WorldWideScience

Sample records for nuclear facilities safety

  1. Nuclear materials facility safety initiative

    International Nuclear Information System (INIS)

    Peddicord, K.L.; Nelson, P.; Roundhill, M.; Jardine, L.J.; Lazarev, L.; Moshkov, M.; Khromov, V.V.; Kruchkov, E.; Bolyatko, V.; Kazanskij, Yu.; Vorobeva, I.; Lash, T.R.; Newton, D.; Harris, B.

    2000-01-01

    Safety in any facility in the nuclear fuel cycle is a fundamental goal. However, it is recognized that, for example, should an accident occur in either the U.S. or Russia, the results could seriously delay joint activities to store and disposition weapons fissile materials in both countries. To address this, plans are underway jointly to develop a nuclear materials facility safety initiative. The focus of the initiative would be to share expertise which would lead in improvements in safety and safe practices in the nuclear fuel cycle.The program has two components. The first is a lab-to-lab initiative. The second involves university-to-university collaboration.The lab-to-lab and university-to-university programs will contribute to increased safety in facilities dealing with nuclear materials and related processes. These programs will support important bilateral initiatives, develop the next generation of scientists and engineers which will deal with these challenges, and foster the development of a safety culture

  2. Safety of nuclear fuel cycle facilities. Safety requirements

    International Nuclear Information System (INIS)

    2008-01-01

    This publication covers the broad scope of requirements for fuel cycle facilities that, in light of the experience and present state of technology, must be satisfied to ensure safety for the lifetime of the facility. Topics of specific reference include aspects of nuclear fuel generation, storage, reprocessing and disposal. Contents: 1. Introduction; 2. The safety objective, concepts and safety principles; 3. Legal framework and regulatory supervision; 4. The management system and verification of safety; 5. Siting of the facility; 6. Design of the facility; 7. Construction of the facility; 8. Commissioning of the facility; 9. Operation of the facility; 10. Decommissioning of the facility; Appendix I: Requirements specific to uranium fuel fabrication facilities; Appendix II: Requirements specific to mixed oxide fuel fabrication facilities; Appendix III: Requirements specific to conversion facilities and enrichment facilities

  3. Supervision of the safety culture in nuclear facilities

    International Nuclear Information System (INIS)

    2014-11-01

    This brochure issued by the Swiss Federal Nuclear Safety Inspectorate ENSI reports on safety culture aspects in nuclear facilities and ENSI’s activities as a supervisory instance. ENSI is the independent supervisory authority for the nuclear sector in Switzerland. A definition of safety culture is presented and the development of the concepts used in its monitoring are discussed. The main attributes of a good safety culture are discussed. Further, the conceptual basics and principles of such monitoring are looked at and the methods used for the supervision of safety culture in nuclear facilities are described

  4. Life Management and Safety of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, S.; Diluch, A.; Vega, G., E-mail: fabbri@cnea.gov.ar [Comisión Nacional de Energía Atómica, Buenos Aires (Argentina)

    2014-10-15

    The nuclear programme in Argentina includes: nuclear power and related supplies, medical and industrial applications, waste management, research and development and human training. Nuclear facilities require life management programs that allow a safe operation. Safety is the first priority for designers and operators. This can be attained with defence in depth: regular inspections and maintenance procedures to minimize failure risks. CNEA objectives in this area are to possess the necessary capability to give safe and fast technical support. Within this scheme, one of the main activities undertaken by CNEA is to provide technological assistance to the nuclear plants and research reactors. As a consequence of an increasing concern about safety and ageing a Life Management Department for safe operation was created to take care of these subjects. The goal is to elaborate a Safety Evaluation Process for the critical components of nuclear plants and other facilities. The overall objectives of a safety process are to ensure a continuous safe, reliable and effective operation of nuclear facilities and it means the implementation of the defence in deep concept to enhance safety for the protection of the public, the workers and the environment. (author)

  5. Nuclear safety and radiation protection report of the nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  6. Design aspects of radiological safety in nuclear facilities

    International Nuclear Information System (INIS)

    Patkulkar, D.S.; Purohit, R.G.; Tripathi, R.M.

    2014-01-01

    In order to keep operational performance of a nuclear facility high and to keep occupational and public exposure ALARA, radiological safety provisions must be reviewed at the time of facility design. Deficiency in design culminates in deteriorated system performance and non adherence to safety standards and could sometimes result in radiological incident. Important radiological aspects relevant to safety were compiled based on operating experiences, design deficiencies brought out from past nuclear incidents, experience gained during maintenance, participation in design review of upcoming nuclear facilities and radiological emergency preparedness

  7. Decommissioning of nuclear fuel cycle facilities. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of this Safety Guide is to provide guidance to regulatory bodies and operating organizations on planning and provision for the safe management of the decommissioning of non-reactor nuclear fuel cycle facilities. While the basic safety considerations for the decommissioning of nuclear fuel cycle facilities are similar to those for nuclear power plants, there are important differences, notably in the design and operating parameters for the facilities, the type of radioactive material and the support systems available. It is the objective of this Safety Guide to provide guidance for the shutdown and eventual decommissioning of such facilities, their individual characteristics being taken into account

  8. Computer security at ukrainian nuclear facilities: interface between nuclear safety and security

    International Nuclear Information System (INIS)

    Chumak, D.; Klevtsov, O.

    2015-01-01

    Active introduction of information technology, computer instrumentation and control systems (I and C systems) in the nuclear field leads to a greater efficiency and management of technological processes at nuclear facilities. However, this trend brings a number of challenges related to cyber-attacks on the above elements, which violates computer security as well as nuclear safety and security of a nuclear facility. This paper considers regulatory support to computer security at the nuclear facilities in Ukraine. The issue of computer and information security considered in the context of physical protection, because it is an integral component. The paper focuses on the computer security of I and C systems important to nuclear safety. These systems are potentially vulnerable to cyber threats and, in case of cyber-attacks, the potential negative impact on the normal operational processes can lead to a breach of the nuclear facility security. While ensuring nuclear security of I and C systems, it interacts with nuclear safety, therefore, the paper considers an example of an integrated approach to the requirements of nuclear safety and security

  9. Nuclear criticality safety program at the Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lell, R.M.; Fujita, E.K.; Tracy, D.B.; Klann, R.T.; Imel, G.R.; Benedict, R.W.; Rigg, R.H.

    1994-01-01

    The Fuel Cycle Facility (FCF) is designed to demonstrate the feasibility of a novel commercial-scale remote pyrometallurgical process for metallic fuels from liquid metal-cooled reactors and to show closure of the Integral Fast Reactor (IFR) fuel cycle. Requirements for nuclear criticality safety impose the most restrictive of the various constraints on the operation of FCF. The upper limits on batch sizes and other important process parameters are determined principally by criticality safety considerations. To maintain an efficient operation within appropriate safety limits, it is necessary to formulate a nuclear criticality safety program that integrates equipment design, process development, process modeling, conduct of operations, a measurement program, adequate material control procedures, and nuclear criticality analysis. The nuclear criticality safety program for FCF reflects this integration, ensuring that the facility can be operated efficiently without compromising safety. The experience gained from the conduct of this program in the Fuel cycle Facility will be used to design and safely operate IFR facilities on a commercial scale. The key features of the nuclear criticality safety program are described. The relationship of these features to normal facility operation is also described

  10. The State Surveillance over Nuclear Safety of Nuclear Facilities Act No. 28/1984

    International Nuclear Information System (INIS)

    1995-01-01

    The Act lays down responsibilities of the Czechoslovak Atomic Energy Commission in the field of state surveillance over nuclear safety of nuclear facilities; determines the responsibilities of nuclear safety inspectors in their inspection activities; specifies duties of bodies and corporations responsible for nuclear safety of nuclear facilities; stipulates the obligation to set up emergency plans; and specifies penalties imposed on corporations and individuals for noncompliance with nuclear safety provisions. The Act entered into force on 4 April 1984. (J.B.)

  11. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Fessenheim nuclear power plant (INB 75, Haut-Rhin, 68 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  12. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  13. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Penly nuclear power plant (INB 136 and 140, Seine-Maritime, 76 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  14. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Fessenheim nuclear power plant (INB 75, Haut-Rhin, 68 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  15. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Blayais nuclear power plant (INB 86 and 110, Gironde (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  16. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  17. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  18. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Penly nuclear power plant (INB 136 and 140, Seine-Maritime, 76 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  19. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  20. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  1. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Civaux nuclear power plant (INB 158 and 159, Vienne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  2. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Blayais nuclear power plant (INB 86 and 110, Gironde (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  3. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Civaux nuclear power plant (INB 158 and 159, Vienne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  4. Safety at the End of a Nuclear Facility's Life

    International Nuclear Information System (INIS)

    Geis, John A.; McEahern, Patrice; Evans, Brad

    2004-01-01

    The objective of this paper is to capture the changes that are caused by the transition from nuclear operation through closure of defense nuclear facilities and convey lessons learned from their deactivation, decontamination and demolition. The specific area of discussion is focused on the planned reduction of safety equipment and consequent shift in hazard controls and safety management programs as the facility moves toward closure. The premise of the paper is that as the dominant hazards transition from nuclear to radiological and/or industrial, the facility control of the hazards and response to the potential upset conditions must transition as well to ensure safe and efficient operations. Using recent experience of the accelerated closure mission for U. S. Department of Energy (DOE) defense nuclear facilities at Rocky Flats Environmental Technology Site, the current culture with respect to developing and implementing hazard controls and response to upset conditions is illustrated. Several events have been documented that provide insight into the challenges facing line managers and safety professionals at the end of a facility's life cycle. Replacing permanent systems with temporary equipment challenges the traditional concept of reliability. Workers disassemble safety systems daily, but must rely on some of these components or redundant systems as work continues. Decisions governing upkeep of systems that await demolition balance the risk of running to failure against the cost benefit of maintenance and repair. This is further complicated as regulators and safety professionals are often unfamiliar with these new conditions and continue to view facility work activities and potential upset conditions from a nuclear operations perspective. The results of this paper evaluate the differences in how regulatory, safety basis, and operational practices must adapt to the dynamic environment of decontamination and decommissioning in contrast to the relatively constant

  5. Nuclear safety and radiation protection report of the Bugey nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Bugey nuclear power plant (Ain (FR)): 4 PWR reactors in operation (INB 78 and 89), one partially dismantled graphite-gas reactor (INB 45), an inter-regional fuel storage facility (MIR, INB 102), and a radioactive waste storage and conditioning facility under construction (ICEDA, INB 173). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  6. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chooz nuclear power plant (Ardennes (FR)): 2 PWR reactors in operation (Chooz B, INB 139 and 144) and one partially dismantled PWR reactor (Chooz A, INB 163). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary followed by the viewpoint of the Committees for health, safety and working conditions. (J.S.)

  7. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Paluel nuclear power plant (INB no. 103 - Paluel 1, no. 104 - Paluel 2, no. 114 - Paluel 3 and no. 115 - Paluel 4, Cany-Barville - Seine-Maritime (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document ends with a glossary and no recommendation from the Committees for health, safety and working conditions. (J.S.)

  8. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Paluel nuclear power plant (INB no. 103 - Paluel 1, no. 104 - Paluel 2, no. 114 - Paluel 3 and no. 115 - Paluel 4, Cany-Barville - Seine-Maritime (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  9. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Golfech nuclear power plant (INB 135 and 142, Tarn-et-Garonne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  10. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cattenom nuclear power plant (INB 124, 125, 126 and 137, Moselle (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  11. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cattenom nuclear power plant (INB 124, 125, 126 and 137, Moselle (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  12. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Golfech nuclear power plant (INB 135 and 142, Tarn-et-Garonne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  13. Enhancement of safety at nuclear facilities in Pakistan

    International Nuclear Information System (INIS)

    Ahmad, S.A.; Hayat, T.; Azhar, W.

    2006-01-01

    Pakistan is benefiting from nuclear technology mostly in health and energy sectors as well as agriculture and industry and has an impeccable safety record. At the national level uses of nuclear technology started in 1955 resulting in the operation of Karachi Radioisotope Center, Karachi, in December 1960. Pakistan Nuclear Safety Committee (PNSC) was formulated in 1964 with subsequent promulgation of Pakistan Atomic Energy Commission (PAEC) Ordinance in 1965 to cope with the anticipated introduction of a research reactor, namely PARR-I, and a nuclear power plant, namely KANUPP. Since then Pakistan's nuclear program has expanded to include numerous nuclear facilities of varied nature. This program has definite economic and social impacts by producing electricity, treating and diagnosing cancer patients, and introducing better crop varieties. Appropriate radiation protection includes a number of measures including database of sealed radiation sources at PAEC operated nuclear facilities, see Table l, updated during periodic physical verification of these sources, strict adherence to the BSS-115, IAEA recommended enforcement of zoning at research reactors and NPPs, etc. Pakistan is party to several international conventions and treaties, such as Convention of Nuclear Safety and Early Notification, to improve and enhance safety at its nuclear facilities. In addition Pakistan generally and PAEC particularly believes in a blend of prudent regulations and good/best practices. This is described in this paper. (Author)

  14. Nuclear safety and radiation protection report of Chinon nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 94 (irradiated materials workshop), 99 (fuel storage facility), 107 and 132 (NPPs in operation), 133, 153 and 161 (NPPs under deconstruction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  15. Nuclear safety and radiation protection report of the Creys-Malville nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Creys-Malville nuclear power plant (also known as Superphenix power plant, INB no. 91, Creys-Mepieu - Isere (FR)) and the other fuel and waste storage facilities of the site (INB no. 141). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2012, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  16. Nuclear safety and radiation protection report of the Creys-Malville nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Creys-Malville nuclear power plant (also known as Superphenix power plant, INB no. 91, Creys-Mepieu - Isere (FR)) and the other fuel and waste storage facilities of the site (INB no. 141). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  17. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chinon nuclear power plant (Indre-et-Loire, 37 (FR)): 4 PWR reactors in operation (Chinon B, INB 107 and 132), 3 partially dismantled graphite-gas reactors (Chinon A, INB 133, 153 and 161), a workshop for irradiated materials (AMI, INB 94), and an inter-regional fuel storage facility (MIR, INB 99). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  18. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chinon nuclear power plant (Indre-et-Loire, 37 (FR)): 4 PWR reactors in operation (Chinon B, INB 107 and 132), 3 partially dismantled graphite-gas reactors (Chinon A, INB 133, 153 and 161), a workshop for irradiated materials (AMI, INB 94), and an inter-regional fuel storage facility (MIR, INB 99). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  19. Nuclear safety and radiation protection report of the Tricastin nuclear facility (BCOT) - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, if some, are reported as well as the effluents discharge in the environment. Finally, the management of the radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  20. Nuclear safety and radiation protection report of Blayais nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  1. Nuclear safety and radiation protection report of Civaux nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  2. Nuclear safety and radiation protection report of Golfech nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 135 and 142). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  3. Nuclear safety and radiation protection report of Tricastin nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the Tricastin NPPs (INBs no. 87 and 88). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  4. Nuclear safety and radiation protection report of Penly nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  5. Nuclear safety and radiation protection report of Cattenom nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  6. Nuclear safety and radiation protection report of Chooz nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  7. Nuclear safety and radiation protection report of Flamanville nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  8. Nuclear safety and radiation protection report of Fessenheim nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INB no. 75). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  9. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Flamanville nuclear power plant (Manche (FR)): 2 PWR reactors in operation (INB 108 and 109), and 1 PWR under construction (Flamanville 3, INB 167). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, water consumption and waste management at Flamanville 3 construction site) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  10. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Flamanville nuclear power plant (Manche (FR)): 2 PWR reactors in operation (INB 108 and 109), and 1 PWR under construction (Flamanville 3, INB 167). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, water consumption and waste management at Flamanville 3 construction site) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  11. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chooz nuclear power plant (Ardennes (FR)): 2 PWR reactors in operation (Chooz B, INB 139 and 144) and one partially dismantled PWR reactor (Chooz A, INB 163). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  12. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 5 tabs., 21 ills

  13. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L. [eds.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department`s research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 5 tabs., 21 ills.

