins in Spain 95/96; Generacion electrica de origen nuclear en Espana 95/96

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The paper presents nuclear programme of Spain and reviews the following issues: LWR plants in Spain; nuclear fuel cycle; fuel assemblies manufacturing; reload core engineering experience; fuel assemblies significant features; fuel rod failures causes; fuel related R and D projects and irradiation programs; high burnup fuel behaviour.

  15. Spent Nuclear Fuel Project Safety Management Plan

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities

  16. Nuclear fuel element

    International Nuclear Information System (INIS)

    Grossman, L.N.; Levin, H.A.

    1975-01-01

    A nuclear fuel element has disposed therein an alloy having the essential components of nickel, titanium and zirconium, and the alloy reacts with water, water vapor and reactive gases at reactor ambient temperatures. The alloy is disposed in the plenum of the fuel element in the form of particles in a hollow gas permeable container having a multiplicity of openings of size smallr than the size of the particles. The container is preferably held in the spring in the plenum of the fuel element. (E.C.B.)

  17. Nuclear fuel rod loading apparatus

    International Nuclear Information System (INIS)

    King, H.B.; Macivergan, R.; Mckenzie, G.W.

    1980-01-01

    An apparatus incorporating a microprocessor control is provided for automatically loading nuclear fuel pellets into fuel rods commonly used in nuclear reactor cores. The apparatus comprises a split ''v'' trough for assembling segments of fuel pellets in rows and a shuttle to receive the fuel pellets from the split ''v'' trough when the two sides of the split ''v'' trough are opened. The pellets are weighed while in the shuttle, and the shuttle then moves the pellets into alignment with a fuel rod. A guide bushing is provided to assist the transfer of the pellets into the fuel rod. A rod carousel which holds a plurality of fuel rods presents the proper rod to the guide bushing at the appropriate stage in the loading sequence. The bushing advances to engage the fuel rod, and the shuttle advances to engage the guide bushing. The pellets are then loaded into the fuel rod by a motor operated push rod. The guide bushing includes a photocell utilized in conjunction with the push rod to measure the length of the row of fuel pellets inserted in the fuel rod

  18. Nuclear fuels for very high temperature applications

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO 2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures

  19. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sasaki, Y.; Tashima, J.

    1975-01-01

    A description is given of nuclear reactor fuel assemblies arranged in the form of a lattice wherein there is attached to the interface of one of two adjacent fuel assemblies a plate spring having a concave portion curved toward said interface and to the interface of the other fuel assembly a plate spring having a convex portion curved away from said interface

  20. Nuclear Fuels & Materials Spotlight Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    I. J. van Rooyen,; T. M. Lillo; Y. Q. WU; P.A. Demkowicz; L. Scott; D.M. Scates; E. L. Reber; J. H. Jackson; J. A. Smith; D.L. Cottle; B.H. Rabin; M.R. Tonks; S.B. Biner; Y. Zhang; R.L. Williamson; S.R. Novascone; B.W. Spencer; J.D. Hales; D.R. Gaston; C.J. Permann; D. Anders; S.L. Hayes; P.C. Millett; D. Andersson; C. Stanek; R. Ali; S.L. Garrett; J.E. Daw; J.L. Rempe; J. Palmer; B. Tittmann; B. Reinhardt; G. Kohse; P. Ramuhali; H.T. Chien; T. Unruh; B.M. Chase; D.W. Nigg; G. Imel; J. T. Harris

    2014-04-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • The first identification of silver and palladium migrating through the SiC layer in TRISO fuel • A description of irradiation assisted stress corrosion testing capabilities that support commercial light water reactor life extension • Results of high-temperature safety testing on coated particle fuels irradiated in the ATR • New methods for testing the integrity of irradiated plate-type reactor fuel • Description of a 'Smart Fuel' concept that wirelessly provides real time information about changes in nuclear fuel properties and operating conditions • Development and testing of ultrasonic transducers and real-time flux sensors for use inside reactor cores, and • An example of a capsule irradiation test. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps to spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at INL, and hope that you find this issue informative.

  1. UMo nuclear fuels behaviour under heavy ion irradiation: a μ-XAS study

    International Nuclear Information System (INIS)

    Palancher, H.; Martin, P.; Dubois, S.; Valot, C.; Sabathier, C.; Palancher, H.; Nassif, V.; Proux, O.; Hazemann, J.L.; Wieschalla, N.; Petry, W.; Jarousse, C.

    2007-01-01

    Full text of publication follows. A worldwide program encourages the use of low enriched uranium (LEU, 235 U 235 U concentration up to 93 wt. %). Due to the decrease in 235 U enrichment for the conversion to LEU, the total density of uranium atoms in the fuel must be increased accordingly. To preserve the neutron flux, metallic uranium alloys could be the best fuel material. The fuel, which consists of UMo alloy spherical particles surrounded by an Al matrix (cf. Figure 1-A), is rolled between two aluminium claddings. Post-irradiation examinations of U-7 wt%Mo demonstrated its strong potentialities as fuel but they also pointed out its interaction with aluminium (cf. Figure 1-B). In certain cases this interaction can cause a break-away swelling of the plate. The aim of this project is the understanding of: - the phenomena driving the growth of the interaction layer. - the influence on interaction layer composition of limited adjunction of elements (silicon...) to the Al matrix. To overcome the difficulties inherent to the in-pile irradiated samples, an out-of-pile methodology (collaboration between CEA, FRM II and CERCA) has been developed based on heavy ion irradiation. This methodology enables to simulate the fission fragment damages using a 80 MeV iodine beam at the Maier Leibnitz laboratory (Garching, Germany). After irradiation, samples are characterised at micrometer scale by microscopy (SEM coupled with EDX) and X-Ray techniques (XRD and XAS). The irradiation (final dose: 2 x 10 17 at/cm 2 ) of undoped U-7 wt%Mo fuel plates leads to the formation of an interaction layer surrounding each fuel particles (cf. Figure 1-C). μ-XRD analysis performed at the ESRF (ID18f) showed only the presence of UAl 3 phase in the interaction layer. Same results have been obtained on in-pile irradiated fuel by Sears et al using neutron diffraction confirming the interest of the developed methodology. However the behaviour of the Mo atoms in the interaction layer could not be

  2. Experimental and inspection facilities in post-irradiation of spent fuel pools for the analysis of the behaviour of nuclear fuels in power reactors

    International Nuclear Information System (INIS)

    Ruggirello, G.; Zawerucha, A.

    1992-01-01

    Since the beginning of the Atomic Nuclear Reactors (PHWR) Atucha I and Embalse in Argentine are employed different techniques for the knowing of the fuel bundles performances. It is detailed the facilities on post-irradiation examination. The techniques described are: online measurements, visual inspections, identifications of defective fuels and rods assemblies in spent fuel pools. This controls have made possible the feed-back to the manufactory process and the changes in the manufactory quality controls. (author)

  3. Development of nuclear fuel cycle technologies

    International Nuclear Information System (INIS)

    Suzuoki, Akira; Matsumoto, Takashi; Suzuki, Kazumichi; Kawamura, Fumio

    1995-01-01

    In the long term plan for atomic energy that the Atomic Energy Commission decided the other day, the necessity of the technical development for establishing full scale fuel cycle for future was emphasized. Hitachi Ltd. has engaged in technical development and facility construction in the fields of uranium enrichment, MOX fuel fabrication, spent fuel reprocessing and so on. In uranium enrichment, it took part in the development of centrifuge process centering around Power Reactor and Nuclear Fuel Development Corporation (PNC), and took its share in the construction of the Rokkasho uranium enrichment plant of Japan Nuclear Fuel Service Co., Ltd. Also it cooperates with Laser Enrichment Technology Research Association. In Mox fuel fabrication, it took part in the construction of the facilities for Monju plutonium fuel production of PNC, for pellet production, fabrication and assembling processes. In spent fuel reprocessing, it cooperated with the technical development of maintenance and repair of Tokai reprocessing plant of PNC, and the construction of spent fuel stores in Rokkasho reprocessing plant is advanced. The centrifuge process and the atomic laser process of uranium enrichment are explained. The high reliability of spent fuel reprocessing plants and the advancement of spent fuel reprocessing process are reported. Hitachi Ltd. Intends to exert efforts for the technical development to establish nuclear fuel cycle which increases the importance hereafter. (K.I.)

  4. Prospects for Australian involvement in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Chandra, S.; Hallenstein, C.

    1988-05-01

    A review of recent overseas developments in the nuclear industry by The Northern Territory Department of Mines and Energy suggests that there are market prospects in all stages of the fuel cycle. Australia could secure those markets through aggressive marketing and competitive prices. This report gives a profile of the nuclear fuel cycle and nuclear fuel cycle technologies, and describes the prospects of Australian involvement in the nuclear fuel cycle. It concludes that the nuclear fuel cycle industry has the potential to earn around $10 billion per year in export income. It recommend that the Federal Government: (1) re-examines its position on the Slayter recommendation (1984) that Australia should develop new uranium mines and further stages of the nuclear fuel cycle, and (2) gives it's in-principle agreement to the Northern Territory to seek expressions of interest from the nuclear industry for the establishment of an integrated nuclear fuel cycle industry in the Northern Territory

  5. Development of nuclear fuel cycle technology

    International Nuclear Information System (INIS)

    Kawahara, Akira; Sugimoto, Yoshikazu; Shibata, Satoshi; Ikeda, Takashi; Suzuki, Kazumichi; Miki, Atsushi.

    1990-01-01

    In order to establish the stable supply of nuclear fuel as an important energy source, Hitachi ltd. has advanced the technical development aiming at the heightening of reliability, the increase of capacity, upgrading and the heightening of performance of the facilities related to nuclear fuel cycle. As for fuel reprocessing, Japan Nuclear Fuel Service Ltd. is promoting the construction of a commercial fuel reprocessing plant which is the first in Japan. The verification of the process performance, the ensuring of high reliability accompanying large capacity and the technical development for recovering effective resources from spent fuel are advanced. Moreover, as for uranium enrichment, Laser Enrichment Technology Research Association was founded mainly by electric power companies, and the development of the next generation enrichment technology using laser is promoted. The development of spent fuel reprocessing technology, the development of the basic technology of atomic process laser enrichment and so on are reported. In addition to the above technologies recently developed by Hitachi Ltd., the technology of reducing harm and solidification of radioactive wastes, the molecular process laser enrichment and others are developed. (K.I.)

  6. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Hodong; Choi, Iljae

    2013-04-01

    The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The demonstration of pyroprocess technology which is proliferation resistance nuclear fuel cycle technology can reduce spent fuel and recycle effectively. Through this, people's trust and support on nuclear power would be obtained. Deriving the optimum nuclear fuel cycle alternative would contribute to establish a policy on back-end nuclear fuel cycle in the future, and developing the nuclear transparency-related technology would contribute to establish amendments of the ROK-U. S. Atomic Energy Agreement scheduled in 2014

  7. Nuclear power generation and fuel cycle report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  8. Nuclear power generation and fuel cycle report 1996

    International Nuclear Information System (INIS)

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included

  9. Potential information requirements for spent nuclear fuel

    International Nuclear Information System (INIS)

    Disbrow, J.A.

    1991-01-01

    This paper reports that the Energy Information Administration (EIA) has performed analyses of the requirements for data and information for the management of commercial spent nuclear fuel (SNF) designated for disposal under the Nuclear Waste Policy Act (NWPA). Subsequently, the EIA collected data on the amounts and characteristics of SNF stored at commercial nuclear facilities. Most recently, the EIA performed an analysis of the international and domestic laws and regulations which have been established to ensure the safeguarding, accountability, and safe management of special nuclear materials (SNM). The SNM of interest are those designated for permanent disposal by the NWPA. This analysis was performed to determine what data and information may be needed to fulfill the specific accountability responsibilities of the Department of Energy (DOE) related to SNF handling, transportation, storage and disposal; to work toward achieving a consistency between nuclear fuel assembly identifiers and material weights as reported by the various responsible parties; and to assist in the revision of the Nuclear Fuel Data Form RW-859 used to obtain spent nuclear fuel characteristics data from the nuclear utilities

  10. Transportation of nuclear fuel

    International Nuclear Information System (INIS)

    Prowse, D.R.

    1979-01-01

    Shipment of used fuel from nuclear reactors to a central fuel management facility is discussed with particular emphasis on the assessment of the risk to the public due to these shipments. The methods of transporting used fuel in large shipping containers is reviewed. In terms of an accident scenario, it is demonstrated that the primary risk of transport of used fuel is due to injury and death in common road accidents. The radiological nature of the used fuel cargo is, for all practical purposes, an insignificant factor in the total risk to the public. (author)

  11. Reactor Structure Materials: Nuclear Fuel

    International Nuclear Information System (INIS)

    Sannen, L.; Verwerft, M.

    2000-01-01

    Progress and achievements in 1999 in SCK-CEN's programme on applied and fundamental nuclear fuel research in 1999 are reported. Particular emphasis is on thermochemical fuel research, the modelling of fission gas release in LWR fuel as well as on integral experiments

  12. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    This chapter explains the distinction between fissile and fertile materials, examines briefly the processes involved in fuel manufacture and management, describes the alternative nuclear fuel cycles and considers their advantages and disadvantages. Fuel management is usually divided into three stages; the front end stage of production and fabrication, the back end stage which deals with the fuel after it is removed from the reactor (including reprocessing and waste treatment) and the stage in between when the fuel is actually in the reactor. These stages are illustrated and explained in detail. The plutonium fuel cycle and thorium-uranium-233 fuel cycle are explained. The differences between fuels for thermal reactors and fast reactors are explained. (U.K.)

  13. An introduction to the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Leuze, R.E.

    1986-01-01

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work;second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity;and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US. 34 figs., 10 tabs

  14. Dynamic Systems Analysis Report for Nuclear Fuel Recycle

    Energy Technology Data Exchange (ETDEWEB)

    Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

    2008-12-01

    This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

  15. Method of making nuclear fuel bodies

    International Nuclear Information System (INIS)

    Davis, D.E.; Leary, D.F.

    1977-01-01

    A method of making nuclear fuel bodies is described comprising: providing particulate graphite having a particle size not greater than about 1500 microns; impregnating the graphite with a polymerizable organic resin in liquid form; treating the impregnated particles with a hot aqueous acid solution to pre-cure the impregnated resin and to remove excess resin from the surfaces of said graphite particles; heating the treated particles to polymerize the impregnant; blending the impregnated particles with particulate nuclear fuel; and forming a nuclear fuel body by joining the blend of particles into a cohesive mass using a carbonaceous binder

  16. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.; Patridge, M.D.

    1991-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

  17. Request from nuclear fuel cycle and criticality safety design

    International Nuclear Information System (INIS)

    Hamasaki, Manabu; Sakashita, Kiichiro; Natsume, Toshihiro

    2005-01-01

    The quality and reliability of criticality safety design of nuclear fuel cycle systems such as fuel fabrication facilities, fuel reprocessing facilities, storage systems of various forms of nuclear materials or transportation casks have been largely dependent on the quality of criticality safety analyses using qualified criticality calculation code systems and reliable nuclear data sets. In this report, we summarize the characteristics of the nuclear fuel cycle systems and the perspective of the requirements for the nuclear data, with brief comments on the recent issue about spent fuel disposal. (author)

  18. Nuclear fuels policy. Report of the Atlantic Council's Nuclear Fuels Policy working group

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The purpose of the policy paper presented is to recommend the actions deemed necessary to assure that future US and other non-Communist countries' nuclear fuels supply will be adequate to meet future energy demand. Taken together, the recommended decisions and actions form a nuclear fuels supply policy for the United States Government and for the private sector, and new areas of responsibility for the appropriate international organizations in which the US participates. The principal conclusions and recommendations are that the US and the other industrialized non-Communist countries should strive for increased flexibility of primary energy fuel sources, and that a balanced energy strategy therefore depends upon the security of supply of energy resources and the ability to substitute one form of fuel for another. The substitutability and efficient use of energy resources are enhanced by accelerating the supply and use of electricity

  19. Modeling of the PWR fuel mechanical behaviour and particularly study of the pellet-cladding interaction in a fuel rod

    International Nuclear Information System (INIS)

    Hourdequin, N.

    1995-05-01

    In Pressurized Water Reactor (PWR) power plants, fuel cladding constitutes the first containment barrier against radioactive contamination. Computer codes, developed with the help of a large experimental knowledge, try to predict cladding failures which must be limited in order to maintain a maximal safety level. Until now, fuel rod design calculus with unidimensional codes were adequate to prevent cladding failures in standard PWR's operating conditions. But now, the need of nuclear power plant availability increases. That leads to more constraining operating condition in which cladding failures are strongly influenced by the fuel rod mechanical behaviour, mainly at high power level. Then, the pellet-cladding interaction (PCI) becomes important, and is characterized by local effects which description expects a multidimensional modelization. This is the aim of the TOUTATIS 2D-3D code, that this thesis contributes to develop. This code allows to predict non-axisymmetric behaviour too, as rod buckling which has been observed in some irradiation experiments and identified with the help of TOUTATIS. By another way, PCI is influenced by under irradiation experiments and identified with the help of TOUTATIS which includes a densification model and a swelling model. The latter can only be used in standard operating conditions. However, the processing structure of this modulus provides the possibility to include any type of model corresponding with other operating conditions. In last, we show the result of these fuel volume variations on the cladding mechanical conditions. (author). 25 refs., 89 figs., 2 tabs., 12 photos., 5 appends

  20. Theory of a new elastic-plastic-viscous model and its application to the nuclear fuel mechanical analysis

    International Nuclear Information System (INIS)

    Moreno, A.

    1977-01-01

    A new elastic-plastic-viscous model is described. The model is one of the multiple integral type, and has been included in a numerical code to predict the behaviour of a nuclear fuel of cylindrical form. Some features of this code are also described. (author)

  1. Nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Butterfield, R.S.; Garner, D.L.M.

    1977-01-01

    Reference is made to nuclear fuel assemblies designed for cooling on the 'tube-in-shell' principle in which the fuel is contained by a shell and is cooled by coolant passed through tubes extending through the shell. It has been proposed to employ coated particle fuel as a porous bed on the tube side and the bleed coolant from the tubes into direct contact with the fuel particles. In this way heat is extracted both by direct contact with the fuel and by heat transfer through the coolant tube walls. The system described aims to provide an improved structure of tube and shell for a fuel assembly of this kind and is particularly suitable for use in a gas cooled fast reactor, being able to withstand the neutron flux and high temperature conditions in these reactors. Constructional details are given. (U.K.)

  2. Proliferation Resistant Nuclear Reactor Fuel

    International Nuclear Information System (INIS)

    Gray, L.W.; Moody, K.J.; Bradley, K.S.; Lorenzana, H.E.

    2011-01-01

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and

  3. Innovative microstructures in nuclear fuels

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Kumar, Arun; Kamath, H.S.

    2009-01-01

    For cleaner and safe nuclear power, new processes are required to design better nuclear fuels and make more efficient reactors to generate nuclear power. Therefore, one must understand how the microstructure changes during reactor operation. Accordingly, the materials scientists and engineers can then design and fabricate fuels with higher reliability and performance. Microstructure and its evolution are big unknowns in nuclear fuel. The basic requirements for the high performance of a fuel are: a) Soft pellets - To reduce Pellet clad mechanical interaction (PCMI) b) Large grain size - To reduce fission gas release (FGR). The strength of the pellet at room temperature is related to grain size by the Hall-Petch relation. Accordingly, the lower grain sized pellets will have high strength. But at high temperature (above equicohesive temperature) the grain boundaries becomes weaker than grain matrix. Since the small grain sized pellets have more grain boundary areas, these pellet become softer than pellet that have large grain sizes. Also as grain size decreases, creep rate of the fuel increases. Therefore, pellets with small grain size have higher creep rate and better plasticity. Therefore, these pellets will be useful to reduce the PCMI. On the other hand, pellet with large grain size is beneficial to reduce the fission gas release. In developing thermal reactor fuels for high burn-up, this factor should be taken into consideration. The question being asked is whether the microstructure can be tailored for irradiation hardening, fracture resistance, fission-gas release. This paper deals with the role played by microstructure for better irradiation performance. (author)

  4. Nuclear fuel behaviour modelling at high burnup and its experimental support. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-07-01

    of MOX behaviour up to that for UO 2 fuel. There appears to be a good consensus on how MOX fuel performance differs from UO 2 , and on the issues that need to be addressed to achieve higher burnups. The final sessions of the TCM considered the current status of integrated fuel behaviour codes and the challenges for higher burnup modelling. The meeting provided a valuable forum for a review of the state-of-the-art. Presentations were given on a number of existing codes and others under development, covering PWR, WWER, BWR and CANDU fuel performance. Some specialised methods for specific advanced fuel types were also discussed. Recommendations on future work in the area of fission gas release; clad modelling; and MOX fuel modelling are included

  5. The IFR modern nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hannum, W.H.

    1991-01-01

    Nuclear power is an essential component of the world's energy supply. The IFR program, by returning to fundamentals, offers a fresh approach to closing the nuclear fuel cycle. This closed fuel cycle represents the ultimate in efficient resource utilization and environmental accountability. 35 refs., 2 tabs

  6. Privatization and culture change: British Nuclear Fuels case study

    International Nuclear Information System (INIS)

    Salama, A.

    1997-01-01

    This paper describes and explains the process of organizational change experienced by British Nuclear Fuels (BNFL) during the late 1980s. BNFL went through a major transformation in management values and practices to survive in the new business environment characterized by government deregulation and fiercer global market competition. The paper describes both the historical and the prevailing management behaviour as well as the strategy utilized by BNFL's top management in their change process. The key factor in the process of change seems to lie in top management commitment and a fully integrated set of actions involving different sub-systems of the organization. (author)

  7. Fuel assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Gjertsen, R.K.

    1982-01-01

    A fuel assembly in a nuclear reactor comprises a locking mechanism that is capable of locking the fuel assembly to the core plate of a nuclear reactor to prevent inadvertent movement of the fuel assembly. The locking mechanism comprises a ratchet mechanism 108 that allows the fuel assembly to be easily locked to the core plate but prevents unlocking except when the ratchet is disengaged. The ratchet mechanism is coupled to the locking mechanism by a rotatable guide tube for a control rod or water displacer rod. (author)

  8. International co-operation in the supply of nuclear fuel and fuel cycle services

    International Nuclear Information System (INIS)

    Sievering, N.F. Jr.

