WorldWideScience

Sample records for nuclear fission power

  1. Advantages of Production of New Fissionable Nuclides for the Nuclear Power Industry in Hybrid Fusion-Fission Reactors

    Science.gov (United States)

    Tsibulskiy, V. F.; Andrianova, E. A.; Davidenko, V. D.; Rodionova, E. V.; Tsibulskiy, S. V.

    2017-12-01

    A concept of a large-scale nuclear power engineering system equipped with fusion and fission reactors is presented. The reactors have a joint fuel cycle, which imposes the lowest risk of the radiation impact on the environment. The formation of such a system is considered within the framework of the evolution of the current nuclear power industry with the dominance of thermal reactors, gradual transition to the thorium fuel cycle, and integration into the system of the hybrid fusion-fission reactors for breeding nuclear fuel for fission reactors. Such evolution of the nuclear power engineering system will allow preservation of the existing structure with the dominance of thermal reactors, enable the reprocessing of the spent nuclear fuel (SNF) with low burnup, and prevent the dangerous accumulation of minor actinides. The proposed structure of the nuclear power engineering system minimizes the risk of radioactive contamination of the environment and the SNF reprocessing facilities, decreasing it by more than one order of magnitude in comparison with the proposed scheme of closing the uranium-plutonium fuel cycle based on the reprocessing of SNF with high burnup from fast reactors.

  2. Fission nuclear power prospects and its role in meeting global energy needs

    International Nuclear Information System (INIS)

    Golan, S.

    1992-01-01

    Nuclear power currently makes an important contribution to world's energy requirements providing 17% of its electricity. But as global warming becomes of greater concern, many ask whether nuclear power can and should contribute more. The author, who is involved in the nuclear power enterprise for 35 years, tries to answer this question affirmative. He holds the view that: a) nuclear fission power is essential to meeting world's energy needs without unduly impairing the global environment; b) by possessing the required attributes discussed in this paper, nuclear fission power can be made societally acceptable; c) the industrialized world should accelerate LMFR deployment while fostering more convenient energy alternatives for the developing world; and d) the HTGR is unique in its ability to augment non-electricity energy needs and could become the technology choice of developing countries for nuclear electricity production. (author). 5 refs., 5 figs., 4 tabs

  3. Nuclear Power from Fission Reactors. An Introduction.

    Science.gov (United States)

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  4. Fission Surface Power Technology Development Update

    Science.gov (United States)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power

  5. The nuclear fission process

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Fifty years after its discovery, the nuclear fission phenomenon is of recurring interest. When its fundamental physics aspects are considered, fission is viewed in a very positive way, which is reflected in the great interest generated by the meetings and large conferences organized for the 50th anniversary of its discovery. From a purely scientific and practical point of view, a new book devoted to the (low energy) nuclear fission phenomenon was highly desirable considering the tremendous amount of new results obtained since the publication of the book Nuclear Fission by Vandenbosch and Huizenga in 1973 (Academic Press). These new results could be obtained thanks to the growth of technology, which enabled the construction of powerful new neutron sources, particle and heavy ion accelerators, and very performant data-acquisition and computer systems. The re-invention of the ionization chamber, the development of large fission fragment spectrometers and sophisticated multiparameter devices, and the production of exotic isotopes also contributed significantly to an improved understanding of nuclear fission. This book is written at a level to introduce graduate students to the exciting subject of nuclear fission. The very complete list of references following each chapter also makes the book very useful for scientists, especially nuclear physicists. The book has 12 chapters covering the fission barrier and the various processes leading to fission as well as the characteristics of the various fission reaction products. In order to guarantee adequate treatment of the very specialized research fields covered, several distinguished scientists actively involved in some of these fields were invited to contribute their expertise as authors or co-authors of the different chapters

  6. Energy from nuclear fission an introduction

    CERN Document Server

    De Sanctis, Enzo; Ripani, Marco

    2016-01-01

    This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste management. The book also contains a discussion of the biological effects of nuclear radiation and of radiation protection, and a summary of the ten most relevant nuclear accidents. The book is suitable for undergraduates in physics, nuclear engineering and other science subjects. However, the mathematics is kept at a level that...

  7. JNDC nuclear data library of fission products

    International Nuclear Information System (INIS)

    Tasaka, Kanji; Ihara, Hitoshi; Akiyama, Masatsugu; Yoshida, Tadashi; Matumoto, Zyun-itiro; Nakasima, Ryuzo

    1983-10-01

    The JNDC (Japanese Nuclear Data Committee) FP (Fission Product) nuclear data library for 1172 fission products is described in this report. The gross theory of beta decay has been used extensively for estimating unknown decay data and also some of known decay data with poor accuracy. The calculated decay powers of fission products using the present library show excellent agreement with the latest measurements at ORNL (Oak Ridge National Laboratory), LANL (Los Alamos National Laboratory) and UTT (University of Tokyo, Tokai) for cooling times shorter than 10 3 s after irradiation. The calculated decay powers by the existing libraries showed systematic deviations at short cooling times; the calculated beta and gamma decay powers after burst fission were smaller than the experimental results for cooling times shorter than 10 s, and in the cooling time range 10 to 10 3 s the beta-decay power was larger than the measured values and the gamma decay power smaller than the measured results. The present JNDC FP nuclear data library resolved these discrepancies in the short cooling time ranges. The decay power of fission products has been calculated for ten fission types and the results have been fitted by an analytical function with 31 exponentials. This permits the easy application of the present results of decay power calculations to a LOCA (Loss-of-Coolant Accident) analysis of a light water reactor and so on. (author)

  8. Nuclear fission and fission-product spectroscopy: 3. International workshop on nuclear fission and fission-product spectroscopy

    International Nuclear Information System (INIS)

    Goutte, Heloise; Fioni, Gabriele; Faust, Herbert; Goutte, Dominique

    2005-01-01

    The present book contains the proceedings of the third workshop in a series of workshops previously held in Seyssins in 1994 and 1998. The meeting was jointly organized by different divisions of CEA and two major international laboratories. In the opening address, Prof. B. Bigot, the French High Commissioner for Atomic Energy, outlined France's energy policy for the next few decades. He emphasized the continuing progress of nuclear fission in both technical and economic terms, allowing it to contribute to the energy needs of the planet even more in the future than it does today. Such progress implies a very strong link between fundamental and applied research based on experimental and theoretical approaches. The workshop gathered the different nuclear communities studying the fission process, including topics as the following: - nuclear fission experiments, - spectroscopy of neutron rich nuclei, - fission data evaluation, - theoretical aspects of nuclear fission, - and innovative nuclear systems and new facilities. The scientific program was suggested by an International Advisory Committee. About 100 scientists from 13 different countries attended the conference in the friendly working atmosphere of the Castle of Cadarache in the heart of the Provence. The proceedings of the workshop were divided into 11 sections addressing the following subject matters: 1. Cross sections and resonances (5 papers); 2. Fission at higher energies - I (5 papers); 3. Fission: mass and charge yields (4 papers); 4. Light particles and cluster emission (4 papers); 5. Spectroscopy of neutron rich nuclei (5 papers); 6. Resonances, barriers, and fission times (5 papers); 7. Fragment excitation and neutron emission (4 papers); 8. Mass and energy distributions (4 papers); 9. Needs for nuclear data and new facilities - I (4 papers); 10. Angular momenta and fission at higher Energies - II (3 papers); 11. New facilities - II (2 papers). A poster session of 8 presentations completed the workshop

  9. ISOLDE experiment explores new territory in nuclear fission

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    An international collaboration led by the University of Leuven, Belgium, exploiting ISOLDE’s radioactive beams, has recently discovered an unexpected new type of asymmetric nuclear fission, which challenges current theories. The surprising result opens the way for new nuclear structure models and further theories to elucidate the question.   Resonance Ionization Laser Ion Source (RILIS) in action at ISOLDE. RILIS was instrumental in providing the pure beam necessary for the successful nuclear fission experiment. In nuclear fission, the nucleus splits into two fragments (daughter nuclei), releasing a huge amount of energy. Nuclear fission is exploited in power plants to produce energy. From the fundamental research point of view, fission is not yet fully understood decades after its discovery and its properties can still surprise nuclear physicists. The way the process occurs can tell us a lot about the internal structure of the nucleus and the interactions taking place inside the com...

  10. Transfer parameters of fission and activation products present in effluents of nuclear power reactors

    International Nuclear Information System (INIS)

    Cancio, D.; Menossi, C.A.; Ciallella, N.R.

    1978-01-01

    The paper presents results of research carried out in Argentina on transfer parameters of fission and activation products which may be present in the effluents of nuclear power reactors. For some nuclides, as Sr-90, Co-137 and I-131, the parameters were obtained by studies of the fallout, from measurements of integrated levels in the environment and in the food chains. Other values are concentration factors derived from laboratory and field experiments. They refer to fish, molluscs, crustaces and fresh water plants, for several fission and activation nuclides. Transfer parameters obtained have been of significant importance for environmental assessments, relating to nuclear installations in Argentina. (author)

  11. Energy from nuclear fission()

    Science.gov (United States)

    Ripani, M.

    2015-08-01

    The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  12. 14. International workshop on nuclear fission physics. Proceedings

    International Nuclear Information System (INIS)

    2000-01-01

    The meetings on nuclear fission took place 12-15 October 1998 and was organized by Institute of Physics and Power Engineering. The aim of the workshop was to present and discuss main new both theoretical and experimental results obtained in the area of nuclear fission, dynamical feature, properties of fission fragments and complementary radiation. As usual the program of the workshop was designed to cover a wide range of physical phenomena - from low energy and spontaneous fission to fission of hot rotating nuclei and multifragmentation at intermediate and high energies. Reaction induced by slow and fast neutron, light and heavy ions were discussed [ru

  13. Hybrid fission-fusion nuclear reactors

    International Nuclear Information System (INIS)

    Zucchetti, Massimo

    2011-01-01

    A fusion-fission hybrid could contribute to all components of nuclear power - fuel supply, electricity production, and waste management. The idea of the fusion-fission hybrid is many decades old. Several ideas, both new and revisited, have been investigated by hybrid proponents. These ideas appear to have attractive features, but they require various levels of advances in plasma science and fusion and nuclear technology. As a first step towards the development of hybrid reactors, fusion neutron sources can be considered as an option. Compact high-field tokamaks can be a candidate for being the neutron source in a fission-fusion hybrid, essentially due to their design characteristics, such as compact dimensions, high magnetic field, flexibility of operation. This study presents the development of a tokamak neutron source for a material testing facility using an Ignitor-based concept. The computed values show the potential of this neutron-rich device for fusion materials testing. Some full-power months of operation are sufficient to obtain relevant radiation damage values in terms of dpa. (Author)

  14. Source driven breeding fission power reactors and the nuclear energy strategy

    International Nuclear Information System (INIS)

    Greenspan, E.

    The nuclear energy economy is facing severe difficulties associated with low utilization of uranium resources, safety, non-proliferation and environmental issues. Energy policy makers face the dilemma: commercialize LMFBRs immediately with the risk of negative economical, proliferation or other consequences, or continue with R and D programs that will provide the information needed for sounder decisions, but now taking the risk of running out of economically exploitable uranium ore resources. The development of hybrid reactors can provide an assurance against the latter risk and offers many interesting new options for the nuclear energy strategy. Being based on the technology of LWRs and HWRs, Light Water Hybrid Reactors (LWHR) provide a most natural link between the fission reactor technology of the present and the fusion power technology of the future. The investment in their development in excess of that required for the development of fusion power reactors is expected to be relatively small, thus making the development of LWHRs potentially a high benefit-to-cost ratio program. It is recommended that the fission and fusion communities will cooperate in hybrids R and D programs aimed at assessing the technological and economical viability of hybrid reactors as reliably and soon as possible. (author)

  15. High-power proton linac for transmuting the long-lived fission products in nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, G.P.

    1991-01-01

    High power proton linacs are being considered at Los Alamos as drivers for high-flux spallation neutron sources that can be used to transmute the troublesome long-lived fission products in defense nuclear waste. The transmutation scheme being studied provides a high flux (> 10{sup 16}/cm{sup 2}{minus}s) of thermal neutrons, which efficiently converts fission products to stable or short-lived isotopes. A medium-energy proton linac with an average beam power of about 110 MW can burn the accumulated Tc99 and I129 inventory at the DOE's Hanford Site within 30 years. Preliminary concepts for this machine are described. 3 refs., 5 figs., 2 tabs.

  16. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    Science.gov (United States)

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  17. Nuclear fission

    International Nuclear Information System (INIS)

    Kodama, T.

    1981-01-01

    The nuclear fission process is pedagogically reviewed from a macroscopic-microscopic point of view. The Droplet model is considered. The fission dynamics is discussed utilizing path integrals and semiclassical methods. (L.C.) [pt

  18. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2003-01-01

    This chapter discuss on nuclear power and its advantages. The concept of nucleus fission, fusion, electric generation are discussed in this chapter. Nuclear power has big potential to become alternative energy to substitute current conventional energy from coal, oil and gas

  19. Nuclear fission and neutron-induced fission cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    James, G.D.; Lynn, J.E.; Michaudon, A.; Rowlands, J.; de Saussure, G.

    1981-01-01

    A general presentation of current knowledge of the fission process is given with emphasis on the low energy fission of actinide nuclei and neutron induced fission. The need for and the required accuracy of fission cross section data in nuclear energy programs are discussed. A summary is given of the steps involved in fission cross section measurement and the range of available techniques. Methods of fission detection are described with emphasis on energy dependent changed and detector efficiency. Examples of cross section measurements are given and data reduction is discussed. The calculation of fission cross sections is discussed and relevant nuclear theory including the formation and decay of compound nuclei and energy level density is introduced. A description of a practical computation of fission cross sections is given.

  20. Sustainable and safe nuclear fission energy technology and safety of fast and thermal nuclear reactors

    CERN Document Server

    Kessler, Günter

    2012-01-01

    Unlike existing books of nuclear reactor physics, nuclear engineering and nuclear chemical engineering this book covers a complete description and evaluation of nuclear fission power generation. It covers the whole nuclear fuel cycle, from the extraction of natural uranium from ore mines, uranium conversion and enrichment up to the fabrication of fuel elements for the cores of various types of fission reactors. This is followed by the description of the different fuel cycle options and the final storage in nuclear waste repositories. In addition the release of radioactivity under normal and possible accidental conditions is given for all parts of the nuclear fuel cycle and especially for the different fission reactor types.

  1. Metrology for New Generation Nuclear Power Plants - MetroFission

    International Nuclear Information System (INIS)

    Johansson, Lena; Dinsdale, Alan; Keightley, John; Filtz, Jean-Remy; Hay, Bruno; DeFelice, Pierino; Sadli, Mohamed; Plompen, Arjan; Heyse, Jan; Pomme, Stefaan; Cassette, Philippe

    2013-06-01

    MetroFission project has been looking at solving metrological problems related to a new generation of NPPs. The proposed Gen. IV NPPs are designed to run safely, make efficient use of natural resources, minimize the waste and maintain proliferation resistance. In order to reach these goals, the reactor operation involves higher temperatures, high-energy neutron fluence, different types of fuel where the minor actinides are included etc. The work has focused on improved temperature measurements, investigation of thermal properties of advanced materials, determination of new and relevant nuclear data and development of measurement techniques for radionuclides suitable for Gen. IV NPPs. The improved temperature measurement for nuclear power plant applications includes the development of a new Fe-C fixed point. Robust, repeatable and versatile cells have been constructed and compared with success among the project participants and their melting temperatures have been determined. Methodology of self-validating thermocouples has proven efficient at several fixed point temperatures using different designs. A practical acoustic thermometer has been tested at 1000 deg. C with success thanks to the use of innovative signal processing methods. Mo/Nb thermocouples have been obtained with different sheath materials and tested with the aim to achieve for the first time a reference function determined with the best possible uncertainties. Following reviews of designs and technology proposed for fourth generation nuclear plants effort within this project, with regards to thermal properties of advanced materials for nuclear design, has concentrated on provision of thermodynamic data to support the development of the sodium cooled fast reactor. Data has been critically assessed to represent the potential interaction between the Na coolant and the nuclear fuel taken to be based on (U, Pu)O 2 but incorporating minor actinides such as Np and Am. Data for the fission products and

  2. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    Behrens, J.W.; Carlson, A.D.

    1989-01-01

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty Years with Nuclear Fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately

  3. Status of fission power

    International Nuclear Information System (INIS)

    Levenson, M.

    1977-01-01

    Fission energy is reviewed from the viewpoints of technology, economics, politics, manufacturers, consumers, and foreign countries. Technically, the reactor program is operating and the light water reactor industry shows signs of maturing, although recent business has been disappointing. Marketing of gas-cooled reactors depends, not on technical, but economic and political issues. Liquid metal fast breeder reactors have been demonstrated worldwide, while the gas-cooled fast breeder remains an undemonstrated option. Nuclear plants, currently costing the same as coal plants with scrubbers, are the cheapest option for utilities because most of the cost is imbedded. The defeat of nuclear initiatives in seven states indicates that public feeling is not as anti-nuclear as opponents to nuclear power claim. The harshness of last winter demonstrated the advantages of a power source that is not so sensitive to the weather for reliable operation and transport, as well as low cost energy. Other nations are proceeding to build a nuclear capability, which the U.S. may jeopardize because of concerns about the fuel cycle, nuclear waste disposal, uranium reserves, and nuclear proliferation

  4. R and D in Ciemat Nuclear Fission Department

    International Nuclear Information System (INIS)

    Diaz, J. L.; Diaz Arocas, P.; Gomez Briceno, D.; Gonzalez de la Huebra Gordo, A.; Gonzalez Romero, E.; Herranz Puebla, L. E.; Sola Farre, R.

    2000-01-01

    The technologically developed countries count on nuclear fission as a durable energy resource to produce electricity, facing the future by establishing research programmes to enhance the safety and extend the lifetime of the current power plants and to achieve the adequate management of radioactive waste. At the same time, the progress in the development of a new generation of reactors based in innovative safety concepts. The Nuclear fission Department has the ultimate objective of providing technical support to the Spanish nuclear reactors through applied research and development focused on improving the safety and performance of the operating power plants, and cooperating in the activities related to radioactive waste. In this context, the Departament has been organised in four R and D project covering the areas of Safety, Materials, Radioactive. (Author)

  5. Fission 2009 4. International Workshop on Nuclear Fission and Fission Product Spectroscopy - Compilation of slides

    International Nuclear Information System (INIS)

    2009-01-01

    This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations

  6. Nuclear Forensics and Radiochemistry: Fission

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-07

    Radiochemistry has been used to study fission since it’ discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution.

  7. Nuclear fission and neutron-induced fission cross-sections

    CERN Document Server

    James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E

    2013-01-01

    Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis

  8. 50 years of nuclear fission

    International Nuclear Information System (INIS)

    Hilscher, D.

    1989-01-01

    The article tells the story of the discovery of nuclear fission in Berlin 50 years ago by Otto Hahn and Fritz Strassmann in cooperation with Lise Meitner. 50 years later nuclear fission is still a subject of research. Some question remain unanswered. Selected new research results are used to discuss the dynamics of the collective movement of the elementary nuclear fission process. (orig.) [de

  9. Nuclear fission with inertial confinement

    CERN Document Server

    Koshkarev, D G

    2002-01-01

    The possibility of initiating the explosive fission reaction in a small quantity of fissile material through the heavy ions beam from the powerful accelerator-driver, developed for realization of the thermonuclear synthesis in the deuterium-tritium cylindrical targets with the direct ignition, is considered. The consequences of applying this method in the nuclear engineering are discussed

  10. Research problems of fission product behaviour in fuels of nuclear power plants and ways of their solution

    International Nuclear Information System (INIS)

    Sulaberidze, V.Sh.

    1988-01-01

    The most important problems of studying behaviour of fission products in fuel elements of maneouvrable nuclear power plants units are formulated. In-pile and out-of-pile investigation methods solving these problems are characterized in brief. 12 refs.; 2 figs

  11. Legal and Regulatroy Obstacles to Nuclear Fission Technology in Space

    Science.gov (United States)

    Force, Melissa K.

    2013-09-01

    In forecasting the prospective use of small nuclear reactors for spacecraft and space-based power stations, the U.S. Air Force describes space as "the ultimate high ground," providing access to every part of the globe. But is it? A report titled "Energy Horizons: United States Air Force Energy Science &Technology Vision 2011-2026," focuses on core Air Force missions in space energy generation, operations and propulsion and recognizes that investments into small modular nuclear fission reactors can be leveraged for space-based systems. However, the report mentions, as an aside, that "potential catastrophic outcomes" are an element to be weighed and provides no insight into the monumental political and legal will required to overcome the mere stigma of nuclear energy, even when referring only to the most benign nuclear power generation systems - RTGs. On the heels of that report, a joint Department of Energy and NASA team published positive results from the demonstration of a uranium- powered fission reactor. The experiment was perhaps most notable for exemplifying just how effective the powerful anti-nuclear lobby has been in the United States: It was the first such demonstration of its kind in nearly fifty years. Space visionaries must anticipate a difficult war, consisting of multiple battles that must be waged in order to obtain a license to fly any but the feeblest of nuclear power sources in space. This paper aims to guide the reader through the obstacles to be overcome before nuclear fission technology can be put to use in space.

  12. Physics and potentials of fissioning plasmas for space power and propulsion

    Science.gov (United States)

    Thom, K.; Schwenk, F. C.; Schneider, R. T.

    1976-01-01

    Fissioning uranium plasmas are the nuclear fuel in conceptual high-temperature gaseous-core reactors for advanced rocket propulsion in space. A gaseous-core nuclear rocket would be a thermal reactor in which an enriched uranium plasma at about 10,000 K is confined in a reflector-moderator cavity where it is nuclear critical and transfers its fission power to a confining propellant flow for the production of thrust at a specific impulse up to 5000 sec. With a thrust-to-engine weight ratio approaching unity, the gaseous-core nuclear rocket could provide for propulsion capabilities needed for manned missions to the nearby planets and for economical cislunar ferry services. Fueled with enriched uranium hexafluoride and operated at temperatures lower than needed for propulsion, the gaseous-core reactor scheme also offers significant benefits in applications for space and terrestrial power. They include high-efficiency power generation at low specific mass, the burnup of certain fission products and actinides, the breeding of U-233 from thorium with short doubling times, and improved convenience of fuel handling and processing in the gaseous phase.

  13. Nuclear fission and reactions

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The nuclear fission research programs are designed to elucidate basic features of the fission process. Specifically, (1) factors determining how nucleons of a fissioning nucleus are distributed between two fission fragments, (2) factors determining kinetic energy and excitation energies of fragments, and (3) factors controlling fission lifetimes. To these ends, fission studies are reported for several heavy elements and include investigations of spontaneous and neutron-induced fission, heavy ion reactions, and high energy proton reactions. The status of theoretical research is also discussed. (U.S.)

  14. Comparative energetics of three fusion-fission symbiotic nuclear reactor systems

    International Nuclear Information System (INIS)

    Gordon, C.W.; Harms, A.A.

    1975-01-01

    The energetics of three symbiotic fusion-fission nuclear reactor concepts are investigated. The fuel and power balances are considered for various values of systems parameters. The results from this analysis suggest that symbiotic fusion-fission systems are advantageous from the standpoint of economy and resource utilization. (Auth.)

  15. 60 years controlled nuclear fission: CP-1

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    On December 2, 1942, the Chicago Pile 1 (CP-1) went critical for the first time. In this way, the scientists and engineers involved in the project under the leadership of Enrico Fermi succeeded in demonstrating that a self-sustaining nuclear reaction with nuclear fission processes was technically feasible. Only four years after the discovery and proof of nuclear fission by Otto Hahn, Fritz Strassmann, and Lise Meitner, the experiment consisting of graphite blocks as the moderator and uranium dioxide pellets as the fuel, as well as instrumentation and control devices, had been set up in the former squash court of the field and track stadium of the University of Chicago. Precisely at 3.36 a.m. Chicago time, after control rods had been withdrawn, the instruments showed the chain reaction by the neutron flux they indicated. An important cornerstone in the use of nuclear power had thus been laid. (orig.)

  16. Micro-structured nuclear fuel and novel nuclear reactor concepts for advanced power production

    International Nuclear Information System (INIS)

    Popa-Simil, Liviu

    2008-01-01

    Many applications (e.g. terrestrial and space electric power production, naval, underwater and railroad propulsion and auxiliary power for isolated regions) require a compact-high-power electricity source. The development of such a reactor structure necessitates a deeper understanding of fission energy transport and materials behavior in radiation dominated structures. One solution to reduce the greenhouse-gas emissions and delay the catastrophic events' occurrences may be the development of massive nuclear power. The actual basic conceptions in nuclear reactors are at the base of the bottleneck in enhancements. The current nuclear reactors look like high security prisons applied to fission products. The micro-bead heterogeneous fuel mesh gives the fission products the possibility to acquire stable conditions outside the hot zones without spilling, in exchange for advantages - possibility of enhancing the nuclear technology for power production. There is a possibility to accommodate the materials and structures with the phenomenon of interest, the high temperature fission products free fuel with near perfect burning. This feature is important to the future of nuclear power development in order to avoid the nuclear fuel peak, and high price increase due to the immobilization of the fuel in the waste fuel nuclear reactor pools. (author)

  17. Clean nuclear power (2. part)

    International Nuclear Information System (INIS)

    Rocherolles, R.

    1998-01-01

    The 450 nuclear power plants which produce 24% of world electricity do not generate greenhouse gas effects, but 8,000 tonnes per year of irradiated, radioactive fuel. The first article which was published in the July-August 1997 issue of this journal, described the composition and management of these fuels. This article wish to show the advantage of 'advanced re-processing', which would separate fission products from actinides, in order to incinerate them separately in dedicated fuels and reactors, which, from an ecological point of view, seems more efficient than burying them underground in deep, geological layers. To rid the planet of waste which is continuing to build up, the first step is to build 'incinerators' which will eliminate fission products by slow neutron assisted neutronic capture, and actinides by fast neutron assisted fission. Various projects have been set up, in particular, in Los Alamos, Japan and the CERN. The Carlo Rubbia hybrid machine operating on the well-known thorium cycle is the most advanced project. An incinerator connected up to standard PWR reactor produces no actinide, and reduces the existing stock of plutonium. However, the proper solution, obviously, is to no longer produce waste along with power; second generation nuclear fission will do this. The CERN team bas studied a clean reactor, producing practically no actinides, or fission products, more or less. Thus, the solution to the problem of waste is at hand, and nuclear power will be cleaner that all other types of power. The world market opening up to clean nuclear power is about 1,300 Gigawatts, or 1,300 plants of 1,000 Megawatts. Remarkable progress is taking place under our very eyes; soon we will have clean power in sufficient quantities, at a lower cost than that of other forms of power. (authors)

  18. Charged particle-induced nuclear fission reactions

    Indian Academy of Sciences (India)

    The nuclear fission phenomenon continues to be an enigma, even after nearly 75 years of its discovery. Considerable progress has been made towards understanding the fission process. Both light projectiles and heavy ions have been employed to investigate nuclear fission. An extensive database of the properties of ...

  19. The future of fission-electric power

    International Nuclear Information System (INIS)

    Morowski, J.V.

    1983-06-01

    Future worldwide electricity supply needs dictate the necessity of maintaining a sound capability for electricity and electric power generating facilities, including nuclear, as viable export commodities. A survey of fission-power plant types and the status of worldwide nuclear electric power illustrates the primary emphasis on LWR's and HWR's as two leading types in the export market. This survey examines the factors affecting the market prospects for the next five to fifteen years and provides a discussion on some possible improvements to current market circumstances. A comparative description is provided for some of the types of LWR and CANDU characteristics such as quantities, schedules, constructability factors, and equipment and system. Important factors in the selection process for future nuclear power plants are discussed. Some factors included are seismic design requirements; plant design description and possible site layout; plant protection, control and instrumentation; thermal cycle design and arrangement; and special construction and rigging requirements

  20. The nuclear fission

    International Nuclear Information System (INIS)

    Fiorentino, J.

    1983-01-01

    The nuclear fission process considering initially the formation of compound nucleus and finishing with radioactive decay of fission products is studied. The process is divided in three parts which consist of the events associated to the nucleus of intermediate transitional state, the scission configuration, and the phenomenum of post scission. (M.C.K.) [pt

  1. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    Behrens, J.W.; Carlson, A.D.

    1989-01-01

    The news of the discovery of nucler fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fiftieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty years with nuclear fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent developments in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicating a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two full days of sessions (April 27 and 28) at the main sites of the NIST in Gaithersburg, Maryland. The wide range of topics covered by Volume 2 of this topical meeting included plenary invited, and contributed sessions entitled, Nuclear fission -- a prospective; reactors II; fission science II; medical and industrial applications by by-products; reactors and safeguards; general research, instrumentation, and by-products; and fission data, astrophysics, and space applications. The individual papers have been cataloged separately

  2. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1981-06-01

    This is the seventh issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission); neutron reaction cross sections of fission products; data related to the radioactive decay of fission products; delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The sixth issue of this series has been published in June 1980 as INDC(NDS)-113/G+P. The present issue includes contributions which were received by NDS between 1 August 1980 and 25 May 1981

  3. Kilowatt-Class Fission Power Systems for Science and Human Precursor Missions

    Science.gov (United States)

    Mason, Lee S.; Gibson, Marc Andrew; Poston, Dave

    2013-01-01

    Nuclear power provides an enabling capability for NASA missions that might otherwise be constrained by power availability, mission duration, or operational robustness. NASA and the Department of Energy (DOE) are developing fission power technology to serve a wide range of future space uses. Advantages include lower mass, longer life, and greater mission flexibility than competing power system options. Kilowatt-class fission systems, designated "Kilopower," were conceived to address the need for systems to fill the gap above the current 100-W-class radioisotope power systems being developed for science missions and below the typical 100-k We-class reactor power systems being developed for human exploration missions. This paper reviews the current fission technology project and examines some Kilopower concepts that could be used to support future science missions or human precursors.

  4. Needs and accuracy requirements for fission product nuclear data in the physics design of power reactor cores

    International Nuclear Information System (INIS)

    Rowlands, J.L.

    1978-01-01

    The fission product nuclear data accuracy requirements for fast and thermal reactor core performance predictions were reviewed by Tyror at the Bologna FPND Meeting. The status of the data was assessed at the Meeting and it was concluded that the requirements of thermal reactors were largely met, and the yield data requirements of fast reactors, but not the cross section requirements, were met. However, the World Request List for Nuclear Data (WRENDA) contains a number of requests for fission product capture cross sections in the energy range of interest for thermal reactors. Recent reports indicate that the fast reactor reactivity requirements might have been met by integral measurements made in zero power critical assemblies. However, there are requests for the differential cross sections of the individual isotopes to be determined in addition to the integral data requirements. The fast reactor requirements are reviewed, taking into account some more recent studies of the effects of fission products. The sodium void reactivity effect depends on the fission product cross sections in a different way to the fission product reactivity effect in a normal core. This requirement might call for different types of measurement. There is currently an interest in high burnup fuel cycles and alternative fuel cycles. These might require more accurate fission product data, data for individual isotopes and data for capture products. Recent calculations of the time dependence of fission product reactivity effects show that this is dependent upon the data set used and there are significant uncertainties. Some recent thermal reactor studies on approximations in the treatment of decay chains and the importance of xenon and samarium poisoning are also summarized. (author)

  5. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Hylten, G.

    1982-01-01

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  6. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1983-08-01

    This is the ninth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The eighth issue of this series has been published in July 1982 as INDC(NDS)-130. The present issue includes contributions which were received by NDS between 1 August 1982 and 25 June 1983

  7. Nuclear fission studies: from LOHENGRIN to FIPPS

    International Nuclear Information System (INIS)

    Chebboubi, Abdelaziz

    2015-01-01

    Nuclear fission consists in splitting a nucleus, in general an actinide, into smaller nuclei. Despite nuclear fission was discovered in 1939 by Hahn and Strassman, fission models cannot predict the fission observables with an acceptable accuracy for nuclear fuel cycle studies for instance. Improvement of fission models is an important issue for the knowledge of the process itself and for the applications. To reduce uncertainties of the nuclear data used in a nuclear reactor simulation, a validation of the models hypothesis is mandatory. In this work, two features of the nuclear fission were investigated in order to test the resistance of the theories. One aspect is the study of the symmetric fission fragments through the measurement of their yield and kinetic energy distribution. The other aspect is the study of the fission fragment angular momentum.Two techniques are available to assess the angular momentum of a fission fragment. The first one is to look at the properties of the prompt gamma. The new spectrometer FIPPS (Fission Product Prompt gamma-ray Spectrometer), is currently under development at the ILL and will combine a fission filter with a large array of gamma and neutron detectors in order to respond to these issues. The first part of this work is dedicated to the study of the properties of a Gas Filled Magnet (GFM) which is the type of fission filter considered for the FIPPS project.The second part of this work deals with the measurement of isomeric yields and evaluations of the angular momentum distribution of fission fragments. The study of the spherical nucleus 132 Sn shed the light on the current limits of fission models. Finally, the last part of this work is about the measurement of the yields and kinetic energy distributions of symmetric fission fragments. Since models predict the existence of fission modes, the symmetry region is a suitable choice to investigate this kind of prediction. In parallel with all these studies, an emphasis on the

  8. Nuclear power and physics

    International Nuclear Information System (INIS)

    Xu Mi

    2006-01-01

    During the 30s and 40s of the last century atomic physicists discovered the fission of uranium nuclei bombarded by neutrons and realized the first self-sustaining controlled fission chain reaction, which ushered in the atomic age. After 50 years of electricity production, in 2003 nuclear power plants were generating 16% of the total electricity in the world. Of these, thermal neutron reactors make up over 99%. For the large scale production of nuclear power, say up to hundreds of GWe, it is very important to speed up the development and deployment of fast breeder reactors to avoid the future lack of uranium resources. (authors)

  9. Benefits and hazards of nuclear power

    International Nuclear Information System (INIS)

    Barnert, H.; Borsch, P.; Feldmann, A.; Merz, E.; Muench, E.; Oesterwind, D.; Voss, A.; Wolters, J.

    1979-09-01

    Compilation of a seminar at the KFA Juelich on topical problems of nuclear power. Subjects: Energy demand, its expected development and possibilities of coverage; physical fundamentals and technical realisation of power generation by nuclear fission; fuel cycle problems and solutions; effects of radioactive radiation; safety of nuclear power plants and the nuclear hazard as compared with other hazards. (orig./RW) [de

  10. Geology behind nuclear fission technology

    International Nuclear Information System (INIS)

    Dhana Raju, R.

    2005-01-01

    Geology appears to have played an important role of a precursor to Nuclear Fission Technology (NFT), in the latter's both birth from the nucleus of an atom of and most important application as nuclear power extracted from Uranium (U), present in its minerals. NFT critically depends upon the availability of its basic raw material, viz., nuclear fuel as U and/ or Th, extracted from U-Th minerals of specific rock types in the earth's crust. Research and Development of the Nuclear Fuel Cycle (NFC) depends heavily on 'Geology'. In this paper, a brief review of the major branches of geology and their contributions during different stages of NFC, in the Indian scenario, is presented so as to demonstrate the important role played by 'Geology' behind the development of NFT, in general, and NFC, in particular. (author)

  11. Control of a laser inertial confinement fusion-fission power plant

    Science.gov (United States)

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  12. Human survival depends on nuclear power

    International Nuclear Information System (INIS)

    Gilbertson, J.

    1977-01-01

    Both the Wall Street Journal and the New York Times published feature articles Dec. 1 advertising a report by the U.S. government's General Accounting Office as evidence that the breeder reactor component of this nation's nuclear energy program was properly on its way to the scrap heap. According to the author, these and similar press accounts are intended to further legitimize the widely believed (and totally false) notion that increased plutonium use and nuclear fission generally represent a danger to humanity. Purposefully ignored in such accounts, he says, is the evidence that the elimination of plutonium as a nuclear fuel will mean the demise of the entire U.S. nuclear power industry and ultimately the human race itself. At stake in the short term, in addition to the breeder reactor program, is the well-established use of light water reactors for generating electricity, since these must, within a matter of years, be fueled with plutonium. The attack is also directed at the more advanced, more capital-intensive nuclear fusion technology, since the elimination of fission programs will wipe out the trained cadre force of engineers, scientists, technicians, and skilled workers needed to develop fusion power. The growth of fission power over the next two decades is absolutely necessary for the transition to a full fusion-based economy, according to Mr. Gilbertson. Only nuclear fusion has the inherent capability of transforming industry to the necessary higher mode of production and output, as well as providing a limitless source of usable power in several forms, thus insuring the survival of the human race beyond this century. Fission power and conventional fossil power must be expanded and possibly even exhausted during this transition in order to guarantee the achievement of this goal, he says

  13. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, G.

    1975-01-01

    This is the first issue of a report series on Fission Product Nuclear Data (FPND), published every six months by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). Its purpose is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields; neutron cross-section data of fission products; data related to β-, γ-decay of fission products; delayed neutron data; and fission product decay-heat. The present issue includes contributions which were received by NDS before 1 November 1975

  14. Journey from discovery of nuclear fission to accelerator-driven sub-critical reactor systems (ADS)

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    2005-01-01

    The epoch making discovery of nuclear fission in 1939, which resulted purely from the curiosity driven basic research to understand the atomic and nuclear structure has changed the world forever with the onset of a new era in the history of human civilization. The basic nuclear physics research pursued after the discovery of fission has also been of much relevance in the harnessing of nuclear energy. In the recent years, there is considerable interest towards developing accelerator driven sub-critical reactor systems (ADS) for the incineration of the long-lived spent fuel radioactive waste and for the utilization of thorium fuel for nuclear power generation. In this talk, we discuss important milestones in the journey from discovery of nuclear fission to ADS. (author)

  15. Polarographic determination of Iodide and Iodate, in Solutions Coming from Aerosols in Fission Products Containment Studies in Nuclear Power Stations

    International Nuclear Information System (INIS)

    Sanchez, M.; Ballesteros, O.; Fernandez, M.; Clavero, M.A.; Gonzalez, A.M.

    2000-01-01

    A polarographic method is described for the iodine species determination, iodide and iodate in water solutions. the iodate can be determined by differential pulse polarography. Calibration curves and the detection and determination limits have been obtained. Iodides is oxidized to iodate with sodium hypochlorite and the excess of oxidizing agent is destroyed with sodium sulphide. The concentration of iodide is calculated as the difference between the concentration of iodate in the sample before and after the oxidation. As an application, species of iodine in samples coming from the experimental plants GIRS (Gaseous Iodine Removal by Sprays) of Nuclear Fission Department of the CIEMAT, dedicated to fission products containment studies in nuclear power station, were determined. (Author) 10 refs

  16. Insights into nuclear structure and the fission process from spontaneous fission

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, J.H.; Butler-Moore, K.; Ramayya, A.V. [Vanderbilt Univ., Nashville, TN (United States)] [and others

    1993-12-31

    The {gamma}-rays emitted following spontaneous and induced fission are rich sources of information about the structure of neutron-rich nuclei and about the fission process itself. The study of spontaneous fissioning isotopes with large Ge detector arrays are providing a wealth of such information as seen, for example, in recent reports. In this paper we present some of our most recent results on nuclear structure studies and conclusions on the fission process itself. In our work, we have employed in spontaneous fission, a triple gamma coincidence study for the first time and a high resolution, X-ray detector-{gamma}-coincidence study. These data provide powerful ways of separating the gamma rays which belong to a particular nucleus. The triple coincidence technique was used to uniquely identify the levels in {sup 136}Te and higher spin states in its N=84 isotones, {sup 138}Xe and {sup 140}Ba{sup 171}. Some other examples of the level structures observed in the low and high mass partners are presented, including a detailed analysis of the backbending of the moment of inertia in {sup 112,114,116}Pd. Finally, we present the first examples of how our analysis allows one to extract a detailed picture of the dependence of the angular momentum on the mass and atomic numbers of the fission fragments and of the long-sought neutron multiplicity distribution from zero-n to ten-n as a function of the charge and mass asymmetry.

  17. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1982-07-01

    This is the eighth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. Therefore, the IAEA cannot be held responsible for the information contained nor for any consequences resulting from the use of this information. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The seventh issue of this series has been published in July 1981 as INDC(NDS)-116. The present issue includes contributions which were received by NDS between 1 August 1981 and 15 June 1982

  18. Induced-Fission Imaging of Nuclear Material

    International Nuclear Information System (INIS)

    Hausladen, Paul; Blackston, Matthew A.; Mullens, James Allen; McConchie, Seth M.; Mihalczo, John T.; Bingham, Philip R.; Ericson, Milton Nance; Fabris, Lorenzo

    2010-01-01

    This paper presents initial results from development of the induced-fission imaging technique, which can be used for the purpose of measuring or verifying the distribution of fissionable material in an unopened container. The technique is based on stimulating fissions in nuclear material with 14 MeV neutrons from an associated-particle deuterium-tritium (D-T) generator and counting the subsequent induced fast fission neutrons with an array of fast organic scintillation detectors. For each source neutron incident on the container, the neutron creation time and initial trajectory are known from detection of the associated alpha particle of the d + t → α + n reaction. Many induced fissions will lie along (or near) the interrogating neutron path, allowing an image of the spatial distribution of prompt induced fissions, and thereby fissionable material, to be constructed. A variety of induced-fission imaging measurements have been performed at Oak Ridge National Laboratory with a portable, low-dose D-T generator, including single-view radiographic measurements and three-dimensional tomographic measurements. Results from these measurements will be presented along with the neutron transmission images that have been performed simultaneously. This new capability may have applications to a number of areas in which there may be a need to confirm the presence or configuration of nuclear materials, such as nuclear material control and accountability, quality assurance, treaty confirmation, or homeland security applications.

  19. Progress in fission product nuclear data. No. 14

    International Nuclear Information System (INIS)

    Lammer, M.

    1994-06-01

    This is the 14th issue of a report series on Fission Product Nuclear Data published by the Nuclear Data Section of the IAEA. The types of activities included are measurements, compilations and evaluations of fission product yields, neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data from neutron induced and spontaneous fission, lumped fission product data. The first part of the report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The second part contains some recent references relative to fission product nuclear data, which were not covered by the contributions submitted, and selected papers from conferences. The third part contains requirements for further measurements

  20. Nuclear fission and nuclear safeguards: Common technologies and challenges

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1989-01-01

    Nuclear fission and nuclear safeguards have much in common, including the basic physical phenomena and technologies involved as well as the commitments and challenges posed by expanding nuclear programs in many countries around the world. The unique characteristics of the fission process -- such as prompt and delayed neutron and gamma ray emission -- not only provide the means of sustaining and controlling the fission chain reaction, but also provide unique ''signatures'' that are essential to quantitative measurement and effective safeguarding of key nuclear materials (notably 239 Pu and 235 U) against theft, loss, or diversion. In this paper, we trace briefly the historical emergence of safeguards as an essential component of the expansion of the nuclear enterprise worldwide. We then survey the major categories of passive and active nondestructive assay techniques that are currently in use or under development for rapid, accurate measurement and verification of safe-guarded nuclear materials in the many forms in which they occur throughout the nuclear fuel cycle. 23 refs., 14 figs

  1. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1984-09-01

    This is the tenth issue of a report series on Fission Product Data, which informs us about all the activities in this field, which are planned, ongoing, or have recently been completed. The types of activities included are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission), neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products, lumped fission product data (decay heat, absorption, etc.). There is also a section with recent references relative to fission product nuclear data

  2. Hybrid nuclear cycles for nuclear fission sustainability

    International Nuclear Information System (INIS)

    Piera, M.; Martinez-Val, M. M.

    2007-01-01

    Nuclear fission can play and must play an important role in paving the road to Energy Sustainability. Nuclear Fission does not produce CO 2 emissions, and it is already exploited at commercial level with the current NPP (Nuclear Power Plants). Most of them are based on LWR reactors, which have a very good safety record. It must be noted, however, that all LWR (including the advanced or evolutionary ones) have some drawbacks, particularly their very poor efficiency in exploiting the natural resources of nuclear fuels. In this paper, an analysis is presented on how to maximize the energy actually generated from the potential contents of fission natural resources. The role of fertile-to-fissile breeding is highlighted, as well as the need of attaining a very high safety performance in the reactors and other installations of the fuel cycle. The proposal presented in this paper is to use advanced and evolutionary LWR as energy producing reactors, and to use subcritical fast assemblies as breeders. The main result would be to increase by two orders of magnitude the percentage of energy effectively exploited from fission natural resources, while keeping a very high level of safety standards in the full fuel cycle. Breeders would not be intended for energy production, so that safety standards could rely on very low values of the thermal magnitudes, so allowing for very large safety margins for emergency cooling. Similarly, subcriticality would offer a very large margin for not to reach prompt criticality in any event. The main drawback of this proposal is that a sizeable fraction of the energy generated in the cycle (about 1/3, maybe a little more) would not be useful for the thermodynamic cycle to produce electricity. Besides that, a fraction of the generated electricity, between 5 and 10 %, would have to be recirculated to feed the accelerator activating the neutron source. Even so, the overall result would be very positive, because more than 50 % of the natural

  3. Review of the safety concept for fusion reactor concepts and transferability of the nuclear fission regulation to potential fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, Juergen; Weller, Arthur; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik (IPP), Garching (Germany); Jin, Xue Zhou; Boccaccini, Lorenzo V.; Stieglitz, Robert; Carloni, Dario [Karlsruher Institute fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany); Pistner, Christoph [Oeko-Institut e.V., Darmstadt (Germany); Herb, Joachim [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Koeln (Germany)

    2016-01-15

    This paper summarizes the current state of the art in science and technology of the safety concept for future fusion power plants (FPPs) and examines the transferability of the current nuclear fission regulation to the concepts of future fusion power plants. At the moment there exist only conceptual designs of future fusion power plants. The most detailed concepts with regards to safety aspects were found in the European Power Plant Conceptual Study (PPCS). The plant concepts discussed in the PPCS are based on magnetic confinement of the plasma. The safety concept of fusion power plants, which has been developed during the last decades, is based on the safety concepts of installations with radioactive inventories, especially nuclear fission power plants. It applies the concept of defence in depth. However, there are specific differences between the implementations of the safety concepts due to the physical and technological characteristics of fusion and fission. It is analysed whether for fusion a safety concept is required comparable to the one of fission. For this the consequences of a purely hypothetical release of large amounts of the radioactive inventory of a fusion power plant and a fission power plant are compared. In such an event the evacuation criterion outside the plant is exceeded by several orders of magnitude for a fission power plant. For a fusion power plant the expected radiological consequences are of the order of the evacuation criterion. Therefore, a safety concept is also necessary for fusion to guarantee the confinement of the radioactive inventory. The comparison between the safety concepts for fusion and fission shows that the fundamental safety function ''confinement of the radioactive materials'' can be transferred directly in a methodical way. For a fusion power plant this fundamental safety function is based on both, physical barriers as well as on active retention functions. After the termination of the fusion

  4. Bimodality in macroscopic dynamics of nuclear fission

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Salamatin, V.S.; Strteltsova, O.I.; Molodtsova, I.V.; Podgainy, D.V.; )

    2000-01-01

    The elastodynamic collective model of nuclear fission is outlined whose underlying idea is that the stiff structure of nuclear shells imparts to nucleus properties typical of a small piece of an elastic solid. Emphasis is placed on the macroscopic dynamics of nuclear deformations resulting in fission by two energetically different modes. The low-energy S-mode is the fission due to disruption of elongated quadrupole spheroidal shape. The characteristic features of the high-energy T-mode of division by means of torsional shear deformations is the compact scission configuration. Analytic and numerical estimates for the macroscopic fission-barrier heights are presented, followed by discussion of fingerprints of the above dynamical bimodality in the available data [ru

  5. Theory of nuclear fission: a review

    International Nuclear Information System (INIS)

    Mosel, U.

    1976-01-01

    General properties of nuclear fission are reviewed and related to our present knowledge of fission theory. For this purpose the basic reasons for the shape of the fission barriers are discussed and their consequences compared with experimental results on barrier shapes and structures. Special emphasis is put on the asymmetry of the fission barriers and mass-distributions and its relation to the shells of the nascent fragment shells. Finally the problem of calculating fission cross sections is discussed

  6. A journalist's guide to nuclear power

    International Nuclear Information System (INIS)

    McMaster, Michele

    1988-12-01

    This guidebook is meant to assist journalists in communicating information about nuclear power. It provides basic information about the CANDU reactor and its use by Ontario Hydro, radiation, and fission, as well as background and statistics on the use of nuclear power in Canada and around the world

  7. Benefits and risks of nuclear power

    International Nuclear Information System (INIS)

    Barnert, H.; Borsch, P.; Feldmann, A.; Merz, E.; Muench, E.; Oesterwind, D.; Voss, A.

    1977-03-01

    Discussion, in a popular form, of issues of interest for an unemotional information of the public on problems of nuclear power: 1) Energy consumption, its assumed growth, and possible ways of supply; 2) the physical fundamental and technical realisation of power generation by nuclear fission; 3) problems of the fuel cycle and possible solutions; 4) the effects of radioactive radiation; 5) the safety of nuclear power plants and the risks of nuclear power as compared to other technical and natural risks. (orig./HP) [de

  8. Comparison of nuclear irradiation parameters of fusion breeder materials in high flux fission test reactors and a fusion power demonstration reactor

    International Nuclear Information System (INIS)

    Fischer, U.; Herring, S.; Hogenbirk, A.; Leichtle, D.; Nagao, Y.; Pijlgroms, B.J.; Ying, A.

    2000-01-01

    Nuclear irradiation parameters relevant to displacement damage and burn-up of the breeder materials Li 2 O, Li 4 SiO 4 and Li 2 TiO 3 have been evaluated and compared for a fusion power demonstration reactor and the high flux fission test reactor (HFR), Petten, the advanced test reactor (ATR, INEL) and the Japanese material test reactor (JMTR, JAERI). Based on detailed nuclear reactor calculations with the MCNP Monte Carlo code and binary collision approximation (BCA) computer simulations of the displacement damage in the polyatomic lattices with MARLOWE, it has been investigated how well the considered HFRs can meet the requirements for a fusion power reactor relevant irradiation. It is shown that a breeder material irradiation in these fission test reactors is well suited in this regard when the neutron spectrum is well tailored and the 6 Li-enrichment is properly chosen. Requirements for the relevant nuclear irradiation parameters such as the displacement damage accumulation, the lithium burn-up and the damage production function W(T) can be met when taking into account these prerequisites. Irradiation times in the order of 2-3 full power years are necessary for the HFR to achieve the peak values of the considered fusion power Demo reactor blanket with regard to the burn-up and, at the same time, the dpa accumulation

  9. A Two-Phase Cooling Loop for Fission Surface Power Waste Heat Transport, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current lunar-based Fission Surface Power (FSP) Systems that will support sustained surface outposts consist of a nuclear reactor with power converters, whose waste...