  14. Nuclear safety and radiation protection report of the nuclear facility of Brennilis - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Monts d'Arree (EL4-D or Brennilis) site (INB 162 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  15. Nuclear safety and radiation protection report of the nuclear facilities of Brennilis - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Monts d'Arree (EL4-D or Brennilis) site (INB 162 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  16. Nuclear safety and radiation protection report of the Bugey nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 78, 89 (NPPs in operation), 465 (NPP under deconstruction), 102 (fuel storage facility), and 173 (radioactive waste conditioning and storage facility under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  17. Nuclear safety and radiation protection report of the Bugey nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 78, 89 (NPPs in operation), 465 (NPP under deconstruction), 102 (fuel storage facility), and 173 (radioactive waste conditioning and storage facility under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  18. Organization and staffing of the regulatory body for nuclear facilities. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this safety guide is to provide recommendations for national authorities on the appropriate management system, organization and staffing for the regulatory body responsible for the regulation of nuclear facilities in order to achieve compliance with the applicable safety requirements. This safety guide covers the organization and staffing in relation to nuclear facilities such as: enrichment and fuel manufacturing plants. Nuclear power plants. Other reactors such as research reactors and critical assemblies. Spent fuel reprocessing plants. And radioactive waste management facilities such as treatment, storage and disposal facilities. This safety guide also covers issues related to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation

  19. Nuclear safety and radiation protection report of the Cruas-Meysse nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cruas-Meysse nuclear power plant (INB 111 and 112, Ardeche (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  20. Nuclear safety and radiation protection report of the Cruas-Meysse nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cruas-Meysse nuclear power plant (INB 111 and 112, Ardeche (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  1. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 94 (irradiated materials workshop), 99 (fuel storage facility), 107 and 132 (NPPs in operation), 133, 153 and 161 (NPPs under deconstruction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  2. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 94 (irradiated materials workshop), 99 (fuel storage facility), 107 and 132 (NPPs in operation), 133, 153 and 161 (NPPs under deconstruction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  3. Safety culture in a major nuclear fuel cycle facility

    International Nuclear Information System (INIS)

    Pushparaja; Abani, M.C.

    2002-01-01

    Human factor plays an important role in development of safety culture in any nuclear fuel cycle facility. This is more relevant in major nuclear facility such as a reactor or a reprocessing plant. In Indian reprocessing plants, an effective worker's training, education and certification program is in place to sensitize the worker's response to safety and safe work procedures. The methodology followed to self evaluation of safety culture and the benefits in a reprocessing plant is briefly discussed. Various indicators of safety performance and visible signs of a good safety management are also qualitatively analyzed. (author)

  4. Yearly program of safety research in nuclear power facilities from fiscal 1981 to 1985

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Nuclear safety research plans for nuclear power facilities and others from fiscal 1981 to 1985 are presented for the following areas: the safety of LWR fuel, loss-of-coolant accidents, the structural safety of LWR installations, the reduction of radioactive material release from nuclear power facilities, the stochastic safety evaluation of nuclear power facilities, the aseismicity of nuclear power facilities, the safety of nuclear fuel facilities, and the safety of nuclear fuel transport vessels. In the respective areas, the needs for research and the outline of research works are summarized. Then, about the major research works in each area, the purpose, contents, term and responsible institution of the research are given. (Mori, K.)

  5. Procedures for conducting probabilistic safety assessment for non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    2002-01-01

    A well performed and adequately documented safety assessment of a nuclear facility will serve as a basis to determine whether the facility complies with the safety objectives, principles and criteria as stipulated by the national regulatory body of the country where the facility is in operation. International experience shows that the practices and methodologies used to perform safety assessments and periodic safety re-assessment for non-reactor nuclear facilities differ significantly from county to country. Most developing countries do not have methods and guidance for safety assessment that are prescribed by the regulatory body. Typically the safety evaluation for the facility is based on a case by case assessment. Whilst conservative deterministic analyses are predominantly used as a licensing basis in many countries, recently probabilistic safety assessment (PSA) techniques have been applied as a useful complementary tool to support safety decision making. The main benefit of PSA is to provide insights into the safety aspects of facility design and operation. PSA points up the potential environmental impacts of postulated accidents, including the dominant risk contributors, and enables safety analysts to compare options for reducing risk. In order to advise on how to apply PSA methodology for the safety assessment of non-reactor nuclear facilities, the IAEA organized several consultants meetings, which led to the preparation of this TECDOC. This document is intended as guidance for the conduct of PSA in non-nuclear facilities. The main emphasis here is on the general procedural steps of a PSA that is specific for a non-reactor nuclear facility, rather than the details of the specific methods. The report is directed at technical staff managing or performing such probabilistic assessments and to promote a standardized framework, terminology and form of documentation for these PSAs. It is understood that the level of detail implied in the tasks presented in this

  6. Safety requirements and safety experience of nuclear facilities in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Schnurer, H.L.

    1977-01-01

    Peaceful use of nuclear energy within the F.R.G. is rapidly growing. The Energy Programme of the Federal Government forecasts a capacity of up to 50.000 MW in 1985. Whereas most of this capacity will be of the LWR-Type, other activities are related to LMFBR - and HTGR - development, nuclear ships, and facilities of the nuclear fuel cycle. Safety of nuclear energy is the pacemaker for the realization of nuclear programmes and projects. Due to a very high population - and industrialisation density, safety has the priority before economical aspects. Safety requirements are therefore extremely stringent, which will be shown for the legal, the technical as well as for the organizational area. They apply for each nuclear facility, its site and the nuclear energy system as a whole. Regulatory procedures differ from many other countries, assigning executive power to state authorities, which are supervised by the Federal Government. Another particularity of the regulatory process is the large scope of involvement of independent experts within the licensing procedures. The developement of national safety requirements in different countries generates a necessity to collaborate and harmonize safety and radiation protection measures, at least for facilities in border areas, to adopt international standards and to assist nuclear developing countries. However, different nationally, regional or local situations might raise problems. Safety experience with nuclear facilities can be concluded from the positive construction and operation experience, including also a few accidents and incidents and the conclusions, which have been drawn for the respective factilities and others of similar design. Another tool for safety assessments will be risk analyses, which are under development by German experts. Final, a scope of future problems and developments shows, that safety of nuclear installations - which has reached a high performance - nevertheless imposes further tasks to be solved

  7. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 103, 104, 114 and 115). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  8. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  9. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 103, 104, 114 and 115). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  10. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  11. Nuclear safety and radiation protection report of Cruas-Meysse nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 111 and 112). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  12. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  13. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INB no. 75). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  14. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 135 and 142). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  15. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  16. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  17. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  18. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  19. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  20. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  1. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  2. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  3. Nuclear safety and radiation protection report of the Tricastin operational hot base nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  4. Review and assessment of nuclear facilities by the regulatory body. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The purpose of this Safety Guide is to provide recommendations for regulatory bodies on reviewing and assessing the various safety related submissions made by the operator of a nuclear facility at different stages (siting, design, construction, commissioning, operation and decommissioning or closure) in the facility's lifetime to determine whether the facility complies with the applicable safety objectives and requirements. This Safety Guide covers the review and assessment of submissions in relation to the safety of nuclear facilities such as: enrichment and fuel manufacturing plants. Nuclear power plants. Other reactors such as research reactors and critical assemblies. Spent fuel reprocessing plants. And facilities for radioactive waste management, such as treatment, storage and disposal facilities. This Safety Guide also covers issues relating to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation. Objectives, management, planning and organizational matters relating to the review and assessment process are presented in Section 2. Section 3 deals with the bases for decision making and conduct of the review and assessment process. Section 4 covers aspects relating to the assessment of this process. The Appendix provides a generic list of topics to be covered in the review and assessment process

  5. Review and assessment of nuclear facilities by the regulatory body. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this Safety Guide is to provide recommendations for regulatory bodies on reviewing and assessing the various safety related submissions made by the operator of a nuclear facility at different stages (siting, design, construction, commissioning, operation and decommissioning or closure) in the facility's lifetime to determine whether the facility complies with the applicable safety objectives and requirements. This Safety Guide covers the review and assessment of submissions in relation to the safety of nuclear facilities such as: enrichment and fuel manufacturing plants. Nuclear power plants. Other reactors such as research reactors and critical assemblies. Spent fuel reprocessing plants. And facilities for radioactive waste management, such as treatment, storage and disposal facilities. This Safety Guide also covers issues relating to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation. Objectives, management, planning and organizational matters relating to the review and assessment process are presented in Section 2. Section 3 deals with the bases for decision making and conduct of the review and assessment process. Section 4 covers aspects relating to the assessment of this process. The Appendix provides a generic list of topics to be covered in the review and assessment process

  6. Nuclear safety and radiation protection report of the Nogent-sur-Seine nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Nogent-sur-Seine nuclear power plant (INB 129 and 130, Aube (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  7. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Dampierre-en-Burly nuclear power plant (INB 84 and 85, Loiret, 45 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  8. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Dampierre-en-Burly nuclear power plant (INB 84 and 85, Loiret, 45 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  9. Nuclear safety and radiation protection report of the Nogent-sur-Seine nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Nogent-sur-Seine nuclear power plant (INB 129 and 130, Aube (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  10. Nuclear safety and radiation protection report of the Belleville-sur-Loire nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Belleville-sur-Loire nuclear power plant (INB no. 127 - Belleville 1 and no. 128 - Belleville 2, Belleville-sur-Loire and Sury-pres-Lere - Cher (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  11. Safety Software Guide Perspectives for the Design of New Nuclear Facilities (U)

    International Nuclear Information System (INIS)

    VINCENT, Andrew

    2005-01-01

    In June of this year, the Department of Energy (DOE) issued directives DOE O 414.1C and DOE G 414.1-4 to improve quality assurance programs, processes, and procedures among its safety contractors. Specifically, guidance entitled, ''Safety Software Guide for use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance, DOE G 414.1-4'', provides information and acceptable methods to comply with safety software quality assurance (SQA) requirements. The guidance provides a roadmap for meeting DOE O 414.1C, ''Quality Assurance'', and the quality assurance program (QAP) requirements of Title 10 Code of Federal Regulations (CFR) 830, Subpart A, Quality Assurance, for DOE nuclear facilities and software application activities. [1, 2] The order and guide are part of a comprehensive implementation plan that addresses issues and concerns documented in Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2002-1. [3] Safety SQA requirements for DOE as well as National Nuclear Security Administration contractors are necessary to implement effective quality assurance (QA) processes and achieve safe nuclear facility operations. DOE G 414.1-4 was developed to provide guidance on establishing and implementing effective QA processes tied specifically to nuclear facility safety software applications. The Guide includes software application practices covered by appropriate national and international consensus standards and various processes currently in use at DOE facilities. While the safety software guidance is considered to be of sufficient rigor and depth to ensure acceptable reliability of safety software at all DOE nuclear facilities, new nuclear facilities are well suited to take advantage of the guide to ensure compliant programs and processes are implemented. Attributes such as the facility life-cycle stage and the hazardous nature of each facility operations are considered, along with the category and level of importance of the

  12. Progress report concerning safety research for nuclear reactor facilities

    International Nuclear Information System (INIS)

    1978-01-01

    Examination and evaluation of safety research results for nuclear reactor facilities have been performed, as more than a year has elapsed since the plan had been initiated in April, 1976, by the special sub-committee for the safety of nuclear reactor facilities. The research is carried out by being divided roughly into 7 items, and seems to be steadily proceeding, though it does not yet reach the target. The above 7 items include researches for (1) criticality accident, (2) loss of coolant accident, (3) safety for light water reactor fuel, (4) construction safety for reactor facilities, (5) reduction of release of radioactive material, (6) safety evaluation based on the probability theory for reactor facilities, and (7) aseismatic measures for reactor facilities. With discussions on the progress and the results of the research this time, research on the behaviour on fuel in abnormal transients including in-core and out-core experiments has been added to the third item, deleting the power-cooling mismatch experiment in Nuclear Safety Research Reactor of JAERI. Also it has been decided to add two research to the seventh item, namely measured data collection, classification and analysis, and probability assessment of failures due to an earthquake. For these 7 items, the report describes the concrete contents of research to be performed in fiscal years of 1977 and 1978, by discussing on most rational and suitable contents conceivable at present. (Wakatsuki, Y.)