    1977-01-01

    Recent changes in the United States' nuclear policy, in recognition of the increased proliferation risk, have raised questions of US intentions in international nuclear fuel and fuel-cycle service co-operation. This paper details those intentions in relation to the key elements of the new policy. In the past, the USA has been a world leader in peaceful nuclear co-operation with other nations and, mindful of the relationships between civilian nuclear technology and nuclear weapon proliferation, remains strongly committed to the Non-Proliferation Treaty, IAEA safeguards and other elements concerned with international nuclear affairs. Now, in implementing President Carter's nuclear initiatives, the USA will continue its leading role in nuclear fuel and fuel-cycle co-operation in two ways, (1) by increasing its enrichment capacity for providing international LWR fuel supplies and (2) by taking the lead in solving the problems of near and long-term spent fuel storage and disposal. Beyond these specific steps, the USA feels that the international community's past efforts in controlling the proliferation risks of nuclear power are necessary but inadequate for the future. Accordingly, the USA urges other similarly concerned nations to pause with present developments and to join in a programme of international co-operation and participation in a re-assessment of future plans which would include: (1) Mutual assessments of fuel cycles alternative to the current uranium/plutonium cycle for LWRs and breeders, seeking to lessen proliferation risks; (2) co-operative mechanisms for ensuring the ''front-end'' fuel supply including uranium resource exploration, adequate enrichment capacity, and institutional arrangements; (3) means of dealing with short-, medium- and long-term spent fuel storage needs by means of technical co-operation and assistance and possibly establishment of international storage or repository facilities; and (4) for reprocessing plants, and related fuel

  9. Model of cooling nuclear fuel rod in the nuclear reactor

    International Nuclear Information System (INIS)

    Lavicka, David; Polansky, Jiri

    2010-01-01

    The following topics are described: Some basic requirements for nuclear fuel rods; The VVER 1000 fuel rod; Classification of the two-phase flow in the vertical tube; Type of heat transfer crisis in the vertical tube; Experimental apparatus; Model of the nuclear fuel rod and spacers; Potential of the experimental apparatus (velocity profile measurement via PIV; thermal flow field measurement by the PLIF method; cooling graph in dependence on the fuel rod temperature; comparison of the hydrodynamic properties with respect to the design features of the spacers). (P.A.)

  10. Sintering method for nuclear fuel pellet

    International Nuclear Information System (INIS)

    Omuta, Hirofumi; Nakabayashi, Shigetoshi.

    1997-01-01

    When sintering a compressed nuclear fuel powder in an atmosphere of a mixed gas comprising hydrogen and nitrogen, steams are added to the mixed gas to suppress the nitrogen content in sintered nuclear fuel pellets. In addition, the content of nitrogen impurities in the nuclear fuel pellets can be controlled by controlling the amount of steams to be added to the mixed gas, namely, by controlling the dew point as an index thereof. If the addition amount of steams to the mixed gas is determined by controlling the dew point as an index, the content of nitrogen impurities in the sintered nuclear fuel pellets can be controlled reliably to a specified value of 0.0075% or less. If ammonolyzed gas is used as the mixed gas, a more economical mixed gas can be obtained than in the case of forming mixed gas by mixing the hydrogen gas and the nitrogen gas. (N.H.)

  11. Nuclear fuel for VVER reactors. Actual state and trends

    International Nuclear Information System (INIS)

    Molchanov, V.

    2011-01-01

    The main tasks concerning development of FA design, development and modernization of structural materials, improvement of technology of structural materials manufacturing and FA fabrication and development of methods and codes are discussed in this paper. The main features and expected benefit of implementation of second generation and third generation fuel assembly for VVER-440 Nuclear Fuel are given. A brief review of VVER-440 and VVER-1000 Nuclear Fuel development before 1997 since 2010 is shown. A summary of VVER-440 and VVER-1000 Nuclear Fuel Today, including details about TVSA-PLUS, TVSA-ALFA, TVSA-12 and NPP-2006 Phase 2 tasks (2010-2012) is presented. In conclusion, as a result of large scope of R and D performed by leading enterprises of nuclear industry modern nuclear fuel for VVER reactors is developed, implemented and successfully operated. Fuel performance (burnup, lifetime, fuel cycles, operating reliability, etc.) meets the level of world's producers of nuclear fuel for commercial reactors

  12. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    The nuclear fuel cycle covers the procurement and preparation of fuel for nuclear power reactors, its recovery and recycling after use and the safe storage of all wastes generated through these operations. The facilities associated with these activities have an extensive and well documented safety record accumulated over the past 40 years by technical experts and safety authorities. This report constitutes an up-to-date analysis of the safety of the nuclear fuel cycle, based on the available experience in OECD countries. It addresses the technical aspects of fuel cycle operations, provides information on operating practices and looks ahead to future activities

  13. LWR-core behaviour project

    International Nuclear Information System (INIS)

    Paratte, J.M.

    1982-07-01

    The LWR-Core behaviour project concerns the mathematical simulation of a light water reactor in normal operation (emergency situations excluded). Computational tools are assembled, i.e. programs and libraries of data. These computational tools can likewise be used in nuclear power applications, industry and control applications. The project is divided into three parts: the development and application of calculation methods for quantisation determination of LWR physics; investigation of the behaviour of nuclear fuels under radiation with special attention to higher burnup; simulation of the operating transients of nuclear power stations. (A.N.K.)

  14. The IFR modern nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hannum, W.H.

    1991-01-01

    Nuclear power is an essential component of the world's energy supply. The IFR program, by returning to fundamentals, offers a fresh approach to closing the nuclear fuel cycle. This closed fuel cycle represents the ultimate in efficient resource utilization and environmental accountability. 35 refs., 2 tabs.

  15. ORIGEN-based Nuclear Fuel Inventory Module for Fuel Cycle Assessment: Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Skutnik, Steven E. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering

    2017-06-19

    The goal of this project, “ORIGEN-based Nuclear Fuel Depletion Module for Fuel Cycle Assessment" is to create a physics-based reactor depletion and decay module for the Cyclus nuclear fuel cycle simulator in order to assess nuclear fuel inventories over a broad space of reactor operating conditions. The overall goal of this approach is to facilitate evaluations of nuclear fuel inventories for a broad space of scenarios, including extended used nuclear fuel storage and cascading impacts on fuel cycle options such as actinide recovery in used nuclear fuel, particularly for multiple recycle scenarios. The advantages of a physics-based approach (compared to a recipe-based approach which has been typically employed for fuel cycle simulators) is in its inherent flexibility; such an approach can more readily accommodate the broad space of potential isotopic vectors that may be encountered under advanced fuel cycle options. In order to develop this flexible reactor analysis capability, we are leveraging the Origen nuclear fuel depletion and decay module from SCALE to produce a standalone “depletion engine” which will serve as the kernel of a Cyclus-based reactor analysis module. The ORIGEN depletion module is a rigorously benchmarked and extensively validated tool for nuclear fuel analysis and thus its incorporation into the Cyclus framework can bring these capabilities to bear on the problem of evaluating long-term impacts of fuel cycle option choices on relevant metrics of interest, including materials inventories and availability (for multiple recycle scenarios), long-term waste management and repository impacts, etc. Developing this Origen-based analysis capability for Cyclus requires the refinement of the Origen analysis sequence to the point where it can reasonably be compiled as a standalone sequence outside of SCALE; i.e., wherein all of the computational aspects of Origen (including reactor cross-section library processing and interpolation, input and output

  16. A present status for dry storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Park, H. Y.; Seo, K. S

    2003-04-01

    National policy for management of a spent nuclear fuel does not establish in Korea yet. A storage capacity of a storage pool that is to store the spent nuclear fuel will be exceeded an amount of accumulation from the first Woljin nuclear power plant in 2007. Therefore it is necessary that dry storage facility is secured to store safely the spent nuclear fuel on site of the nuclear power plant until national policy for a back-end spent nuclear fuel cycle is established. In order to store safely spent nuclear fuel, it is important that the present status and technology on dry storage of spent nuclear fuel is looked over. Therefore, the present status on dry storage of spent nuclear fuel was analyzed so as to develop dry storage system and choose a proper dry storage method domestic.

  17. Back-end nuclear fuel cycle strategy: The approaches in Ukraine

    International Nuclear Information System (INIS)

    Afnasyev, A.; Medun, V.; Trehub, Yu.

    2002-01-01

    Ukraine has 14 nuclear units in operation and 4 units more under construction. Now in Ukraine a share of installed nuclear capacity in total installed capacity is essential and it is planned to increase it further. In this connection a spent nuclear fuel management in Ukraine for the current period and future is becoming important in a nuclear fuel cycle. A current situation in relation to the spent nuclear fuel management in Ukraine is described in the paper. It is reviewed: legislative basis for a spent nuclear fuel management strategy; an assessment for a spent fuel growth; the national possibilities for the spent fuel management; an organization chart for a spent nuclear fuel management, etc. Some factors that can determine a long-term spent fuel management strategy in Ukraine are in the conclusion. (author)

  18. Construction and tests of a gamma device for experimental measurements of burnup of nuclear reactor fuel

    International Nuclear Information System (INIS)

    Brandao Junior, F.A.

    1982-01-01

    The gamma-scanning method is an important tool for the measurement of burnup of nuclear reactor fuel. The adequate knowledge of burnup allows for a better inventory of 'sensitive' fissile materials, better fuel management and provides insight on fuel behaviour and safety margins. This paper is related to the description, construction and operation of a first gamma scanning device, tested by irradiation of prototype PWR fuel pins, 14 cm long, in a Triga Mark-I reactor at very low power. Despite the limitations imposed by the low burnup, the experiment permitted a good checking of the main physical concepts and devices involved in the method. (Author) [pt

  19. Nuclear fuel in a reactor accident.

    Science.gov (United States)

    Burns, Peter C; Ewing, Rodney C; Navrotsky, Alexandra

    2012-03-09

    Nuclear accidents that lead to melting of a reactor core create heterogeneous materials containing hundreds of radionuclides, many with short half-lives. The long-lived fission products and transuranium elements within damaged fuel remain a concern for millennia. Currently, accurate fundamental models for the prediction of release rates of radionuclides from fuel, especially in contact with water, after an accident remain limited. Relatively little is known about fuel corrosion and radionuclide release under the extreme chemical, radiation, and thermal conditions during and subsequent to a nuclear accident. We review the current understanding of nuclear fuel interactions with the environment, including studies over the relatively narrow range of geochemical, hydrological, and radiation environments relevant to geological repository performance, and discuss priorities for research needed to develop future predictive models.

  20. Nuclear fuel and energy policy

    International Nuclear Information System (INIS)

    Ahmed, S.B.

    1979-01-01

    This book examines the uranium resource situation in relation to the future needs of the nuclear economy. Currently the United States is the world's leading producer and consumer of nuclear fuels. In the future US nuclear choices will be highly interdependent with the rest of the world as other countries begin to develop their own nuclear programs. Therefore the world's uranium resource availability has also been examined in relation to the expected growth in the world nuclear industry. Based on resource evaluation, the study develops an economic framework for analyzing and describing the behavior of the US uranium mining and milling industry. An econometric model designed to reflect the underlying structure of the physical processes of the uranium mining and milling industry has been developed. The purpose of this model is to forecast uranium prices and outputs for the period 1977 to 2000. Because uncertainty has sometimes surrounded the economic future of the uranium markets, the results of the econometric modeling should be interpreted with great care and restrictive assumptions. Another aspect of this study is to provide much needed information on the operations of government-owned enrichment plants and the practices used by the government in the determination of fuel enrichment costs. This study discusses possible future developments in enrichment supply and technologies and their implications for future enrichment costs. A review of the operations involving the uranium concentrate conversion to uranium hexafluoride and fuel fabrication is also provided. An economic analysis of these costs provides a comprehensive view of the front-end costs of the nuclear fuel cycle

  1. Storing the world's spent nuclear fuel

    International Nuclear Information System (INIS)

    Barkenbus, J.N.; Weinberg, A.M.; Alonso, M.

    1985-01-01

    Given the world's prodigious future energy requirements and the inevitable depletion of oil and gas, it would be foolhardy consciously to seek limitations on the growth of nuclear power. Indeed, the authors continue to believe that the global nuclear power enterprise, as measured by installed reactor capacity, can become much larger in the future without increasing proliferation risks. To accomplish this objective will require renewed dedication to the non-proliferation regime, and it will require some new initiatives. Foremost among these would be the establishment of a spent fuel take-back service, in which one or a few states would retrieve spent nuclear fuel from nations generating it. The centralized retrieval of spent fuel would remove accessible plutonium from the control of national leaders in non-nuclear-weapons states, thereby eliminating the temptation to use this material for weapons. The Soviets already implement a retrieval policy with the spent fuel generated by East European allies. The authors believe that it is time for the US to reopen the issue of spent-fuel retrieval, and thus to strengthen its non-proliferation policies and the nonproliferation regime in general. 7 references

  2. Nuclear fuel fabrication in India

    International Nuclear Information System (INIS)

    Kondal Rao, N.

    1975-01-01

    The important role of a nuclear power programme in meeting the growing needs of power in India is explained. The successful installation of Tarapur Atomic Power Station and Rajasthan Atomic Power Station as well as the work at Madras Atomic Power Station are described. The development of the Atomic Fuels Division and the Nuclear Fuel Complex, Hyderabad which is mainly concerned with the fabrication of fuel elements and the reprocessing of fuels are explained. The N.F.C. essentially has the following constituent units : Zirconium Plant (ZP) comprising of Zirconium Oxide Plant, Zirconium Sponge Plant and Zirconium Fabrication Plant; Natural Uranium Oxide Plant (UOP); Ceramic Fuel Fabrication Plant (CFFP); Enriched Uranium Oxide Plant (EUOP); Enriched Fuel Fabrication Plant (EEFP) and Quality Control Laboratory for meeting the quality control requirements of all plants. The capacities of various plants at the NFC are mentioned. The work done on mixed oxide fuels and FBTR core with blanket assemblies, nickel and steel assemblies, thermal research reactor of 100 MW capacity, etc. are briefly mentioned. (K.B.)

  3. Nuclear fuel fabrication in India

    Energy Technology Data Exchange (ETDEWEB)

    Kondal Rao, N

    1975-01-01

    The important role of a nuclear power program in meeting the growing needs of power in India is explained. The successful installation of Tarapur Atomic Power Station and Rajasthan Atomic Power Station as well as the work at Madras Atomic Power Station are described. The development of the Atomic Fuels Division and the Nuclear Fuel Complex, Hyderabad which is mainly concerned with the fabrication of fuel elements and the reprocessing of fuels are explained. The N.F.C. essentially has the following constituent units : Zirconium Plant (ZP) comprising of Zirconium Oxide Plant, Zirconium Sponge Plant and Zirconium Fabrication Plant; Natural Uranium Oxide Plant (UOP); Ceramic Fuel Fabrication Plant (CFFP); Enriched Uranium Oxide Plant (EUOP); Enriched Fuel Fabrication Plant (EEFP) and Quality Control Laboratory for meeting the quality control requirements of all plants. The capacities of various plants at the NFC are mentioned. The work done on mixed oxide fuels and FBTR core with blanket assemblies, nickel and steel assemblies, thermal research reactor of 100 MW capacity, etc. are briefly mentioned.

  4. Globalisation of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rougeau, J.-P.; Durret, L.-F.

    1995-01-01

    Three main features of the globalisation of the nuclear fuel cycle are identified and discussed. The first is an increase in the scale of the nuclear fuel cycle materials and services markets in the past 20 years. This has been accompanied by a growth in the sophistication of the fuel cycle. Secondly, the nuclear industry is now more vulnerable to outside pressures; it is no longer possible to make strategic decisions on the industry within a country solely on national considerations. Thirdly, there are changes in the decision-making process at the political, regulatory, operational and industrial level which are the consequence of global factors. (UK)

  5. The nuclear fuel cycle, an overview

    International Nuclear Information System (INIS)

    Ballery, J.L.; Cazalet, J.; Hagemann, R.

    1995-01-01

    Because uranium is widely distributed on the face of the Earth, nuclear energy has a very large potential as an energy source in view of future depletion of fossil fuel reserves. Also future energy requirements will be very sizeable as populations of developing countries are often growing and make the energy question one of the major challenges for the coming decades. Today, nuclear contributes some 340 GWe to the energy requirements of the world. Present and future nuclear programs require an adequate fuel cycle industry, from mining, refining, conversion, enrichment, fuel fabrication, fuel reprocessing and the storage of the resulting wastes. The commercial fuel cycle activities amount to an annual business in the 7-8 billions of US Dollars in the hands of a large number of industrial operators. This paper gives details about companies and countries involved in each step of the fuel cycle and about the national strategies and options chosen regarding the back end of the fuel cycle (waste storage and reprocessing). These options are illustrated by considering the policy adopted in three countries (France, United Kingdom, Japan) versed in reprocessing. (J.S.). 13 figs., 2 tabs

  6. Fuel element for a nuclear reactor

    International Nuclear Information System (INIS)

    Linning, D.L.

    1977-01-01

    An improvement of the fuel element for a fast nuclear reactor described in patent 15 89 010 is proposed which should avoid possible damage due to swelling of the fuel. While the fuel element according to patent 15 89 010 is made in the form of a tube, here a further metal jacket is inserted in the centre of the fuel rod and the intermediate layer (ceramic uranium compound) is provided on both sides, so that the nuclear fuel is situated in the centre of the annular construction. Ceramic uranium or plutonium compounds (preferably carbide) form the fuel zone in the form of circular pellets, which are surrounded by annular gaps, so that gaseous fission products can escape. (UWI) [de

  7. Behaviour of gas cooled reactor fuel under accident conditions

    International Nuclear Information System (INIS)

    1991-11-01

    The Specialists Meeting on Behaviour of Gas Cooled Reactor Fuel under Accident Conditions was convened by the International Atomic Energy Agency on the recommendation of the International Working Group on Gas Cooled Reactors. The purpose of the meeting was to provide an international forum for the review of the development status and for the discussion on the behaviour of gas cooled reactor fuel under accident conditions and to identify areas in which additional research and development are still needed and where international co-operation would be beneficial for all involved parties. The meeting was attended by 45 participants from France, Germany, Japan, Switzerland, the Union of Soviet Socialists Republics, the United Kingdom, the United States of America, CEC and the IAEA. The meeting was subdivided into five technical sessions: Summary of Current Research and Development Programmes for Fuel; Fuel Manufacture and Quality Control; Safety Requirements; Modelling of Fission Product Release - Part I and Part II; Irradiation Testing/Operational Experience with Fuel Elements; Behaviour at Depressurization, Core Heat-up, Power Transients; Water/Steam Ingress - Part I and Part II. 22 papers were presented. A separate abstract was prepared for each of these papers. At the end of the meeting a round table discussion was held on Directions for Future R and D Work and International Co-operation. Refs, figs and tabs

  8. Nuclear fuel assurance: origins, trends, and policy issues

    International Nuclear Information System (INIS)

    Neff, T.L.; Jacoby, H.D.

    1979-02-01

    The economic, technical and political issues which bear on the security of nuclear fuel supply internationally are addressed. The structure of international markets for nuclear fuel is delineated; this includes an analysis of the political constraints on fuel availability, especially the connection to supplier nonproliferation policies. The historical development of nuclear fuel assurance problems is explored and an assessment is made of future trends in supply and demand and in the political context in which fuel trade will take place in the future. Finally, key events and policies which will affect future assurance are identified

  9. Economic Analysis of Several Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Gao, Fanxing; Kim, Sung Ki

    2012-01-01

    Economics is one of the essential criteria to be considered for the future deployment of the nuclear power. With regard to the competitive power market, the cost of electricity from nuclear power plants is somewhat highly competitive with those from the other electricity generations, averaging lower in cost than fossil fuels, wind, or solar. However, a closer look at the nuclear power production brings an insight that the cost varies within a wide range, highly depending on a nuclear fuel cycle option. The option of nuclear fuel cycle is a key determinant in the economics, and therefrom, a comprehensive comparison among the proposed fuel cycle options necessitates an economic analysis for thirteen promising options based on the material flow analysis obtained by an equilibrium model as specified in the first article (Modeling and System Analysis of Different Fuel Cycle Options for Nuclear Power Sustainability (I): Uranium Consumption and Waste Generation). The objective of the article is to provide a systematic cost comparison among these nuclear fuel cycles. The generation cost (GC) generally consists of a capital cost, an operation and maintenance cost (O and M cost), a fuel cycle cost (FCC), and a decontaminating and decommissioning (D and D) cost. FCC includes a frontend cost and a back-end cost, as well as costs associated with fuel recycling in the cases of semi-closed and closed cycle options. As a part of GC, the economic analysis on FCC mainly focuses on the cost differences among fuel cycle options considered and therefore efficiently avoids the large uncertainties of the Generation-IV reactor capital costs and the advanced reprocessing costs. However, the GC provides a more comprehensive result covering all the associated costs, and therefrom, both GC and FCC have been analyzed, respectively. As a widely applied tool, the levelized cost (mills/KWh) proves to be a fundamental calculation principle in the energy and power industry, which is particularly

  10. Nuclear fuel conversion and fabrication chemistry

    International Nuclear Information System (INIS)

    Lerch, R.E.; Norman, R.E.

    1984-01-01

    Following irradiation and reprocessing of nuclear fuel, two operations are performed to prepare the fuel for subsequent reuse as fuel: fuel conversion, and fuel fabrication. These operations complete the classical nuclear fuel cycle. Fuel conversion involves generating a solid form suitable for fabrication into nuclear fuel. For plutonium based fuels, either a pure PuO 2 material or a mixed PuO 2 -UO 2 fuel material is generated. Several methods are available for preparation of the pure PuO 2 including: oxalate or peroxide precipitation; or direct denitration. Once the pure PuO 2 is formed, it is fabricated into fuel by mechanically blending it with ceramic grade UO 2 . The UO 2 can be prepared by several methods which include direct denitration. ADU precipitation, AUC precipitation, and peroxide precipitation. Alternatively, UO 2 -PuO 2 can be generated directly using coprecipitation, direct co-denitration, or gel sphere processes. In coprecipitation, uranium and plutonium are either precipitated as ammonium diuranate and plutonium hydroxide or as a mixture of ammonium uranyl-plutonyl carbonate, filtered and dried. In direct thermal denitration, solutions of uranium and plutonium nitrates are heated causing concentration and, subsequently, direct denitration. In gel sphere conversion, solutions of uranium and plutonium nitrate containing additives are formed into spherical droplets, gelled, washed and dried. Refabrication of these UO 3 -PuO 2 starting materials is accomplished by calcination-reduction to UO 2 -PuO 2 followed by pellet fabrication. (orig.)

  11. Strategies of management of the nuclear fuel

    International Nuclear Information System (INIS)

    Leon, J.R.; Perez, A.; Filella, J.M.