  10. Future developments of power supply from nuclear fission and fusion until the middle of the 21st century

    International Nuclear Information System (INIS)

    1987-03-01

    The purpose of this study made by General Technology Systems (Netherlands) is to provide information about nuclear fission and fusion as methods for power generation, with which, in the framework of a study into the possibilities of durable energy sources, choices may be made from the various possibilities for future energy supply. The physical processes upon which the power generation relies are treated briefly. The technologies employed are discussed together with their changes and improvements, now and in the future, and the economic factors by which they are accompanied. How much of this energy will be used in the Netherlands, is discussed. In order to know the opinion of others about these subjects the dealers of the current nuclear power stations were asked to give their opinions which are collected in a supplement. 166 refs.; 18 figs.; 19 tabs

  11. Non Nuclear Testing of Reactor Systems In The Early Flight Fission Test Facilities (EFF-TF)

    International Nuclear Information System (INIS)

    Van Dyke, Melissa; Martin, James

    2004-01-01

    The Early Flight Fission-Test Facility (EFF-TF) can assist in the design and development of systems through highly effective non-nuclear testing of nuclear systems when technical issues associated with near-term space fission systems are 'non-nuclear' in nature (e.g. system's nuclear operations are understood). For many systems, thermal simulators can be used to closely mimic fission heat deposition. Axial power profile, radial power profile, and fuel pin thermal conductivity can be matched. In addition to component and subsystem testing, operational and lifetime issues associated with the steady state and transient performance of the integrated reactor module can be investigated. Instrumentation at the EFF-TF allows accurate measurement of temperature, pressure, strain, and bulk core deformation (useful for accurately simulating nuclear behavior). Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE laboratories, industry, universities, and other Nasa centers. This paper describes the current efforts for the latter portion of 2003 and beginning of 2004. (authors)

  12. Nuclear power generation and nuclear non-proliferation

    International Nuclear Information System (INIS)

    Rathjens, G.

    1979-01-01

    The main points existing between nuclear energy development and nuclear non-proliferation policy are reviewed. The solar energy and other energy will replace for nuclear fission energy in the twenty first century, but it may not occur in the first half, and the structure has to be established to continue the development of nuclear fission technology, including breeder reactor technology. In the near future, it should be encouraged to use advanced thermal reactors if they are economic and operated with safety. Miserable results may be created in the worldwide scale, if a serious accident occurs anywhere or nuclear power reactors are utilized for military object. It is estimated to be possible to develop the ability of manufacturing nuclear weapons within two or three years in the countries where the industry is highly developed so as to generate nuclear power. It is also difficult to take measures so that nuclear power generation does not increase nuclear proliferation problems, and it is necessary to mitigate the motive and to establish the international organization. Concensus exists that as the minimum security action, the storage and transportation of materials, which can be directly utilized for nuclear weapons, should be decided by the international system. The most portions of sensitive nuclear fuel cycle should be put under the international management, as far as possible. This problem is discussed in INFCE. Related to the nuclear nonproliferation, the difference of policy in fuel cycle problems between USA and the other countries, the enrichment of nuclear fuel material, especially the reasons to inhibit the construction of additional enrichment facilities, nuclear fuel reprocessing problems, radioactive waste disposal, plutonium stock and plutonium recycle problems are reviewed. (Nakai, Y.)

  13. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    Science.gov (United States)

    Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott

    2012-01-01

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  14. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, G.

    1976-05-01

    The purpose of this series is to inform scientists working on Fission Product Nuclear Data, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. This report consists of reproductions of essentially unaltered original contributions which the authors have sent to IAEA/NDS. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields; neutron cross-section data of fission products; data related to β-, γ-decay of fission products; delayed neutron data; and fission product decay-heat

  15. Progress in fission product nuclear data. No. 13

    International Nuclear Information System (INIS)

    Lammer, M.

    1990-11-01

    This is the 13th issue of a report series published by the Nuclear Data Section of the IAEA. The types of activities included are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission), neutron reaction cross-sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products and bumped fission product data (decay heat, absorption, etc.). The first part of the report consists of unaltered original data which the authors have sent to IAEA/NDS. The second part contains some recent references relative to fission product nuclear data, which were not covered by the contributions submitted, and selected papers from conferences. Part 3 contains requirements for further measurements

  16. 40 years of nuclear fission

    International Nuclear Information System (INIS)

    Koch, H.

    1979-01-01

    On the occasion of both the 100th birthday of the discoverer of nuclear fission, Otto Hahn, and the 40th anniversary of this outstanding scientific discovery the historical development is described, which led to nuclear fission. Aspects of scientific life in Berlin and in the whole world at that time are presented, and relations between scientists are characterized by quotations. In particular, stress is laid on the life and activities of Otto Hahn as a human being and as a scientist, and his outstanding scientific achievements are appreciated. (author)

  17. Strategy for utilizing nuclear power

    International Nuclear Information System (INIS)

    Martens, E.J.

    1977-01-01

    One of the national goals is to achieve independence in the area of energy supplies in the next few years. It is believed that attaining this goal will require extensive utilization of nuclear power in conventional fission reactors. It is proposed that the best way to develop the nuclear resource is through government ownership of the reactors. It is argued that this will minimize the risks associated with the nuclear-power option and clear the way for its exploitation

  18. Computer program FPIP-REV calculates fission product inventory for U-235 fission

    Science.gov (United States)

    Brown, W. S.; Call, D. W.

    1967-01-01

    Computer program calculates fission product inventories and source strengths associated with the operation of U-235 fueled nuclear power reactor. It utilizes a fission-product nuclide library of 254 nuclides, and calculates the time dependent behavior of the fission product nuclides formed by fissioning of U-235.

  19. Regulatory aspects of fusion power-lessons from fission plants

    International Nuclear Information System (INIS)

    Natalizio, A.; Brunnader, H.; Sood, S.K.

    1993-01-01

    Experience from fission reactors has shown the regulatory process for licensing a nuclear facility to be legalistic, lengthy, unpredictable, and costly. This experience also indicates that much of the regulatory debate is focused on safety margins, that is, the smaller the safety margins the bigger the regulatory debate and the greater the amount of proof required to satisfy the regulatory. Such experience suggests that caution and prudence guide the development of a regulatory regime for fusion reactors. Fusion has intrinsic safety and environmental advantages over fission, which should alleviate significantly, or even eliminate, the regulatory problems associated with fission. The absence of a criticality concern and the absence of fission products preclude a Chernobyl type accident from occurring in a fusion reactor. Although in a fusion reactor there are large inventories of radioactive products that can be mobilized, the total quantity is orders of magnitude smaller than in fission power reactors. The bulk of the radioactivity in a fusion reactor is either activation products in steel structures, or tritium fuel supplies safely stored in the form of a metal tritide in storage beds. The quantity of tritium that can be mobilized under accident conditions is much less than ten million curies. This compares very favorably with a fission product inventory greater than ten billion curies in a fission power reactor. Furthermore, in a fission reactor, all of the reactivity is contained in a steel vessel that is pressurized to about 150 atmospheres, whereas in a fusion reactor, the inventory of radioactive material is dispersed in different areas of the plant, such that it is improbable that a single event could give rise to the release of the entire inventory to the environment. With such significant intrinsic safety advantages there is no a priori need to make fusion requirements/regulations more demanding and more stringent than fission

  20. Nuclear dynamics in heavy ion induced fusion-fission reactions

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    1992-01-01

    Heavy ion induced fission and fission-like reactions evolve through a complex nuclear dynamics encountered in the medium energy nucleus-nucleus collisions. In the recent years, measurements of the fragment-neutron and fragment-charged particle angular correlations in heavy ion induced fusion-fission reactions, have provided new information on the dynamical times of nuclear deformations of the initial dinuclear complex to the fission saddle point and the scission point. From the studies of fragment angular distributions in heavy ion induced fission it has been possible to infer the relaxation times of the dinuclear complex in the K-degree of freedom and our recent measurements on the entrance channel dependence of fragment anisotropies have provided an experimental signature of the presence of fissions before K-equilibration. This paper reviews recent experimental and theoretical status of the above studies with particular regard to the questions relating to dynamical times, nuclear dissipation and the effect of nuclear dissipation on the K-distributions at the fission saddle in completely equilibrated compound nucleus. (author). 19 refs., 9 figs

  1. Chemical immobilization of fission products reactive with nuclear reactor components

    International Nuclear Information System (INIS)

    Grossman, L.N.; Kaznoff, A.I.; Clukey, H.V.

    1975-01-01

    This invention teaches a method of immobilizing deleterious fission products produced in nuclear fuel materials during nuclear fission chain reactions through the use of additives. The additives are disposed with the nuclear fuel materials in controlled quantities to form new compositions preventing attack of reactor components, especially nuclear fuel cld, by the deleterious fission products. (Patent Office Record)

  2. Mobile nuclear power systems

    International Nuclear Information System (INIS)

    Andersson, B.

    1988-11-01

    This report is meant to present a general survey of the mobile nuclear power systems and not a detailed review of their technical accomplishments. It is based in published material mainly up to 1987. Mobile nuclear power systems are of two fundamentally different kinds: nuclear reactors and isotopic generators. In the reactors the energy comes from nuclear fission and in the isotopic generators from the radioactive decay of suitable isotopes. The reactors are primarily used as power sourves on board nuclear submarines and other warships but have also been used in the space and in remote places. Their thermal power has ranged from 30 kWth (in a satellite) to 175 MWth (on board an aircraft carrier). Isotopic generators are suitable only for small power demands and have been used on board satellites and spaceprobes, automatic weatherstations, lighthouses and marine installations for navigation and observation. (author)

  3. Can global warming save nuclear power?

    International Nuclear Information System (INIS)

    Pearce, D.

    1994-01-01

    Nuclear powered electricity generation in the United Kingdom has an uncertain future. The relative costs of generating electricity by nuclear fission compared to other means and the need for a desirable mixture or ''portfolio'' of energy sources in the electricity industry are identified as the key to this uncertainty. The author argues that Government commitments to reducing Carbon Monoxide (CO) emissions, and hence global warming, may strengthen arguments in favour of a firm commitment to nuclear power, as even modern fossil-fuelled power plants emit nearly 90 times as much CO as nuclear plants. (UK)

  4. Heat Pipe Powered Stirling Conversion for the Demonstration Using Flattop Fission (DUFF) Test

    Science.gov (United States)

    Gibson, Marc A.; Briggs, Maxwell H.; Sanzi, James L.; Brace, Michael H.

    2013-01-01

    Design concepts for small Fission Power Systems (FPS) have shown that heat pipe cooled reactors provide a passive, redundant, and lower mass option to transfer heat from the fuel to the power conversion system, as opposed to pumped loop designs typically associated with larger FPS. Although many systems have been conceptually designed and a few making it to electrically heated testing, none have been coupled to a real nuclear reactor. A demonstration test named DUFF Demonstration Using Flattop Fission, was planned by the Los Alamos National Lab (LANL) to use an existing criticality experiment named Flattop to provide the nuclear heat source. A team from the NASA Glenn Research Center designed, built, and tested a heat pipe and power conversion system to couple to Flattop with the end goal of making electrical power. This paper will focus on the design and testing performed in preparation for the DUFF test.

  5. The wastes of nuclear fission

    International Nuclear Information System (INIS)

    Doubre, H.

    2005-01-01

    In this paper the author presents the problems of the radioactive wastes generated by the nuclear fission. The first part devoted to the fission phenomenon explains the incident neutron energy and the target nuclei role. The second part devoted to the nuclear wastes sources presents the production of wastes upstream of the reactors, in the reactors and why these wastes are dangerous. The third part discusses the radioactive wastes management in France (classification, laws). The last part details the associated research programs: the radionuclides separation, the disposal, the underground storage, the transmutation and the thorium cycle. (A.L.B.)

  6. Spread of fission products after a nuclear melt-down accident

    International Nuclear Information System (INIS)

    Andriesse, C.D.; Tanke, R.H.J.

    1987-01-01

    In this article experimental investigation is described into the spread of fission products within a nuclear power plant, which after an accident involving melting of the nucleus, will be possible in spite of prohibiting constructions for the case of severe unbalancing of generated and carried-off energy. 6 refs.; 4 figs

  7. Energy controversy: the role of nuclear power

    International Nuclear Information System (INIS)

    Schmidt, F.H.; Bodansky, D.

    1975-02-01

    The objective of the paper presented is to show that nuclear fission power is the best, and maybe the only, alternative source of energy. It is written for a wide range of readers, including non-scientists and scientists who are not particularly informed on the issues involved. The first question considered concerns man's need for energy; it is concluded that conservation measures alone cannot suffice. Next, the earth's energy sources are examined, and the extent of each is estimated in the simple context of the length of time it could last at present use rates. Only nuclear fission, nuclear fusion, and solar energy can provide for future time scales commensurate with man's historic past, while avoiding the possibility of catastrophic social upheaval. Fusion and solar energy are rejected on technological grounds because the world energy problem is so pressing that one cannot gamble on hopes for future technological breakthroughs. Thus, only nuclear fission meets the twin criteria of technological feasibility and adequate resource base. Each of the controversial issues surrounding nuclear fission energy is examined in some detail. The conclusion is reached that none is serious, and that nuclear fission offers by far the best energy source from environmental, economic, longevity, and overall safety standpoints

  8. Slovenske elektrarne, a.s., Mochovce Nuclear Power Plant

    International Nuclear Information System (INIS)

    1998-01-01

    In this booklet the uranium atom nucleus fission as well as electricity generation in a nuclear power plant (primary circuit, reactor, reactor pressure vessel, fuel assembly, control rod and reactor power control) are explained. Scheme of electricity generation in nuclear power plant and Cross-section of Mochovce Nuclear Power Plant unit are included. In next part a reactor scram, refuelling of fuel, instrumentation and control system as well as principles of nuclear safety and safety improvements are are described

  9. Rupture of the neck in nuclear fission

    International Nuclear Information System (INIS)

    Davies, K.T.R.; Managan, R.A.; Nix, J.R.; Sierk, A.J.

    1977-01-01

    We introduce a degree of freedom to describe the rupture of the neck in nuclear fission and calculate the point at which the neck ruptures as the nucleus descends dynamically from its fission saddle point. This is done by mentally slicing the system into two portions at its minimum neck radius and calculating the force required to separate the two portions while keeping their shapes fixed. This force is obtained by differentiating with respect to separation the sum of the Coulomb and nuclear interaction energies between the two portions. For nuclei throughout the Periodic Table we calculate this force along dynamical paths leading from the fission saddle point. The force is initially attractive but becomes repulsive when the neck reaches a critical size. For actinide nuclei the neck radius at which rupture occurs is about 2 fm. This increases the calculated translational kinetic energy of the fission fragments at infinity relative to that calculated for scission occurring at zero neck radius. With the effect of neck rupture taken into account, we calculate and compare with experimental results fission-fragment kinetic energies for two types of nuclear dissipation: ordinary two-body viscosity and one-body dissipation

  10. Contribution to the study of nuclear fission

    International Nuclear Information System (INIS)

    Serot, O.

    2009-09-01

    The author proposes an overview of his research activity during the past fifteen years and more particularly that dealing with nuclear fission. The first part reports works on nucleus physics at the scission via the investigation of ternary fission (experimental procedure, influence of fission modes, influence of resonance spin, influence of excitation energy of the fissioning nucleus, emission probabilities, energy spectra of ternary alphas and tritons, emission mechanism). The second part reports measurements and assessments of neutron-induced fission cross sections. The third part reports the investigation of some properties of fission products (efficiencies, branching ratios of the main delayed neutron precursors)

  11. Dynamics of process at the final stage of nuclear fission

    International Nuclear Information System (INIS)

    Koljari, I.G.; Mavlitov, N.D.

    2005-01-01

    Numerous experimental data show, that the final stage of nuclear fission near to a scission point plays an essential role at formation of characteristics of fission products. At the description of a final stage of fission there is a number of problems: Definition of the form of the nuclear near the scission point and definition forms of a fission fragments; The account of dynamic processes in compound nuclear directly before of fission. The condition of the quasistatic al adiabatic process - dS/dt=0 - is applied in a point of transition from the uniform compound nuclei to several forms for definition of generalized coordinates and speeds. Calculation of dependence of post neutrons from nuclear mass of fission fragments for reactions is α+ 83 Bi 209 → 85 At 213 (E lab = 45 MeV); α+ 92 U 242 → 94 Pu 242 (E lab = 45 MeV); 8 O 18 + 79 Au 197 → 97 Fr 215 (E lab = 159 MeV). System of equations, which describes behaviour of system in a point of nuclear fission-transition from the uniform form to system of a two (and, probably more) fission fragments is given. The system of the equations allows in a fission point to define the generalized coordinates, and the generalized speeds for each of the generalized coordinates of collective deformation variables

  12. Fission products collecting devices

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi

    1979-01-01

    Purpose: To enable fission products trap with no contamination to coolants and cover gas by the provision of a fission products trap above the upper part of a nuclear power plant. Constitution: Upon fuel failures in a reactor core, nuclear fission products leak into coolants and move along the flow of the coolants to the coolants above the reactor core. The fission products are collected in a trap container and guided along a pipeline into fission products detector. The fission products detector monitors the concentration of the fission products and opens the downstream valve of the detector when a predetermined concentration of the fission products is detected to introduce the fission products into a waste gas processing device and release them through the exhaust pipe. (Seki, T.)

  13. Sequential character of low-energy ternary and quaternary nuclear fission

    Energy Technology Data Exchange (ETDEWEB)

    Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Bulychev, A. O. [Voronezh State University (Russian Federation)

    2016-09-15

    An analysis of low-energy true ternary (quaternary) nuclear fission leads to the conclusion that these fission modes have a sequential two-step (three-step) character such that the emission of a third particle (third and fourth particles) and the separation of fission fragments occur at distinctly different instants, in contrast to the simultaneous emergence of all fission products in the case of onestep ternary (quaternary) fission. This conclusion relies on the following arguments. First, the emission of a third particle (third and fourth particles) from a fissile nucleus is due to a nonevaporative mechanism associated with a nonadiabatic character of the collective deformation motion of this nucleus at the stages preceding its scission. Second, the axial symmetry of the deformed fissile compound nucleus and the direction of its symmetry axis both remain unchanged at all stages of ternary (quaternary) fission. This circumstancemakes it possible to explain themechanism of the appearance of observed anisotropies and T — odd asymmeries in the angular distributions of products of ternary (quaternary) nuclear fission. Third, the T —odd asymmetry discovered experimentally in ternary nuclear fission induced by cold polarized neutrons obeys the T —invariance condition only in the case of a sequential two-step (three-step) character of true ternary (quaternary) nuclear fission. At the same time, this asymmetry is not a T —invariant quantity in the case of the simultaneous emission of products of true ternary (quaternary) nuclear fission from the fissile compound nucleus.

  14. Sequential character of low-energy ternary and quaternary nuclear fission

    International Nuclear Information System (INIS)

    Kadmensky, S. G.; Bulychev, A. O.

    2016-01-01

    An analysis of low-energy true ternary (quaternary) nuclear fission leads to the conclusion that these fission modes have a sequential two-step (three-step) character such that the emission of a third particle (third and fourth particles) and the separation of fission fragments occur at distinctly different instants, in contrast to the simultaneous emergence of all fission products in the case of onestep ternary (quaternary) fission. This conclusion relies on the following arguments. First, the emission of a third particle (third and fourth particles) from a fissile nucleus is due to a nonevaporative mechanism associated with a nonadiabatic character of the collective deformation motion of this nucleus at the stages preceding its scission. Second, the axial symmetry of the deformed fissile compound nucleus and the direction of its symmetry axis both remain unchanged at all stages of ternary (quaternary) fission. This circumstancemakes it possible to explain themechanism of the appearance of observed anisotropies and T — odd asymmeries in the angular distributions of products of ternary (quaternary) nuclear fission. Third, the T —odd asymmetry discovered experimentally in ternary nuclear fission induced by cold polarized neutrons obeys the T —invariance condition only in the case of a sequential two-step (three-step) character of true ternary (quaternary) nuclear fission. At the same time, this asymmetry is not a T —invariant quantity in the case of the simultaneous emission of products of true ternary (quaternary) nuclear fission from the fissile compound nucleus.

  15. Nuclear fission - the great discovery of the nuclear chemistry 50 years ago

    International Nuclear Information System (INIS)

    Eichler, B.

    1988-01-01

    A scientific discovery only seldom in that extent has influenced the scientific-technical progress and the historical development of mankind as the discovery of nuclear fission. The investigation of the reactions at irradiation of the uranium with neutrons was historically the order of the day. In 1938, the radiochemical proof of the nuclear fission succeeded by coprecipitation, fractional crystallization and application of the tracer method. To be master of these methods as well as their profound physico-chemical insight enabled O. Hahn and F. Strassmann to give reliable evidence of fission by identifying the fission product barium. (author)

  16. Nuclear fission induced by heavy ions

    International Nuclear Information System (INIS)

    Newton, J.O.

    1988-09-01

    Because the accelerators of the 50's and 60's mostly provided beams of light ions, well suited for studying individual quantum states of low angular momentum or reactions involving the transfer of one or two nucleons, the study of fission, being an example of large-scale collective motion, has until recently been outside of the mainstream of nuclear research. This situation has changed in recent years, due to the new generation of accelerators capable of producing beams of heavy ions with energies high enough to overcome the Coulomb barriers of all stable nuclei. These have made possible the study of new examples of large-scale collective motions, involving major rearrangements of nuclear matter, such as deep-inelastic collisions and heavy-ion fusion. Perhaps the most exciting development in the past few years is the discovery that dissipative effects (nuclear viscosity) play an important role in fission induced by heavy ions, contrary to earlier assumptions that the viscosity involved in fission was very weak and played only a minor role. This review will be mainly concerned with developments in heavy-ion induced fission during the last few years and have an emphasis on the very recent results on dissipative effects. Since heavy-ion bombardment usually results in compound systems with high excitation energies and angular momenta, shell effects might be expected to be small, and the subject of low energy fission, where they are important, will not be addressed. 285 refs., 58 figs

  17. Nuclear fission and the transuranium elements

    International Nuclear Information System (INIS)

    Seaborg, G.T.

    1989-02-01

    Many of the transuranium elements are produced and isolated in large quantities through the use of neutrons furnished by nuclear fission reactions: plutonium (atomic number 94) in ton quantities; neptunium (93), americium (95), and curium (96) in kilogram quantities; berkelium (97) in 100 milligram quantities; californium (98) in gram quantities; and einsteinium (99) in milligram quantities. Transuranium isotopes have found many practical applications---as nuclear fuel for the large-scale generation of electricity, as compact, long-lived power sources for use in space exploration, as means for diagnosis and treatment in the medical area, and as tools in numerous industrial processes. Of particular interest is the unusual chemistry and impact of these heaviest elements on the periodic table. This account will feature these aspects. 9 refs., 5 figs

  18. Nuclear fission and the transuranium elements

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, G.T.

    1989-02-01

    Many of the transuranium elements are produced and isolated in large quantities through the use of neutrons furnished by nuclear fission reactions: plutonium (atomic number 94) in ton quantities; neptunium (93), americium (95), and curium (96) in kilogram quantities; berkelium (97) in 100 milligram quantities; californium (98) in gram quantities; and einsteinium (99) in milligram quantities. Transuranium isotopes have found many practical applications---as nuclear fuel for the large-scale generation of electricity, as compact, long-lived power sources for use in space exploration, as means for diagnosis and treatment in the medical area, and as tools in numerous industrial processes. Of particular interest is the unusual chemistry and impact of these heaviest elements on the periodic table. This account will feature these aspects. 9 refs., 5 figs.

  19. The role of the dinuclear system in the processes of nuclear fusion, quasi-fission, fission and cluster formation

    International Nuclear Information System (INIS)

    Volkov, V.V.

    1999-01-01

    The nuclear fusion, quasi-fission, fission and cluster formation in an excited nucleus are considered as the processes of the formation and evolution of the dinuclear system. This approach allows one to reveal new aspects of nuclear fusion, to show that quasi-fission plays an important role in nuclear reactions used to synthesise superheavy elements. A qualitative picture is given of the fission process of an excited nucleus and an important role of cluster formation in this process is shown

  20. The behavior of fission products during nuclear rocket reactor tests

    International Nuclear Information System (INIS)

    Bokor, P.C.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    Fission product release from nuclear rocket propulsion reactor fuel is an important consideration for nuclear rocket development and application. Fission product data from the last six reactors of the Rover program are collected in this paper to provide as basis for addressing development and testing issues. Fission product loss from the fuel will depend on fuel composition and reactor design and operating parameters. During ground testing, fission products can be contained downstream of the reactor. The last Rover reactor tested, the Nuclear Furnance, was mated to an effluent clean-up system that was effective in preventing the discharge of fission products into the atmosphere

  1. Improving the safety of future nuclear fission power plants

    International Nuclear Information System (INIS)

    Frisch, W.; Gros, G.

    2001-01-01

    The main objectives and principles in nuclear fission reactor safety are presented, e.g. the defence in depth strategy and technical principles such as redundancy, diversity and physical separation. After a brief historical review of the continuous development of safety improvement, the most recent international discussion is presented. This includes mainly the international activities within IAEA and its International Nuclear Safety Advisory Group (INSAG). The safety improvement, presented in recommendations of IAEA and INSAG is expressed as an improvement of all elements and all levels of the defence in depth concept. Special emphasis is put on improvement of the highest level, which requires the implementation of means to mitigate consequences of accidents with severe core damage. The different future concepts are briefly characterised. Some examples from the French-German safety approach are taken to demonstrate how requirements for safety improvement by means of an enhancement of the defence in depth principle are developed

  2. Measuring nuclear power plant output by neutrino detection

    International Nuclear Information System (INIS)

    Korovkin, V.A.; Kodanev, S.A.; Panashchenko, N.S.; Sokolov, D.A.; Solov'yanov, O.M.; Tverdovskii, N.D.; Yarichin, A.D.; Ketov, S.N.; Kopeikin, V.I.; Machulin, I.N.; Mikaelyan, L.A.; Sinev, V.V.

    1989-01-01

    Neutrino emission from a reactor is inseparably linked with the fission process of heavy nuclei: each fission contributes a specific amount to the overall power output and gives rise to neutrinos which are emitted by the fission fragments created. Using a detector to record the neutrino flux gives a curve for the number of nuclei undergoing fission and the reactor power output. The question of whether it is practically possible to make use of neutrino emission from reactors was first posed in the mid-70s in connection with preparations for neutrino research at the Roven nuclear power plant (RAES) and in 1986 at an IAEA symposium on the topic of guarantees. Since 1982, research has been carried on at RAES on the fundamental properties and interactions of neutrinos. Based on this research and in parallel with it, in 1983 specialists from the Kurchatov Nuclear Power Institute and RAES jointly conducted an experiment which demonstrated in principle the possibility of remotely measuring reactor power output using the neutrino emission. This experiment had extremely limited statistics and is of interest today as the first demonstration of practical usage of neutrino emission from a reactor. At present the statistics for detecting neutrino events have increased tenfold and experience in lengthy measurements has been accumulated. This allows better analysis for the possibilities of the method. This paper reviews neutrino detection, theoretical bases of the method, determining the fission scale values for converting a number of neutrinos into power output, and measuring the power output

  3. Nuclear power plant with improved arrangements for the removal of post fission and emergency heating

    International Nuclear Information System (INIS)

    Buescher, E.; Vinzens, K.

    1977-01-01

    This is concerned with additional equipment for emergency heat removal in a sodium cooled reactor, which operates on failure of the post fission heat removal system. The space for pressure relieving spaces and concrete masses as heat sinks within the reactor cell is no longer required. In this nuclear power plant, a heat exchanger chain transmits heat and power: There is a first sodium circuit between pressure vessel and the first heat exchanger, a second one between the first and second heat excahngers, and a third (Steam) circuit with turbine, condenser and return pump. A fourth circuit connects the secondary side of the condenser with a cooling tower. There is a threee component heat excahgner in the primary circuit after the first heat exchanger, which is built around the first heat exchanger, and is sealed into an unloading space. This space is situated next to the reactor cell and is above the operating level of the sodium in the pressure vessel. It is connected to the cell by an upper duct, normally closed by a bursting disc, and by a lower duct. In the three comopnent heat exchanger, a liquid lead-bismuth eutectic mixture transmits the heat from sodium pipes to water pipes. In normal operation it is used for steam superheating or feedwater preheating. The three component heat exchanger bridges the first and second heat exchangers as an emergency heat exchanger. If in such a case the post fission heat removal has failed, the sodium evaporating in the pressure vessel flows into the unloading space and condenses on the ribs of the emergency heat exchanger. The post fission heat is fed by the water secondary medium directly into the tertiary circuit. The sodium condensate flows back from the unloading space via the lower duct into the reactor cell and maintains the emergency level there. (RW) 891 RW [de

  4. The Sustainable Nuclear Future: Fission and Fusion E.M. Campbell Logos Technologies

    Science.gov (United States)

    Campbell, E. Michael

    2010-02-01

    Global industrialization, the concern over rising CO2 levels in the atmosphere and other negative environmental effects due to the burning of hydrocarbon fuels and the need to insulate the cost of energy from fuel price volatility have led to a renewed interest in nuclear power. Many of the plants under construction are similar to the existing light water reactors but incorporate modern engineering and enhanced safety features. These reactors, while mature, safe and reliable sources of electrical power have limited efficiency in converting fission power to useful work, require significant amounts of water, and must deal with the issues of nuclear waste (spent fuel), safety, and weapons proliferation. If nuclear power is to sustain its present share of the world's growing energy needs let alone displace carbon based fuels, more than 1000 reactors will be needed by mid century. For this to occur new reactors that are more efficient, versatile in their energy markets, require minimal or no water, produce less waste and more robust waste forms, are inherently safe and minimize proliferation concerns will be necessary. Graphite moderated, ceramic coated fuel, and He cooled designs are reactors that can satisfy these requirements. Along with other generation IV fast reactors that can further reduce the amounts of spent fuel and extend fuel resources, such a nuclear expansion is possible. Furthermore, facilities either in early operations or under construction should demonstrate the next step in fusion energy development in which energy gain is produced. This demonstration will catalyze fusion energy development and lead to the ultimate development of the next generation of nuclear reactors. In this presentation the role of advanced fission reactors and future fusion reactors in the expansion of nuclear power will be discussed including synergies with the existing worldwide nuclear fleet. )

  5. The wastes of nuclear fission; Les dechets de la fission nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Doubre, H. [Paris-11 Univ., Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, IN2P3/CNRS, 91 - Orsay (France)

    2005-07-01

    In this paper the author presents the problems of the radioactive wastes generated by the nuclear fission. The first part devoted to the fission phenomenon explains the incident neutron energy and the target nuclei role. The second part devoted to the nuclear wastes sources presents the production of wastes upstream of the reactors, in the reactors and why these wastes are dangerous. The third part discusses the radioactive wastes management in France (classification, laws). The last part details the associated research programs: the radionuclides separation, the disposal, the underground storage, the transmutation and the thorium cycle. (A.L.B.)

  6. The Canadian nuclear power industry. Background paper

    International Nuclear Information System (INIS)

    Nixon, A.

    1993-12-01

    Nuclear power, the production of electricity from uranium through nuclear fission, is by far the most prominent segment of the nuclear industry. The value of the electricity produced, $3.7 billion in Canada in 1992, far exceeds the value of any other product of the civilian nuclear industry. Power production employs many more people than any other sector, the capital investment is much greater, and nuclear power plants are much larger and more visible than uranium mining and processing facilities. They are also often located close to large population centres. This paper provides an overview of some of the enormously complex issues surrounding nuclear power. It describes the Canadian nuclear power industry, addressing i particular its performance so far and future prospects. (author). 1 tab

  7. The Canadian nuclear power industry. Background paper

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, A [Library of Parliament, Ottawa, ON (Canada). Science and Technology Div.

    1993-12-01

    Nuclear power, the production of electricity from uranium through nuclear fission, is by far the most prominent segment of the nuclear industry. The value of the electricity produced, $3.7 billion in Canada in 1992, far exceeds the value of any other product of the civilian nuclear industry. Power production employs many more people than any other sector, the capital investment is much greater, and nuclear power plants are much larger and more visible than uranium mining and processing facilities. They are also often located close to large population centres. This paper provides an overview of some of the enormously complex issues surrounding nuclear power. It describes the Canadian nuclear power industry, addressing i particular its performance so far and future prospects. (author). 1 tab.

  8. Nuclear fission with a Langevin equation

    International Nuclear Information System (INIS)

    Boilley, D.; Suraud, E.; Abe, Yasuhisa

    1992-01-01

    A microscopically derived Langevin equation is applied to thermally induced nuclear fission. An important memory effect is pointed out and discussed. A strong friction coefficient, estimated from microscopic quantities, tends to decrease the stationary limit of the fission rate and to increase the transient time. The calculations are performed with a collective mass depending on the collective variable and with a constant mass. Fission rates calculated at different temperatures are shown and compared with previous available results. (author) 23 refs.; 7 figs

  9. Progress in fission product nuclear data. Information about activities in the field of measurements and compilations/evaluations of fission product nuclear data (FPND)

    International Nuclear Information System (INIS)

    Lammer, G.

    1978-07-01

    This is the fourth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); neutron reaction cross sections of fission products; data related to the radioactive decay of fission products; delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.)

  10. Nuclear fission as a macroscopic quantum tunneling

    International Nuclear Information System (INIS)

    Takigawa, N.

    1995-01-01

    We discuss nuclear fission from the point of view of a macroscopic quantum tunneling, one of whose major interests is to study the effects of environments on the tunneling rate of a macroscopic variable. We show that a vibrational excitation of the fissioning nucleus significantly enhances the fission rate. We show this effect by two different methods. The one is to treat the vibrational excitation as an environmental degree of freedom, the other treats the fission as a two dimensional quantum tunneling. (author)

  11. World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries

    International Nuclear Information System (INIS)

    1979-06-01

    Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment

  12. Computer code and users' guide for the preliminary analysis of dual-mode space nuclear fission solid core power and propulsion systems, NUROC3A. AMS report No. 1239b

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R.A.; Smith, W.W.

    1976-06-30

    The three-volume report describes a dual-mode nuclear space power and propulsion system concept that employs an advanced solid-core nuclear fission reactor coupled via heat pipes to one of several electric power conversion systems. The second volume describes the computer code and users' guide for the preliminary analysis of the system.

  13. Physics and nuclear power

    International Nuclear Information System (INIS)

    Buttery, N E

    2008-01-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors

  14. Fission yield measurements at IGISOL

    Science.gov (United States)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  15. Fission yield measurements at IGISOL

    Directory of Open Access Journals (Sweden)

    Lantz M.

    2016-01-01

    Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  16. Nuclear power in the 21st century : Challenges and possibilities

    OpenAIRE

    Horvath, Akos; Rachlew (Källne), Elisabeth

    2016-01-01

    The current situation and possible future developments for nuclear power—including fission and fusion processes—is presented. The fission nuclear power continues to be an essential part of the low-carbon electricity generation in the world for decades to come. There are breakthrough possibilities in the development of new generation nuclear reactors where the life-time of the nuclear waste can be reduced to some hundreds of years instead of the present time-scales of hundred thousand of years...

  17. World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment. (JWR)

  18. Research and Development on nuclear fission

    International Nuclear Information System (INIS)

    2007-01-01

    Research and development activities on advanced and innovative reactors are performed within a domestic programme and international initiatives. The ongoing New Nuclear Fission National Programme is synergic and complementary to the International Nuclear Energy Initiative (INERI) and EURATOM framework programmes and is managed by ENEA through a specific agreement signed in June 2007 by the Italian Ministry for Economic Development (MSE). The activities concern an integral advanced pressurised light-water-cooled reactor (IRIS nuclear power plant [NPP]) and several Generation-4. fast reactors: lead-cooled, very high temperature and sodium-cooled. A summary of the main results achieved in 2007 follows. In the framework of the INERI programme ENEA and other Italian organisations are involved in the design of the International Reactor Innovative and Secure (IRIS NPP), particularly in the design certification. An appropriate integral testing programme will be performed in the SPES-3 facility to be built at the SIET laboratories in Piacenza. The facility will be located inside the building of the decommissioned Emilia oil-fired power plant. Once erected, the facility will simulate IRIS at full height, full pressure and temperature, and with volumes and power scaled by factors of 1:100 and 1:150, respectively. The activity will be carried out in a collaboration with Oak Ridge National Laboratory (ORNL), USA under an international initiative concerning cooperation in the field of nuclear-related technologies of mutual interest. In 2007 activities were mainly devoted to the conceptual design of the SPES-3 facility, the development of SPES-3 nodalization and the seismic isolation analysis of the IRIS auxiliary building

  19. Comparison of risk assessment methodologies for nuclear power and nuclear fuels processing plants

    International Nuclear Information System (INIS)

    Durant, W.S.; Walker, D.H.

    1986-08-01

    The utilization of nuclear fission for the generation of electric power or other purposes has as its by-product radioactive fission products. These radioactive fission products represent a potential hazard different in nature from that associated with other process operations or other methods of electrical power generation. As a result the electrical power stations and the facilities designed to process the irradiated fuel to recover the still useful fuel and the products of the irradiation are designed with multiple physical barriers to contain the radioactive fission products in the event that an accident were to occur. In recent years, a disciplined approach has evolved for developing detailed models of a facility and its processes. These models can be used to assess the response for the facility to upset or accident events. The approach is based on an ordered application of available data employing fault tree/event tree methodologies. Data and/or engineering judgment are applied in a probabilisitc framework so the approach has been called Probabilistic Risk Assessment (PRA). The approach has been applied to nuclear electric generating facilities and to nuclear fuel processing facilities to assess the potential for release of fission product and transuranium element radionuclides (the hazard) and the resulting risks. The application of the methodology to the electrical generating facilities and to the fuel processing facilities has evolved somewhat differently because of differences in the facilities, availability of failure rate data, and expected outputs. This paper summarizes the two approaches and the differences in them compares the risk results from the existing studies

  20. Proceedings of the Conference on 75 years of Nuclear Fission

    Indian Academy of Sciences (India)

    Proceedings of the Conference on 75 years of Nuclear Fission: Present Status and Future Perspectives (Fission75) - Part I. pp 187-188. Organizing Committee · More Details Fulltext PDF. pp 189-190. Foreword · D C Biswas K Mahata V M Datar · More Details Fulltext PDF. pp 191-198. Seventy-five years of nuclear fission.

  1. Fusion-fission hybrid studies in the United States

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Berwald, D.H.; Cheng, E.T.; Delene, J.G.; Jassby, D.L.

    1986-01-01

    Systems and conceptual design studies have been carried out on the following three hybrid types: (1) The fission-suppressed hybrid, which maximizes fissile material produced (Pu or 233 U) per unit of total nuclear power by suppressing the fission process and multiplying neutrons by (n,2n) reactions in materials like beryllium. (2) The fast-fission hybrid, which maximizes fissile material produced per unit of fusion power by maximizing fission of 238 U (Pu is produced) in which twice the fissile atoms per unit of fusion power (but only a third per unit of nuclear power) are made. (3) The power hybrid, which amplifies power in the blanket for power production but does not produce fuel to sell. All three types must sell electrical power to be economical

  2. Mathematical model for the preliminary analysis of dual-mode space nuclear fission solid core power and propulsion systems, NUROC3A. AMS report No. 1239a

    Energy Technology Data Exchange (ETDEWEB)

    Grey, J.; Chow, S.

    1976-06-30

    The three-volume report describes a dual-mode nuclear space power and propulsion system concept that employs an advanced solid-core nuclear fission reactor coupled via heat pipes to one of several electric power conversion systems. Such a concept could be particularly useful for missions which require both relatively high acceleration (e.g., for planetocentric maneuvers) and high performance at low acceleration (e.g., on heliocentric trajectories or for trajectory shaping). The first volume develops the mathematical model of the system.

  3. Nuclear power plants and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Barabas, K [Ceskoslovenska Komise pro Atomovou Energii, Prague

    1978-05-01

    The environmental impacts are compared of conventional coal-fired and oil-fired power plants and of nuclear power plants. The values are compared of SO/sub 2/, NO/sub 2/, ash and soot emissions with /sup 133/Xe and /sup 85/Kr fission products release and the requirement for air for diluting these emissions in the atmosphere is assessed. Also compared are thermal pollution from an oil-fired power plant and from PWR and fast reactor power plants. The conclusion is arrived at that nuclear energy can solve the problem of increasing demand for electric and heat power while reducing negative environmental impacts.

  4. Nuclear power plants and the environment

    International Nuclear Information System (INIS)

    Barabas, K.

    1978-01-01

    The environmental impacts are compared of conventional coal-fired and oil-fired power plants and of nuclear power plants. The values are compared of SO 2 , NO 2 , ash and soot emmisions with 133 Xe and 85 Kr fission products release and the requirement for air for diluting these emissions in the atmosphere is assessed. Also compared are thermal pollution from an oil-fired power plant and from PWR and fast reactor power plants. The conclusion is arrived at that nuclear energy can solve the problem of increasing demand for electric and heat power while reducing negative environmental impacts. (O.K.)

  5. Options for Affordable Fission Surface Power Systems

    International Nuclear Information System (INIS)

    Houts, Mike; Gaddis, Steve; Porter, Ron; Van Dyke, Melissa; Martin, Jim; Godfroy, Tom; Bragg-Sitton, Shannon; Garber, Anne; Pearson, Boise

    2006-01-01

    Fission surface power systems could provide abundant power anywhere on the surface of the moon or Mars. Locations could include permanently shaded regions on the moon and high latitudes on Mars. To be fully utilized, however, fission surface power systems must be safe, have adequate performance, and be affordable. This paper discusses options for the design and development of such systems. (authors)

  6. How nuclear power began

    International Nuclear Information System (INIS)

    Gowing, M.

    1987-01-01

    Many of the features of the story of nuclear power, both in nuclear weapons and nuclear power stations, derive from their timing. Usually, in the history of science the precise timing of discovery does not make much difference, but in the case of nuclear fission there was the coincidence that crucial discoveries were made and openly published in the same year, 1939, as the outbreak of the Second World War. It is these events of the 1930s and the early post-war era that are mainly discussed. However, the story began a lot earlier and even in the early 1900s the potential power within the atom had been foreseen by Soddy and Rutherford. In the 1930s Enrico Fermi and his team saw the technological importance of their discoveries and took out a patent on their process to produce artificial radioactivity from slow neutron beams. The need for secrecy because of the war, and the personal trusts and mistrusts run through the story of nuclear power. (UK)

  7. Quarterly report of the Swedish Nuclear Power Inspectorate April - June 1981

    International Nuclear Information System (INIS)

    1981-01-01

    The inspectorate has the supervision of the nuclear power plants and other nuclear installations. The report includes statements of security inspections of the Swedish nuclear power plants and accounts of handling, transport and storing of fissionable materials. Safety problems in Studsvik and at ASEA- ATOM concerning nuclear fuel and nuclear waste are discussed. (G.B.)

  8. A Practical Approach to Starting Fission Surface Power Development

    International Nuclear Information System (INIS)

    Mason, Lee

    2006-01-01

    The Prometheus Power and Propulsion Program has been reformulated to address NASA needs relative to lunar and Mars exploration. Emphasis has switched from the Jupiter Icy Moons Orbiter (JIMO) flight system development to more generalized technology development addressing Fission Surface Power (FSP) and Nuclear Thermal Propulsion (NTP). Current NASA budget priorities and the deferred mission need date for nuclear systems prohibit a fully funded reactor Flight Development Program. However, a modestly funded Advanced Technology Program can and should be conducted to reduce the risk and cost of future flight systems. A potential road-map for FSP technology development leading to possible flight applications could include three elements: 1) Conceptual Design Studies, 2) Advanced Component Technology, and 3) Non-Nuclear System Testing. The Conceptual Design Studies would expand on recent NASA and DOE analyses while increasing the depth of study in areas of greatest uncertainty such as reactor integration and human-rated shielding. The Advanced Component Technology element would address the major technology risks through development and testing of reactor fuels, structural materials, primary loop components, shielding, power conversion, heat rejection, and power management and distribution (PMAD). The Non-Nuclear System Testing would provide a modular, technology test-bed to investigate and resolve system integration issues. (author)

  9. Fifty years of nuclear fission: Nuclear data and measurements series

    International Nuclear Information System (INIS)

    Lynn, J.E.

    1989-06-01

    This report is the written version of a colloquium first presented at Argonne National Laboratory in January 1989. The paper begins with an historical preamble about the events leading to the discovery of nuclear fission. This leads naturally to an account of early results and understanding of the fission phenomena. Some of the key concepts in the development of fission theory are then discussed. The main theme of this discussion is the topography of the fission barrier, in which the interplay of the liquid-drop model and nucleon shell effects lead to a wide range of fascinating phenomena encompassing metastable isomers, intermediate-structure effects in fission cross-sections, and large changes in fission product properties. It is shown how study of these changing effects and theoretical calculations of the potential energy of the deformed nucleus have led to broad qualitative understanding of the nature of the fission process. 54 refs., 35 figs

  10. Main orientations of the JRC nuclear fission programme

    International Nuclear Information System (INIS)

    Haas, Didier

    2009-01-01

    Full text: The European Union has taken the lead in responding to climate change, announcing far-reaching initiatives from promoting energy efficient light bulbs and cars to new building codes, carbon trading schemes, the development of low carbon technologies and greater competition in energy markets. Nuclear energy remains central to the energy debate in Europe. One third of EU electricity is produced via nuclear fission, and eight new reactors are under construction. Traditionally non-nuclear countries are manifesting an interest in building nuclear power plants while the clock is ticking down on Belgium, Germany and the UK's decision to renew or close existing nuclear infrastructures. Sustainability in nuclear energy production is ensured in the medium term due to the large and diverse uranium resources available in politically stable countries around the world. The quantities available with high probability ensure more than hundred year of nuclear energy production. This extrapolation depends however on the forecast for the future nuclear energy production. The use of fast neutron breeder reactors would lead to a much more efficient utilisation of the uranium, extending the sustainable energy production to several thousands of years. The presentation will outline the fast reactors of the new generation currently being developed within the 'Generation IV' initiative. Broad conclusions of the presentation will be that: -There is a growing nuclear renaissance in Europe for good reason; - Nuclear energy is a green and sustainable option for Europe and indeed the world's energy needs; - Nuclear energy is a competitive energy that makes economic sense; - Nuclear fission reactors have a safety and environmental track record that is second to none, yet public misperceptions persist and must be tackled; - Waste management solutions exist while new developments hold great promise; - The evolution and promise of nuclear technologies must also be examined against the

  11. Fission products in the spent nuclear fuel from czech nuclear power plants

    International Nuclear Information System (INIS)

    Lelek, V.; Mikisek, M.; Marek, T.

    1999-01-01

    The nuclear power is expected to become a supply able to cover a significant part of the world energetic demand in future. But its big disadvantage, the risk of the spent nuclear fuel, has to be solved. The aim of this paper is to make simple estimates of the upper limits of amounts of the most dangerous spent fuel components and their compounds produced in Czech Republic until 2040. Our estimates are independent on particular type reactor (only on its power) and so they can be carried out for any nuclear fuel cycle. (Authors)

  12. Microscopic theory of nuclear fission: a review

    Science.gov (United States)

    Schunck, N.; Robledo, L. M.

    2016-11-01

    This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree-Fock-Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel-Kramers-Brillouin (WKB) formula used to extract

  13. Analytical measurements of fission products during a severe nuclear accident

    Science.gov (United States)

    Doizi, D.; Reymond la Ruinaz, S.; Haykal, I.; Manceron, L.; Perrin, A.; Boudon, V.; Vander Auwera, J.; tchana, F. Kwabia; Faye, M.

    2018-01-01

    The Fukushima accident emphasized the fact that ways to monitor in real time the evolution of a nuclear reactor during a severe accident remain to be developed. No fission products were monitored during twelve days; only dose rates were measured, which is not sufficient to carry out an online diagnosis of the event. The first measurements were announced with little reliability for low volatile fission products. In order to improve the safety of nuclear plants and minimize the industrial, ecological and health consequences of a severe accident, it is necessary to develop new reliable measurement systems, operating at the earliest and closest to the emission source of fission products. Through the French program ANR « Projet d'Investissement d'Avenir », the aim of the DECA-PF project (diagnosis of core degradation from fission products measurements) is to monitor in real time the release of the major fission products (krypton, xenon, gaseous forms of iodine and ruthenium) outside the nuclear reactor containment. These products are released at different times during a nuclear accident and at different states of the nuclear core degradation. Thus, monitoring these fission products gives information on the situation inside the containment and helps to apply the Severe Accident Management procedures. Analytical techniques have been proposed and evaluated. The results are discussed here.

  14. Analytical measurements of fission products during a severe nuclear accident

    Directory of Open Access Journals (Sweden)

    Doizi D.

    2018-01-01

    Full Text Available The Fukushima accident emphasized the fact that ways to monitor in real time the evolution of a nuclear reactor during a severe accident remain to be developed. No fission products were monitored during twelve days; only dose rates were measured, which is not sufficient to carry out an online diagnosis of the event. The first measurements were announced with little reliability for low volatile fission products. In order to improve the safety of nuclear plants and minimize the industrial, ecological and health consequences of a severe accident, it is necessary to develop new reliable measurement systems, operating at the earliest and closest to the emission source of fission products. Through the French program ANR « Projet d’Investissement d’Avenir », the aim of the DECA-PF project (diagnosis of core degradation from fission products measurements is to monitor in real time the release of the major fission products (krypton, xenon, gaseous forms of iodine and ruthenium outside the nuclear reactor containment. These products are released at different times during a nuclear accident and at different states of the nuclear core degradation. Thus, monitoring these fission products gives information on the situation inside the containment and helps to apply the Severe Accident Management procedures. Analytical techniques have been proposed and evaluated. The results are discussed here.

  15. Nuclear fission: What have we learned in 50 years?

    International Nuclear Information System (INIS)

    Vandenbosch, R.

    1989-01-01

    Nuclear fission has captured the imagination of chemists and physicists for half a century now. There are several reasons for this. One of course is that it represents the most drastic rearrangement of nuclear matter known, challenged only recently by collisions induced by very heavy ions. Another is that both statistical and dynamical features come into play. Perhaps one of the most compelling reasons is its never-ending capacity to surprise us: asymmetric mass distributions, the sawtooth dependence of neutron yields in fragment mass, spontaneously fissioning isomers and intermediate structure resonances. Finally, and perhaps most importantly, fission is a rich laboratory within which one can explore the delicate interplay between the macroscopic aspects of bulk nuclear matter and the quantal effects of a finite number of Fermions. It will of course be impossible for me to cover all aspects of fission. I have chosen a limited number of topics to cover, with particular topics being chosen either because the have been associated with persistent puzzles in fission or because they have, or hopefully will, tell us something special about how nuclei behave. After a brief historical note, I organize these topics sequentially according to the various stages of the fission process, starting first with the probability for fission to occur and ending with scission phenomena. 56 refs., 11 figs

  16. Is nuclear power environmentally sustainable? Paper no. IGEC-1-121

    International Nuclear Information System (INIS)

    Jackson, D.P.