  13. Proceeding of the 7. Seminar on Technology and Safety of Nuclear Power Plants and Nuclear Facilities

    International Nuclear Information System (INIS)

    Hastowo, Hudi; Antariksawan, Anhar R.; Soetrisnanto, Arnold Y; Jujuratisbela, Uju; Aziz, Ferhat; Su'ud, Zaki; Suprawhardana, M. Salman

    2002-02-01

    The seventh proceedings of seminar safety and technology of nuclear power plant and nuclear facilities, held by National Nuclear Energy Agency. The Aims of seminar is to exchange and disseminate information about safety and nuclear Power Plant Technology and Nuclear Facilities consist of technology; high temperature reactor and application for national development sustain able and high technology. This seminar level all aspects technology, Power Reactor research reactor, high temperature reactor and nuclear facilities. The article is separated by index

  14. Safety of Nuclear Fuel Cycle Facilities. Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication covers the broad scope of requirements for fuel cycle facilities that, in light of the experience and present state of technology, must be satisfied to ensure safety for the lifetime of the facility. Topics of specific relevance include aspects of nuclear fuel generation, storage, reprocessing and disposal

  15. Nuclear safety and radiation protection report of the CNPE EDF nuclear facilities of Tricastin - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Tricastin nuclear power plant (INB 87 and 88, Saint-Paul-Trois-Chateaux, Drome (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  16. Nuclear safety and radiation protection report of the Saint-Alban-Saint-Maurice nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Alban-Saint-Maurice nuclear power plant (INB 119 and 120, Isere (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  17. Nuclear safety and radiation protection report of the Saint-Alban-Saint-Maurice nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Alban-Saint-Maurice nuclear power plant (INB 119 and 120, Isere (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  18. Psychometric model for safety culture assessment in nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, C.S. do, E-mail: claudio.souza@ctmsp.mar.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), Av. Professor Lineu Prestes 2468, 05508-000 São Paulo, SP (Brazil); Andrade, D.A., E-mail: delvonei@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil); Mesquita, R.N. de, E-mail: rnavarro@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil)

    2017-04-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  19. Psychometric model for safety culture assessment in nuclear research facilities

    International Nuclear Information System (INIS)

    Nascimento, C.S. do; Andrade, D.A.; Mesquita, R.N. de

    2017-01-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  20. Nuclear safety and radiation protection report of Belleville-Sur-Loire nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 127 and 128). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  1. Nuclear safety and radiation protection report of the Cruas-Meysse nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 111 and 112). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  2. Nuclear safety and radiation protection report of Dampierre-En-Burly nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 84 and 85). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  3. Nuclear safety and radiation protection report of Nogent-Sur-Seine nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 129 and 130). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  4. Safety study of fire protection for nuclear fuel cycle facility

    International Nuclear Information System (INIS)

    2013-01-01

    Insufficiencies in the fire protection system of the nuclear reactor facilities were pointed out when the fire occurred due to the Niigata prefecture-Chuetsu-oki Earthquake in July, 2007. This prompted the revision of the fire protection safety examination guideline for nuclear reactors as well as commercial guidelines. The commercial guidelines have been endorsed by the regulatory body. Now commercial fire protection standards for nuclear facilities such as the design guideline and the management guideline for protecting fire in the Light Water Reactors (LWRs) are available, however, those to apply to the nuclear fuel cycle facilities such as mixed oxide fuel fabrication facility (MFFF) have not been established. For the improvement of fire protection system of the nuclear fuel cycle facilities, the development of a standard for the fire protection, corresponding to the commercial standard for LWRs were required. Thus, Japan Nuclear Energy Safety Organization (JNES) formulated a fire protection guidelines for nuclear fuel cycle facilities as a standard relevant to the fire protection of the nuclear fuel cycle facilities considering functions specific to the nuclear fuel cycle facilities. In formulating the guidelines, investigation has been conduced on the commercial guidelines for nuclear reactors in Japan and the standards relevant to the fire protection of nuclear facilities in USA and other countries as well as non-nuclear industrial fire protection standards. The guideline consists of two parts; Equipments and Management, as the commercial guidances of the nuclear reactor. In addition, the acquisition of fire evaluation data for a components (an electric cabinet, cable, oil etc.) targeted for spread of fire and the evaluation model of fire source were continued for the fire hazard analysis (FHA). (author)

  5. Nuclear safety and radiation protection report of the basic nuclear facilities of the Tricastin nuclear power plant - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Tricastin nuclear power plant (INB 87 and 88, Saint-Paul-Trois-Chateaux, Drome (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  6. Nuclear Safety Research and Facilities Department. Annual report 1999

    International Nuclear Information System (INIS)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  7. Nuclear Safety Research and Facilities Department annual report 1997

    International Nuclear Information System (INIS)

    Majborn, B.; Aarkrog, A.; Brodersen, K.

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department's research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  8. Nuclear Safety Research and Facilities Department annual report 1998

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  9. Nuclear Safety Research and Facilities Department. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E. [eds.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  10. Nuclear Safety Research and Facilities Department annual report 1999

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Jensen, Per Hedemann

    2000-01-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department´s research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and"Radioecology and Tracer Studies". The nuclear...... facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are includedtogether with a summary of the staff´s participation in national and international committees....

  11. Nuclear Safety Research and Facilities Department annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Aarkrog, A.; Brodersen, K. [and others

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department`s research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 11 tabs., 39 ills.; 74 refs.

  12. Nuclear Safety Research and Facilities Department annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department`s research and development activities were organized in two research programmes: `Radiation Protection and Reactor Safety` and `Radioecology and Tracer Studies`. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au)

  13. Nuclear Safety Research and Facilities department annual report 1996

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Heydorn, K.; Oelgaard, P.L.

    1997-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1996. The Department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 2 tabs., 28 ills

  14. Proceedings of the 9. National Seminar on Technology and Safety of Nuclear Power Plants and Nuclear Facilities

    International Nuclear Information System (INIS)

    Antariksawan, Anhar R.; Soetrisnanto, Arnold Y; Aziz, Ferhat; Untoro, Pudji; Su'ud, Zaki; Zarkasi, Amin Santoso; Lasman, As Natio

    2003-08-01

    The ninth proceedings of seminar safety and technology of nuclear power plant and nuclear facilities held by National Nuclear Energy Agency and PLN-JTK. The aims of seminar is to exchange and disseminate information about Safety and Nuclear Power Plant Technology and Nuclear Facilities consist of Technology High Temperature Reactor and Application for National Development Sustainable and High Technology. This seminar cover all aspects Technology, Power Reactor, Research Reactor High Temperature Reactor and Nuclear Facilities. There are 20 articles have separated index

  15. Documents pertaining to safety control of nuclear facilities

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls the safety of nuclear facilities in Finland. This control encompasses on one hand the evaluation of plant safety on the basis of plans and analyses pertaining to the plant and on the other hand the inspection of plant structures, systems and components as well as of operational activity. STUK also monitors plants operational experience feedback and technical developments in the field, as well as the development of safety research and takes the necessary measures on their basis. Guide YVL 1.1 describes how STUK controls the design, construction and operation of nuclear power plants. The documents to be submitted to STUK are described in the nuclear energy legislation and YVL guides. This guide presents the mode of delivery, quality, contents and number of documents to be submitted to STUK

  16. Report from the nuclear safety authority about the preparation of nuclear facilities to the year 2000 transition

    International Nuclear Information System (INIS)

    Lacoste, A.C.

    1999-01-01

    The French nuclear safety authority with the technical help of the Institute of Nuclear Protection and Safety (IPSN) started in 1998 an evaluation and control work of the measures taken by the different nuclear facility operators in anticipation of the year 2000 transition. This report makes a status of the state of preparation of nuclear facilities prior to the transition: 1 - The nuclear safety and the year 2000 transition (defense-in-depth approach, preventive actions); 2 - The action of the safety authority (demands addressed to the operators of nuclear facilities, technical evaluation and control of the methodology adopted by each operator, preparation of the safety authority to the transition, follow up of the international actions); 3 - Status of the preparation of the different operators: Electricite de France (EdF) (corrective actions, inventory and investigation of computer systems, results, corrections, preventive actions, defensive actions, synthesis), research centres, storage sites and shutdown reactors, waste storage centres of the ANDRA, CEA facilities, decommissioned or partially dismantled reactors, fuel cycle centres.. (J.S.)

  17. Nuclear safety and radiation protection report of EdF's Tricastin operational hot base nuclear facilities (BCOT) - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  18. Nuclear safety and radiation protection report of the Saint-Laurent-des-Eaux nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Laurent-des-Eaux nuclear power plant (Saint-Laurent-Nouan (FR)): 2 partially dismantled graphite-gas reactors and a graphite sleeves storage silo (INB 46 and 74), and 2 PWR reactors in operation (INB 100). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  19. Nuclear safety and radiation protection report of the Saint-Laurent-des-Eaux nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Laurent-des-Eaux nuclear power plant (Saint-Laurent-Nouan (FR)): 2 partially dismantled graphite-gas reactors and a graphite sleeves storage silo (INB 46 and 74), and 2 PWR reactors in operation (INB 100). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  20. Nuclear safety and radiation protection report of the Belleville-sur-Loire nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 127 and 128). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  1. Nuclear safety and radiation protection report of the Belleville-sur-Loire nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 127 and 128). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  2. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 84 and 85). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  3. Nuclear safety and radiation protection report of Saint-Alban Saint-Maurice nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 119 and 120). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  4. Nuclear safety and radiation protection report of the Nogent-sur-Seine nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 129 and 130). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  5. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 84 and 85). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  6. Design of concrete structures important to safety of nuclear facilities

    International Nuclear Information System (INIS)

    2001-10-01

    Civil engineering structures in nuclear installations form an important feature having implications to safety performance of these installations. The objective and minimum requirements for the design of civil engineering buildings/structures to be fulfilled to provide adequate assurance for safety of nuclear installations in India (such as pressurised heavy water reactor and related systems) are specified in the Safety standard for civil engineering structures important to safety of nuclear facilities. This standard is written by AERB to specify guidelines for implementation of the above civil engineering safety standard in the design of concrete structures important to safety

  7. Nuclear safety and radiation protection report of the Saint-Alban Saint-Maurice nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 119 and 120). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  8. Nuclear safety and radiation protection report of the Saint-Laurent-Des-Eaux nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 46, 74 and 100). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures carried out in 2013. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process) as well as the other pollutions. The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  9. Nuclear safety and radiation protection report of the Saint-Laurent-Des-Eaux nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 46, 74 and 100). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures carried out in 2014. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process) as well as the other pollutions. The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  10. Nuclear safety and radiation protection report of the Saint-Alban Saint-Maurice nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 119 and 120). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  11. Developing guidance in the nuclear criticality safety assessment for fuel cycle facilities

    International Nuclear Information System (INIS)

    Galet, C.; Evo, S.

    2012-01-01

    In this poster IRSN (Institute for radiation protection and nuclear safety) presents its safety guides whose purpose is to transmit the safety assessment know-how to any 'junior' staff or even to give a view of the safety approach on the overall risks to any staff member. IRSN has written a first version of such a safety guide for fuel cycle facilities and laboratories. It is organized into several chapters: some refer to types of assessments, others concern the types of risks. Currently, this guide contains 13 chapters and each chapter consists of three parts. In parallel to the development of criticality chapter of this guide, the IRSN criticality department has developed a nuclear criticality safety guide. It follows the structure of the three parts fore-mentioned, but it presents a more detailed first part and integrates, in the third part, the experience feedback collected on nuclear facilities. The nuclear criticality safety guide is online on the IRSN's web site

  12. Regulatory inspection of nuclear facilities and enforcement by the regulatory body. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of this Safety Guide is to provide recommendations for regulatory bodies on the inspection of nuclear facilities, regulatory enforcement and related matters. The objective is to provide the regulatory body with a high level of confidence that operators have the processes in place to ensure compliance and that they do comply with legal requirements, including meeting the safety objectives and requirements of the regulatory body. However, in the event of non-compliance, the regulatory body should take appropriate enforcement action. This Safety Guide covers regulatory inspection and enforcement in relation to nuclear facilities such as: enrichment and fuel manufacturing plants; nuclear power plants; other reactors such as research reactors and critical assemblies; spent fuel reprocessing plants; and facilities for radioactive waste management, such as treatment, storage and disposal facilities. This Safety Guide also covers issues relating to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation. Section 2 sets out the objectives of regulatory inspection and enforcement. Section 3 covers the management of regulatory inspections. Section 4 covers the performance of regulatory inspections, including internal guidance, planning and preparation, methods of inspection and reports of inspections. Section 5 deals with regulatory enforcement actions. Section 6 covers the assessment of regulatory inspections and enforcement activities. The Appendix provides further details on inspection areas for nuclear facilities

  13. Proceedings of the 8. National Seminar on Technology and Safety of Nuclear Power Plants and Nuclear Facilities

    International Nuclear Information System (INIS)

    Antariksawan, Anhar R.; Soetrisnanto, Arnold Y.; Aziz, Ferhat; Untoro, Pudji; Su'ud, Zaki; Zarkasi, Amin Santosa; Umar, Faraz H.; Teguh Bambang; Hafnan, M.; Mustafa, Bustani; Rosfian, H.

    2002-10-01

    The eight proceeding of National Seminar on Technology and Safety of Nuclear Power Plant and Nuclear Facilities held by National Atomic Energy Agency and University of Trisakti. The aims of Seminar is to exchange and disseminate information about safety and nuclear Power Plant Temperature Reactor and Application for National Development sustain able and High Technology. This Seminar covers all aspect Technology, Power Reactor : Research Reactor; High Temperature Reactor and Nuclear Facilities. There are 33 articles have separated index

  14. Life time estimation of SSCs for decommissioning safety of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, Kwan-Seong; Lee, Kune-Woo; Moon, Jei-Kwon; Jeong, Seong-Young; Lee, Jung-Jun; Kim, Geun-Ho; Choi, Byung-Seon

    2012-01-01

    Highlights: ► This paper suggests the expectation algorithm of SSCs life time for decommissioning safety of nuclear facilities. ► The life time of SSCs can be estimated by using fuzzy theory. ► The estimated results depend on the membership functions and performance characteristic functions. - Abstract: This paper suggests the estimation algorithm for life time of structure, system and components (SSCs) for decommissioning safety of nuclear facilities using the performance data of linguistic languages and fuzzy theory. The fuzzy estimation algorithm of life time can be easily applicable but the estimated results depend on the relevant membership functions and performance characteristic functions. This method will be expected to be very useful for maintenance and decommissioning of nuclear facilities’ SSCs as a safety assessment tool.

  15. Review of the nuclear safety exercises carried out in French industrial facilities

    International Nuclear Information System (INIS)

    Kissel, Ph.P.; Renard, C.; Meramedjian, H.N.