    1996-01-01

    The management of nuclear fuel is depending on several factors: - Regulatory commission. The enterprises owner of the NPPs.The enterprise owner of the energy distribution. These factors are considered for the management of nuclear fuel. The design of fuel elements, the planning of cycles, the design of core reactors and the costs are analyzed. (Author)

  12. Transportation capabilities study of DOE-owned spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1994-10-01

    This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

  13. Behaviour of high O/U fuel

    International Nuclear Information System (INIS)

    Davies, J.H.; Hoshi, E.V.; Zimmerman, D.L.

    2000-01-01

    Full text: The effect of increased fuel oxygen potential on fuel behaviour has been studied by fabricating and irradiating urania fuel with an average O/U ratio of 2.05. The fuel was fabricated by re-sintering standard urania pellets in a controlled oxygen potential environment and irradiated in a segmented rod bundle in a U.S. BWR. Preirradiation ceramographic characterization of the pellets revealed the well-known Widmanstaetten precipitation of U-409 platelets in the UO 2 matrix. The high O/U fuel pellets were clad in Zircaloy-2 and irradiated to over 20 GWd/MT. Ramp tests were performed in a test reactor and detailed postirradiation examinations of both ramped and nonramped rods have been performed. The cladding inner surface condition, fission gas release and swelling behavior of high O/U fuel have been characterized and compared with standard UO 2 pellets. Although fuel microstructural features in ramp-tested high O/U fuel showed evidence of higher fuel temperatures and/or enhanced transport processes, fission gas release to the fuel rod free space was less than for similarly tested standard UO 2 fuel. However, fuel swelling and cladding strains were significantly greater. In spite of high cladding strains, PCI crack propagation was inhibited in the high O/U fuel I rods. Evidence is presented that the crystallographically oriented etch features often noted in peripheral regions of high burnup fuels are not an indication of higher oxides of uranium. (author)

  14. Overview of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Knief, R.A.

    1978-01-01

    The nuclear fuel cycle is substantially more complicated than the energy production cycles of conventional fuels because of the very low abundance of uranium 235, the presence of radioactivity, the potential for producing fissile nuclides from irradiation, and the risk that fissile materials will be used for nuclear weapons. These factors add enrichment, recycling, spent fuel storage, and safeguards to the cycle, besides making the conventional steps of exploration, mining, processing, use, waste disposal, and transportation more difficult

  15. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Hirano, Yasushi; Hirukawa, Koji; Sakurada, Koichi.

    1994-01-01

    A bundle of fuel rods is divided into four fuel rod group regions of small fuel rod bundles by a cross-shaped partitioning structure consisting of paired plate-like structures which connect two opposing surfaces of a channel box. A water removing material with less neutron absorption (for example, Zr or a Zr alloy) or a solid moderator is inserted and secured to a portion of a non-boiling water region interposed between the paired plate-like structure. It has a structure that light water flows to the region in the plate-like structure. The volume, density or composition of the water removing material is controlled depending on the composition of the fuels, to change the moderating characteristics of neutrons in the non-boiling water region. This can easily moderate the difference of nuclear characteristics between each of fuel assemblies using fuel materials of different fuel compositions. Further, the reactivity control effect of the burnable poisons can be enhanced without worsening fuel economy or linear power density. (I.N.)

  16. No one can play snooker that fast. SCK•CEN performs computer simulations of nuclear fuel behaviour

    International Nuclear Information System (INIS)

    2014-01-01

    The article discusses the project F-Bridge, which is funded under the seventh European framework programme. The objective of F-Bridge apply knowledge gained from fundamental science to to the development of Gen-IV fuels. The ultimate goal is to set up an international exchange platform for the integration and the coordination of nuclear fuel research. As part of the F-Bridge project, the Belgian Nuclear Research Center SCK-CEN collaborates with other institutes in Europe in a work package on multi-scale modelling. The main contribution of SCK-CEN focuses on atomic-scale computer simulations. The employed techniques are based on empirical force fields and describe atomic interactions using simple parameters and analytical formulas. Based on Newton’s theory, the evolution of a series of atoms and their interaction over a given time period can be predicted.

  17. Regulatory viewpoint on nuclear fuel quality assurance

    International Nuclear Information System (INIS)

    Tripp, L.E.

    1976-01-01

    Considerations of the importance of fuel quality and performance to nuclear safety, ''as low reasonably achievable'' release of radioactive materials in reactor effluents, and past fuel performance problems demonstrate the need for strong regulatory input, review and inspection of nuclear fuel quality assurance programs at all levels. Such a regulatory program is being applied in the United States of America by the US Nuclear Regulatory Commission. Quality assurance requirements are contained within government regulations. Guidance on acceptable methods of implementing portions of the quality assurance program is contained within Regulatory Guides and other NRC documents. Fuel supplier quality assurance program descriptions are reviewed as a part of the reactor licensing process. Inspections of reactor licensee control of their fuel vendors as well as direct inspections of fuel vendor quality assurance programs are conducted on a regularly scheduled basis. (author)

  18. Economic evaluation of multilateral nuclear fuel cycle approach

    International Nuclear Information System (INIS)

    Takashima, Ryuta; Kuno, Yusuke; Omoto, Akira; Tanaka, Satoru

    2011-01-01

    Recently previous works have shown that multilateral nuclear fuel cycle approach has benefits not only of non-proliferation but also of cost effectiveness. This is because for most facilities in nuclear fuel cycle, there exist economies of scale, which has a significant impact on the costs of nuclear fuel cycle. Therefore, the evaluation of economic rationality is required as one of the evaluation factors for the multilateral nuclear fuel cycle approach. In this study, we consider some options with respect to multilateral approaches to nuclear fuel cycle in Asian-Pacific region countries that are proposed by the University of Tokyo. In particular, the following factors are embedded into each type: A) no involvement of assurance of services, B) provision of assurance of services including construction of new facility, without transfer of ownership, and C) provision of assurance of service including construction of new joint facilities with ownership transfer of facilities to multilateral nuclear fuel cycle approach. We show the overnight costs taking into account install and operation of nuclear fuel cycle facilities for each option. The economic parameter values such as uranium price, scale factor, and market output expansion influences the total cost for each option. Thus, we show how these parameter values and economic risks affect the total overnight costs for each option. Additionally, the international facilities could increase the risk of transportation for nuclear material compared to national facilities. We discuss the potential effects of this transportation risk on the costs for each option. (author)

  19. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Butterfield, C.E.; Waite, E.

    1982-01-01

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  20. Mechanical behaviour of PWR fuel rods during intermediate storage

    International Nuclear Information System (INIS)

    Bouffioux, P.; Dalmas, R.; Bernaudat, C.

    2000-01-01

    EDF, which owns the irradiated fuel coming from its NPPs, has initiated studies regarding the mechanical behaviour of a fuel rod and the integrity of its cladding, in the case where the spent fuel is stored for a significant duration. During the phases following in-reactor irradiation (ageing in a water-pool, transport and intermediate storage), many phenomena, which are strongly coupled, may influence the cladding integrity: - residual power and temperature decay; - helium production and release in the free volume of the rod (especially for MOX fuel); - fuel column swelling; - cladding creep-out under the inner gas pressure of the fuel rod; - metallurgical changes due to high temperatures during transportation. In parallel, the quantification of the radiological risk is based on the definition of a cladding integrity criterion. Up to now, this criterion requires that the clad hoop strain due to creep-out does not exceed 1%. A more accurate criterion is being investigated. The study and modelling of all the phenomena mentioned above are included in a R and D programme. This programme also aims at redefining the cladding integrity criterion, which is assumed to be too conservative. The R and D programme will be presented. In order to predict the overall behaviour of the rod during the intermediate storage phases, the AVACYC code has been developed. It includes the models developed in the R and D programme. The input data of the AVACYC code are provided by the results of in-reactor rod behaviour simulations, using the thermal-mechanical CYRANO3 code. Its main results are the evolution vs. time of hoop stresses in the cladding, rod internal pressure and cladding hoop strains. Chained CYRANO-AVACYC calculations have been used to simulate the behaviour of MOX fuel rods irradiated up to 40 GWd/t and stored under air during 100 years, or under water during 50 years. For such fuels, where the residual power remains high, we show that a large part of the cladding strain

  1. Back-end of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Choi, J.S.

    2002-01-01

    Current strategies of the back-end nuclear fuel cycles are: (1) direct-disposal of spent fuel (Open Cycle), and (2) reprocessing of the spent fuel and recycling of the recovered nuclear materials (Closed Cycle). The selection of these strategies is country-specific, and factors affecting selection of strategy are identified and discussed in this paper. (author)

  2. Nuclear fuel cycle under progressing preparation of its systemisation

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Trends of nuclear development in Japan show more remarkable advancements in 2000, such as new addition of nuclear power plant, nuclear fuel cycling business, and so on. Based on an instruction of the criticality accident in JCO formed on September, 1999, government made efforts on revision of the law on regulation of nuclear reactor and so forth and establishment of a law on protection of nuclear accident as sooner, to enforce nuclear safety management and nuclear accident protective countermeasure. On the other hand, the nuclear industry field develops some new actions such as establishment of Nuclear Safety Network (NSnet)', mutual evaluation of nuclear-relative works (pier review), and so forth. And, on the high level radioactive wastes disposal of the most important subject remained in nuclear development, the Nuclear Waste Management Organization of Japan' of its main business body was established on October, 1999 together with establishment of the new law, to begin a business for embodiment of the last disposal aiming at 2030s to 2040s. On the same October, the Japan Nuclear Fuel Limited. concluded a safety agreement on premise of full-dress transportation of the used fuels to the Rokkasho Reprocessing Plant in Aomori prefecture with local government, to begin their transportation from every electric company since its year end. Here were described on development of the nuclear fuel cycling business in Japan, establishment of nuclear fuel cycling, disposal on the high level radioactive wastes, R and D on geological disposal of the high level radioactive wastes, establishment on cycle back-end of nuclear fuels, and full-dressing of nuclear fuel cycling. (G.K.)

  3. Concerning permission of change in nuclear fuel processing business of Japan Nuclear Fuel Co. , Ltd

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    In response to an inquiry on the title issue received on Jun. 17, 1988, the Nuclear Safety Commission made a study and submitted the findings to the Prime Minister on Jul. 21, 1988. The study was intended to determine the conformity of the permission to the applicable criteria specified in laws relating to control of nuclear material, nuclear fuel and nuclear reactor. The proposed modification plan included changes in the facilities in the No.1 processing building and changes in processing methods which were required to perform processing of blanket fuel assemblies for fast breeder reactor. It also included changes in the facilities in the No.2 building which were required to improve the processes. The safety study covered the anti-earthquake performance, fire/explosion prevention, criticality control, containment performance, radioactive waste disposal, and other major safety issues. Other investigations included exposure dose evaluation and accident analysis. Study results were examined on the basis of the Basic Guidelines for Nuclear Fuel Facilities Safety Review and the Uranium Processing Safety Review Guidelines. It was concluded that the modifications would not have adverse effect on the safety of the facilities. (Nogami, K.).

  4. Concerning permission of change in nuclear fuel processing business of Japan Nuclear Fuel Co., Ltd

    International Nuclear Information System (INIS)

    1988-01-01

    In response to an inquiry on the title issue received on Jun. 17, 1988, the Nuclear Safety Commission made a study and submitted the findings to the Prime Minister on Jul. 21, 1988. The study was intended to determine the conformity of the permission to the applicable criteria specified in laws relating to control of nuclear material, nuclear fuel and nuclear reactor. The proposed modification plan included changes in the facilities in the No.1 processing building and changes in processing methods which were required to perform processing of blanket fuel assemblies for fast breeder reactor. It also included changes in the facilities in the No.2 building which were required to improve the processes. The safety study covered the anti-earthquake performance, fire/explosion prevention, criticality control, containment performance, radioactive waste disposal, and other major safety issues. Other investigations included exposure dose evaluation and accident analysis. Study results were examined on the basis of the Basic Guidelines for Nuclear Fuel Facilities Safety Review and the Uranium Processing Safety Review Guidelines. It was concluded that the modifications would not have adverse effect on the safety of the facilities. (Nogami, K.)

  5. Fuel design and operational experience in Loviisa NPP, future trends in fuel issues

    International Nuclear Information System (INIS)

    Terasvirta, R.

    2001-01-01

    This paper summarizes the past operational experience of nuclear fuel with reference to most significant design changes during the years. In general, the fuel behaviour in Loviisa NPP in terms of leaking fuel assemblies has been good. The major improvements by fuel design changes in Lovissa NPP, including rod elongation margin, change in the pellet design and manufacturing process, upper grid modifications, change of material in the spacer grids and reduction of the shroud tube thickness are discussed and related to the number of failed fuel assemblies. The detailed investigation of fuel failure rates as function of different fuel and operation characteristics allows to classify the leaking fuel assemblies according to the cause of failure. In a brief discussion concerning new changes in the safety guide for nuclear design limits, re-issued by the Finnish Safety Authority (STUK), the frequencies for class 1 and class 2 accidents are determined. Another change in this guide is the introduction of design limits for the number of fuel rods experiencing DNB in class 1 accidents and number of failed rods in class 2 accidents. It is concluded that as far as normal operation is concerned, there seems to be sufficiently large margin between present operational limits in Loviisa and the design limits. The real limits do not come from fuel behaviour in the normal operation or operational occurrences but from the accident behaviour. At the moment, fuel assembly burnup extension beyond 45 MWd/kgU is clearly out of the question before further information and positive results are obtained on high burnup fuel behaviour in accident conditions

  6. Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-08-31

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.

  7. Nuclear Fuel Cycle Options Catalog FY15 Improvements and Additions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2015 fiscal year.

  8. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Kawada, Toshiyuki; Hirayama, Satoshi; Yoneya, Katsutoshi.

    1980-01-01

    Purpose: To enable load-depending operation as well as moderation for the restriction of operation conditions in the present nuclear reactors, by specifying the essential ingredients and the total weight of the additives to UO 2 fuel substances. Constitution: Two or more additives selected from Al 2 O 3 , B 2 O, CaO, MgO, SiO 2 , Na 2 O and P 2 O 5 are added by the total weight of 2 - 5% to fuel substances consisting of UO 2 or a mixture of UO 2 and PuO 2 . When the mixture is sintered, the strength of the fuel elements is decreased and the fuel-cladding interactions due to the difference in the heat expansion coefficients between the ceramic fuel elements and the metal claddings are decreased to a substantially harmless degree. (Horiuchi, T.)

  9. Ordinance concerning the filing of transport of nuclear fuel materials

    International Nuclear Information System (INIS)

    1987-01-01

    This Order provides provisions concerning nuclear fuel substances requiring notification (nuclear fuel substance, material contaminated with nuclear fuel substances, fissionable substances, etc.), procedure for notification (to prefectural public safety commission), certificate of transpot (issued via public safety commission), instructions (speed of vehicle for transporting nuclear fuel substances, parking of vehicle, place for loading and unloading of nuclear fuel substances, method for loading and unloading, report to police, measures for disaster prevention during transport, etc.), communication among members of public safety commission (for smooth transport), notification of alteration of data in transport certificate (application to be submitted to public safety commission), application of reissue of transport certificate, return of transport certificate, inspection concerning transport (to be performed by police), submission of report (to be submitted by refining facilities manager, processing facilities manager, nuclear reactor manager, master of foreign nuclear powered ship, reprocessing facilities manager, waste disposal facilities manager; concerning stolen or missing nuclear fuel substances, traffic accident, unusual leakage of nuclear fuel substances, etc.). (Nogami, K.)

  10. International cooperation in supply of nuclear fuel and fuel cycle services

    International Nuclear Information System (INIS)

    Sievering, N.F. Jr.

    1977-01-01

    In the face of costlier, decreasingly available oil and a desire to achieve a higher degree of self-sufficiency, nuclear power has become an increasingly important ingredient in the mix of energy options looked to by a growing number of industrialized and developing states. One of the central concerns of states that are placing greater reliance on nuclear energy is the assurance that adequate nuclear fuels will be available on a timely basis and on economically acceptable terms. Greater emphasis on nuclear energy and on self-sufficiency entails greater potential risks as sensitive facilities and technologies associated with the nuclear fuel cycle threaten to proliferate. This paper explores the juxtaposition of the spread of nuclear technology and facilities in support of legitimate desires to achieve greater energy self-sufficiency and economic and social progress, on the one hand, and the implications of widely disseminated nuclear fuel cycle capacity for the objective of non-proliferation, on the other hand. It examines the recent evolution of nuclear fuel cycle activities including the scope of cooperation both among nuclear supplier states and between supplier and non-supplier states; explores the arenas in which common efforts are, can and should be undertaken (e.g., in terms of the nuclear resource base, the provision of essential services such as enrichment, and the management of nuclear waste), and identifies means by which national aspirations and international security concerns can be effectively accommodated. Particular attention is given to the methods by which the dissemination of sensitive technologies at facilities can be controlled without sacrificing the legitimate interests of any state, as well as to methods by which controls over potentially dangerous materials such as plutonium can be strengthened. The paper concludes that there are significant opportunities to achieve a high degree of international cooperation in the arena of fuel cycle

  11. Nuclear fuel manufacturing. Current activities and prospects at INR Pitesti

    International Nuclear Information System (INIS)

    Horhoianu, Grigore

    2001-01-01

    Development of the CANDU nuclear fuel is currently conducted world wide onto two principal directions: - increasing the service span of the current type of fuel and improving the efficiency of burnup in reactor; - reducing the costs of fuel manufacturing by improving the design and manufacturing technologies in condition of increasing fuel performance. In parallel, a research program, RAAN, is undergoing, concerning the development of advanced CANDU type fuels (SEU, RU, DUPIC, Th), aiming at reducing the overall costs per fuel cycle. In the INR TRIGA reactor a large number of experimental fuel elements manufactured in INR were irradiated under different conditions specific to the CANDU reactor operation. Post irradiation investigations both destructive and non-destructive were carried out in the hot cells at INR Pitesti. The experimental results were used in order to optimize and evaluate the fuel project, to check the fuel manufacturing technologies as well as to certify the computational codes. The local thermo-mechanical analyses by final element methods, modelling the SCC phenomenon, probabilistic evaluation of performance parameters of the fuel, constitute new directions in the modelling and developing computational code. The developed codes were submitted to a thorough validation process to comply with the quality assurance. The excellent results obtained in INR were confirmed by participation in the FUMEX International Exercises of computer code intercomparison, organized by IAEA Vienna. Progress was also recorded in establishing the behaviour of fuel elements failed during reactor operation and the effect their maintenance in the reactor core could have upon the power reactor operation. A system-expert variant was worked out able for a short term analysis of the decisions referring to removing the failing element at Cernavoda NPP. As advanced CANDU fuel is concerned, until now preliminary variants for a fuel bundle with 43 elements containing slightly

  12. Spent nuclear fuel transport problems

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kosarev, Yu.A.; Yulikov, E.I.

    1977-01-01

    The paper considers the problems of shipping spent fuel from nuclear power stations to reprocessing plants and also the principal ways of solving these problems with a view to achieving maximum economy and safety in transport. The increase in the number of nuclear power plants in the USSR will entail an intensification of spent-fuel shipments. Higher burnup and the need to reduce cooling time call for heavier and more complex shipping containers. The problem of shipping spent fuel should be tackled comprehensively, bearing in mind the requirements of safety and economy. One solution to these problems is to develop rational and cheap designs of such containers. In addition, the world-wide trend towards more thorough protection of the environment against pollution and of the health of the population requires the devotion of constant attention to improving the reliability and safety of shipments. The paper considers the prospects for nuclear power development in the USSR and in other member countries of the CMEA (1976-1980), the composition and design of some Soviet packaging assemblies, the appropriate cooling time for spent fuel from thermal reactor power stations, procedures for reducing fuel-shipping costs, some methodological problems of container calculation and design, and finally problems of testing and checking containers on test rigs. (author)

  13. Experimental program on fuel rod behaviour under off-normal conditions

    International Nuclear Information System (INIS)

    Languille, A.; Cecchi, P.

    1985-01-01

    During LMFBR plant operation, fuel developments are primarily concerned with the fuel pin irradiation behaviour under steady-state conditions up to high burn-up levels. But additional studies under off-normal conditions are necessary in order to assess fuel pin performance and to define operational limits. (author)

  14. The regulations concerning refining business of nuclear source material and nuclear fuel materials

    International Nuclear Information System (INIS)

    1987-01-01

    Regulations specified here cover application for designation of undertakings of refining (spallation and eaching filtration facilities, thickening facilities, refining facilities, nuclear material substances or nuclear fuel substances storage facilities, waste disposal facilities, etc.), application for permission for alteration (business management plan, procurement plan, fund raising plan, etc.), application for approval of merger (procedure, conditions, reason and date of merger, etc.), submission of report on alteration (location, structure, arrangements processes and construction plan for refining facilities, etc.), revocation of designation, rules for records, rules for safety (personnel, organization, safety training for employees, handling of important apparatus and tools, monitoring and removal of comtaminants, management of radioactivity measuring devices, inspection and testing, acceptance, transport and storage of nuclear material and fuel, etc.), measures for emergency, submission of report on abolition of an undertaking, submission of report on disorganization, measures required in the wake of revocation of designation, submission of information report (exposure to radioactive rays, stolen or missing nuclear material or nuclear fuel, unusual leak of nuclear fuel or material contaminated with nuclear fuel), etc. (Nogami, K.)

  15. Nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    1975-12-01

    The papers presented at the International Conference on The Nuclear Fuel Cycle, held at Stockholm, 28 to 31 October 1975, are reviewed. The meeting, organised by the U.S. Atomic Industrial Forum, and the Swedish Nuclear Forum, was concerned more particularly with economic, political, social and commercial aspects than with tecnology. The papers discussed were considered under the subject heading of current status, uranium resources, enrichment, and reprocessing.