    2005-01-01

    The sustainability of nuclear energy is discussed in terms of its environmental impacts and its utilization of resources. The reactors in the present generation of fission reactors extract only a small percentage of the energy available from uranium. A solution to the long-term management of highly radioactive used reactor fuel is also a key factor in fission's sustainability. Recycling used fuel for enhanced energy production in advanced reactors and the mitigation of the long-term management of the remaining wastes, ideally with their ultimate destruction by nuclear transmutation are technologies that need to be developed in order to ensure the long term sustainability of nuclear fission. In contrast nuclear fusion, while not yet available for power production, promises to be inherently sustainable. (author)

  17. Fission Surface Power System Initial Concept Definition

    Science.gov (United States)

    2010-01-01

    Under the NASA Exploration Technology Development Program (ETDP) and in partnership with the Department of Energy (DOE), NASA has embarked on a project to develop Fission Surface Power (FSP) technology. The primary goals of the project are to 1) develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options, 2) establish a hardwarebased technical foundation for FSP design concepts and reduce overall development risk, 3) reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates, and 4) generate the key products to allow NASA decision-makers to consider FSP as a preferred option for flight development. The FSP project was initiated in 2006 as the Prometheus Program and the Jupiter Icy Moons Orbiter (JIMO) mission were phased-out. As a first step, NASA Headquarters commissioned the Affordable Fission Surface Power System Study to evaluate the potential for an affordable FSP development approach. With a cost-effective FSP strategy identified, the FSP team evaluated design options and selected a Preliminary Reference Concept to guide technology development. Since then, the FSP Preliminary Reference Concept has served as a point-of-departure for several NASA mission architecture studies examining the use of nuclear power and has provided the foundation for a series of "Pathfinder" hardware tests. The long-term technology goal is a Technology Demonstration Unit (TDU) integrated system test using full-scale components and a non-nuclear reactor simulator. The FSP team consists of Glenn Research Center (GRC), Marshall Space Flight Center (MSFC) and the DOE National Laboratories at Los Alamos (LANL), Idaho (INL), Oak Ridge (ORNL), and Sandia (SNL). The project is organized into two main elements: Concept Definition and Risk Reduction. Under Concept Definition, the team performs trade studies, develops analytical tools, and formulates system concepts. Under Risk

  18. Nuclear energy products except the electric power

    International Nuclear Information System (INIS)

    2004-01-01

    Technically the fission reactors, on service or under construction, can produce other products than the electric power. Meanwhile, these applications are known since the beginning of the reactors exploitation, they never have been developed industrially. This report examines the necessary technical characteristics for using the nuclear systems on non electric power applications with an economical efficiency. What are the markets for these products? What are the strategical challenges to favor the development of non electric power applications of the nuclear energy? (A.L.B.)

  19. LDC nuclear power: Argentina

    International Nuclear Information System (INIS)

    Tweedale, D.L.

    1982-01-01

    Argentina's 31-year-old nuclear research and power program makes it a Third World leader and the preeminent Latin American country. Easily accessible uranium fuels the heavy water reactor, Atucha I, which provides 10% of the country's electric power. Atucha II and III are under construction. Several domestic and international factors combined to make Argentina's program succeed, but achieving fuel-cycle independence and the capacity to divert fissionable material to military uses is a cause for some concern. 60 references

  20. Relevance of few-nucleon problems to nuclear power

    International Nuclear Information System (INIS)

    Divatia, A.S.

    1976-01-01

    It is well known that the study of few-nucleon problems did not specifically start because they were relevant to nuclear power. However, as the need for power has become more urgent and the systems which may generate nuclear power in the future are likely to be highly complex, it has become necessary to examine the question of relevance of few-nucleon problems to nuclear power. The nuclear data needs for nuclear power have been studied exhaustively by many groups all over the world and The International Atomic Energy Agency, operating through the International Nuclear Data Committee and their Nuclear Data section, have compiled and evaluated these nuclear data needs. It is therefore possible to draw upon the various studies and compilations of the IAEA for examining the question of relevance. The relevant nuclear data needs for fission reactors, fusion reactors and nuclear safeguards programmes are examined. (Auth.)

  1. The potential of fission nuclear power in resolving global climate change under the constraints of nuclear fuel resources and once-through fuel cycles

    International Nuclear Information System (INIS)

    Knapp, Vladimir; Pevec, Dubravko; Matijevic, Mario

    2010-01-01

    Nuclear fission is receiving new attention as a developed source of carbon-free energy. A much larger number of nuclear reactors would be needed for a major impact on carbon emission. The crucial question is whether it can be done without increasing the risk of nuclear proliferation. Specifically, can a larger nuclear share in world energy production, well above the present 6%, be achieved in the next few decades without adding the proliferation-sensitive technologies of reprocessing spent fuel and recycling plutonium to the problems of the unavoidable use of enrichment technology? The answer depends on the available uranium resources. We first looked for the maximum possible nuclear build-up in the 2025-2065 period under the constraints of the estimated uranium resources and the use of once-through nuclear fuel technology. Our results show that nuclear energy without reprocessing could reduce carbon emission by 39.6% of the total reduction needed to bring the WEO 2009 Reference Scenario prediction of total GHG emissions in 2065 to the level of the WEO 450 Scenario limiting global temperature increase to 2 deg. C. The less demanding strategy of the nuclear replacement of all non-CCS coal power plants retiring during the 2025-2065 period would reduce emission by 26.1%.

  2. The technological demands of nuclear power

    International Nuclear Information System (INIS)

    Franklin, N.L.

    1978-01-01

    The economics and reliability of nuclear power are discussed. Public hazard considerations are related to the public acceptance of risks in other industries. A brief account is given of nuclear safety engineering, including safety against terrorist attacks and against diversion by persons within the plant. Short-term and long-term safety problems are distinguished, with particular reference to the disposal or storage of fission products. (U.K.)

  3. On the combination of delayed neutron and delayed gamma techniques for fission rate measurement in nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Perret, G.; Jordan, K. A. [Paul Scherrer Institut, Villigen, 5232 (Switzerland)

    2011-07-01

    Novel techniques to measure newly induced fissions in spent fuel after re-irradiation at low power have been developed and tested at the Proteus zero-power research reactor. The two techniques are based on the detection of high energy gamma-rays emitted by short-lived fission products and delayed neutrons. The two techniques relate the measured signals to the total fission rate, the isotopic composition of the fuel, and nuclear data. They can be combined to derive better estimates on each of these parameters. This has potential for improvement in many areas. Spent fuel characterisation and safeguard applications can benefit from these techniques for non-destructive assay of plutonium content. Another application of choice is the reduction of uncertainties on nuclear data. As a first application of the combination of the delayed neutron and gamma measurement techniques, this paper shows how to reduce the uncertainties on the relative abundances of the longest delayed neutron group for thermal fissions in {sup 235}U, {sup 239}Pu and fast fissions in {sup 238}U. The proposed experiments are easily achievable in zero-power research reactors using fresh UO{sub 2} and MOX fuel and do not require fast extraction systems. The relative uncertainties (1{sigma}) on the relative abundances are expected to be reduced from 13% to 4%, 16% to 5%, and 38% to 12% for {sup 235}U, {sup 238}U and {sup 239}Pu, respectively. (authors)

  4. Influence of the bud neck on nuclear envelope fission in Saccharomyces cerevisiae.

    Science.gov (United States)

    Melloy, Patricia G; Rose, Mark D

    2017-09-15

    Studies have shown that nuclear envelope fission (karyokinesis) in budding yeast depends on cytokinesis, but not distinguished whether this was a direct requirement, indirect, because of cell cycle arrest, or due to bud neck-localized proteins impacting both processes. To determine the requirements for karyokinesis, we examined mutants conditionally defective for bud emergence and/or nuclear migration. The common mutant phenotype was completion of the nuclear division cycle within the mother cell, but karyokinesis did not occur. In the cdc24 swe1 mutant, at the non-permissive temperature, multiple nuclei accumulated within the unbudded cell, with connected nuclear envelopes. Upon return to the permissive temperature, the cdc24 swe1 mutant initiated bud emergence, but only the nucleus spanning the neck underwent fission suggesting that the bud neck region is important for fission initiation. The neck may be critical for either mechanical reasons, as the contractile ring might facilitate fission, or for regulatory reasons, as the site of a protein network regulating nuclear envelope fission, mitotic exit, and cytokinesis. We also found that 77-85% of pairs of septin mutant nuclei completed nuclear envelope fission. In addition, 27% of myo1Δ mutant nuclei completed karyokinesis. These data suggested that fission is not dependent on mechanical contraction at the bud neck, but was instead controlled by regulatory proteins there. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Fission rates measured using high-energy gamma-rays from short half-life fission products in fresh and spent nuclear fuel

    International Nuclear Information System (INIS)

    Kroehnert, H.

    2011-02-01

    In recent years, higher discharge burn-ups and initial fuel enrichments have led to more and more heterogeneous core configurations in light water reactors (LWRs), especially at the beginning of cycle when fresh fuel assemblies are loaded next to highly burnt ones. As this trend is expected to continue in the future, the Paul Scherrer Institute has, in collaboration with the Swiss Association of Nuclear Utilities, swissnuclear, launched the experimental programme LIFE(at)PROTEUS. The LIFE(at)PROTEUS programme aims to better characterise interfaces between burnt and fresh UO 2 fuel assemblies in modern LWRs. Thereby, a novel experimental database is to be made available for enabling the validation of neutronics calculations of strongly heterogeneous LWR core configurations. During the programme, mixed fresh and highly burnt UO 2 fuel lattices will be investigated in the zero-power research reactor PROTEUS. One of the main types of investigations will be to irradiate the fuel in PROTEUS and measure the resulting fission rate distributions across the interface between fresh and burnt fuel zones. The measurement of fission rates in burnt fuel re-irradiated in a zero-power reactor requires, however, the development of new experimental techniques which are able to discriminate against the high intrinsic activity of the fuel. The principal goal of the present research work has been to develop such a new measurement technique. The selected approach is based on the detection of high-energy gamma-ray lines above the intrinsic background (i.e. above 2200 keV), which are emitted by short-lived fission products freshly created in the fuel. The fission products 88 Kr, 142 La, 138 Cs, 84 Br, 89 Rb, 95 Y, 90m Rb and 90 Rb, with half-lives between 2.6 min and 2.8 h, have been identified as potential candidates. During the present research work, the gamma-ray activity of short-lived fission products has, for the first time, been measured and quantitatively evaluated for re

  6. New approaches to nuclear power

    KAUST Repository

    Dewan, Leslie

    2018-01-21

    The world needs a cheap, carbon-free alternative to fossil fuels to feed its growing electricity demand. Nuclear power can be a good solution to the problem, but is hindered by issues of safety, waste, proliferation, and cost. But what if we could try a new approach to nuclear power, one that solves these problems? In this lecture, the CEO of Transatomic Power will talk about how their company is advancing the design of a compact molten salt reactor to support the future of carbon-free energy production. Can the designs of new reactor push the boundaries of nuclear technology to allow for a safe, clean, and affordable answer to humanityメs energy needs? Nuclear power involves capturing the energy produced in nuclear fission reactions, which emerges as heat. This heat is most frequently used to boil water into steam, which then drives a turbine to produce electricity in a nuclear power plant. Worldwide, there is a renaissance of new nuclear technology development -- a new generation of young engineers are racing to develop more advanced nuclear reactors for a better form of power generation. Transatomic Power, specifically, is advancing the design of an easily contained and controlled, atmospheric pressure, high power density molten salt reactor that can be built at low cost. The road to commercialization is long, and poses many challenges, but the benefits are enormous. These new reactors push the boundaries of technology to allow for better, safer ways to power the world.

  7. Monitoring and diagnostic system of fission product transport and release in nuclear power plants

    International Nuclear Information System (INIS)

    Kodaira, H.; Kondo, S.; Togo, Y.

    1983-01-01

    A monitoring and diagnostic system (MADS) of fission product (FP) transport and release in nuclear power plants (NPPs) is proposed and the conceptual design for MADS is studied. A MADS can be described in the most general way as a computer-based information processing system which takes in plant data, processes it and displays the results to the NPP's operating crew. A major concern for MADS is, however, not to evaluate general plant dynamics, but to monitor the distribution of whole radioactive materials such as FP, and to diagnose the plant state in the view of FP transport during the NPP's lifetime. Several functions demanded of MADS are: (a) during normal operation, to certify the fuel integrity and the effectiveness of the purification systems, (b) in an unusual event, to identify the event and to monitor the amount of FP release with accuracy, and (c) in case of a rare occurrence, to estimate the maximum potential release

  8. Development of a fission product transport module predicting the behavior of radiological materials during sever accidents in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyung Seok; Rhee, Bo Wook; Kim, Dong Ha [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    Korea Atomic Energy Research Institute is developing a fission product transport module for predicting the behavior of radioactive materials in the primary cooling system of a nuclear power plant as a separate module, which will be connected to a severe accident analysis code, Core Meltdown Progression Accident Simulation Software (COMPASS). This fission product transport (COMPASS-FP) module consists of a fission product release model, an aerosol generation model, and an aerosol transport model. In the fission product release model there are three submodels based on empirical correlations, and they are used to simulate the fission product gases release from the reactor core. In the aerosol generation model, the mass conservation law and Raoult's law are applied to the mixture of vapors and droplets of the fission products in a specified control volume to find the generation of the aerosol droplet. In the aerosol transport model, empirical correlations available from the open literature are used to simulate the aerosol removal processes owing to the gravitational settling, inertia impaction, diffusiophoresis, and thermophoresis. The COMPASS-FP module was validated against Aerosol Behavior Code Validation and Evaluation (ABCOVE-5) test performed by Hanford Engineering Development Laboratory for comparing the prediction and test data. The comparison results assuming a non-spherical aerosol shape for the suspended aerosol mass concentration showed a good agreement with an error range of about ±6%. It was found that the COMPASS-FP module produced the reasonable results of the fission product gases release, the aerosol generation, and the gravitational settling in the aerosol removal processes for ABCOVE-5. However, more validation for other aerosol removal models needs to be performed.

  9. International handling of fissionable material

    International Nuclear Information System (INIS)

    1975-01-01

    The opinion of the ministry for foreign affairs on international handling of fissionable materials is given. As an introduction a survey is given of the possibilities to produce nuclear weapons from materials used in or produced by power reactors. Principles for international control of fissionable materials are given. International agreements against proliferation of nuclear weapons are surveyed and methods to improve them are proposed. (K.K.)

  10. Global warming and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Wood, L., LLNL

    1998-07-10

    Nuclear fission power reactors represent a potential solution to many aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high-grade heat for large-scale electricity generation, space heating and industrial process-energizing around the world, without emitting greenhouse gases or atmospheric particulates; importantly, electricity production costs from the best nuclear plants presently are closely comparable with those of the best fossil-fired plants. However, a substantial number of issues currently stand between nuclear power and widespread substitution for large stationary fossil fuel-fired systems. These include perceptual ones regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps most seriously- readily quantifiable concerns regarding long-term fuel supply and total unit electrical energy cost. We sketch a road-map for proceeding from the present situation toward a nuclear power-intensive world, addressing along the way each of the concerns which presently impede widespread nuclear substitution for fossil fuels, particularly for coal in the most populous and rapidly developing portions of the world, e.g., China and India. This `design to societal specifications` approach to large-scale nuclear fission power systems may lead to energy sources meeting essentially all stationary demands for high-temperature heat. Such advanced options offer a human population of ten billion the electricity supply levels currently enjoyed by Americans for 10,000 years. Nuclear power systems tailored to local needs-and-interests and having a common advanced technology base could reduce present-day world-wide C0{sub 2} emissions by two-fold, if universally employed. By application to small mobile demands, a second two

  11. Dynamics of nuclear fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1979-01-01

    Large-amplitude collective motion in fission and heavy-ion reactions is studied by solving classical equations of motion for the time evolution of the nuclear shape. In the nuclear potential energy of deformation, the generalized surface energy was calculated by means of a double volume integral of a Yukawa-plus-exponential function, which was obtained by requiring that two semi-infinite slabs of constant-density nuclear matter have minimum energy at zero separation. The collective kinetic energy is calculated for nuclear flow that is a superposition of incompressible, nearly irrotational collective-shape motion and rigid-body rotation. Nuclear dissipation is included by means of the Rayleigh dissipation function, which depends upon the physical mechanism that converts collective energy into internal energy. For both ordinary two-body viscosity and a combined wall and window one-body dissipation, fission-fragment kinetic energies are calculated for the fission of nuclei throughout the periodic table and compare with experimental results. Finally, the one-body dynamics of nucleons inside a cylinder colliding with a moving piston is explicitly studied by solving exactly the collisionless Boltzmann equation for the distribution function. By examining the relative phases of the pressure at the piston and the piston's velocity, a dissipative force and an elastic restoring force can be separately identified. 9 references

  12. Power Nuclear Reactors: technology and innovation for development in future

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2009-01-01

    The conference is about some historicals task of the fission technology as well as many types of Nuclear Reactors. Enrichment of fuel, wastes, research reactors and power reactors, a brief advertisment about Uruguay electric siystem and power generation, energetic worldwide, proliferation, safety reactors, incidents, accidents, Three-Mile Island accident, Chernobil accident, damages, risks, classification and description of Power reactors steam generation, nuclear reactor cooling systems, future view

  13. Study of advanced fission power reactor development for the United States. Volume I

    International Nuclear Information System (INIS)

    1976-01-01

    This volume summarizes the results and conclusions of an assessment of five advanced fission power reactor concepts in the context of potential nuclear power economies developed over the time period 1975 to 2020. The study was based on the premise that the LMFBR program has been determined to be the highest priority fission reactor program and it will proceed essentially as planned. Accepting this fact, the overall objective of the study was to provide evaluations of advanced fission reactor systems for input to evaluating the levels of research and development funding for fission power. Evaluation of the reactor systems included the following categories: (1) power plant performance, (2) fuel resource utilization; (3) fuel-cycle requirements; (4) economics; (5) environmental impact; (6) risk to the public; and (7) R and D requirements to achieve commercial status. The specific major objectives of the study were twofold: (1) to parametrically assess the impact of various reactor types for various levels of power demand through the year 2020 on fissile fuel utilization, economics, and the environment, based on varying but reasonable assumptions on the rates of installation; and (2) to qualitatively assess the practicality of the advanced reactor concepts, and their research and development. The reactor concepts examined were limited to the following: advanced high-temperature, gas-cooled reactor (HTGR) systems including the thorium/U-233 fuel cycle, gas turbine, and binary cycle (BIHTGR); gas-cooled fast breeder reactor (GCFR); molten salt breeder reactor (MSBR); light water breeder reactor (LWBR); and CANDU heavy water reactor

  14. Nuclear power situation in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Miettinen, J K

    1976-01-01

    Finland plans to have its future energy policy as well-balanced and economical as possible. Dependence on oil has to be reduced and savings have to be achieved wherever possible. Some growth of energy demand will be inevitable, and most of this growth has to be nuclear. Practically all hydropower that can be reasonably exploited is being utilized already. Finland has an abundance of peat, but it can be economically used only as a regional source of energy. This leaves, as the only real alternatives for the coming decennia, coal and fission; of the two, fission is evidently the better choice. Although other forms of energy such as fusion, solar, tidal, and wind energy have to be studied as longer-range alternatives. Four nuclear power plants are presently under construction in Finland and at least a few additional ones will evidently be built before 1990. Several of them will probably be of the combined district heat and electricity-producing type. The planning of nuclear energy has recently become complicated due to financing difficulties, uncertainties regarding long-range fuel services, and public opposition. The latter is partly caused by lack of information, partly by fears of a change of life-style in communities near the planned power plant sites. (From Conclusions)

  15. Seventy-five years of nuclear fission

    Indian Academy of Sciences (India)

    technology can play such a vital role in a nation's development subsequently motivated ... fragments with a broad mass distribution is a unique nuclear phenomenon ... low energy and spontaneous fission of actinide nuclei and how these ...

  16. Dynamical features of nuclear fission

    Indian Academy of Sciences (India)

    Wheeler underestimates several observables in heavy-ion-induced ... excitation energies, there may not be sufficient nuclei near the fission barrier after the .... Dissipation in nuclear dynamics in the mean-field regime accounts for the coupling of the .... barrier for different isotopes of Fr. The lines are drawn to guide the eye.

  17. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to these seen in free space. For a well designed shield, the additional mass required to be brought fro earth should be less than 1000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  18. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to those seen in free space. For a well designed shield, the additional mass required to be brought from earth should be less than 1,000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  19. The Fukushima nuclear disaster and its effects on media framing of fission and fusion energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Luisa; Horta, Ana; Pereira, Sergio; Delicado, Ana [Institute of Social Sciences of the University of Lisbon, Av. Prof. Anibal de Bettencourt, 9 1600-189 Lisbon (Portugal)

    2015-07-01

    This paper presents results of a comparison of media coverage of fusion and fission energy technologies in three countries (Germany, Spain and Portugal) and in the English language international print media addressing transnational elite, from 2008 to 2012. The analysis showed that the accident in Fukushima in March 2010 did not have significant impact on media framing of nuclear fusion in the major part of print media under investigation. In fact, fusion is clearly dissociated from traditional nuclear (fission) energy and from nuclear accidents. It tends to be portrayed as a safe, clean and unlimited source of energy, although less credited when confronted with research costs, technological feasibility and the possibility to be achieved in a reasonable period of time. On the contrary, fission is portrayed as a hazardous source of energy, expensive when compared to research costs of renewables, hardly a long-term energy option, susceptible to contribute to the proliferation of nuclear weapons or rogue military use. Fukushima accident was consistently discussed in the context of safety problems of nuclear power plants and in many cases appeared not as an isolated event but rather as a reminder of previous nuclear disasters such as Three Miles Island and Chernobyl. (authors)

  20. The Fukushima nuclear disaster and its effects on media framing of fission and fusion energy technologies

    International Nuclear Information System (INIS)

    Schmidt, Luisa; Horta, Ana; Pereira, Sergio; Delicado, Ana

    2015-01-01

    This paper presents results of a comparison of media coverage of fusion and fission energy technologies in three countries (Germany, Spain and Portugal) and in the English language international print media addressing transnational elite, from 2008 to 2012. The analysis showed that the accident in Fukushima in March 2010 did not have significant impact on media framing of nuclear fusion in the major part of print media under investigation. In fact, fusion is clearly dissociated from traditional nuclear (fission) energy and from nuclear accidents. It tends to be portrayed as a safe, clean and unlimited source of energy, although less credited when confronted with research costs, technological feasibility and the possibility to be achieved in a reasonable period of time. On the contrary, fission is portrayed as a hazardous source of energy, expensive when compared to research costs of renewables, hardly a long-term energy option, susceptible to contribute to the proliferation of nuclear weapons or rogue military use. Fukushima accident was consistently discussed in the context of safety problems of nuclear power plants and in many cases appeared not as an isolated event but rather as a reminder of previous nuclear disasters such as Three Miles Island and Chernobyl. (authors)

  1. Dynamical chaos and induced nuclear fission

    Energy Technology Data Exchange (ETDEWEB)

    Bolotin, Yu L; Krivoshej, I V

    1985-01-01

    It is shown that the exponential instability of trajectories, which arises at negative curvature of the potential energy surface, leads to diffusion of the image point through the barrier and determines real time delays in induced nuclear fission.

  2. Evaluation of nuclear data for emergency preparedness system of nuclear power plants. Comparison of radioactivity inventories by newest nuclear data and rather older nuclear data

    International Nuclear Information System (INIS)

    Yoshida, Yoshitaka; Kimura, Itsuro

    2004-01-01

    The radioactivity inventories for emergency preparedness systems of nuclear power plants calculated by the combination of the generally-used in Japan (general-version), the INSS used by the present authors (INSS-version) and the newest nuclear data library and codes (newest-version) were compared, and the maintaining of conservativeness of the general-version and the INSS-version against the newest-version was examined. And the influences of the radioactivity inventories by the difference between the nuclear cross section and fission yield data, decay data and calculation codes were investigated. As a result, (1) the radioactivity inventories calculated by general-version and INSS-version were not confirmed the conservativeness to the newest-version. But the difference was less than 10%, and it would not give large influence to the calculation of the emergency preparedness system of nuclear plants. (2) The influence of the radioactivity inventories such as 135 Xe build-up were observed by the difference of neutron flux level in an operation of reactors that occurred by the variety of nuclear cross section and fission yield data. (3) Little influence by the variety of decay data was confirmed. (4) The ORIGEN2.1 code underestimated the amount of fission products generated by fission of minor actinides. From these result, the radioactivity inventories for the emergency preparedness system of nuclear power plants are recommended to use the calculation results by the combination of the library for ORIGEN2 based on JENDL3.3 and the ORIGEN2.2 code. (author)

  3. A trend to small nuclear power plants?

    International Nuclear Information System (INIS)

    Lameira, Fernando Soares

    2000-01-01

    The release of fossil fuel greenhouse gases and the depletion of cheap oil reserves outside the Persic Gulf suggest a promising scenario for the future of nuclear power. But the end of the Cold War, the crisis of the state, axiological questions and globalization may lead to a marked for small power plants. The purpose of this paper is to analyze these factors, since they are not always considered all together in the future scenarios for nuclear power. It is concluded that the current evolutionary trend of nuclear power projects toward big plants may become one of the main barriers for the introduction of new plants in the future. It is suggested that a combination of fission reactors with technologies unavailable in the 1950's, when the design characteristics of the current nuclear power plants were established, could be considered to overcome this barrier. (author)

  4. Spallator and APEX nuclear fuel cycle: a new option for nuclear power

    International Nuclear Information System (INIS)

    Steinberg, M.

    1982-01-01

    A new nuclear fuel cycle is described which provides a long term supply of nuclear fuel for the thermal LWR nuclear power reactors and eliminates the need for long-term storage of radioactive waste. Fissile fuel is produced by the Spallator which depends on the production of spallation neutrons by the interaction of high-energy (1 to 2 GeV) protons on a heavy-metal target. The neutrons are absorbed in a surrounding natural-uranium or thorium blanket in which fissile Pu-239 to U-233 is produced. Advances in linear accelerator technology makes it possible to design and construct a high-beam-current continuous-wave proton linac for production purposes. The target is similar to a sub-critical reactor and produces heat which is converted to electricity for supplying the linac. The Spallator is a self-sufficient fuel producer, which can compete with the fast breeder. The APEX fuel cycle depends on recycling the transuranics and long-lived fission products while extracting the stable and short-lived fission products when reprocessing the fuel. Transmutation and decay within the fuel cycle and decay of short-lived fission products external to the fuel cycle eliminates the need for long-term geological age shortage of fission-product waste

  5. Spallator and APEX nuclear fuel cycle: a new option for nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.

    1982-01-01

    A new nuclear fuel cycle is described which provides a long term supply of nuclear fuel for the thermal LWR nuclear power reactors and eliminates the need for long-term storage of radioactive waste. Fissile fuel is produced by the Spallator which depends on the production of spallation neutrons by the interaction of high-energy (1 to 2 GeV) protons on a heavy-metal target. The neutrons are absorbed in a surrounding natural-uranium or thorium blanket in which fissile Pu-239 to U-233 is produced. Advances in linear accelerator technology makes it possible to design and construct a high-beam-current continuous-wave proton linac for production purposes. The target is similar to a sub-critical reactor and produces heat which is converted to electricity for supplying the linac. The Spallator is a self-sufficient fuel producer, which can compete with the fast breeder. The APEX fuel cycle depends on recycling the transuranics and long-lived fission products while extracting the stable and short-lived fission products when reprocessing the fuel. Transmutation and decay within the fuel cycle and decay of short-lived fission products external to the fuel cycle eliminates the need for long-term geological age shortage of fission-product waste.

  6. Nuclear fission - the unexpected discovery seventy years ago

    International Nuclear Information System (INIS)

    Weis, Michael

    2008-01-01

    Seventy years ago, on December 17, 1938, Otto Hahn, Lise Meitner, and Fritz Strassmann discovered nuclear fission. It was a serendipitous discovery resulting from the consistent pursuit, for many years, of occasionally unexpected radiochemical experimental findings. Hardly any other scientific discovery has had such direct bearing on our life, changing our view of the world. It over-threw the tenet of physics, believed to be incontestable, that the atom was indivisible. The use of nuclear power it has made possible has given rise to immense benefits, but it has also allowed mankind's most dreadful weapon so far to be developed. All this is ample reason seventy years later to recall the discovery, the discoverers and their times. It will also be shown what later generations have made of this discovery, and what economic and ecological prospects it continues to hold. (orig.)

  7. Hyperfission - a new mode of nuclear fission

    International Nuclear Information System (INIS)

    Ion, D.B.; Ivascu, M.; Ion-Mihai, R.

    1988-02-01

    In this paper the nuclear hyperfission as a new mode of fission, possible for heavy elements with Z > 92, is investigated. The Q-systematics, hyperfissibility parameters, hyperfission barrier as well as the essential hindrance factors are presented. The hyperfission hindrance factor relative to that of fission is found to be in the interval 1.0x10 -17 - 3.4x10 -16 for the parent nuclei with Z = 92-108. (orig.)

  8. Nuclear Dissipation from Fission Time

    International Nuclear Information System (INIS)

    Gontchar, I.; Morjean, M.; Basnary, S.

    2000-01-01

    Fission times, pre-scission neutron multiplicities and GDR pre-scission γ-ray multiplicities measured for uranium or thorium nuclei formed with temperatures T ∼ 1.8 MeV have been compared with calculations performed with CDSM2, a two-dimensional dynamical model combined with a statistical one. Among the three experimental approaches considered, fission times give access to the most precise pieces of information on nuclear dissipation at high excitation energy. For the temperature range under consideration, an agreement between the model and data is achieved if one-body dissipation is used with a strength factor k red ∼ 0.45 ± 0.10 applied to the wall term for the mononuclear configuration. (authors)

  9. Nuclear structure in cold rearrangement processes in fission and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, P.

    1998-11-01

    In fission and fusion of heavy nuclei large numbers of nucleons are rearranged at a scale of excitation energy very small compared to the binding energy of the nuclei. The energies involved are less than 40 MeV at nuclear temperatures below 1.5 MeV. The shapes of the configurations in the rearrangement of a binary system into a monosystem in fusion, or vice versa in fission, change their elongations by as much as 8 fm, the radius of the monosystem. The dynamics of the reactions macroscopically described by a potential energy surface, inertia parameters, dissipation, and a collision energy is strongly modified by the nuclear structure of the participating nuclei. Experiments showing nuclear structure effects in fusion and fission of the heaviest nuclei are reviewed. The reaction kinematics and the multitude of isotopes involved are investigated by detector techniques and by recoil spectrometers. The advancement of the latter allows to find very small reaction branches in the range of 10{sup -5} to 10{sup -10}. The experiments reveal nuclear structure effects in all stages of the rearrangement processes. These are discussed pointing to analogies in fusion and fission on the microscopic scale, notwithstanding that both processes macroscopically are irreversible. Heavy clusters, as 132Sn, 208Pb, nuclei with closed shell configurations N=82,126, Z=50,82 survive in large parts of the nuclear rearrangement. They determine the asymmetry in the mass distribution of low energy fission, and they allow to synthesise superheavy elements, until now up to element 112. Experiments on the cold rearrangement in fission and fusion are presented. Here, in the range of excitation energies below 12 MeV the phenomena are observed most convincingly. (orig.)

  10. Preliminary assessment of a symbiotic fusion--fission power system using the TH/U refresh fuel cycle

    International Nuclear Information System (INIS)

    Bender, D.J.; Lee, J.D.; Moir, R.W.

    1977-10-01

    Studies of the mirror hybrid reactor by LLL/GA have concluded that the most promising role for this reactor concept is that of a producer of fissile fuel for fission reactors. Studies to date have examined primarily the U/Pu fuel cycle with light-water reactors serving as the consumers of the hybrid-bred fissile fuel; the specific scenarios examined required reprocessing and refabrication of the bred fuel before introduction into the fission reactor. This combination of technologies was chosen to illustrate the manner in which the hybrid reactor concept could serve the needs of, and use the technology of, the fission reactor industry as it now exists (and as it was thought it would evolve). However, the current U.S. Administration has expressed strong concerns about proliferation of nuclear weapons capability and terrorist diversion of weapons-grade nuclear materials. These concerns are based on the projected technology for the light-water reactor/fast breeder reactor using the U/Pu fuel cycle and extensive reprocessing/refabrication. A symbiotic nuclear power generation concept (hybrid fissile producer plus fission burner reactors) is described which eliminates those aspects of the present nuclear fuel cycle that (may) represent significant proliferation/diversion risks. Specifically, the proposed concept incorporates the following features: (1)Th/U 233 fuel cycle, (2) no reprocessing or fabrication of fissile material, and (3) no fissile material in a weapons-grade state

  11. Euratom innovation in nuclear fission: Community research in reactor systems and fuel cycles

    International Nuclear Information System (INIS)

    Goethem, G. van; Hugon, M.; Bhatnagar, V.; Manolatos, P.; Deffrennes, M.

    2007-01-01

    The following questions are naturally at the heart of the current Euratom research and training framework programme:(1)What are the challenges facing the European Union nuclear fission research community in the short (today), medium (2010) and long term (2040)? (2)What kind of research and technological development (RTD) does Euratom offer to respond to these challenges, in particular in the area of reactor systems and fuel cycles? In the general debate about energy supply technologies there are challenges of both a scientific and technological (S/T) as well as an economic and political (E/P) nature. Though the Community research programme acts mainly on the former, there is nevertheless important links with Community policy. These not only exist in the specific area of nuclear policy, but also more generally as is depicted in the following figure. It is shown in the particular area of nuclear fission, to what extent Euratom research, education and innovation ('Knowledge Triangle' in above figure) respond to the following long-term criteria: (1) sustainability, (2) economics, (3) safety, and (4) proliferation resistance. Research and innovation in nuclear fission technology has broad and extended geographical, disciplinary and time horizons:- the community involved extends to all 25 EU Member States and beyond; - the research assembles a large variety of scientific disciplines; - three generations of nuclear power technologies (called II, III and IV) are involved, with the timescales extending from now to around the year 2040. To each of these three generations, a couple of challenges are associated (six in total):- Generation II (1970-2000, today): security of supply+environmental compatibility; - Generation III (around 2010): enhanced safety and competitiveness (economics); - Generation IV (around 2040): cogeneration of heat and power, and full recycling. At the European Commission (EC), the research related to nuclear reactor systems and fuel cycles is

  12. Energy waste and nuclear power growth

    International Nuclear Information System (INIS)

    von Hippel, F.; Williams, R.H.

    1976-01-01

    The world's steady advance toward a plutonium economy is based on unnecessarily high projections of the future growth of nuclear power, in the United States, at least. These high projections of nuclear power growth are based in turn upon an assumed pattern of energy use which is economically wasteful and potentially dangerous both to the global environment and international stability. It is therefore of the utmost urgency that the United States develop an energy policy which encourages increased efficiency in energy use. Among other benefits, the authors believe that such a policy would slow the growth of nuclear power to the point where the plutonium recycle decision could be delayed for at least a decade in the United States. They also believe that such an example of ''technological abstinence'' by the world's leading economic power might well inspire similar decisions in other parts of the world. It could also allow time for the development of a safer evolutionary path for fission power

  13. Characteristic relation for the mass and energy distribution of the nuclear fission products

    International Nuclear Information System (INIS)

    Alexandru, G.

    1977-01-01

    The dispersion relation for nuclear fission is written in the two part fragmentation approach which allows to obtain the characteristic relation for the mass and energy distribution of the nuclear fission products. One explains the resonance approximation in the mass distribution of the fission products taking into account the high order resonances too. (author)

  14. Fission rates measured using high-energy gamma-rays from short half-life fission products in fresh and spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kroehnert, H.

    2011-02-15

    In recent years, higher discharge burn-ups and initial fuel enrichments have led to more and more heterogeneous core configurations in light water reactors (LWRs), especially at the beginning of cycle when fresh fuel assemblies are loaded next to highly burnt ones. As this trend is expected to continue in the future, the Paul Scherrer Institute has, in collaboration with the Swiss Association of Nuclear Utilities, swissnuclear, launched the experimental programme LIFE(at)PROTEUS. The LIFE(at)PROTEUS programme aims to better characterise interfaces between burnt and fresh UO{sub 2} fuel assemblies in modern LWRs. Thereby, a novel experimental database is to be made available for enabling the validation of neutronics calculations of strongly heterogeneous LWR core configurations. During the programme, mixed fresh and highly burnt UO{sub 2} fuel lattices will be investigated in the zero-power research reactor PROTEUS. One of the main types of investigations will be to irradiate the fuel in PROTEUS and measure the resulting fission rate distributions across the interface between fresh and burnt fuel zones. The measurement of fission rates in burnt fuel re-irradiated in a zero-power reactor requires, however, the development of new experimental techniques which are able to discriminate against the high intrinsic activity of the fuel. The principal goal of the present research work has been to develop such a new measurement technique. The selected approach is based on the detection of high-energy gamma-ray lines above the intrinsic background (i.e. above 2200 keV), which are emitted by short-lived fission products freshly created in the fuel. The fission products {sup 88}Kr, {sup 142}La, {sup 138}Cs, {sup 84}Br, {sup 89}Rb, {sup 95}Y, {sup 90m}Rb and {sup 90}Rb, with half-lives between 2.6 min and 2.8 h, have been identified as potential candidates. During the present research work, the gamma-ray activity of short-lived fission products has, for the first time, been

  15. Major changes in the world's nuclear power at the beginning of the new century

    International Nuclear Information System (INIS)

    Dumitrache, Ion

    2002-01-01

    In the last decade of the 20th century the world nuclear power recorded some characteristic trends among which one can mention the following: - Almost total absence of investments in new NPPs in the industrialized countries except Japan and South Korea; - Policy of some governments to decrease the nuclear power sector in their countries up to a complete stop of electricity production in a foreseeable future (as in case of Sweden, Germany, Nederland and Belgium); - Projections indicating a steady decline of nuclear share in the national power production as for instance in USA, Germany, Great Britain, and other industrialized countries; - pressures upon countries late owners of soviet type NPPs in order to shut down completely the RBMK and WWER reactors; - a drastic reduction of the funds afforded for research dedicated to fission reactors of new concept, except Japan and South Korea; - almost negligible effects of the Kyoto protocol upon nuclear power, hopes being directed towards renewable energy sources. After second half of the year 1998 modest signals of future changes in the energy policy occurred. The US government admitted on basis of performance assessments and projections that the important role of nuclear power in US will be extended still for long after the years 2020-2030. Consequently, research concerning the future demand for fission based power began be financed. Gradually the countries of EU and Canada modified also their official position towards the role of nuclear fission in ensuring the electric energy needs of the future. The beginning of the new century was marked by a significant acceleration of changes of opinions in favor of nuclear power. Japan and South Korea stated that at least in the first half of the 21th century the fission NPP's will play a major role. Russia promoted new WWER reactor types of safety standards equivalent or higher than the western ones. Also China and India launched ambitious plans for building new NPPs. These new

  16. A brief history of the ''Delayed'' discovery of nuclear fission

    International Nuclear Information System (INIS)

    Holden, N.E.

    1989-08-01

    This year marks the Fiftieth Anniversary of the discovery of Nuclear Fission. In the early 1930's, the neutron was discovered, followed by the discovery of artificial radioactivity and then the use of the neutron to produce artificial radioactivity. The first experiments resulting in the fission of uranium took place in 1934. A paper which speculated on fission as an explanation was almost immediately published, yet no one took it seriously not even the author herself. Why did it take an additional five years before anyone realized what had occurred? This is an abnormally long time in a period when discoveries, particularly in nuclear physics, seemed to be almost a daily occurrence. The events which led up to the discovery are recounted, with an attempt made to put them into their historical perspective. The role played by Mendeleev's Periodic Table, the role of the natural radioactive decay chain of uranium, the discovery of protactinium, the apparent discovery of masurium (technetium) and a speculation on the reason why Irene Curie may have missed the discovery of nuclear fission will all be discussed. 43 refs

  17. European pathways for Slovak research and education in the nuclear power domain

    International Nuclear Information System (INIS)

    Slugen, Vladimir

    2010-01-01

    New approaches of the European Commission (DG RTD Energy) to the development of nuclear power engineering (focussed on fission and reactor systems) through various support programmes, which can be of use also in Slovak conditions, are discussed. The following topics are described in detail: Globalization of European research and education; Competency in the nuclear power domain; EU platforms for directing EURATOM research activities (SET, SNE-TP, ENEF, ENSREG); ENEN, EHRO-N, ENELA and their position in European education; Objectives of EURATOM research and professional training programmes; Focus on the creation of competencies serving the nuclear sector at the EU level (ECVET); and Towards mutual recognition of nuclear competencies new EURATOM educational programmes in the domain of fission (examples of EFTS: TRASNUSAFE, ENEN III, ENETRAP II, PETRUS II). (orig.)

  18. Ternary fission

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Since its discovery in 1946, light (charged) particle accompanied fission (ternary fission) has been extensively studied, for spontaneous as well as for induced fission reactions. The reason for this interest was twofold: the ternary particles being emitted in space and time close to the scission point were expected to supply information on the scission point configuration and the ternary fission process was an important source of helium, tritium, and hydrogen production in nuclear reactors, for which data were requested by the nuclear industry. Significant experimental progress has been realized with the advent of high-resolution detectors, powerful multiparameter data acquisition systems, and intense neutron and photon beams. As far as theory is concerned, the trajectory calculations (in which scission point parameters are deduced from the experimental observations) have been very much improved. An attempt was made to explain ternary particle emission in terms of a Plateau-Rayleigh hydrodynamical instability of a relatively long cylindrical neck or cylindrical nucleus. New results have also been obtained on the so-called open-quotes trueclose quotes ternary fission (fission in three about-equal fragments). The spontaneous emission of charged particles has also clearly been demonstrated in recent years. This chapter discusses the main characteristics of ternary fission, theoretical models, light particle emission probabilities, the dependence of the emission probabilities on experimental variables, light particle energy distributions, light particle angular distributions, correlations between light particle accompanied fission observables, open-quotes trueclose quotes ternary fission, and spontaneous emission of heavy ions. 143 refs., 18 figs., 8 tabs

  19. Nuclear power. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, W.C.

    1983-01-01

    Lay language brings an understanding of nuclear technology and nuclear politics to the non-specialist reader. The author notes that there has been little change in the technology during the four decades of the nuclear age, but mankind has still to learn how to live with it. Part One explains how reactors work, identifies different reactor types, and describes the fuel cycle. Part two follows research developments during the pre-Manhatten Project days, the war effort, and the decision to pursue commercial nuclear power. He traces the development of policies to secure fission materials and international efforts to prevent the proliferation of weapons grade material and the safe handling of radioactive wastes on a global as well as national scale. There are four appendices, including an annotated reference to other publications. 9 figures.

  20. Potentials of fissioning plasmas

    International Nuclear Information System (INIS)

    Karlheinz, Thom.

    1979-01-01

    Successful experiments with the nuclear pumping of lasers have demonstrated that in gaseous medium the kinetic energy of fission fragments can be converted directly into non-equilibrium optical radiation. This confirms the concept that the fissioning medium in a gas-phase nuclear reactor shows an internal structure such as a plasma in nearly thermal equilibrium varying up to a state of extreme-non-equilibrium. The accompanying variations of temperatures, pressure and radiative spectrum suggest wide ranges of applications. For example, in the gas-phase fission reactor concept enriched uranium hexafluoride or an uranium plasma replaces conventional fuel elements and permits operation above the melting point of solid materials. This potential has been motivation for the US National Aeronautics and Space Administration (NASA) to conduct relevant research for high specific impulse propulsion in space. The need to separate the high temperature gaseous fuel from the surfaces of a containing vessel and to protect them against thermal radiation has led to the concept of an externally moderated reactor in which the fissioning gaseous material is suspended by fluid dynamic means and the flow of opaque buffer gas removes the power. The gaseous nuclear fuel can slowly be circulated through the reactor for continuous on-site reprocessing including the annihilation of transuranium actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides can thus be achieved. These characteristics and the unique radiative properties led to the expectation that the gas-phase fission reactor could feature improved safety, safeguarding and economy, in addition to new technologies such as processing, photochemistry and the transmission of power over large distances in space

  1. How is Electricity Generated from Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lajnef, D.

    2015-01-01

    Nuclear power is a proven, safe and clean source of power generation. A nuclear power plant is a thermal power station in which the heat source is a nuclear reactor. As is typical in all conventional thermal power stations the heat is used to generate steam which drives a steam turbine: the energy released from continuous fission of the atoms of the fuel is harnessed as heat in either a gas or water, and is used to produce steam. Nuclear Reactors are classified by several methods. It can be classified by type of nuclear reaction, by the moderator material, by coolant or by generation. There are several components common to most types of reactors: fuel, moderator, control rods, coolant, and containment. Nuclear reactor technology has been under continuous development since the first commercial exploitation of civil nuclear power in the 1950s. We can mention seven key reactor attributes that illuminate the essential differences between the various generations of reactors: cost effectiveness, safety, security and non-proliferation, fuel cycle, grid appropriateness and Economics. Today there are about 437 nuclear power reactors that are used to generate electricity in about 30 countries around the world. (author)

  2. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2010-01-01

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ∼30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64 C long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  3. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Goldston

    2010-03-03

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  4. Nuclear power as a substitute for fossil fuels

    International Nuclear Information System (INIS)

    Bahramabadi, G. A.; Shirzadi, C.

    2008-01-01

    The challenge in energy policy is to reduce CO 2 emissions and the worlds dependence on oil while satisfying a substantially increased demand for energy. Putting aside the still-speculative possibility of sequestering carbon dioxide, this challenge reduces to that of using energy more efficiently and finding substitutes for fossil fuels. Alternatives to fossil fuels fall into two broad categories: Renewable sources. Most of these sources-including hydroelectric power, wind power, direct solar heating, photovoltaic power, and biomass-derive their energy ultimately from the Sun and will not be exhausted during the next billion years. Geothermal energy and tidal energy are also renewable, in this sense, although they do not rely on the sun. However, there is almost an inverse correlation between the extent to which the source b now being used and the size of the potentially trap able resource. Thus, expansion of hydroelectric power (which is substantially used) is constricted by limited sites and environmental objections, whereas wind (for which the resource is large) is as yet less used and thus is not fully proven as a large-scale contributor. Nuclear sources. The two nuclear possibilities are fission and fusion. The latter would be inexhaustible for all practical purposes, but developing an effective fusion system remains an uncertain hope. Fission energy would also have an extremely long time span if breeder reactors arc employed, but with present-day reactors limits on uranium (or thorium) resources could be an eventual problem. At present, fission power faces problems of public acceptance and economic competitiveness. The broad alternatives of renewable energy and nuclear energy can be considered as being in competition, with one or the other to be the dominant choice, or complementary, with both being extensively employed

  5. Fission Power System Technology for NASA Exploration Missions

    Science.gov (United States)

    Mason, Lee; Houts, Michael

    2011-01-01

    Under the NASA Exploration Technology Development Program, and in partnership with the Department of Energy (DOE), NASA is conducting a project to mature Fission Power System (FPS) technology. A primary project goal is to develop viable system options to support future NASA mission needs for nuclear power. The main FPS project objectives are as follows: 1) Develop FPS concepts that meet expected NASA mission power requirements at reasonable cost with added benefits over other options. 2) Establish a hardware-based technical foundation for FPS design concepts and reduce overall development risk. 3) Reduce the cost uncertainties for FPS and establish greater credibility for flight system cost estimates. 4) Generate the key products to allow NASA decisionmakers to consider FPS as a preferred option for flight development. In order to achieve these goals, the FPS project has two main thrusts: concept definition and risk reduction. Under concept definition, NASA and DOE are performing trade studies, defining requirements, developing analytical tools, and formulating system concepts. A typical FPS consists of the reactor, shield, power conversion, heat rejection, and power management and distribution (PMAD). Studies are performed to identify the desired design parameters for each subsystem that allow the system to meet the requirements with reasonable cost and development risk. Risk reduction provides the means to evaluate technologies in a laboratory test environment. Non-nuclear hardware prototypes are built and tested to verify performance expectations, gain operating experience, and resolve design uncertainties.

  6. Exclusion of nuclear forces in heavy-ion Coulomb excitation and Coulomb fission experiments

    International Nuclear Information System (INIS)

    Neese, R.E.; Guidry, M.W.

    1982-01-01

    A simple prescription for estimating the energy at which nuclear forces begin to play a role in heavy-ion Coulomb excitation and Coulomb fission experiments is presented. The method differs from most commonly used recipes in accounting for projectile and target nucleus deformation effects. Using a single adjustable parameter the formula reproduces the energy for the onset of Coulomb-nuclear interference effects for a broad range of heavy-ion systems. It is suggested that most Coulomb fission experiments which have been done involve both Coulomb and nuclear excitation processes and should more properly be termed Coulomb-nuclear fission experiments

  7. Fission yeast cells undergo nuclear division in the absence of spindle microtubules.

    Directory of Open Access Journals (Sweden)

    Stefania Castagnetti

    2010-10-01

    Full Text Available Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.

  8. Reference reactor module for NASA's lunar surface fission power system

    International Nuclear Information System (INIS)

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Werner, James; Qualls, Louis; Radel, Ross

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO 2 -fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  9. Environmental aspects of nuclear power applications

    International Nuclear Information System (INIS)

    Penner, S.S.; Howe, J.P.; Icerman, L.

    1976-01-01

    The paper estimates the future dangers from the nuclear industry. Historically, the occurrence of nuclear reactor accidents has not been a hazard to the U.S. population, because of relatively limited reactor deployment and because of relatively safe operation. Some factual inputs were taken from the Rasmussen Report, ''An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants.'' It is noted that data on nuclear power plant accidents follow a curve about four orders of magnitude below that for persons on the ground killed by air crashes. Data show that coal mining produced about ten times as many disabilities as uranium mining and milling per 10 6 MW(e)h of energy recovered, while the number of injuries per 10 6 man-hours of work was roughly comparable for these two types of occupations. Information on the following subjects is then presented: radiation protection standards, radiation exposures; radiation emitted from nuclear reactors under normal operating conditions; accidents involving nuclear fission reactors; fuel reprocessing; nuclear waste disposal; estimates of environmental and safety aspects of fusion power; licensing of nuclear reactors; nuclear safeguards: diversion of nuclear materials, sabotage, and subversion; and nuclear energy and trade deficits in which data are presented estimating a timetable expressing the economic power of OPEC, or the time required for OPEC wealth to purchase the world's major assets

  10. Nuclear data in the problem of fission reactor decommissioning

    International Nuclear Information System (INIS)

    Manokhin, V.N.; Kulagin, N.T.

    1993-01-01

    This report presents a review of the works published in Russia during last several years and devoted to the problem of nuclear data and calculations of nuclear facilities activation for fission reactor decommissioning. 6 refs

  11. Gaseous-fuel nuclear reactor research for multimegawatt power in space

    Science.gov (United States)

    Thom, K.; Schneider, R. T.; Helmick, H. H.

    1977-01-01

    In the gaseous-fuel reactor concept, the fissile material is contained in a moderator-reflector cavity and exists in the form of a flowing gas or plasma separated from the cavity walls by means of fluid mechanical forces. Temperatures in excess of structural limitations are possible for low-specific-mass power and high-specific-impulse propulsion in space. Experiments have been conducted with a canister filled with enriched UF6 inserted into a beryllium-reflected cavity. A theoretically predicted critical mass of 6 kg was measured. The UF6 was also circulated through this cavity, demonstrating stable reactor operation with the fuel in motion. Because the flowing gaseous fuel can be continuously processed, the radioactive waste in this type of reactor can be kept small. Another potential of fissioning gases is the possibility of converting the kinetic energy of fission fragments directly into coherent electromagnetic radiation, the nuclear pumping of lasers. Numerous nuclear laser experiments indicate the possibility of transmitting power in space directly from fission energy. The estimated specific mass of a multimegawatt gaseous-fuel reactor power system is from 1 to 5 kg/kW while the companion laser-power receiver station would be much lower in specific mass.