    1977-01-01

    For several years the Commissariat a l'Energie Atomique (CEA) has been organizing nuclear safety exercises in most nuclear industrial facilities, especially in fuel element fabrication plants, many of which are classified as basic nuclear facilities. The subject and extent of each exercise are decided by mutual agreement between the management of the facility and the CEA officials in charge of Assistance in Protection and Nuclear Safety (APSN). The authors deal with such subjects as criticality accidents (evacuation of facilities, regrouping of personnel, rescue operations etc.) and fire involving large quantities of radioactive material (protection of the environment by spraying water on fumes laden with radioactive aerosols etc.). During these exercises use is made of the resources available with the safety services of the facility, one or more mobile nuclear action teams of the CEA and the appropriate resources within the competence of public authorities, e.g. Civil Defence, the fire brigades, the Gendarmerie etc. Each exercise is followed by a meeting which gives an opportunity for constructive criticism and for the adoption of measures best suited for solving problems which invariably arise, such as choice of methods and resources, co-ordination of their simultaneous or gradual application and so on. (author)

  16. Nuclear safety and radiation protection report of the Saint-Laurent-Des-Eaux nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 46, 74 and 100). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures carried out in 2012. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process) as well as the other pollutions. The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  17. Criticality safety research on nuclear fuel cycle facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2004-07-01

    This paper present d s current status and future program of the criticality safety research on nuclear fuel cycle made by Japan Atomic Energy Research Institute. Experimental research on solution fuel treated in reprocessing plant has been performed using two critical facilities, STACY and TRACY. Fundamental data of static and transient characteristics are accumulated for validation of criticality safety codes. Subcritical measurements are also made for developing a monitoring system for criticality safety. Criticality safety codes system for solution and power system, and evaluation method related to burnup credit are developed. (author)

  18. Nuclear safety

    International Nuclear Information System (INIS)

    1991-02-01

    This book reviews the accomplishments, operations, and problems faced by the defense Nuclear Facilities Safety Board. Specifically, it discusses the recommendations that the Safety Board made to improve safety and health conditions at the Department of Energy's defense nuclear facilities, problems the Safety Board has encountered in hiring technical staff, and management problems that could affect the Safety Board's independence and credibility

  19. Ensuring the safety of nuclear facilities located in large cities

    International Nuclear Information System (INIS)

    Ryazantsev, E.P.; Kolyadin, V.I.; Bylkin, B.K.; Zverkov, Yu.A.

    2002-01-01

    The problems of ensuring the safety of nuclear facilities and other facilities representing a radiation hazard (hereinafter referred to as 'nuclear facilities') which are located in large cities are considered in the light of the experience with the 'Kurchatov Institute' Russian Research Centre. The accumulation of substantial quantities of spent nuclear fuel and radwaste at the Centre was an inevitable consequence of the military and civilian nuclear research programmes which started there in 1943. A comprehensive programme has been developed for reducing the impact of ionizing radiation on the Centre's personnel, the population living near the Centre and the local environment. The authors describe the basic elements of a programme for decommissioning reactor facilities and eliminating spent fuel and radwaste storage sites and also describe how the programme is progressing. (author)

  20. Improving the regulation of safety at DOE nuclear facilities. Final report

    International Nuclear Information System (INIS)

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by DOE itself. The three major recommendations are: under any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE's nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation

  1. Compilation of nuclear safety criteria potential application to DOE nonreactor facilities

    International Nuclear Information System (INIS)

    1992-03-01

    This bibliographic document compiles nuclear safety criteria applied to the various areas of nuclear safety addressed in a Safety Analysis Report for a nonreactor nuclear facility (NNF). The criteria listed are derived from federal regulations, Nuclear Regulatory Commission (NRC) guides and publications, DOE and DOE contractor publications, and industry codes and standards. The titles of the chapters and sections of Regulatory Guide 3.26, ''Standard Format and Content of Safety Analysis Reports for Fuel Reprocessing Plants'' were used to format the chapters and sections of this compilation. In each section the criteria are compiled in four groups, namely: (1) Code of Federal Regulations, (2) USNRC Regulatory Guides, (3) Codes and Standards, and (4) Supplementary Information

  2. 75 FR 9196 - Letter From Secretary of Energy Accepting Defense Nuclear Facilities Safety Board (Board...

    Science.gov (United States)

    2010-03-01

    ... DEPARTMENT OF ENERGY Letter From Secretary of Energy Accepting Defense Nuclear Facilities Safety Board (Board) Recommendation 2009-2 AGENCY: Department of Energy. ACTION: Notice. SUMMARY: The...: The Department of Energy (DOE) acknowledges receipt of Defense Nuclear Facilities Safety Board (Board...

  3. Nuclear Safety Regulations

    International Nuclear Information System (INIS)

    Novosel, N.; Prah, M.

    2008-01-01

    Beside new Ordinance on the control of nuclear material and special equipment ('Official Gazette' No. 15/08), from 2006 State Office for Nuclear Safety (SONS) adopted Ordinance on performing nuclear activities ('Official Gazette' No. 74/06) and Ordinance on special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety ('Official Gazette' No. 74/06), based on Nuclear Safety Act ('Official Gazette' No. 173/03). The Ordinance on performing nuclear activities regulates the procedure of notification of the intent to perform nuclear activities, submitting the application for the issue of a licence to perform nuclear activities, and the procedure for issuing decisions on granting a licence to perform a nuclear activity. The Ordinance also regulates the content of the forms for notification of the intent to perform nuclear activities, as well as of the application for the issue of a licence to perform the nuclear activity and the method of keeping the register of nuclear activities. According to the Nuclear Safety Act, nuclear activities are the production, processing, use, storage, disposal, transport, import, export, possession or other handling of nuclear material or specified equipment. The Ordinance on special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety regulates these mentioned conditions, whereas compliance is established by a decision passed by the SONS. Special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety are organizational, technical, technological conditions and established system of quality assurance. In 2007, State Office for Nuclear Safety finalized the text of new Ordinance on conditions for nuclear safety and protection with regard to the siting, design, construction, use and decommissioning of a facility in which a nuclear activity is

  4. Predisposal Management of Radioactive Waste from Nuclear Fuel Cycle Facilities. Specific Safety Guide

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Guide provides guidance on the predisposal management of all types of radioactive waste (including spent nuclear fuel declared as waste and high level waste) generated at nuclear fuel cycle facilities. These waste management facilities may be located within larger facilities or may be separate, dedicated waste management facilities (including centralized waste management facilities). The Safety Guide covers all stages in the lifetime of these facilities, including their siting, design, construction, commissioning, operation, and shutdown and decommissioning. It covers all steps carried out in the management of radioactive waste following its generation up to (but not including) disposal, including its processing (pretreatment, treatment and conditioning). Radioactive waste generated both during normal operation and in accident conditions is considered

  5. Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  6. Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices

    International Nuclear Information System (INIS)

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE's nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation

  7. The selection of probabilistic safety assessment techniques for non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    Vail, J.

    1992-01-01

    Historically, the probabilistic safety assessment (PSA) methodology of choice is the well known event tree/fault tree inductive technique. For reactor facilities is has stood the test of time. Some non-reactor nuclear facilities have found inductive methodologies difficult to apply. The stand-alone fault tree deductive technique has been used effectively to analyze risk in nuclear chemical processing facilities and waste handling facilities. The selection between the two choices suggest benefits from use of the deductive method for non-reactor facilities

  8. Principles of developing the knowledge portal on safety of nuclear facilities

    International Nuclear Information System (INIS)

    Klevtsov, A.; Orlov, V.Yu.; Trubchaninov, S.A.

    2010-01-01

    The general principles of developing the knowledge portal on safety of nuclear facilities are considered in the article. In future, these principles can be used for implementing the project on development of the knowledge portal for the State Nuclear Regulatory Committee of Ukraine.

  9. Design, fabrication and erection of steel structures important to safety of nuclear facilities

    International Nuclear Information System (INIS)

    2001-10-01

    Civil engineering structures in nuclear installations form an important feature having implications to safety performance of these installations. The objective and minimum requirements for the design of civil engineering buildings/structures to be fulfilled to provide adequate assurance for safety of nuclear installations in India (such as pressurised heavy water reactor and related systems) are specified in the Safety Standard for Civil Engineering Structures Important to Safety of Nuclear Facilities. This standard is written by AERB to specify guidelines for implementation of the above civil engineering safety standard in the design, fabrication and erection of steel structures important to safety

  10. A proactive method for safety management in nuclear facilities

    International Nuclear Information System (INIS)

    Grecco, Claudio Henrique dos Santos; Carvalho, Paulo Victor Rodrigues de; Santos, Isaac Antonio Luquetti dos

    2014-01-01

    Due to the modern approach to address the safety of nuclear facilities which highlights that these organizations must be able to assess and proactively manage their activities becomes increasingly important the need for instruments to evaluate working conditions. In this context, this work presents a proactive method of managing organizational safety, which has three innovative features: 1) the use of predictive indicators that provide current information on the performance of activities, allowing preventive actions and not just reactive in safety management, different from safety indicators traditionally used (reactive indicators) that are obtained after the occurrence of undesired events; 2) the adoption of resilience engineering approach in the development of indicators - indicators are based on six principles of resilience engineering: top management commitment, learning, flexibility, awareness, culture of justice and preparation for the problems; 3) the adoption of the concepts and properties of fuzzy set theory to deal with subjectivity and consistency of human trials in the evaluation of the indicators. The fuzzy theory is used primarily to map qualitative models of decision-making, and inaccurate representation methods. The results of this study aim an improvement in performance and safety in organizations. The method was applied in a radiopharmaceutical shipping sector of a nuclear facility. The results showed that the method is a good monitoring tool objectively and proactively of the working conditions of an organizational domain

  11. Problems and experience of ensuring nuclear safety in NPP spent fuel storage facilities in Russia

    International Nuclear Information System (INIS)

    Vnukov, Victor S.; Ryazanov, Boris G.

    2003-01-01

    The amount of Nuclear Power Plant (NPP) spent fuel in special storage facilities of Russia runs to more than 15000 tons and the annual growth is equal to about 850 tons. The storage facilities for spent nuclear fuel from the main nuclear reactors of Russia (RBMK-1000, VVER-1000, BN-600, EGP-6) were designed in the 60s - 70s. In the last years when the concept of closed fuel cycle and safety requirements had changed, the need was generated to have the nuclear storage facilities more crowded. First of all it is due to the necessity to increase the storage capacity because the RBMK-1000, VVER-1000, EGP-6 fuel is not reprocessed. So there comes the need for the facilities of a bigger capacity which meet the current safety requirements. The paper presents the results of studies of the most important nuclear safety issues, in particular: development of regulatory requirements; analysis of design-basis and beyond-the design-basis accidents (DBA and BDBA); computation code development and verification; justification of nuclear safety when water density goes down; the use of burn-up fraction values; the necessity and possibility to experimentally study the storage facility subcriticality; development of storage norms and rules for new types of fuel assemblies with mixed fuel and burnable poison. (author)

  12. Considerations in the safety assessment of sealed nuclear facilities

    International Nuclear Information System (INIS)

    1991-06-01

    This report is a part of the International Atomic Energy Agency's radioactive waste management programme, whose objective is to provide assistance to Member States in developing guidance for identifying safe alternatives for isolating radioactive waste from man and his environment. This report attempts to integrate information from the previous reports on decommissioning of nuclear facilities, mitigation of accidents at such facilities, and performance assessment of disposal systems to provide useful advice and qualitative guidance to those responsible for performance and safety assessments of sealed nuclear facilities by giving an overview of possible approaches and techniques for such assessments. In this context, the establishment of requirements and rules governing the radiological safety of personnel, the general public, and the environment for sealing and post-sealing activities will enable the choice of the most appropriated approach and help to promote consistency in both decommissioning and waste management standards. The near-field effects discussed in this document include gas generation, interactions of the groundwater and the residual water with other components of the system, thermal, thermo-mechanical, radiation effects and chemical and geochemical reactions. 59 refs, figs and tabs

  13. New Nuclear Safety Regulations

    International Nuclear Information System (INIS)

    Novosel, N.; Prah, M.; Cizmek, A.

    2008-01-01

    Beside new Ordinance on the control of nuclear material and special equipment (Official Gazette No. 15/08), from 2006 State Office for Nuclear Safety (SONS) adopted Ordinance on performing nuclear activities (Official Gazette No. 74/06) and Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety (Official Gazette No. 74/06), based on Nuclear Safety Act (Official Gazette No. 173/03). The Ordinance on performing nuclear activities regulates the procedure of announcing the intention to perform nuclear activity, submitting an application for the issue of a license to perform nuclear activity, and the procedure for adoption a decision on issuing a nuclear activity license. The Ordinance also regulates the contents of the application form for the announcement of the intention to perform nuclear activity, as well as of the application for the issue of a nuclear activity license and the method of keeping a nuclear activity register. The Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety regulates these mentioned conditions, whereas compliance is established by a decision passed by the SONS. Special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety are organizational, technical, technological conditions and established system of quality assurance. In 2007, SONS finalized the text of new Ordinance on nuclear safety and protection conditions for location, design, construction, operation and decommissioning of facility in which nuclear activity is performed. This Ordinance regulates nuclear safety and protection conditions for location, design, construction, operation and decommissioning of facility in which nuclear activity is performed. This Ordinance defines facilities in which nuclear activity is

  14. Framework for Integrating Safety, Operations, Security, and Safeguards in the Design and Operation of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Darby, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Horak, Karl Emanuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaChance, Jeffrey L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tolk, Keith Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Whitehead, Donnie Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2007-10-01

    The US is currently on the brink of a nuclear renaissance that will result in near-term construction of new nuclear power plants. In addition, the Department of Energy’s (DOE) ambitious new Global Nuclear Energy Partnership (GNEP) program includes facilities for reprocessing spent nuclear fuel and reactors for transmuting safeguards material. The use of nuclear power and material has inherent safety, security, and safeguards (SSS) concerns that can impact the operation of the facilities. Recent concern over terrorist attacks and nuclear proliferation led to an increased emphasis on security and safeguard issues as well as the more traditional safety emphasis. To meet both domestic and international requirements, nuclear facilities include specific SSS measures that are identified and evaluated through the use of detailed analysis techniques. In the past, these individual assessments have not been integrated, which led to inefficient and costly design and operational requirements. This report provides a framework for a new paradigm where safety, operations, security, and safeguards (SOSS) are integrated into the design and operation of a new facility to decrease cost and increase effectiveness. Although the focus of this framework is on new nuclear facilities, most of the concepts could be applied to any new, high-risk facility.

  15. Implementation plan for the Defense Nuclear Facilities Safety Board Recommendation 90-7

    International Nuclear Information System (INIS)

    Borsheim, G.L.; Cash, R.J.; Dukelow, G.T.