  16. Nuclear fuel cycle, nuclear fuel makes the rounds: choosing a closed fuel cycle, nuclear fuel cycle processes, front-end of the fuel cycle: from crude ore to enriched uranium, back-end of the fuel cycle: the second life of nuclear fuel, and tomorrow: multiple recycling while generating increasingly less waste

    International Nuclear Information System (INIS)

    Philippon, Patrick

    2016-01-01

    France has opted for a policy of processing and recycling spent fuel. This option has already been deployed commercially since the 1990's, but will reach its full potential with the fourth generation. The CEA developed the processes in use today, and is pursuing research to improve, extend, and adapt these technologies to tomorrow's challenges. France has opted for a 'closed cycle' to recycle the reusable materials in spent fuel (uranium and plutonium) and optimise ultimate waste management. France has opted for a 'closed' nuclear fuel cycle. Spent fuel is processed to recover the reusable materials: uranium and plutonium. The remaining components (fission products and minor actinides) are the ultimate waste. This info-graphic shows the main steps in the fuel cycle currently implemented commercially in France. From the mine to the reactor, a vast industrial system ensures the conversion of uranium contained in the ore to obtain uranium oxide (UOX) fuel pellets. Selective extraction, purification, enrichment - key scientific and technical challenges for the teams in the Nuclear Energy Division (DEN). The back-end stages of the fuel cycle for recycling the reusable materials in spent fuel and conditioning the final waste-forms have reached maturity. CEA teams are pursuing their research in support of industry to optimise these processes. Multi-recycle plutonium, make even better use of uranium resources and, over the longer term, explore the possibility of transmuting the most highly radioactive waste: these are the challenges facing future nuclear systems. (authors)

  17. Fluid pressure method for recovering fuel pellets from nuclear fuel elements

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1979-01-01

    A method is described for removing fuel pellets from a nuclear fuel element without damaging the fuel pellets or fuel element sheath so that both may be reused. The method comprises holding the fuel element while a high pressure stream internally pressurizes the fuel element to expand the fuel element sheath away from the fuel pellets therein so that the fuel pellets may be easily removed

  18. Nuclear fuel transport and particularly spent fuel transport

    International Nuclear Information System (INIS)

    Lenail, B.

    1986-01-01

    Nuclear material transport is an essential activity for COGEMA linking the different steps of the fuel cycle transport systems have to be safe and reliable. Spent fuel transport is more particularly examined in this paper because the development of reprocessing plant. Industrial, techmical and economical aspects are reviewed [fr

  19. Researches of WWER fuel rods behaviour under RIA accident conditions

    International Nuclear Information System (INIS)

    Nechaeva, O.; Medvedev, A.; Novikov, V.; Salatov, A.

    2003-01-01

    Unirradiated fuel rod and refabricated fuel rod tests in the BIGR as well as acceptance criteria proving absence of fragmentation and the settlement modeling of refabricated fuel rods thermomechanical behavior in the BIGR-tests using RAPTA-5 code are discussed in this paper. The behaviour of WWER type simulators with E110 and E635 cladding was researched at the BIGR reactor under power pulse conditions simulating reactivity initiated accident. The results of the tests in four variants of experimental conditions are submitted. The behaviour of 12 WWER type refabricated fuel rods was researched in the BIGR reactor under power pulse conditions simulating reactivity initiated accident: burnup 48 and 60 MWd/kgU, pulse width 3 ms, peak fuel enthalpy 115-190 cal/g. The program of future tests in the research reactor MIR with high burnup fuel rod (up to 70 MWd/kgU) under conditions simulating design RIA in WWER-1000 is presented

  20. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirayama, Satoshi; Kawada, Toshiyuki; Matsuzaki, Masayoshi.

    1980-01-01

    Purpose: To provide a fuel element for reducing the mechanical interactions between a fuel-cladding tube and the fuel element and for alleviating the limits of the operating conditions of a reactor. Constitution: A fuel element having mainly uranium dioxide consists of a cylindrical outer pellet and cylindrical inner pellet inserted into the outer pellet. The outer pellet contains two or more additives selected from aluminium oxide, beryllium oxide, magnesium oxide, silicon oxide, sodium oxide, phosphorus oxide, calcium oxide and iron oxide, and the inner pellet contains nuclear fuel substance solely or one additive selected from calcium oxide, silicon oxide, aluminium oxide, magnesium oxide, zirconium oxide and iron oxide. The outer pellet of the fuel thus constituted is reduced in mechanical strength and also in the mechanical interactions with the cladding tube, and the plastic fluidity of the entire pellet is prevented by the inner pellet increased in the mechanical strength. (Kamimura, M.)

  1. Overview of the US spent nuclear fuel program

    International Nuclear Information System (INIS)

    Hurt, W.L.

    1999-01-01

    This report, Overview of the United States Spent Nuclear Fuel Program, December, 1997, summarizes the U.S. strategy for interim management and ultimate disposition of spent nuclear fuel from research and test reactors. The key elements of this strategy include consolidation of this spent nuclear fuel at three sites, preparation of the fuel for geologic disposal in road-ready packages, and low-cost dry interim storage until the planned geologic repository is opened. The U.S. has a number of research programs in place that are intended to Provide data and technologies to support both characterization and disposition of the fuel. (author)

  2. International Nuclear Fuel Cycle Fact Book

    International Nuclear Information System (INIS)

    Leigh, I.W.

    1992-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information

  3. International Nuclear Fuel Cycle Fact Book

    International Nuclear Information System (INIS)

    Leigh, I.W.; Mitchell, S.J.

    1990-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information

  4. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I W; Mitchell, S J

    1990-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information.

  5. Annotated Bibliography for Drying Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rebecca E. Smith

    2011-09-01

    Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most value to the commercial industry and the U. S. Department of Energy.

  6. Nuclear Fuel Cycle Evaluation and Real Options

    Directory of Open Access Journals (Sweden)

    L. Havlíček

    2008-01-01

    Full Text Available The first part of this paper describes the nuclear fuel cycle. It is divided into three parts. The first part, called Front-End, covers all activities connected with fuel procurement and fabrication. The middle part of the cycle includes fuel reload design activities and the operation of the fuel in the reactor. Back-End comprises all activities ensuring safe separation of spent fuel and radioactive waste from the environment. The individual stages of the fuel cycle are strongly interrelated. Overall economic optimization is very difficult. Generally, NPV is used for an economic evaluation in the nuclear fuel cycle. However the high volatility of uranium prices in the Front-End, and the large uncertainty of both economic and technical parameters in the Back-End, make the use of NPV difficult. The real option method is able to evaluate the value added by flexibility of decision making by a company under conditions of uncertainty. The possibility of applying this method to the nuclear fuel cycle evaluation is studied. 

  7. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    International Nuclear Information System (INIS)

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho

    2014-01-01

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests

  8. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests.

  9. The nuclear fuel cycle light and shadow

    International Nuclear Information System (INIS)

    Giraud, A.

    1977-01-01

    The nuclear fuel cycle industry has a far reaching effect on future world energy developments. The growth in turnover of this industry follows a known patterm; by 1985 this turnover will have reached a figure of 2 billion dollars. Furthermore, the fuel cycle plays a determining role in ensuring the physical continuity of energy supplies for countries already engaged in the nuclear domain. Finally, the development of this industry is subject to economic and political constraints which imply the availability of raw materials, technological know-how, and production facilities. Various factors which could have an adverse influence on the cycle: technical, economic, or financial difficulties, environmental impact, nuclear safety, theft or diversion of nuclear materials, nuclear weapon, proliferation risks, are described, and the interaction between the development of the cycle, energy independance, and the fulfillment of nuclear energy programs is emphasized. It is concluded that the nuclear fuel cycle industry is confronted with difficulties due to its extremely rapid growth rate (doubling every 5 years); it is a long time since such a growth rate has been experienced by any heavy industry. The task which lays before us is difficult, but the fruit is worth the toil, as it is the fuel cycle which will govern the growth of the nuclear industry [fr

  10. Contribution to numerical and mechanical modelling of pellet-cladding interaction in nuclear reactor fuel rod

    International Nuclear Information System (INIS)

    Retel, V.

    2002-12-01

    Pressurised water reactor fuel rods (PWR) are the place of nuclear fission, resulting in unstable and radioactive elements. Today, the mechanical loading on the cladding is harder and harder and is partly due to the fuel pellet movement. Then, the mechanical behaviour of the cladding needs to be simulated with models allowing to assess realistic stress and strain fields for all the running conditions. Besides, the mechanical treatment of the fuel pellet needs to be improved. The study is part of a global way of improving the treatment of pellet-cladding interaction (PCI) in the 1D finite elements EDF code named CYRANO3. Non-axisymmetrical multidirectional effects have to be accounted for in a context of unidirectional axisymmetrical finite elements. The aim of this work is double. Firstly a model simulating the effect of stress concentration on the cladding, due to the opening of the radial cracks of fuel, had been added in the code. Then, the fragmented state of fuel material has been taken into account in the thermomechanical calculation, through a model which led the strain and stress relaxation in the pellet due to the fragmentation, be simulated. This model has been implemented in the code for two types of fuel behaviour: elastic and viscoplastic. (author)

  11. Proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel: Appendix B, foreign research reactor spent nuclear fuel characteristics and transportation casks. Volume 2

    International Nuclear Information System (INIS)

    1995-03-01

    This is Appendix B of a draft Environmental Impact Statement (EIS) on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. It discusses relevant characterization and other information of foreign research reactor spent nuclear fuel that could be managed under the proposed action. It also discusses regulations for the transport of radioactive materials and the design of spent fuel casks

  12. Recent situation of the establishment of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hoshiba, Shizuo

    1982-01-01

    In Japan, the development of nuclear power as principal petroleum substitute is actively pursued. Nuclear power generation now accounts for about 17 % of the total power generation in Japan. The business related to nuclear fuel cycle should be established by private enterprises. The basic policy in the establishment of nuclear fuel cycle is the stabilized supply of natural uranium, raise in domestic production of enriched uranium, dFomestic fuel reprocessing in principle, positive plutonium utilization, and so on. After explaining this basic policy, the present situation and problems in the establishment of nuclear fuel cycle are described: securing of uranium resources, securing of enriched uranium, reprocessing of used fuel, utilization of plutonium, management of radioactive wastes. (Mori, K.)

  13. Multilateral controls of nuclear fuel-cycle in Asia

    International Nuclear Information System (INIS)

    Choi, Jor-Shan

    2010-01-01

    To meet increasing energy demand and climate change issues, nuclear energy is expected to expand during the next decades in both developed and developing countries. This expansion, most visibly in Asian countries would no doubt be accompanied with complex and intractable challenges to global peace and security, notably in the back-end of the nuclear fuel cycle. What to do with the growing stocks of spent fuel in existing nuclear programs? And how to reduce proliferation concerns when spent fuels are generated in less stable regions of the world? The answers to these questions may lie in the possibility of multilateral (or regional) control of nuclear materials and technologies in the back-end of nuclear fuel cycle. One of the areas of interest is technology, e.g., spent fuel treatment (reprocessing) for long term sustainability and environmental-friendly disposal of radioactive wastes, as an alternative to directly disposing spent fuel in geologic repository. The other is to seek for regional centers for centralized interim spent fuel storage which can eventually turn into disposal facilities. Such centers could help facilitate the possibilities of spent fuel take-back/take-away from countries located in less stable regions for fix-period storage. (author)

  14. The behaviour under irradiation of molybdenum matrix for inert matrix fuel containing americium oxide (CerMet concept)

    Energy Technology Data Exchange (ETDEWEB)

    D' Agata, E., E-mail: elio.dagata@ec.europa.eu [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, 1755 ZG Petten (Netherlands); Knol, S.; Fedorov, A.V. [Nuclear Research and Consultancy Group, P.O. Box 25, 1755 ZG Petten (Netherlands); Fernandez, A.; Somers, J. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Klaassen, F. [Nuclear Research and Consultancy Group, P.O. Box 25, 1755 ZG Petten (Netherlands)

    2015-10-15

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors or Accelerator Driven System (ADS, subcritical reactors dedicated to transmutation) of long-lived nuclides like {sup 241}Am is therefore an option for the reduction of radiotoxicity of waste packages to be stored in a repository. In order to safely burn americium in a fast reactor or ADS, it must be incorporated in a matrix that could be metallic (CerMet target) or ceramic (CerCer target). One of the most promising matrix to incorporate Am is molybdenum. In order to address the issues (swelling, stability under irradiation, gas retention and release) of using Mo as matrix to transmute Am, two irradiation experiments have been conducted recently at the High Flux Reactor (HFR) in Petten (The Netherland) namely HELIOS and BODEX. The BODEX experiment is a separate effect test, where the molybdenum behaviour is studied without the presence of fission products using {sup 10}B to “produce” helium, the HELIOS experiment included a more representative fuel target with the presence of Am and fission product. This paper covers the results of Post Irradiation Examination (PIE) of the two irradiation experiments mentioned above where molybdenum behaviour has been deeply investigated as possible matrix to transmute americium (CerMet fuel target). The behaviour of molybdenum looks satisfying at operating temperature but at high temperature (above 1000 °C) more investigation should be performed.

  15. OECD/NEA Ongoing activities related to the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Cornet, S.M.; McCarthy, K.; Chauvin, N.

    2013-01-01

    As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclear systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)

  16. Logistics of nuclear fuel production for nuclear submarines

    International Nuclear Information System (INIS)

    Guimaraes, Leonam dos Santos

    2000-01-01

    The future acquisition of nuclear attack submarines by Brazilian Navy along next century will imply new requirements on Naval Logistic Support System. These needs will impact all the six logistic functions. Among them, fuel supply could be considered as the one which requires the most important capacitating effort, including not only technological development of processes but also the development of a national industrial basis for effective production of nuclear fuel. This paper presents the technical aspects of the processes involved and an annual production dimensioning for an squadron composed by four units. (author)

  17. International Nuclear Fuel Cycle Fact Book. Revision 5

    International Nuclear Information System (INIS)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate

  18. International Nuclear Fuel Cycle Fact Book. Revision 5

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  19. International nuclear fuel cycle fact book. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  20. International nuclear fuel cycle fact book. Revision 4

    International Nuclear Information System (INIS)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate

  1. Means for supporting nuclear fuel

    International Nuclear Information System (INIS)

    Cocker, P.; Price, M.A.

    1975-01-01

    Reference is made to means for supporting nuclear fuel pins in a reactor coolant channel and the problems that arise in this connection. For reasons of nuclear reactivity and neutron economy 'parasitic' material in a reactor core must be kept to a minimum, whilst for heat transfer reasons the use of fuel pins of large cross-sectional areas should be avoided. Fuel pins tend to be long thin objects having a can of minimum thickness and typically a pin may have a length/diameter ratio of about 500/1 and for fast reactor fuel pins, the outside diameter may be about 0.2 inch. The long slender pins must also be spaced very close together. A fast reactor fuel assembly may involve 200 to 300 fuel pins, each a few tenths of an inch in diameter, supported end on to coolant flowing up a channel of about 22 square inches in total area. The pins have a heavy metal oxide filling and require support. Details are given of a suitable method of support. Such support also allows withdrawal of pins from a fuel channel without the risk of breach of the can, after irradiation. (U.K.)

  2. Axially alignable nuclear fuel pellets

    International Nuclear Information System (INIS)

    Johansson, E.B.; Klahn, D.H.; Marlowe, M.O.

    1978-01-01

    An axially alignable nuclear fuel pellet of the type stacked in end-to-end relationship within a tubular cladding is described. Fuel cladding failures can occur at pellet interface locations due to mechanical interaction between misaligned fuel pellets and the cladding. Mechanical interaction between the cladding and the fuel pellets loads the cladding and causes increased cladding stresses. Nuclear fuel pellets are provided with an end structure that increases plastic deformation of the pellets at the interface between pellets so that lower alignment forces are required to straighten axially misaligned pellets. Plastic deformation of the pellet ends results in less interactions beween the cladding and the fuel pellets and significantly lowers cladding stresses. The geometry of pellets constructed according to the invention also reduces alignment forces required to straighten fuel pellets that are tilted within the cladding. Plastic deformation of the pellets at the pellet interfaces is increased by providing pellets with at least one end face having a centrally-disposed raised area of convex shape so that the mean temperature and shear stress of the contact area is higher than that of prior art pellets

  3. Sufficiency of the Nuclear Fuel

    International Nuclear Information System (INIS)

    Pevec, D.; Knapp, V.; Matijevic, M.

    2008-01-01

    Estimation of the nuclear fuel sufficiency is required for rational decision making on long-term energy strategy. In the past an argument often invoked against nuclear energy was that uranium resources are inadequate. At present, when climate change associated with CO 2 emission is a major concern, one novel strong argument for nuclear energy is that it can produce large amounts of energy without the CO 2 emission. Increased interest in nuclear energy is evident, and a new look into uranium resources is relevant. We examined three different scenarios of nuclear capacity growth. The low growth of 0.4 percent per year in nuclear capacity is assumed for the first scenario. The moderate growth of 1.5 percent per year in nuclear capacity preserving the present share in total energy production is assumed for the second scenario. We estimated draining out time periods for conventional resources of uranium using once through fuel cycle for the both scenarios. For the first and the second scenario we obtained the draining out time periods for conventional uranium resources of 154 years and 96 years, respectively. These results are, as expected, in agreement with usual evaluations. However, if nuclear energy is to make a major impact on CO 2 emission it should contribute much more in the total energy production than at present level of 6 percent. We therefore defined the third scenario which would increase nuclear share in the total energy production from 6 percent in year 2020 to 30 percent by year 2060 while the total world energy production would grow by 1.5 percent per year. We also looked into the uranium requirement for this scenario, determining the time window for introduction of uranium or thorium reprocessing and for better use of uranium than what is the case in the once through fuel cycle. The once through cycle would be in this scenario sustainable up to about year 2060 providing most of the expected but undiscovered conventional uranium resources were turned

  4. A Swedish nuclear fuel facility and public acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bengt A [ABB Atom (Sweden)

    1989-07-01

    For more than ten years the ABB Atom Nuclear Fuel Facility has gained a lot of public attention in Sweden. When the nuclear power debate was coming up in the middle of the seventies, the Nuclear Fuel Facility very soon became a spectacular object. It provided a possibility to bring factual information about nuclear power to the public. Today that public interest still exists. For ABB Atom the Facility works as a tool of information activities in several ways, as a solid base for ABB Atom company presentations. but also as a very practical demonstration of the nuclear power technology to the public. This is valid especially to satisfy the local school demand for a real life object complementary to the theoretical nuclear technology education. Beyond the fact that the Nuclear Fuel Facility is a very effective fuel production plant, it is not too wrong to see it as an important resource for education as well as a tool for improved public relations.

  5. A Swedish nuclear fuel facility and public acceptance

    International Nuclear Information System (INIS)

    Andersson, Bengt A.

    1989-01-01

    For more than ten years the ABB Atom Nuclear Fuel Facility has gained a lot of public attention in Sweden. When the nuclear power debate was coming up in the middle of the seventies, the Nuclear Fuel Facility very soon became a spectacular object. It provided a possibility to bring factual information about nuclear power to the public. Today that public interest still exists. For ABB Atom the Facility works as a tool of information activities in several ways, as a solid base for ABB Atom company presentations. but also as a very practical demonstration of the nuclear power technology to the public. This is valid especially to satisfy the local school demand for a real life object complementary to the theoretical nuclear technology education. Beyond the fact that the Nuclear Fuel Facility is a very effective fuel production plant, it is not too wrong to see it as an important resource for education as well as a tool for improved public relations

  6. ELOCA: fuel element behaviour during high temperature transients

    International Nuclear Information System (INIS)

    Sills, H.E.

    1979-03-01

    The ELOCA computer code was developed to simulate the uniform thermal-mechanical behaviour of a fuel element during high-temperature transients such as a loss-of-coolant accident (LOCA). Primary emphasis is on the diametral expansion of the fuel sheath. The model assumed is a single UO2/zircaloy-clad element with axisymmetric properties. Physical effects considered by the code are fuel expansion, cracking and melting; variation, during the transient, of internal gas pressure; changing fuel/sheath heat transfer; thermal, elastic and plastic sheath deformation (anisotropic); Zr/H 2 O chemical reaction effects; and beryllium-assisted crack penetration of the sheath. (author)

  7. Spent nuclear fuel discharges from US reactors 1993

    International Nuclear Information System (INIS)

    1995-02-01

    The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics

  8. Theory of a new elastic-plastic-viscous model and its application to the nuclear fuel mechanical analysis

    International Nuclear Information System (INIS)

    Moreno, A.

    1977-01-01

    In this work a new elastic-plastic-viscous model is described. The model is one of the multiple integral type, and has been included in a numerical code to predict the behaviour of a nuclear fuel of cylindrical form. Some features of this code are also described. (Author) 91 refs

  9. Monitoring for fuel sheath defects in three shipments of irradiated CANDU nuclear fuel

    International Nuclear Information System (INIS)

    Johnson, H.M.

    1978-01-01

    Analyses of radioactive gases within the Pegase shipping flask were performed at the outset and at the completion of three shipments of irradiated nuclear fuel from the Douglas Point Generating Station to Whiteshell Nuclear Research Establishment. No increases in the concentration of active gases, volatiles or particulates were observed. The activity of the WR-1 bay water rose only marginally due to the storage of the fuel. Other tests indicated that minimal surface contamination was present. These data established that defects in fuel element sheaths did not arise during the transport or the handling of this irradiated fuel. The observation has significance for the prospect of irradiated nuclear fuel transfer and handling in preparation for storage or disposal. (author)

  10. Nuclear Fuels & Materials Spotlight Volume 5

    International Nuclear Information System (INIS)

    Petti, David Andrew

    2016-01-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • Evaluation and modeling of light water reactor accident tolerant fuel concepts • Status and results of recent TRISO-coated particle fuel irradiations, post-irradiation examinations, high-temperature safety testing to demonstrate the accident performance of this fuel system, and advanced microscopy to improve the understanding of fission product transport in this fuel system. • Improvements in and applications of meso and engineering scale modeling of light water reactor fuel behavior under a range of operating conditions and postulated accidents (e.g., power ramping, loss of coolant accident, and reactivity initiated accidents) using the MARMOT and BISON codes. • Novel measurements of the properties of nuclear (actinide) materials under extreme conditions, (e.g. high pressure, low/high temperatures, high magnetic field) to improve the scientific understanding of these materials. • Modeling reactor pressure vessel behavior using the GRIZZLY code. • New methods using sound to sense temperature inside a reactor core. • Improved experimental capabilities to study the response of fusion reactor materials to a tritium plasma. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at Idaho National Laboratory, and hope that you find this issue informative.

  11. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Domoto, Noboru; Masuda, Hiroyuki

    1989-01-01

    In a nuclear fuel assembly loaded with a plurality of fuel rods, the inside of a fuel rod disposed at a high neutron flux region is divided into an inner region and an outer region, and more burnable poisons are mixed in the inner region than in the outer region. Alternatively, the central portion of a pellet disposed in a high neutron flux region is made hollow, in which burnable poisons are charged. This can prevent neutron infinite multiplication factor from decreasing extremely at the initial burning stage. Further, the burnable poisons are not rapidly burnt completely and local peaking coefficient can be controlled. Accordingly, in a case of suppressing a predetermined excess reactivity by using a fuel rod incorporated with the burnable poison, the fuel economy can be improved more and the reactor core controllability can also be improved as compared with the usual case. (T.M.)

  12. Technology developments for Japanese BWR MOX fuel utilization

    International Nuclear Information System (INIS)

    Oguma, M.; Mochida, T.; Nomata, T.; Asahi, K.