  12. Nuclear energy basic knowledge

    International Nuclear Information System (INIS)

    Volkmer, Martin

    2013-11-01

    The following topics are dealt with: Atoms, nuclear decays and radioactivity, energy, nuclear fission and the chain reaction, controlled nuclear fission, nuclear power plants, safety installations in nuclear power plants, fuel supply and disposal, radiation measurement and radiation exposition of man. (HSI)

  13. Safety in nuclear power plants

    International Nuclear Information System (INIS)

    Koeberlein, K.

    1987-01-01

    In nuclear power plants large amounts of radioactive fission products ensue from the fission of uranium. In order to protect the environment, the radioactive material is confined in multiple 'activity barriers' (crystal matrix of the fuel, fuel cladding, coolant boundary, safety containment, reactor building). These barriers are protected by applying a defense-in-depth concept (high quality requirements, protection systems which recognize and terminate operational incidents, safety systems to cope with accidents). In spite of a favorable safety record of German nuclear power plants it is obvious - and became most evident by the Chernobyl accident - that absolute safety is not achievable. At Chernobyl, however, design disadvantages of that reactor type (like positive reactivity feedback of coolant voiding, missing safety containment) played an important role in accident initiation and progression. Such features of the Russian 'graphite-moderated pressure tube boiling water reactor' are different from those of light water reactors operating in western countries. The essential steps of the waste management of the nuclear fuel cycle ('Entsorgung') are the interim storage, the shipment, and the reprocessing of the spent fuel and the final repository of radioactive waste. Reprocessing means the separation of fossil material (uranium, plutonium) from radioactive waste. Legal requirements for radiological protection of the environment, which are identical for nuclear power plants and reprocessing plant, are complied with by means of comprehensive filter systems. Safety problems of a reprocessing plant are eased considerably by the fact that system pressures, process temperatures and energy densities are low. In order to confine the radioactive waste from the biosphere for a very long period of time, it is to be discarded after appropriate treatment into the deep geological underground of salt domes. (orig./HP) [de

  14. Separation of fission strontium from nuclear fuels by ammonium molybdatophosphate

    International Nuclear Information System (INIS)

    Hermann, A.

    1984-01-01

    The separation of fission strontium from solutions of prolonged cooled nuclear fuel has been performed using ammoniummolybdatophosphate (AMP) columns. The sorption mechanism of bivalent ions of AMP has been investigated by column and batch experiments. A pure ion exchange of Sr 2+ for two H + or NH 4 + ions has been established. Conditions for the sepasorption and elution of fission strontium and other fission products on AMP columns are described. (author)

  15. Determination of the fission coefficients in thermal nuclear reactors for antineutrino detection

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Lenilson M. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Cabral, Ronaldo G., E-mail: rgcabral@ime.eb.b [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Anjos, Joao C.C. dos, E-mail: janjos@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Dept. GLN - G

    2011-07-01

    The nuclear reactors in operation periodically need to change their fuel. It is during this process that these reactors are more vulnerable to occurring of several situations of fuel diversion, thus the monitoring of the nuclear installations is indispensable to avoid events of this nature. Considering this fact, the most promissory technique to be used for the nuclear safeguard for the nonproliferation of nuclear weapons, it is based on the detection and spectroscopy of antineutrino from fissions that occur in the nuclear reactors. The detection and spectroscopy of antineutrino, they both depend on the single contribution for the total number of fission of each actinide in the core reactor, these contributions receive the name of fission coefficients. The goal of this research is to show the computational and mathematical modeling used to determinate these coefficients for PWR reactors. (author)

  16. Tables and figures from JNDC Nuclear Data Library of fission products, version 2

    International Nuclear Information System (INIS)

    Ihara, Hitoshi

    1989-11-01

    The content of JNDC (Japanese Nuclear Data Committee) FP (Fission Product) Nuclear Data Library version 2 for 1227 fission products is presented in the form of tables and figures. The library is inclusive of evaluated decay data such as decay constant, Q-value, average energies of beta, gamma and internal conversion electron, spin-parity, branching ratio of each decay mode and fission yield. The neutron capture cross-sections are also contained for 166 nuclides. The mass number of the fission product nuclides ranges from A = 66 to A = 172. (author)

  17. Discovery of nuclear fission in Berlin 1938

    International Nuclear Information System (INIS)

    Hilscher, D.

    1989-01-01

    The story of the discovery of nuclear fission, one of the most exciting stories of how a scientific puzzle was finally solved and how the scientists involved were blind to many obvious indications, is described. (author). 29 refs

  18. Low-energy nuclear fission and our understanding of the nucleus

    International Nuclear Information System (INIS)

    Hall, H.L.; Hoffman, D.C.

    1990-01-01

    The interactions between experimental discoveries in low-energy nuclear fission and the theoretical understanding of the structure of the nucleus are reviewed. The history of this synergistic relationship begins with the discovery of fission, the development of the liquid-drop model and the experimental evidence for magic numbers, continues through the development of the shell model, the experimental discovery of shape isomerism, the double-humped fission barrier the spontaneous fission half-life disaster, the discovery of symmetric mass division in spontaneous fission and theoretical treatments based on different paths to scission. It concludes with a brief review of current experimental and theoretical understanding of low-energy fission and the prospects for future developments. (author) 150 refs.; 5 figs.; 1 tab

  19. Electricity Generation Through the Koeberg Nuclear Power Station of Eskom in South Africa

    International Nuclear Information System (INIS)

    Dladla, G.; Joubert, J.

    2015-01-01

    The poster provides information on the process of nuclear energy generation in a nuclear power plant in order to produce electricity. Nuclear energy currently provides approximately 11% of the world’s electricity needs, with Koeberg Nuclear Power Station situated in the Western Cape providing 4.4% of South Africa’s electricity needs. As Africa’s first nuclear power station, Koeberg has an installed capacity of 1910 MW of power. Koeberg’ s total net output is 1860 MW. While there are significant differences, there are many similarities between nuclear power plants and other electrical generating facilities. Uranium is used for fuel in nuclear power plants to make electricity. With the exception of solar, wind, and hydroelectric plants, all others including nuclear plants convert water to steam that spins the propeller-like blades of a turbine that spins the shaft of a generator. Inside the generator coils of wire and magnetic fields interact to create electricity. The energy needed to boil water into steam is produced in one of two ways: by burning coal, oil, or gas (fossil fuels) in a furnace or by splitting certain atoms of uranium in a nuclear energy plant. The uranium fuel generates heat through a controlled fission process fission, which is described in this poster presentation. The Koeberg Nuclear Power Station is a Pressurised water reactor (PWR). The operating method and the components of the Koeberg Power Station are also described. The nuclear waste generated at a nuclear power station is described under three headings— low-level waste, intermediate-level waste and used or spent fuel, which can be solid, liquid or gaseous. (author)

  20. Influence of nuclear dissipation on fission dynamics of the excited ...

    Indian Academy of Sciences (India)

    A stochastic approach to fission dynamics based on two-dimensional Langevin equations was applied to calculate the anisotropy of the fission fragments angular distribution and average pre-scission neutron multiplicities for the compound nucleus 248Cf formed in the $${16}$O+$^{232}$Th reactions. Postsaddle nuclear ...

  1. Mechanism of nuclear dissipation in fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1986-01-01

    Recent advances in the theoretical understanding of nuclear dissipation at intermediate excitation energies are reviewed, with particular emphasis on a new surface-plus-window mechanism that involves interactions of either one or two nucleons with the moving nuclear surface and also, for dumbbell-like shapes encountered in fission and heavy-ion reactions, the transfer of nucleons through the window separating the two portions of the system. This novel dissipation mechanism provides a unified macroscopic description of such diverse phenomena as widths of isoscalar giant quadrupole and giant octupole resonances, mean fission-fragment kinetic energies and excitation energies, dynamical thresholds for compound-nucleus formation, enhancement in neutron emission prior to fission, and widths of mass and charge distributions in deep-inelastic heavy-ion reactions. 41 refs., 8 figs

  2. Proceedings of the specialists' meeting on interdisciplinary approach to nuclear fission 1998

    International Nuclear Information System (INIS)

    Nakagome, Yoshihiro

    1999-02-01

    One of the prominent features of nuclear fission phenomena distinguished from other reactions consists in its many-facet nature. This includes interesting problems in nuclear physics like stability and properties of transactinide and superheavy nuclei, macroscopic and microscopic effects in large-amplitude deformation process, partition of mass and energy at scission, formation of neutron-rich nuclei, neutron- and gamma-ray emission from highly excited states and so on. These aspects are intriguing not only from scientific point of view but also from technological one, because knowledge and understanding of the essential features of the phenomena forms the basis of application of nuclear energy. Physicists expect to obtain a deeper insight into fundamental problems in subjects such as relation between fission process and fusion of heavy-ions, statistical and dynamical processes in nuclear reactions, level structure and decay modes of highly-excited nuclei. On the other hand, there are still continued requests from scientists in nuclear engineering for more accurate data for transuranium nuclei and fission products, as well as for fundamental constants, like fission cross sections, multiplicity and spectra of prompt and delayed neutrons, and other physical quantities that are important in reactor physics. Studies on properties of neutron-rich nuclei are conducted under double interests: one from nucleosynthesis in the universe, another from nuclear incineration of fission products. We considered that these many-facet nature of the fission phenomena should be the central idea of the Specialists' Meeting itself. This implies that we intended to devise a common place where people from different fields encounter, discuss together, exchange ideas and hopefully find good suggestions for pursuing further studies. We are sure that such a meeting, really rare and unique in academic communities in our country, should serve to vitalize research activities relevant to fission

  3. FPFPspace2: A code for following airborne fission products in generic nuclear plant flow paths

    International Nuclear Information System (INIS)

    Owcarski, P.C.; Burk, K.W.; Ramsdell, J.V.; Yasuda, D.D.

    1991-03-01

    In order to assure that a nuclear power plant control room remains habitable during certain types of postulated accidents, Pacific Northwest Laboratory (PNL) has undertaken a special study for the US Nuclear Regulatory Commission. This purpose of this study is to develop software that can aid in the analyses of control room habitability during accidents in which airborne fission products could challenge internal air pathways to the control room. PNL has completed an initial version (FPFP) and final version (FPFP 2) of a software package that can estimate the unsteady-state invasion of quantities of fission products into the control room or any other destination within the nuclear plant via generic internal flow paths. This report consists of three parts: Section 2.0, Technical Bases, describes the flow path components and mechanisms of natural fission product deposition; Section 3.0, FPFP 2 Code Description, describes code organization and the functions of the subroutines; and Section 4.0, Code Operation, discusses details of input requirements, code output, and a sample case demonstration. The appendices consist of an FPFP 2 Fortran code listing, a listing of a code for building input files, forms for building input files, and the sample case input and output files. 7 refs., 3 figs

  4. How power is generated in a nuclear reactor

    International Nuclear Information System (INIS)

    Swaminathan, V.

    1978-01-01

    Power generation by nuclear fission as a result of chain reaction caused by neutrons interacting with fissile material such as 235 U, 233 U and 239 Pu is explained. Electric power production by reactor is schematically illustrated. Materials used in thermal reactor and breeder reactor are compared. Fuel reprocessing and disposal of radioactive waste coming from reprocessing plant is briefly described. Nuclear activities in India are reviewed. Four heavy water plants and two power reactors are under construction and will be operative in the near future. Two power reactors are already in operation. Nuclear Fuel Complex at Hyderabad supplies fuel element to the reactors. Fuel reprocessing and waste management facility has been set up at Tarapur. Bhabha Atomic Research Centre at Bombay and Reactor Research Centre at Kalpakkam near Madras are engaged in applied and basic research in nuclear science and engineering. (B.G.W.)

  5. Dukovany nuclear power plant in 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Data on the power generation, nuclear safety, and gaseous and liquid releases into the environment were extracted from the 1993 annual report of the Dukovany nuclear power plant. Operation of the plant was safe and reliable in 1993. Three events were classed as INES category 1. The plant's Failure Commission dealt with 100 events which brought about a total electricity generation loss of 217,624 MWh, corresponding to about 22 reactor-days. Out of this, 26.8 % was due to human error. Three fires occurred at the power plant site. Releases of radioactive aerosols, tritium, noble gases and radioiodine into air and of tritium, corrosion products, and fission products into the aquatic environment were below annual limits. The collective dose equivalent was 1.78 manSv in 1993. (Z.S.). 2 tabs., 11 figs

  6. Safety device for nuclear fission reactors

    International Nuclear Information System (INIS)

    Brownlee, M.L.

    1982-01-01

    A plurality of radially arranged and neutron absorbing baffles are stacked in vertical sets under the fuel core assemblies, and the whole enclosed in a bottle shaped containment vessel. The radially arranged baffles of each set extend vertically, and each set has double the number of baffles as the set above it in the stack. A melt-down of a fuel core assembly drops the fissioning nuclear fuel into the stacked sets of baffles, there, as it passes through, to be progressively divided, redivided and dispersed in smaller and smaller masses between the doubling number of baffles in safe fuel pellet size. Neutron absorbing containment prevents contamination of the environment and together with cooling means stops fissioning of fuel

  7. Nuclear data for neutron emission in the fission process

    International Nuclear Information System (INIS)

    Ganesan, S.

    1991-11-01

    This document contains the proceedings of the IAEA Consultants' Meeting on Nuclear Data for Neutron Emission in the Fission Process, Vienna, 22 - 24 October 1990. Included are the conclusions and recommendations reached at the meeting and the papers presented by the meeting participants. These papers provide a review of the status of experimental and theoretical data on neutron emission in spontaneous and neutron induced fission with reference to the data needs for reactor applications oriented towards actinide burner studies. The specific topics covered are the following: experimental measurements and theoretical predictions and evaluations of fission neutron energy spectra, average prompt fission neutron multiplicity, correlation in neutron emission from complementary fragments, neutron emission during acceleration of fission fragments, statistical properties of neutron rich nuclei by study of emission spectra of neutrons from the excited fission fragments, integral qualification of nu-bar for the major fissile isotopes, nu-bar total of 239 Pu and 235 U, and related problems. Refs figs and tabs

  8. Problem free nuclear power and global change

    International Nuclear Information System (INIS)

    Teller, E.; Wood, L.; Nuckolls, J.; Ishikawa, M.; Hyde, R.

    1997-01-01

    Nuclear fission power reactors represent a solution-in-principle to all aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth's atmosphere. Of proven technological feasibility, they presently produce high- grade heat for electricity generation, space heating and industrial process-driving around the world, without emitting greenhouse gases or atmospheric particulates. However, a substantial number of major issues currently stand between nuclear power implemented with light- water reactors and widespread substitution for large stationary fossil fuel-fired systems, including long-term fuel supply, adverse public perceptions regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps more seriously - cost. We describe a GW-scale, high-temperature nuclear reactor heat source that can operate with no human intervention for a few decades and that may be widely acceptable, since its safety features are simple, inexpensive and easily understood. We provide first-level details of a reactor system designed to satisfy these requirements. Such a back-solving approach to realizing large-scale nuclear fission power systems potentially leads to an energy source capable of meeting all large-scale stationary demands for high- temperature heat. If widely employed to support such demands, it could, for example, directly reduce present-day world-wide CO 2 emissions by two-fold; by using it to produce non-carbonaceous fuels for small mobile demands, a second two-fold reduction could be attained. Even the first such reduction would permit continued slow power-demand growth in the First World and rapid development of the Third World, both without any governmental suppression of fossil fuel usage

  9. Radar Men on the Moon: A Brief Survey of Fission Surface Power Studies

    International Nuclear Information System (INIS)

    Bennett, Gary L.

    2008-01-01

    This paper reviews some of the salient fission surface power studies, including those dating back to the early SNAP (Systems for Nuclear Auxiliary Power) program. Particular attention will be focused on the more recent Space Exploration Initiative (including the related Synthesis Group report) and Vision for Space Exploration. Commonalties in these studies will be noted; for example, many studies have shown that powers in the range of 100 kWe are required for human-tended bases on the Moon and Mars. Just as advanced human civilizations depend upon electrical power so will advanced, human-occupied lunar and Mars bases with powers rising into the megawatt level for bases with manufacturing and resource utilization capabilities. The role of radioisotope power sources will also be noted

  10. Radar Men on the Moon: A Brief Survey of Fission Surface Power Studies

    Science.gov (United States)

    Bennett, Gary L.

    2008-01-01

    This paper reviews some of the salient fission surface power studies, including those dating back to the early SNAP (Systems for Nuclear Auxiliary Power) program. Particular attention will be focused on the more recent Space Exploration Initiative (including the related Synthesis Group report) and Vision for Space Exploration. Commonalties in these studies will be noted; for example, many studies have shown that powers in the range of 100 kWe are required for human-tended bases on the Moon and Mars. Just as advanced human civilizations depend upon electrical power so will advanced, human-occupied lunar and Mars bases with powers rising into the megawatt level for bases with manufacturing and resource utilization capabilities. The role of radioisotope power sources will also be noted.

  11. Nuclear fission, chain reaction and criticality

    International Nuclear Information System (INIS)

    Reuss, Paul

    2016-01-01

    Criticality is, notably for nuclear reactors, the status which separates the case of a fission chain reaction which inexorably decays, from that of a reaction which grows faster and faster until a counter-reaction occurs. If this status is an objective in nuclear reactors, it must not be reached or exceeded in any case in other types of installations in which fissile materials are handled (fabrication, transports, nuclear fuel processing). The author proposes an insight into this notion of criticality, discusses elements of neutron science which allow the multiplication factor to be assessed, analyses accidental scenarios which may happen, and presents associated experiments and computation codes

  12. Thirty years of nuclear fission in Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    Pesic, M; Stefanovic, D [Boris Kidric Institute of Nuclear Sciences VINCA, Belgrade (Yugoslavia)

    1989-07-01

    Experimental nuclear reactor 'RB' in Boris Kidric Institute in Vinca is the first nuclear facility built in Yugoslavia in which the first Yugoslav controlled nuclear fission was achieved thirty years ago on April 26, 1958. Designed by Yugoslav scientist as a bare, natural uranium-heavy water critical assembly, the 'RB' reactor has survived a series of modifications trying to follow directions of contemporary nuclear research. The actual 'RB' reactor technical characteristics and experimental possibilities are described. The modifications are underlined, the experience gained and plans for future are presented. A brief review of reactor operation and experiments performed is shown. (author)

  13. Taming the atom: facing the future with nuclear power

    International Nuclear Information System (INIS)

    Blair, I.M.

    1983-01-01

    The subject is discussed under the headings: the mythology of the atom; what is nuclear power (the atom and its nucleus; radioactivity; nuclear fission; breeding nuclear fuel; how a reactor works; the natural reactor at Oklo; the fast reactor; nuclear fusion); the nuclear industry in profile (uranium mining; isotope enrichment; reactor fuel fabrication; types of reactor; decommissioning redundant stations; transport of spent nuclear fuel; reprocessing the spent fuel; management of waste products); nuclear power in the energy scene (energy in man's development; the impending crisis; the need for energy conservation; the role of nuclear power; status of the fast reactor programme; atoms by wire; other possible sources; the question of economics; the next few decades); matters of public concern (biological effects of radiation; probability and consequences of accidents; worries about waste disposal; no free lunches; the technological imperative; the centralisation of power; fears about terrorism; threats to civil liberties; proliferation of nuclear weapons); the great nuclear debate (depth of public concern; lack of public knowledge; differing national techniques; put it somewhere else; a question of credibility). (U.K.)

  14. Fabrication and Testing of a Modular Micro-Pocket Fission Detector Instrumentation System for Test Nuclear Reactors

    Science.gov (United States)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.

    2018-01-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of

  15. Method and system of simulating nuclear power plant count rate for training purposes

    International Nuclear Information System (INIS)

    Alliston, W.H.; Koenig, R.H.

    1975-01-01

    A method and system are described for the real-time simulation of the dynamic operation of a nuclear power plant in which nuclear flux rate counters are provided for monitoring the rate of nuclear fission of the reactor. The system utilizes apparatus that includes digital computer means for calculating data relating to the rate of nuclear fission of a simulated reactor model, which rate is controlled in accordance with the operation of control panel devices. A digital number from the computer corresponding to the flux rate controls an oscillator driven counter means to produce a pulse after a predetermined count. This pulse controls an oscillator driven polynomial counter to count a random number that controls a third counter in accordance with pulse from the first counter to produce a random fission count for operating the meters. (U.S.)

  16. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  17. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  18. Some aspects of the nuclear fission process

    International Nuclear Information System (INIS)

    Netter, F.

    1961-01-01

    In the following report one can find first a short general view on the present situation of our knowledge concerning the nuclear fission process, namely on the nucleus going through the saddle-point. Then there are some aspects connected with the excitation energy of the fissioning nucleus. The measurements made at Saclay on the fast neutron fission cross-section of U 233 , U 235 , Pu 239 , U 238 are described at the beginning of this work. It appears that for U 233 there is some characteristic shape modulation of the cross-section curve, in relation with the collective excited state of the deformed nucleus at the saddle-point. Good evidence of this is also given by the study of the relative fission rate with emission of long-range particles; it appears also that this ternary fission rate does not change substantially for neutron between thermal energy and 2 MeV, but that is very lower for the compound nucleus U 239 than for even-even compound nuclei. At the end there are some experiments on the strong 4,5 MeV gamma-ray originated by slow neutron absorption in U 235 . Time-of-flight device is used to establish that this 4,5 MeV gamma-ray seems mostly connected with radiative capture. (author) [fr

  19. Energy, electricity and nuclear power

    International Nuclear Information System (INIS)

    Reuss, P.; Naudet, G.

    2008-01-01

    After an introduction recalling what energy is, the first part of this book presents the present day energy production and consumption and details more particularly the electricity 'vector' which is an almost perfect form of energy despite the fact that it is not a primary energy source: it must be generated from another energy source and no large scale storage of this energy is possible. The second part of the book is devoted to nuclear energy principles and to the related technologies. Content: 1 - What does energy mean?: the occurrence of the energy concept, the classical notion of energy, energy notion in modern physics, energy transformations, energy conservation, irreversibility of energy transformations, data and units used in the energy domain; 2 - energy production and consumption: energy systems, energy counting, reserves and potentialities of energy resources, production of primary energies, transport and storage of primary energies, energy consumption, energy saving, energy markets and prices, energy indicators; 3 - electric power: specificity of electricity and the electric system, power networks, power generation, electricity storage, power consumption and demand, power generation economics, electricity prices and market; 4 - physical principles of nuclear energy: nuclei structure and binding energy, radioactivity and nuclear reactions, nuclear reactions used in energy generation, basics of fission reactors physics; 5 - nuclear techniques: historical overview, main reactor types used today, perspectives; 6 - fuel cycle: general considerations, uranium mining, conversion, enrichment, fuel fabrication, back-end of the cycle, plutonium recycle in water cooled reactors; 7 - health and environmental aspects of nuclear energy: effects on ionizing radiations, basics of radiation protection, environmental impacts of nuclear energy, the nuclear wastes problem, specific risks; 8 - conclusion; 9 - appendixes (units, physics constants etc..)

  20. Significant change of predictions related to the future of nuclear power

    International Nuclear Information System (INIS)

    Dumitrache, Ion

    2002-01-01

    During the last two decades of the 20th century, nuclear power contribution increased slowly in the world. This trend was mainly determined by the commissioning of new nuclear power plants, NPP, in the non-developed countries, except for Japan and South Korea. Almost all the forecasts offered the image of the stagnant nuclear power business. Sweden, Germany, Holland and Belgium Governments made clear the intention to stop the production of electricity based on fission. Recently, despite the negative effects on nuclear power of the terrorism events of September 11, 2001, the predictions related to the nuclear power future become much more optimistic. USA, Japan, South Korea and Canada made clear that new NPPs will offer their significant electricity contribution several decades, even after years 2020-2030. Moreover, several old NPP from USA obtained the license for an additional 20 years period of operation. The analysis indicated that most of the existing NPP in USA may increase the level of the maximum global power defined by the initial design. In the European Union the situation is much more complicated. About 35% of the electricity is based now on fission. Several countries, like Sweden and Germany, maintain the position of phasing out the NPPs, as soon as the licensed life-time is over. Finland decided to build a new power plant. France is very favorable to nuclear power, but does not need more energy. In the UK several very old NPP will be shut down, and companies like BNFL and British Energy intend to build new NPP, based on Westinghouse or AECL-Canada advanced reactors. Switzerland and Spain are favorable to the future use of nuclear power. In the eastern part of Europe, almost all the countries intend to base their electricity production on coal, fission, hydro and gas, nuclear contribution being significant. The most impressive increases of nuclear power output are related to Asia; in China, from 2.2 Gwe in 1999, to 18.7 Gwe in 2020, reference case, or 10

  1. Fission gas release in LWR fuel measured during nuclear operation

    International Nuclear Information System (INIS)

    Appelhans, A.D.; Skattum, E.; Osetek, D.J.

    1980-01-01

    A series of fuel behavior experiments are being conducted in the Heavy Boiling Water Reactor in Halden, Norway, to measure the release of Xe, Kr, and I fission products from typical light water reactor design fuel pellets. Helium gas is used to sweep the Xe and Kr fission gases out of two of the Instrumented Fuel Assembly 430 fuel rods and to a gamma spectrometer. The measurements of Xe and Kr are made during nuclear operation at steady state power, and for 135 I following reactor scram. The first experiments were conducted at a burnup of 3000 MWd/t UO 2 , at bulk average fuel temperatures of approx. 850 K and approx. 23 kW/m rod power. The measured release-to-birth ratios (R/B) of Xe and Kr are of the same magnitude as those observed in small UO 2 specimen experiments, when normalized to the estimated fuel surface-to-volume ratio. Preliminary analysis indicates that the release-to-birth ratios can be calculated, using diffusion coefficients determined from small specimen data, to within a factor of approx. 2 for the IFA-430 fuel. The release rate of 135 I is shown to be approximately equal to that of 135 Xe

  2. Power Nuclear Reactors: technology and innovation for development in future; Centrales Nucleares de Potencia: tecnologias actuales e innovaciones para el futuro

    Energy Technology Data Exchange (ETDEWEB)

    Suarez Antola, R [Universidad Catolica del Uruguay, Montevideo(Uruguay); Ministerio de Industria Energia y Minerria, Montevideo(Uruguay)

    2009-07-01

    The conference is about some historicals task of the fission technology as well as many types of Nuclear Reactors. Enrichment of fuel, wastes, research reactors and power reactors, a brief advertisment about Uruguay electric siystem and power generation, energetic worldwide, proliferation, safety reactors, incidents, accidents, Three-Mile Island accident, Chernobil accident, damages, risks, classification and description of Power reactors steam generation, nuclear reactor cooling systems, future view.

  3. A Physicist's Journey In The Nuclear Power World

    Science.gov (United States)

    Starr, Chauncey

    2000-03-01

    As a participant in the development of civilian nuclear power plants for the past half century, the author presents some of his insights to its history that may be of interest to today's applied physicists. Nuclear power development has involved a mixture of creative vision, science, engineering, and unusual technical, economic, and social obstacles. Nuclear power programs were initiated during the euphoric era of public support for new science immediately following World War II -- a support that lasted almost two decades. Subsequently, nuclear power has had to face a complex mix of public concerns and criticism. The author's involvment in some of these circumstances will be anecdotally described. Although the physics of fission and its byproducts remains at the heart of all nuclear reactor designs, its embodiment in practical energy sources has been shaped by the limitations of engineering primarily and economics secondarily. Very influential has been the continuing interplay with the military's weapons and propulsion programs, and the government's political policies. In this respect, nuclear power's history provides a learning experience that may be applicable to some of the large scale demonstration projects that physicists pursue today.

  4. Studies on the reaction mechanism of the muon induced nuclear fission

    International Nuclear Information System (INIS)

    Mutius, R. von.

    1985-01-01

    The mass and energy distribution of the fission fragments after muon induced nuclear fission allows the determination of the mean excitation energy of the fissioning nucleus after muon capture. By the systematic comparison with a mass distribution of a corresponding reaction for the first time for this an accuracy of about 1 MeV could be reached. Theoretical calculations on the excitation probability in the muon capture allow in connection with the fission probability an estimating calculation of this energy. The experimental result represents by this a test criterium for the valuation of the theoretical calculation. The measured probabilities for the occurrence of radiationless transitions in the muonic γ cascade of 237 Np permit an indirect experimental determination of the barrier enhancement which causes the muon present during the fission process. The value found for this extends to 0.75+-0.1 MeV. A change of the mass distribution by the muon cannot be detected in the nuclides 235 U, 237 Np, and 242 Pu studied here. Only the mean total kinetic energy of the fission products is reduced in these three nuclides in the prompt μ - induced fission by 1 to 2 MeV. For this result the incomplete screening of the nuclear charge during the fission process is made responsible. A mass dependence of this reduction has not been stated. Because the muon has appearently no influence on the mass splitting it can be valied as nearly ideal particle in order to study the hitherto little studied dynamics of the fission process. (orig.) [de

  5. The discovery of nuclear fission and the responsibility of the scientist

    International Nuclear Information System (INIS)

    Staab, H.A.

    1989-01-01

    The history of the discovery of nuclear fission is placed in historical context and the responsibility of the scientists involved for the subsequent military uses is discussed. It is explained that the deep things in science are not found because they are useful; they are found because it is possible to find them. If Otto Hahn and his co-workers had not discovered nuclear fission someone else in the late 1930s or early 1940s would have done so. It was decisions outside science which set the course for the nuclear fission research once the basic principle had been understood. The question how far does the scientists responsibility extend for unknown and unintended consequences of research and for misuses of his findings by others is discussed. Scientists have a duty to understand the applications of their work and to warn of misuse or hazards, as did Otto Hahn. (UK)

  6. Otto Hahn (1944). Discovery of nuclear fission

    International Nuclear Information System (INIS)

    2003-01-01

    Otto Hahn (Frankfurt-on-Main, 1879-Gotinga, 1968) is the discoverer of nuclear fission, which awarded him the Nobel Prize for Chemistry in 1944. After leaving Germany during the Second World War to settle in the United Kingdom, he returned to this country as a renown figure

  7. Otto Hahn (1944). Discovery of nuclear fission

    CERN Document Server

    Hahn, Otto

    2003-01-01

    Otto Hahn (Frankfurt-on-Main, 1879-Gotinga, 1968) is the discoverer of nuclear fission, which awarded him the Nobel Prize for Chemistry in 1944. After leaving Germany during the Second World War to settle in the United Kingdom, he returned to this country as a renown figure.

  8. Fission and nuclear fragmentation of silver and bromine nuclei by photons of 1-6 GeV

    International Nuclear Information System (INIS)

    Pinheiro Filho, J.D.

    1983-01-01

    The studies of fission and fragmentation of silver and bromine nuclei by Bremsstrahlung photons of 1.6 GeV energy range are presented. The Il ford-KO nuclear emulsion submitted to Bremsstrahlung beams in Deutsches Elektronen Synchrotron (DESY) with total doses of 10'' equivalent photons, was used for nuclear fragment detection. The discrimination of fission and fragmentation events was done analysing angular distribution, range and angles between fragments. The results of fragment range distributions, angular distributions, distributions of angles between fragments, distributions of ratio between range, velocity distributions forward/backward ratio, cross sections of fission and fragmentation, nuclear fissionability and ternary fission frequency are presented and discussed. (M.C.K.)

  9. Nuclear data requirements for fission reactor neutronics calculations

    International Nuclear Information System (INIS)

    Finck, P.

    1998-01-01

    The paper discusses current European nuclear data measurement and evaluation requirements for fission reactor technology applications and problems involved in meeting the requirements. Reference is made to the NEA High Priority Nuclear Data Request List and to the production of the new JEFF-3 library of evaluated nuclear data. There are requirements for both differential (or basic) nuclear data measurements and for different types of integral measurement critical facility measurements and isotopic sample irradiation measurements. Cross-section adjustment procedures are being used to take into account the simpler types of integral measurement, and to define accuracy needs for evaluated nuclear data

  10. Nuclear data for structural materials of fission and fusion reactors

    International Nuclear Information System (INIS)

    Goulo, V.

    1989-06-01

    The document presents the status of nuclear reaction theory concerning optical model development, level density models and pre-equilibrium and direct processes used in calculation of neutron nuclear data for structural materials of fission and fusion reactors. 6 refs

  11. Fission product chemistry in severe nuclear reactor accidents

    International Nuclear Information System (INIS)

    Nichols, A.L.

    1990-09-01

    A specialist's meeting was held at JRC-Ispra from 15 to 17 January 1990 to review the current understanding of fission-product chemistry during severe accidents in light water reactors. Discussions focussed on the important chemical phenomena that could occur across the wide range of conditions of a damaged nuclear plant. Recommendations for future chemistry work were made covering the following areas: (a) fuel degradation and fission-product release, (b) transport and attenuation processes in the reactor coolant system, (c) containment chemistry (iodine behaviour and core-concrete interactions)

  12. Nuclear data libraries used at the Shkoda Power Engineering Plant

    International Nuclear Information System (INIS)

    Khep, Ya.; Valenta, V.

    1989-01-01

    In order to establish a set of programs for evaluating the radiation situation at nuclear power plants with WWER reactors during normal operation and under accident conditions, the relevant reference data have been analysed and arranged in these libraries: the BIBA library of radioactive products used to calculate the balances of activities and radiation sources resulting from the decay of corrosion products in the primary circuit, activation products in the coolant and its impurities, activation products in structural materials and so on; the BIBGRFP library of fission products used to calculate the balance of radioactivities and fission product radiation sources in fuel elements, in the primary circuit, in the nuclear power plant area and so on; the BIPAL library of actinides used to solve the equation for the balance of actinides and the members of their decay chains. 53 refs, 4 figs, 2 tabs

  13. Review of the book: Vasilenko, I.Ya. Toxicology of nuclear fission products

    International Nuclear Information System (INIS)

    Gordeev, K.I.

    2001-01-01

    Review on monograph of Vasilenko, I.Ya. Toxicology of nuclear fission (Moscow, Medicine, 1999) is presented. Data of longevity full-scale investigations during nuclear explosions on the Semipalatinsk test site are given. Classified, complex investigations into the effect of nuclear fission products mixtures on different kinds of laboratory animals are described, transfer of radiobiological researches to organism of man is scientific valid. The most complicate radiobiological problem of low dose is analyzed. The being investigated monograph contains unique scientific information and makes a heavy contribution in radiobiology [ru

  14. Fission, fusion and the energy crisis

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, S E [Aston Univ., Birmingham (UK)

    1980-01-01

    The subject is covered in chapters, entitled: living on capital (energy reserves and consumption forecasts); the atom and its nucleus, mass and energy; fission and the bomb; the natural uranium reactor; enriched reactors; control and safety; long-term economics (the breeder reactions and nuclear fuel reserves); short-term economics (cost per kilowatt hour); national nuclear power programmes; nuclear power and the environment (including reprocessing, radioactive waste management, public relations); renewable energy sources; the fusion programme; summary and comment.

  15. Options for development of space fission propulsion systems

    International Nuclear Information System (INIS)

    Houts, Mike; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana

    2001-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission systems have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed

  16. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2011-01-01

    Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ∼12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ∼30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

  17. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Goldston

    2011-04-28

    Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

  18. Polarographic determination of Iodide and Iodate, in Solutions Coming from Aerosols in Fission Products Containment Studies in Nuclear Power Stations; Determinacion Polarografica de Especies de Iodo (Ioduro y Iodato) en Soluciones Procedentes de Aerosoles, para Estudios de Contencion de Productos de Fision en Centrales Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, M.; Ballesteros, O.; Fernandez, M.; Clavero, M.; Gonzalez, A. M. [Ciemat, Madrid (Spain)

    2000-07-01

    A polarographic method is described for the iodine species determination, iodide and iodate in water solutions. the iodate can be determined by differential pulse polarography. Calibration curves and the detection and determination limits have been obtained. Iodides is oxidized to iodate with sodium hypochlorite and the excess of oxidizing agent is destroyed with sodium sulphide. The concentration of iodide is calculated as the difference between the concentration of iodate in the sample before and after the oxidation. As an application, species of iodine in samples coming from the experimental plants GIRS (Gaseous Iodine Removal by Sprays) of Nuclear Fission Department of the CIEMAT, dedicated to fission products containment studies in nuclear power station, were determined. (Author) 10 refs.

  19. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    International Nuclear Information System (INIS)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-01-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  20. Reference reactor module for NASA's lunar surface fission power system

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David I [Los Alamos National Laboratory; Kapernick, Richard J [Los Alamos National Laboratory; Dixon, David D [Los Alamos National Laboratory; Werner, James [INL; Qualls, Louis [ORNL; Radel, Ross [SNL

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO{sub 2}-fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  1. Fission product yield data for the transmutation of minor actinide nuclear waste

    International Nuclear Information System (INIS)

    2008-04-01

    A report issued by an international study group for the transmutation of nuclear waste using accelerator driven systems has highlighted the need for specific sets of nuclear data. These authoritative requirements include fission product yields at an intermediate incident neutron energy of up to 150 MeV. Before the start of the present CRP on fission product yield data for the transmutation of nuclear waste, only four types of evaluated fission yield data sets existed, namely for spontaneous fission, and for fission induced by thermal, fast (or fission) spectrum, and by 'high energy' (14-15 MeV) neutrons. A new type of evaluation for energy dependent neutron induced fission yields was required for this project. In view of the scarcity of experimental data, such an evaluation has to be based on systematics and theoretical model calculations. Unlike fission cross-sections, where nuclear models are being used successfully for the calculation of unmeasured cross-section ranges, such models or theories existed only for low energy fission yields. Hence the CRP participants entered a completely new field of research for which the progress and outcome were unpredictable. Clearly the ultimate goal of such an effort, namely an evaluation of energy dependent fission yields, could not be realized within the perceived lifetime of a CRP. The main emphasis of the CRP was on the development of adequate systematics and models for the calculation of energy dependent fission yields up to 150 MeV incident neutron energy. Several problems had to be solved, such as the correct choice of model parameters and multiplicity distributions of emitted neutrons, and the effect of multi-chance fission. Models and systematics have been tested for lower energy yields, but they failed to reproduce recent experimental data, particularly at higher energies, and the parameters had to be modified. Other models have been developed from the analysis of experimental data in order to derive systematic

  2. Fission cross section calculations for 209Bi target nucleus based on fission reaction models in high energy regions

    Directory of Open Access Journals (Sweden)

    Kaplan Abdullah

    2015-01-01

    Full Text Available Implementation of projects of new generation nuclear power plants requires the solving of material science and technological issues in developing of reactor materials. Melts of heavy metals (Pb, Bi and Pb-Bi due to their nuclear and thermophysical properties, are the candidate coolants for fast reactors and accelerator-driven systems (ADS. In this study, α, γ, p, n and 3He induced fission cross section calculations for 209Bi target nucleus at high-energy regions for (α,f, (γ,f, (p,f, (n,f and (3He,f reactions have been investigated using different fission reaction models. Mamdouh Table, Sierk, Rotating Liquid Drop and Fission Path models of theoretical fission barriers of TALYS 1.6 code have been used for the fission cross section calculations. The calculated results have been compared with the experimental data taken from the EXFOR database. TALYS 1.6 Sierk model calculations exhibit generally good agreement with the experimental measurements for all reactions used in this study.

  3. Applications of nuclear data on short-lived fission products

    International Nuclear Information System (INIS)

    Rudstam, G.; Aagaard, P.; Aleklett, K.; Lund, E.

    1981-01-01

    The study of short-lived fission products gives information about the nuclear structure on the neutron-rich side of stability. The data are also of interest for various applications both to basic science and to nuclear technology. Some of these applications, taken up by the OSIRIS group at Studsvik, are described in the present contribution. (orig.)

  4. Chemistry of fission product iodine under nuclear reactor accident conditions

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Bell, J.T.

    1986-01-01

    The radioisotopes of iodine are generally acknowledged to be the species whose release into the biosphere as a result of a nuclear reactor accident is of the greatest concern. In the course of its release, the fission product is subjected to differing chemical environments; these can alter the physicochemical form of the fission product and thus modify the manner and extent to which release occurs. Both the chemical environments which are characteristic of reactor accidents and their effect in determining physical and chemical form of fission product iodine have been studied extensively, and are reviewed in this report. 76 refs

  5. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  6. Disposal of fissionable material from dismantled nuclear weapons

    International Nuclear Information System (INIS)

    Taylor, J.J.

    1991-01-01

    The reduction in tensions between the United States and the Soviet Union has improved the prospects for nuclear disarmament, making it more likely that significant numbers of nuclear warheads will be dismantled by the United States and USSR in the foreseeable future. Thus, the question becomes more urgent as to the disposition of the weapons materials, highly enriched uranium and plutonium. It is timely, therefore, to develop specific plans for such disposal. The overall process for disposal of weapons materials by the burnup option involves the following steps: (1) removing the weapons material from the warheads, (2) converting the material to a fuel form suitable for power reactors, (3) burning it up as a power reactor fuel, and (4) removing the spent fuel and placing it in a permanent repository. This paper examines these four steps with the purpose of answering the following questions. What facilities would be appropriate for the disposal process? Do they need to be dedicated facilities, or could industrial facilities be used? What is the present projection of the economics of the burnup process, both the capital investment and the operating costs? How does one assure that fissionable materials will not be diverted to military use during the disposal process? Is the spent fuel remaining from the burnup process proliferation resistant? Would the disposal of spent fuel add an additional burden to the spent fuel permanent repository? The suggested answers are those of the author and do not represent a position by the Electric Power Research Institute

  7. Behavior of solid fission products in irradiated fuel

    International Nuclear Information System (INIS)

    Song, Ung Sup; Jung, Yang Hong; Kim, Hee Moon; Yoo, Byun Gok; Kim, Do Sik; Choo, Yong Sun; Hong, Kwon Pyo

    2004-01-01

    Many fission products are generated by fission events in UO 2 fuel under irradiation in nuclear reactor. Concentration of each fission product is changed by conditions of neutron energy spectrum, fissile material, critical thermal power, irradiation period and cooling time. Volatile materials such as Cs and I, the fission products, degrade nuclear fuel rod by the decrease of thermal conductivity in pellet and the stress corrosion cracking in cladding. Metal fission products (white inclusion) make pellet be swelled and decrease volume of pellet by densification. It seems that metal fission products are filled in the pore in pellet and placed between UO 2 lattices as interstitial. In addition, metal oxide state may change structural lattice volume. Considering behavior of fission products mentioned above, concentration of them is important. Fission products could be classified as bellows; solid solution in matrix : Sr, Zr, Nb, Y, La, Ce, Pr, Nd, Pm, Sm - metal precipitates : Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sb, Te - oxide precipitates : Ba, Zr, Nb, Mo, (Rb, Cs, Te) - volatile and gases : Kr, Xe, Br, I, (Rb, Cs, Te)

  8. Nuclear Power Division

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The 1981-85 research program planned by the Nuclear Power Division of EPRI places major emphasis on the assurance of safety and realiability of light water reactors (LWRs). Of high priority is a better knowledge of LWR-system behavior undeer abnormal conditions and the behavior of structural materials used for pressure vessels, piping, and large nuclear-plant components. Strong emphasis is also placed on achieving the most-effective performance and utilization of nuclear fuels and improving the corrosion resistance of pressurized-water-reactor steam generators. Efforts are underway to reduce radiation exposure and outage duration and to investigate the human factors involved in plant operation and maintenance. Substantial emphasis is placed on short-range goals designed to achieve useful results in the next two to seven years. The Division's mid- and long-range goal is to improve the use of fissionable and fertile materials and aid in the realization of other reactor systems. A series of general goals, categorized into three time frames and planned expenditures shows the trend of work to be undertaken. 53 figures

  9. The development of nuclear power and the research effort in the Community

    International Nuclear Information System (INIS)

    Davies, D.H.

    1986-01-01

    The development of nuclear power in the European Community up to the present time is reviewed in the light of the 1973 oil crisis. The European Community nuclear energy policy and strategy are described, as well as the future objectives for the development of nuclear power in Europe. The research effort in the Community, concerning energy resources, and including nuclear fission energy, is outlined. Research and development (R and D) work in the field of radioactive waste management is reviewed. Also some achievements of the twelve year Plan of Action, and of the multiannual R and D programmes are presented. (U.K.)

  10. Scission-point model of nuclear fission based on deformed-shell effects

    International Nuclear Information System (INIS)

    Wilkins, B.D.; Steinberg, E.P.; Chasman, R.R.

    1976-01-01

    A static model of nuclear fission is proposed based on the assumption of statistical equilibrium among collective degrees of freedom at the scission point. The relative probabilities of formation of complementary fission fragment pairs are determined from the relative potential energies of a system of two nearly touching, coaxial spheroids with quadrupole deformations. The total potential energy of the system at the scission point is calculated as the sum of liquid-drop and shell- and pairing-correction terms for each spheroid, and Coulomb and nuclear potential terms describing the interaction between them. The fissioning system at the scission point is characterized by three parameters: the distance between the tips of the spheroids (d), the intrinsic excitation energy of the fragments (tau/sub int/), and a collective temperature (T/sub coll/). No attempt is made to adjust these parameters to give optimum fits to experimental data, but rather, a single choice of values for d, tau/sub int/, and T/sub coll/ is used in the calculations for all fissioning systems. The general trends of the distributions of mass, nuclear charge, and kinetic energy in the fission of a wide range of nuclides from Po to Fm are well reproduced in the calculations. The major influence of the deformed-shell corrections for neutrons is indicated and provides a convenient framework for the interpretation of observed trends in the data and for the prediction of new results. The scission-point configurations derived from the model provide an interpretation of the ''saw-tooth'' neutron emission curve as well as previously unexplained observations on the variation of TKE for isotopes of U, Pu, Cm, and Cf; structure in the width of total kinetic energy release as a function of fragment mass ratio; and a difference in threshold energies for symmetric and asymmetric mass splits in the fission of Ra and Ac isotopes

  11. Fission products in National Atmospheric Deposition Program—Wet deposition samples prior to and following the Fukushima Dai-Ichi Nuclear Power Plant incident, March 8?April 5, 2011

    Science.gov (United States)

    Wetherbee, Gregory A.; Debey, Timothy M.; Nilles, Mark A.; Lehmann, Christopher M.B.; Gay, David A.

    2012-01-01

    Radioactive isotopes I-131, Cs-134, or Cs-137, products of uranium fission, were measured at approximately 20 percent of 167 sampled National Atmospheric Deposition Program monitoring sites in North America (primarily in the contiguous United States and Alaska) after the Fukushima Dai-Ichi Nuclear Power Plant incident on March 12, 2011. Samples from the National Atmospheric Deposition Program were analyzed for the period of March 8-April 5, 2011. Calculated 1- or 2-week radionuclide deposition fluxes at 35 sites from Alaska to Vermont ranged from 0.47 to 5,100 Becquerels per square meter during the sampling period of March 15-April 5, 2011. No fission-product isotopes were measured in National Atmospheric Deposition Program samples obtained during March 8-15, 2011, prior to the arrival of contaminated air in North America.

  12. A brief history of the Delayed'' discovery of nuclear fission

    Energy Technology Data Exchange (ETDEWEB)

    Holden, N.E.

    1989-08-01

    This year marks the Fiftieth Anniversary of the discovery of Nuclear Fission. In the early 1930's, the neutron was discovered, followed by the discovery of artificial radioactivity and then the use of the neutron to produce artificial radioactivity. The first experiments resulting in the fission of uranium took place in 1934. A paper which speculated on fission as an explanation was almost immediately published, yet no one took it seriously not even the author herself. Why did it take an additional five years before anyone realized what had occurred This is an abnormally long time in a period when discoveries, particularly in nuclear physics, seemed to be almost a daily occurrence. The events which led up to the discovery are recounted, with an attempt made to put them into their historical perspective. The role played by Mendeleev's Periodic Table, the role of the natural radioactive decay chain of uranium, the discovery of protactinium, the apparent discovery of masurium (technetium) and a speculation on the reason why Irene Curie may have missed the discovery of nuclear fission will all be discussed. 43 refs.

  13. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    Directory of Open Access Journals (Sweden)

    Ternovykh Mikhail

    2017-01-01

    Full Text Available Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  14. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    Science.gov (United States)

    Ternovykh, Mikhail; Tikhomirov, Georgy; Saldikov, Ivan; Gerasimov, Alexander

    2017-09-01

    Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  15. Nuclear power plants: Results of recent safety analyses

    International Nuclear Information System (INIS)

    Steinmetz, E.

    1987-01-01

    The contributions deal with the problems posed by low radiation doses, with the information currently available from analyses of the Chernobyl reactor accident, and with risk assessments in connection with nuclear power plant accidents. Other points of interest include latest results on fission product release from reactor core or reactor building, advanced atmospheric dispersion models for incident and accident analyses, reliability studies on safety systems, and assessment of fire hazard in nuclear installations. The various contributions are found as separate entries in the database. (DG) [de

  16. Nuclear fission: the tarnished star of our energy future

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The use of fission nuclear energy to fuel commercial electricity-generating facilities, once considered the answer to the world's energy dilemma, is facing serious financial problems and reduced demand. Although the technology to handle the necessary functions exists, construction errors and delays, extensive cost overruns, equipment malfunctions, operator errors, continual regulation and design changes, and concern about long-term wastes and their effects on the environment and human health are plaguing the industry. Research and development efforts continue worldwide to improve the technology in the areas of use and waste handling. Many people express the belief that nuclear fission is necessary to fill the void being created by the decline in availability of fossil fuels. This may be true without extensive efforts in conservation and the use of other energy forms. 26 references, 13 figures

  17. Nuclear power and public policy

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.S.

    1980-01-01

    The authors' purpose is to raise some of the social, political, and ethical issues which for so long have been ignored in making government assessments of nuclear power. In particular she asks whether current policy (governing admissible releases of radioactivity during electricity generation) is based on sound ethical premises. She argues that it is ethically reprehensible to generate long-lived nuclear wastes without knowing whether they can be safety stored. An ethical and methodological assessment of public policy is presented based on the presupposition that a core melt accident is improbable. It is then argued that the alleged cost-effectiveness of fission generated electricity is based on economical methodology which is both illogical and unethical. Finally, an outline of the sorts of policy-making procedures which ought to be followed in dealing with nuclear technology is given. (Auth.)

  18. High-energy nuclear reaction mechanisms - fission, fragmentation and spallation

    International Nuclear Information System (INIS)

    Kaufman, S.B.

    1987-01-01

    Measurements of the correlations in kinetic energy, mass, charge, and angle of coincident fragments formed in high-energy nuclear reactions have helped to characterize the processes of fission, fragmentation and spallation. For example, fission or fission-like two-body breakup mechanisms result in a strong angular correlation between two heavy fragments; in addition, the momentum transfer in the reaction can be deduced from the correlation. Another example is the multiplicity of light charged particles associated with a given heavy fragment, which is a measure of the violence of the collision, thus distinguishing between central and peripheral collisions. A summary of what has been learned about these processes from such studies will be given, along with some suggestions for further experiments

  19. Progress in fission product nuclear data. Issue no. 6

    International Nuclear Information System (INIS)

    Lammer, G.; Lammer, M.

    1980-06-01

    This is the sixth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed

  20. Qualitative and quantitative characteristics of fission products in spent nuclear fuel from RBMK-type reactor

    International Nuclear Information System (INIS)

    Adlys, G.; Adliene, D.