    1992-12-01

    This document revises the original plan submitted in March 1991 for implementing the recommendations made by the Defense Nuclear Facilities Safety Board in their Recommendation 90-7 to the US Department of Energy. Recommendation 90-7 addresses safety issues of concern for 24 single-shell, high-level radioactive waste tanks containing ferrocyanide compounds at the Hanford Site. The waste in these tanks is a potential safety concern because, under certain conditions involving elevated temperatures and low concentrations of nonparticipating diluents, ferrocyanide compounds in the presence of oxidizing materials can undergo a runaway (propagating) chemical reaction. This document describes those activities underway by the Hanford Site contractor responsible for waste tank safety that address each of the six parts of Defense Nuclear Facilities Safety Board Recommendation 90-7. This document also identifies the progress made on these activities since the beginning of the ferrocyanide safety program in September 1990. Revised schedules for planned activities are also included

  16. Report of the State Office for Nuclear Safety on state supervision of nuclear safety of nuclear facilities and radiation protection in 1998

    International Nuclear Information System (INIS)

    1999-05-01

    The legislative basis of the authority of the State Office for Nuclear Safety as the Czech national regulatory body is outlined, its organizational scheme is presented, and the responsibilities of the various departments are highlighted. The operation of major Czech nuclear facilities, including the Dukovany NPP which is in operation and the Temelin NPP which is under construction, is described with respect to nuclear safety. Since the Office's responsibilities also cover radiation protection in the Czech Republic, a survey of ionizing radiation sources and their supervision is given. Other topics include, among other things, nuclear material transport, the state system for nuclear materials accountancy and control, central registries for radiation protection, nuclear waste management, the National Radiation Monitoring Network, personnel qualification and training, emergency planning, legislative activities, international cooperation, and public information. (P.A.)

  17. Nuclear Safety Co-Ordination within Oak Ridge Operations Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W. A.; Pryor, W. A. [Research and Development Division, United States Atomic Energy Commission, Oak Ridge, TN (United States)

    1966-05-15

    The Oak Ridge Operations Office of the USAEC has within its jurisdiction multiple contractors and facilities for research and for the production of fissile materials for the atomic energy programme. Among these facilities are gaseous diffusion plants for the production of {sup 235}U-enriched uranium hexafluoride, plants for the fabrication of special components and fuel for research and production reactors, and laboratories for pilot plant studies and basic research in nuclear technology. One research laboratory is also actively engaged in criticality experimental programmes and has been a major contributor of criticality data for safety applications. These diversified programmes include the processing, fabrication and transport of practically all forms and isotopic enrichments of uranium in quantities commensurate with both laboratory and volume production requirements. Consequently, adequate nuclear safety control with reasonable economy for operations of this magnitude demands not only co-ordination and liaison between contractor and USAEC staffs, but a continuing reappraisal of safety applications in light of the most advanced information. This report outlines the role of the Oak Ridge Operations Office in these pursuits and describes as examples some specific problems in which this office co-ordinated actions necessary for their resolution. Other examples are given of parametric and procedural applications in plant processes and fissile shipments emphasizing the use of recent experimental or calculated data. These examples involve the use of mass and geometric variables, neutron absorbers and moderation control. Departures from limits specified in existing nuclear safety guides are made to advantage in light of new data, special equipment design, contingencies and acceptable risks. (author)

  18. AREVA General Inspectorate Annual Report 2013 - Status of safety in nuclear facilities

    International Nuclear Information System (INIS)

    Oursel, Luc; Riou, Jean

    2014-06-01

    This annual report by AREVA's General Inspectorate deals with the status of nuclear safety and radiation protection in the group's facilities and operations over the course of 2013. Based on the findings made during implementation of the annual inspection program, this annual report also includes the results of the analysis of significant events and the observations and assessments of specialists in the Safety Health Security Sustainable Development Department (SHSSDD), supplemented by regular interaction with the safety regulators, different government agencies, stakeholders and other nuclear operators. Additionally, this report presents the action plans put into motion and the directions taken for continuous improvement in risk prevention for operations conducted in France and internationally. In 2013, the level of safety in the group's nuclear facilities and operations remained satisfactory, although improvements are necessary in some domains. This report is based on established indicators, analyses of reported events, responses to commitments made to the regulators, and the results of different improvement actions reported on in the inspected and supported entities. In 2013, no level 2 event on the International Nuclear and Radiological Event Scale (INES) was reported, the bottom-up reporting of weak signals was confirmed, dose levels were low and there were no radiological impacts on the environment. The General Inspectorate conducted 45 inspections in 30 of the group's entities in 2013. Of these, 10 concerned sites outside France and 7 were conducted following events or particular situations. These inspections gave rise to 176 recommendations, which the inspected entities have translated into action plans. Verification of these different action plans according to planned procedures and announced schedules gave rise to 16 follow-up inspections. The major lessons learned from these inspections relate to project management, facility compliance and operational

  19. Spent Nuclear Fuel Project path forward: nuclear safety equivalency to comparable NRC-licensed facilities

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1995-11-01

    This document includes the Technical requirements which meet the nuclear safety objectives of the NRC regulations for fuel treatment and storage facilities. These include requirements regarding radiation exposure limits, safety analysis, design and construction. This document also includes administrative requirements which meet the objectives of the major elements of the NRC licensing process. These include formally documented design and safety analysis, independent technical review, and oppportunity for public involvement

  20. Risk-Informing Safety Reviews for Non-Reactor Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mubayi, V.; Azarm, A.; Yue, M.; Mukaddam, W.; Good, G.; Gonzalez, F.; Bari, R.A.

    2011-03-13

    This paper describes a methodology used to model potential accidents in fuel cycle facilities that employ chemical processes to separate and purify nuclear materials. The methodology is illustrated with an example that uses event and fault trees to estimate the frequency of a specific energetic reaction that can occur in nuclear material processing facilities. The methodology used probabilistic risk assessment (PRA)-related tools as well as information about the chemical reaction characteristics, information on plant design and operational features, and generic data about component failure rates and human error rates. The accident frequency estimates for the specific reaction help to risk-inform the safety review process and assess compliance with regulatory requirements.

  1. Risk-Informing Safety Reviews for Non-Reactor Nuclear Facilities

    International Nuclear Information System (INIS)

    Mubayi, V.; Azarm, A.; Yue, M.; Mukaddam, W.; Good, G.; Gonzalez, F.; Bari, R.A.

    2011-01-01

    This paper describes a methodology used to model potential accidents in fuel cycle facilities that employ chemical processes to separate and purify nuclear materials. The methodology is illustrated with an example that uses event and fault trees to estimate the frequency of a specific energetic reaction that can occur in nuclear material processing facilities. The methodology used probabilistic risk assessment (PRA)-related tools as well as information about the chemical reaction characteristics, information on plant design and operational features, and generic data about component failure rates and human error rates. The accident frequency estimates for the specific reaction help to risk-inform the safety review process and assess compliance with regulatory requirements.

  2. Safety at basic nuclear facilities other than nuclear power plants. Lessons learned from significant events reported in 2011 and 2012

    International Nuclear Information System (INIS)

    2014-01-01

    The third report on the safety of basic nuclear installations in France other than power reactors presents an IRSN's analysis of significant events reported to the Nuclear Safety Authority in the years 2011 and 2012. It covers plants, laboratories, research reactors and facilities for the treatment, storage or disposal of waste. This report aims to contribute to a better understanding by stakeholders and more widely by the public of the safety and radiation protection issues associated with the operation of nuclear facilities, the progress made in terms of safety as well as the identified deficiencies. The main trend shows, once again, the significant role of organizational and human factors in the significant events that occurred in 2011 and 2012, of which the vast majority are without noteworthy consequences. Aging mechanisms are another major cause of equipment failure and require special attention. The report also provides IRSN's analysis of specific events that are particularly instructive for facility safety and a synthesis of assessments performed by IRSN on topics that are important for safety and radiation protection. IRSN also includes an overview of its analysis of measures proposed by licensees for increasing the safety of their facilities after the March 2011 accident at the Fukushima Daiichi nuclear power plant in Japan, which consist of providing a 'hardened safety core' to confront extreme situations (earthquake, flooding, etc.) that are unlikely but plausible and can bring about levels of hazards higher than those taken into account in the design of the facilities

  3. Nuclear safety and radiation protection consideration in the design of research and development facility

    International Nuclear Information System (INIS)

    Akbar, M.R.

    2010-01-01

    Nuclear safety is a critically important aspect that must be considered in the design of a nuclear facility in order to ensure the protection of the workers, public and environment. This paper looks at the methodology, approach and incorporation of this aspect, specifically into the design of a research and development facility. The Health, Safety and Environmental Basis of Design is an initial analysis of nuclear safety and radiation protection considerations that is performed during the conceptual design phase and sets the baseline for what the design of the facility must conform to. It consists of general nuclear safety design principles, such as defence in depth and optimisation considerations, and a hazard management strategy. Following the Health, Safety and Environmental Basis of Design, a Preliminary Safety Assessment Report is generated during the basic design phase in conjunction with various analyses in order to assess the impact of hazards on the workers and members of the public. This assessment follows a hazard graded approach where the depth of the analysis will be determined by the impact of the worst case accident scenario in the facility. The assessment also includes a waste management strategy which is an essential aspect to be considered in the design in order to minimize the generation of waste. The safety assessment also demonstrates compliance to dose limits and risk criteria for the workers and members of the public set by the regulatory body and supported by a legal framework. Measures are taken to keep risk as low as reasonably achievable and prevent transgression of the risk and dose limits. However, a balance needs to be maintained between 5 reducing these doses further and the cost of such a reduction, which is known as optimization. It is therefore imperative to have nuclear safety specialists analyse the design in order to protect the worker and member of the public from unwarranted exposure to nuclear radiation. (author)

  4. A Study on the Allowable Safety Factor of Cut-Slopes for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Soo; Yee, Eric [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    In this study, the issues of allowable safety factor design criteria for cut-slopes in nuclear facilities is derived through case analysis, a proposed construction work slope design criteria that provides relatively detailed conditions can be applied in case of the dry season and some unclear parts of slope design criteria be modified in case of the rainy season. This safety factor can be further subdivided into two; normal and earthquake factors, a factor of 1.5 is applied for normal conditions and a factor of 1.2 is applied for seismic conditions. This safety factor takes into consideration the effect of ground water and rainfall conditions. However, no criteria for the case of cut-slope in nuclear facilities and its response to seismic conditions is clearly defined, this can cause uncertainty in design. Therefore, this paper investigates the allowable safety factor for cut-slopes in nuclear facilities, reviews conditions of both local and international cut-slope models and finally suggests an alternative method of analysis. It is expected that the new design criteria adequately ensures the stability of the cut-slope to reflect clear conditions for both the supervising and design engineers.

  5. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces.

  6. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    International Nuclear Information System (INIS)

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces

  7. Managing nuclear safety research facilities and capabilities in a changing nuclear industry: the contribution of the OECD/NEA

    International Nuclear Information System (INIS)

    Royen, J.

    2000-01-01

    Although the safety level of nuclear power plants in OECD countries is very satisfactory and the technologies basic to the resolution of safety issues have advanced considerably, continued nuclear safety research work is necessary to address many of the residual concerns, and it remains an important element in ensuring the safe operation of nuclear power plants. However, the funding levels of national Government safety research programmes have been reduced over recent years. There is concern about the ability of OECD Member countries to sustain an adequate level of nuclear safety research capability. The OECD/NEA has a key role to play in organizing reflection and exchange of information on the most efficient use of available technical resources, and in the international management of nuclear safety research facilities and capabilities in a changing nuclear industry. Possible initiatives are mentioned in the paper. (author)

  8. Annual report ''nuclear safety in France''

    International Nuclear Information System (INIS)

    2001-01-01

    This document is the 2001 annual report of the French authority of nuclear safety (ASN). It summarizes the highlights of the year 2000 and details the following aspects: the nuclear safety in France, the organization of the control of nuclear safety, the regulation relative to basic nuclear facilities, the control of facilities, the information of the public, the international relations, the organisation of emergencies, the radiation protection, the transport of radioactive materials, the radioactive wastes, the PWR reactors, the experimental reactors and other laboratories and facilities, the nuclear fuel cycle facilities, and the shutdown and dismantling of nuclear facilities. (J.S.)

  9. Nuclear space power safety and facility guidelines study

    International Nuclear Information System (INIS)

    Mehlman, W.F.

    1995-01-01

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an open-quotes Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missionsclose quotes. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system

  10. Preparation of Phased and Merged Safety Analysis Reports for New DOE Nuclear Facilities

    International Nuclear Information System (INIS)

    BISHOP, G.E.

    2000-01-01

    The Spent Nuclear Fuels Project (SNFP) is charged with moving to storage 2,100 metric tons of spent nuclear fuel elements left over from plutonium production at DOE'S Hanford site in Washington state. Two new facilities, the Cold Vacuum Drying Facility (CVDF) and the Canister Storage Building (CSB) are in final construction. In order to meet aggressive schedule commitments, the SNFP chose to prepare the safety analysis reports (SAR's) in phases that covered only specific portions of each facility's design as it was built. Each SAR also merged the preliminary and final safety analysis reports into a single SAR, thereby covering all aspects of design, construction, and operation for that portion (phase) of the facility. A policy of ''NRC equivalency'' was also implemented in parallel with this effort, with the goal of achieving a rigor of safety analysis equivalent to that of NRC-licensed fuel processing facilities. DOE Order 5480.23. ''Nuclear Safety Analysis Reports'' allows preparation of both a phased and a merged SAR to accelerate construction schedules. However, project managers must be aware that such acceleration is not guaranteed. Managers considering this approach for their project should be cognizant of numerous obstacles that will be encountered. Merging and phasing SAR's will create new, unique, and unanticipated difficulties which may actually slow construction unless expeditiously and correctly managed. Pitfalls to be avoided and good practices to be implemented in preparing phased and merged SAR's are presented. The value of applying NRC requirements to the DOE safety analysis process is also discussed. As of December, 1999, the SNFP has completed and approved a SAR for the CVDF. Approval of the SAR for the CSB is pending

  11. Status of safety in nuclear facilities - 2012. AREVA General Inspectorate Annual report

    International Nuclear Information System (INIS)

    2013-05-01

    After a message from the Areva's Chief Executive Officer and a message from the senior Vice President of safety, health, security, sustainable development, a text by the inspector general comments the key safety results (events, dose levels, radiological impacts), the inspection findings, the areas of vigilance (relationship with the ASN, the management of the criticality risk, and facility compliance), some significant topics after the Fukushima accident. Then this report addresses the status of nuclear safety and radiation protection in the group's facilities and operations. It more specifically addresses the context and findings (lessons learned from the inspections, operating experience from event, employee radiation monitoring, environmental monitoring), crosscutting processes (safety management, controlling facility compliance, subcontractor guidance and management, crisis management), specific risks (criticality risk, fire hazards, transportation safety, radioactive waste management, pollution prevention, liability mitigation and dismantling), and areas for improvement and outlook

  12. Nonreactor nuclear facilities: standards and criteria guide

    International Nuclear Information System (INIS)

    Brynda, W.J.; Junker, L.; Karol, R.C.; Lobner, P.R.; Goldman, L.A.