    1997-01-01

    The Long-Term Program for Research, Development and Utilization of Nuclear Energy established by the Atomic Energy Commission of Japan asserts that Japan will promote systematic utilization of MOX fuel in LWRs. Based on this Japanese nuclear energy policy, we have been pushing development of MOX fuel technology aimed at future full scale utilization of this fuel in BWRs. In this paper, the main R and D topics are described from three subject areas, MOX core and fuel design, MOX fuel irradiation behaviour, and MOX fuel fabrication technology. For the first area, we explain the compatibility of MOX fuel with UO 2 core, the feasibility of the full MOX core, and the adaptability of MOX design methods based on a mock-up criticality experiment. In the second, we outline the Tsuruga MOX irradiation program and the DOMO program, and suggest that MOX fuel behaviour is comparable to ordinary BWR UO 2 fuel behaviour. In the third, we examine the development of a fully automated MOX bundle assembling apparatus and its features. (author). 14 refs, 11 figs, 3 tabs

  13. Steady state behaviour of gaseous fission products in UO2 nuclear fuel at low temperature

    International Nuclear Information System (INIS)

    Rao, C.B.; Raj, Baldev

    1980-01-01

    Theoretical modelling studies have been performed on steady state fission gas behaviour in UO 2 fuels at temperatures in the range 1073deg K to 1473deg K. The concentrations of gas atoms in the matrix and in the bubbles are determined. Fraction of total generated gas atoms migrating to and forming bubbles at grain boundaries is calculated. Contributions of intragranular and intergranular bubbles to the swelling are also computed. The various assumptions made to simplify computer calculations and their validity are discussed at length. Effects of changes in the fission rate, the resolution parameter, bubble concentration, gas atom diffusivity and grain radius on swelling and gas release are studied. The results of this model are compared to other theoretical models and experimental results available in literature. Possibility of extending the present model to advanced carbide and nitride fuels is discussed. (auth.)

  14. Cosmic ray muons for spent nuclear fuel monitoring

    Science.gov (United States)

    Chatzidakis, Stylianos

    There is a steady increase in the volume of spent nuclear fuel stored on-site (at reactor) as currently there is no permanent disposal option. No alternative disposal path is available and storage of spent nuclear fuel in dry storage containers is anticipated for the near future. In this dissertation, a capability to monitor spent nuclear fuel stored within dry casks using cosmic ray muons is developed. The motivation stems from the need to investigate whether the stored content agrees with facility declarations to allow proliferation detection and international treaty verification. Cosmic ray muons are charged particles generated naturally in the atmosphere from high energy cosmic rays. Using muons for proliferation detection and international treaty verification of spent nuclear fuel is a novel approach to nuclear security that presents significant advantages. Among others, muons have the ability to penetrate high density materials, are freely available, no radiological sources are required and consequently there is a total absence of any artificial radiological dose. A methodology is developed to demonstrate the applicability of muons for nuclear nonproliferation monitoring of spent nuclear fuel dry casks. Purpose is to use muons to differentiate between spent nuclear fuel dry casks with different amount of loading, not feasible with any other technique. Muon scattering and transmission are used to perform monitoring and imaging of the stored contents of dry casks loaded with spent nuclear fuel. It is shown that one missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the scattering distributions with 300,000 muons or more. A Bayesian monitoring algorithm was derived to allow differentiation of a fully loaded dry cask from one with a fuel assembly missing in the order of minutes and negligible error rate. Muon scattering and transmission simulations are used to reconstruct the stored contents of sealed dry casks

  15. DOE not planning to accept spent nuclear fuel

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Samuel K. Skinner, president of Commonwealth Edison Co. (ComEd), said open-quotes The federal government has a clear responsibility to begin accepting spent nuclear fuel in 1988,close quotes citing the Nuclear Waste Policy Act of 1982 before the Senate Energy and Natural Resources Committee. Based in Chicago, ComEd operates 12 nuclear units, making it the nation's largest nuclear utility. open-quotes Since 1983, the consumers who use electricity produced at all nuclear power plants have been paying to fund federal management of spent nuclear fuel. Consumer payments and obligations, with interest, now total more than $10 billion. Electricity consumers have held up their side of the deal. The federal government must do the same,close quotes Skinner added. Skinner represented the Nuclear Energy Institute (NEI) before the committee. NEI is the Washington-based trade association of the nuclear energy industries. For more than 12 years, utility customers have been paying one-tenth of a cent per kWhr to fund a federal spent fuel management program under the Nuclear Waste Policy Act of 1982. Under this act, the federal government assumed responsibility for management of spent fuel from the nation's nuclear power plants. The U.S. Department of Energy (DOE) was assigned to manage the storage and disposal program. DOE committed to begin accepting spent fuel from nuclear power plants by January 31, 1988. DOE has spent almost $5 million studying a site in Nevada, but is about 12 years behind schedule and does not plan to accept spent fuel beginning in 1998. DOE has said a permanent storage site will not be ready until 2010. This poses a major problem for many of the nation's nuclear power plants which supply about 20% of the electricity in the US

  16. International nuclear fuel cycle fact book

    International Nuclear Information System (INIS)

    1992-09-01

    The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R ampersand D programs and key personnel on 23 countries, including the US, four multi-national agencies, and 21 nuclear societies. The Fact Book is organized as follows: National summaries-a section for each country which summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies-a section for each of the international agencies which has significant fuel cycle involvement and a listing of nuclear societies. Glossary-a list of abbreviations/acronyms of organizations, facilities, technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter presented from the perspective of the Fact Book user in the United States

  17. International light water nuclear fuel fabrication supply. Are fabrication services assured?

    International Nuclear Information System (INIS)

    Rothwell, Geoffrey

    2010-01-01

    This paper examines the cost structure of fabricating light water reactor (LWR) fuel with low-enriched uranium (LEU, with less than 5% enrichment). The LWR-LEU fuel industry is decades old, and (except for the high entry cost of designing and licensing a fuel fabrication facility and its fuel), labor and additional fabrication lines can be added at Nth-of-a-Kind cost to the maximum capacity allowed by a site license. The industry appears to be competitive: nuclear fuel fabrication capacity is assured with many competitors and reasonable prices. However, nuclear fuel assurance has become an important issue for nations now to considering new nuclear power plants. To provide this assurance many proposals equate 'nuclear fuel banks' (which would require fuel for specific reactors) with 'LEU banks' (where LEU could be blended into nuclear fuel with the proper enrichment) with local fuel fabrication. The policy issues (which are presented, but not answered in this paper) become (1) whether the construction of new nuclear fuel fabrication facilities in new nuclear power nations could lead to the proliferation of nuclear weapons, and (2) whether nuclear fuel quality can be guaranteed under current industry arrangements, given that fuel failure at one reactor can lead to forced shutdowns at many others. (author)

  18. Spent nuclear fuel storage vessel

    International Nuclear Information System (INIS)

    Watanabe, Yoshio; Kashiwagi, Eisuke; Sekikawa, Tsutomu.

    1997-01-01

    Containing tubes for containing spent nuclear fuels are arranged vertically in a chamber. Heat releasing fins are disposed horizontal to the outer circumference of the containing tubes for rectifying cooling air and promoting cooling of the containing tubes. Louvers and evaporation sides of heat pipes are disposed at a predetermined distance in the chamber. Cooling air flows from an air introduction port to the inside of the chamber and takes heat from the containing tubes incorporated with heat generating spent nuclear fuels, rising its temperature and flows off to an air exhaustion exit. The direction for the rectification plate of the louver is downward from a horizontal position while facing to the air exhaustion port. Since the evaporation sides of the heat pipes are disposed in the inside of the chamber and the condensation side of the heat pipes is disposed to the outside of the chamber, the thermal energy can be recovered from the containing tubes incorporated with spent nuclear fuels and utilized. (I.N.)

  19. The nuclear fuel cycle; Le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  20. Nuclear-fuel-cycle costs. Consolidated Fuel-Reprocessing Program

    International Nuclear Information System (INIS)

    Burch, W.D.; Haire, M.J.; Rainey, R.H.

    1981-01-01

    The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel-cycle costs are given for the pressurized-water reactor once-through and fuel-recycle systems, and for the liquid-metal fast-breeder-reactor system. These calculations show that fuel-cycle costs are a small part of the total power costs. For breeder reactors, fuel-cycle costs are about half that of the present once-through system. The total power cost of the breeder-reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment

  1. Nuclear-fuel-cycle education: Module 10. Environmental consideration

    International Nuclear Information System (INIS)

    Wethington, J.A.; Razvi, J.; Grier, C.; Myrick, T.

    1981-12-01

    This educational module is devoted to the environmental considerations of the nuclear fuel cycle. Eight chapters cover: National Environmental Policy Act; environmental impact statements; environmental survey of the uranium fuel cycle; the Barnwell Nuclear Fuel Reprocessing Plant; transport mechanisms; radiological hazards in uranium mining and milling operations; radiological hazards of uranium mill tailings; and the use of recycle plutonium in mixed oxide fuel

  2. Prediction of long-term behaviour for nuclear waste disposal

    International Nuclear Information System (INIS)

    Shoesmith, D.W.; Ikeda, B.M.; King, F.; Sunder, S.

    1996-09-01

    The modelling procedures developed for the long-term prediction of the corrosion of used fuel and of titanium and copper nuclear waste containers are described. The corrosion behaviour of these materials changes with time as the conditions within the conceptual disposal vault evolve from an early warm, oxidizing phase to an indefinite period of cool, anoxic conditions. For the two candidate container materials, this evolution of conditions means that the containers will be initially susceptible to localized corrosion but that in the long-term, corrosion should be more general in nature. The propagation of the pitting of Cu and of the crevice corrosion of Ti alloys is modelled using statistical models. General corrosion processes are modelled deterministically. For the fuel, deterministic electrochemical models have been developed to predict the long-term dissolution rate of U0 2 . The corrosion behaviour of materials in the disposal vault can be influenced by reengineering the vault environment. For instance, increasing the areal loading of containers will produce higher vault temperatures resulting in more extensive drying of the porous backfill materials. The initiation of crevice corrosion on Ti may then be delayed, leading to longer container lifetimes. For copper containers, minimizing the amount Of O 2 initially trapped in the pores of the backfill, or adding reducing agents to consume this O 2 faster, will limit the extent of corrosion, permitting a reduction of the container wall thickness necessary for containment. (author). 55 refs., 19 figs

  3. Integrated spent nuclear fuel database system

    International Nuclear Information System (INIS)

    Henline, S.P.; Klingler, K.G.; Schierman, B.H.

    1994-01-01

    The Distributed Information Systems software Unit at the Idaho National Engineering Laboratory has designed and developed an Integrated Spent Nuclear Fuel Database System (ISNFDS), which maintains a computerized inventory of all US Department of Energy (DOE) spent nuclear fuel (SNF). Commercial SNF is not included in the ISNFDS unless it is owned or stored by DOE. The ISNFDS is an integrated, single data source containing accurate, traceable, and consistent data and provides extensive data for each fuel, extensive facility data for every facility, and numerous data reports and queries

  4. Perturbation theory in nuclear fuel management optimization

    International Nuclear Information System (INIS)

    Ho, L.W.

    1981-01-01

    Nuclear in-core fuel management involves all the physical aspects which allow optimal operation of the nuclear fuel within the reactor core. In most nuclear power reactors, fuel loading patterns which have a minimum power peak are economically desirable to allow the reactors to operate at the highest power density and to minimize the possibility of fuel failure. In this study, perturbation theory along with a binary fuel shuffling technique is applied to predict the effects of various core configurations, and hence, the optimization of in-core fuel management. The computer code FULMNT has been developed to shuffle the fuel assemblies in search of the lowest possible power peaking factor. An iteration approach is used in the search routine. A two-group diffusion theory method is used to obtain the power distribution for the iterations. A comparison of the results of this method with other methods shows that this approach can save computer time. The code also has a burnup capability which can be used to check power peaking throughout the core life

  5. Building world-wide nuclear industry success stories - Safe management of nuclear waste and used nuclear fuel

    International Nuclear Information System (INIS)

    Saint-Pierre, S.

    2005-01-01

    Full text: This WNA Position Statement summarizes the worldwide nuclear industry's record, progress and plans in safely managing nuclear waste and used nuclear fuel. The global industry's safe waste management practices cover the entire nuclear fuel-cycle, from the mining of uranium to the long-term disposal of end products from nuclear power reactors. The Statement's aim is to provide, in clear and accurate terms, the nuclear industry's 'story' on a crucially important subject often clouded by misinformation. Inevitably, each country and each company employs a management strategy appropriate to a specific national and technical context. This Position Statement reflects a confident industry consensus that a common dedication to sound practices throughout the nuclear industry worldwide is continuing to enhance an already robust global record of safe management of nuclear waste and used nuclear fuel. This text focuses solely on modern civil programmes of nuclear-electricity generation. It does not deal with the substantial quantities of waste from military or early civil nuclear programmes. These wastes fall into the category of 'legacy activities' and are generally accepted as a responsibility of national governments. The clean-up of wastes resulting from 'legacy activities' should not be confused with the limited volume of end products that are routinely produced and safely managed by today's nuclear energy industry. On the significant subject of 'Decommissioning of Nuclear Facilities', which is integral to modern civil nuclear power programmes, the WNA will offer a separate Position Statement covering the industry's safe management of nuclear waste in this context. The safe management of nuclear waste and used nuclear fuel is a widespread, well-demonstrated reality. This strong safety record reflects a high degree of nuclear industry expertise and of industry responsibility toward the well-being of current and future generations. Accumulating experience and

  6. Quality assurance of nuclear fuel

    International Nuclear Information System (INIS)

    1994-01-01

    The guide presents the quality assurance requirements to be completed with in the procurement, design, manufacture, transport, handling and operation of the nuclear fuel. The guide also applies to the procurement of the control rods and the shield elements to be placed in the reactor. The guide is mainly aimed for the licensee responsible for the procurement and operation of fuel, for the fuel designer and manufacturer and for other organizations whose activities affect fuel quality, the safety of fuel transport, storage and operation. (2 refs.)

  7. Nuclear fuel element

    International Nuclear Information System (INIS)

    Iwano, Yoshihiko.

    1993-01-01

    Microfine cracks having a depth of less than 10% of a pipe thickness are disposed radially from a central axis each at an interval of less than 100 micron over the entire inner circumferential surface of a zirconium alloy fuel cladding tube. For manufacturing such a nuclear fuel element, the inside of the cladding tube is at first filled with an electrolyte solution of potassium chloride. Then, electrolysis is conducted using the cladding tube as an anode and the electrolyte solution as a cathode, and the inner surface of the cladding tube with a zirconium dioxide layer having a predetermined thickness. Subsequently, the cladding tube is laid on a smooth steel plate and lightly compressed by other smooth steel plate to form microfine cracks in the zirconium dioxide layer on the inner surface of the cladding tube. Such a compressing operation is continuously applied to the cladding tube while rotating the cladding tube. This can inhibit progress of cracks on the inner surface of the cladding tube, thereby enabling to prevent failure of the cladding tube even if a pellet/cladding tube mechanical interaction is applied. Accordingly, reliability of the nuclear fuel elements is improved. (I.N.)

  8. Impacts of nuclear fuel cycle costs on nuclear power generating costs

    International Nuclear Information System (INIS)

    Bertel, E.; Naudet, G.

    1989-01-01

    Fuel cycle costs are one of the main parameters to evaluate the competitiveness of various nuclear strategies. The historical analysis based on the French case shows the good performances yet achieved in mastering elementary costs in order to limit global fuel cycle cost escalation. Two contrasted theoretical scenarios of costs evolution in the middle and long term have been determined, based upon market analysis and technological improvements expected. They are used to calculate the global fuel cycle costs for various fuel management options and for three strategies of nuclear deployment. The results illustrate the stability of the expected fuel cycle costs over the long term, to be compared to the high incertainty prevailing for fossil fueled plants. The economic advantages of advanced technologies such as MOX fueled PWRs are underlined

  9. Survey of nuclear fuel cycle economics: 1970--1985

    International Nuclear Information System (INIS)

    Prince, B.E.; Peerenboom, J.P.; Delene, J.G.

    1977-03-01

    This report is intended to provide a coherent view of the diversity of factors that may affect nuclear fuel cycle economics through about 1985. The nuclear fuel cycle was surveyed as to past trends, current problems, and future considerations. Unit costs were projected for each step in the fuel cycle. Nuclear fuel accounting procedures were reviewed; methods of calculating fuel costs were examined; and application was made to Light Water Reactors (LWR) over the next decade. A method conforming to Federal Power Commission accounting procedures and used by utilities to account for backend fuel-cycle costs was described which assigns a zero net salvage value to discharged fuel. LWR fuel cycle costs of from 4 to 6 mills/kWhr (1976 dollars) were estimated for 1985. These are expected to reach 6 to 9 mills/kWr if the effect of inflation is included

  10. Nuclear Fuel Cycle Analysis and Simulation Tool (FAST)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Kim, Ho Dong

    2005-06-15

    This paper describes the Nuclear Fuel Cycle Analysis and Simulation Tool (FAST) which has been developed by the Korea Atomic Energy Research Institute (KAERI). Categorizing various mix of nuclear reactors and fuel cycles into 11 scenario groups, the FAST calculates all the required quantities for each nuclear fuel cycle component, such as mining, conversion, enrichment and fuel fabrication for each scenario. A major advantage of the FAST is that the code employs a MS Excel spread sheet with the Visual Basic Application, allowing users to manipulate it with ease. The speed of the calculation is also quick enough to make comparisons among different options in a considerably short time. This user-friendly simulation code is expected to be beneficial to further studies on the nuclear fuel cycle to find best options for the future all proliferation risk, environmental impact and economic costs considered.

  11. Burnable absorber coated nuclear fuel

    International Nuclear Information System (INIS)

    Chubb, W.; Radford, K.C.; Parks, B.H.

    1984-01-01

    A nuclear fuel body which is at least partially covered by a burnable neutron absorber layer is provided with a hydrophobic overcoat generally covering the burnable absorber layer and bonded directly to it. In a method for providing a UO 2 fuel pellet with a zirconium diboride burnable poison layer, the fuel body is provided with an intermediate niobium layer. (author)

  12. Nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    White, D.

    1981-01-01

    A simple friction device for cutting nuclear fuel wrappers comprising a thin metal disc clamped between two large diameter clamping plates. A stream of gas ejected from a nozzle is used as coolant. The device may be maintained remotely. (author)

  13. Nuclear fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.; Harris, D.; Mills, A.

    1983-01-01

    Nuclear fuel reprocessing has been carried out on an industrial scale in the United Kingdom since 1952. Two large reprocessing plants have been constructed and operated at Windscale, Cumbria and two smaller specialized plants have been constructed and operated at Dounreay, Northern Scotland. At the present time, the second of the two Windscale plants is operating, and Government permission has been given for a third reprocessing plant to be built on that site. At Dounreay, one of the plants is operating in its original form, whilst the second is now operating in a modified form, reprocessing fuel from the prototype fast reactor. This chapter describes the development of nuclear fuel reprocessing in the UK, commencing with the research carried out in Canada immediately after the Second World War. A general explanation of the techniques of nuclear fuel reprocessing and of the equipment used is given. This is followed by a detailed description of the plants and processes installed and operated in the UK

  14. Nuclear fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.H.; Harris, D.W.; Mills, A.

    1983-01-01

    Nuclear fuel reprocessing has been carried out on an industrial scale in the United Kingdom since 1952. Two large reprocessing plants have been constructed and operated at Windscale, Cumbria and two smaller specialized plants have been constructed and operated at Dounreay, Northern Scotland. At the present time, the second of the two Windscale plants is operating, and Government permission has been given for a third reprocessing plant to be built on that site. At Dounreay, one of the plants is operating in its original form, whilst the second is now operating in a modified form, reprocessing fuel from the prototype fast reactor. This chapter describes the development of nuclear fuel reprocessing in the UK, commencing with the research carried out in Canada immediately after the Second World War. A general explanation of the techniques of nuclear fuel reprocessing and of the equipment used is given. This is followed by a detailed description of the plants and processes installed and operated in the UK. (author)

  15. Preliminary results of the BTF-104 experiment: an in-reactor test of fuel behaviour and fission-product release and transport under LOCA/LOECC conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, L W; Elder, P H; Devaal, J W; Irish, J D; Yamazaki, A R [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    The BTF-104 experiment is one of a series of in-reactor tests being performed to measure fuel behaviour and fission-product release from nuclear fuel subjected to accident conditions. The primary objective of the BTF-104 experiment was to measure fission-product releases from a CANDU-sized fuel element under combined Loss-of-Coolant Accident (LOCA) and Loss-of-Emergency-Core-Cooling (LOECC) conditions at an average fuel temperature of about 1550 deg C. The preliminary results of the BTF-104 experiment are presented in this paper. (author). 6 refs., 12 figs.

  16. Nuclear fuel cycle. Which way forward for multilateral approaches? An international expert group examines options

    International Nuclear Information System (INIS)

    Pellaud, Bruno

    2005-01-01

    For several years now, the debate on the proliferation of nuclear weapons has been dominated by individuals and countries that violate rules of good behaviour - as sellers or acquirers of clandestine nuclear technology. As a result, the 1968 Treaty on the Non-Proliferation of Nuclear Weapons (NPT) has been declared to be 'inadequate' by some, 'full of loopholes' by others. Two basic approaches have been put forward to tighten up the NPT; both seek to ensure that the nuclear non-proliferation regime maintains its authority and credibility in the face of these very real challenges. One calls for non-nuclear weapon States to accept a partial denial of technology through a reinterpretation of the NPT's provisions governing the rights of access to nuclear technologies. The unwillingness of most non-nuclear-weapon States to accept additional restrictions under the NPT makes this approach difficult. The other approach would apply multinational alternatives to the national operation of uranium-enrichment and plutonium-separation technologies, and to the disposal of spent nuclear fuel. In this perspective, IAEA Director General Mohamed ElBaradei proposed in 2003 to revisit the concept of multilateral nuclear approaches (MNA) that was intensively discussed several decades ago. Several such approaches were adopted at that time in Europe, which became the true homeland of MNAs. Nonetheless, MNAs have failed so far to materialise outside Europe due to different political and economic perceptions. In June 2004, the Director General appointed an international group of experts to consider possible multilateral approaches to the nuclear fuel cycle. The overall purpose was to assess MNAs in the framework of a double objective: strengthening the international nuclear non-proliferation regime and making the peaceful uses of nuclear energy more economical and attractive. In the report submitted to the Director General in February 2005, the Group identified a number of options - options

  17. Spent Nuclear Fuel Project dose management plan

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1996-03-01

    This dose management plan facilitates meeting the dose management and ALARA requirements applicable to the design activities of the Spent Nuclear Fuel Project, and establishes consistency of information used by multiple subprojects in ALARA evaluations. The method for meeting the ALARA requirements applicable to facility designs involves two components. The first is each Spent Nuclear Fuel Project subproject incorporating ALARA principles, ALARA design optimizations, and ALARA design reviews throughout the design of facilities and equipment. The second component is the Spent Nuclear Fuel Project management providing overall dose management guidance to the subprojects and oversight of the subproject dose management efforts

  18. BWR fuel clad behaviour following LOCA

    International Nuclear Information System (INIS)

    Chaudhry, S.M.; Vyas, K.N.; Dinesh Babu, R.