    2002-01-01

    Well-known empirical models or experimental instruments and methods for the estimation of fission product yields do not allow prediction of the behavior and evaluation of the time-dependent qualitative and quantitative characteristics of all fission products in spent nuclear fuel during long-term storage. Several computer codes were developed in different countries to solve this problem. French codes APOLLO1 and PEPIN were used in this work for modeling the characteristics of spent nuclear fuel in the RBMK reactor. The modeling results of qualitative and quantitative characteristics of long-lived fission products for different cooling periods of spent nuclear fuel, including 50-year cooling period, are presented in this paper. The 50-year cooling period conforms to the foreseen time of storage of spent nuclear fuel in CONSTOR and CASTOR casks at the Ignalina NPP. These results correlate well with evaluated quantities for the well-known yields of the nuclides and could be used for the compilation of the database for long-lived fission products in spent nuclear fuel from the RBMK-type reactor. They allow one to predict and to solve effectively safety problems concerning with long-term spent nuclear fuel storage in casks. (author)

  1. Closed Brayton Cycle Power Conversion Unit for Fission Surface Power Phase I Final Report

    Science.gov (United States)

    Fuller, Robert L.

    2010-01-01

    A Closed Brayton cycle power conversion system has been developed to support the NASA fission surface power program. The goal is to provide electricity from a small nuclear reactor heat source for surface power production for lunar and Mars environments. The selected media for a heat source is NaK 78 with water as a cooling source. The closed Brayton cycle power was selected to be 12 kWe output from the generator terminals. A heat source NaK temperature of 850 K plus or minus 25 K was selected. The cold source water was selected at 375 K plus or minus 25 K. A vacuum radiation environment of 200 K is specified for environmental operation. The major components of the system are the power converter, the power controller, and the top level data acquisition and control unit. The power converter with associated sensors resides in the vacuum radiation environment. The power controller and data acquisition system reside in an ambient laboratory environment. Signals and power are supplied across the pressure boundary electrically with hermetic connectors installed on the vacuum vessel. System level analyses were performed on working fluids, cycle design parameters, heater and cooling temperatures, and heat exchanger options that best meet the needs of the power converter specification. The goal is to provide a cost effective system that has high thermal-to-electric efficiency in a compact, lightweight package.

  2. The MCEF code for nuclear evaporation and fission calculations

    International Nuclear Information System (INIS)

    Deppman, A.; Pina, S.R. de; Likhachev, V.P.; Mesa, J.; Arruda-Neto, J.D.T.; Rodriguez, O.; Goncalves, M.

    2001-11-01

    We present an object oriented algorithm, written in the Java programming language, which performs a Monte Carlo calculation of the evaporation-fission process taking place inside an excited nucleus. We show that this nuclear physics problem is very suited for the object oriented programming by constructing two simple objects: one that handles all nuclear properties and another that takes care of the nuclear reaction. The MCEF code was used to calculate important results for nuclear reactions, and here we show examples of possible uses for this code. (author)

  3. Theoretical analysis of knock-out release of fission products from nuclear fuels

    International Nuclear Information System (INIS)

    Yamagishi, S.

    1975-01-01

    The knock-out release of fission products is studied theoretically. The general equations of knock-out release are derived, assuming that a fission fragment passing through the surface of nuclear fuels knocks out a local region of the surface with an effective thickness and an effective cross-sectional area. Using these equations, the knock-out release of fission gases is calculated for various cases. The conditions under which the knock-out coefficients (the average number of uranium atoms knocked out by one fission fragment) is obtainable are clarified by experiments on the knock-out release of fission gases. A method of determining the effective thickness and the effective cross-sectional area of a knock-out region is proposed. (Auth.)

  4. Nuclear fission discovered fifty years ago

    International Nuclear Information System (INIS)

    Weis, M.

    1988-01-01

    Fifty years ago, Otto Hahn, Lise Meitner and Fritz Strassmann discovered the process of nuclear fission which, more than other scientific discoveries to date, profoundly has changed the world and continues to influence our life significantly: This discovery made the up to then incontestable physicists' view of the atom as an inseparable whole suddenly shatter to pieces. It has brought about the invaluable advantages of a peaceful utilization of nuclear energy, and at the same time put scientists in the position to build the most terrible weapon ever, threatening mankind and earth with complete destruction. All this certainly is reason enough to recall the scientists, their work and the spirit of the time. (orig.) [de

  5. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    Science.gov (United States)

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-01-27

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  6. Carbon Emission Impact for Energy Strategy in which All Non-CSS Coal Power Plants Are Replaced by Nuclear Power Plants

    International Nuclear Information System (INIS)

    Knapp, V.; Matijevic, M.; Pevec, D.; Lale, D.

    2016-01-01

    The Paris climate conference recognized the urgency of measures to mitigate climate changes and achieved an agreement on the targets for future decades. We wish to show that advanced LWR initiated nuclear strategy can offer us long term carbon free energy future. Human action is putting carbon dioxide into atmosphere where it resides effectively for hundreds of years. We are forced to look ahead on the same time scale but we have much shorter time to act as we almost used up the quota of emission of carbon before disaster would be unavoidable, as shown in paper by Meinshausen et al. and IPCC report. We have to change our ways of relying on fossil fuel dramatically in the next few decades. It would be a change in use of fossil fuel which cannot be achieved with usual business practices. Arising awareness of reality and threat of global warming in parallel with fading promise of nuclear fusion and Carbon Capture and Storage (CCS) technology, should convince the public to accept nuclear fission contribution to climate change mitigation, at least for the climate critical years up to 2065. Nuclear fission has the additional value of supporting intermittent sources by covering the base load consumption. It can be available now, with proven reactors, such as advanced LWR reactors. Nuclear strategy in this paper outlines a proposal to replace all non-CCS coal power plants with nuclear power plants in the period 2025-2065. Assuming once through advanced LWR technology, one would need nuclear capacity of 1600 GW to replace coal power plants in the period 2025-2065. Corresponding reduction of emission would amount to 11.8 Gt of CO2. This energy strategy would reduce carbon emission by approximately 22 percent in the year 2065. The annual uranium requirements and the cumulative uranium requirements, as well as the annual plutonium production and cumulative plutonium production for the proposed nuclear strategy are determined. A possibility of larger reduction of carbon

  7. Charged particle-induced nuclear fission reactions – Progress and ...

    Indian Academy of Sciences (India)

    attracting the attention of the investigators right from the beginning of nuclear fis- ... the change from mass asymmetric division to symmetric division as A and N/Z values .... (a) Schematic of the fissioning nucleus showing the decision making.

  8. Nuclear power: An overview in the context of alleviating greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The document gives a brief overview of the current development of nuclear power worldwide, covering essentially technical, economic and environmental aspects. Policy issues related to implementation instruments and potential barriers to nuclear power deployment are also touched upon. Views are given on the possible medium and long term development of nuclear power, as a means for alleviating greenhouse gas emissions from the electricity sector. Advanced technologies for the reactors and their associated fuel cycles are described, including advanced fission reactors and fusion energy. Direct cost and externalities are given for the present generation of nuclear power plants as well as for power plants to be commissioned in the coming decades. Environmental burdens and risks are analysed with emphasis on potential risks of accident, radioactive waste, and atmospheric emission in routine operation, focusing on greenhouse gases. 77 refs, 1 fig., 4 tabs.

  9. Nuclear power: An overview in the context of alleviating greenhouse gas emissions

    International Nuclear Information System (INIS)

    1995-04-01

    The document gives a brief overview of the current development of nuclear power worldwide, covering essentially technical, economic and environmental aspects. Policy issues related to implementation instruments and potential barriers to nuclear power deployment are also touched upon. Views are given on the possible medium and long term development of nuclear power, as a means for alleviating greenhouse gas emissions from the electricity sector. Advanced technologies for the reactors and their associated fuel cycles are described, including advanced fission reactors and fusion energy. Direct cost and externalities are given for the present generation of nuclear power plants as well as for power plants to be commissioned in the coming decades. Environmental burdens and risks are analysed with emphasis on potential risks of accident, radioactive waste, and atmospheric emission in routine operation, focusing on greenhouse gases. 77 refs, 1 fig., 4 tabs

  10. Volatilization and reaction of fission products in flowing steam

    International Nuclear Information System (INIS)

    Johnson, I.; Steidl, D.V.; Johnson, C.E.

    1985-01-01

    The principal risk to the public from nuclear power plants derives from the highly radioactive atoms (fission products) generated as energy is produced in the nuclear fuel. The revolatilization of fission products from reactor system surfaces due to self-heating by radioactive decay has become a complicating factor in the source-term redefinition effort. It has had a major impact on calculations of fission product distributions in accident safety analyses. The focus of this research effort was to investigate the volatilization and transport of fission products and control rod materials in a flowing gaseous steam-hydrogen mixture. Fission product and control rod materials in various combinations were studied including CsI, CsOH, TeO 2 , SrO, Ag, In, Cd and Mn. The vaporization behavior of the deposits were characterized with respect to vaporization rates, chemical species and downstream transport behavior

  11. Design of containment system of nuclear fuel attacked by corrosion with leaking fission products

    International Nuclear Information System (INIS)

    Poblete Maturana, Tomas

    2015-01-01

    The following report presents the design of an innovative confinement system for the nuclear fuel attacked by corrosion, with leakage of fission products to be used in the RECH-1 nuclear experimental reactor of the Chilean Nuclear Energy Commission, is currently within the framework of the international nuclear waste management program developed by the member countries of the IAEA, including Chile. The main objective of this project is the development of a system that is capable of containing, in the smallest possible volume, the fission products that are released to the reactor coolant medium from the nuclear fuel that are attacked by corrosion. Among the tasks carried out for the development of the project are: the compilation of the necessary bibliography for the selection of the most suitable technology for the retention of the fission products, the calculation of the most important parameters to ensure that the system will operate within ranges that do not compromise the radiological safety, and the design of the hydraulic circuit of the system. The results obtained from the calculations showed that the fuel element confinement system is stable from a thermal point of view since the refrigerant does not under any circumstances reach the saturation temperature and, in addition, from a hydraulic point of view, since the rate at which the refrigerant flows through the hydraulic circuit is low enough so that the deformation of the fuel plates forming the nuclear fuel does not occur. The most appropriate technology for the extraction of fission products according to the literature consulted is by ion exchange. The calculations developed showed that with a very small volume of resins, it is possible to capture all of the non-volatile fission products of a nuclear fuel

  12. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    Energy Technology Data Exchange (ETDEWEB)

    Farget, F.; Schmidt, K.H.; Clement, E.; Delaune, O.; Derkx, X.; Dijon, A.; Golabek, C.; Lemasson, A.; Roger, T.; Schmitt, C. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Caamano, M.; Ramos, D.; Benlliure, J.; Cortina, D.; Fernandez-Dominguez, B.; Paradela, C. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Rodriguez-Tajes, C. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Audouin, L. [Universite Paris-Sud 11, CNRS/IN2P3, Institut de Physique Nucleaire, Orsay (France); Casarejos, E. [Universidade de Vigo, Vigo (Spain); Dore, D.; Salsac, M.D. [Centre de Saclay, CEA, Irfu, Gif-sur-Yvette (France); Gaudefroy, L. [CEA DAM Ile-de-France, BP 12, Bruyeres-le-Chatel (France); Heinz, A. [Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Jurado, B. [Universite Bordeaux, CENBG, UMR 5797 CNRS/IN2P3, Gradignan (France)

    2015-12-15

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus {sup 250}Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission. (orig.)

  13. Low Cost Radiator for Fission Power Thermal Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA Glenn Research Center (GRC) is developing fission power system technology for future space transportation and surface power applications. The early systems are...

  14. Lise meitner and her contribution to the discovery of nuclear fission

    International Nuclear Information System (INIS)

    Dai Hongyi; Wang Shangwu

    1999-01-01

    Lise Meitner, a famous nuclear physicist in both theory and experiment, played a unique role and made outstanding contributions in the course of the discovery of nuclear fission reviewed. However, due to a variety of reasons, her great contributions were not recognized during her time

  15. Foundations of a long-term strategy for nuclear power development in Japan

    International Nuclear Information System (INIS)

    Murata, H.

    1975-01-01

    A long-term strategy for nuclear power developments in Japan is proposed. The situation in the world has greatly changed in the recent years due to the rise in oil prices as well as the considerable concern about the environmental problems caused by the nuclear power plants. Stress is being placed on the harmonization with the environmental protection rather than on the economical generation of the nuclear power. In order to meet the future requirements, five systems are given for the short, medium and long ranges beyond the year 2000. For the final stage a system is proposed that combines fusion-fission hybrid reactors with very high temperature gas cooled reactors to supply clean energy. (author)

  16. The Commission's research action programme on the development of nuclear fission energy

    International Nuclear Information System (INIS)

    1984-01-01

    For its 'Framework Programme 1984-1987' the Commission has defined the major goals for a European Scientific and Technical Strategy. One of the means to reduce the energy dependence of the Community, which is an important objective, is to favour the development of nuclear fission energy. As electricity production by nuclear reactors has reached industrial maturity, the Community activities are directed mainly to safety aspects, in order to ensure the protection of workers and the general public, against hazards linked to operations in the nuclear fuel cycle. A description of the main features of the five sub-programmes on nuclear fission energy is given below; these programmes are: reactor safety; nuclear fuels and actinides research; management of radioactive waste; safeguarding and management of fissile materials; decommissioning of nuclear installations. The research and development work is carried out either by the Commission's Joint Research Center or by organizations and companies of the Member Countries, with the Commission's financial support. (author)

  17. Status update on the NIFFTE high precision fission cross section measurement program

    International Nuclear Information System (INIS)

    Laptev, Alexander B.; Tovesson, Fredrik; Burgett, Eric; Greife, Uwe; Grimes, Steven; Heffner, Michael D.; Hertel, Nolan E.; Hill, Tony; Isenhower, Donald; Klay, Jennifer L.; Kornilov, Nickolay; Kudo, Ryuho; Loveland, Walter; Massey, Thomas; McGrath, Chris; Pickle, Nathan; Qu, Hai; Sharma, Sarvagya; Snyder, Lucas; Thornton, Tyler; Towell, Rusty S.; Watson, Shon

    2010-01-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) program has been underway for nearly two years. The program's mission is to measure fission cross sections of the primary fissionable and fissile materials ( 235 U, 239 Pu, 238 U) as well as the minor actinides across energies from approximately 50 keV up to 20 MeV with an absolute uncertainty of less than one percent while investigating energy ranges from below an eV to 600 MeV. This basic nuclear physics data is being reinvestigated to support the next generation power plants and a fast burner reactor program. Uncertainties in the fast, resolved and unresolved resonance regions in plutonium and other transuranics are extremely large, dominating safety margins in the next generation nuclear power plants and power plants of today. This basic nuclear data can be used to support all aspects of the nuciear renaissance. The measurement campaign is utilizing a Time Projection Chamber or TPC as the tool to measure these cross sections to these unprecedented levels. Unlike traditional fission cross section measurements using time-of-flight and a multiple fission foil configurations in which fission cross sections in relation to that of 235 U are performed, the TPC project uses time-of-flight and hydrogen as the benchmark cross section. Using the switch to hydrogen, a simple, smooth cross section that can be used which removes the uncertainties associated with the resolved and unresolved resonances in 235 U.

  18. Recoil release of fission products from nuclear fuel

    International Nuclear Information System (INIS)

    Wise, C.

    1985-01-01

    An analytical approximation is developed for calculating recoil release from nuclear fuel into gas filled interspaces. This expression is evaluated for a number of interspace geometries and shown to be generally accurate to within about 10% by comparison with numerical calculations. The results are applied to situations of physical interest and it is demonstrated that recoil can be important when modelling fission product release from low temperature CAGR pin failures. Furthermore, recoil can contribute significantly in experiments on low temperature fission product release, particularly where oxidation enhancement of this release is measured by exposing the fuel to CO 2 . The calculations presented here are one way of allowing for this, other methods are suggested. (orig.)

  19. Low Cost Radiator for Fission Power Thermal Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA GRC is developing fission power system technology for future space transportation and surface power applications. The early systems are envisioned in the 10 to...

  20. Study on the calculation method of source term from fission products

    International Nuclear Information System (INIS)

    Zhou Jing; Gong Quan; Qiu Haifeng

    2014-01-01

    As a major part of radioactive nuclides, fission products play an important role in nuclear power plant design. The paper analyzes the calculation model of core activity inventory, the model of fission products releasing from the pellets to RCS, the balance model of fission products in RCS, and then proves them by calculation of the typical pressurized water reactor. The model is proved applicable for calculating fission products of pressurized water reactors. (authors)

  1. Radiochemical studies on fission

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Research progress is reported on nuclear chemistry; topics considered include: recoil range and kinetic energy distribution in the thermal neutron ftssion of /sup 245/Cm; mass distribution and recoil range measurements in the reactor neutron-induced fission of /sup 232/U; fission yields in the thermal neutron fission of /sup 241/PU highly asymmetric binary fission of uranium induced by reactor neutrons; and nuclear charge distribution in low energy fission. ( DHM)

  2. Fission Surface Power Technology Demonstration Unit Test Results

    Science.gov (United States)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Sanzi, James L.

    2016-01-01

    The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7 percent resulting in a net system power of 8.1 kW and a system level efficiency of 17.2 percent. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to the NASA Glenn Research Center (GRC). The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3 percent. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 percent.

  3. Fusion-Fission Transmutation Scheme-Efficient destruction of nuclear waste

    International Nuclear Information System (INIS)

    Kotschenreuther, M.; Valanju, P.M.; Mahajan, S.M.; Schneider, E.A.

    2009-01-01

    A fusion-assisted transmutation system for the destruction of transuranic nuclear waste is developed by combining a subcritical fusion-fission hybrid assembly uniquely equipped to burn the worst thermal nonfissile transuranic isotopes with a new fuel cycle that uses cheaper light water reactors for most of the transmutation. The center piece of this fuel cycle, the high power density compact fusion neutron source (100 MW, outer radius <3 m), is made possible by a new divertor with a heat-handling capacity five times that of the standard alternative. The number of hybrids needed to destroy a given amount of waste is an order of magnitude below the corresponding number of critical fast-spectrum reactors (FRs) as the latter cannot fully exploit the new fuel cycle. Also, the time needed for 99% transuranic waste destruction reduces from centuries (with FR) to decades

  4. Experimental approach to fission process of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Hiroshi [Osaka Univ., Toyonaka (Japan). Faculty of Science

    1997-07-01

    From experimental views, it seems likely that the mechanism of nuclear fission process remains unsolved even after the Bohr and Weeler`s study in 1939. Especially, it is marked in respect of mass distribution in unsymmetric nuclear fission. The energy dependency of mass distribution can be explained with an assumption of 2-mode nuclear fission. Further, it was demonstrated that the symmetrical fission components and the unsymmetrical ones have different saddle and fission points. Thus, the presence of the 2-mode fission mechanism was confirmed. Here, transition in the nuclear fission mechanism and its cause were investigated here. As the cause of such transition, plausible four causes; a contribution of multiple-chance fission, disappearance of shell effects, beginning of fission following collective excitation due to GDR and nuclear phase transition were examined in the condition of excitation energy of 14.0 MeV. And it was suggested that the transition in the nuclear fission concerned might be related to phase transition. In addition, the mechanism of nuclear fission at a low energy and multi-mode hypothesis were examined by determination of the energy for thermal neutron fission ({sup 233,235}U and {sup 239}Pu) and spontaneous nuclear fission ({sup 252}Cf). (M.N.)

  5. Nuclear Energy for Space Exploration

    Science.gov (United States)

    Houts, Michael G.

    2010-01-01

    Nuclear power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system. Fusion and antimatter systems may also be viable in the future

  6. Coupling of mass and charge distributions for low excited nuclear fission

    International Nuclear Information System (INIS)

    Salamatin, V.S.; )

    2000-01-01

    The simple model for calculation of charge distributions of fission fragments for low exited nuclear fission from experimental mass distributions is offered. The model contains two parameters, determining amplitude of even-odd effect of charge distributions and its dependence on excitation energy. Results for reactions 233 U(n th ,f), 235 U(n th ,f), 229 Th(n th ,f), 249 Cf(n th ,f) are spent [ru

  7. Coulomb fission and transfer fission at heavy ion collisions

    International Nuclear Information System (INIS)

    Himmele, G.

    1981-01-01

    In the present thesis the first direct evidence of nuclear fission after inelastic scattering of heavy ions (sup(183,184)W, 152 Sm → 238 U; 184 W → 232 Th; 184 W, 232 Th → 248 Cm) is reported. Experiments which were performed at the UNILAC of the Gesellschaft fuer Schwerionenforschung in Darmstadt show the observed heavy ion induced fission possesses significant properties of the Coulomb fission. The observed dependence of the fission probability for inelastic scattering on the projectile charge proves that the nuclear fission is mediated by the electromagnetic interaction between heavy ions. This result suggests moreover a multiple Coulomb-excitation preceding the fission. Model calculations give a first indication, that the Coulomb fission proceeds mainly from the higher β phonons. In the irradiation with 184 W the fission probability of 232 Th is for all incident energies about 40% smaller that at 238 U. The target dependence of the Coulomb fission however doesn't allow, to give quantitative statements about the position and B(E2)-values of higher lying β phonons. (orig./HSI) [de

  8. Distribution of nuclear charge in the proton-induced fission of Th-232

    Energy Technology Data Exchange (ETDEWEB)

    Pate, B D [Brookhaven National Laboratory, Upton, New York (United States); Foster, J S; Yaffe, L [McGill Univ., Montreal, Quebec (Canada)

    1958-09-15

    A great deal of work has been done on the distribution of nuclear mass in the fission process. About the nuclear charge distribution less is known. Data exist on the distribution from the fission of U-235 with thermal neutrons and with 14 Mev neutrons. Data also exist for the fission of uranium by 170 Mev protons, of bismuth by 190 Mev deuterons, and of uranium, thorium and bismuth by 480 Mev protons, and there is fragmentary information from other systems. The present work was undertaken to investigate the changes that occur in the charge distribution from proton-induced fission of Th-232 as the bombarding energy is raised from 8 to 90 Mev, the maximum proton energy of the McGill synchrocyclotron. This energy range is of interest in view of the substantial changes observed in the mass distribution. Also in this interval a change presumably begins in the nature of the initial step in nuclear reactions, from simple compound-nucleus formation, to a mechanism of direct interaction with individual nucleons. Thus at the lower energies studied, excitation of the nuclei at the end of the first step of the reaction will be essentially monochromatic whereas at the higher end of the bombarding-energy range, a broad spectrum of excitation energies will be produced, with corresponding complexity of the reaction products observed. (author)

  9. Sustainable, Full-Scope Nuclear Fission Energy at Planetary Scale

    OpenAIRE

    Robert Petroski; Lowell Wood

    2012-01-01

    A nuclear fission-based energy system is described that is capable of supplying the energy needs of all of human civilization for a full range of human energy use scenarios, including both very high rates of energy use and strikingly-large amounts of total energy-utilized. To achieve such “planetary scale sustainability”, this nuclear energy system integrates three nascent technologies: uranium extraction from seawater, manifestly safe breeder reactors, and deep borehole d...

  10. An Inconvenient History: the Nuclear-Fission Display in the Deutsches Museum

    Science.gov (United States)

    Sime, Ruth Lewin

    2010-06-01

    One of the longstanding attractions of the Deutsches Museum in Munich, Germany, has been its display of the apparatus associated with the discovery of nuclear fission. Although the discovery involved three scientists, Otto Hahn, Lise Meitner, and Fritz Strassmann, the fission display was designated for over 30 years as the Arbeitstisch von Otto Hahn (Otto Hahn’s Worktable), with Strassmann mentioned peripherally and Meitner not at all, and it was not until the early 1990s that the display was revised to include all three codiscoverers more equitably. I examine the creation of the fission display in the context of the postwar German culture of silencing the National Socialist past, and trace the eventual transformation of the display into a contemporary exhibit that more accurately represents the scientific history of the fission discovery.

  11. Power-balance analysis of muon-catalyzed fusion-fission hybrid reactor systems

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1985-01-01

    A power-balance model of a muon-catalyzed fusion system in the context of a fission-fuel factory is developed and exercised to predict the required physics performance of systems competitive with either pure muon-catalyzed fusion systems or thermonuclear fusion-fission fuel factory hybrid systems

  12. Nuclear data for fission reactor core design and safety analysis: Requirements and status of accuracy of nuclear data

    International Nuclear Information System (INIS)

    Rowlands, J.L.

    1984-01-01

    The types of nuclear data required for fission reactor design and safety analysis, and the ways in which the data are represented and approximated for use in reactor calculations, are summarised first. The relative importance of different items of nuclear data in the prediction of reactor parameters is described and ways of investigating the accuracy of these data by evaluating related integral measurements are discussed. The use of sensitivity analysis, together with estimates of the uncertainties in nuclear data and relevant integral measurements, in assessing the accuracy of prediction of reactor parameters is described. The inverse procedure for deciding nuclear data requirements from the target accuracies for prediction of reactor parameters follows on from this. The need for assessments of the uncertainties in nuclear data evaluations and the form of the uncertainty information is discussed. The status of the accuracies of predictions and nuclear data requirements are then summarised. The reactor parameters considered include: (a) Criticality conditions, conversion and burn-up effects. (b) Energy production and deposition, decay heating, irradiation damage, dosimetry and induced radioactivity. (c) Kinetics characteristics and control, including temperature, power and coolant density coefficients, delayed neutrons and control absorbers. (author)

  13. Advanced Thermophotovoltaic Devices for Space Nuclear Power Systems

    International Nuclear Information System (INIS)

    Wernsman, Bernard; Mahorter, Robert G.; Siergiej, Richard; Link, Samuel D.; Wehrer, Rebecca J.; Belanger, Sean J.; Fourspring, Patrick; Murray, Susan; Newman, Fred; Taylor, Dan; Rahmlow, Tom

    2005-01-01

    Advanced thermophotovoltaic (TPV) modules capable of producing > 0.3 W/cm2 at an efficiency > 22% while operating at a converter radiator and module temperature of 1228 K and 325 K, respectively, have been made. These advanced TPV modules are projected to produce > 0.9 W/cm2 at an efficiency > 24% while operating at a converter radiator and module temperature of 1373 K and 325 K, respectively. Radioisotope and nuclear (fission) powered space systems utilizing these advanced TPV modules have been evaluated. For a 100 We radioisotope TPV system, systems utilizing as low as 2 general purpose heat source (GPHS) units are feasible, where the specific power for the 2 and 3 GPHS unit systems operating in a 200 K environment is as large as ∼ 16 We/kg and ∼ 14 We/kg, respectively. For a 100 kWe nuclear powered (as was entertained for the thermoelectric SP-100 program) TPV system, the minimum system radiator area and mass is ∼ 640 m2 and ∼ 1150 kg, respectively, for a converter radiator, system radiator and environment temperature of 1373 K, 435 K and 200 K, respectively. Also, for a converter radiator temperature of 1373 K, the converter volume and mass remains less than 0.36 m3 and 640 kg, respectively. Thus, the minimum system radiator + converter (reactor and shield not included) specific mass is ∼ 16 kg/kWe for a converter radiator, system radiator and environment temperature of 1373 K, 425 K and 200 K, respectively. Under this operating condition, the reactor thermal rating is ∼ 1110 kWt. Due to the large radiator area, the added complexity and mission risk needs to be weighed against reducing the reactor thermal rating to determine the feasibility of using TPV for space nuclear (fission) power systems

  14. Nuclear Power and Resource Efficiency—A Proposal for a Revised Primary Energy Factor

    Directory of Open Access Journals (Sweden)

    Ola Eriksson

    2017-06-01

    Full Text Available Measuring resource efficiency can be achieved using different methods, of which primary energy demand is commonly used. The primary energy factor (PEF is a figure describing how much energy from primary resources is being used per unit of energy delivered. The PEF for nuclear power is typically 3, which refers to thermal energy released from fission in relation to electricity generated. Fuel losses are not accounted for. However; nuclear waste represents an energy loss, as current plans for nuclear waste management mostly include final disposal. Based on a literature review and mathematical calculations of the power-to-fuel ratio for nuclear power, PEF values for the open nuclear fuel cycle (NFC option of nuclear power and different power mixes are calculated. These calculations indicate that a more correct PEF for nuclear power would be 60 (range 32–88; for electricity in Sweden (41% nuclear power PEF would change from 1.8 to 25.5, and the average PEF for electricity in the European Union (EU would change from 2.5 to 18. The results illustrate the poor resource efficiency of nuclear power, which paves the way for the fourth generation of nuclear power and illustrates the policy implication of using PEFs which are inconsistent with current waste management plans.

  15. Some aspects of the nuclear fission process; Quelques aspects du processus de fission nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Netter, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    In the following report one can find first a short general view on the present situation of our knowledge concerning the nuclear fission process, namely on the nucleus going through the saddle-point. Then there are some aspects connected with the excitation energy of the fissioning nucleus. The measurements made at Saclay on the fast neutron fission cross-section of U{sup 233}, U{sup 235}, Pu{sup 239}, U{sup 238} are described at the beginning of this work. It appears that for U{sup 233} there is some characteristic shape modulation of the cross-section curve, in relation with the collective excited state of the deformed nucleus at the saddle-point. Good evidence of this is also given by the study of the relative fission rate with emission of long-range particles; it appears also that this ternary fission rate does not change substantially for neutron between thermal energy and 2 MeV, but that is very lower for the compound nucleus U{sup 239} than for even-even compound nuclei. At the end there are some experiments on the strong 4,5 MeV gamma-ray originated by slow neutron absorption in U{sup 235}. Time-of-flight device is used to establish that this 4,5 MeV gamma-ray seems mostly connected with radiative capture. (author) [French] Le present travail debute par un apercu de l'etat actuel de nos connaissances sur le processus de fission nucleaire, notamment sur le passage par le point-seuil. Puis sont evoques des aspects lies au niveau d'energie d'excitation auquel est porte le noyau qui subit la fission. Les mesures de sections efficaces de fission induite dans {sup 233}U, {sup 235}U, {sup 239}Pu et {sup 238}U par des neutrons rapides effectuees a Saclay sont decrites en premier lieu; elles font apparaitre pour {sup 233}U une ondulation caracteristique du role des etats collectifs d'excitation du noyau deforme au point-seuil. Des experiences sur la fission avec emission de particules de long parcours confirment cet aspect tout en demontrant que la frequence

  16. Measurement of fission track of uranium particle by solid state nuclear track detector

    International Nuclear Information System (INIS)

    Son, S. C.; Pyo, H. W.; Ji, K. Y.; Kim, W. H.

    2002-01-01

    In this study, we discussed results of the measurement of fission tracks for the uranium containing particles by solid state nuclear track detector. Uranium containing silica and uranium oxide particles were prepared by uranium sorption onto silica powder in weak acidic medium and laser ablation on uranium pellet, respectively. Fission tracks for the uranium containing silica and uranium oxide particles were detected on Lexan plastic detector. It was found that the fission track size and shapes depend on the particle size uranium content in particles. Correlation of uranium particle diameter with fission track radius was also discussed

  17. Correlated prompt fission data in transport simulations

    Science.gov (United States)

    Talou, P.; Vogt, R.; Randrup, J.; Rising, M. E.; Pozzi, S. A.; Verbeke, J.; Andrews, M. T.; Clarke, S. D.; Jaffke, P.; Jandel, M.; Kawano, T.; Marcath, M. J.; Meierbachtol, K.; Nakae, L.; Rusev, G.; Sood, A.; Stetcu, I.; Walker, C.

    2018-01-01

    Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n - n, n - γ, and γ - γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in

  18. Correlated prompt fission data in transport simulations

    Energy Technology Data Exchange (ETDEWEB)

    Talou, P.; Jaffke, P.; Kawano, T.; Stetcu, I. [Los Alamos National Laboratory, Nuclear Physics Group, Theoretical Division, Los Alamos, NM (United States); Vogt, R. [Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division, Livermore, CA (United States); University of California, Physics Department, Davis, CA (United States); Randrup, J. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Rising, M.E.; Andrews, M.T.; Sood, A. [Los Alamos National Laboratory, Monte Carlo Methods, Codes, and Applications Group, Los Alamos, NM (United States); Pozzi, S.A.; Clarke, S.D.; Marcath, M.J. [University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, MI (United States); Verbeke, J.; Nakae, L. [Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division, Livermore, CA (United States); Jandel, M. [Los Alamos National Laboratory, Nuclear and Radiochemistry Group, Los Alamos, NM (United States); University of Massachusetts, Department of Physics and Applied Physics, Lowell, MA (United States); Meierbachtol, K. [Los Alamos National Laboratory, Nuclear Engineering and Nonproliferation, Los Alamos, NM (United States); Rusev, G.; Walker, C. [Los Alamos National Laboratory, Nuclear and Radiochemistry Group, Los Alamos, NM (United States)

    2018-01-15

    Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n-n, n-γ, and γ-γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX-PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in nonproliferation

  19. Nuclear isomerism in fission fragments produced by the spontaneous fission of {sup 252}Cf; Isomerisme nucleaire dans les fragments de fission produits dans la fission spontanee du {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Gautherin, C

    1997-09-01

    This thesis is devoted to the study of the nuclear structure of neutron-rich nuclei, via the search of isomeric nuclear states. Neutron-rich nuclei were produced in the spontaneous fission of {sup 252}Cf. The experimental study of isomeric states in these nuclei was performed with the {gamma}-array EUROGAM II, coupled to an additional and original fission fragment detector composed by photovoltaic cells, SAPhIR. The photovoltaic cells are well adapted to detect low energy heavy ions and have good energy and time resolutions to obtain a good fission fragment detection. This experiment led to the discovery of new isomeric states in {sup 135}Xe, {sup 104}Mo, {sup 146,147,148}Ce and {sup 152,154,156}Nd, with lifetimes between 60 ns and 2 {mu}s. Level schemes of these nuclei have been completed. An interpretation of the isomeric states in the nuclei {sup 154,156}Nd and {sup 156,158}Sm was performed by Hartree-Fock-Bogolyubov calculations using the DIS Gogny force with two quasi-particles excitations. The confrontation with the experimental results led to an interpretation of these isomeric states as K-isomers. (author)

  20. Reprocessing free nuclear fuel production via fusion fission hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Kotschenreuther, Mike, E-mail: mtk@mail.utexas.edu [Intitute for Fusion Studies, University of Texas at Austin (United States); Valanju, Prashant; Mahajan, Swadesh [Intitute for Fusion Studies, University of Texas at Austin (United States)

    2012-05-15

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively 'new' cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th{sup 232}-U{sup 233} conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO{sub 2} matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U{sup 235} fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  1. Reprocessing free nuclear fuel production via fusion fission hybrids

    International Nuclear Information System (INIS)

    Kotschenreuther, Mike; Valanju, Prashant; Mahajan, Swadesh

    2012-01-01

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively “new” cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th 232 –U 233 conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO 2 matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U 235 fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  2. Delayed fission

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    Delayed fission is a nuclear decay process that couples {beta} decay and fission. In the delayed fission process, a parent nucleus undergoes {beta} decay and thereby populates excited states in the daughter. If these states are of energies comparable to or greater than the fission barrier of the daughter, then fission may compete with other decay modes of the excited states in the daughter. In this paper, mechanism and some experiments of the delayed fission will be discussed. (author)

  3. Nuclear fission energy: the international scene and the outlook for Italy

    International Nuclear Information System (INIS)

    Monti, S.

    2008-01-01

    Because of concerns about the environment, energy security and energy costs, fission nuclear energy is gaining ground again around the world. In Italy, the research community can help relaunch the national nuclear programmes by providing advanced training, recruiting young engineers and researchers for RD activities, and furthering an immediate cooperation of the Italian system in the principal European and international projects on sustainable nuclear energy [it

  4. VISIT - Virtual visits to nuclear power plants

    International Nuclear Information System (INIS)

    Mollaret, Jean-Christophe

    2001-01-01

    For more than twenty years, EDFs Communication Division has conducted a policy of opening its generation sites to the general public. Around 300,000 people visit a nuclear power plant every year. However, for the security of persons and the safety of facilities, those parts of the plant situated in controlled areas are not accessible to visitors. For the sake of transparency, EDF has taken an interest in the technologies offered by virtual reality to show the general public what a nuclear power plant is really like, so as to initiate dialogue on nuclear energy, particularly with young people. Visit has been developed with virtual reality technologies. It serves to show the invisible (voyage to the core of fission), the inaccessible and to immerse the visitors in environments which are usually closed to the general public (discovery of the controlled area of a nuclear power plant). Visit is used in Public Information Centres which receive visitors to EDF power plants and during international exhibitions and conferences. Visit allows a virtual tour of the following controlled areas: locker room hot area/cold area, a necessary passage before entering the controlled areas; reactor building; fuel building; waste auxiliary building (liquid, solid and gaseous effluents). It also includes a tour of the rooms or equipment usually accessible to the general public: control room, turbine hall, transformer, air cooling tower

  5. A novel method for fission product noble gas sampling

    International Nuclear Information System (INIS)

    Jain, S.K.; Prakash, Vivek; Singh, G.K.; Vinay, Kr.; Awsthi, A.; Bihari, K.; Joyson, R.; Manu, K.; Gupta, Ashok

    2008-01-01

    Noble gases occur to some extent in the Earth's atmosphere, but the concentrations of all but argon are exceedingly low. Argon is plentiful, constituting almost 1 % of the air. Fission Product Noble Gases (FPNG) are produced by nuclear fission and large parts of FPNG is produced in Nuclear reactions. FPNG are b-j emitters and contributing significantly in public dose. During normal operation of reactor release of FPNG is negligible but its release increases in case of fuel failure. Xenon, a member of FPNG family helps in identification of fuel failure and its extent in PHWRs. Due to above reasons it becomes necessary to assess the FPNG release during operation of NPPs. Presently used methodology of assessment of FPNG, at almost all power stations is Computer based gamma ray spectrometry. This provides fission product Noble gases nuclide identification through peak search of spectra. The air sample for the same is collected by grab sampling method, which has inherent disadvantages. An alternate method was developed at Rajasthan Atomic Power Station (RAPS) - 3 and 4 for assessment of FPNG, which uses adsorption phenomena for collection of air samples. This report presents details of sampling method for FPNG and noble gases in different systems of Nuclear Power Plant. (author)

  6. Radiochemistry and the Study of Fission

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.

  7. Radiochemistry and the Study of Fission

    International Nuclear Information System (INIS)

    Rundberg, Robert S.

    2016-01-01

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.

  8. Nuclear energy: fusion and fission - From the atomic nucleus to energy

    International Nuclear Information System (INIS)

    2002-09-01

    Matter is made up of atoms. In 1912, the English physicist Ernest Rutherford (who had shown that the atom had a nucleus), and the Danish physicist Niels Bohr developed a model in which the atom was made up of a positively charged nucleus surrounded by a cloud of electrons. In 1913, Rutherford discovered the proton, and in 1932, the English physicist Chadwick discovered the neutron. In 1938, Hahn and Strassmann discovered spontaneous fission and the French physicist Frederic Joliot-Curie, assisted by Lew Kowarski and Hans Von Halban, showed in 1939 that splitting uranium nuclei caused an intense release of heat. The discovery of the chain reaction would enable the exploitation of nuclear energy. 'It was the Second World War leaders who, by encouraging research for military purposes, contributed to the development of nuclear energy'. During the Second World War, from 1939 to 1945, studies of fission continued in the United States, with the participation of emigre physicists. The Manhattan project was launched, the aim of which was to provide the country with a nuclear weapon (used at Hiroshima and Nagasaki in 1945). After the war ended, research into energy production by the nuclear fission reaction continued for civil purposes. CEA (the French Atomic Energy Commission) was set up in France in 1945 under the impetus of General de Gaulle. This public research body is responsible for giving France mastery of the atom in the research, health, energy, industrial, safety and defense sectors. (authors)

  9. Prompt muon-induced fission: A probe for nuclear friction in large-amplitude collective motion

    International Nuclear Information System (INIS)

    Oberacker, V.E.; Umar, A.S.; Wells, J.C.; Strayer, M.R.; Maruhn, J.A.; Reinhard, P.G.

    1998-01-01

    Excited muonic atoms in the actinide region may induce prompt fission by inverse internal conversion, i.e. the excitation energy of the muonic atom is transferred to the nucleus. The authors solve the time dependent Dirac equation for the muonic spinor wave function in the Coulomb field of the fissioning nucleus on a 3-dimensional lattice and demonstrate that the muon attachment probability to the light fission fragment is a measure of the nuclear energy dissipation between the outer fission barrier and the scission point

  10. Preparation of a primary target for the production of fission products in a nuclear reactor

    International Nuclear Information System (INIS)

    Arino, H.; Cosolito, F.J.; George, K.D.; Thornton, A.K.

    1976-01-01

    A primary target for the production of fission products in a nuclear reactor, such as uranium or plutonium fission products, is comprised of an enclosed, cylindrical vessel, preferably comprised of stainless steel, having a thin, continuous, uniform layer of fissionable material, integrally bonded to its inner walls and a port permitting access to the interior of the vessel. A process is also provided for depositing uranium material on to the inner walls of the vessel. Upon irradiation of the target with neutrons from a nuclear reactor, radioactive fission products, such as molybdenum-99, are formed, and thereafter separated from the target by the introduction of an acidic solution through the port to dissolve the irradiated inner layer. The irradiation and dissolution are thus effected in the same vessel without the necessity of transferring the fissionable material and fission products to a separate chemical reactor. Subsequently, the desired isotopes are extracted and purified. Molybdenum-99 decays to technetium-99m which is a valuable medical diagnostic radioisotope. 3 claims, 1 drawing figure

  11. Detector for gaseous nuclear fission products

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Kubo, Katsumi.

    1979-01-01

    Purpose: To facilitate the fabrication of a precipitator type detector, as well as improve the reliability. Constitution: Gas to be measured flown in an anode is stored in a gas processing system. By applying a voltage between the anode and the cathode, if positively charged Rb or Cs which is the daughter products of gaseous fission products are present in the gas to be measured, the daughter products are successively deposited electrostatically to the cathode. The daughter products issue beta-rays and gamma-rays to ionize the argon gas at the anode, whereby ionizing current flows between both of the electrodes. Pulses are generated from the ionizing current, and presence or absence, as well as the amount of the gaseous fission products are determined by the value recorded for the number of the pulses to thereby detect failures in the nuclear fuel elements. After the completion of the detection, the inside of the anode is evacuated and the cathode is heated to evaporate and discharge the daughter products externally. This eliminates the effects of the former detection to the succeeding detection. (Moriyama, K.)

  12. Nuclear inertia for fission in a generalized cranking model

    International Nuclear Information System (INIS)

    Kunz, J.; Nix, J.R.

    1984-01-01

    The Inglis cranking model has been widely used to calculate the nuclear inertia associated with collective degrees of freedom. After the inclusion of pairing correlations, theoretical results obtained with the cranking model for nuclear rotations and γ-vibrations were in relatively good agreement with experimental data. Calculations of β-vibrational inertias were also performed in the cranking model for fission deformations. Theoretical results were several times the irrotational values and gave reasonable agreement with experimental spontaneous-fission lifetimes, although in one study a renormalization factor of 0.8 was required. However, as pointed out by many authors, the Inglis cranking model possesses two serious deficiencies. First, problems arise when the single-particle potential contains momentum-dependence terms. Second, in the limit of large pairing strength the inertia approaches zero instead of a finite (irrotational) limit. Alternative approaches to the cranking model which did not lead to such unacceptable results were developed by Migdal, Belyaev and Thouless and Valatin. They showed that these deficiencies of the cranking model are due to a lack of self-consistency, since the reaction of the mean field to the collective motion is neglected in the Inglis model. Previously we used their arguments and developed a generalized cranking model for stationary collective motion. Here it is shown how to develop a time-dependent formalism appropriate to β-vibrations and fission. 10 references

  13. A Review of Previous Research in Direct Energy Conversion Fission Reactors

    International Nuclear Information System (INIS)

    DUONG, HENRY; POLANSKY, GARY F.; SANDERS, THOMAS L.; SIEGEL, MALCOLM D.

    1999-01-01

    From the earliest days of power reactor development, direct energy conversion was an obvious choice to produce high efficiency electric power generation. Directly capturing the energy of the fission fragments produced during nuclear fission avoids the intermediate conversion to thermal energy and the efficiency limitations of classical thermodynamics. Efficiencies of more than 80% are possible, independent of operational temperature. Direct energy conversion fission reactors would possess a number of unique characteristics that would make them very attractive for commercial power generation. These reactors would be modular in design with integral power conversion and operate at low pressures and temperatures. They would operate at high efficiency and produce power well suited for long distance transmission. They would feature large safety margins and passively safe design. Ideally suited to production by advanced manufacturing techniques, direct energy conversion fission reactors could be produced more economically than conventional reactor designs. The history of direct energy conversion can be considered as dating back to 1913 when Moseleyl demonstrated that charged particle emission could be used to buildup a voltage. Soon after the successful operation of a nuclear reactor, E.P. Wigner suggested the use of fission fragments for direct energy conversion. Over a decade after Wigner's suggestion, the first theoretical treatment of the conversion of fission fragment kinetic energy into electrical potential appeared in the literature. Over the ten years that followed, a number of researchers investigated various aspects of fission fragment direct energy conversion. Experiments were performed that validated the basic physics of the concept, but a variety of technical challenges limited the efficiencies that were achieved. Most research in direct energy conversion ceased in the US by the late 1960s. Sporadic interest in the concept appears in the literature until this

  14. Experience in incorporation control of operation personnel of the Reinsberg nuclear power plant (1967 - 1973)

    International Nuclear Information System (INIS)

    Pul'khajm, K.F.; Klyuke, Kh.

    1976-01-01

    A theoretic estimate of fission products and corrosion nuclides in a WWR type reactor is given. The results of radiation monitoring of the personnel irradiation at the Reinsberg (DDR) nuclear power plant are presented. It is supposed that the intake of fission and corrosion products has been realized through inhalation. The equivalent doses of internal irradiation are calculated. The estimate of the results of radiation monitoring are presented [ru

  15. Water chemistry control in thermal and nuclear power plants. 9. Nuclear fuel management

    International Nuclear Information System (INIS)

    2008-01-01

    The chemical management of fuels in nuclear power plants aims at maintenance of the soundness of nuclear fuels and at reduction of the radiation exposure of the working employees. With regard to the former, particular attention should be paid to the fabrication process of fuel assembly, mainly for chemical management for fuel cladding tubes together with fuel pellet-clad chemical interactions, and to the outer tubes in the power plants. With regard to the latter, the fabrication process should be carefully controlled to prevent radioactive impurity increase in primary cooling water systems by maintaining cleaning level and decreasing surface contamination. Reactions of zircalloy with water or hydrogen forming ZrH 2 , sintered density of UO 2 pellet controlling water content, pellet-clad interactions, stress corrosion cracking, crud induced fuel failure, behaviors of such fission products as I, Xe, Kr, and Cs in plants are also important to water and chemical management of nuclear fuels. (S. Ohno)

  16. A new option for exploitage of future nuclear energy. Accelerator driven radioactive clean nuclear power system

    International Nuclear Information System (INIS)

    Ding Dazhao

    2000-01-01

    Nuclear energy is an effective, clean and safe energy resource. But some shortages of the nuclear energy system presently commercial available obstruct further development of the nuclear energy by heavy nuclear fission. Those are final disposal of the high level radioactive waste, inefficient use of the uranium resource and safety issue of the system. Innovative technical option is seeking for by the nuclear scientific community in recent ten years in aiming to overcome these obstacles, namely, accelerator driven sub-critical system (ADS). This hybrid system may bridge over the gap between presently commercial available nuclear power system and the full exploitation of the fusion energy. The basic principle of ADS is described and its capability in waste transmutation, conversion of the nuclear fuel are demonstrated by two examples--AD-fast reactor and AD-heavy water thermal reactor. The feasibility of ADS and some projects in US, Japan, etc are briefly discussed. The rationale in promoting the R and D of ADS in China is emphasized as China is at the beginning stage of its ambitious project in construction of the nuclear power

  17. FAPIG's activities for public acceptance of nuclear energy. Analytical results of questionnaire executed at organized visits to nuclear power stations

    International Nuclear Information System (INIS)

    Mizoguchi, Tadao

    1999-01-01

    FAPIG organizes a visit to nuclear power station in every November. It is an object that visitors acquire the correct knowledge of nuclear power by looking at the various facilities in the nuclear power stations. The paper showed the analytical results of questionnaire executed at organized visits to the Kashiwazaki-Kariwa nuclear power station. The visitors were 18 women. The questionnaire was carried out by the same problems before and after seminar and a conducted tour. Their impressions and opinions and the changes are analyzed. The speakers used easy words, video, OHP, pamphlet and experimental equipment. These means showed very good results to visitors. The seminar had very large effect on just recognition of safety and need of it. The change of answer proved from 3 to 6 of need and from 0 to 7 of safety of it. Nine members indicated good understanding of seminar content. The interested items in the seminar were measurement of radiation, effects of radiation, reason of decreasing average life, Chernobyl accident, difference between nuclear power and atomic bomb and nuclear power dose not generate carbon dioxide and recycle plutonium after nuclear fission of uranium. (S.Y.)

  18. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  19. Human Mars Surface Mission Nuclear Power Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2018-01-01

    A key decision facing Mars mission designers is how to power a crewed surface field station. Unlike the solar-powered Mars Exploration Rovers (MER) that could retreat to a very low power state during a Martian dust storm, human Mars surface missions are estimated to need at least 15 kilowatts of electrical (kWe) power simply to maintain critical life support and spacecraft functions. 'Hotel' loads alone for a pressurized crew rover approach two kWe; driving requires another five kWe-well beyond what the Curiosity rover’s Radioisotope Power System (RPS) was designed to deliver. Full operation of a four-crew Mars field station is estimated at about 40 kWe. Clearly, a crewed Mars field station will require a substantial and reliable power source, beyond the scale of robotic mission experience. This paper explores the applications for both fission and RPS nuclear options for Mars.

  20. Nuclear Fission Reactor Safety Research in FP7 and future perspectives

    CERN Document Server

    Garbil, Roger

    2014-01-01

    The European Union (ЕU) has defined in the Europe 2020 strategy and 2050 Energy Roadmap its long-term vision for establishing a secure, sustainable and competitive energy system and setting up legally binding targets by 2020 for reducing greenhouse emissions, by increasing energy efficiency and the share of renewable energy sources while including a significant share from nuclear fission. Nuclear energy can enable the further reduction in harmful emissions and can contribute to the EU’s competitive energy system, security of supply and independence from fossil fuels. Nuclear fission is a valuable option for those 14 EU countries that promote its use as part of their national energy mix. The European Group on Ethics in Science and New Technologies (EGE) adopted its Opinion No.27 ‘An ethical framework for assessing research, production and use of energy’ and proposed an integrated ethics approach for the research, production and use of energy in the EU, seeking equilibrium among four criteria – access ...

  1. Theoretical Description of the Fission Process

    International Nuclear Information System (INIS)

    Nazarewicz, Witold

    2009-01-01

    Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation's nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic

  2. Lambda attachment in fission: a probe of the necking dynamics

    International Nuclear Information System (INIS)

    Nifenecker, H.; Malek, F.

    1991-02-01

    A schematic scission model is applied to the lambda attachment function recently obtained by the LEAR PS177 collaboration, in their measurement of the prompt fission of hypernuclei. The relationship between the slope parameter and the fission dynamics was examined in a more quantitative way. It is shown that the attachment function is sensitive to the scission configuration, necking dynamics and nuclear temperature at scission. It provides a new and powerful way to study the nuclear scission process. (R.P.) 19 refs., 9 figs

  3. Uncertainty of decay heat calculations originating from errors in the nuclear data and the yields of individual fission products

    International Nuclear Information System (INIS)

    Rudstam, G.