    1981-09-01

    This guide is a source document that identifies standards, codes, and guides that address the nuclear safety considerations pertinent to nuclear facilities as defined in DOE Order 5480.1, Chapter V, Safety of Nuclear Facilities. The guidance and criteria provided are directed toward areas of safety usually addressed in a Safety Analysis Report. The areas of safety include, but are not limited to, siting, principal design criteria and safety system design guidelines, radiation protection, accident analysis, and quality assurance. The guide is divided into two sections: general guidelines and appendices. Those guidelines that are broadly applicable to most nuclear facilities are presented in the general guidelines. These general guidelines may have limited applicability to subsurface facilities such as waste repositories. Guidelines specific to the various types or categories of nuclear facilities are presented in the appendices. These facility-specific appendices provide guidelines and identify standards and criteria that should be considered in addition to, or in lieu of, the general guidelines

  13. NMC and A and nuclear criticality safety systems integration: A prospective way for enhancement of the nuclear industry facilities safety

    International Nuclear Information System (INIS)

    Ryazanov, Boris G.; Sviridov, Victor I.; Frolov, Vladimir V.; Shvedov, Maxim O.; Mclaughlin, Thomas P.; Pruvost, Norman L.

    2003-01-01

    A considerable body of data has now been acquired about the principles, parameters and consequences of nuclear (criticality) accidents at facilities of the atomic industry in Russia, the United States, Great Britain and Japan. The total number of such accidents stands at 22. Russian and US specialists have prepared a rather extensive survey and analysis of these accidents. The final and important section of this survey is the lessons implied by the results of analysis of these 22 accidents. Among these lessons is the necessity of unconditional enforcement of control over the movement and transformations of special nuclear materials (SNM), and in particular fissile materials, (those SNMs with criticality accident concerns) during production and processing. Inadequacies in such control have been among the causes of most of the accidents that have occurred. Nuclear materials control and accounting (MC and A) for the purpose of ensuring storage reliability and nonproliferation safeguards is a major task of nuclear facilities in any nation. MC and A systems use the latest techniques and hardware for periodic control of SNM in specifically organized material balance areas. Immediate checking, periodic inventory of SNM, and measurements of the parameters of SNM at key points are the main sources of data for these systems. Data about the presence and sites of location of SNM in material balance areas that are acquired in inventories can be used for objective assessment of the status of nuclear safety. On the other hand, the inventory itself involves performance of operations that are unlike routine process engineering, and require special consideration of nuclear safety. Use of the techniques and hardware of MC and A systems not only for purposes of storage reliability, but also to ensure nuclear safety, will reduce the risk of nuclear accidents. This paper gives a concise overview of nuclear accidents that have occurred due to inadequacies in MC and A, and demonstrates

  14. Nuclear safety and regulation

    International Nuclear Information System (INIS)

    Kim, Hho Jung

    2000-03-01

    This book contains 12 chapters, which are atom and radiation, nuclear reactor and kinds of nuclear power plant, safeguard actuation system and stability evaluation for rock foundation of nuclear power plant, nuclear safety and principle, safety analysis and classification of incident, probabilistic safety assessment and major incident, nuclear safety regulation, system of nuclear safety regulation, main function and subject of safety regulation in nuclear facilities, regulation of fuel cycle and a nuclear dump site, protection of radiation and, safety supervision and, safety supervision and measurement of environmental radioactivity.

  15. Proceedings of the Topical Meeting on the safety of nuclear fuel cycle intermediate storage facilities

    International Nuclear Information System (INIS)

    1998-01-01

    The CSNI Working Group on Fuel Cycle Safety held an International Topical Meeting on safety aspects of Intermediate Storage Facilities in Newby Bridge, England, from 28 to 30 October 1997. The main purpose of the meeting was to provide a forum for the exchange of information on the technical issues on the safety of nuclear fuel cycle facilities (intermediate storage). Titles of the papers are: An international view on the safety challenges to interim storage of spent fuel. Interim storage of intermediate and high-level waste in Belgium: a description and safety aspects. Encapsulated intermediate level waste product stores at Sellafield. Safety of interim storage facilities of spent fuel: the international dimension and the IAEA's activities. Reprocessing of irradiated fuel and radwaste conditioning at Belgoprocess site: an overview. Retrieval of wastes from interim storage silos at Sellafield. Outline of the fire and explosion of the bituminization facility and the activities of the investigation committee (STAIJAERI). The fire and explosion incident of the bituminization facility and the lessons learned from the incident. Study on the scenario of the fire incident and related analysis. Study on the scenario of the explosion incident and related analysis. Accident investigation board report on the May 14, 1997 chemical explosion at the plutonium reclamation facility, Hanford site, Richland, Washington. Dry interim storage of spent nuclear fuel elements in Germany. Safe and effective system for the bulk receipt and storage of light water reactor fuel prior to reprocessing. Receiving and storage of glass canisters at vitrified waste storage center of Japan Nuclear Fuel Ltd. Design and operational experience of dry cask storage systems. Sellafield MOX plant; Plant safety design (BNFL). The assessment of fault studies for intermediate term waste storage facilities within the UK nuclear regulatory regime. Non-active and active commissioning of the thermal oxide

  16. White paper on nuclear safety in 2009

    International Nuclear Information System (INIS)

    2009-06-01

    It deals with a general introduction of nuclear safety like general safety, safety regulation and system law and standard. It indicates of nuclear energy facility safety about general safety, safety regulation of operating nuclear power plant safety regulation under constructing nuclear power plant. It deals with radiation facility safety, monitoring of environmental radiation, radiation protection, radiation control, international cooperating on nuclear energy safety and establishment of safety regulation.

  17. Supervision of the safety culture in nuclear facilities; Aufsicht über die Sicherheitskultur von Kernanlagen -- ENSI-Bericht zur Aufsichtspraxis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-11-15

    This brochure issued by the Swiss Federal Nuclear Safety Inspectorate ENSI reports on safety culture aspects in nuclear facilities and ENSI’s activities as a supervisory instance. ENSI is the independent supervisory authority for the nuclear sector in Switzerland. A definition of safety culture is presented and the development of the concepts used in its monitoring are discussed. The main attributes of a good safety culture are discussed. Further, the conceptual basics and principles of such monitoring are looked at and the methods used for the supervision of safety culture in nuclear facilities are described.

  18. Concrete structures for nuclear facilities

    International Nuclear Information System (INIS)

    1996-01-01

    The detailed requirements for the design and fabrication of the concrete structures for nuclear facilities and for the documents to be submitted to the Finnish Centre for Radiation and Nuclear Safety (STUK) are given in the guide. It also sets the requirements for the inspection of concrete structures during the construction and operation of facilities. The requirements of the guide primarily apply to new construction. As regards the repair and modification of nuclear facilities built before its publication, the guide is followed to the extent appropriate. The regulatory activities of the Finnish Centre for Radiation and Nuclear Safety during a nuclear facility's licence application review and during the construction and operation of the facility are summarised in the guide YVL 1.1

  19. Nuclear facilities

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Here is given the decree (2000-1065) of the 25. of October 2000 reporting the publication of the convention between the Government of the French Republic and the CERN concerning the safety of the LHC (Large Hadron Collider) and the SPS (Proton Supersynchrotron) facilities, signed in Geneva on July 11, 2000. By this convention, the CERN undertakes to ensure the safety of the LHC and SPS facilities and those of the operations of the LEP decommissioning. The French legislation and regulations on basic nuclear facilities (concerning more particularly the protection against ionizing radiations, the protection of the environment and the safety of facilities) and those which could be decided later on apply to the LHC, SPS and auxiliary facilities. (O.M.)

  20. Progress of nuclear safety research-2004

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Ebine, Noriya; Chuto, Toshinori; Sato, Satoshi; Ishikawa, Jun; Yamamoto, Toshihiro; Munakata, Masahiro; Asakura, Toshihide; Yamaguchi, Tetsuji; Kida, Takashi; Matsui, Hiroki; Haneishi, Akihiro; Araya, Fumimasa

    2005-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2002 through March 2004 and utilized facilities. (author)

  1. Collective statement on major nuclear safety research facilities and programmes at risk

    International Nuclear Information System (INIS)

    2001-01-01

    Nuclear safety research remains necessary, since nuclear power programmes are dynamic. In addition to maintaining in-depth competencies, its aim is to provide information to plant designers, operators and regulators in support of the resolution of safety issues, to strengthen confidence in their solution and their implementation, and also to anticipate problems of potential significance. New fields of research open up as a result of plant ageing, plant life extension, plant up-rating, optimisation of plant economics and the associated need to further reduce uncertainties in safety margins quantification. The safety evaluation of future reactor systems being developed or considered in several Member countries also requires new research efforts. Accordingly, Member countries are encouraged to support efforts to maintain key research data, facilities and programmes through national support of international co-operation and funding. This should be under-pinned by development of short-, medium- and long-term strategic visions of the needs of the nuclear safety research community, including a strong component of international collaboration given the international nature of nuclear safety issues. (author)

  2. Nonreactor nuclear facilities: Standards and criteria guide

    International Nuclear Information System (INIS)

    Brynda, W.J.; Scarlett, C.H.; Tanguay, G.E.; Lobner, P.R.

    1986-09-01

    This guide is a source document that identifies standards, codes, and guides that address the nuclear safety considerations pertinent to nuclear facilities as defined in DOE 5480.1A, Chapter V, ''Safety of Nuclear Facilities.'' The guidance and criteria provided is directed toward areas of safety usually addressed in a Safety Analysis Report. The areas of safety include, but are not limited to, siting, principal design criteria and safety system design guidelines, radiation protection, accident analysis, conduct of operations, and quality assurance. The guide is divided into two sections: general guidelines and appendices. Those guidelines that are broadly applicable to most nuclear facilities are presented in the general guidelines. Guidelines specific to the various types or categories of nuclear facilities are presented in the appendices. These facility-specific appendices provide guidelines and identify standards and criteria that should be considered in addition to, or in lieu of, the general guidelines. 25 figs., 62 tabs

  3. Probabilistic safety assessment for food irradiation facility

    International Nuclear Information System (INIS)

    Solanki, R.B.; Prasad, M.; Sonawane, A.U.; Gupta, S.K.

    2012-01-01

    Highlights: ► Different considerations are required in PSA for Non-Reactor Nuclear Facilities. ► We carried out PSA for food irradiation facility as a part of safety evaluation. ► The results indicate that the fatal exposure risk is below the ‘acceptable risk’. ► Adequate operator training and observing good safety culture would reduce the risk. - Abstract: Probabilistic safety assessment (PSA) is widely used for safety evaluation of Nuclear Power Plants (NPPs) worldwide. The approaches and methodologies are matured and general consensus exists on using these approaches in PSA applications. However, PSA applications for safety evaluation for non-reactor facilities are limited. Due to differences in the processes in nuclear reactor facilities and non-reactor facilities, the considerations are different in application of PSA to these facilities. The food irradiation facilities utilize gamma irradiation sources, X-ray machines and electron accelerators for the purpose of radiation processing of variety of food items. This is categorized as Non-Reactor Nuclear Facility. In this paper, the application of PSA to safety evaluation of food irradiation facility is presented considering the ‘fatality due to radiation overexposure’ as a risk measure. The results indicate that the frequency of the fatal exposure is below the numerical acceptance guidance for the risk to the individual. Further, it is found that the overall risk to the over exposure can be reduced by providing the adequate operator training and observing good safety culture.

  4. Examination on establishment of safety culture for operating nuclear facilities

    International Nuclear Information System (INIS)

    Taniguchi, Taketoshi

    1997-01-01

    For safely operating nuclear power facilities, in addition to the technical countermeasures, the performance of the organizations that operate and manage them is important. In this paper, the spontaneous cooperation type management system that supported the introduction and development of nuclear power generation in electric power business is analyzed from the viewpoints of organization science and behavioral psychology, and based on the results of the investigation of the sense of value and psychological characteristics of young organization members who bear future nuclear power generation, on how to foster and establish safety culture which is called second safety principle in organizations, the subjects for hereafter are discussed from the viewpoints of respect of individuals and their integration with organizations, upbringing of talents and systematic learning. The factors which compose the safety culture are shown. The form of operating and managing the organizations are seen in first generation nuclear power generation, the similarity to Japanese type enterprise operation system, the change of the prerequisite of spontaneous cooperation type management and the difference of conscience among the generations of organization members are discussed. The above subjects for hereafter are discussed. (K.I.)

  5. Decision no. 2011-DC-0215 of the French nuclear safety authority from May 5, 2011, ordering ITER Organization to proceed to a complementary safety evaluation of its basic nuclear facility in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the ITER Organization, operator of the ITER tokamak facility of Cadarache (France). (J.S.)

  6. White paper on nuclear safety in 2004

    International Nuclear Information System (INIS)

    2005-05-01

    The white paper consists of four parts. The first part described the regulation of nuclear facility decommissioning and the clearance level at which the decommissioned waste materials are not necessarily treated as radioactive materials. The second part explained the main operations of the nuclear safety regulation of the Nuclear Safety Commission and the regulatory bodies in 2004 and Mihama unit 3 accident. The third part introduced various activities for the general preservation of nuclear safety in Japan, such as safety regulation systems for nuclear facilities, disaster preparedness of nuclear facilities, progress in nuclear research, environmental radiation surveys and international cooperation on nuclear safety. The forth part contained various materials and data related to the Nuclear Safety Commission. (J.P.N.)

  7. Security culture for nuclear facilities

    Science.gov (United States)

    Gupta, Deeksha; Bajramovic, Edita

    2017-01-01

    Natural radioactive elements are part of our environment and radioactivity is a natural phenomenon. There are numerous beneficial applications of radioactive elements (radioisotopes) and radiation, starting from power generation to usages in medical, industrial and agriculture applications. But the risk of radiation exposure is always attached to operational workers, the public and the environment. Hence, this risk has to be assessed and controlled. The main goal of safety and security measures is to protect human life, health, and the environment. Currently, nuclear security considerations became essential along with nuclear safety as nuclear facilities are facing rapidly increase in cybersecurity risks. Therefore, prevention and adequate protection of nuclear facilities from cyberattacks is the major task. Historically, nuclear safety is well defined by IAEA guidelines while nuclear security is just gradually being addressed by some new guidance, especially the IAEA Nuclear Security Series (NSS), IEC 62645 and some national regulations. At the overall level, IAEA NSS 7 describes nuclear security as deterrence and detection of, and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear, other radioactive substances and their associated facilities. Nuclear security should be included throughout nuclear facilities. Proper implementation of a nuclear security culture leads to staff vigilance and a high level of security posture. Nuclear security also depends on policy makers, regulators, managers, individual employees and members of public. Therefore, proper education and security awareness are essential in keeping nuclear facilities safe and secure.