    1996-01-01

    Flow and pressure through the fuel coolant channel reduce rapidly following a loss of coolant accident. Due to stored energy and decay heat, fuel and cladding temperatures rise rapidly. Increase in clad temperature causes deterioration of mechanical properties of clad material. This coupled with increase of pressure inside the cladding due to accumulation of fission gases and de-pressurization of coolant causes the cladding to balloon. This phenomenon is important as it can reduce or completely block the flow passages in a fuel assembly causing reduction of emergency coolant flow. Behaviour of a BWR clad is analyzed in a design basis LOCA. Fuel and clad temperatures following a LOCA are calculated. Fission gas release and pressure is estimated using well established models. An elasto-plastic analysis of clad tube is carried out to determine plastic strains and corresponding deformations using finite-element technique. Analysis of neighbouring pins gives an estimate of flow areas available for emergency coolant flow. (author). 7 refs, 6 figs, 3 tabs

  19. A CAREM type fuel element dynamic analysis

    International Nuclear Information System (INIS)

    Magoia, J.E.

    1990-01-01

    A first analysis on the dynamic behaviour of a fuel element designed for the CAREM nuclear reactor (Central Argentina de Elementos Modulares) was performed. The model used to represent this dynamic behaviour was satisfactorily evaluated. Using primary estimations for some of its numerical parameters, a first approximation to its natural vibrational modes was obtained. Results obtained from fuel elements frequently used in nuclear power plants of the PWR (Pressurized Water Reactors) type, are compared with values resulting from similar analysis. (Author) [es

  20. Fuel fabrication and reprocessing for nuclear fuel cycle with inherent safety demands

    Energy Technology Data Exchange (ETDEWEB)

    Shadrin, Andrey Yurevich; Dvoeglazov, Konstantin Nikolaevich; Ivanov, Valentine Borisovich; Volk, Vladimir Ivanovich; Skupov, Mikhail Vladimirovich; Glushenkov, Alexey Evgenevich [Joint Stock Company ' ' The High Technological Research Institute of Inorganic Materials' ' , Moscow (Russian Federation); Troyanov, Vladimir Mihaylovich; Zherebtsov, Alexander Anatolievich [Innovation and Technology Center of Project ' ' PRORYV' ' , State Atomic Energy Corporation ' ' Rosatom' ' , Moscow (Russian Federation)

    2015-06-01

    The strategies adopted in Russia for a closed nuclear fuel cycle with fast reactors (FR), selection of fuel type and recycling technologies of spent nuclear fuel (SNF) are discussed. It is shown that one of the possible technological solutions for the closing of a fuel cycle could be the combination of pyroelectrochemical and hydrometallurgical methods of recycling of SNF. This combined scheme allows: recycling of SNF from FR with high burn-up and short cooling time; decreasing the volume of stored SNF and the amount of plutonium in a closed fuel cycle in FR; recycling of any type of SNF from FR; obtaining the high pure end uranium-plutonium-neptunium end-product for fuel refabrication using pellet technology.

  1. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  2. Fuel performance and fission product behaviour in gas cooled reactors

    International Nuclear Information System (INIS)

    1997-11-01

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport

  3. Topfuel '95: Fuel for nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In early 1995, 425 nuclear power stations with an installed capacity of 360 263 MW were in operation in 30 countries of the world, and a total of 60 units with a capacity of 53 580 MWe were being cnstructed in 18 countries. The supply of nuclear fuels to these nuclear power stations was the central issue of the Topfuel '95 - Topical Meeting on Nuclear Fuel. More than 350 experts from 23 countries had been invited to Wuerzburg by the Kerntechnische Gesellschaft (KTG) and the European Nuclear Society (ENS). The conference was accompanied by an exhibition at which twelve inernational fuel cycle enterprises presented their products, processes, and problem solutions. The poster session in the hall of the Cogress Center Wuerzburg exhibited 42 contributions which are be discussed in the second part of the conference report. (orig./UA) [de

  4. On the problems of the fuel cycles of nuclear fuels

    International Nuclear Information System (INIS)

    Schmidt-Kuester, W.J.; Wagner, H.F.

    1976-01-01

    A secured procurement with nuclear energy can be only achieved if a completely closed fuel cycle will be established. In the Federal Republic of Germany efforts are concentrated on the front end as well as on the back end of the fuel cycle. At the front end the main tasks are to secure uranium supply and to establish the necessary enrichment capacity. The German concept for the back end of the fuel cycle will provide for an integrated and co-located system for all necessary facilities including reprocessing, plutonium fuel fabrication, treatment, interim storage and final disposal of the radioactive wastes to be operational in the mid-80's. Responsibilities for establishing this system are shared between government and private industry. Government will provide for final waste disposal, industry will built and operate the other facilities. Another important point for the introduction of nuclear energy is to solve reliably the problems of protection of fissionable material, radioactive waste and nuclear facilities. German government has initiated respective activities and has started appropriate R+D-work. (orig.) [de

  5. International nuclear fuel cycle fact book. Revision 6

    International Nuclear Information System (INIS)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2

  6. International nuclear fuel cycle evaluation (INFCE)

    International Nuclear Information System (INIS)

    Schlupp, C.

    1986-07-01

    The study describes and analyzes the structures, the procedures and decision making processes of the International Nuclear Fuel Cycle Evaluation (INFCE). INFCE was agreed by the Organizing Conference to be a technical and analytical study and not a negotiation. The results were to be transmitted to governments for their consideration in developing their nuclear energy policies and in international discussions concerning nuclear energy cooperation and related controls and safeguards. Thus INFCE provided a unique example for decision making by consensus in the nuclear world. It was carried through under mutual respect for each country's choices and decisions, without jeopardizing their respective fuel cycle policies or international co-operation agreements and contracts for the peaceful use of nuclear energy, provided that agreed safeguards are applied. (orig.)

  7. Report of Nuclear Fuel Cycle Subcommittee

    International Nuclear Information System (INIS)

    1982-01-01

    In order to secure stable energy supply over a long period of time, the development and utilization of atomic energy have been actively promoted as the substitute energy for petroleum. Accordingly, the establishment of nuclear fuel cycle is indispensable to support this policy, and efforts have been exerted to promote the technical development and to put it in practical use. The Tokai reprocessing plant has been in operation since the beginning of 1981, and the pilot plant for uranium enrichment is about to start the full scale operation. Considering the progress in the refining and conversion techniques, plutonium fuel fabrication and son on, the prospect to technically establish the nuclear fuel cycle in Japan has been bright. The important problem for the future is to put these techniques in practical use economically. The main point of technical development hereafter is the enlargement and rationalization of the techniques, and the cooperation of the government and the people, and the smooth transfer of the technical development results in public corporations to private organization are necessary. The important problems for establishing the nuclear fuel cycle, the securing of enriched uranium, the reprocessing of spent fuel, unused resources, and the problems related to industrialization, location and fuel storing are reported. (Kako, I.)

  8. Nuclear Fuels & Materials Spotlight Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-10-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • Evaluation and modeling of light water reactor accident tolerant fuel concepts • Status and results of recent TRISO-coated particle fuel irradiations, post-irradiation examinations, high-temperature safety testing to demonstrate the accident performance of this fuel system, and advanced microscopy to improve the understanding of fission product transport in this fuel system. • Improvements in and applications of meso and engineering scale modeling of light water reactor fuel behavior under a range of operating conditions and postulated accidents (e.g., power ramping, loss of coolant accident, and reactivity initiated accidents) using the MARMOT and BISON codes. • Novel measurements of the properties of nuclear (actinide) materials under extreme conditions, (e.g. high pressure, low/high temperatures, high magnetic field) to improve the scientific understanding of these materials. • Modeling reactor pressure vessel behavior using the GRIZZLY code. • New methods using sound to sense temperature inside a reactor core. • Improved experimental capabilities to study the response of fusion reactor materials to a tritium plasma. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at Idaho National Laboratory, and hope that you find this issue informative.

  9. Nuclear Power, Nuclear Fuel Cycle and Sustainable Development in a Changing World

    International Nuclear Information System (INIS)

    Arakawa, Yoshitaka

    2000-01-01

    Important changes concerning nuclear energy are coming to the fore, such as economic competitiveness compared to other energy resources, requirement for severe measures to mitigate man-made greenhouse gas (GHG) emission, due to the rise of energy demand in Central and Eastern Europe and Asia and to the greater public concern with respect to the nuclear safety, particularly related to spent fuel and radioactive waste disposal. Global safety culture, as well as well focused nuclear research and development programs for safer and more efficient nuclear technology manifest themselves in a stronger and effective way. Information and data on nuclear technology and safety are disseminated to the public in timely, accurate and understandable fashion. Nuclear power is an important contributor to the world's electricity needs. In 1999, it supplied roughly one sixth of global electricity. The largest regional percentage of electricity generated through nuclear power last year was in western Europe (30%). The nuclear power shares in France, Belgium and Sweden were 75%, 58% and 47%, respectively. In North America, the nuclear share was 20% for the USA and 12% for Canada. In Asia, the highest figures were 43% for the Republic of Korea and 36% for Japan. In 1998, twenty-three nations produced uranium of which, the ten biggest producers (Australia, Canada, Kazakhstan, Namibia, Niger, the Russian Federation, South Africa, Ukraine, USA and Uzbekistan) supplied over 90% of the world's output. In 1998, world uranium production provided only about 59% of world reactor requirements. In OECD countries, the 1998 production could only satisfy 39% of the demand. The rest of the requirements were satisfied by secondary sources including civilian and military stockpiles, uranium reprocessing and re-enrichment of depleted uranium. With regard to the nuclear fuel industry, an increase in fuel burnup, higher thermal rates, longer fuel cycle and the use of mixed uranium-plutonium oxide (MOX

  10. Fission products in the spent nuclear fuel from czech nuclear power plants

    International Nuclear Information System (INIS)

    Lelek, V.; Mikisek, M.; Marek, T.

    1999-01-01

    The nuclear power is expected to become a supply able to cover a significant part of the world energetic demand in future. But its big disadvantage, the risk of the spent nuclear fuel, has to be solved. The aim of this paper is to make simple estimates of the upper limits of amounts of the most dangerous spent fuel components and their compounds produced in Czech Republic until 2040. Our estimates are independent on particular type reactor (only on its power) and so they can be carried out for any nuclear fuel cycle. (Authors)

  11. A methodology to analyze the creep behaviour of nuclear fuel waste containers

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, R [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1995-12-01

    The concept for the disposal of used-fuel waste from CANDU reeactors operating in Canada comprises a system of natural and engineered barriers surrounding the waste in a mined vault situated at a depth of 500 - 1000 m in plutonic rock of the Canadian Shield. The fuel would be packaged in a highly durable metal container, within a matrix of compacted particulate. The design of the container takes into account that it would be subjected to an external hydrostatic pressure. Consideration of the rate of radioactive decay of the radionuclides contained in the fuel, suggests that the lifetime of the container should be at least 500 years. Consequently, the role of creep deformation, and the possibility of creep rupture of the container shell, must be included in the assessment of time-dependent mechanical integrity. This report describes an analytical approach that can be used to quantify the long-term creep properties of the container material and facilitate the engineering design. The overall objective is to formulate a constitutive creep equation that provides the required input for a finite element computer model being developed to analyze the elastic-plastic behaviour of the container. Alternative forms of such equations are reviewed. It is shown that the capability of many of these equations to extrapolate over long time scales is limited by their empirical nature. Thus, the recommended equation is based on current mechanistic understanding of creep deformation and creep rupture. A criterion for determining the onset of material failure by creep rupture, that could be used in the design of containers with extended structural integrity, is proposed. Interpretation and extrapolation will be supported by the complementary Deformation and Fracture Mechanism Maps. (author) 103 refs., 2 tabs., 54 figs.

  12. A methodology to analyze the creep behaviour of nuclear fuel waste containers

    International Nuclear Information System (INIS)

    Dutton, R.

    1995-12-01

    The concept for the disposal of used-fuel waste from CANDU reeactors operating in Canada comprises a system of natural and engineered barriers surrounding the waste in a mined vault situated at a depth of 500 - 1000 m in plutonic rock of the Canadian Shield. The fuel would be packaged in a highly durable metal container, within a matrix of compacted particulate. The design of the container takes into account that it would be subjected to an external hydrostatic pressure. Consideration of the rate of radioactive decay of the radionuclides contained in the fuel, suggests that the lifetime of the container should be at least 500 years. Consequently, the role of creep deformation, and the possibility of creep rupture of the container shell, must be included in the assessment of time-dependent mechanical integrity. This report describes an analytical approach that can be used to quantify the long-term creep properties of the container material and facilitate the engineering design. The overall objective is to formulate a constitutive creep equation that provides the required input for a finite element computer model being developed to analyze the elastic-plastic behaviour of the container. Alternative forms of such equations are reviewed. It is shown that the capability of many of these equations to extrapolate over long time scales is limited by their empirical nature. Thus, the recommended equation is based on current mechanistic understanding of creep deformation and creep rupture. A criterion for determining the onset of material failure by creep rupture, that could be used in the design of containers with extended structural integrity, is proposed. Interpretation and extrapolation will be supported by the complementary Deformation and Fracture Mechanism Maps. (author) 103 refs., 2 tabs., 54 figs

  13. Spent Nuclear Fuel (SNF) Project Execution Plan

    International Nuclear Information System (INIS)

    LEROY, P.G.

    2000-01-01

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities

  14. Spent Nuclear Fuel (SNF) Project Execution Plan

    Energy Technology Data Exchange (ETDEWEB)

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  15. Nuclear fuel behavior activities at the OECD/NEA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The work programme regarding nuclear fuel behavior issues at OECD/NEA is carried out in two sections. The Nuclear Science and Data Bank Division deals with basic phenomena in fuel behavior under normal operating conditions, while the Safety Division concentrates upon regulation and safety issues in fuel behavior. A new task force addressing these latter issues has been set up and will produce a report providing recommendations in this field. The OECD Nuclear Energy Agency jointly with the International Atomic Energy Agency established an International Fuel Performance Experiments Database which is operated by the NEA Data Bank. (author). 1 tab.

  16. Nuclear fuel behavior activities at the OECD/NEA

    International Nuclear Information System (INIS)

    1997-01-01

    The work programme regarding nuclear fuel behavior issues at OECD/NEA is carried out in two sections. The Nuclear Science and Data Bank Division deals with basic phenomena in fuel behavior under normal operating conditions, while the Safety Division concentrates upon regulation and safety issues in fuel behavior. A new task force addressing these latter issues has been set up and will produce a report providing recommendations in this field. The OECD Nuclear Energy Agency jointly with the International Atomic Energy Agency established an International Fuel Performance Experiments Database which is operated by the NEA Data Bank. (author). 1 tab

  17. Technology readiness levels for advanced nuclear fuels and materials development

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, W.J., E-mail: jon.carmack@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States); Braase, L.A.; Wigeland, R.A. [Idaho National Laboratory, Idaho Falls, ID (United States); Todosow, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2017-03-15

    Highlights: • Definition of nuclear fuels system technology readiness level. • Identification of evaluation criteria for nuclear fuel system TRLs. • Application of TRLs to fuel systems. - Abstract: The Technology Readiness process quantitatively assesses the maturity of a given technology. The National Aeronautics and Space Administration (NASA) pioneered the process in the 1980s to inform the development and deployment of new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications. It was also adopted by the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is needed to improve the performance and safety of current and advanced reactors, and ultimately close the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the assessment process to advanced fuel development is useful as a management, communication, and tracking tool. This article provides definition of technology readiness levels (TRLs) for nuclear fuel technology as well as selected examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).

  18. Nuclear energy center site survey: fuel cycle studies

    International Nuclear Information System (INIS)

    1976-05-01

    Background information for the Nuclear Regulatory Commission Nuclear Energy Center Site Survey is presented in the following task areas: economics of integrated vs. dispersed nuclear fuel cycle facilities, plutonium fungibility, fuel cycle industry model, production controls and failure contingencies, environmental impact, waste management, emergency response capability, and feasibility evaluations

  19. Nuclear fuel element

    International Nuclear Information System (INIS)

    Armijo, J.S.

    1977-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed which has a composite cladding having a substrate, a metal barrier metallurgically bonded to the inside surface of the substrate and an inner layer metallurgically bonded to the inside surface of the metal barrier. In this composite cladding, the inner layer and the metal barrier shield the substrate from any impurities or fission products from the nuclear fuel material held within the composite cladding. The metal barrier forms about 1 to about 4 percent of the thickness of the cladding and is comprised of a metal selected from the group consisting of niobium, aluminum, copper, nickel, stainless steel, and iron. The inner layer and then the metal barrier serve as reaction sites for volatile impurities and fission products and protect the substrate from contact and reaction with such impurities and fission products. The substrate and the inner layer of the composite cladding are selected from conventional cladding materials and preferably are a zirconium alloy. Also in a preferred embodiment the substrate and the inner layer are comprised of the same material, preferably a zirconium alloy. 19 claims, 2 figures

  20. Investigation of the ramp testing behaviour of fuel pins with different diameters

    International Nuclear Information System (INIS)

    Pott, G.; Herren, M.; Wigger, B.

    1979-09-01

    The aim of these experiments was the investigation of the influence of different fuel pin diameter on the ramp testing behaviour. Fuel elements with diameter between 10,75 and 15,6 mm and different cladding thickness had been ramptested in the HBWR (Halden Boiling Water Reactor) after preirradiated in the same facility. Fuel pins with the smallest diameter of 10,75 mm failed. This was indicated by fission gas release measurement. Metallographic examination showed these failure were caused by hydride blisters. A systematic influence of fuel pin diameter and cladding thickness on the ramptesting behaviour was not observed. (orig.) [de

  1. System for assembling nuclear fuel elements

    International Nuclear Information System (INIS)

    1980-01-01

    An automatic system is described for assembling nuclear fuel elements, in particular those employing mixed oxide fuels. The system includes a sealing mechanism which allows movement during the assembling of the fuel element along the assembly stations without excessive release of contaminants. (U.K.)

  2. Third international conference on CANDU fuel

    International Nuclear Information System (INIS)

    Boczar, Peter

    1992-01-01

    These proceedings contain full texts of all 49 papers from the ten sessions and the banquet address. The sessions were on the following subjects: International experience and programs; Fuel behaviour and operating experience; Fuel modelling; Fuel design; Advanced fuel and fuel cycle technology; AECL's concept for the disposal of nuclear fuel waste. The individual papers have been abstracted separately

  3. Nuclear fuel waste policy in Canada

    International Nuclear Information System (INIS)

    Brown, P.A.; Letourneau, C.

    1999-01-01

    The 1996 Policy Framework for Radioactive Waste established the approach in Canada for dealing with all radioactive waste, and defined the respective roles of Government and waste producers and owners. The Policy Framework sets the stage for the development of institutional and financial arrangements to implement long-term waste management solutions in a safe, environmentally sound, comprehensive, cost-effective and integrated manner. For nuclear fuel waste, a 10-year environmental review of the concept to bury nuclear fuel waste bundles at a depth of 500 m to 1000 m in stable rock of the Canadian Shield was completed in March 1998. The Review Panel found that while the concept was technically safe, it did not have the required level of public acceptability to be adopted at this time as Canada's approach for managing its nuclear fuel waste. The Panel recommended that a Waste Management Organization be established at arm's length from the nuclear industry, entirely funded by the waste producers and owners, and that it be subject to oversight by the Government. In its December 1998 Response to the Review Panel, the Government of Canada provided policy direction for the next steps towards developing Canada's approach for the long-term management of nuclear fuel waste. The Government chose to maintain the responsibility for long-term management of nuclear fuel waste close with the producers and owners of the waste. This is consistent with its 1996 Policy Framework for Radioactive Waste. This approach is also consistent with experience in many countries. In addition, the federal government identified the need for credible federal oversight. Cabinet directed the Minister of NRCan to consult with stakeholders, including the public, and return to ministers within 12 months with recommendations on means to implement federal oversight. (author)

  4. Radioactive Waste Generation in Pyro-SFR Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Gao, Fanxing; Park, Byung Heung; Ko, Won Il

    2011-01-01

    Which nuclear fuel cycle option to deploy is of great importance in the sustainability of nuclear power. SFR fuel cycle employing pyroprocessing (named as Pyro- SFR Cycle) is one promising fuel cycle option in the near future. Radioactive waste generation is a key criterion in nuclear fuel cycle system analysis, which considerably affects the future development of nuclear power. High population with small territory is one special characteristic of ROK, which makes the waste management pretty important. In this study, particularly the amount of waste generation with regard to the promising advanced fuel cycle option was evaluated, because the difficulty of deploying an underground repository for HLW disposal requires a longer time especially in ROK

  5. Nuclear Fuel Cycle Introductory Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.

  6. Nuclear Fuel Cycle Introductory Concepts

    International Nuclear Information System (INIS)

    Karpius, Peter Joseph

    2017-01-01

    The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.

  7. Conditioning of nuclear reactor fuel

    International Nuclear Information System (INIS)

    1975-01-01

    A method of conditioning the fuel of a nuclear reactor core to minimize failure of the fuel cladding comprising increasing the fuel rod power to a desired maximum power level at a rate below a critical rate which would cause cladding damage is given. Such conditioning allows subsequent freedom of power changes below and up to said maximum power level with minimized danger of cladding damage. (Auth.)

  8. Financial aspects of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Lurf, G.

    1975-01-01

    A nuclear power plant has a forward supply of several years as a consequence of the long processing time of the uranium from mining to delivery of fabricated fuel elements and of the long insertion time in the reactor. This leads to a considerable capital requirement although the specific fuel costs for nuclear fuel are considerably lower then for a conventional power plant and present only 15% of the total generating costs. (orig./RW) [de

  9. Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle

    Science.gov (United States)

    Settle, Frank A.