    1979-01-01

    The calculation of the abundance pattern of the fission products with due account taken of feeding from the fission of 235 U, 238 U, and 239 Pu, from the decay of parent nuclei, from neutron capture, and from delayed-neutron emission is described. By means of the abundances and the average beta and gamma energies the decay heat in nuclear fuel is evaluated along with its error derived from the uncertainties of fission yields and nuclear properties of the inddividual fission products. (author)

  4. Dynamical calculations of nuclear fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1984-01-01

    With the goal of determining the magnitude and mechanism of nuclear dissipation from comparisons of predictions with experimental data, we describe recent calculations in a unified macroscopic-microscopic approach to large-amplitude collective nuclear motion such as occurs in fission and heavy-ion reactions. We describe the time dependence of the distribution function in phase space of collective coordinates and momenta by a generalized Fokker-Planck equation. The nuclear potential energy of deformation is calculated as the sum of repulsive Coulomb and centrifugal energies and an attractive Yukawa-plus-exponential potential, the inertia tensor is calculated for a superposition of rigid-body rotation and incompressible, nearly irrotational flow by use of the Werner-Wheeler method, and the dissipation ensor that describes the conversion of collective energy into single-particle excitation energy is calculated for two prototype mechanisms that represent opposite extremes of large and small dissipation. We solve the generalized Hamilton equations of motion for the first moments of the distribution function to obtain the mean translational fission-fragment kinetic energy and mass of a third fragment that sometimes forms between the two end fragments, as well as dynamical thresholds, capture cross sections, and ternary events in heavy-ion reactions. 33 references

  5. Space and Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants With Nuclear Reactor Heat Sources

    Science.gov (United States)

    Juhasz, Albert J.

    2007-01-01

    In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the Next Generation Nuclear Plant Project (NGNP) has been established by DOE under the Generation IV Nuclear Systems Initiative. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series. As an attractive alternate heat source the Liquid Fluoride Reactor (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is

  6. The Potential Of Fission Nuclear Energy In Resolving Global Climate Change

    International Nuclear Information System (INIS)

    Pevec, D.

    2015-01-01

    There is an international consensus on the need of drastic reduction of carbon emission if very serious global climate changes are to be avoided. At present target is to limit global temperature increase to 2 Degrees of C and to keep CO 2 concentration below 450 ppm, though some recent request by climatologists argue for lower limit of 1.5 Degrees of C. The carbon emission reduction has to be done in the next few decades, as climate effects are essentially determined by integral emission. The integral emissions should not exceed 1000 Gt CO 2 to keep the probability of exceeding global temperature by 2 Degrees of C below 25 percent. Consequently, when we consider energy sources that could produce carbon free energy we have to concentrate on the period not later than 2060-2065. The sources that can take the burden of reduction in the years up to 2065 are Renewable Energy Sources (RES) and nuclear fission energy. The potential of RES has been estimated by many organizations and individuals. Their predictions indicate that RES are not likely to be sufficient to replace carbon emitters and fulfill the 2 Degrees of C limit requirements. The nuclear fission energy can give a very serious and hopefully timely (unlike nuclear fusion) contribution to reduction of emission. Even with proven conventional reactors using once through fuel cycle without fuel reprocessing the nuclear build-up in the years 2025-2065 could reach 3330 GW. With this concept nuclear contribution of 94.5 EJ/y would be reached by 2065, while integral CO 2 emission savings would be about 500 Gt CO 2 by 2065. This shows that essential nuclear contribution is possible without the use of plutonium and fast breeders, technology not ready for climate-critical next 50 years and not acceptable in present political environment. This nuclear fission energy contribution along with contributions from renewable sources, energy saving, and increased efficiency in energy use can solve the climate problems. (author).

  7. Investigation of applications for high-power, self-critical fissioning uranium plasma reactors. Final technical report

    International Nuclear Information System (INIS)

    Rodgers, R.J.; Latham, T.S.; Krascella, N.L.

    1976-09-01

    Analytical studies were conducted to investigate potentially attractive applications for gaseous nuclear cavity reactors fueled by uranium hexafluoride and its decomposition products at temperatures of 2000 to 6000 K and total pressures of a few hundred atmospheres. Approximate operating conditions and performance levels for a class of nuclear reactors in which fission energy removal is accomplished principally by radiant heat transfer from the high temperature gaseous nuclear fuel to surrounding absorbing media were determined. The results show the radiant energy deposited in the absorbing media may be efficiently utilized in energy conversion system applications which include (1) a primary energy source for high thrust, high specific impulse space propulsion, (2) an energy source for highly efficient generation of electricity, and (3) a source of high intensity photon flux for heating working fluid gases for hydrogen production or MHD power extraction. (Author)

  8. Proliferation Resistant Nuclear Reactor Fuel

    International Nuclear Information System (INIS)

    Gray, L.W.; Moody, K.J.; Bradley, K.S.; Lorenzana, H.E.

    2011-01-01

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and

  9. Impact of nuclear research on the future technology of nuclear power

    International Nuclear Information System (INIS)

    Iyengar, P.K.

    1979-01-01

    Policy makers in the developing countries tend to assess the value of any research project by its end-results. As research projects in the field of applied science or technology promise immediate and tangible benefits to the society, high priority is given to such projects in fund allocation by policy makers. On the other hand, basic or ''pure'' science is usually viewed as pursuit of knowledge for its own sake. It has been pointed out that such a view is a mistaken one and there is no real demarcation between basic science and applied science. More often than not, results of research in basic science form the basis of transforming old technologies into better ones and giving rise to new ones. On this background, a case has been emphatically put forward: (1) to identify areas of science, particularly in nuclear science, which may not appear relevant to the immediate problems but look promising in their application and (2) to make investments, even though heavy, for research in such areas. In case of nuclear science, research areas of potential application are high energy accelerators, implosion, fusion reactions, laser fusion, tokamak devices, fusion-fission hybrid reactor systems, breeding of fissile materials from fertile ones by accelerator based neutron sources. Impact of research in these areas on and its relevance to nuclear power generation is indicated and the-state-of-art in these areas in India is described. An appendix lucidly explains generation of nuclear energy from fission and discusses thermal and fast breeder reactors. (M.G.B.)

  10. An Investigation of Power Stabilization and Space-Dependent Dynamics of a Nuclear Fluidized-Bed Reactor

    International Nuclear Information System (INIS)

    Pain, Christopher C.; Eaton, Matthew D.; Gomes, Jefferson L.M.A.; Oliveira, Cassiano R.E. de; Umpleby, Adrian P.; Ziver, Kemal; Ackroyd, Ron T.; Miles, Bryan; Goddard, Antony J.H.; Dam, H. van; Hagen, T.H.J.J. van der; Lathouwers, D.

    2003-01-01

    Previous work into the space-dependent kinetics of the conceptual nuclear fluidized bed has highlighted the sensitivity of fission power to particle movements within the bed. The work presented in this paper investigates a method of stabilizing the fission power by making it less sensitive to fuel particle movement. Steady-state neutronic calculations are performed to obtain a suitable design that is stable to radial and axial fuel particle movements in the bed. Detailed spatial/temporal simulations performed using the finite element transient criticality (FETCH) code investigate the dynamics of the new reactor design. A dual requirement of the design is that it has a moderate power output of ∼300 MW(thermal)

  11. Transient core characteristics of small molten salt reactor coupling problem between heat transfer/flow and nuclear fission reaction

    International Nuclear Information System (INIS)

    Yamamoto, Takahisa; Mitachi, Koshi

    2004-01-01

    This paper performed the transient core analysis of a small Molten Salt Reactor (MSR). The emphasis is that the numerical model employed in this paper takes into account the interaction among fuel salt flow, nuclear reaction and heat transfer. The model consists of two group diffusion equations for fast and thermal neutron fluexs, balance equations for six-group delayed neutron precursors and energy conservation equations for fuel salt and graphite moderator. The results of transient analysis are that (1) fission reaction (heat generation) rate significantly increases soon after step reactivity insertion, e.g., the peak of fission reaction rate achieves about 2.7 times larger than the rated power 350 MW when the reactivity of 0.15% Δk/k 0 is inserted to the rated state, and (2) the self-control performance of the small MSR effectively works under the step reactivity insertion of 0.56% Δk/k 0 , putting the fission reaction rate back on the rated state. (author)

  12. Linear free energy correlations for fission product release from the Fukushima-Daiichi nuclear accident.

    Science.gov (United States)

    Abrecht, David G; Schwantes, Jon M

    2015-03-03

    This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the initial source of the radionuclides to the environment to be from active reactors rather than the spent fuel pool. Linear correlations of the form In χ = −α ((ΔGrxn°(TC))/(RTC)) + β were obtained between the deposited concentrations, and the reduction potentials of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn (TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2015 and 2060 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, and 151Sm through atmospheric venting during the first month following the accident were obtained, indicating that large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.

  13. Effect of power change on fission gas release. Re-irradiation tests of spent fuel at JMTR

    International Nuclear Information System (INIS)

    Nakamura, Jinichi; Shimizu, Michio; Ishii, Tadahiko; Endo, Yasuichi; Ohwada, Isao; Nabeya, Hideaki; Uetsuka, Hiroshi

    1999-01-01

    A full length rod irradiated at Tsuruga unit 1 was refabricated to short length rods, and rod inner pressure gauges were re-instrumented to the rods. Re-irradiation tests to study the fission gas release during power change were carried out by means of BOCA/OSF-1 facility at the JMTR. In the tests, steady state operation at 40 kW/m and power cycling operations between 20 and 40 kW/m were conducted for the same high power holding time, and the rod inner pressure change during the tests was measured. The rod inner pressure increase was observed during power change, especially during power reduction. The rod inner pressure increase during a power cycling depended on the length of the high power operation just before the power cycling. The fission gas release during power reduction is estimated to be the release from fission gas bubbles on the grain boundary caused by the thermal stress in the pellet during power reduction. When steady state operation and power cycling were repeated at the power levels of 30, 35 and 40 kW/m, the power cycling accelerated the fission gas release compared with the steady state operation. (author)

  14. Mass and Inertia Parameters for Nuclear Fission

    International Nuclear Information System (INIS)

    Damgaard, J.; Pauli, H.C.; Strutinsky, V.M.; Wong, C.Y.; Brack, M.; Stenholm-Jensen, A.

    1969-01-01

    The effective mass parameter and the moments of inertia for a deformed nucleus are evaluated using the cranking-model formalism. Special attention is paid to the dependence of these quantities on the intrinsic structure, which may arise due to shells in deformed nuclei. It is found that these inertial parameters are very much influenced by the shells present. The effective-mass parameter, which appears in an important way in the theory of spontaneous fission, fluctuates in the same manner as the shell-energy corrections. Its values at the fission barrier are up to two or three times larger than those at the equilibrium minima. This correlation comes about because for the effective mass the change in the local density of single-particle states is very important, much more so than the change in the pairing correlation. The moments of inertia which enter in the theory of angular anisotropy of fission fragments, also fluctuate as a function of the deformation. At low temperatures, the fluctuation is large and shows a distinct but more complicated correlation with the shells. At high temperatures, the moments of inertia fluctuate with a smaller amplitude about the rigid-body value in correlation with the energy-shell corrections. For the first-and second barriers, the rigid-body values are essentially reached at a nuclear temperature of 0.8 to 1.0 MeV. (author)

  15. Outlook for nuclear fission energy

    International Nuclear Information System (INIS)

    Anderson, T.D.

    1978-01-01

    The electric utility industry has made a substantial commitment to nuclear power. The industrial capability to produce nuclear plants is large and well established. Nevertheless, nuclear energy in the United States is at the crossroad, and the direction it will take is not at all assured. The postponements, cancellations, and lack of orders for new plants over the past three years raise some serious questions about the future. The present problems of nuclear energy are primarily nontechnical in nature. If the nontechnical issues can be resolved, the future for nuclear looks bright indeed. The LWR and other converters could provide strong competition for coal and other electric power options for a half century or more. If development goals are met, the nuclear breeder offers the prospect of a very large supply of energy at stabilized prices over a time span of centuries

  16. Nuclear energy

    International Nuclear Information System (INIS)

    Wethe, Per Ivar

    2009-01-01

    Today we know two forms of nuclear energy: fission and fusion. Fission is the decomposition of heavy nuclei, while fusion is the melting together of light nuclei. Both processes create a large surplus of energy. Technologically, we can currently only use fission to produce energy in today's nuclear power plants, but there is intense research worldwide in order to realize a controlled fusion process. In a practical context, today's nuclear energy is a sustained source of energy since the resource base is virtually unlimited. When fusion technology is realized, the resource supply will be a marginal problem. (AG)

  17. Nuclear Systems Kilopower Overview

    Science.gov (United States)

    Palac, Don; Gibson, Marc; Mason, Lee; Houts, Michael; McClure, Patrick; Robinson, Ross

    2016-01-01

    The Nuclear Systems Kilopower Project was initiated by NASAs Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project consists of two elements. The primary element is the Kilopower Prototype Test, also called the Kilopower Reactor Using Stirling Technology(KRUSTY) Test. This element consists of the development and testing of a fission ground technology demonstrator of a 1 kWe fission power system. A 1 kWe system matches requirements for some robotic precursor exploration systems and future potential deep space science missions, and also allows a nuclear ground technology demonstration in existing nuclear test facilities at low cost. The second element, the Mars Kilopower Scalability Study, consists of the analysis and design of a scaled-up version of the 1 kWe reference concept to 10 kWe for Mars surface power projected requirements, and validation of the applicability of the KRUSTY experiment to key technology challenges for a 10 kWe system. If successful, these two elements will lead to initiation of planning for a technology demonstration of a 10 kWe fission power capability for Mars surface outpost power.

  18. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    Science.gov (United States)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  19. Some thoughts on risk acceptance and nuclear power

    International Nuclear Information System (INIS)

    Brejora, S.

    2001-01-01

    Risks are assessed very differently in our modern society. While a number of everyday risks, some of which are hardly perceptible while others are quite spectacular, are accepted to a considerable extent, many other risks, often minor ones, are overemphasized and rejected. Risk assessment in the minds of people is a function of a number of subjective, emotional factors with decisive psychological components which lead to irrational assessment especially of a number of manmade risks, including nuclear power. Factors to be mentioned in the assessment of the risks of nuclear power, among others, are the imaginary phenomenon of radioactivity and nuclear fission; the growing intrusion of technology into our living environment; the need to fall back upon expert knowledge; and the intuitive, wrong correlation of technical expense for safety with the perceived risk. As is seen, opinions are formed not solely on the basis of rational findings, but are influenced by many factors, some of which cannot be reproduced in a rational way. This makes it imperative to include in the debate about risks of technology, specifically the discussion about the use of nuclear power, the psychological aspect in order to arrive at a reasonable way for society to handle technology. (orig.) [de

  20. Fission fragment distributions within dynamical approach

    Energy Technology Data Exchange (ETDEWEB)

    Mazurek, K. [Institute of Nuclear, Physics Polish Academy of Sciences, Krakow (Poland); Nadtochy, P.N. [Omsk State Technical University, Omsk (Russian Federation); Ryabov, E.G.; Adeev, G.D. [Omsk State University, Physics Department, Omsk (Russian Federation)

    2017-04-15

    The review covers recent developments and achievements in the dynamical description of fission process at high excitation energy. It is shown that the dynamical approach based on multidimensional Langevin equations combined with the statistical description of nuclear decay by particles evaporation is capable of fairly well describing the formation of fission fragment mass-energy, charge, and angular distributions of fission fragments in coincidence with the pre- and post-scission particle emission. The final yields of fission and evaporation residues channels products could be obtained. The detailed description of fission dynamics allows studying different stages of fission process, indicating the most important ingredients governing fission process and studying in detail such fundamental nuclear properties as nuclear viscosity and fission timescale. The tasks and perspectives of multidimensional dynamical approach are also discussed. (orig.)

  1. Theoretical nuclear fission: The evolution of the first fifty years

    International Nuclear Information System (INIS)

    Griffin, J.J.

    1989-01-01

    The evolution of the dynamical theory of nuclear fission is reviewed through four recognizable major phases. Its conceptual structure was from the outset shaped by the Bohr-Wheeler idea of the nucleus as a liquid drop. On the other hand, today's nuclear drop is a system which has under study repeatedly revealed remarkable and unexpected properties, especially with respect to the dependence of its energy upon its shape. Although some of these special properties arise from quantal effects, the theory of fission is still expressed largely in terms of classical dynamics. This situation leaves open the question whether our theoretical success flows entirely from physical truth or in part from the great phenomenological flexibility of the drop model. It leads one also to wonder whether in the next phase connections with the quantal many-body dynamics might finally find a firm place in the theory, and tie its predictions quantitatively to the deeper microscopic reality

  2. Effect of fission dynamics on the spectra and multiplicities of prompt fission neutrons

    International Nuclear Information System (INIS)

    Nix, J.R.; Madland, D.G.; Sierk, A.J.

    1985-01-01

    With the goal of examining their effect on the spectra and multiplicities of the prompt neutrons emitted in fission, we discuss recent advances in a unified macroscopic-microscopic description of large-amplitude collective nuclear dynamics. The conversion of collective energy into single-particle excitation energy is calculated for a new surface-plus-window dissipation mechanism. By solving the Hamilton equations of motion for initial conditions appropriate to fission, we obtain the average fission-fragment translational kinetic energy and excitation energy. The spectra and multiplicities of the emitted neutrons, which depend critically upon the average excitation energy, are then calculated on the basis of standard nuclear evaporation theory, taking into account the average motion of the fission fragments, the distribution of fission-fragment residual nuclear temperature, the energy dependence of the cross section for the inverse process of compound-nucleus formation, and the possibility of multiple-chance fission. Some illustrative comparisons of our calculations with experimental data are shown

  3. Japanese list of requests for neutron nuclear data for fission reactors

    International Nuclear Information System (INIS)

    Igarasi, Sin-iti; Asami, Tetsuo

    1977-05-01

    Requests for neutron nuclear data for fission reactors are presented. These are screened by a WRENDA Working Group of Japanese Nuclear Data Committee and submitted to WRENDA 76/77. This report includes 163 requests of which 55 requests are newly registered in the WRENDA. Three requests of the previous list are withdrawn. This activity is a part of the international cooperation with CCDN, NEANDC and INDC. (auth.)

  4. Fission energy program of the U.S. Department of Energy. FY 1980

    International Nuclear Information System (INIS)

    1979-04-01

    This document presents the baseline implementation program plan as of January 1979 and is derived from the National Energy Plan and other major policy documents. The document discusses civilian nuclear power development, the policy for which has been established by the National Energy Plan of April 1977 and the National Energy Act of 1978. It derives the fission energy policy and program objectives from the National Energy Plan and Act, describes the overall program strategy, and presents the overall budget. The approach used in managing the program, including the program structure and methods used for program control, is explained. The civilian fission power development implementation programs are described in detail. Other considerations affecting civilian nuclear power development are also discussed

  5. COMPARISON OF S-CO2 POWER CYCLES FOR NUCLEAR ENERGY

    Directory of Open Access Journals (Sweden)

    Ladislav Vesely

    2016-12-01

    Full Text Available The supercritical carbon dioxide (S-CO2 is a possible cooling system for the new generations of nuclear reactors and fusion reactors. The S-CO2 power cycles have several advantages over other possible coolants such as water and helium. The advantages are the compression work, which is lower than in the case of helium, near the critical point and the S-CO2 is more compact than water and helium. The disadvantage is so called Pinch point which occurs in the regenerative heat exchanger. The pinch point can be eliminated by an arrangement of the cycle or using a mixture of CO2. This paper describes the S-CO2 power cycles for nuclear fission and fusion reactors.

  6. New ceramics for nuclear industry. Case of fission and fusion reactors

    International Nuclear Information System (INIS)

    Yvars, M.

    1979-10-01

    The ceramics used in the nuclear field are described as is their behaviour under radiation. 1) Power reactors - nuclear fission. Ceramics enter into the fabrication of nuclear fuels: oxides, carbides, uranium or plutonium nitrides or oxy-nitrides. Silicon carbide SiC is used for preparing the fuels of helium cooled high temperature reactors. Its use is foreseen in the design of gas high temperature gas thermal exchangers, as is silicon nitride (Si 3 N 4 ). In the materials for safety or control rods, the intense neutron flows induce nuclear reactions which increase the temperature of the neutron absorbing material. Boron carbide B 4 C, rare earth oxides Ln 2 O 3 , or B 4 C-Cu or B 4 C-Al cermets are employed. Burnable poison materials are formed of Al 2 O 3 -B 4 C or Al 2 O 3 -Ln 2 O 3 cermets. The moderators of thermal neutron reactors are in high purety polycrystalline graphite. For the thermal insulation of reactor vessels and jackets, honeycomb ceramics are used as well as ceramic fibres on an increasing scale (kaolin, alumina and other fibres). 2) fusion reactors (Tokomak). These require refractory materials with a low atomic number. Carbon fibres, boron carbide, some borons (Al B 12 ), silicon nitrides and oxy-nitrides and high density alumina are the substances considered [fr

  7. The LANL C-NR counting room and fission product yields

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, Kevin Richard [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-21

    This PowerPoint presentation focused on the following areas: LANL C-NR counting room; Fission product yields; Los Alamos Neutron wheel experiments; Recent experiments ad NCERC; and Post-detonation nuclear forensics

  8. Fission neutron multiplicity calculations

    International Nuclear Information System (INIS)

    Maerten, H.; Ruben, A.; Seeliger, D.

    1991-01-01

    A model for calculating neutron multiplicities in nuclear fission is presented. It is based on the solution of the energy partition problem as function of mass asymmetry within a phenomenological approach including temperature-dependent microscopic energies. Nuclear structure effects on fragment de-excitation, which influence neutron multiplicities, are discussed. Temperature effects on microscopic energy play an important role in induced fission reactions. Calculated results are presented for various fission reactions induced by neutrons. Data cover the incident energy range 0-20 MeV, i.e. multiple chance fission is considered. (author). 28 refs, 13 figs

  9. Fission-fragment and neutron data traced back to the macroscopic and microscopic properties of the fissioning systems

    Directory of Open Access Journals (Sweden)

    Schmidt K.-H.

    2010-10-01

    Full Text Available A new model description of fission-fragment yields and prompt neutron emission is developed. The yields of the different fission channels and their properties are attributed to the number of relevant states above the potential-energy landscape on the fission path at the moment of dynamical freeze-out, which is specific to the collective coordinate considered. The model combines well established ideas with novel concepts. The separability principle of macroscopic properties of the compound nucleus and microscopic properties of the fragments strongly reduces the number of model parameters and assures a high predictive power. The recently discovered energy-sorting mechanism in superfluid nuclear dynamics determines the sharing of intrinsic excitation energy at scission and the enhancement of even-odd structure in asymmetric splits.

  10. Comparison of environmental impact of waste disposal from fusion, fission and coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Bruno [Fichtner GmbH und Co. KG, Stuttgart (Germany)

    2011-08-15

    The radiotoxic hazard of waste from fusion power plants has been compared with that of fission power and radioactive trace elements in coal ash within some research programs such as SEAFP and SEIF. Within another program, in 2005 a Power Plant Conceptual Study (PPCS) has been finalized investigating 4 fusion power plant models A to D. In this paper, the radiotoxicity of model B is compared with a fission power plant, concentrating on the production of wastes. The hazard of the respective masses of enriched uranium before use in a fission power plant and coal ash of a power plant generating the same amount of electricity are used as benchmarks. It is evident that the development of ingestion and inhalation hazard of the PPCS model B is different from the results of earlier studies because of different assumptions on material impurities and other constraints. An important aspect is the presence of actinides in fusion power plant waste. (orig.)

  11. Radiation monitoring handbook for visits by nuclear powered warships to Australian ports

    Energy Technology Data Exchange (ETDEWEB)

    Woods, D.A

    1995-09-01

    The purpose of this handbook is to detail the Radiation Monitoring (RMG) roles and procedures, and to provide technical and background information useful to RMG personnel. It has been written on the assumption that all members of the RMG have had appropriate radiation safety (Health Physics) training. Separate standing procedures, for both routine and emergency activities, are required for each port. These are incorporated in Port Safety Plans and specify the routine monitoring requirements for individual berths or anchorages and the procedures to be followed after indication of a reactor accident to a nuclear powered warship. A Visit Operation Order, issued for each Nuclear Powered warships (NPW) visit, presents information specific to that visit. Routine monitoring is performed to confirm normal conditions. The objectives of emergency radiation monitoring are: to provide early detection of a reactor accident of sufficient severity to possibly cause a major release of fission products to the environment; to determine the nature and extent of any fission product release; to provide information to assist in evaluating the accident; to assess the need and extent of required countermeasures; and to determine when the release has terminated and when affected areas have returned to normal Prepared on behalf of the Visiting Ship Panel (Nuclear), Department of Defence; 11 refs., 11 tabs., 21 figs.

  12. Fission fragment charge and mass distributions in 239Pu(n ,f ) in the adiabatic nuclear energy density functional theory

    Science.gov (United States)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-05-01

    Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms

  13. Environmental life cycle assessment of high temperature nuclear fission and fusion biomass gasification plants

    International Nuclear Information System (INIS)

    Takeda, Shutaro; Sakurai, Shigeki; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    The authors propose nuclear biomass gasification plant as an advancement of conventional gasification plants. Environmental impacts of both fission and fusion plants were assessed through life cycle assessment. The result suggested the reduction of green-house gas emissions would be as large as 85.9% from conventional plants, showing a potential for the sustainable future for both fission and fusion plants. (author)

  14. A constrained approximation for nuclear barrier penetration and fission

    International Nuclear Information System (INIS)

    Tang, H.H.K.; Negele, J.W.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1983-01-01

    An approximation to the time-dependent mean-field theory for barrier penetration by a nucleus is obtained in terms of constrained Hartree-Fock wave functions and a coherent velocity field. A discrete approximation to the continuum theory suitable for practical numerical calculations is presented and applied to three illustrative models. Potential application of the theory to the study of nuclear fission is discussed. (orig.)

  15. Fission gas release during power change by means of re-irradiation of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Jinichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    A full length rod irradiated at Tsuruga unit 1 was refabricated to short length rods, and rod inner pressure gauges were re-instrumented to the rods. Re-irradiation tests to study the fission gas release during power change were carried out by means of BOCA/OSF-1 facility at JMTR. In the tests, steady state operation at 40kW/m, power cycling and daily load follow operations between 20 and 40kW/m were conducted for the same high power holding time, and the rod inner pressure change during the tests was measured. The rod inner pressure increase was observed during power change, especially during power reduction. The rod inner pressure increase during a power cycling depended on the length of the high power operation just before the power cycling. The width of the rod inner pressure increase during a power cycling decreased gradually as the power cycling was repeated continuously. When steady state operation and power cycling were repeated at the power levels of 30, 35 and 40kW/m, the power cycling accelerated the fission gas release compared with the steady state operation. The fission gas release during power reduction is estimated to be the release from FP gas bubbles on the grain boundary caused by the thermal stress in the pellet during power reduction. (author)

  16. US industry optimistic on fission's 50th anniversary

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The United States (US) nuclear industry is looking to the future even as it prepares to celebrate the 50th anniversary of the first fission chain reaction - that momentous event which took place on a cold 2 December 1942 morning below the stands of a football field at the University of Chicago. Plans to incorporate nuclear power into US energy policy are well advanced. (Author)

  17. On-line nuclear half life and spectroscopic measurements on mass-separated fission product nuclei

    International Nuclear Information System (INIS)

    McDonald, J.; Fogelberg, B.; Baecklin, A.

    1979-01-01

    A description is given of the methods and equipment employed for nuclear spectroscopy studies of short lived fission product nuclei at the OSIRIS ISOL facility in Studsvik, Sweden. Furthermore a table of new nuclear half-lives measured with this equipment is presented. (author)

  18. User's manual for computer code RIBD-II, a fission product inventory code

    International Nuclear Information System (INIS)

    Marr, D.R.

    1975-01-01

    The computer code RIBD-II is used to calculate inventories, activities, decay powers, and energy releases for the fission products generated in a fuel irradiation. Changes from the earlier RIBD code are: the expansion to include up to 850 fission product isotopes, input in the user-oriented NAMELIST format, and run-time choice of fuels from an extensively enlarged library of nuclear data. The library that is included in the code package contains yield data for 818 fission product isotopes for each of fourteen different fissionable isotopes, together with fission product transmutation cross sections for fast and thermal systems. Calculational algorithms are little changed from those in RIBD. (U.S.)

  19. Lifting devices in nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The regulation applies to lifts, cranes, winches, rail trolleys, load pick-up equipment and fuel charging machines for LWR reactors, as far as these are employed in plants for the production or fission of nuclear fuels or for the reprocessing of spent nuclear fuels or for the storage or other uses of nuclear fuels. (orig.) 891 HP [de

  20. Application of Campbell's MSV method in monitoring of reactor's fission power

    International Nuclear Information System (INIS)

    Stankovic, S.J.; Vukcevic, M.; Loncar, B.; Vasic, A.; Osmokrovic, P.

    2003-01-01

    This paper presents some possibilities of Campbell's MSV (Mean Square Value) method in monitoring the reactor's fission power. Investigation of gamma discrimination compared to neutron component of signal along with change of variance and mean value the detector output signal for a specified range of reactor's fission power (10mW-22W) was carried out. The uncompensated ionization chamber for mixed n- gamma fields was used as detector element. Experimental measurements were performed using digitized MSV method, and obtained results were compared to those obtained by classical measuring chain. The final conclusion is that the order of discrimination in MSV signal processing is about fifty times larger than for classical measuring method (author)

  1. Nuclear power. Volume 1. Nuclear power plant design

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 1 contains the following chapters; (1) nuclear reactor theory; (2) nuclear reactor design; (3) types of nuclear power plants; (4) licensing requirements; (5) shielding and personnel exposure; (6) containment and structural design; (7) main steam and turbine cycles; (8) plant electrical system; (9) plant instrumentation and control systems; (10) radioactive waste disposal (waste management) and (11) conclusion

  2. Mathematical model use for evaluation of radioactivity spreading in nuclear power plant

    International Nuclear Information System (INIS)

    Kubik, I.; Gladki, Eh.; Yanchik, O.

    1976-01-01

    On the basis of knowledges of radioactive products behaviour and their spreading in nuclear power plant under normal and accident conditions a KOMPLEX program is developed in the FORTRAN 4 language, permitting to calculate the activity in separate parts of the nuclear power plant with WWR type reactor. The COMPLEX program includes the following subprograms: AZ - PRIM - for estimating active products in fuel, coolant, on the surfaces of fuel element cans and the primary circuit. The subprogram permits to estimate the coolant activity at the expense of fission fragments for 4 different leakage mechanisms: due to diffusion, considerable fuel element damage, contamination of fuel element can surface and fuel washout by coolant; KOR - the program for estimating active corrosion products; ACT - the program for estimating the activity of activation products; CONT - the program for estimating the activity in the nuclear power plant premises (protection envelop) and ventilating pipe. The desciption of the above subprograms is given. For testing of the mathematical model applicability and the possibilities of the corresponding programs the checking calculations for operating parameters of nuclear power plant with WWR type reactor were carried out. The calculation results obtained have shown the applicability of the model suggested and the corresponding programes for nuclear power plant under normal operation and accident conditions [ru

  3. Nuclear inertia for fission in a generalized cranking model

    International Nuclear Information System (INIS)

    Kunz, J.; Nix, J.R.

    1984-01-01

    A time dependent formalism which is appropriate for β vibrations and fission is developed for a generalized cranking model. The formalism leads to additional terms in the density matrix which affect the nuclear inertia. The case of a harmonic oscillator potential is used to demonstrate the contribution of the pairing gap term on the β vibrational inertia for Pu 240. The inertia remains finite and close to the limiting irrotational value

  4. Energy production using fission fragment rockets

    International Nuclear Information System (INIS)

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs

  5. Fission product release from nuclear fuel I. Physical modelling in the ASTEC code

    International Nuclear Information System (INIS)

    Brillant, G.; Marchetto, C.; Plumecocq, W.

    2013-01-01

    Highlights: • Physical modeling of FP and SM release in ASTEC is presented. • The release is described as solid state diffusion within fuel for high volatile FP. • The release is described as FP vaporisation for semi volatile FP. • The release is described as fuel vaporisation for low volatile FP. • ASTEC validation is presented in the second paper. - Abstract: This article is the first of a series of two articles dedicated to the mechanisms of fission product release from a degraded core as they are modelled in the ASTEC code. The ASTEC code aims at simulating severe accidents in nuclear reactors from the initiating event up to the radiological consequences on the environment. This code is used for several applications such as nuclear plant safety evaluation including probabilistic studies and emergency preparedness. To cope with the requirements of robustness and low calculation time, the code is based on a semi-empirical approach and only the main limiting phenomena that govern the release from intact rods and from debris beds are considered. For solid fuel, fission products are classified into three groups, depending on their degree of volatility. The kinetics of volatile fission products release depend on the rate-limiting process of solid-state diffusion through fuel grains. For semi-volatile fission products, the release from the open fuel porosities is assumed to be governed by vaporisation and mass transfer processes. The key phenomenon for the release of low volatile fission products is supposed to be fuel volatilisation. A similar approach is used for the release of fission products from a rubble bed. An in-depth validation of the code including both analytical and integral experiments is the subject of the second article

  6. Radiation monitoring handbook for visits by nuclear powered warships to Australian ports

    International Nuclear Information System (INIS)

    Woods, D.A.

    1995-09-01

    The purpose of this handbook is to detail the Radiation Monitoring (RMG) roles and procedures, and to provide technical and background information useful to RMG personnel. It has been written on the assumption that all members of the RMG have had appropriate radiation safety (Health Physics) training. Separate standing procedures, for both routine and emergency activities, are required for each port. These are incorporated in Port Safety Plans and specify the routine monitoring requirements for individual berths or anchorages and the procedures to be followed after indication of a reactor accident to a nuclear powered warship. A Visit Operation Order, issued for each Nuclear Powered warships (NPW) visit, presents information specific to that visit. Routine monitoring is performed to confirm normal conditions. The objectives of emergency radiation monitoring are: to provide early detection of a reactor accident of sufficient severity to possibly cause a major release of fission products to the environment; to determine the nature and extent of any fission product release; to provide information to assist in evaluating the accident; to assess the need and extent of required countermeasures; and to determine when the release has terminated and when affected areas have returned to normal

  7. Underground siting of nuclear power plants

    International Nuclear Information System (INIS)

    Bender, F.

    1982-01-01

    The symposium gave the opportunity for an international exchange of views on the concepts of underground nuclear power plants, which are presently world wide under consideration. The results of investigations into the advantages and disadvantages with regard to the technical safety aspects of the underground plants in comparison to plants on the surface led to open and sometimes controversal discussions. As a result of the symposium (32 contributions) a general agreement can be stated on the judgement concerning the advantages and the disadvantages of underground nuclear power plants (nnp). The advantages are: increased protection against external events; delayed release of fission products in accident situations, if the closures operate properly. The disadvantages are: increased costs of the construction of underground and restrictions to such sites where either large caverns or deep pits can be constructed, which also requires that certain technical problems must be solved beforehand. Also, additional safety certificates related to the site will be required within the licensing procedures. The importance of these advantages and disadvantages was in some cases assessed very differently. The discussions also showed, that there are a number of topics where some questions have not been finally answered yet. (orig./HP) [de

  8. Measurement of fission cross-section of actinides at n_TOF for advanced nuclear reactors

    CERN Document Server

    Calviani, Marco; Montagnoli, G; Mastinu, P

    2009-01-01

    The subject of this thesis is the determination of high accuracy neutron-induced fission cross-sections of various isotopes - all of which radioactive - of interest for emerging nuclear technologies. The measurements had been performed at the CERN neutron time-of-flight facility n TOF. In particular, in this work, fission cross-sections on 233U, the main fissile isotope of the Th/U fuel cycle, and on the minor actinides 241Am, 243Am and 245Cm have been analyzed. Data on these isotopes are requested for the feasibility study of innovative nuclear systems (ADS and Generation IV reactors) currently being considered for energy production and radioactive waste transmutation. The measurements have been performed with a high performance Fast Ionization Chamber (FIC), in conjunction with an innovative data acquisition system based on Flash-ADCs. The first step in the analysis has been the reconstruction of the digitized signals, in order to extract the information required for the discrimination between fission fragm...

  9. Nuclear power. Volume 2. Nuclear power project management

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 2 contains the following chapters: (1) review of nuclear power plants; (2) licensing procedures; (3) safety analysis; (4) project professional services; (5) quality assurance and project organization; (6) construction, scheduling, and operation; (7) nuclear fuel handling and fuel management; (8) plant cost management; and (9) conclusion

  10. ICENES '91:Sixth international conference on emerging nuclear energy systems

    International Nuclear Information System (INIS)

    1991-01-01

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, μ-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session

  11. Measurements of fission yields

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    2000-01-01

    After some historical introductory remarks on the discovery of nuclear fission and early fission yield determinations, the present status of knowledge on fission yields is briefly reviewed. Practical and fundamental reasons motivating the pursuit of fission yield measurements in the coming century are pointed out. Recent results and novel techniques are described that promise to provide new interesting insights into the fission process during the next century. (author)

  12. Technical concepts of further improvement of nuclear power plant safety

    International Nuclear Information System (INIS)

    Sochor, R.

    1983-01-01

    The following technical concepts are described which secure the integrity of the containment in case of an accident whose scale exceeds the so-called design basis accident: siting nuclear power plants underground which raises construction costs by 20 - 25%; completing the containment with equipment preventing the outflow of molten corium; completing the containment with emergency pressure space for discharging overpressure - this emergency space is filled with gravel which will trap approximately 50% of fission waste. (Ha)

  13. Comparison of Thermal Neutron Flux Measured by Uranium 235 Fission Chamber and Rhodium Self-Powered Neutron Detector in MTR

    International Nuclear Information System (INIS)

    Fourmentel, D.; Filliatre, P.; Barbot, L.; Villard, J.-F.; Lyoussi, A.; Geslot, B.; Malo, J.-Y.; Carcreff, H.; Reynard-Carette, C.

    2013-06-01

    Thermal neutron flux is one of the most important nuclear parameter to be measured on-line in Material Testing Reactors (MTRs). In particular two types of sensors with different physical operating principles are commonly used: self-powered neutron detectors (SPND) and fission chambers with uranium 235 coating. This work aims to compare on one hand the thermal neutron flux evaluation given by these two types of sensors and on the other hand to compare these evaluations with activation dosimeter measurements, which are considered as the reference for absolute neutron flux assessment. This study was conducted in an irradiation experiment, called CARMEN-1, performed during 2012 in OSIRIS reactor (CEA Saclay - France). The CARMEN-1 experiment aims to improve the neutron and photon flux and nuclear heating measurements in MTRs. In this paper we focus on the thermal neutron flux measurements performed in CARMEN-1 experiment. The use of fission chambers to measure the absolute thermal neutron flux in MTRs is not very usual. An innovative calibration method for fission chambers operated in Campbell mode has been developed at the CEA Cadarache (France) and tested for the first time in the CARMEN-1 experiment. The results of these measurements are discussed, with the objective to measure with the best accuracy the thermal neutron flux in the future Jules Horowitz Reactor. (authors)

  14. Nuclear structure effects in multi-nucleon transfer and sequential fission reactions

    International Nuclear Information System (INIS)

    Biswas, D.C.

    2001-01-01

    The role of the nuclear structure in multi-nucleon transfer and sequential fission reactions has been discussed. The recent results on multi-nucleon transfer and transfer induced fission reaction, have brought out many interesting features in understanding the reaction mechanism and collective dynamics of heavy ion reactions. The structure of the projectile nucleus has strong influence on the transfer of multi-nucleons and/or clusters from the projectile to the target. The mechanism of multi-nucleon transfer between two heavy nuclei is a complex process which has a strong dependence on the ground state Q-value of the reaction as well as on the number of transferred nucleons

  15. Consultancy to review and finalize the IAEA publication 'Compendium on the use of fusion/fission hybrids for the utilization and transmutation of actinides and long-lived fission products'. Working material

    International Nuclear Information System (INIS)

    2004-01-01

    In addition to the traditional fission reactor research, fusion R and D activities are becoming of interest also to nuclear fission power development. There is renewed interest in utilizing fusion neutrons, Heavy Liquid Metals, and molten salts for innovative systems (energy production and transmutation). Indeed, for nuclear power development to become sustainable as a long-term energy option, innovative fuel cycle and reactor technologies will have to be developed to solve the problems of resource utilization and long-lived radioactive waste management. In this context Member States clearly expressed the need for comparative assessments of various transmutation reactors. Both the fusion and fission communities are currently investigating the potential of innovative reactor and fuel cycle strategies that include a fusion/fission system. The attention is mainly focused on substantiating the potential advantages of such systems: utilization and transmutation of actinides and long-lived fission products, intrinsic safety features, enhanced proliferation resistance, and fuel breeding capabilities. An important aspect of the ongoing activities is the comparison with the accelerator driven subcritical system (spallation neutron source), which is the other main option for producing excess neutrons. Apart from comparative assessments, knowledge preservation is another subject of interest to the Member States: the goal, applied to fusion/fission systems, is to review the status of, and to produce a 'compendium' of past and present achievements in this area

  16. Reconversion of nuclear weapons

    CERN Document Server

    Kapitza, Sergei P

    1992-01-01

    The nuclear predicament or nuclear option. Synopsis of three lectures : 1- The physical basis of nuclear technology. Physics of fission. Chain reaction in reactors and weapons. Fission fragments. Separration of isotopes. Radiochemistry.2- Nuclear reactors with slow and fast neutrons. Power, size, fuel and waste. Plutonium production. Dose rate, shielding and health hazard. The lessons of Chernobyl3- Nuclear weapons. Types, energy, blast and fallout. Fusion and hydrogen bombs. What to do with nuclear weapons when you cannot use them? Testing. Nonmilittary use. Can we get rid of the nuclear weapon? Nuclear proliferation. Is there a nuclear future?

  17. JEFF-3T. Decay data and fission yield libraries

    International Nuclear Information System (INIS)

    Bersillon, O.; Blachot, J.; Dean, C.J.; Mills, R.W.; Nichols, A.L.; Nouri, A.

    2002-01-01

    Comprehensive decay-data and fission-yield libraries provide important input to a wide range of nuclear physics codes for nuclear applications. A new initiative has begun under the auspices of the NEA/OECD to generate improved data sets that will constitute the JEFF-3 libraries in ENDF-6 format, primarily for nuclear power, fuel reprocessing and waste management needs. Various sources of decay data have been accessed in order to assemble these files: NUBASE, ENSDF, UKPADD-6 and UKHEDD-2. Efforts have also focused on the evaluation of decay data for a number of important short-lived fission products, so that artificial adjustments to some of the relevant decay data and fission yields are not required to accommodate a previous lack of such data. Fission yields were adopted from UK evaluations recently undertaken to create the UKFY3 library. Decay-data files for 3 755 nuclides have been prepared, including sets of data for the stable nuclides (i.e. mass, natural abundance, spin and parity). Problems in the assignment of ENDF material numbers were addressed, while format and consistency tests were made using CHECKR and FIZCON, respectively. The assembly processes are discussed and reviewed, and the contents of the JEFF-3T starter libraries are described. (author)

  18. Energy partition in nuclear fission

    International Nuclear Information System (INIS)

    Ruben, A.; Maerten, H.; Seeliger, D.

    1990-01-01

    A scission point model (two spheroid model TSM) including semi-empirical temperature-dependent shell correction energies for deformed fragments at scission is presented. It has been used to describe the mass-asymmetry-dependent partition of the total energy release on both fragments from spontaneous and induced fission. Characteristic trends of experimental fragment energy and neutron multiplicity data as function of incidence energy in the Th-Cf region of fissioning nuclei are well reproduced. Based on model applications, information on the energy dissipated during the descent from second saddle of fission barrier to scission point have been deduced. (author). 39 refs, 13 figs

  19. Geochemical properties and nuclear chemical characteristics of Oklo natural fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, Hiroshi [Hiroshima Univ., Higashi-Hiroshima (Japan). Faculty of Science

    1997-07-01

    There are six uranium deposits in the Gabonese Republic in the cnetral Africa. `Fission reactor zone`, the fission chain reactions generated about 200 billion years ago, was existed in a part of them. CEA begun geochemical researches of Oklo deposits etc. in 1991. The geochemical and nuclear chemical properties of Oklo were reviewed from the results of researches. Oklo deposits is consisted of main five sedimentary faces such as sandstone (FA), Black Shale formation (FB), mudstone (FC), tuff (FD) and volcaniclastic sandstone (FE) from the bottom on the base rock of granite in the Precambrian era. Uranium is enriched in the upper part of FA layer and the under part of FB layer. {sup 235}U/{sup 238}U, U content, fission proportion, duration time, neutron fluence, temperature, restitution factor of {sup 235}U and epithermal index ({gamma}) were investigated and compared. The geochemical properties of Oklo are as followed: large enrich of uranium, the abundance ratio of {sup 235}U as same as that of enriched uranium, interaction of natural water and small rear earth elements. These factors made casually Oklo fission reactor. (S.Y.)

  20. Nuclear Power

    International Nuclear Information System (INIS)

    Douglas-Hamilton, J.; Home Robertson, J.; Beith, A.J.

    1987-01-01

    In this debate the Government's policy on nuclear power is discussed. Government policy is that nuclear power is the safest and cleanest way of generating electricity and is cheap. Other political parties who do not endorse a nuclear energy policy are considered not to be acting in the people's best interests. The debate ranged over the risks from nuclear power, the UK safety record, safety regulations, and the environmental effects of nuclear power. The Torness nuclear power plant was mentioned specifically. The energy policy of the opposition parties is strongly criticised. The debate lasted just over an hour and is reported verbatim. (UK)

  1. Advanced nuclear fuel production by using fission-fusion hybrid reactor

    International Nuclear Information System (INIS)

    Al-Kusayer, T.A.; Sahin, S.; Abdulraoof, M.

    1993-01-01

    Efforts are made at the College of Engineering, King Saud University, Riyadh to lay out the main structure of a prototype experimental fusion and fusion-fission (hybrid) reactor blanket in cylindrical geometry. The geometry is consistent with most of the current fusion and hybrid reactor design concepts in respect of the neutronic considerations. Characteristics of the fusion chamber, fusion neutrons and the blanket are provided. The studies have further shown that 1 GWe fission-fusion reactor can produce up to 957 kg/year which is enough to fuel five light water reactors of comparable power. Fuel production can be increased further. 29 refs

  2. Report of fission study meeting

    International Nuclear Information System (INIS)

    1986-03-01

    This book is the report of fission Study Meeting held from September 19 to 21, 1985 in the Research Center for Nuclear Physics, Osaka University. The objective of this study meeting was to stimulate the research on nuclear physics in Japan, which began to show new development accompanying the advance of the research on heavy ion nuclear reaction, and to make this a new starting point. More than 50 participants from physical, chemical and engineering fields, who have interest in the theory and experiment related to nuclear fission, gathered, and the meeting was a success beyond expectation. The contents covered a wide range including nuclear smashing reaction as well as nuclear fission in a narrow sense. In this book, the gists of 28 papers are collected. (Kako, I.)

  3. Detection of fission fragments using thick samples in contact with solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Lima, D.A. de; Martins, J.B.; Tavares, O.A.P.

    1987-01-01

    Whenever use is made of thick samples in contact with solid state nuclear track detectors for determining fission yields, one of the fundamental problems is the evaluation of the effective number of target nuclei which contributes to the fraction of the number of fission events that will be recorded. The evaluation of the effective number of target nuclei which contributes to recorded events is based on the effective thickness of the sample. A method for evaluating effective thickness of thick samples for binary fission modes, is presented. A cross section equation which takes into account all the necessary corrections due to fragment attenuation effects by a thick target for calculation induced fission yields, was obtained. (Author) [pt

  4. Role of deformed shell effects on the mass asymmetry in nuclear fission of mercury isotopes

    International Nuclear Information System (INIS)

    Panebianco, Stefano; Sida, Jean-Luc; Goutte, Heloise; Lemaitre, Jean-Francois; Dubray, Noel; Hilaire, Stephane

    2012-01-01

    Until now, the mass asymmetry in the nuclear fission process has been understood in terms of the strong influence of the nuclear structure of the nascent fragments. Recently, a surprising asymmetric fission has been discovered in the light mercury region and has been interpreted as the result of the influence of the nuclear structure of the parent nucleus, totally discarding the influence of the fragments' structure. To assess the role of the fragment shell effects in the mass asymmetry in this particular region, a scission-point model, based on a full energy balance between the two nascent fragments, has been developed using one of the best theoretical descriptions of microscopic nuclear structure. As for actinides, this approach shows that the asymmetric splitting of the Hg-180 nucleus and the symmetric one of Hg-198 can be understood on the basis of only the microscopic nuclear structure of the fragments at scission. (authors)

  5. Properties of neutron-rich nuclei studied by fission product nuclear chemistry

    International Nuclear Information System (INIS)

    Meyer, R.A.; Henry, E.A.; Griffin, H.C.; Lien, O.G. III; Lane, S.M.; Stevenson, P.C.; Yaffe, R.P.; Skarnemark, G.

    1979-09-01

    A review is given of the properties of neutron-rich nuclei studied by fission product nuclear chemistry and includes the techniques used in elemental isolation and current research on the structure of nuclei near 132 Sn, particle emission, and coexisting structure in both neutron-poor and neutron-rich nuclei. 35 references

  6. Energy distribution of antineutrinos originating from the decay of fission products in a nuclear reactor

    International Nuclear Information System (INIS)

    Rudstam, G.; Aleklett, K.

    1979-01-01

    The energy spectrum of antineutrinos around a nuclear reactor has been derived by summing contributions from individual fission products. The resulting spectrum is weaker at energies above approx. 8 MeV than earlier published antineutrino spectra. The reason may be connected to the strong feeding of high-lying daughter states in the beta decay of fission products with high disintegration energies

  7. Nuclear detectors for in-core power-reactors

    International Nuclear Information System (INIS)

    Duchene, Jean; Verdant, Robert.

    1979-12-01

    Nuclear reactor control is commonly obtained through neutronic measurements, ex-core and in-core. In large size reactors flux instabilities may take place. For a good monitoring of them, local in-core power measurements become particularly useful. This paper intends to review the questions about neutronic sensors with could be used in-core. A historical account about methods is given first, from early power reactors with brief description of each system. Sensors presently used (ionization fission chambers, self-powered detectors) are then considered and also those which could be developped such as gamma thermometers. Their physical basis, main characteristics and operation modes are detailed. Preliminary tests and works needed for an extension of their life-time are indicated. As an example present irradiation tests at the CEA are then proposed. Two tables will help comparing the characteristics of each type in terms of its precise purpose: fuel monitoring, safety or power control. Finally a table summarizes the kind of sensors mounted on working power reactors and another one is a review of characteristics for some detectors from obtainable commercial sheets [fr

  8. Nuclear power without a risk is possible

    International Nuclear Information System (INIS)

    Thom, K.