  8. Nuclear and non-nuclear safety aspects in nuclear facilities dismantling. The example of a PWR pilot decommissioning project

    International Nuclear Information System (INIS)

    Massaut, V.; Deboodt, P.; Dadoumont, J.; Valenduc, P.; Denissen, L.

    2002-01-01

    The dismantling of nuclear facilities, and in particular of nuclear power plants, involves new challenges for the nuclear industry. Although the dismantling of various activated and contaminated components is nowadays considered as almost industrial practice, the safety aspects of decommissioning bring some specific features which are not always taken into account in the operation of the plants. Moreover, most of the plants and facilities currently decommissioned are rather old and were never foreseen to be decommissioned. The operations involved in dismantling and decontamination, often imply new or unforeseen situations. On the nuclear, or radiological side, the radioprotection optimisation of the operations involved often requires to model the environment and to analyse different scenarios to tackle the operation. Recent 3-D software (like the Visiplan software) allowing representation of the actual environment and the influence of the various sources present, is really needed to be able to minimise the radiological impact on the operators. The risk of contamination spread, by opening loops and components or by the dismantling process itself, is also an important aspect of the radiological protection study. Nevertheless, the radiological aspects of the safety approach are not the only ones to be dealt with when decommissioning nuclear facilities. Indeed, classical industrial safety aspects are also important: the dismantling can bring handling and transporting risk (heavy loads, difficult ways, uneasy access, etc.) but also the handling of toxic or hazardous materials. For instance, the removal of asbestos in contaminated areas can lead to additional hazard; the presence of alkali metals (like Na or NaK), of toxic metals (like e.g. Beryllium) or of corrosive fluids (acid,...) have to be tackled often in unstructured environment, and sometimes with limited knowledge of the actual situation. This leads to approach the operations following the ASARA principle (As

  9. Use of reliability engineering tools in safety and risk assessment of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Raso, Amanda Laureano; Vasconcelos, Vanderley de; Marques, Raíssa Oliveira; Soares, Wellington Antonio; Mesquita, Amir Zacarias, E-mail: amandaraso@hotmail.com, E-mail: vasconv@cdtn.br, E-mail: raissaomarques@gmail.com, E-mail: soaresw@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Serviço de Tecnologia de Reatores

    2017-07-01

    Safety, reliability and availability are fundamental criteria in design, construction and operation of nuclear facilities, as nuclear power plants. Deterministic and probabilistic risk assessments of such facilities are required by regulatory authorities in order to meet licensing regulations, contributing to assure safety, as well as reduce costs and environmental impacts. Probabilistic Risk Assessment has become an important part of licensing requirements of the nuclear power plants in Brazil and in the world. Risk can be defined as a qualitative and/or quantitative assessment of accident sequence frequencies (or probabilities) and their consequences. Risk management is a systematic application of management policies, procedures and practices to identify, analyze, plan, implement, control, communicate and document risks. Several tools and computer codes must be combined, in order to estimate both probabilities and consequences of accidents. Event Tree Analysis (ETA), Fault Tree Analysis (FTA), Reliability Block Diagrams (RBD), and Markov models are examples of evaluation tools that can support the safety and risk assessment for analyzing process systems, identifying potential accidents, and estimating consequences. Because of complexity of such analyzes, specialized computer codes are required, such as the reliability engineering software develop by Reliasoft® Corporation. BlockSim (FTA, RBD and Markov models), RENO (ETA and consequence assessment), Weibull++ (life data and uncertainty analysis), and Xfmea (qualitative risk assessment) are some codes that can be highlighted. This work describes an integrated approach using these tools and software to carry out reliability, safety, and risk assessment of nuclear facilities, as well as, and application example. (author)

  10. Use of reliability engineering tools in safety and risk assessment of nuclear facilities

    International Nuclear Information System (INIS)

    Raso, Amanda Laureano; Vasconcelos, Vanderley de; Marques, Raíssa Oliveira; Soares, Wellington Antonio; Mesquita, Amir Zacarias

    2017-01-01

    Safety, reliability and availability are fundamental criteria in design, construction and operation of nuclear facilities, as nuclear power plants. Deterministic and probabilistic risk assessments of such facilities are required by regulatory authorities in order to meet licensing regulations, contributing to assure safety, as well as reduce costs and environmental impacts. Probabilistic Risk Assessment has become an important part of licensing requirements of the nuclear power plants in Brazil and in the world. Risk can be defined as a qualitative and/or quantitative assessment of accident sequence frequencies (or probabilities) and their consequences. Risk management is a systematic application of management policies, procedures and practices to identify, analyze, plan, implement, control, communicate and document risks. Several tools and computer codes must be combined, in order to estimate both probabilities and consequences of accidents. Event Tree Analysis (ETA), Fault Tree Analysis (FTA), Reliability Block Diagrams (RBD), and Markov models are examples of evaluation tools that can support the safety and risk assessment for analyzing process systems, identifying potential accidents, and estimating consequences. Because of complexity of such analyzes, specialized computer codes are required, such as the reliability engineering software develop by Reliasoft® Corporation. BlockSim (FTA, RBD and Markov models), RENO (ETA and consequence assessment), Weibull++ (life data and uncertainty analysis), and Xfmea (qualitative risk assessment) are some codes that can be highlighted. This work describes an integrated approach using these tools and software to carry out reliability, safety, and risk assessment of nuclear facilities, as well as, and application example. (author)

  11. Progress of nuclear safety research. 2002

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Kudo, Tamotsu; Tobita, Tohru (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2002-11-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2000 through April 2002 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001. (author)

  12. Safety Assessment for Decommissioning of Nuclear Facilities - From Methodology to the Use of Results in Decision Making

    International Nuclear Information System (INIS)

    Batandjieva, B.; Ferch, R.; Joubert, A.; Kaulard, J.; Manson, P.; Percival, K.; Thierfeldt, St.

    2008-01-01

    The safety assessment of operational facilities in the nuclear industry is well understood and methodologies have been developed and refined over several decades. Similarly safety assessment methodologies for near surface disposal facilities have been harmonized internationally during the last few years. There is however relatively less widespread and documented experience of safety assessment for decommissioning among Member States of the International Atomic Energy Agency (IAEA) and consequently there is less commonalty of approaches internationally. The importance of safety during decommissioning was further emphasized at the first review meeting of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, and the Berlin Conference 'Safe Decommissioning for Nuclear Activities' (14-18 October 2002). As a consequence during its June 2004 meeting the IAEA Board of Governors approved an Action Plan on Decommissioning of nuclear Facilities that requested the Secretariat to 'establish a forum for the sharing and exchange of national information and experience on the application of safety assessment in the context of decommissioning and provide a means to convey this information to other interested parties, also drawing on the work of other international organizations in this area'. In response the IAEA launched the International Project Evaluation and Demonstration of Safety during Decommissioning of Nuclear Facilities (DeSa) in November 2004 with the following objectives: - To develop a harmonized approach to safety assessment and define the elements of safety assessment for decommissioning; - To investigate the practical applicability of the methodology and performance of safety assessments for the decommissioning of various types of facilities through a selected number of test cases; - To investigate approaches for review of safety assessments for decommissioning activities and the development of a regulatory

  13. Dismantlement of nuclear facilities decommissioned from the Russian navy: Enhancing regulatory supervision of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Sneve, M.K.

    2013-01-01

    The availability of up to date regulatory norms and standards for nuclear and radiation safety, relevant to the management of nuclear legacy situations, combined with effective and efficient regulatory procedures for licensing and monitoring compliance, are considered to be extremely important. Accordingly the NRPA has set up regulatory cooperation programs with corresponding authorities in the Russian Federation. Cooperation began with the civilian regulatory authorities and was more recently extended to include the military authority and this joint cooperation supposed to develop the regulatory documents to improve supervision over nuclear and radiation safety while managing the nuclear military legacy facilities in Northwest Russia and other regions of the country. (Author)

  14. Dismantlement of nuclear facilities decommissioned from the Russian navy: Enhancing regulatory supervision of nuclear and radiation safety

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, M.K.

    2013-03-01

    The availability of up to date regulatory norms and standards for nuclear and radiation safety, relevant to the management of nuclear legacy situations, combined with effective and efficient regulatory procedures for licensing and monitoring compliance, are considered to be extremely important. Accordingly the NRPA has set up regulatory cooperation programs with corresponding authorities in the Russian Federation. Cooperation began with the civilian regulatory authorities and was more recently extended to include the military authority and this joint cooperation supposed to develop the regulatory documents to improve supervision over nuclear and radiation safety while managing the nuclear military legacy facilities in Northwest Russia and other regions of the country. (Author)

  15. Nuclear Safety Charter

    International Nuclear Information System (INIS)

    2008-01-01

    The AREVA 'Values Charter' reaffirmed the priority that must be given to the requirement for a very high level of safety, which applies in particular to the nuclear field. The purpose of this Nuclear Safety Charter is to set forth the group's commitments in the field of nuclear safety and radiation protection so as to ensure that this requirement is met throughout the life cycle of the facilities. It should enable each of us, in carrying out our duties, to commit to this requirement personally, for the company, and for all stakeholders. These commitments are anchored in organizational and action principles and in complete transparency. They build on a safety culture shared by all personnel and maintained by periodic refresher training. They are implemented through Safety, Health, and Environmental management systems. The purpose of these commitments, beyond strict compliance with the laws and regulations in force in countries in which we operate as a group, is to foster a continuous improvement initiative aimed at continually enhancing our overall performance as a group. Content: 1 - Organization: responsibility of the group's executive management and subsidiaries, prime responsibility of the operator, a system of clearly defined responsibilities that draws on skilled support and on independent control of operating personnel, the general inspectorate: a shared expertise and an independent control of the operating organization, an organization that can be adapted for emergency management. 2 - Action principles: nuclear safety applies to every stage in the plant life cycle, lessons learned are analyzed and capitalized through the continuous improvement initiative, analyzing risks in advance is the basis of Areva's safety culture, employees are empowered to improve nuclear Safety, the group is committed to a voluntary radiation protection initiative And a sustained effort in reducing waste and effluent from facility Operations, employees and subcontractors are treated

  16. Progress of nuclear safety research - 2005

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amaya, Masaki; Saito, Junichi; Sato, Atsushi; Sono, Hiroki; Tamaki, Hitoshi; Tonoike, Kotaro; Nemoto, Yoshiyuki; Motoki, Yasuo; Moriyama, Kiyofumi; Yamaguchi, Tetsuji; Araya, Fumimasa

    2006-03-01

    The Japan Atomic Energy Research Institute (JAERI), one of the predecessors of the Japan Atomic Energy Agency (JAEA), had conducted nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Five-Years Program for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI were the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI had conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI had taken a responsible role by providing experts in assistance to conducting accident investigations or emergency responses by the government or local government. These nuclear safety research and technical assistance to the government have been taken over as an important role by JAEA. This report summarizes the nuclear safety research activities of JAERI from April 2003 through September 2005 and utilized facilities. (author)

  17. Pumps for nuclear facilities

    International Nuclear Information System (INIS)

    1999-01-01

    The guide describes how the Finnish Radiation and Nuclear Safety Authority (STUK) controls pumps and their motors at nuclear power plants and other nuclear facilities. The scope of the control is determined by the Safety Class of the pump in question. The various phases of the control are: (1) review of construction plan, (2) control of manufacturing, and construction inspection, (3) commissioning inspection, and (4) control during operation. STUK controls Safety Class 1, 2 and 3 pumps at nuclear facilities as described in this guide. STUK inspects Class EYT (non-nuclear) pumps separately or in connection with the commissioning inspections of the systems. This guide gives the control procedure and related requirements primarily for centrifugal pumps. However, it is also applied to the control of piston pumps and other pump types not mentioned in this guide

  18. PANDA a multi-purpose thermal-hydraulics facility devoted to nuclear reactor containment safety analysis

    International Nuclear Information System (INIS)

    Paladino, Domenico

    2014-01-01

    This paper presents the multi purpose facility PANDA devised for the safety analysis of nuclear reactor containment. The passive safety systems for LWRs have been explained with details about the PAssive Nachzerfallswärmeabfuhr und Druck-Abbau Testanlage (PANDA)

  19. The ASN and nuclear facilities: towards a strengthening of safety margins

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    The new measures taken by the French Nuclear Safety Authority (ASN) as a consequence of the complementary safety assessments performed recently on nuclear facilities are reviewed in this article. The main measures are the following. Concerning EDF: -) the setting of a hard core of measures in order to assure a few safety-vital functions in any case, for instance one of this measures is to bunker some of the emergency diesel sets; -) the setting of a rapid intervention force able to provide any damaged nuclear plant with extra means in cooling and power in a very short time; -) a better training of the staff in case of severe accident. Concerning AREVA: the setting of robust means to assure the water supply of the fuel pool at La Hague plant and the setting of efficient means to mitigate the consequences of a leak of ClF 3 , HF, UF 6 in the premises of Eurodif, Socatri, TU5, GB 2 and Comurhex. Concerning CEA: -) the removal of fissile materials from the Masurca facility, -) the setting up of improved means concerning flood and sodium fires at the Phenix reactor, -) the setting up of improved means concerning the loss of coolant at the Osiris reactor, -) the setting up of improved means in case of flood, earthquake and loss of coolant at the Jules Horowitz reactor. (A.C.)

  20. White paper on nuclear safety in 2005

    International Nuclear Information System (INIS)

    2006-04-01

    The white paper consists of four parts. The first part described the outline of international discussions on safety culture and activities promoted by utilities and regulatory bodies in Japan. The second part explained the main activities of the Nuclear Safety Commission of Japan and nuclear regulatory authorities on nuclear safety regulation. The third part introduced various activities for ensuring overall nuclear safety in Japan, such as safety regulation systems for nuclear facilities, disaster measures at nuclear facilities, progress in nuclear research, nuclear safety regulation by risk-informed utilization, environmental radiation surveys, international cooperation on nuclear safety. The forth part contained various materials and data related to the Nuclear Safety Commission of Japan. (J.P.N.)

  1. Decree no 2007-1557 from November 2, 2007, relative to basic nuclear facilities and to the nuclear safety control of nuclear materials transport

    International Nuclear Information System (INIS)

    2007-11-01

    This decree concerns the enforcement of articles 5, 17 and 36 of the law 2006-686 from June 13, 2006, relative to the transparency and safety in the nuclear domain. A consultative commission of basic nuclear facilities is established. The decree presents the general dispositions relative to basic nuclear facilities, the dispositions relative to their creation and operation, to their shutdown and dismantling. It precises the dispositions in the domain of public utility services, administrative procedures and sanctions. It stipulates also the particular dispositions relative to other facilities located in the vicinity of nuclear facilities, relative to the use of pressure systems, and relative to the transport of radioactive materials. (J.S.)