    2009-01-01

    The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and engineering of controlled fission are central to the generation of nuclear power, chemistry…

  10. Remote handling technology for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Sakai, Akira; Maekawa, Hiromichi; Ohmura, Yutaka

    1997-01-01

    Design and R and D on nuclear fuel cycle facilities has intended development of remote handling and maintenance technology since 1977. IHI has completed the design and construction of several facilities with remote handling systems for Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan Atomic Energy Research Institute (JAERI), and Japan Nuclear Fuel Ltd. (JNFL). Based on the above experiences, IHI is now undertaking integration of specific technology and remote handling technology for application to new fields such as fusion reactor facilities, decommissioning of nuclear reactors, accelerator testing facilities, and robot simulator-aided remote operation systems in the future. (author)

  11. Micro-structured nuclear fuel and novel nuclear reactor concepts for advanced power production

    International Nuclear Information System (INIS)

    Popa-Simil, Liviu

    2008-01-01

    Many applications (e.g. terrestrial and space electric power production, naval, underwater and railroad propulsion and auxiliary power for isolated regions) require a compact-high-power electricity source. The development of such a reactor structure necessitates a deeper understanding of fission energy transport and materials behavior in radiation dominated structures. One solution to reduce the greenhouse-gas emissions and delay the catastrophic events' occurrences may be the development of massive nuclear power. The actual basic conceptions in nuclear reactors are at the base of the bottleneck in enhancements. The current nuclear reactors look like high security prisons applied to fission products. The micro-bead heterogeneous fuel mesh gives the fission products the possibility to acquire stable conditions outside the hot zones without spilling, in exchange for advantages - possibility of enhancing the nuclear technology for power production. There is a possibility to accommodate the materials and structures with the phenomenon of interest, the high temperature fission products free fuel with near perfect burning. This feature is important to the future of nuclear power development in order to avoid the nuclear fuel peak, and high price increase due to the immobilization of the fuel in the waste fuel nuclear reactor pools. (author)

  12. Sustainable multilateral nuclear fuel cycle framework. (2) Models for multilateral nuclear fuel cycle approach

    International Nuclear Information System (INIS)

    Adachi, T; Tanaka, S; Tazaki, M; Akiba, M; Takashima, R; Kuno, Y

    2011-01-01

    To construct suitable models for a reliable and sustainable international/regional framework in the fields of nuclear fuel cycle, it is essential to reflect recent political situations including such that 1) a certain number of emerging countries especially in south-east Asia want to introduce and develop nuclear power in the long-terms despite the accident of the Fukushima Daiichi NPP, and 2) exposition of nuclear proliferation threats provided by North Korea and Iran. It is also to be considered that Japan is an unique country having enrichment and reprocessing facilities on commercial base among non-nuclear weapon countries. Although many models presented for the internationalization have not been realized yet, studies at the University of Tokyo aim at multilateral nuclear approach (MNA) in Asian-Pacific countries balancing between nuclear non-proliferation and nuclear fuel supply/service and presenting specific examples such as prerequisites for participating countries, scope of cooperative activities, ownership of facilities and type of agreements/frameworks. We will present a model basic agreement and several bilateral and multi-lateral agreements for the combinations of industry or government led consortia including Japan and its neighboring countries and made a preliminary evaluation for the combination of processes/facilities based on the INFCIRC/640 report for MNA. (author)

  13. Nuclear Fuel Safety Criteria Technical Review - Second edition

    International Nuclear Information System (INIS)

    Beck, Winfried; Blanpain, Patrick; Fuketa, Toyoshi; Gorzel, Andreas; Hozer, Zoltan; Kamimura, Katsuichiro; Koo, Yang-Hyun; Maertens, Dietmar; Nechaeva, Olga; Petit, Marc; Rehacek, Radomir; Rey-Gayo, Jose Maria; Sairanen, Risto; Sonnenburg, Heinz-Guenther; Valach, Mojmir; Waeckel, Nicolas; Yueh, Ken; Zhang, Jinzhao; Voglewede, John

    2012-01-01

    Most of the current nuclear fuel safety criteria were established during the 1960's and early 1970's. Although these criteria were validated against experiments with fuel designs available at that time, a number of tests were based on unirradiated fuels. Additional verification was performed as these designs evolved, but mostly with the aim of showing that the new designs adequately complied with existing criteria, and not to establish new limits. In 1996, the OECD Nuclear Energy Agency (NEA) reviewed existing fuel safety criteria, focusing on new fuel and core designs, new cladding materials and industry manufacturing processes. The results were published in the Nuclear Fuel Safety Criteria Technical Review of 2001. The NEA has since re-examined the criteria. A brief description of each criterion and its rationale are presented in this second edition, which will be of interest to both regulators and industry (fuel vendors, utilities)

  14. International nuclear fuel cycle fact book. Revision 6

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

  15. Design of an advanced human-centered supervisory system for a nuclear fuel reprocessing system

    International Nuclear Information System (INIS)

    Riera, B.; Lambert, M.; Martel, G.

    1999-01-01

    In the field of highly automated processes, our research concerns supervisory system design adapted to supervisory and default diagnosis by human operators. The interpretation of decisional human behaviour models shows that the tasks of human operators require different information, which has repercussions on the supervisory system design. We propose an advanced human-centred supervisory system (AHCSS) which is more adapted to human-beings, because it integrates new representation of the production system,(such as functional and behavioural aspects) with the use of advanced algorithms of detection and location. Based on an approach using these new concepts, and AHCSS was created for a nuclear fuel reprocessing system. (authors)

  16. Elements of nuclear reactor fueling theory

    International Nuclear Information System (INIS)

    Egan, M.R.

    1984-01-01

    Starting with a review of the simple batch size effect, a more general theory of nuclear fueling is derived to describe the behavior and physical requirements of operating cycle sequences and fueling strategies having practical use in the management of nuclear fuel. The generalized theory, based on linear reactivity modeling, is analytical and represents the effects of multiple-stream, multiple-depletion-batch fueling configurations in systems employing arbitrary, non-integer batch size strategies, and containing fuel with variable energy generation rates. Reactor operating cycles and cycle sequences are represented with realistic structure that includes the effects of variable cycle energy production, cycle lengths, end-of-cycle operating extensions and maneuvering allowances. Results of the analytical theory are first applied to the special case of degenerate equilibrium cycle sequences, yielding several fundamental principles related to the selection of refueling strategy, and which govern fueling decisions normally made by the fuel manager. It is also demonstrated in this application that the simple batch size effect is not valid for non-integer fueling strategies, even in the simplest sequence configurations, and that it systematically underestimates the fueling requirements of degenerate sequences in general

  17. Determination of the origin of unknown irradiated nuclear fuel.

    Science.gov (United States)

    Nicolaou, G

    2006-01-01

    An isotopic fingerprinting method is presented to determine the origin of unknown nuclear material with forensic importance. Spent nuclear fuel of known origin has been considered as the 'unknown' nuclear material in order to demonstrate the method and verify its prediction capabilities. The method compares, using factor analysis, the measured U, Pu isotopic compositions of the 'unknown' material with U, Pu isotopic compositions simulating well known spent fuels from a range of commercial nuclear power stations. Then, the 'unknown' fuel has the same origin as the commercial fuel with which it exhibits the highest similarity in U, Pu compositions.

  18. Determination of the origin of unknown irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Nicolaou, G.

    2006-01-01

    An isotopic fingerprinting method is presented to determine the origin of unknown nuclear material with forensic importance. Spent nuclear fuel of known origin has been considered as the 'unknown' nuclear material in order to demonstrate the method and verify its prediction capabilities. The method compares, using factor analysis, the measured U, Pu isotopic compositions of the 'unknown' material with U, Pu isotopic compositions simulating well known spent fuels from a range of commercial nuclear power stations. Then, the 'unknown' fuel has the same origin as the commercial fuel with which it exhibits the highest similarity in U, Pu compositions

  19. The regulations concerning the uses of nuclear fuel materials

    International Nuclear Information System (INIS)

    1978-01-01

    The Regulations are established on the basis of ''The law for the regulations of nuclear source materials, nuclear fuel materials and reactors'' and the ''Provisions concerning the usage of nuclear fuel materials'' in the Enforcement Ordinance of the Law, to enforce such provisions. Terms are explained, such as exposure radiation dose, cumulative dose, control area, surrounding inspection area, persons engaging in works, area for incoming and outgoing of materials, batch, real stocks, effective value and main measuring points. In the applications for the permission to use nuclear fuel materials, the expected period and quantity of usage of each kind of such materials and the other party and the method of selling, lending and returning spent fuel or the process of disposal of such fuel must be written. Explanations concerning the technical ability required for the usage of nuclear fuel materials shall be attached to the applications. Applications shall be filed for the inspection of facilities for use, in which the name and the address of the applicant, the name and the address of the factory or the establishment, the range of the facilities for use, the maximum quantity of nuclear fuel materials to be used or stocked, and the date, the place and the kind of the expected inspection are written. Prescriptions cover the records to be held, safety regulations, the technical standards for usage, the disposal, transport and storage of nuclear fuel materials and the reports to be filed. (Okada, K.)

  20. Rack for nuclear fuel elements

    International Nuclear Information System (INIS)

    Rubinstein, H.J.; Gordon, C.B.; Robison, A.; Clark, P.M.

    1977-01-01

    Disclosed is a rack for storing spent nuclear fuel elements in which a plurality of aligned rows of upright enclosures of generally square cross-sectional areas contain vertically disposed spent fuel elements. Each fuel element is supported at the lower end thereof by a respective support that rests on the floor of the spent fuel pool for a nuclear power plant. An open rack frame is employed as an upright support for the enclosures containing the spent fuel elements. Legs at the lower corners of the frame rest on the floor of the pool to support the frame. In one exemplary embodiment, the support for the fuel element is in the form of a base on which a fuel element rests and the base is supported by legs. In another exemplary embodiment, each fuel element is supported on the pool floor by a self-adjusting support in the form of a base on which a fuel element rests and the base rests on a ball or swivel joint for self-alignment. The lower four corners of the frame are supported by legs adjustable in height for leveling the frame. Each adjustable frame leg is in the form of a base resting on the pool floor and the base supports a threaded post. The threaded post adjustably engages a threaded column on which rests the lower end of the frame. 16 claims, 14 figures

  1. Regulation on control of nuclear fuel materials

    International Nuclear Information System (INIS)

    Ikeda, Kaname

    1976-01-01

    Some comment is made on the present laws and the future course of consolidating the regulation of nuclear fuel materials. The first part gives the definitions of the nuclear fuel materials in the laws. The second part deals with the classification and regulation in material handling. Refinement undertaking, fabrication undertaking, reprocessing undertaking, the permission of the government to use the materials, the permission of the government to use the materials under international control, the restriction of transfer and receipt, the reporting, and the safeguard measures are commented. The third part deals with the strengthening of regulation. The nuclear fuel safety deliberation special committee will be established at some opportunity of revising the ordinance. The nuclear material safeguard special committee has been established in the Atomic Energy Commission. The last part deals with the future course of legal consolidation. The safety control will be strengthened. The early investigation of waste handling is necessary, because low level solid wastes are accumulating at each establishment. The law for transporting nuclear materials must be consolidated as early as possible to correspond to foreign transportation laws. Physical protection is awaiting the conclusions of the nuclear fuel safeguard special committee. The control and information systems for the safeguard measures must be consolidated in the laws. (Iwakiri, K.)

  2. Nuclear fuel resources: enough to last?

    International Nuclear Information System (INIS)

    Price, R.; Blaise, J.R.

    2002-01-01

    The need to meet ever-growing energy demands in an environmentally sustainable manner has turned attention to the potential for nuclear energy to play an expanded role in future energy supply mixes. One of the key aspects in defining the sustainability of any energy source is the availability of fuel resources. This article shows that available nuclear energy fuel resources can meet future needs for hundreds, even thousands, of years

  3. Advanced nuclear fuel cycles activities in IAEA

    International Nuclear Information System (INIS)

    Nawada, H.P.; Ganguly, C.

    2007-01-01

    Full text of publication follows. Of late several developments in reprocessing areas along with advances in fuel design and robotics have led to immense interest in partitioning and transmutation (P and T). The R and D efforts in the P and T area are being paid increased attention as potential answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. Any fuel cycle studies that integrate partitioning and transmutation are also known as ''advanced fuel cycles'' (AFC), that could incinerate plutonium and minor actinide (MA) elements (namely Am, Np, Cm, etc.) which are the main contributors to long-term radiotoxicity. The R and D efforts in developing these innovative fuel cycles as well as reactors are being co-ordinated by international initiatives such as Innovative Nuclear Power Reactors and Fuel Cycles (INPRO), the Generation IV International Forum (GIF) and the Global Nuclear Energy Partnership (GENP). For these advanced nuclear fuel cycle schemes to take shape, the development of liquid-metal-cooled reactor fuel cycles would be the most essential step for implementation of P and T. Some member states are also evaluating other concepts involving the use of thorium fuel cycle or inert-matrix fuel or coated particle fuel. Advanced fuel cycle involving novel partitioning methods such as pyrochemical separation methods to recover the transuranic elements are being developed by some member states which would form a critical stage of P and T. However, methods that can achieve a very high reduction (>99.5%) of MA and long-lived fission products in the waste streams after partitioning must be achieved to realize the goal of an improved protection of the environment. In addition, the development of MA-based fuel is also an essential and crucial step for transmutation of these transuranic elements. The presentation intends to describe progress of the IAEA activities encompassing the following subject-areas: minimization of

  4. Bimetallic spacer means for a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1981-01-01

    A bimetallic spacer means designed to be cooperatively associated with a nuclear fuel assembly and operative to resist the occurrence of in-reactor bowing of the nuclear fuel assembly. The subject bimetallic spacer means in accord with one embodiment of the invention includes a member formed, at least principally, of Zircaloy to which are attached a plurality of stainless steel strips. The latter stainless steel strips are located on the external surface of the Zircaloy member and with the major axis of each of the plurality of stainless steel strips extending substantially perpendicular to the major axis of the Zircaloy member. In accord with another embodiment of the invention, the subject bimetallic spacer means includes a member formed at least principally of Zircaloy to which a plurality of stainless steel strips are attached so as to be positioned thereon externally thereof and with the major axis of each of the plurality of stainless steel strips extending substantially parallel to the major axis of the Zircaloy member. In accord with a further embodiment of the invention, the stainless steel strips are attached to preselected members, each embodying at least a cladding of Zircaloy, which are located in the rows of fuel rods that define the perimeter of the fuel matrix of the nuclear fuel assembly. In each of the embodiments, the stainless steel strips during power production expand outwardly to a greater extent than do the members to which the stainless steel strips are attached, thereby forming stiff springs which abut against like bimetallic spacer means with which the other nuclear fuel assemblies are provided in a given nuclear reactor core to thus prevent the occurrence of in-reactor bowing of the nuclear fuel assemblies. Namely, the stainless steel strips expand laterally relative to the fuel assembly and thereby occupy the space adjacent to the external surface of the fuel assembly

  5. Nuclear fuel pellets

    International Nuclear Information System (INIS)

    Larson, R.I.; Brassfield, H.C.

    1981-01-01

    Increased strength and physical durability in green bodies or pellets formed of particulate nuclear fuel oxides is achieved by inclusion of a fugitive binder which is ammonium bicarbonate, bicarbonate carbomate, carbomate, sesquicarbonate or mixtures thereof. Ammonium oxadate may be included as pore former. (author)

  6. An analysis of international nuclear fuel supply options

    Science.gov (United States)

    Taylor, J'tia Patrice

    As the global demand for energy grows, many nations are considering developing or increasing nuclear capacity as a viable, long-term power source. To assess the possible expansion of nuclear power and the intricate relationships---which cover the range of economics, security, and material supply and demand---between established and aspirant nuclear generating entities requires models and system analysis tools that integrate all aspects of the nuclear enterprise. Computational tools and methods now exist across diverse research areas, such as operations research and nuclear engineering, to develop such a tool. This dissertation aims to develop methodologies and employ and expand on existing sources to develop a multipurpose tool to analyze international nuclear fuel supply options. The dissertation is comprised of two distinct components: the development of the Material, Economics, and Proliferation Assessment Tool (MEPAT), and analysis of fuel cycle scenarios using the tool. Development of MEPAT is aimed for unrestricted distribution and therefore uses publicly available and open-source codes in its development when possible. MEPAT is built using the Powersim Studio platform that is widely used in systems analysis. MEPAT development is divided into three modules focusing on: material movement; nonproliferation; and economics. The material movement module tracks material quantity in each process of the fuel cycle and in each nuclear program with respect to ownership, location and composition. The material movement module builds on techniques employed by fuel cycle models such as the Verifiable Fuel Cycle Simulation (VISION) code developed at the Idaho National Laboratory under the Advanced Fuel Cycle Initiative (AFCI) for the analysis of domestic fuel cycle. Material movement parameters such as lending and reactor preference, as well as fuel cycle parameters such as process times and material factors are user-specified through a Microsoft Excel(c) data spreadsheet

  7. DUPIC nuclear fuel manufacturing and process technology development

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Park, J. J.; Lee, J. W.

    2000-05-01

    In this study, DUPIC fuel fabrication technology and the active fuel laboratory were developed for the study of spent nuclear fuel. A new nuclear fuel using highly radioactive nuclear materials can be studied at the active fuel laboratory. Detailed DUPIC fuel fabrication process flow was developed considering the manufacturing flow, quality control process and material accountability. The equipment layout of about twenty DUPIC equipment at IMEF M6 hot cell was established for the minimization of the contamination during DUPIC processes. The characteristics of the SIMFUEL powder and pellets was studied in terms of milling conditions. The characteristics of DUPIC powder and pellet was studied by using 1 kg of spent PWR fuel at PIEF nr.9405 hot cell. The results were used as reference process conditions for following DUPIC fuel fabrication at IMEF M6. Based on the reference fabrication process conditions, the main DUPIC pellet fabrication campaign has been started at IMEF M6 using 2 kg of spent PWR fuel since 2000 January. As of March 2000, about thirty DUPIC pellets were successfully fabricated

  8. DUPIC nuclear fuel manufacturing and process technology development

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Park, J. J.; Lee, J. W. [and others

    2000-05-01

    In this study, DUPIC fuel fabrication technology and the active fuel laboratory were developed for the study of spent nuclear fuel. A new nuclear fuel using highly radioactive nuclear materials can be studied at the active fuel laboratory. Detailed DUPIC fuel fabrication process flow was developed considering the manufacturing flow, quality control process and material accountability. The equipment layout of about twenty DUPIC equipment at IMEF M6 hot cell was established for the minimization of the contamination during DUPIC processes. The characteristics of the SIMFUEL powder and pellets was studied in terms of milling conditions. The characteristics of DUPIC powder and pellet was studied by using 1 kg of spent PWR fuel at PIEF nr.9405 hot cell. The results were used as reference process conditions for following DUPIC fuel fabrication at IMEF M6. Based on the reference fabrication process conditions, the main DUPIC pellet fabrication campaign has been started at IMEF M6 using 2 kg of spent PWR fuel since 2000 January. As of March 2000, about thirty DUPIC pellets were successfully fabricated.

  9. Device for detecting defective nuclear reactor fuel rods

    International Nuclear Information System (INIS)

    Steven, J.

    1976-01-01

    A moisture sensor is provided for a nuclear fuel rod for water-cooled nuclear reactors wherein moisture can be present. The fuel rod has an end cap and a charge of nuclear fuel. The moisture sensor is disposed between the end cap and the charge and serves to detect a leak in the fuel rod. The moisture sensor includes a capsule-like housing having an inner space and having openings through which moisture can pass into the inner space in the event of a leak in the fuel rod. Ferromagnetic material is disposed in the inner space of the housing together with a moisture detector responsive to moisture for altering the diposition of the ferromagnetic material in the inner space. 5 claims, 6 drawing figures

  10. Nuclear fuel cycle. V. 1

    International Nuclear Information System (INIS)

    1983-01-01

    Nuclear fuel cycle information in the main countries that develop, supply or use nuclear energy is presented. Data about Japan, FRG, United Kingdom, France and Canada are included. The information is presented in a tree-like graphic way. (C.S.A.) [pt

  11. Nuclear reactor fuel element with a cluster of parallel fuel pins

    International Nuclear Information System (INIS)

    Macfall, D.; Butterfield, C.E.; Butterfield, R.S.

    1977-01-01

    An improvement of the design of nuclear reactor fuel elements is described and illustrated by the example of a gas-cooled, graphite-moderated nuclear reactor. The fuel element has a cluster of parallel fuel pins with an outer can of structure material and an inner sleeve, as well as tie bars and spacing devices for all of these parts. The fuel element designed according to the invention allows lasy assembling and disassembling before and after use. During use, no relative axial motions are possible; nevertheless, the graphite sleeve is at no time subject to tensile stress: the individual parts are held in position from below by a single holding device. (UWI) [de

  12. Globalization of the nuclear fuel cycle impact of developments on fuel management

    Energy Technology Data Exchange (ETDEWEB)

    Van Den Durpel, L.; Bertel, E. [OCDE-NEA, Nuclear Development Div., 92 - Issy-les-Moulineaux (France)

    1999-07-01

    Nuclear energy will have to cope more and more with a rapid changing environment due to economic competitive pressure and the de-regulatory progress. In current economic environment, utilities will have to focus strongly on the reduction of their total generation costs, covering the fuel cycle costs, which are only partly under their control. Developments in the fuel cycle will be in the short-term rather evolutionary addressing the current needs of utilities. However, within the context of sustainable development and more and more inclusion of externalities in energy generation costs, more performing developments in the fuel cycle could become important and feasible. A life-cycle design approach of the fuel cycle will be requested in order to cover all factors in order to decrease significantly the nuclear energy generation cost to compete with other alternative fuels in the long-term. This paper will report on some of the trends one could distinguish in the fuel cycle with emphasis on cost reduction. OECD/NEA is currently conducting a study on the fuel cycle aiming to assess current and future nuclear fuel cycles according the potential for further improvement of the full added-value chain of these cycles from a mainly technological and economical perspective including environmental and social considerations. (authors)

  13. Globalisation of the nuclear fuel cycle - impact of developments on fuel management

    International Nuclear Information System (INIS)

    Durpel, L. van den; Bertel, E.