    1977-01-01

    This popular-science article introductorily deals with the great danger arising from the continous plutonium production of common nuclear reactors and indicates a new gas nuclear reactor technology which is at present being followed by NASA. In this new type of breeder reactor a) gaseous thorium compounds or UF 6 are to be used as fuels externally introduced, b) the transuranium elements obtained from the nuclear fission, especially plutonium, are to be continuously recycled into the reactor and finally completely used up. The advantage of this reactor is considered to be, amongst other, that fissionable material usuable for the making of atom bombs, is no longer present in the atomic waste and the slight critical mass rules out reactor catastrophies. (GG) [de

  9. Fission barrier theory and its application to the calculation of actinide neutron cross-sections

    International Nuclear Information System (INIS)

    Lynn, J.E.

    1980-01-01

    The lectures discuss the possibilities and realisations of applying nuclear fission theory to the calculation of unknown nuclear data required for applications, principally in the nuclear power field. A brief description of the fundamentals of fission theory, the nature of the potential energy surface in the deformation plane, and of the inertial tensor, is given, and the accuracy of the theoretical calculations is discussed. It is concluded that it is impracticable to obtain required quantities such as neutron cross-sections from such fundamental calculations at present. On the other hand the fundamental theory reveals a wealth of phenomenological aspects of the fission process which can be incorporated into nuclear reaction theory. It is then shown how reaction theory thus extended to take correct account of the structured (''double-humped'') fission barrier can be used to parametrise the barrier by analysis of experimental data, and subsequently to calculate new data. Descriptions of computer programmes and illustrations of the application of the methods to actual physical examples are included in this account. (author)

  10. Burn-up calculation of fusion-fission hybrid reactor using thorium cycle

    International Nuclear Information System (INIS)

    Shido, S.; Matsunaka, M.; Kondo, K.; Murata, I.; Yamamoto, Y.

    2006-01-01

    A burn-up calculation system has been developed to estimate performance of blanket in a fusion-fission hybrid reactor which is a fusion reactor with a blanket region containing nuclear fuel. In this system, neutron flux is calculated by MCNP4B and then burn-up calculation is performed by ORIGEN2. The cross-section library for ORIGEN2 is made from the calculated neutron flux and evaluated nuclear data. The 3-dimensional ITER model was used as a base fusion reactor. The nuclear fuel (reprocessed plutonium as the fission materials mixed with thorium as the fertile materials), transmutation materials (minor actinides and long-lived fission products) and tritium breeder were loaded into the blanket. Performances of gas-cooled and water-cooled blankets were compared with each other. As a result, the proposed reactor can meet the requirement for TBP and power density. As far as nuclear waste incineration is concerned, the gas-cooled blanket has advantages. On the other hand, the water cooled-blanket is suited to energy production. (author)

  11. About possibility of creation of ecologically pure, safe nuclear power plants on the basis of high-effective resonant neutron interaction with splitting substances

    International Nuclear Information System (INIS)

    Irdyncheyev, L.A.; Malofeyev, A.M.; Frid, E.S.; Abramov, E.P.

    1993-01-01

    Currently the most important problem in nuclear engineering is creation of ecologically pure, safe nuclear power plants in the context of real danger of global ecological pollution of the environment with long-lived fission products and the resultant transuranium nuclides. The problem can be solved by creating nuclear power plants on the basis of high-effective resonant interaction (HERI). Such power plants would provide the total cycle, including nuclear fuel production (Plutonium-239 from Uranium-238), combustion and waste products salvaging by way of transformation of radioactive nuclides into stable isotopes

  12. Fission gas measuring technology

    International Nuclear Information System (INIS)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok.

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs

  13. Fission gas measuring technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs.

  14. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  15. The Oklo natural nuclear reactors: neutron parameters, age and duration of the reactions, uranium and fission products migrations

    International Nuclear Information System (INIS)

    Ruffenach, J.-C.

    1979-09-01

    Mass spectrometry and isotopic dilution technique are used in order to carry out, on various samples from the fossil nuclear reactors at Oklo, Gabon, isotopic and chemical analyses of some particular elements involved in the nuclear reactions: uranium, lead, bismuth, thorium, rare gases (krypton, xenon), rare earths (neodymium, samarium, europium, gadolinium, dysprosium), ruthenium and palladium. Interpretations of these analyses lead to the determination of many neutron parameters such as the neutron fluence received by the samples, the spectrum index, the conversion coefficient, and also the percentages of fissions due to uranium-238 and plutonium-239 and the total number of fissions relative to uranium. All these results make it possible to determine the age of the nuclear reactions by measuring the amounts of fission rare earths formed, i.e. 1.97 billion years. This study brings some informations to the general problem of radioactive wastes storage in deep geological formations, the storage of uranium, plutonium and many fission products having been carried out naturally, and for about two billion years [fr

  16. Table of superdeformed nuclear bands and fission isomers

    International Nuclear Information System (INIS)

    Firestone, R.B.; Singh, B.

    1994-06-01

    A minimum in the second potential well of deformed nuclei was predicted and the associated shell gaps are illustrated in the harmonic oscillator potential shell energy surface calculations shown in this report. A strong superdeformed minimum in 152 Dy was predicted for β 2 -0.65. Subsequently, a discrete set of γ-ray transitions in 152 DY was observed and, assigned to the predicted superdeformed band. Extensive research at several laboratories has since focused on searching for other mass regions of large deformation. A new generation of γ-ray detector arrays is already producing a wealth of information about the mechanisms for feeding and deexciting superdeformed bands. These bands have been found in three distinct regions near A=l30, 150, and 190. This research extends upon previous work in the actinide region near A=240 where fission isomers were identified and also associated with the second potential well. Quadrupole moment measurements for selected cases in each mass region are consistent with assigning the bands to excitations in the second local minimum. As part of our committment to maintain nuclear structure data as current as possible in the Evaluated Nuclear Structure Reference File (ENSDF) and the Table of Isotopes, we have updated the information on superdeformed nuclear bands. As of April 1994, we have complied data from 86 superdeformed bands and 46 fission isomers identified in 73 nuclides for this report. For each nuclide there is a complete level table listing both normal and superdeformed band assignments; level energy, spin, parity, half-life, magneto moments, decay branchings; and the energies, final levels, relative intensities, multipolarities, and mixing ratios for transitions deexciting each level. Mass excess, decay energies, and proton and neutron separation energies are also provided from the evaluation of Audi and Wapstra

  17. Table of superdeformed nuclear bands and fission isomers

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, R.B. [Lawrence Berkeley Lab., CA (United States); Singh, B. [McMaster Univ., Hamilton, ON (Canada)

    1994-06-01

    A minimum in the second potential well of deformed nuclei was predicted and the associated shell gaps are illustrated in the harmonic oscillator potential shell energy surface calculations shown in this report. A strong superdeformed minimum in {sup 152}Dy was predicted for {beta}{sub 2}-0.65. Subsequently, a discrete set of {gamma}-ray transitions in {sup 152}DY was observed and, assigned to the predicted superdeformed band. Extensive research at several laboratories has since focused on searching for other mass regions of large deformation. A new generation of {gamma}-ray detector arrays is already producing a wealth of information about the mechanisms for feeding and deexciting superdeformed bands. These bands have been found in three distinct regions near A=l30, 150, and 190. This research extends upon previous work in the actinide region near A=240 where fission isomers were identified and also associated with the second potential well. Quadrupole moment measurements for selected cases in each mass region are consistent with assigning the bands to excitations in the second local minimum. As part of our committment to maintain nuclear structure data as current as possible in the Evaluated Nuclear Structure Reference File (ENSDF) and the Table of Isotopes, we have updated the information on superdeformed nuclear bands. As of April 1994, we have complied data from 86 superdeformed bands and 46 fission isomers identified in 73 nuclides for this report. For each nuclide there is a complete level table listing both normal and superdeformed band assignments; level energy, spin, parity, half-life, magneto moments, decay branchings; and the energies, final levels, relative intensities, multipolarities, and mixing ratios for transitions deexciting each level. Mass excess, decay energies, and proton and neutron separation energies are also provided from the evaluation of Audi and Wapstra.

  18. Nuclear power

    International Nuclear Information System (INIS)

    Porter, Arthur.

    1980-01-01

    This chapter of the final report of the Royal Commission on Electric Power Planning in Ontario updates its interim report on nuclear power in Ontario (1978) in the light of the Three Mile Island accident and presents the commission's general conclusions and recommendations relating to nuclear power. The risks of nuclear power, reactor safety with special reference to Three Mile Island and incidents at the Bruce generating station, the environmental effects of uranium mining and milling, waste management, nuclear power economics, uranium supplies, socio-political issues, and the regulation of nuclear power are discussed. Specific recommendations are made concerning the organization and public control of Ontario Hydro, but the commission concluded that nuclear power is acceptable in Ontario as long as satisfactory progress is made in the disposal of uranium mill tailings and spent fuel wastes. (LL)

  19. Compilation and evaluation of fission yield nuclear data. Final report of a co-ordinated research project 1991-1996

    International Nuclear Information System (INIS)

    2000-12-01

    Fission product yields are required at several stages of the nuclear fuel cycle and are therefore included in all large international data files for reactor calculations and related applications. Such files are maintained and disseminated by the Nuclear Data Section of the IAEA as a member of an international data centres network. Users of these data are from the fields of reactor design and operation, waste management and nuclear materials safeguards, all of which are essential parts of the IAEA programme. In the 1980s, the number of measured fission yields increased so drastically that the manpower available for evaluating them to meet specific user needs was insufficient. To cope with this task, it was concluded in several meetings on fission product nuclear data, some of them convened by the IAEA, that international co-operation was required, and an IAEA co-ordinated research project (CRP) was recommended. This recommendation was endorsed by the International Nuclear Data Committee, an advisory body for the nuclear data programme of the IAEA. As a consequence, the CRP on the Compilation and Evaluation of Fission Yield Nuclear Data was initiated in 1991, after its scope, objectives and tasks had been defined by a preparatory meeting. The different tasks, such as special evaluations and development of improved methods, were distributed among participants. The results of the research work were discussed and approved by all participants in research co-ordination meetings. For a successful development of theoretical and empirical models, experiments had to be recommended and their results to be awaited, which made necessary an extension of the CRP by two years. This TECDOC is the result of a joint effort of all participants in this CRP. The individual sections represent CRP tasks and were prepared by the participants responsible for doing the research, some of which comprise significant new scientific developments. The appendices to this book contain voluminous

  20. Radioactive iodine releases from nuclear power plant, (2)

    International Nuclear Information System (INIS)

    Naritomi, Mitsuo

    1974-01-01

    Internal radiation dose through the respiratory intake of fission products is predominantly due to radioactive iodine not only at the time of reactor accidents but also in normal operation of nuclear facilities. Technological studies in this field have thus been quite active to this day. With the rapid advance of nuclear power generation in recent years, the efforts to reduce environmental release of radioactive iodine and to enhance environmental safety are all the more emphasized. Experiences in the Japan Atomic Energy Research Institute during past about six years are described concerning the radioactive iodine release to the atmosphere in 131 I production and the measures taken to reduce the release. Then, problems are expounded regarding the radioactive iodine release at the time of reactor accidents and in spent fuel reprocessing. (Mori, K.)

  1. Nuclear dissipation effects on fission and evaporation in systems of intermediate fissility

    Directory of Open Access Journals (Sweden)

    Gelli N.

    2010-03-01

    Full Text Available The systems of intermediate fissility 132Ce and 158Er have been studied experimentally and theoretically in order to investigate the dissipation properties of nuclear matter. Cross sections of fusion-fission and evaporation residues channels together with charged particles multiplicities in both channels, their spectra, angular correlations and mass-energy distribution of fission fragments have been measured. Theoretical analysis has been performed using multi-dimensional stochastic approach with realistic treatment of particle evaporation. The results of analysis show that full one-body or unusually strong two-body dissipation allows to reproduce experimental data. No temperature dependent dissipation was needed.

  2. Continuous radiochemical analysis of fission products in a nuclear reactor water coolant

    International Nuclear Information System (INIS)

    Moskvin, L.N.; Zakharov, L.K.; Leont'ev, G.G.; Mel'nikov, V.A.; Orlenkov, I.S.; Slutskij, G.K.

    1975-01-01

    Method for continuous radiochemical analysis of I, Cs, Ba, Sr and Ce isotopes in a reactor water heat-transfer agent was developed. A continuous two-dimensional chromatographic process of complex mixtures separation of substances proved to be feasible on several parallel sorbent layers, which moved at constant velocities and separated by stationary intermediate collectors. Tests on model solutions containing I, Ce, Cs and Ba isotopes and on heat-carrier samples showed quantitative separation of elements. The results were indicative of a basic possibility of using multisorbent chromatographs for continuous control of multicomponent mixtures, particularly for control of radioactive fission product compositions in water heat-transfer agents in nuclear power plants. A diagram is shown for a two-dimensional chromatographic separation of a multicomponent mixture. Also shown is a flow chart of an installation for continuous control of iodine and cesium isotope activities

  3. Calculation of burnup and power dependence on fission gas released from PWR type reactor fuel element

    International Nuclear Information System (INIS)

    Edy-Sulistyono

    1996-01-01

    Burn up dependence of fission gas released and variation power analysis have been conducted using FEMXI-IV computer code program for Pressure Water Reactor Fuel During steady-state condition. The analysis result shows that the fission gas release is sensitive to the fuel temperature, the increasing of burn up and power in the fuel element under irradiation experiment

  4. Low energy nuclear fission

    International Nuclear Information System (INIS)

    Nifenecker, H.

    1980-08-01

    In these lectures the liquid drop model of fission is presented and some of its predictions compared with experiment. The liquid drop analogy allows to define in a rather simple and intuitive way a number of useful concepts and possible observables. It is shown how a synthesis of the liquid drop model and of the shell model can be made using the Strutinsky shell averaging procedure. Some experimental data related to the existence of shape isomers are presented and discussed. We conclude by discussing some aspects, both experimental and theoretical, of fission dynamics

  5. PIE of test assembly of Qinshan nuclear power plant

    International Nuclear Information System (INIS)

    Ran, M.; Yan, J.; Wang, S.

    2000-01-01

    The small dimensional test fuel assembly (3x3-2) for the Qinshan Nuclear Power Plant was irradiated up to 25.7 Gwd/tU in the in-pile loop (15.5 Mpa,320 C) in Heavy Water Research Reactor (HWRR), CIAE, at simulative condition to Qinshan PWR normal and short time overpower operation for verifying the design, technology, and material properties of the fuel assembly. Comprehensive post-irradiation examination (PIE) including dimension measurement, gamma scanning, eddy current test, X ray, radiography, measurement of fission gas release, and quantitative metallography etc. were performed. PIE results show that the diameter of the fuel rods changed, ridges appeared on the cladding, pellets swelled, and the rate of fission gas release was higher than what we expected. The results would be an important basis for further improvement of design, technology and material properties for Qinshan PWR assembly. (author)

  6. Proceedings of the 12. International Symposium on Nuclear Physics - Heavy-Ion Collisions and Nuclear Fission - organized by the Technical University of Dresden, November 22-26, 1982 in Gaussig (GDR)

    International Nuclear Information System (INIS)

    Reif, R.; Teichert, J.

    1982-12-01

    The following problems in experimental and theoretical investigations of heavy-ion reactions and the dynamics of nuclear fission processes are discussed: (1) emission of fast light particles in heavy-ion collisions, preequilibrium effects; (2) dynamics of deep inelastic heavy-ion reactions; (3) selected topics in quasi-elastic heavy-ion collisions; and (4) collective transport theory for fission, cross sections and neutron spectra of fission. Problems of neutron induced reactions and nuclear data evaluation are also covered. (author)

  7. Fission yield covariance generation and uncertainty propagation through fission pulse decay heat calculation

    International Nuclear Information System (INIS)

    Fiorito, L.; Diez, C.J.; Cabellos, O.; Stankovskiy, A.; Van den Eynde, G.; Labeau, P.E.

    2014-01-01

    Highlights: • Fission yield data and uncertainty comparison between major nuclear data libraries. • Fission yield covariance generation through Bayesian technique. • Study of the effect of fission yield correlations on decay heat calculations. • Covariance information contribute to reduce fission pulse decay heat uncertainty. - Abstract: Fission product yields are fundamental parameters in burnup/activation calculations and the impact of their uncertainties was widely studied in the past. Evaluations of these uncertainties were released, still without covariance data. Therefore, the nuclear community expressed the need of full fission yield covariance matrices to be able to produce inventory calculation results that take into account the complete uncertainty data. State-of-the-art fission yield data and methodologies for fission yield covariance generation were researched in this work. Covariance matrices were generated and compared to the original data stored in the library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235 U. Calculations were carried out using different libraries and codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the libraries. The uncertainty quantification was performed first with Monte Carlo sampling and then compared with linear perturbation. Indeed, correlations between fission yields strongly affect the uncertainty of decay heat. Eventually, a sensitivity analysis of fission product yields to fission pulse decay heat was performed in order to provide a full set of the most sensitive nuclides for such a calculation

  8. Utility and risk of nuclear energy

    International Nuclear Information System (INIS)

    Barnert, H.; Borsch, P.; Feldmann, A.; Merz, E.; Muench, E.; Oesterwind, D.; Voss, A.; Wolters, J.

    1979-09-01

    The present report contains lectures of a seminar that was arranged by the programme group nuclear power and environment of the Kernforschungsanlage Juelich . The items were: 1) Do we need nuclear energy. An attempt at a system analytic answer. 2) Energy production by means of nuclear fission. 3) The nuclear power plants. 4) Nuclear energy and radiation hazard. 5) Safety of nuclear power plants. (RW) [de

  9. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Kevin James [Univ. of California, Berkeley, CA (United States)

    2010-04-08

    having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by the same radial flibe flow that travels through perforated ODS walls to the reflector blanket. This reflector blanket is 75 cm thick comprised of 2 cm diameter graphite pebbles cooled by flibe. The flibe extraction plenum surrounds the reflector bed. Detailed neutronics designs studies are performed to arrive at the described design. The LFFH engine thermal power is controlled using a technique of adjusting the 6Li/7Li enrichment in the primary and secondary coolants. The enrichment adjusts system thermal power in the design by increasing tritium production while reducing fission. To perform the simulations and design of the LFFH engine, a new software program named LFFH Nuclear Control (LNC) was developed in C++ to extend the functionality of existing neutron transport and depletion software programs. Neutron transport calculations are performed with MCNP5. Depletion calculations are performed using Monteburns 2.0, which utilizes ORIGEN 2.0 and MCNP5 to perform a burnup calculation. LNC supports many design parameters and is capable of performing a full 3D system simulation from initial startup to full burnup. It is able to iteratively search for coolant 6Li enrichments and resulting material compositions that meet user defined performance criteria. LNC is utilized throughout this study for time dependent simulation of the LFFH engine. Two additional methods were developed to improve the computation efficiency of LNC calculations. These methods, termed adaptive time stepping and adaptive mesh refinement were incorporated into a separate stand alone C++ library name the Adaptive Burnup Library (ABL). The ABL allows for other client codes to call and utilize its functionality. Adaptive time stepping is useful for automatically maximizing the size of the depletion time step while maintaining a desired level of accuracy. Adaptive meshing allows for analysis

  10. 15 N utilization in nitride nuclear fuels for advanced nuclear power reactors and accelerator - driven systems

    International Nuclear Information System (INIS)

    Axente, D.

    2005-01-01

    15 N utilization for nitride nuclear fuels production for nuclear power reactors and accelerator - driven systems is presented. Nitride nuclear fuel is the obvious choice for advanced nuclear reactors and ADS because of its favorable properties: a high melting point, excellent thermal conductivity, high fissile density, lower fission gas release and good radiation tolerance. The application of nitride fuels in nuclear reactors and ADS requires use of 15 N enriched nitrogen to suppress 14 C production due to (n,p) reaction on 14 N. Accelerator - driven system is a recent development merging of accelerator and fission reactor technologies to generate electricity and transmute long - lived radioactive wastes as minor actinides: Np, Am, Cm. A high-energy proton beam hitting a heavy metal target produces neutrons by spallation. The neutrons cause fission in the fuel, but unlike in conventional reactors, the fuel is sub-critical and fission ceases when the accelerator is turned off. Nitride fuel is a promising candidate for transmutation in ADS of minor actinides, which are converted into nitrides with 15 N for that purpose. Tacking into account that the world wide market is about 20 to 40 Kg 15 N annually, the supply of that isotope for nitride fuel production for nuclear power reactors and ADS would therefore demand an increase in production capacity by a factor of 1000. For an industrial plant producing 100 t/y 15 N, using present technology of isotopic exchange in NITROX system, the first separation stage of the cascade would be fed with 10M HNO 3 solution of 600 mc/h flow - rate. If conversion of HNO 3 into NO, NO 2 , at the enriching end of the columns, would be done with gaseous SO 2 , for a production plant of 100 t/y 15 N a consumption of 4 million t SO 2 /y and a production of 70 % H 2 SO 4 waste solution of 4.5 million mc/y are estimated. The reconversion of H 2 SO 4 into SO 2 in order to recycle of SO 2 is a problem to be solved to compensate the cost of SO 2

  11. How much of the rocks and the oceans for power? Exploiting the uranium-thorium fission cycle

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1964-04-01

    Even at quite low costs there appear to be many routes available to supply the world population of the future with its power for electricity, heat, energy storage, portable fuel, desalting water and local climate control. For example, sufficient power could come from nuclear fission in thermal neutron reactors. When rich uranium ores have become scarce, the price will rise from the current $13/kg U, but with improved techniques of extraction and the choice of an economical fuel cycle, abundant uranium for many centuries appears to be available in the rocks and the oceans. Even from reactors already developed to the stage of engineering design it is possible to choose a fuel cycle to which uranium at $250/kg U would contribute no more than 2 mill/kWh. Without suggesting when such a high cost might he reached, its implications are examined. The optimum fuel cycle would balance the financing charges on the fuel inventory and the costs of fuel make-up supply and reprocessing. By using uranium and thorium in combination at least 50,000 MWd can be derived per tonne of uranium. At a current low net conversion efficiency of 30% and an overall rating of 6 thermal kW/kg, the natural uranium inventory would cost at the suggested high price $250/(6 x 0.3) $139/ekW and for 7000 hr/yr at 7% annual charges would contribute 1.4 mill/ekWh. At 50 MWd/kg U the make-up supply contributes 250/(50 x 24 x 0.3) = 0.7 mill/ekWh. Probably higher efficiency and possibly higher specific power ratings would be used to lower such costs. The value of uranium is related to its content of the fissile U-235, and even though most power may be derived from thorium, its value will not rise comparably with that of uranium. In the course of time a ceiling will be set on the value of fissile material by the introduction of processes other than the thermal neutron fission chain reaction for producing power or neutrons. The total cost of nuclear power includes also contributions from the cost of equipment

  12. How much of the rocks and the oceans for power? Exploiting the uranium-thorium fission cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W B

    1964-04-15

    Even at quite low costs there appear to be many routes available to supply the world population of the future with its power for electricity, heat, energy storage, portable fuel, desalting water and local climate control. For example, sufficient power could come from nuclear fission in thermal neutron reactors. When rich uranium ores have become scarce, the price will rise from the current $13/kg U, but with improved techniques of extraction and the choice of an economical fuel cycle, abundant uranium for many centuries appears to be available in the rocks and the oceans. Even from reactors already developed to the stage of engineering design it is possible to choose a fuel cycle to which uranium at $250/kg U would contribute no more than 2 mill/kWh. Without suggesting when such a high cost might be reached, its implications are examined. The optimum fuel cycle would balance the financing charges on the fuel inventory and the costs of fuel make-up supply and reprocessing. By using uranium and thorium in combination at least 50,000 MWd can be derived per tonne of uranium. At a current low net conversion efficiency of 30% and an overall rating of 6 thermal kW/kg, the natural uranium inventory would cost at the suggested high price $250/(6 x 0.3) $139/ekW and for 7000 hr/yr at 7% annual charges would contribute 1.4 mill/ekWh. At 50 MWd/kg U the make-up supply contributes 250/(50 x 24 x 0.3) = 0.7 mill/ekWh. Probably higher efficiency and possibly higher specific power ratings would be used to lower such costs. The value of uranium is related to its content of the fissile U-235, and even though most power may be derived from thorium, its value will not rise comparably with that of uranium. In the course of time a ceiling will be set on the value of fissile material by the introduction of processes other than the thermal neutron fission chain reaction for producing power or neutrons. The total cost of nuclear power includes also contributions from the cost of equipment

  13. Uncertainties on decay heat power due to fission product data uncertainties; Incertitudes sur la puissance residuelle dues aux incertitudes sur les donnees de produits de fission

    Energy Technology Data Exchange (ETDEWEB)

    Rebah, J

    1998-08-01

    Following a reactor shutdown, after the fission process has completely faded out, a significant quantity of energy known as 'decay heat' continues to be generated in the core. The knowledge with a good precision of the decay heat released in a fuel after reactor shutdown is necessary for: residual heat removal for normal operation or emergency shutdown condition, the design of cooling systems and spent fuel handling. By the summation calculations method, the decay heat is equal to the sum of the energies released by individual fission products. Under taking into account all nuclides that contribute significantly to the total decay heat, the results from summation method are comparable with the measured ones. Without the complete covariance information of nuclear data, the published uncertainty analyses of fission products decay heat summation calculation give underestimated errors through the variance/covariance analysis in consideration of correlation between the basic nuclear data, we calculate in this work the uncertainties on the decay heat associated with the summation calculations. Contribution to the total error of decay heat comes from uncertainties in three terms: fission yields, half-lives and average beta and gamma decay energy. (author)

  14. Studies of Fission Fragment Rocket Engine Propelled Spacecraft

    Science.gov (United States)

    Werka, Robert O.; Clark, Rodney; Sheldon, Rob; Percy, Thomas K.

    2014-01-01

    The NASA Office of Chief Technologist has funded from FY11 through FY14 successive studies of the physics, design, and spacecraft integration of a Fission Fragment Rocket Engine (FFRE) that directly converts the momentum of fission fragments continuously into spacecraft momentum at a theoretical specific impulse above one million seconds. While others have promised future propulsion advances if only you have the patience, the FFRE requires no waiting, no advances in physics and no advances in manufacturing processes. Such an engine unequivocally can create a new era of space exploration that can change spacecraft operation. The NIAC (NASA Institute for Advanced Concepts) Program Phase 1 study of FY11 first investigated how the revolutionary FFRE technology could be integrated into an advanced spacecraft. The FFRE combines existent technologies of low density fissioning dust trapped electrostatically and high field strength superconducting magnets for beam management. By organizing the nuclear core material to permit sufficient mean free path for escape of the fission fragments and by collimating the beam, this study showed the FFRE could convert nuclear power to thrust directly and efficiently at a delivered specific impulse of 527,000 seconds. The FY13 study showed that, without increasing the reactor power, adding a neutral gas to the fission fragment beam significantly increased the FFRE thrust through in a manner analogous to a jet engine afterburner. This frictional interaction of gas and beam resulted in an engine that continuously produced 1000 pound force of thrust at a delivered impulse of 32,000 seconds, thereby reducing the currently studied DRM 5 round trip mission to Mars from 3 years to 260 days. By decreasing the gas addition, this same engine can be tailored for much lower thrust at much higher impulse to match missions to more distant destinations. These studies created host spacecraft concepts configured for manned round trip journeys. While the

  15. Evaluation of axial fission gas transport in power ramping experiments

    International Nuclear Information System (INIS)

    Kinoshita, Motoyasu

    1986-01-01

    The LINUS code calculates advective and diffusional transport of fission gas towards an upper plenum through the pellet-cladding gap. The basic equations were modified for analyzing a multi-component gas mixture in the gap and also for dealing with opening and/or closing of the gap, which induces additional axial gas flow. Analysis of the Petten ramp experiment shows that helium pressurization is effective in suppressing an ascending rate of fission gas concentration. After the maximum concentration is achieved through power ramping, the gas concentration could be described by a steady state analytical solution which does not depend on the filling gas pressure. (author)

  16. N-power needed

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    SA will have to build more nuclear power stations over the next 30 years if the change over from coal-fired stations is to be made successfully. There will have to be substantial growth in nuclear power. If new nuclear power stations are to be built it is likely they are to be on the coast. Studies of the existing and projected population density of the area and the infrastructure have to be done. The next nuclear power stations is likely to use the light water mounted and cooled fission reactor. The present situation with the Koeberg nuclear power plant is also discussed

  17. Nuclear data project in Korea and resonance parameter evaluation of fission products

    International Nuclear Information System (INIS)

    Chang, Jonghwa; Oh, Soo-Youl

    2000-01-01

    Nuclear data activities in the fields of evaluation, processing, measurement, and service in Korea are presented in this paper. As one of the current activities, the neutron resonance parameters for stable or long-lived nineteen fission products have been evaluated and the results are presented here. (author)

  18. Status of the general description of fission observables by the GEF code

    CERN Document Server

    Jurado, B

    2014-01-01

    The GEneral Fission (GEF) model treats spontaneous fission and fission up to an excitation energy of about 100 MeV of a wide range of heavy nuclei. GEF makes use of general laws of statistical and quantum mechanics, assuring a high predictive power. It is unique in providing a general description of essentially all fission observables in a consistent way while preserving the correlations between all of them. In this contribution we present some of the physical aspects on which the model is based, give an overview on the results that can be obtained with the code and show an example that illustrates how the GEF code can serve as a framework for revealing the sensitivity of the fission observables to some basic nuclear properties.

  19. Attachment behavior of fission products to solution aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Takamiya, Koichi; Tanaka, Toru; Nitta, Shinnosuke; Itosu, Satoshi; Sekimoto, Shun; Oki, Yuichi; Ohtsuki, Tsutomu [Research Reactor Institute, Kyoto University, Osaka (Japan)

    2016-12-15

    Various characteristics such as size distribution, chemical component and radioactivity have been analyzed for radioactive aerosols released from Fukushima Daiichi Nuclear Power Plant. Measured results for radioactive aerosols suggest that the potential transport medium for radioactive cesium was non-sea-salt sulfate. This result indicates that cesium isotopes would preferentially attach with sulfate compounds. In the present work the attachment behavior of fission products to aqueous solution aerosols of sodium salts has been studied using a generation system of solution aerosols and spontaneous fission source of {sup 248}Cm. Attachment ratios of fission products to the solution aerosols were compared among the aerosols generated by different solutions of sodium salt. A significant difference according as a solute of solution aerosols was found in the attachment behavior. The present results suggest the existence of chemical effects in the attachment behavior of fission products to solution aerosols.

  20. Development of a power-period calculation unit for nuclear reactor Control

    International Nuclear Information System (INIS)

    Martin, J.

    1966-10-01

    The apparatus studied is a digital calculating assembly which makes it possible to prepare and to present numerically the period and power of a nuclear reactor during operation, from start-up to nominal power. The pulses from a fission chamber are analyzed continuously, using real time. A small number of elements is required because of the systematic use of a calculation technique comprising the determination of a base 2 logarithm by a linear approximation. The accuracy obtained for the period is of the order of 14%; the response time of the order of the calculated period value. An approximate value of the power (30%) is given at each calculation cycle together with the power thresholds required for the control. (author) [fr

  1. Fission Product Release from Spent Nuclear Fuel During Melting

    International Nuclear Information System (INIS)

    Howell, J.P.; Zino, J.F.

    1998-09-01

    The Melt-Dilute process consolidates aluminum-clad spent nuclear fuel by melting the fuel assemblies and diluting the 235U content with depleted uranium to lower the enrichment. During the process, radioactive fission products whose boiling points are near the proposed 850 degrees C melting temperature can be released. This paper presents a review of fission product release data from uranium-aluminum alloy fuel developed from Severe Accident studies. In addition, scoping calculations using the ORIGEN-S computer code were made to estimate the radioactive inventories in typical research reactor fuel as a function of burnup, initial enrichment, and reactor operating history and shutdown time.Ten elements were identified from the inventory with boiling points below or near the 850 degrees C reference melting temperature. The isotopes 137Cs and 85Kr were considered most important. This review serves as basic data to the design and development of a furnace off-gas system for containment of the volatile species

  2. Nuclear-charge polarization at scission in fission from moderately excited light-actinide nuclei

    International Nuclear Information System (INIS)

    Nishinaka, Ichiro

    2009-01-01

    Fragment mass yields and the average neutron multiplicity in the proton-induced fission of 232 Th and 238 U were measured by a double time-of-flight method. The most probable charges of secondary fragments were evaluated from the fragment mass yields measured by the double time-of-flight method and the fractional cumulative and independent yields reported in literature. The nuclear-charge polarization of primary fragments at scission was obtained by correcting the most probable charge of secondary fragments for neutron evaporation. The results show that the nuclear-charge polarization at scission is associated with the liquid-drop properties of nuclei and the proton shell effect with Z = 50 of heavy fragments and that it is practically insensitive to mass and excitation energy of the fissioning nucleus in the region of light-actinide nuclei. (author)

  3. The nuclear fuel cycle; Le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  4. Experience with respect to dose limitation in nuclear fuel service operations in the United Kingdom supporting civil nuclear power programmes

    International Nuclear Information System (INIS)

    Kennedy, J.W.

    1983-01-01

    Within the United Kingdom, the nuclear power generation programme is supported by nuclear fuel services including uranium enrichment, fuel fabrication and reprocessing, operated by British Nuclear Fuels Limited (BNFL). These have entailed the processing of large quantities of uranium and of plutonium and fission products arising in the course of irradiation of fuel in nuclear power stations and have necessitated substantial programmes for the radiological protection of the public and of the workers employed in the industry. This paper presents and reviews the statistics of doses recorded in the various sectors of nuclear fuel services operations against the background of the standards to which the industry is required to operate. A description is given of the development of BNFL policy in keeping with the objective of being recognized as among those industries regarded as safe and the resource implications of measures to reduce doses received by workers are reviewed in the light of experience. Finally, the paper reviews the epidemiological data which have been, and continue to be, collected for workers who have been employed in these nuclear fuel services. (author)

  5. On FDP energy and nuclear power policies

    International Nuclear Information System (INIS)

    Hirche, W.

    2002-01-01

    A liberal energy policy as proclaimed by the FDP, the Free Democratic Party, is based on the principle of sustainability and, in equal measure, serves to ensure economic viability, continuity of supply, and environmental as well as societal compatibility. The possibilities open for national action are determined by the framework conditions of globalization and liberalization, and by the contribution of Germany to the implementation of the sustainability goals. Liberal policies take into account the protection of the environment and of the climate. Levies imposed to protect the environment and the climate must serve specific purposes; the present eco-tax has no controlling function whatsoever. Political measures must not seek to impose government conditions, but rather strengthen public awareness of sustainable action. Liberal research policy focuses on the four areas of fossil energy sources, nuclear fission and nuclear fusion, renewable energy sources, and new technologies. A balanced energy mix as seen by the FDP constitutes the basic of sufficient, safe, non-polluting, and low-cost energy supply. Nuclear power is, and will continue to be, a component of this energy mix. (orig.) [de

  6. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle; 1: l'atome. 2: la radioactivite. 3: l'homme et les rayonnements. 4: l'energie. 5: l'energie nucleaire: fusion et fission. 6: le fonctionnement d'un reacteur nucleaire. 7: le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  7. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2005-01-01

    This chapter discussed the following topics related to the nuclear power: nuclear reactions, nuclear reactors and its components - reactor fuel, fuel assembly, moderator, control system, coolants. The topics titled nuclear fuel cycle following subtopics are covered: , mining and milling, tailings, enrichment, fuel fabrication, reactor operations, radioactive waste and fuel reprocessing. Special topic on types of nuclear reactor highlighted the reactors for research, training, production, material testing and quite detail on reactors for electricity generation. Other related topics are also discussed: sustainability of nuclear power, renewable nuclear fuel, human capital, environmental friendly, emission free, impacts on global warming and air pollution, conservation and preservation, and future prospect of nuclear power

  8. Extraction chromatography of fission products

    International Nuclear Information System (INIS)

    Bonnevie-Svendsen, M.; Goon, K.

    1978-01-01

    Various cases of using extraction chromatography during analysis of fission products are reviewed. The use of the extraction chromatography method is considered while analysing reprocessed products of nuclear fuel for quantitative radiochemical analysis and control of fission product and actinoide separation during extraction and their chemical state in production solutions. The method is used to obtain pure fractions of typical burnup monitors (neodymium, molybdenum, cerium, cesium, europium, lanthanides) during determination of nuclear fuel burnup degree. While studying the nature of nuclear reactions the method is used to separate quickly short-life isotopes, to purify β-radiator fractions before measuring their half-life periods, to enrich isotopes forming with low output during fission. Examples of using extraction chromatography are given to separate long half-life or stable fission products from spent solutions, to control environment object contamination

  9. HPS: A space fission power system suitable for near-term, low-cost lunar and planetary bases

    International Nuclear Information System (INIS)

    Houts, M.G.; Poston, D.I.; Ranken, W.A.

    1996-01-01

    Near-term, low-cost space fission power systems can enhance the feasibility and utility of lunar and planetary bases. One such system, the Heatpipe Power System (HPS), is described in this paper. The HPS draws on 40 yr of United States and international experience to enable a system that can be developed in <5 yr at a cost of <$100M. Total HPS mass is <600 kg at 5 kWe and <2000 kg at 50 kWe, assuming that thermoelectric power conversion is used. More advanced power conversion systems could reduce system mass significantly. System mass for planetary surface systems also may be reduced (1) if indigenous material is used for radiation shielding and (2) because of the positive effect of the gravitational field on heatpipe operation. The HPS is virtually non-radioactive at launch and is passively subcritical during all credible launch accidents. Full-system electrically heated testing is possible, and a ground nuclear power test is not needed for flight qualification. Fuel burnup limits are not reached for several decades, thus giving the system long-life potential

  10. Physics and technology of nuclear materials

    CERN Document Server

    Ursu, Ioan

    2015-01-01

    Physics and Technology of Nuclear Materials presents basic information regarding the structure, properties, processing methods, and response to irradiation of the key materials that fission and fusion nuclear reactors have to rely upon. Organized into 12 chapters, this book begins with selectively several fundamentals of nuclear physics. Subsequent chapters focus on the nuclear materials science; nuclear fuel; structural materials; moderator materials employed to """"slow down"""" fission neutrons; and neutron highly absorbent materials that serve in reactor's power control. Other chapters exp

  11. Measurement of Fission Product Yields from Fast-Neutron Fission

    Science.gov (United States)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  12. Nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The committee concludes that the nature of the proliferation problem is such that even stopping nuclear power completely could not stop proliferation completely. Countries can acquire nuclear weapons by means independent of commercial nuclear power. It is reasonable to suppose if a country is strongly motivated to acquire nuclear weapons, it will have them by 2010, or soon thereafter, no matter how nuclear power is managed in the meantime. Unilateral and international diplomatic measures to reduce the motivations that lead to proliferation should be high on the foreign policy agenda of the United States. A mimimum antiproliferation prescription for the management of nuclear power is to try to raise the political barriers against proliferation through misuse of nuclear power by strengthening the Non-Proliferation Treaty, and to seek to raise the technological barriers by placing fuel-cycle operations involving weapons-usable material under international control. Any such measures should be considered tactics to slow the spread of nuclear weapons and thus earn time for the exercise of statesmanship. The committee concludes the following about technical factors that should be considered in formulating nuclear policy: (1) rate of growth of electricity use is a primary factor; (2) growth of conventional nuclear power will be limited by producibility of domestic uranium sources; (3) greater contribution of nuclear power beyond 400 GWe past the year 2000 can only be supported by advanced reactor systems; and (4) several different breeder reactors could serve in principle as candidates for an indefinitely sustainable source of energy

  13. Nuclear power development

    International Nuclear Information System (INIS)

    Nealey, S.

    1990-01-01

    The objective of this study is to examine factors and prospects for a resumption in growth of nuclear power in the United States over the next decade. The focus of analysis on the likelihood that current efforts in the United States to develop improved and safer nuclear power reactors will provide a sound technical basis for improved acceptance of nuclear power, and contribute to a social/political climate more conducive to a resumption of nuclear power growth. The acceptability of nuclear power and advanced reactors to five social/political sectors in the U.S. is examined. Three sectors highly relevant to the prospects for a restart of nuclear power plant construction are the financial sector involved in financing nuclear power plant construction, the federal nuclear regulatory sector, and the national political sector. For this analysis, the general public are divided into two groups: those who are knowledgeable about and involved in nuclear power issues, the involved public, and the much larger body of the general public that is relatively uninvolved in the controversy over nuclear power

  14. On the fissionable materials management system in the process of nuclear disarmament

    International Nuclear Information System (INIS)

    Vikharev, S.S.; Mikijchuk, N.B.; Pinaev, V.S.; Sudarushkin, I.S.; Yuferev, V.I.

    1994-01-01

    Various scenarios of nuclear weapons proliferation and goals of fissionable material accounting and control system (FMACS) are considered. Ways of improving FMACS in Russia under a complicated social situation are discussed. This improvement should follow two directions: introduction of non-destructive control methods and accounting and control process automation

  15. Nuclear power

    International Nuclear Information System (INIS)

    King, P.

    1990-01-01

    Written from the basis of neutrality, neither for nor against nuclear power this book considers whether there are special features of nuclear power which mean that its development should be either promoted or restrained by the State. The author makes it dear that there are no easy answers to the questions raised by the intervention of nuclear power but calls for openness in the nuclear decision making process. First, the need for energy is considered; most people agree that energy is the power to progress. Then the historicalzed background to the current position of nuclear power is given. Further chapters consider the fuel cycle, environmental impacts including carbon dioxide emission and the greenhouse effect, the costs, safety and risks and waste disposal. No conclusion either for or against nuclear power is made. The various shades of opinion are outlined and the arguments presented so that readers can come to their own conclusions. (UK)

  16. Accidental behaviour of nuclear fuel in a warehousing site under air: investigation of the nuclear ceramic oxidation and of fission gas release

    International Nuclear Information System (INIS)

    Desgranges, L.

    2006-12-01

    After a brief presentation of the context of his works, i.e. the nuclear fuel, its behaviour in a nuclear reactor, and studies performed in high activity laboratory, the author more precisely presents its research topic: the behaviour of defective nuclear fuel in air. Then, he describes the researches performed in three main directions: firstly, the characterization and understanding of fission gas localisation (experimental localisation, understanding of the bubble forming mechanisms), secondly, the determination of mechanisms related to oxidation (atomic mechanisms related to UO 2 oxidation, oxidation of fragments of irradiated fuel, the CROCODILE installation). He finally presents his scientific project which notably deals with fission gas release (from UO 2 to U 3 O 7 , and from U 3 O 7 to U 3 O 8 ), and with further high activity laboratory experiments

  17. Physics and chemistry of fission

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: In the pleasant and hospitable atmosphere of the Kernforschungsanlage Juelich in the Federal Republic of Germany, the IAEA symposium on the Physics and Chemistry of Fission took place. Almost 200 scientists attended, 154 abstracts were submitted, and 57 papers presented, but more important than the numbers was the quality of the contributions and the progress reported at the symposium. The neutron was discovered almost 50 years ago; 40 years ago the idea of nuclear fission was born. Since then, a number of laboratories have worked hard to explain the phenomenon of fission One would expect that by now scientists would know exactly what happens in a nucleus before and during the process of fission, particularly as there are hundreds of power and research reactors in operation, and fission of uranium isotopes is the basis of their functioning. At first glance, fission seems a simple process: a neutron hits and penetrates the uranium nucleus which becomes excited, i.e. has a surplus of energy. One way to get rid of this energy is for the nucleus to split into two parts; additional products of this process are energy and more neutrons. Nature, however, seems to dislike such straightforward explanations. In the case of fission, scientists have observed a number of phenomena which disagree with a simple model. Sometimes, a nucleus will split into two parts without being 'attacked' by a neutron; this spontaneous fission opens up a new line of fission research and several contributions at the symposium reported on sophisticated experiments designed to unravel some of its specific details. Sometimes, a fissioning nucleus will emit another particle: ternary fission has become a powerful tool for studying the properties of nuclei during the fission process. For the scientist, it is fascinating to observe how the nucleus behaves during fission. They invent models which are supposed to reproduce the most probable course of events leading to fission. In one of these

  18. Sommerfeld-Watson transformation for nuclear fission

    International Nuclear Information System (INIS)

    Alexandru, G.

    1978-01-01

    It is proved that the fission matrix element can be written like a Sommerfeld-Watson relation. This leads to a dispersion relation for the fission process in which the substraction term is uniquely determined. (author)

  19. Inverse kinematics technique for the study of fission-fragment isotopic yields at GANIL energies

    International Nuclear Information System (INIS)

    Delaune, O.

    2012-01-01

    The characteristics of the fission-products distributions result of dynamical and quantum properties of the deformation process of the fissioning nucleus. These distributions have also an interest for the conception of new nuclear power plants or for the transmutation of the nuclear wastes. Up to now, our understanding of the nuclear fission remains restricted because of experimental limitations. In particular, yields of the heavy fission products are difficult to get with precision. In this work, an innovative experimental technique is presented. It is based on the use of inverse kinematics coupled to the use of a spectrometer, in which a 238 U beam at 6 or 24 A MeV impinges on light targets. Several actinides, from 238 U to 250 Cf, are produced by transfer or fusion reactions, with an excitation energy ranges from ten to few hundreds MeV depending on the reaction and the beam energy. The fission fragments of these actinides are detected by the VAMOS spectrometer or the LISE separator. The isotopic yields of fission products are completely measured for different fissioning systems. The neutron excess of the fragments is used to characterise the isotopic distributions. Its evolution with excitation energy gives important insights on the mechanisms of the compound-nucleus formation and its deexcitation. Neutron excess is also used to determine the multiplicity of neutrons evaporated by the fragments. The role of the proton and neutron shell effects into the formation of fission fragments is also discussed. (author) [fr

  20. Nuclear fission: reaction to the discovery in 1939

    International Nuclear Information System (INIS)

    Badash, L.; Hodes, E.; Tiddens, A.

    1985-01-01

    Historical aspects of the behavior of scientists in the aftermath of the discovery of nuclear fission are presented. An extensive background section is given which documents the worldwide discussion of atomic energy over the preceding four decades. A second section briefly surveys the research highlights of 1939. The third section examines the reactions of scientists, primarily in the United States, and includes coverage by newspapers, magazines and radio. The final section includes a number of themes to explain why there was little acknowledgment of the potential of the bomb to affect personal morality, the scientific community and international relations

  1. Nuclear power: A look at the future. International Conference on Fifty Years of Nuclear Power: The Next Fifty Years, 27 June 2004, Moscow, Russia

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2004-01-01

    This statement touches on a few aspects of the evolving global scenario for nuclear power - briefly reviewing the current picture, outlining a number of key issues, and discussing what the International Atomic Energy Agency is doing to ensure that nuclear power remains a safe, secure and viable option for supplying energy needs. Of the 442 nuclear plants currently operating, fewer than 10% are located in developing countries. Many industrialized nations generate substantial portions of their electricity from nuclear fission: including: France, at 78%; Belgium, at 55%; Germany, at 28%; Japan, at 25%; the United States, at 20%; and Russia, at 17%. By contrast, for large developing countries such as Brazil, India and China, the percentages are only 3.7%, 3.3% and 2.2%, respectively. Current expansion and growth prospects for nuclear power are centred in Asia. Although the focus of this international effort was on improving safety, the secondary benefit was a steady increase in nuclear plant availability and productivity. In 1990, nuclear plants on average were generating electricity 71% of the time. As of 2003, that figure stood at 84% - an improvement in productivity equal to adding more than 34 new 1000 megawatt nuclear plants - all at relatively minimal cost. Overall, the current picture remains mixed, and projections for the future of nuclear power vary widely depending on what assumptions are made. The IAEA's current 'low' (or conservative) projection - which assumes that today's nuclear plants will retire on schedule, and assumes no new construction beyond what is already firmly planned - would envision the total amount of nuclear electricity generated dropping off after about 2020. The IAEA 'high' projection, which includes additional scenarios for new nuclear plant construction, would envision nuclear power generating 70% more electricity in 2030 than at present, but still tapering off in its global share of electricity, due to even more rapid expansion in

  2. Low energy nuclear fission

    International Nuclear Information System (INIS)

    Nifenecker, H.

    1982-02-01

    In these lectures we present the liquid drop model of fission and compare some of its prediction with experiment. The liquid drop analogy allows to define in a rather simple and intuitive way a number of useful concepts and possible observables. We then discuss, using the example of the oscillator model, the generality of shell effects. We show how a synthesis of the liquid drop model and of the shell model can be made using the Strutinsky shell averaging procedure. Some experimental data related to the existence of shape isomers are presented and discussed. We conclude by discussing some aspects, both experimental and theoretical, of fission dynamics

  3. Disposition of plutonium from dismantled nuclear weapons: Fission options and comparisons

    International Nuclear Information System (INIS)

    Omberg, R.P.; Walter, C.E.

    1993-01-01

    Over the next decade, the United States expects to recover about 50 Mg of excess weapon plutonium and the Republic of Russia expects to recover a similar amount. Ensuring that these large quantities of high-grade material are not reused in nuclear weapons has drawn considerable attention. In response to this problem, the US Department of Energy (DOE) chartered the Plutonium Disposition Task Force (PDTF), in the summer of 1992, to assess a range of practical means for disposition of excess US plutonium. This report summarizes and compares the ''Fission Options'' provided to the Fission Working Group Review Committee (the committee) of the PDTF. The review by the committee was based on preliminary information received as of December 4, 1992, and as such the results summarized in this report should also be considered preliminary. The committee concluded that irradiation of excess weapon plutonium in fission reactors in conjunction with the generation of electricity and storing the spent fuel is a fast, cost-effective, and environmentally acceptable method of addressing the safeguards (diversion) issue. When applied appropriately, this method is consistent with current nonproliferation policy. The principal effect of implementing the fission options is at most a moderate addition of plutonium to that existing in commercial spent fuel. The amount of plutonium in commercial spent fuel by the year 2000 is estimated to be 300 Mg. The addition of 50 Mg of excess weapon plutonium, in this context, is not a determining factor, moreover, several of the fission options achieve substantial annihilation of plutonium

  4. Innovative High Temperature Heat Pipes for Spacecraft Nuclear Fission Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA Glenn is examining small fission reactors for future space transportation and surface power applications. The reactors would have an 8 to 15 year design life...

  5. Strategy of nuclear power in Korea, non-nuclear-weapon state and peaceful use of nuclear power

    International Nuclear Information System (INIS)

    Nagasaki, Takao

    2005-01-01

    The nuclear power plant started at Kori in Korea in April, 1978. Korea has carried out development of nuclear power as a national policy. The present capacity of nuclear power plants takes the sixes place in the world. It supplies 42% total power generation. The present state of nuclear power plant, nuclear fuel cycle facility, strategy of domestic production of nuclear power generation, development of next generation reactor and SMART, strategy of export in corporation with industry, government and research organization, export of nuclear power generation in Japan, nuclear power improvement project with Japan, Korea and Asia, development of nuclear power system with nuclear diffusion resistance, Hybrid Power Extraction Reactor System, radioactive waste management and construction of joint management and treatment system of spent fuel in Asia are stated. (S.Y.)

  6. Calculation of fission gases internal pressure in nuclear fuel rods

    International Nuclear Information System (INIS)

    Vasconcelos Santana, M. de.