    2000-01-01

    Nuclear energy will have to cope more and more with a rapid changing environment due to economic competitive pressure and the deregulatory progress. In current economic environment, utilities will have to focus strongly on the reduction of their total generation costs, covering the fuel cycle costs, which are only partly under their control. Developments in the fuel cycle will be in the short-term rather evolutionary addressing the current needs of utilities. However, within the context of sustainable development and more and more inclusion of externalities in energy generation costs, more performing developments in the fuel cycle could become important and feasible. A life-cycle design approach of the fuel cycle will be requested in order to cover all factors in order to decrease significantly the nuclear energy generation cost to complete with other alternative fuels in the long-term. This paper will report on some of the trends one could distinguish in the fuel cycle with emphasis on cost reduction. OECD/NEA is currently conducting a study on the fuel cycle aiming to assess current and future nuclear fuel cycles according to the potential for further improvement of the full added-value chain of these cycles from a mainly technological and economic perspective including environmental and social considerations. (orig.) [de

  14. Method of reprocessing spent nuclear fuels

    International Nuclear Information System (INIS)

    Kamiyama, Hiroaki; Inoue, Tadashi; Miyashiro, Hajime.

    1987-01-01

    Purpose: To facilitate the storage management for the wastes resulting from reprocessing by chemically separating transuranium elements such as actionoid elements together with uranium and plutonium. Method: Spent fuels from a nuclear reactor are separated into two groups, that is, a mixture of uranium, plutonium and transuranium elements and cesium, strontium and other nuclear fission products. Virgin uranium is mixed to adjust the mixture of uranium, plutonium and transuranium elements in the first group, which is used as the fuels for the nuclear reactor. After separating to recover useful metals such as cesium and strontium are separated from short half-decay nuclear fission products of the second group, other nuclear fission products are stored and managed. This enables to shorten the storage period and safety storage and management for the wastes. (Takahashi, M.)

  15. Assessment and balancing of nuclear fuels

    International Nuclear Information System (INIS)

    Reinhard, H.

    1982-01-01

    In 1981 nuclear energy had a share of ca. 17% in the electric power supply of the F.R. of Germany. The amount of nuclear fuels required is equal to ca. 15 million tce. In public technical discussions the economic importance which must be assigned to nuclear energy, e.g. with regard to curbing the energy price development or relieving our balance of payments, is discussed in detail. On the other hand, a number of industrial aspects of nuclear energy utilization - problems of commercial or fiscal law - have been little considered in the technical literature. The following contribution is to present the principles of commercial and fiscal law which have taken shape in connection with the assessment and balancing of the single stages of the nuclear fuel cycle. (orig./UA) [de

  16. Significant incidents in nuclear fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs.

  17. Significant incidents in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs

  18. Materials in the environment of the fuel in dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Issard, H [TN International (Cogema Logistics) (France)

    2012-07-01

    Spent nuclear fuel has been stored safely in pools or dry systems in over 30 countries. The majority of IAEA Member States have not yet decided upon the ultimate disposition of their spent nuclear fuel: reprocessing or direct disposal. Interim storage is the current solution for these countries. For developing the technological knowledge data base, a continuation of the IAEA's spent fuel storage performance assessment was achieved. The objectives are: Investigate the dry storage systems and gather basic fuel behaviour assessment; Gather data on dry storage environment and cask materials; Evaluate long term behaviour of cask materials.

  19. High Burnup Fuel Behaviour under LOCA Conditions as Observed in Halden Reactor Experiments

    International Nuclear Information System (INIS)

    Kolstad, E.; Wiesenack, W.; Oberlander, B.; Tverberg, T.

    2013-01-01

    In the context of assessing the validity of safety criteria for loss of coolant accidents with high burnup fuel, the OECD Halden Reactor Project has implemented an integral in-pile LOCA test series. In this series, fuel fragmentation and relocation, axial gas communication in high burnup rods as affected by gap closure and fuel- clad bonding, and secondary cladding oxidation and hydriding are of major interest. In addition, the data are being used for code validation as well as model development and verification. So far, nine tests with irradiated fuel segments (burnup 40-92 MW.d.kg -1 ) from PWR, BWR and VVER commercial nuclear power plants have been carried out. The in-pile measurements and the PIE results show a good repeatability of the experiments. The paper describes the experimental setup as well as the principal features and main results of these tests. Fuel fragmentation and relocation have occurred to varying degrees in these tests. The paper compares the conditions leading to the presence or absence of fuel fragmentation, e.g., burnup and loss of constraint. Axial gas flow is an important driving force for clad ballooning, fuel relocation and fuel expulsion. The experiments have provided evidence that such gas flow can be impeded in high burnup fuel with a potential impact on the ballooning and fuel dispersal. Although the results of the Halden LOCA tests are, to some extent, amplified by conditions and features deliberately introduced into the test series, the fuel behaviour identified in the Halden tests has an impact on the safety assessment of high burnup fuel and should give rise to improvements of the predictive capabilities of LOCA modelling codes. (author)

  20. Dynamics of nuclear fuel assemblies in vertical flow channels: computer modelling and associated studies

    International Nuclear Information System (INIS)

    Mason, V.A.; Pettigrew, M.J.; Lelli, G.; Kates, L.; Reimer, E.

    1978-10-01

    A computer model, designed to predict the dynamic behaviour of nuclear fuel assemblies in axial flow, is described in this report. The numerical methods used to construct and solve the matrix equations of motion in the model are discussed together with an outline of the method used to interpret the fuel assembly stability data. The mathematics developed for forced response calculations are described in detail. Certain structural and hydrodynamic modelling parameters must be determined by experiment. These parameters are identified and the methods used for their evaluation are briefly described. Examples of typical applications of the dynamic model are presented towards the end of the report. (author)

  1. Simulation of integral local tests with high-burnup fuel

    International Nuclear Information System (INIS)

    Gyori, G.

    2011-01-01

    The behaviour of nuclear fuel under LOCA conditions may strongly depend on the burnup-dependent fuel characteristics, as it has been indicated by recent integral experiments. Fuel fragmentation and the associated fission gas release can influence the integral fuel behaviour, the rod rupture and the radiological release. The TRANSURANUS fuel performance code is a proper tool for the consistent simulation of burnup-dependent phenomena during normal operation and the thermo-mechanical behaviour of the fuel rod in a subsequent accident. The code has been extended with an empirical model for micro-cracking induced FGR and fuel fragmentation and verified against integral LOCA tests of international projects. (author)

  2. Fuel performance and fission product behaviour in gas cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport. Refs, figs, tabs.

  3. Radiological impacts of spent nuclear fuel management options

    International Nuclear Information System (INIS)

    Riotte, H.; Lazo, T.; Mundigl, S.

    2000-01-01

    An important technical study on radiological impacts of spent nuclear fuel management options, recently completed by the NEA, is intended to facilitate informed international discussions on the nuclear fuel cycle. The study compares the radiological impacts on the public and on nuclear workers resulting from two approaches to handling spent fuel from nuclear power plants: - the reprocessing option, that includes the recycling of spent uranium fuel, the reuse of the separated plutonium in MOX fuel, and the direct disposal of spent MOX fuel; and the once-through option, with no reprocessing of spent fuel, and its direct disposal. Based on the detailed research of a group of 18 internationally recognised experts, under NEA sponsorship, the report concludes that: The radiological impacts of both the reprocessing and the non-reprocessing fuel cycles studied are small, well below any regulatory dose limits for the public and for workers, and insignificantly low as compared with exposures caused by natural radiation. The difference in the radiological impacts of the two fuel cycles studied does not provide a compelling argument in favour of one option or the other. The study also points out that other factors, such as resource utilisation efficiency, energy security, and social and economic considerations would tend to carry more weight than radiological impacts in decision-making processes. (authors)

  4. Method and equipment for the non-destructive analysis of nuclear fuels

    International Nuclear Information System (INIS)

    Michaelis, W.

    1975-01-01

    This is a method for the non-destructive analysis of the content of fissile isotopes in nuclear fuels. In this analysis a neutron beam is directed to the nuclear fuel which is to be analysed. The beam penetrates the nuclear fuel, thus causing a secondany radiation by nuclear reactions which reaches a space directly surrounding the nuclear fuel and is measuned there. (orig./UA) [de

  5. Vertical integration in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Mommsen, J.T.

    1977-01-01

    Vertical integration in the nuclear fuel cycle and its contribution to market power of integrated fuel suppliers were studied. The industry subdivision analyzed is the uranium raw materials sector. The hypotheses demonstrated are that (1) this sector of the industry is trending toward vertical integration between production of uranium raw materials and the manufacture of nuclear fuel elements, and (2) this vertical integration confers upon integrated firms a significant market advantage over non-integrated fuel manufacturers. Under microeconomic concepts the rationale for vertical integration is the pursuit of efficiency, and it is beneficial because it increases physical output and decreases price. The Market Advantage Model developed is an arithmetical statement of the relative market power (in terms of price) between non-integrated nuclear fuel manufacturers and integrated raw material/fuel suppliers, based on the concept of the ''squeeze.'' In operation, the model compares net profit and return on sales of nuclear fuel elements between the competitors, under different price and cost circumstances. The model shows that, if integrated and non-integrated competitors sell their final product at identical prices, the non-integrated manufacturer returns a net profit only 17% of the integrated firm. Also, the integrated supplier can price his product 35% below the non-integrated producer's price and still return the same net profit. Vertical integration confers a definite market advantage to the integrated supplier, and the basic source of that advantage is the cost-price differential of the raw material, uranium

  6. Nuclear Fuel Cycle System Analysis (II)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Yoon, Ji Sup; Park, Seong Won

    2007-04-15

    As a nation develops strategies that provide nuclear energy while meeting its various objectives, it must begin with identification of a fuel cycle option that can be best suitable for the country. For such a purpose, this paper takes four different fuel cycle options that are likely adopted by the Korean government, considering the current status of nuclear power generation and the 2nd Comprehensive Nuclear Energy Promotion Plan (CNEPP) - Once-through Cycle, DUPIC Recycle, Thermal Reactor Recycle and GEN-IV Recycle. The paper then evaluates each option in terms of sustainability, environment-friendliness, proliferation-resistance, economics and technologies. Like all the policy decision, however, a nuclear fuel cycle option can not be superior in all aspects of sustainability, environment-friendliness, proliferation-resistance, economics, technologies and so on, which makes the comparison of the options extremely complicated. Taking this into consideration, the paper analyzes all the four fuel cycle options using the Multi-Attribute Utility Theory (MAUT) and the Analytic Hierarchy Process (AHP), methods of Multi-Attribute Decision Making (MADM), that support systematical evaluation of the cases with multi- goals or criteria and that such goals are incompatible with each other. The analysis shows that the GEN-IV Recycle appears to be most competitive.

  7. Nuclear-fuel-cycle education: Module 5. In-core fuel management

    International Nuclear Information System (INIS)

    Levine, S.H.

    1980-07-01

    The purpose of this project was to develop a series of educational modules for use in nuclear-fuel-cycle education. These modules are designed for use in a traditional classroom setting by lectures or in a self-paced, personalized system of instruction. This module on in-core fuel management contains information on computational methods and theory; in-core fuel management using the Virginia Polytechnic Institute and State University computer modules; pressurized water reactor in-core fuel management; boiling water reactor in-core fuel management; and in-core fuel management for gas-cooled and fast reactors

  8. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Dixon, R.S.

    1984-12-01

    The Canadian Nuclear Fuel Waste Management Program involves research into the storage and transportation of used nuclear fuel, immobilization of fuel waste, and deep geological disposal of the immobilized waste. The program is now in the fourth year of a ten-year generic research and development phase. The objective of this phase of the program is to assess the safety and environmental aspects of the deep underground disposal of immobilized fuel waste in plutonic rock. The objectives of the research for each component of the program and the progress made to the end of 1983 are described in this report

  9. The nuclear fuel cycle versus the carbon cycle

    International Nuclear Information System (INIS)

    Ewing, R.C.

    2005-01-01

    Nuclear power provides approximately 17% of the world's electricity, which is equivalent to a reduction in carbon emissions of ∼0.5 gigatonnes (Gt) of C/yr. This is a modest reduction as compared with global emissions of carbon, ∼7 Gt C/yr. Most analyses suggest that in order to have a significant and timely impact on carbon emissions, carbon-free sources, such as nuclear power, would have to expand total production of energy by factors of three to ten by 2050. A three-fold increase in nuclear power capacity would result in a projected reduction in carbon emissions of 1 to 2 Gt C/yr, depending on the type of carbon-based energy source that is displaced. This three-fold increase utilizing present nuclear technologies would result in 25,000 metric tonnes (t) of spent nuclear fuel (SNF) per year, containing over 200 t of plutonium. This is compared to a present global inventory of approximately 280,000 t of SNF and >1,700 t of Pu. A nuclear weapon can be fashioned from as little as 5 kg of 239 Pu. However, there is considerable technological flexibility in the nuclear fuel cycle. There are three types of nuclear fuel cycles that might be utilized for the increased production of energy: open, closed, or a symbiotic combination of different types of reactor (such as, thermal and fast neutron reactors). The neutron energy spectrum has a significant effect on the fission product yield, and the consumption of long-lived actinides, by fission, is best achieved by fast neutrons. Within each cycle, the volume and composition of the high-level nuclear waste and fissile material depend on the type of nuclear fuel, the amount of burn-up, the extent of radionuclide separation during reprocessing, and the types of materials used to immobilize different radionuclides. As an example, a 232 Th-based fuel cycle can be used to breed fissile 233 U with minimum production of Pu. In this paper, I will contrast the production of excess carbon in the form of CO 2 from fossil fuels with

  10. Out-pile Test of Double Cladding Fuel Rod Mockups for a Nuclear Fuel Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jaemin; Park, Sungjae; Kang, Younghwan; Kim, Harkrho; Kim, Bonggoo; Kim, Youngki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    An instrumented capsule for a nuclear fuel irradiation test has been developed to measure fuel characteristics, such as a fuel temperature, internal pressure of a fuel rod, a fuel pellet elongation and a neutron flux during an irradiation test at HANARO. In the future, nuclear fuel irradiation tests under a high temperature condition are expected from users. To prepare for this request, we have continued developing the technology for a high temperature nuclear fuel irradiation test at HANARO. The purpose of this paper is to verify the possibility that the temperature of a nuclear fuel can be controlled at a high temperature during an irradiation test. Therefore we designed and fabricated double cladding fuel rod mockups. And we performed out-pile tests using these mockups. The purposes of a out-pile test is to analyze an effect of a gap size, which is between an outer cladding and an inner cladding, on the temperature and the effect of a mixture ratio of helium gas and neon gas on the temperature. This paper presents the design and fabrication of double cladding fuel rod mockups and the results of the out-pile test.

  11. Nuclear fuel pellet production method and nuclear fuel pellet

    International Nuclear Information System (INIS)

    Yuda, Ryoichi; Ito, Ken-ichi; Masuda, Hiroshi.

    1993-01-01

    In a method of manufacturing nuclear fuel pellets by compression-molding UO 2 powders followed by sintering, a sintering agent having a composition of about 40 to 80 wt% of SiO 2 and the balance of Al 2 O 3 , a sintering agent at a ratio of 10 to 500 ppm based on the total amount of UO 2 and UO 2 powders are mixed, compression molded and then sintered at a sintering temperature of about 1500 of 1800degC. The UO 2 particles have an average grain size of about 20 to 60μm, most of the crystal grain boundary thereof is coated with a glassy or crystalline alumina silicate phase, and the porosity is about 1 to 4 vol%. With such a constitution, the sintering agent forms a single liquid phase eutectic mixture during sintering, to promote a surface reaction between nuclear fuel powders by a liquid phase sintering mechanism, increase their density and promote the crystal growth. Accordingly, it is possible to lower the softening temperature, improve the creep velocity of the pellets and improve the resistance against pellet-clad interaction. (T.M.)

  12. Nuclear fuel storage

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1981-01-01

    A nuclear fuel storage apparatus for use in a water-filled pool is fabricated of a material such as stainless steel in the form of an egg crate structure having vertically extending openings. Fuel may be stored in this basic structure in a checkerboard pattern with high enrichment fuel, or in all openings when the fuel is of low effective enrichment. Inserts of a material such as stainless steel are adapted to fit within these openings so that a water gap and, therefore, a flux trap is formed between adjacent fuel storage locations. These inserts may be added at a later time and fuel of a higher enrichment may be stored in each opening. When it is desired to store fuel of still greater enrichment, poison plates may be added to the water gap formed by the installed insert plates, or substituted for the insert plates. Alternately, or in addition, fuel may be installed in high neutron absorption poison boxes which surround the fuel assembly. The stainless steel inserts and the poison plates are each not required until the capacity of the basic egg crate structure is approached. Purchase of these items can, therefore, be deferred for many years. Should the fuel to be stored be of higher enrichment than initially forecast, the deferred decision on the poison plates makes it possible to obtain increased poison in the plates to satisfy the newly discovered requirement

  13. Nuclear fuel cycle techniques

    International Nuclear Information System (INIS)

    Pecqueur, Michel; Taranger, Pierre

    1975-01-01

    The production of fuels for nuclear power plants involves five principal stages: prospecting of uranium deposits (on the ground, aerial, geochemical, geophysical, etc...); extraction and production of natural uranium from the deposits (U content of ores is not generally high and a chemical processing is necessary to obtain U concentrates); production of 235 U enriched uranium for plants utilizing this type of fuel (a description is given of the gaseous diffusion process widely used throughout the world and particularly in France); manufacture of suitable fuel elements for the different plants; reprocessing of spent fuels for the purpose of not only recovering the fissile materials but also disposing safely of the fission products and other wastes [fr

  14. Safety research in nuclear fuel cycle at PNC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF{sub 6}, uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  15. Safety research in nuclear fuel cycle at PNC

    International Nuclear Information System (INIS)

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF 6 , uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  16. WNA position statement on safe management of nuclear waste and used nuclear fuel

    International Nuclear Information System (INIS)

    Saint-Pierre, S.

    2006-01-01

    This World nuclear association (W.N.A.) Position Statement summarizes the worldwide nuclear industry's record, progress and plans in safely managing nuclear waste and used nuclear fuel. The global industry's safe waste management practices cover the entire nuclear fuel-cycle, from the mining of uranium to the long-term disposal of end products from nuclear power reactors. The Statement's aim is to provide, in clear and accurate terms, the nuclear industry's 'story' on a crucially important subject often clouded by misinformation. Inevitably, each country and each company employs a management strategy appropriate to a specific national and technical context. This Position Statement reflects a confident industry consensus that a common dedication to sound practices throughout the nuclear industry worldwide is continuing to enhance an already robust global record of safe management of nuclear waste and used nuclear fuel. This text focuses solely on modern civil programmes of nuclear-electricity generation. It does not deal with the substantial quantities of waste from military or early civil nuclear programmes. These wastes fall into the category of 'legacy activities' and are generally accepted as a responsibility of national governments. The clean-up of wastes resulting from 'legacy activities' should not be confused with the limited volume of end products that are routinely produced and safely managed by today's nuclear energy industry. On the significant subject of 'Decommissioning of Nuclear Facilities', which is integral to modern civil nuclear power programmes, the W.N.A. will offer a separate Position Statement covering the industry's safe management of nuclear waste in this context. The safe management of nuclear waste and used nuclear fuel is a widespread, well-demonstrated reality. This strong safety record reflects a high degree of nuclear industry expertise and of industry responsibility toward the well-being of current and future generations

  17. 242mAm Fueled Nuclear Battery

    International Nuclear Information System (INIS)

    Yigal Ronen, Y.; Hatav, A.; Hazenshprung, N.

    2004-01-01

    A nuclear battery based on a direct energy conversion of the fission products is presented. The principal behind direct-charging or direct-conversion [1] is based on the direct conversion of fission product energy into electrical energy, using a high voltage potential. The kinetic energy of the fission products is thus converted to potential energy and the charges collected in the conductive electrodes create an electrical current. High-power nuclear batteries are important due to the fact that they have almost no moving parts. As a result, maintenance problems (especially important in outer space) are considerably reduced. Such energy conversion is possible by using a nuclear reactor with ultra-thin fuel elements of 0.2 m of 242m Am. The amount of nuclear fuel is 376g and the dimensions of the battery are 2.4*2.4*2.4m (including the vacuum spacing), with a BeO moderator and Be electrodes. The total power of the reactor is 10.6 MW and the electrical power is 0.672 MW. The reactor is composed of 242m Am as a nuclear fuel with a thickness of 0.2μm and a moderator of 4 cm of BeO and two 0.5 cm thickness electrodes of Be, as presented in Fig. 1. The moderator-to-fuel-volume ratio is V m /V f = 250000. The infinite multiplication factor for this design is [2] k ∞ = 1.8

  18. Fuel cycle and waste management: A perspective from British nuclear fuels plc

    International Nuclear Information System (INIS)

    Holmes, R.G.G.; Fairhall, G.A.; Robbins, R.A.

    1996-01-01

    The phrase fuel cycle and waste management implies two separate and distinct activities. British Nuclear Fuels plc (BNFL) has adopted a holistic approach to the fuel cycle that integrates the traditional fuel cycle activities of conversion to uranium hexafluoride, fuel fabrication, power generation, and reprocessing with waste arisings, its subsequent treatment, and disposal

  19. Spent nuclear fuel management. Moving toward a century of spent fuel management: A view from the halfway mark

    International Nuclear Information System (INIS)

    Shephard, L.

    2004-01-01

    Full text: A half-century ago, President Eisenhower in his 1953 'Atoms for Peace' speech, offered nuclear technology to other nations as part of a broad nuclear arms control initiative. In the years that followed, the nuclear power generation capabilities of many nations has helped economic development and contributed to the prosperity of the modern world. The growth of nuclear power, while providing many benefits, has also contributed to an increasing global challenge over safe and secure spent fuel management. Over 40 countries have invested in nuclear energy, developing over 400 nuclear power reactors. Nuclear power supplies approximately 16% of the global electricity needs. With the finite resources and challenges of fossil fuels, nuclear power will undoubtedly become more prevalent in the future, both in the U.S. and abroad. We must address this inevitability with new paradigms for managing a global nuclear future. Over the past fifty years, the world has come to better understand the strong interplay between all elements of the nuclear fuel cycle, global economics, and global security. In the modern world, the nuclear fuel cycle can no longer be managed as a simple sequence of technological, economic and political challenges. Rather it must be seen, and managed, as a system of strongly interrelated challenges. Spent fuel management, as one element of the nuclear fuel system, cannot be relegated to the back-end of the fuel cycle as only a disposal or storage issue. There exists a wealth of success and experience with spent fuel management over the past fifty years. We must forge this experience with a global systems perspective, to reshape the governing of all aspects of the nuclear fuel cycle, including spent fuel management. This session will examine the collective experience of spent fuel management enterprises, seeking to shape the development of new management paradigms for the next fifty years. (author)

  20. Transport and reprocessing of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Lenail, B.

    1981-01-01

    This contribution deals with transport and packaging of oxide fuel from and to the Cogema reprocessing plant at La Hague (France). After a general discussion of nuclear fuel and the fuel cycle, the main aspects of transport and reprocessing of oxide fuel are analysed. (Auth.)