    1981-12-01

    Models concerning the principal phenomena, particularly thermal expansion, fuel swelling, densification, reestructuring, relocation, mechanical strain, fission gas production and release, direct or indirectly important to calculate the internal pressure in nuclear fuel rods were analysed and selected. Through these analyses a computer code was developed to calculate fuel pin internal pressure evolution. Three different models were utilized to calculate the internal pressure in order to select the best and the most conservative estimate. (Author) [pt

  7. Congressional perspective on the prospects for tomorrow's nuclear engineers

    International Nuclear Information System (INIS)

    Lloyd, M.

    1986-01-01

    This paper reviews in some detail the nature of the directions in the federally supported nuclear energy research program and discusses the potential opportunities in nuclear engineering education to make contributions to the nation's nuclear power research efforts. The potential impacts of deficit reduction measures on the budgets for nuclear fission programs are also described and the subcommittee priorities for the DOE nuclear fission program within the budget framework are discussed

  8. General Description of Fission Observables - JEFF Report 24. GEF Model

    International Nuclear Information System (INIS)

    Schmidt, Karl-Heinz; Jurado, Beatriz; Amouroux, Charlotte

    2014-06-01

    The Joint Evaluated Fission and Fusion (JEFF) Project is a collaborative effort among the member countries of the OECD Nuclear Energy Agency (NEA) Data Bank to develop a reference nuclear data library. The JEFF library contains sets of evaluated nuclear data, mainly for fission and fusion applications; it contains a number of different data types, including neutron and proton interaction data, radioactive decay data, fission yield data and thermal scattering law data. The General fission (GEF) model is based on novel theoretical concepts and ideas developed to model low energy nuclear fission. The GEF code calculates fission-fragment yields and associated quantities (e.g. prompt neutron and gamma) for a large range of nuclei and excitation energy. This opens up the possibility of a qualitative step forward to improve further the JEFF fission yields sub-library. This report describes the GEF model which explains the complex appearance of fission observables by universal principles of theoretical models and considerations on the basis of fundamental laws of physics and mathematics. The approach reveals a high degree of regularity and provides a considerable insight into the physics of the fission process. Fission observables can be calculated with a precision that comply with the needs for applications in nuclear technology. The relevance of the approach for examining the consistency of experimental results and for evaluating nuclear data is demonstrated. (authors)

  9. Summer 1942 in Chicago: Nuclear power

    International Nuclear Information System (INIS)

    Goldschmidt, B.

    1982-01-01

    On 2 December 1942 the first man-made nuclear reactor went critical. The nuclear age was born. In his recently completed 'political history of nuclear energy' M. Goldschmidt traces the whole story of the nuclear age from the discovery of fission to the present day. In the extract from his book printed below, M. Goldschmidt tells of his personal involvement in the US nuclear research programme and of his contact with the workers at the University of Chicago; he reminds us that Fermi's achievement, historic as it was, was not the first chain reaction to take place on earth

  10. Sustainable, Full-Scope Nuclear Fission Energy at Planetary Scale

    Directory of Open Access Journals (Sweden)

    Robert Petroski

    2012-11-01

    Full Text Available A nuclear fission-based energy system is described that is capable of supplying the energy needs of all of human civilization for a full range of human energy use scenarios, including both very high rates of energy use and strikingly-large amounts of total energy-utilized. To achieve such “planetary scale sustainability”, this nuclear energy system integrates three nascent technologies: uranium extraction from seawater, manifestly safe breeder reactors, and deep borehole disposal of nuclear waste. In addition to these technological components, it also possesses the sociopolitical quality of manifest safety, which involves engineering to a very high degree of safety in a straightforward manner, while concurrently making the safety characteristics of the resulting nuclear systems continually manifest to society as a whole. Near-term aspects of this nuclear system are outlined, and representative parameters given for a system of global scale capable of supplying energy to a planetary population of 10 billion people at a per capita level enjoyed by contemporary Americans, i.e., of a type which might be seen a half-century hence. In addition to being sustainable from a resource standpoint, the described nuclear system is also sustainable with respect to environmental and human health impacts, including those resulting from severe accidents.

  11. Transmutation of radioactive wastes from nuclear power plants. A contribution to the reduction of the final repository problem; Transmutation radioaktiver Reststoffe aus Kernkraftwerken. Ein Beitrag zur Verringerung der Endlagerproblematik

    Energy Technology Data Exchange (ETDEWEB)

    Mach, Manfred [Technische Univ. Berlin (Germany). Inst. fuer Technologie und Management

    2015-07-01

    The brochure on transmutation of radioactive wastes from nuclear power plants - a contribution to the reduction of the final repository problem covers the following issues: What is transmutation? Nuclear power in Germany; energy density of fuels; time span of energy resources; CO{sub 2} emissions from different energy sources; types of nuclear power plants in Germany; cost of German electricity generation plants; nuclear power plants worldwide; wastes from nuclear electricity production; radiation from fission products; radiation effects on humans, the nuclear fuel cycle, direct final disposal of radioactive wastes; risk assessment of the direct final disposal; partitioning of actinides; transmutation of actinides.

  12. Search of an optimal and safe trends for nuclear power engineering development

    International Nuclear Information System (INIS)

    Takibaev, Zh.S.

    2001-01-01

    The project of constructing of underground nuclear power plant (NPP) in Kazakhstan is suggested. By the author opinion, the underground NPP construction have the following advantages, (1) decrease the NPP cost because of absence of efforts and expenses for NPP decommissioning; (2) the problem of nuclear waste disposal is solving per se so nuclear wastes are under ground; (3) the environment exposure from radiation risk is appreciably less than from surface NPP; (4) remained underground uranium fission and over-uranium elements products are valuable raw which will be claimed in the future. It is noted, that a many variants for selection of underground NPP site in Kazakhstan are considered. It was proposed the site adjoining to the Chu railway terminal for underground NPP construction

  13. Managing radioactive wastes of nuclear power plants in operation and site decommissioning phases

    International Nuclear Information System (INIS)

    Ardalani, E.; Khadivi, S.

    2008-01-01

    A large nuclear reactor annually produces about 25-50 tons consumed Uranium. These consumed materials consist of Uranium and also Plutonium and Curium. In total, about three percent of these materials are remained from fission. Existing actinides (Uranium, Plutonium, and Curium) cause long-term and short-term radiation that could have harmful effects on the environment. In order to reduce the diverse effects of radioactive wastes in Nuclear Power Plants, different procedures are employed such as compaction, chemical treatment, vitrification, canning and sealing with concrete and safe storage. In this paper, the harmful effects of nuclear wastes on the environment are introduced and a management procedure is presented to minimize its diverse effects

  14. Power generation by nuclear power plants

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  15. Nuclear power economic database

    International Nuclear Information System (INIS)

    Ding Xiaoming; Li Lin; Zhao Shiping

    1996-01-01

    Nuclear power economic database (NPEDB), based on ORACLE V6.0, consists of three parts, i.e., economic data base of nuclear power station, economic data base of nuclear fuel cycle and economic database of nuclear power planning and nuclear environment. Economic database of nuclear power station includes data of general economics, technique, capital cost and benefit, etc. Economic database of nuclear fuel cycle includes data of technique and nuclear fuel price. Economic database of nuclear power planning and nuclear environment includes data of energy history, forecast, energy balance, electric power and energy facilities

  16. Materials and wastes from power generation of nuclear origin

    International Nuclear Information System (INIS)

    Dessus, Benjamin; Guillemette, Andre; Laponche, Bernard; Zerbib, Jean-Claude

    2014-01-01

    In most countries, spent nuclear fuel is directly stored in pools and constitute the bulk of highly radioactive waste. In France, reprocessing separates spent fuel into three categories: uranium, plutonium, minor actinides and fission products. Hence, a vast amount of very diverse radioactive materials are stored in various sites and conditions, under two denominations: 'nuclear materials' (which can be or are partly recycled) and 'radioactive waste' which should be permanently disposed of. The production of highly radioactive and long-lived waste raise legitimate questions on the use of nuclear energy for power production and many people think that it's a sufficient reason for giving up this technique. Concerning existing radioactive waste, the alternative to deep disposal should be: a) dry storage of spent fuel and other existing waste in protected sites (bunkers or hills), and b) more active research on the possibilities to reduce both radioactivity and the lifetime of radioactive waste. (authors)

  17. Atucha II nuclear power plant digital simulation

    International Nuclear Information System (INIS)

    Santome, D.; Rovere, L.A.T.

    1987-01-01

    This paper describes the start-up of a digital simulation code apt to be performed in real time of Atucha II nuclear power plant, foreseeing its subsequent usage in a Basic Principles Simulator. Adaptability and modification of existing routines and development of modules in order to incorporate the necessary variables dynamics to couple the different modes, were the main tasks. The mathematical model used allows the representation of the following sub-systems: a) a reactor's core point model, which comprehends the neutronic kinetics, fission and decaying powers, thermal transfer and Xe-poisoning calculation; b) pressurizer, which considers two sub-systems that may or may not be in thermodynamic equilibrium, both in two phases; c) coolants and moderators bonds considering separate moderator loops with the aim of introducing asymmetric perturbations; d) secondary sub-subsystem, which includes the feed water loop, pumps, steam generators and control valves; e) steam generators; f) control and safety systems, including power control, steam generators levels, moderator's temperature primary loop system, limitations and protection. (Author)

  18. Planetary Surface Power and Interstellar Propulsion Using Fission Fragment Magnetic Collimator Reactor

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.; Hart, Ron R.; King, Don B.; Rochau, Gary E.

    2006-01-01

    Fission energy can be used directly if the kinetic energy of fission fragments is converted to electricity and/or thrust before turning into heat. The completed US DOE NERI Direct Energy Conversion (DEC) Power Production project indicates that viable DEC systems are possible. The US DOE NERI DEC Proof of Principle project began in October of 2002 with the goal to demonstrate performance principles of DEC systems. One of the emerging DEC concepts is represented by fission fragment magnetic collimator reactors (FFMCR). Safety, simplicity, and high conversion efficiency are the unique advantages offered by these systems. In the FFMCR, the basic energy source is the kinetic energy of fission fragments. Following escape from thin fuel layers, they are captured on magnetic field lines and are directed out of the core and through magnetic collimators to produce electricity and thrust. The exiting flow of energetic fission fragments has a very high specific impulse that allows efficient planetary surface power and interstellar propulsion without carrying any conventional propellant onboard. The objective of this work was to determine technological feasibility of the concept. This objective was accomplished by producing the FFMCR design and by analysis of its performance characteristics. The paper presents the FFMCR concept, describes its development to a technologically feasible level and discusses obtained results. Performed studies offer efficiencies up to 90% and velocities approaching speed of light as potentially achievable. The unmanned 10-tons probe with 1000 MW FFMCR propulsion unit would attain mission velocity of about 2% of the speed of light. If the unit is designed for 4000 MW, then in 10 years the unmanned 10-tons probe would attain mission velocity of about 10% of the speed of light

  19. Fission decay properties of nuclear giant multipole resonances

    International Nuclear Information System (INIS)

    Dias, H.; Arruda Neto, J.D.T.; Hussein, M.S.; Carlson, B.V.

    1986-05-01

    The statistical fission decay properties of the giant dipole, quadrupole and monopole resonances in 236 U are investigated with the aid of the Hauser-Feshbach model. It is found, contrary to several recent claims, that the GQR fission decay probability is as large as that of the GDR, at energies higher than the fission barrier. At energies close to the f.b., the GQR fission probability is found to be appreciably larger than that of the GDR. The GMR fission probability follows closely that of the GQR. (Author) [pt

  20. The programme 'fission product deposition' at the IRB of Juelich nuclear research centre

    International Nuclear Information System (INIS)

    Gottaut, H.; Iniotakis, N.; Malinowski, J.; Muenchow, K.H.; Sackmann, B.

    1976-01-01

    The transport and deposition behaviour of the non-gaseous fission and activation products in the primary circuit of HTR-type reactors determines the possibility of inspection and maintenance of single components of the primary circuit as well as the safety of the reactor in normal operation and during accidents. For the investigation of these problems, the programme 'fission product deposition' was started at Juelich nuclear research centre in 1969 in cooperation with a number of industrial firms. The programme covers in-pile and out-of-pile experiments, in which the HTR conditions are simulated as realistically as possible, as well as various laboratory experiments and extensive theoretical studies. It is the objective of this work to establish a realistic physical model and computer programme with which the transport and deposition of nuclides in the primary circuit of HTR reactors can be calculated in advance. A report is given on the experimental and theoretical studies carried out at the IRB of Juelich nuclear research centre. (orig./AK) [de

  1. I wonder nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Cheol

    2009-04-15

    This book consists seven chapters, which are powerful nuclear energy, principle of nuclear fission, nuclear energy in our daily life, is nuclear energy safe?, what is radiation?, radiation spread in pur daily life and radiation like a spy. It adds nuclear energy story through quiz. This book with pictures is for kids to explain nuclear energy easily.

  2. Nuclear fission: a review of experimental advances and phenomenology

    Science.gov (United States)

    Andreyev, A. N.; Nishio, K.; Schmidt, K.-H.

    2018-01-01

    In the last two decades, through technological, experimental and theoretical advances, the situation in experimental fission studies has changed dramatically. With the use of advanced production and detection techniques both much more detailed and precise information can now be obtained for the traditional regions of fission research and, crucially, new regions of nuclei have become routinely accessible for fission studies. This work first of all reviews the recent developments in experimental fission techniques, in particular the resurgence of transfer-induced fission reactions with light and heavy ions, the emerging use of inverse-kinematic approaches, both at Coulomb and relativistic energies, and of fission studies with radioactive beams. The emphasis on the fission-fragment mass and charge distributions will be made in this work, though some of the other fission observables, such as prompt neutron and γ-ray emission will also be reviewed. A particular attention will be given to the low-energy fission in the so far scarcely explored nuclei in the very neutron-deficient lead region. They recently became the focus for several complementary experimental studies, such as β-delayed fission with radioactive beams at ISOLDE(CERN), Coulex-induced fission of relativistic secondary beams at FRS(GSI), and several prompt fusion–fission studies. The synergy of these approaches allows a unique insight in the new region of asymmetric fission around {\\hspace{0pt}}180 Hg, recently discovered at ISOLDE. Recent extensive theoretical efforts in this region will also be outlined. The unprecedented high-quality data for fission fragments, completely identified in Z and A, by means of reactions in inverse kinematics at FRS(GSI) and VAMOS(GANIL) will be also reviewed. These experiments explored an extended range of mercury-to-californium elements, spanning from the neutron-deficient to neutron-rich nuclides, and covering both asymmetric, symmetric and transitional fission regions

  3. Fission Evaluation on Th-232

    International Nuclear Information System (INIS)

    Lee, Yong-Deok; Lee, Young-Ouk; Park, Joo-Hwan

    2007-01-01

    In recent years, several studies of neutron induced reaction on thorium were carried out in the framework of an IAEA coordinate research project involving a US contribution. The importance of Th-232 is for an innovative fuel cycle concept based on thorium fuel. Thorium fuels are also considered in accelerator driven system (ADS) to produce the power and radioactive waste transmutation. Therefore, the accurate neutron cross section for fission is crucially important for the design of various reactor systems. On December 2006, the ENDF/B-VII involving the new evaluation of actinides for Th-U fuel cycle was released. From the current environmental change, increasing oil price, air pollution by carbon dioxide, drain of oil resource, increasing demand of electricity, and energy independence, nuclear power is slowly to start to be reconsidered recently and it might be an alternative proposal as a production facility of energy and a reuse of resources. Even though it produces the nuclear wastes, it has an advantage in the emission of greenhouse gases. Therefore, new concept of nuclear technology to be developed for power production is subject to the condition of increased safety, reduction of nuclear wastes, resistance to nuclear material proliferation, Thorium fuel cycle is the most feasible option to satisfy the condition. Specially, thorium reserves are much larger than those of uranium

  4. International conference on fifty years research in nuclear fission

    International Nuclear Information System (INIS)

    1989-02-01

    These proceedings contain extended abstracts of the papers presented at the named conference. They deal with static properties of fission, instrumentation for fission studies, fission in compound-nucleus reactions, fission dynamics, fission-like heavy ion reactions, and fusion reactions. See hints under the relevant topics. (HSI)

  5. Balanced program plan. Volume XI. Fission analysis for biomedical and environmental research

    International Nuclear Information System (INIS)

    Foster, R.F.

    1976-06-01

    Factors involved in the formulation of an ERDA-sponsored program for health and environmental research in connection with the fission fuel cycle are discussed under the following section headings: major issues associated with the use of nuclear power; fission fuel cycle technology: milling, UF 6 production, uranium enrichment, plutonium fuel fabrication, power production (reactors), fuel reprocessing, waste management, fuel and waste transportation; problem definition: characterization, measurement and monitoring, transport processes, health effects, ecological processes and effects, and integrated assessment; budget; characterization, measuring and monitoring program units; transport processes program units; health effects program units; ecological processes and effects program units; and integrated assessment program units

  6. Finite element simulation of fission gas release and swelling in UO2 fuel pellets

    International Nuclear Information System (INIS)

    Denis, Alicia C.

    1999-01-01

    A fission gas release model is presented, which solves the atomic diffusion problem with xenon and krypton elements tramps produced by uranium fission during UO 2 nuclear fuel irradiation. The model considers intra and intergranular precipitation bubbles, its re dissolution owing to highly energetic fission products impact, interconnection of intergranular bubbles and gas sweeping by grain border in movement because of grain growth. In the model, the existence of a thermal gradient in the fuel pellet is considered, as well as temporal variations of fission rate owing to changes in the operation lineal power. The diffusion equation is solved by the finite element method and results of gas release and swelling calculation owing to gas fission are compared with experimental data. (author)

  7. Fission-gas release in fuel performing to extended burnups in Ontario Hydro nuclear generating stations

    International Nuclear Information System (INIS)

    Floyd, M.R.; Novak, J.; Truant, P.T.

    1992-06-01

    The average discharge burnup of CANDU fuel is about 200 MWh/kgU. A significant number of 37-element bundles have achieved burnups in excess of 400 MWh/kgU. Some of these bundles have experienced failures related to their extended operation. To date, hot-cell examinations have been performed on fuel elements from nine 37-element bundles irradiated in Bruce NGS-A that have burnups in the range of 300-800 MWh/kgU. 1 Most of these have declining power histories from peak powers of up to 59 kW/m. Fission-gas releases of up to 26% have been observed and exhibit a strong dependence on fuel power. This obscures any dependence on burnup. The extent of fission-gas release at extended burnups was not predicted by low-burnup code extrapolations. This is attributed primarily to a reduction in fuel thermal conductivity which results in elevated operating temperatures. Reduced conductivity is due, at least in part, to the buildup of fission products in the fuel matrix. Some evidence of hyperstoichiometry exists, although this needs to be further investigated along with any possible relation to CANLUB graphite coating behaviour and sheath oxidation. Residual tensile sheath strains of up to 2% have been observed and can be correlated with fuel power/fission-gas release. SCC 2 -related defects have been observed in the sheath and endcaps of elements from bundles experiencing declining power histories to burnups in excess of 500 MWh/kgU. This indicates that the current recommended burnup limit of 450 MWh/kgU is justified. SCC-related defects have also been observed in ramped bundles having burnups < 450 MWh/kgU. Hence, additional guidelines are in place for power ramping extended-burnup fuel

  8. ENDF/B-5. Fission Product Yields File

    International Nuclear Information System (INIS)

    Schwerer, O.

    1985-10-01

    The ENDF/B-5 Fission Product Yields File contains a complete set of independent and cumulative fission product yields, representing the final data from ENDF/B-5 as received at the IAEA Nuclear Data Section in June 1985. Yields for 11 fissioning nuclides at one or more neutron incident energies are included. The data are available costfree on magnetic tape from the IAEA Nuclear Data Section. (author). 4 refs

  9. Nuclear power controversy

    International Nuclear Information System (INIS)

    Murphy, A.W.

    1976-01-01

    Arthur W. Murphy in the introductory chapter cites the issues, pro and con, concerning nuclear power. In assessing the present stance, he first looks back to the last American Assembly on nuclear power, held October 1957 and notes its accomplishments. He summarizes the six papers of this book, which focus on nuclear power to the end of this century. Chapter I, Safety Aspects of Nuclear Energy, by David Bodansky and Fred Schmidt, deals with the technical aspects of reactor safety as well as waste storage and plutonium diversion. Chapter 2, The Economics of Electric Power Generation--1975-2000, by R. Michael Murray, Jr., focuses specifically on coal-fired and nuclear plants. Chapter 3, How Can We Get the Nuclear Job Done, by Fritz Heimann, identifies actions that must take place to develop nuclear power in the U.S. and who should build the reprocessing plants. Chapter 4, by Arthur Murphy, Nuclear Power Plant Regulation, discusses the USNRC operation and the Price-Anderson Act specifically. Chapter 5, Nuclear Exports and Nonproliferation Strategy, by John G. Palfrey, treats the international aspects of the problem with primary emphasis upon the situation of the U.S. as an exporter of technology. Chapter 6, by George Kistiakowsky, Nuclear Power: How Much Is Too Much, expresses doubt about the nuclear effort, at least in the short run

  10. Advanced fission and fossil plant economics-implications for fusion

    International Nuclear Information System (INIS)

    Delene, J.G.

    1994-01-01

    In order for fusion energy to be a viable option for electric power generation, it must either directly compete with future alternatives or serve as a reasonable backup if the alternatives become unacceptable. This paper discusses projected costs for the most likely competitors with fusion power for baseload electric capacity and what these costs imply for fusion economics. The competitors examined include advanced nuclear fission and advanced fossil-fired plants. The projected costs and their basis are discussed. The estimates for these technologies are compared with cost estimates for magnetic and inertial confinement fusion plants. The conclusion of the analysis is that fusion faces formidable economic competition. Although the cost level for fusion appears greater than that for fission or fossil, the costs are not so high as to preclude fusion's potential competitiveness

  11. Feasibility study of a fission supressed blanket for a tandem-mirror hybrid reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Barr, W.L.

    1981-01-01

    A study of fission suppressed blankets for the tandem mirror not only showed such blankets to be feasible but also to be safer than fissioning blankets. Such hybrids could produce enough fissile material to support up to 17 light water reactors of the same nuclear power rating. Beryllium was compared to 7 Li for neutron multiplication; both were considered feasible but the blanket with Li produced 20% less fissile fuel per unit of nuclear power in the reactor. The beryllium resource, while possibly being too small for extensive pure fusion application, would be adequate (with carefully planned industrial expansion) for the hybrid because of the large support ratio, and hence few hybrids required. Radiation damage and coatings for beryllium remain issues to be resolved by further study and experimentation. Molten salt reprocessing was compared to aqueous solution reprocessing

  12. Development of methods for monitoring and controlling power in nuclear reactors

    International Nuclear Information System (INIS)

    Mesquita, Amir Zacarias; Rezende, Hugo Cesar; Santos, Andre Augusto Campagnole dos; Silva, Vitor Vasconcelos Araujo

    2012-01-01

    Redundancy and diversity are two important criteria for power measurement in nuclear reactors. Other criteria such as accuracy, reliability and response speed are also of major concern. Power monitoring of nuclear reactors is normally done by means of neutronic instruments, i.e. by the measurement of neutron flux. The greater the number of channels for power measuring the greater is the reliability and safety of reactor operations. The aim of this research is to develop new methodologies for on-line monitoring of nuclear reactor power using other reliable processes. One method uses the temperature difference between an instrumented fuel element and the pool water below the reactor core. Another method consists of the steady-state energy balance of the primary and secondary reactor cooling loops. A further method is the calorimetric procedure whereby a constant reactor power is monitored as a function of the temperature-rise rate and the system heat capacity. Another methodology, which does not employ thermal methods, is based on measurement of Cherenkov radiation produced within and around the core. The first three procedures, fuel temperature, energy balance and calorimetric, were implemented in the IPR-R1 TRIGA nuclear research reactor at Belo Horizonte (Brazil) and are the focus of the work described here. Knowledge of the reactor thermal power is very important for precise neutron flux and fuel element burnup calculations. The burnup is linearly dependent on the reactor thermal power and its accuracy is important in the determination of the mass of burned 235 U, fission products, fuel element activity, decay heat power generation and radiotoxicity. The thermal balance method developed in this project is now the standard methodology used for IPR-R1 TRIGA reactor power calibration and the fuel temperature measuring is the most reliable way of on-line monitoring of the reactor power. This research project primarily aims at increasing the reliability and safety of

  13. High flux transmutation of fission products and actinides

    International Nuclear Information System (INIS)

    Gerasimov, A.; Kiselev, G.; Myrtsymova, L.

    2001-01-01

    Long-lived fission products and minor actinides accumulated in spent nuclear fuel of power reactors comprise the major part of high level radwaste. Their incineration is important from the point of view of radwaste management. Transmutation of these nuclides by means of neutron irradiation can be performed either in conventional nuclear reactors, or in specialized transmutation reactors, or in ADS facilities with subcritical reactor and neutron source with application of proton accelerator. Different types of transmutation nuclear facilities can be used in order to insure optimal incineration conditions for radwaste. The choice of facility type for optimal transmutation should be based on the fundamental data in the physics of nuclide transformations. Transmutation of minor actinides leads to the increase of radiotoxicity during irradiation. It takes significant time compared to the lifetime of reactor facility to achieve equilibrium without effective transmutation. High flux nuclear facilities allow to minimize these draw-backs of conventional facilities with both thermal and fast neutron spectrum. They provide fast approach to equilibrium and low level of equilibrium mass and radiotoxicity of transmuted actinides. High flux facilities are advantageous also for transmutation of long-lived fission products as they provide short incineration time

  14. IAEA CRP on Fission Yield Data and activity of WG in Japanese Nuclear Data Committee

    International Nuclear Information System (INIS)

    Katakura, Junichi; Fukahori, Tokio

    1999-01-01

    The outline of the coordinate research program on fission yield data organized by International Atomic Energy Agency and the working group on the subject newly organized in Japanese Nuclear Data Committee are presented. (author)

  15. Nuclear Power Plant environment`s surveillance by satellite remote sensing and in-situ monitoring data

    Science.gov (United States)

    Zoran, Maria

    The main environmental issues affecting the broad acceptability of nuclear power plant are the emission of radioactive materials, the generation of radioactive waste, and the potential for nuclear accidents. All nuclear fission reactors, regardless of design, location, operator or regulator, have the potential to undergo catastrophic accidents involving loss of control of the reactor core, failure of safety systems and subsequent widespread fallout of hazardous fission products. Risk is the mathematical product of probability and consequences, so lowprobability and high-consequence accidents, by definition, have a high risk. NPP environment surveillance is a very important task in frame of risk assessment. Satellite remote sensing data had been applied for dosimeter levels first time for Chernobyl NPP accident in 1986. Just for a normal functioning of a nuclear power plant, multitemporal and multispectral satellite data in complementarily with field data are very useful tools for NPP environment surveillance and risk assessment. Satellite remote sensing is used as an important technology to help environmental research to support research analysis of spatio-temporal dynamics of environmental features nearby nuclear facilities. Digital processing techniques applied to several LANDSAT, MODIS and QuickBird data in synergy with in-situ data are used to assess the extent and magnitude of radiation and non-radiation effects on the water, near field soil, vegetation and air. As a test case the methodology was applied for for Nuclear Power Plant (NPP) Cernavoda, Romania. Thermal discharge from nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Canal and Danube River. Water temperatures captured in thermal IR imagery are correlated with meteorological parameters. If during the winter thermal plume is localized to an area of a few km of NPP, the temperature difference between the plume and non-plume areas being about 1.5 oC, during summer and fall , is

  16. Biological effects induced by low amounts of nuclear fission products

    International Nuclear Information System (INIS)

    Vasilenko, I.Ya.; Shishkin, V.F.; Khudyakova, N.V.

    1991-01-01

    The review deals with the problem of biological hazard of low radiation doses for animals and human beings taking into the danger of internal and external irradiation by nuclear fission products under conditions of enhancing anthropogenic radiation contamination of biosphere. An attention is paid to the estimation of life span carcinogenesis, genetic and delayed effects. A conclusion is made on a necessity of multiaspect investigation of biological importance of low radiation doses taking into account modifying effects of other environmental factors

  17. Financing nuclear power

    International Nuclear Information System (INIS)

    Sheriffah Noor Khamseah Al-Idid Syed Ahmad Idid

    2009-01-01

    Global energy security and climate change concerns sparked by escalating oil prices, high population growth and the rapid pace of industrialization are fueling the current interest and investments in nuclear power. Globally, a significant number policy makers and energy industry leaders have identified nuclear power as a favorable alternative energy option, and are presently evaluating either a new or an expanded role for nuclear power. The International Atomic Energy Agency (IAEA) has reported that as of October 2008, 14 countries have plans to construct 38 new nuclear reactors and about 100 more nuclear power plants have been written into the development plans of governments for the next three decades. Hence as new build is expected to escalate, issues of financing will become increasingly significant. Energy supply, including nuclear power, considered as a premium by government from the socio-economic and strategic perspective has traditionally been a sector financed and owned by the government. In the case for nuclear power, the conventional methods of financing include financing by the government or energy entity (utility or oil company) providing part of the funds from its own resources with support from the government. As national financing is, as in many cases, insufficient to fully finance the nuclear power plants, additional financing is sourced from international sources of financing including, amongst others, Export Credit Agencies (ECAs) and Multilateral Development Institutions. However, arising from the changing dynamics of economics, financing and business model as well as increasing concerns regarding environmental degradation , transformations in methods of financing this energy sector has been observed. This paper aims to briefly present on financing aspects of nuclear power as well as offer some examples of the changing dynamics of financing nuclear power which is reflected by the evolution of ownership and management of nuclear power plants

  18. Nuclear power debate

    International Nuclear Information System (INIS)

    Hunwick, Richard

    2005-01-01

    A recent resurgence of interest in Australia in the nuclear power option has been largely attributed to growing concerns over climate change. But what are the real pros and cons of nuclear power? Have advances in technology solved the sector's key challenges? Do the economics stack up for Australia where there is so much coal, gas and renewable resources? Is the greenhouse footprint' of nuclear power low enough to justify its use? During May and June, the AIE hosted a series of Branch events on nuclear power across Sydney, Adelaide and Perth. In the interest of balance, and at risk of being a little bit repetitive, here we draw together four items that resulted from these events and that reflect the opposing views on nuclear power in Australia. Nuclear Power for Australia: Irrelevant or Inevitable? - a summary of the presentations to the symposium held by Sydney Branch on 8 June 2005. Nuclear Reactors Waste the Planet - text from the flyer distributed by The Greens at their protest gathering outside the symposium venue on 8 June 2005. The Case For Nuclear Power - an edited transcript of Ian Hore-Lacy's presentation to Adelaide Branch on 19 May 2005 and to Perth Branch on 28 June 2005. The Case Against Nuclear Power - an article submitted to Energy News by Robin Chappie subsequent to Mr Hore-Lacy's presentation to Perth Branch

  19. The state of nuclear power two years after Fukushima – The ASEAN perspective

    International Nuclear Information System (INIS)

    Nian, Victor; Chou, S.K.

    2014-01-01

    Highlights: • This paper provides a holistic analysis on the importance of nuclear power. • This paper examines the drivers for nuclear power post-Fukushima. • This paper studies the responses towards “safer nuclear”. • Nuclear remains a reliable and clean base-load technology. • Pronouncing the demise of nuclear power will not be sustainable. - Abstract: Given the need to rein in the rise in the global average temperature, decarbonizing the electricity sector, which accounts for nearly 50% of global greenhouse gas (GHG) emissions, is crucial. The suitability of nuclear power as a base-load technology and its relatively negligible GHG emissions raised expectations of a nuclear renaissance, until the Fukushima disaster brought discussions about nuclear power’s potential to a standstill. However, completely ruling out nuclear may not be sustainable owing to the realities of rising energy demand, climate change considerations, and the need for reliable base-load supply technology, especially in the case of fast growing economies in the Association of South East Asian Nations (ASEAN). The Fukushima disaster was a wake-up call for both governments and the nuclear industry. Led by the International Atomic Energy Agency, the more advanced economies conducted stringent reviews of safety standards and emergency response procedures in the event of a catastrophe. Meanwhile the industry responded with strong commitments towards “Fukushima proof” designs, alongside other advancements towards “safer” fission power. In the ASEAN context, we argue in this paper that in addition to the economic advantage, nuclear power can help address the twin objectives of energy security and mitigating climate change effects. In ASEAN, there is still a strong momentum towards nuclear power development due to strategic considerations. In this paper, we reviewed in a holistic approach the various factors influencing decision making on nuclear power. Using ASEAN as a case

  20. High Efficiency, High Temperature Foam Core Heat Exchanger for Fission Surface Power Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Fission-based power systems with power levels of 30 to ≥100 kWe will be needed for planetary surface bases. Development of high temperature, high efficiency heat...

  1. What is more dangerous: Nuclear power plants or carbon fired power plants?

    Energy Technology Data Exchange (ETDEWEB)

    Kuruc, J [Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University, 84215 Bratislava (Slovakia)

    1999-12-31

    In this paper environmental impacts of radionuclides and other pollutants released into environment from nuclear power plants (NPP) and coal fired power plants (CFPP) are compared. Assuming coal contains uranium and thorium concentrations of 1.3 ppm and 3.2 ppm, respectively, each typical 1000 MW{sub e} CFPP released 5.2 tons of uranium (containing 36.92 kg of U-235) and 12.8 tons of thorium. Total releases in 1990 from worldwide combustion of {approx}3300 million tons of coal totaled {approx}4552 tons of uranium (contains {approx}32317 kg of uranium-235) and {approx}10860 tons of thorium are estimated. Based on the predicted combustion of 12,580 million tons worldly during the year 2040, cumulative releases for the 100 years of coal combustion following 1937 were predicted to be Planetary release (from combustion of 637,409 million tons): uranium: 828,632 tons (containing 5883 tons of uranium-235); thorium: 2,039,709 tons. According to the NCRP, the average radioactivity is 427 {mu}Ci/t of coal. This value was used to calculate the average expected radioactivity release from coal combustion. For 1990 the total release of radioactivity from worldwide 3300 million tons coal combustion was, therefore about 1,41 MCi. Another unrecognized problem is the gradual production of plutonium 239 through the exposure of uranium-238 in coal waste to neutrons from the cosmic rays. Other environmental impacts from NPP and CFPP are discussed. The fact that large quantities of uranium and thorium are released from CFPPs without restriction increases a paradoxical situation. Considering that the nuclear power industry has been compelled to invest in expensive measures to greatly reduce releases of radionuclides from nuclear fuel and fission products to the environment, should coal-fired power plants be allowed to do so without constraints. (J.K.) 1 tab., 15 refs.

  2. What is more dangerous: Nuclear power plants or carbon fired power plants?

    International Nuclear Information System (INIS)

    Kuruc, J.

    1998-01-01

    In this paper environmental impacts of radionuclides and other pollutants released into environment from nuclear power plants (NPP) and coal fired power plants (CFPP) are compared. Assuming coal contains uranium and thorium concentrations of 1.3 ppm and 3.2 ppm, respectively, each typical 1000 MW e CFPP released 5.2 tons of uranium (containing 36.92 kg of U-235) and 12.8 tons of thorium. Total releases in 1990 from worldwide combustion of ∼3300 million tons of coal totaled ∼4552 tons of uranium (contains ∼32317 kg of uranium-235) and ∼10860 tons of thorium are estimated. Based on the predicted combustion of 12,580 million tons worldly during the year 2040, cumulative releases for the 100 years of coal combustion following 1937 were predicted to be Planetary release (from combustion of 637,409 million tons): uranium: 828,632 tons (containing 5883 tons of uranium-235); thorium: 2,039,709 tons. According to the NCRP, the average radioactivity is 427 μCi/t of coal. This value was used to calculate the average expected radioactivity release from coal combustion. For 1990 the total release of radioactivity from worldwide 3300 million tons coal combustion was, therefore about 1,41 MCi. Another unrecognized problem is the gradual production of plutonium 239 through the exposure of uranium-238 in coal waste to neutrons from the cosmic rays. Other environmental impacts from NPP and CFPP are discussed. The fact that large quantities of uranium and thorium are released from CFPPs without restriction increases a paradoxical situation. Considering that the nuclear power industry has been compelled to invest in expensive measures to greatly reduce releases of radionuclides from nuclear fuel and fission products to the environment, should coal-fired power plants be allowed to do so without constraints. (J.K.)

  3. Determination of fission gas release of spent nuclear fuel in puncturing test and in leaching experiments under anoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    González-Robles, E., E-mail: ernesto.gonzalez-robles@kit.edu [Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal (KIT-INE), P.O. Box 3640, D-76021, Karlsruhe (Germany); Metz, V. [Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal (KIT-INE), P.O. Box 3640, D-76021, Karlsruhe (Germany); Wegen, D.H. [European Commission, Joint Research Centre, Institute for Transuranium Elements (JRC-ITU), P.O. Box 2340, 76125, Karlsruhe (Germany); Herm, M. [Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal (KIT-INE), P.O. Box 3640, D-76021, Karlsruhe (Germany); Papaioannou, D. [European Commission, Joint Research Centre, Institute for Transuranium Elements (JRC-ITU), P.O. Box 2340, 76125, Karlsruhe (Germany); Bohnert, E. [Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal (KIT-INE), P.O. Box 3640, D-76021, Karlsruhe (Germany); Gretter, R. [European Commission, Joint Research Centre, Institute for Transuranium Elements (JRC-ITU), P.O. Box 2340, 76125, Karlsruhe (Germany); Müller, N. [Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal (KIT-INE), P.O. Box 3640, D-76021, Karlsruhe (Germany); Nasyrow, R.; Weerd, W. de; Wiss, T. [European Commission, Joint Research Centre, Institute for Transuranium Elements (JRC-ITU), P.O. Box 2340, 76125, Karlsruhe (Germany); Kienzler, B. [Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal (KIT-INE), P.O. Box 3640, D-76021, Karlsruhe (Germany)

    2016-10-15

    During reactor operation the fission gases Kr and Xe are formed within the UO{sub 2} matrix of nuclear fuel. Their quantification is important to evaluate their impact on critical parameters regarding the fuel behaviour during irradiation and (long-term) interim storage, such as internal pressure of the fuel rod and fuel swelling. Moreover the content of Kr and Xe in the plenum of a fuel rod and their content in the UO{sub 2} fuel itself are widely used as indicators for the release properties of {sup 129}I, {sup 137}Cs, and other safety relevant radionuclides with respect to final disposal of spent nuclear fuel. The present study deals with the fission gas release from spent nuclear fuel exposed to simulated groundwater in comparison with the fission gas previously released to the fuel rod plenum during irradiation in reactor. In a unique approach we determined both the Kr and Xe inventories in the plenum by means of a puncturing test and in leaching experiments with a cladded fuel pellet and fuel fragments in bicarbonate water under 3.2 bar H{sub 2} overpressure. The fractional inventory of the fission gases released during irradiation into the plenum was (8.3 ± 0.9) %. The fraction of inventory of fission gases released during the leaching experiments was (17 ± 2) % after 333 days of leaching of the cladded pellet and (25 ± 2) % after 447 days of leaching of the fuel fragments, respectively. The relatively high release of fission gases in the experiment with fuel fragments was caused by the increased accessibility of water to the Kr and Xe occluded in the fuel.

  4. Nuclear power prospects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-15

    A survey of the nuclear power needs of the less-developed countries and a study of the technology and economics of small and medium scale power reactors are envisioned by the General Conference. Agency makes its services available to Member States to assist them for their future nuclear power plans, and in particular in studying the technical and economic aspects of their power programs. The Agency also undertakes general studies on the economics of nuclear power, including the collection and analysis of cost data, in order to assist Member States in comparing and forecasting nuclear power costs in relation to their specific situations

  5. The Radiological and Thermal Characteristics of Fission Waste from a Deep-Burn Fusion-Fission Hybrid (LIFE) and Implications for Repository Performance

    International Nuclear Information System (INIS)

    Shaw, H.F.; Blink, J.; Farmer, J.; Latkowski, J.; Kramer, K.

    2009-01-01

    We are studying the use of a Laser Inertial-confinement Fusion Engine (LIFE) to drive a hybrid fusion-fission system that can generate electrical power and/or burn nuclear waste. The system uses the neutrons from laser driven ICF to produce tritium and to drive nuclear reactions in a subcritical fission blanket. The fusion neutron source obviates the need for a self-sustaining chain reaction in the fission blanket. Either fissile or fertile could be used as fission fuel, thus eliminating the need for isotopic enrichment. The 'driven' system potentially allows very high levels of burnup to be reached, extracting a large fraction of the available energy in the fission fuel without the need for reprocessing. In this note, we discuss the radionuclide inventory of a depleted uranium (DU) fuel burned to greater than 95% FIMA (Fissions per Initial heavy Metal Atom), the implications for thermal management of the resulting waste, and the implications of this waste for meeting the dose standards for releases from a geological repository for high-level waste. The fission waste discussed here would be that produced by a LIFE hybrid with a 500-MW fusion source. The fusion neutrons are multiplied and moderated by a sequence of concentric shells of materials before encountering the fission fuel, and fission in this region is largely due to thermal neutrons. The fission blanket consists of 40 metric tons (MT) of DU, assumed to be in the form of TRISO-like UOC fuel particles embedded in 2-cm-diameter graphite pebbles. (It is recognized that TRISO-based fuel may not reach the high burnup of the fertile fuel considered here, and other fuel options are being investigated. We postulate the existence of a fuel that can reach >95% FIMA so that the waste disposal implications of high burnup can be assessed.) The engine and plant design considered here would receive one load of fission fuel and produce ∼2 GWt of power (fusion + fission) over its 50- to 70-year lifetime. Neutron and

  6. Asymmetry in ternary fission induced by polarized neutrons and fission mechanism

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Gennenvajn, F.; Dzhessinger, P.; Mutterer, M.; Petrov, G.A.

    2003-01-01

    The results of measuring the P-odd, P-even (right-left) and T-odd asymmetries of the charged particles emission in the double and ternary fission, induced by the polarized neutrons, are considered. It is shown, what kind of information on the mechanism of the ternary nuclear fission may be obtained from the theoretical analysis of these data [ru

  7. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    Barjon, Robert

    1975-01-01

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude [fr

  8. BTC the UK focus for nuclear fission R and D in the post NDA era

    International Nuclear Information System (INIS)

    Rice, T.G.; Carpenter, J.C.; Williamson, R.

    2005-01-01

    The BNFL Technology Centre at Sellafield, UK, will provide the focal point for nuclear fission R and D in the UK for the 21th Century. The facility provides a range of non-active, trace active, plutonium active and high active facilities enabling NSTS to support the Nuclear Decommissioning Authority's remit to manage the UK's nuclear legacy and other requirements The facilities also provide an environment for academic research and foster the development of University Research Alliances. (Author)

  9. Neutron-induced fission cross sections

    International Nuclear Information System (INIS)

    Weigmann, H.

    1991-01-01

    In the history of fission research, neutron-induced fission has always played the most important role. The practical importance of neutron-induced fission rests upon the fact that additional neutrons are produced in the fission process, and thus a chain reaction becomes possible. The practical applications of neutron-induced fission will not be discussed in this chapter, but only the physical properties of one of its characteristics, namely (n,f) cross sections. The most important early summaries on the subject are the monograph edited by Michaudon which also deals with the practical applications, the earlier review article on fission by Michaudon, and the review by Bjornholm and Lynn, in which neutron-induced fission receives major attention. This chapter will attempt to go an intermediate way between the very detailed theoretical treatment in the latter review and the cited monograph which emphasizes the applied aspects and the techniques of fission cross-section measurements. The more recent investigations in the field will be included. Section II will survey the properties of cross sections for neutron-induced fission and also address some special aspects of the experimental methods applied in their measurement. Section Ill will deal with the formal theory of neutron-induced nuclear reactions for the resolved resonance region and the region of statistical nuclear reactions. In Section IV, the fission width, or fission transmission coefficient, will be discussed in detail. Section V will deal with the broader structures due to incompletely damped vibrational resonances, and in particular will address the special case of thorium and neighboring isotopes. Finally, Section VI will briefly discuss parity violation effects in neutron-induced fission. 74 refs., 14 figs., 3 tabs

  10. Cryogenic method for measuring nuclides and fission gases

    Science.gov (United States)

    Perdue, P.T.; Haywood, F.F.

    1980-05-02

    A cryogenic method is provided for determining airborne gases and particulates from which gamma rays are emitted. A special dewar counting vessel is filled with the contents of the sampling flask which is immersed in liquid nitrogen. A vertically placed sodium-iodide or germanium-lithium gamma-ray detector is used. The device and method are of particular use in measuring and identifying the radioactive noble gases including emissions from coal-fired power plants, as well as fission gases released or escaping from nuclear power plants.

  11. Fission dynamics in the proton induced fission of heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rubchenya, V.A. E-mail: rubchen@phys.jyu.fi; Trzaska, W.H.; Itkis, I.M.; Itkis, M.G.; Kliman, J.; Kniajeva, G.N.; Kondratiev, N.A.; Kozulin, E.M.; Krupa, L.; Pokrovski, I.V.; Voskressenski, V.M.; Hanappe, F.; Materna, T.; Dorvaux, O.; Stuttge, L.; Chubarian, G.; Khlebnikov, S.V.; Vakhtin, D.N.; Lyapin, V.G

    2004-04-05

    Multi-parameter correlation study of the reaction {sup 242}Pu(p, f) at E{sub p} 13, 20 and 55 MeV has been carried out. Fission fragment mass and kinetic energy distributions and the double differential neutron spectra have been measured. It was observed that the two-humped shape of mass distributions prevailed up to highest proton energy. Manifestation of the nuclear shell Z 28 near fragment mass A{sub fr} = 70 has been detected. The experimental results were analyzed in the framework of a time-dependent statistical model with inclusion of nuclear friction effects in the fission process. The multi-parameter correlation study of the reaction.

  12. Fission dynamics with systems of intermediate fissility

    Indian Academy of Sciences (India)

    results concerning nuclear dissipation and fission time-scale obtained from several of these studies. In particular ... alent to the assumption that fission is delayed, namely, that the fission probability is not .... parameters to be adjusted on the experimental data. ..... (b) Time distribution of all fission events for the 132Ce nucleus.

  13. An overview of future sustainable nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (Cyprus)

    2013-07-01

    fuel cycles and burn the long-lived actinides now forming part of spent fuel, so that fission products are the only high-level waste. Relative to current nuclear power plant technology, the claimed benefits for generation IV reactors include nuclear waste that lasts a few centuries instead of millennia, 100-300 times more energy yield from the same amount of nuclear fuel, the ability to consume existing nuclear waste in the production of electricity and improved operating safety. Generation V+ reactors are designs which are theoretically possible, but which are not being actively considered or researched at present. Though such reactors could be built with current or near term technology, they trigger little interest for reasons of economics, practicality or safety.

  14. Relativistic Coulomb Fission

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  15. Nuclear power in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Ronald E.

    1998-08-01

    Contains Executive Summary and Chapters on: Nuclear Energy in the Asian context; Types of nuclear power reactors used in Asia; A survey of nuclear power by country; The economics of nuclear power; Fuels, fuel cycles and reprocessing; Environmental issues and waste disposal; The weapons issues and nuclear power; Conclusions. (Author)

  16. Roles of plasma neutron source reactor in development of fusion reactor engineering: Comparison with fission reactor engineering

    International Nuclear Information System (INIS)

    Hirayama, Shoichi; Kawabe, Takaya

    1995-01-01

    The history of development of fusion power reactor has come to a turning point, where the main research target is now shifting from the plasma heating and confinement physics toward the burning plasma physics and reactor engineering. Although the development of fusion reactor system is the first time for human beings, engineers have experience of development of fission power reactor. The common feature between them is that both are plants used for the generation of nuclear reactions for the production of energy, nucleon, and radiation on an industrial scale. By studying the history of the development of the fission reactor, one can find the existence of experimental neutron reactors including irradiation facilities for fission reactor materials. These research neutron reactors played very important roles in the development of fission power reactors. When one considers the strategy of development of fusion power reactors from the points of fusion reactor engineering, one finds that the fusion neutron source corresponds to the neutron reactor in fission reactor development. In this paper, the authors discuss the roles of the plasma-based neutron source reactors in the development of fusion reactor engineering, by comparing it with the neutron reactors in the history of fission power development, and make proposals for the strategy of the fusion reactor development. 21 refs., 6 figs

  17. Nuclear power

    International Nuclear Information System (INIS)

    Bupp, I.C.

    1991-01-01

    Is a nuclear power renaissance likely to occur in the United States? This paper investigates the many driving forces that will determine the answer to that question. This analysis reveals some frequently overlooked truths about the current state of nuclear technology: An examination of the issues also produces some noteworthy insights concerning government regulations and related technologies. Public opinion will play a major role in the unfolding story of the nuclear power renaissance. Some observers are betting that psychological, sociological, and political considerations will hod sway over public attitudes. Others wager that economic and technical concerns will prevail. The implications for the nuclear power renaissance are striking

  18. Media Coverage of Nuclear Energy after Fukushima

    International Nuclear Information System (INIS)

    Oltra, C.; Roman, P.; Prades, A.

    2013-01-01

    This report presents the main findings of a content analysis of printed media coverage of nuclear energy in Spain before and after the Fukushima accident. Our main objective is to understand the changes in the presentation of nuclear fission and nuclear fusion as a result of the accident in Japan. We specifically analyze the volume of coverage and thematic content in the media coverage for nuclear fusion from a sample of Spanish print articles in more than 20 newspapers from 2008 to 2012. We also analyze the media coverage of nuclear energy (fission) in three main Spanish newspapers one year before and one year after the accident. The results illustrate how the media contributed to the presentation of nuclear power in the months before and after the accident. This could have implications for the public understanding of nuclear power. (Author)

  19. Media Coverage of Nuclear Energy after Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Oltra, C.; Roman, P.; Prades, A.

    2013-07-01

    This report presents the main findings of a content analysis of printed media coverage of nuclear energy in Spain before and after the Fukushima accident. Our main objective is to understand the changes in the presentation of nuclear fission and nuclear fusion as a result of the accident in Japan. We specifically analyze the volume of coverage and thematic content in the media coverage for nuclear fusion from a sample of Spanish print articles in more than 20 newspapers from 2008 to 2012. We also analyze the media coverage of nuclear energy (fission) in three main Spanish newspapers one year before and one year after the accident. The results illustrate how the media contributed to the presentation of nuclear power in the months before and after the accident. This could have implications for the public understanding of nuclear power. (Author)

  20. Discussions and projections about the future demand for nuclear power in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fabio Branco Vaz de, E-mail: fabio@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Nuclear and Engineering Center; Imakuma, Kengo, E-mail: kimakuma@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Information Technology Development Dept.

    2011-07-01

    This paper aims mainly to discuss the current scenarios of power consumption, nuclear power and conventional and uranium resources and, based on that, present projections about the future demand for power generated through atomic fissions in Brazil, showing that there may be differences in estimates of future projections, depending on the indexes considered: global or domestic. The time horizon for the analysis was studied up to the maximum for the national population, for some of the world and Brazil's governmental data in terms of population growth, energy consumption and energy consumption per capita. To introduce the importance of the methodology adopted, data and some problems presented about the current world energy and Brazilian scenarios are discussed. Calculations show that the power consumption projections for Brazil, when using global indexes, are very high. According to our methodology, power consumption in Brazil is nearly 4.5 times below the estimates presented by the global indexes. The conclusion is that applying global indexes and their extension to domestic scenarios lead to errors of orders of magnitudes, due to the specific particularities of each country, and must be avoided if accurate projections about energy and nuclear scenarios must be considered. (author)