  2. The decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Niel, J.Ch.; Rieu, J.; Lareynie, O.; Delrive, L.; Vallet, J.; Girard, A.; Duthe, M.; Lecomte, C.; Rozain, J.P.; Nokhamzon, J.G.; Davoust, M.; Eyraud, J.L.; Bernet, Ph.; Velon, M.; Gay, A.; Charles, Th.; Leschaeva, M.; Dutzer, M.; Maocec, Ch.; Gillet, G.; Brut, F.; Dieulot, M.; Thuillier, D.; Tournebize, F.; Fontaine, V.; Goursaud, V.; Birot, M.; Le Bourdonnec, Th.; Batandjieva, B.; Theis, St.; Walker, St.; Rosett, M.; Cameron, C.; Boyd, A.; Aguilar, M.; Brownell, H.; Manson, P.; Walthery, R.; Wan Laer, W.; Lewandowski, P.; Dorms, B.; Reusen, N.; Bardelay, J.; Damette, G.; Francois, P.; Eimer, M.; Tadjeddine, A.; Sene, M.; Sene, R.

    2008-01-01

    This file includes five parts: the first part is devoted to the strategies of the different operators and includes the following files: the decommissioning of nuclear facilities Asn point of view, decommissioning of secret nuclear facilities, decommissioning at the civil Cea strategy and programs, EDF de-construction strategy, Areva strategy for decommissioning of nuclear facilities; the second one concerns the stakes of dismantling and includes the articles as follow: complete cleanup of buildings structures in nuclear facilities, decommissioning of nuclear facilities and safety assessment, decommissioning wastes management issues, securing the financing of long-term decommissioning and waste management costs, organizational and human factors in decommissioning projects, training for the decommissioning professions: the example of the Grenoble University master degree; the third part is devoted to the management of dismantling work sites and includes the different articles as follow: decommissioning progress at S.I.C.N. plant, example of decommissioning work site in Cea Grenoble: Siloette reactor decommissioning, matters related to decommissioning sites, decommissioning of french nuclear installations: the viewpoint of a specialist company, specificities of inspections during decommissioning: the Asn inspector point of view; the fourth part is in relation with the international approach and includes as follow: IAEA role in establishing a global safety regime on decommissioning, towards harmonization of nuclear safety practices in Europe: W.E.N.R.A. and the decommissioning of nuclear facilities, EPA superfund program policy for decontamination and decommissioning, progress with remediation at Sellafield, progress and experiences from the decommissioning of the Eurochemic reprocessing plant in Belgium, activities of I.R.S.N. and its daughter company Risk-audit I.r.s.n./G.r.s. international in the field of decommissioning of nuclear facilities in eastern countries

  3. Nuclear Facility Isotopic Content (NFIC) Waste Management System to provide input for safety envelope definition

    International Nuclear Information System (INIS)

    Genser, J.R.

    1992-01-01

    The Westinghouse Savannah River Company (WSRC) is aggressively applying environmental remediation and radioactive waste management activities at the US Department of Energy's Savannah River Site (SRS) to ensure compliance with today's challenging governmental laws and regulatory requirements. This report discusses a computer-based Nuclear Facility Isotopic Content (NFIC) Waste Management System developed to provide input for the safety envelope definition and assessment of site-wide facilities. Information was formulated describing the SRS ''Nuclear Facilities'' and their respective bounding inventories of nuclear materials and radioactive waste using the NFIC Waste Management System

  4. Decision no. 2011-DC-0214 of the French nuclear safety authority from May 5, 2011, ordering CIS bio international company to proceed to a complementary safety evaluation of its basic nuclear facility in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to CIS bio international company, operator of the radiopharmaceuticals fabrication facility (INB 29) of Saclay (France). (J.S.)

  5. Progress of nuclear safety research. 2003

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amagai, Masaki; Tobita, Tohru

    2004-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2001 through March 2003 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001, and the integrity evaluation of cracked core shroud of BWRs of the Tokyo Electric Power Company performed for assistance to the Nuclear Safety Commission in reviewing the evaluation reports by the licensees. (author)

  6. Engineering judgement and bridging the fire safety gap in existing nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Qamheiah, G.; Wu, Y., E-mail: gqamheiah@plcfire.com, E-mail: dwu@plcfire.com [PLC Fire Safety Solutions, Mississauga, ON (Canada)

    2014-07-01

    Canadian nuclear power plants were constructed in the 1960's through the 1980's. Fire safety considerations were largely based on guidance from general building and fire codes in effect at the time. Since then, nuclear specific fire safety standards have been developed and adopted by the Regulator, increasing the expected level of fire safety in the process. Application of the standards to existing plants was largely limited to operational requirements viewed as retroactive. However, as existing facilities undergo modifications or refurbishment for the purpose of life extension, the expectation is that the design requirements of these fire safety standards also be satisfied. This creates considerable challenges for existing nuclear power plants as fire safety requirements such as those intended to assure means for safe egress, prevention of fire spread and protection of redundancy rely upon fire protection features that are inherent in the physical infrastructural design. This paper focuses on the methodology for conducting fire safety gap analyses on existing plants, and the integral role that engineering judgement plays in the development of viable and cost effective solutions to achieve the objectives of the current fire safety standards. (author)

  7. Enhancement of safety for reprocessing facilities

    International Nuclear Information System (INIS)

    2012-06-01

    The adequacy of the safety measures for utility loss accidents in nuclear fuel reprocessing facilities which have been formulated by the nuclear enterprises is investigated in JNES which organizes an advanced committee to specifically study this problem. The results are reviewed in the present report including the case of such severe accidents as in Fukushima Daiichi Nuclear Power Plant. The report also represents a tentative proposal for examination standards of such unimaginable severe accidents as 'station blackout,' urgent safety measures necessary for reoperation of nuclear power plants and requested by nuclear and industrial safety agency, and pointing out and clarification of the potential weakness from the safety point of view, and collective and composite evaluation of safety of the relevant facilities. Furthermore, the definition of accident management is given as of controlled condition and the authorized way of thinking for the cases of plural events happening at the same time and the cases when risks exist radioactivity emits with explosion. (S. Ohno)

  8. Posiva's application for a decision in principle concerning a disposal facility for spent nuclear fuel. STUK's statement and preliminary safety appraisal

    International Nuclear Information System (INIS)

    Ruokola, E.

    2000-03-01

    In May 1999, Posiva Ltd submitted to the Government an application, pursuant to the Nuclear Energy Act, for a Decision in Principle on a disposal facility for spent nuclear fuel from the Finnish nuclear power plants. The Ministry of Trade and Industry requested the Radiation and Nuclear Safety Authority (STUK) to draw up a preliminary safety appraisal concerning the proposed disposal facility. In the beginning of this report, STUK's statement to the Ministry and Industry concerning the proposed disposal facility is given. In that statement, STUK concludes that the Decision in Principle is currently justified from the standpoint of safety. The statement is followed by a safety appraisal, where STUK deems, how the proposed disposal concept, site and facility comply with the safety requirements included in the Government's Decision (478/1999). STUK's preliminary safety appraisal was supported by contributions from a number of outside experts. A collective opinion by an international group of ten distinguished experts is appended to this report. (orig.)

  9. Risk communication activities toward nuclear safety in Tokai: your safety is our safety

    International Nuclear Information System (INIS)

    Tsuchiya, T.

    2007-01-01

    As several decades have passed since the construction of nuclear power plants began, residents have become gradually less interested in nuclear safety. The Tokai criticality accident in 1909, however, had roused residents in Tokai-Mura to realize that they live with nuclear technology risks. To prepare a field of risk communication, the Tokai-Mura C 3 project began as a pilot research project supported by NISA. Alter the project ended, we are continuing risk. communication activities as a non-profit organisation. The most important activity of C 3 project is the citizen's inspection programme for nuclear related facilities. This programme was decided by participants who voluntarily applied to the project. The concept of the citizen's inspection programme is 'not the usual facility tours'. Participants are involved from the planning stage and continue to communicate with workers of the inspected nuclear facility. Since 2003, we have conducted six programmes for five nuclear related organisations. Participants evaluated that radiation protection measures were near good but there were some problems concerning the worker's safety and safety culture, and proposed a mixture of advice based on personal experience. Some advice was accepted and it did improve the facility's safety measures. Other suggestions were not agreed upon by nuclear organisations. The reason lies in the difference of concept between the nuclear expert's 'safety' and the citizen's 'safety'. Residents do not worry about radiation only, but also about the facility's safety as a whole including the worker's safety. They say, 'If the workers are not safe, you also are unable to protect us'. Although the disagreement remained, the participants and the nuclear industry learned much about each other. Participating citizens received a substantial amount of knowledge about the nuclear industry and its safety measures, and feel the credibility and openness of the nuclear industry. On the other hand, the nuclear

  10. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    1993-11-01

    This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24

  11. Software Quality Assurance for Nuclear Safety Systems

    International Nuclear Information System (INIS)

    Sparkman, D R; Lagdon, R

    2004-01-01

    The US Department of Energy has undertaken an initiative to improve the quality of software used to design and operate their nuclear facilities across the United States. One aspect of this initiative is to revise or create new directives and guides associated with quality practices for the safety software in its nuclear facilities. Safety software includes the safety structures, systems, and components software and firmware, support software and design and analysis software used to ensure the safety of the facility. DOE nuclear facilities are unique when compared to commercial nuclear or other industrial activities in terms of the types and quantities of hazards that must be controlled to protect workers, public and the environment. Because of these differences, DOE must develop an approach to software quality assurance that ensures appropriate risk mitigation by developing a framework of requirements that accomplishes the following goals: (sm b ullet) Ensures the software processes developed to address nuclear safety in design, operation, construction and maintenance of its facilities are safe (sm b ullet) Considers the larger system that uses the software and its impacts (sm b ullet) Ensures that the software failures do not create unsafe conditions Software designers for nuclear systems and processes must reduce risks in software applications by incorporating processes that recognize, detect, and mitigate software failure in safety related systems. It must also ensure that fail safe modes and component testing are incorporated into software design. For nuclear facilities, the consideration of risk is not necessarily sufficient to ensure safety. Systematic evaluation, independent verification and system safety analysis must be considered for software design, implementation, and operation. The software industry primarily uses risk analysis to determine the appropriate level of rigor applied to software practices. This risk-based approach distinguishes safety

  12. Operational status of nuclear facilities in Japan. 2008 edition

    International Nuclear Information System (INIS)

    2008-01-01

    This document is a summary of the outline of the safety regulation administration of nuclear facilities as well as various data on the commercial nuclear power reactor facilities, research and development nuclear power reactor facilities, fabrication facilities, reprocessing facilities, and disposal facilities in fiscal year 2007 (from April 2007 to March 2008). I sincerely hope this document is used widely by many people engaged in work related to ensuring nuclear safety. (J.P.N.)

  13. Operational status of nuclear facilities in Japan. 2010 edition

    International Nuclear Information System (INIS)

    2010-01-01

    This document is a summary of the outline of the safety regulation administration of nuclear facilities as well as various data on the commercial nuclear power reactor facilities, research and development nuclear power reactor facilities, fabrication facilities, reprocessing facilities, and disposal facilities in fiscal year 2009 (from April 2009 to March 2010). We sincerely hope this document is used widely by many people engaged in work related to ensuring nuclear safety. (author)

  14. First start-up of nuclear criticality safety experiment facility for uranyl nitrate solution

    International Nuclear Information System (INIS)

    Zhu Qingfu; Shi Yongqian; Shen Leisheng; Hu Dingsheng; Zhao Shouzhi; He Tao; Sun Zheng; Lin Shenghuo; Yao Shigui

    2005-01-01

    The uranyl nitrate solution experiment facility for the research on nuclear criticality safety is described. The nuclear fuel loading steps in the first start-up for water-reflected core are presented. During the experiments, the critical volume of uranyl nitrate solution was determined as 20479.62 mL with count rate inverse extrapolation method, reactivity interpolation method, and steady power method. By calculation, critical mass of 235 U was derived as 1579.184 g from experimental data. The worth of control rods was also calibrated in the first start-up of the facility. (authors)

  15. Presentation of the process External communications on the nuclear facilities operation of the Adjunct Head Office of Nuclear Safety of Comision Nacional de Seguridad Nuclear y Salvaguardias

    International Nuclear Information System (INIS)

    Espinosa V, J. M.

    2012-10-01

    The Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) in use of their attributions granted by the Regulation Law of the constitutional Art. 27 in nuclear matter began the development of the called process External communications on the nuclear facilities operation, with the purpose of negotiating the evaluation of the concerns related with the safety of the nuclear facilities received these of external people to the CNSNS. The process External communications on the nuclear facilities operation will allow to the public's members and the workers that carry out activities inside the mark regulator imposed by the CNSNS that report to this Commission their concerns related with safety for several means (for example, directly to the personnel of the assigned Office, official and public statements, phone communication, electronic mail, etc.) The present article presents the legal mark confers the CNSNS the attributions to develop the mentioned process and exposes the most important elements that compose it. The term External communication on the nuclear facilities operation is defined and also is described how these communications are received, evaluated and closed by the assigned Office. Of equal way the objectives that intents to reach this process are indicated. The intention of the mentioned process is to strengthen the actions that the CNSNS carries out in the execution of its functions to maintain the safety standards in the operation of the nuclear facilities in Mexico. (Author)

  16. Steel structures for nuclear facilities

    International Nuclear Information System (INIS)

    1993-01-01

    In the guide the requirements concerning design and fabrication of steel structures for nuclear facilities and documents to be submitted to the Finnish Centre for Radiation and Nuclear Safety (STUK) are presented. Furthermore, regulations concerning inspection of steel structures during construction of nuclear facilities and during their operation are set forth

  17. Probabilistic safety analysis for nuclear fuel cycle facilities, an exemplary application for a fuel fabrication plant

    International Nuclear Information System (INIS)

    Gmal, B.; Gaenssmantel, G.; Mayer, G.; Moser, E.F.

    2013-01-01

    In order to assess the risk of complex technical systems, the application of the Probabilistic Safety Assessment (PSA) in addition to the Deterministic Safety Analysis becomes of increasing interest. Besides nuclear installations this applies to e. g. chemical plants. A PSA is capable of expanding the basis for the risk assessment and of complementing the conventional deterministic analysis, by which means the existing safety standards of that facility can be improved if necessary. In the available paper, the differences between a PSA for a nuclear power plant and a nuclear fuel cycle facility (NFCF) are discussed in shortness and a basic concept for a PSA for a nuclear fuel cycle facility is described. Furthermore, an exemplary PSA for a partial process in a fuel assembly fabrication facility is described. The underlying data are partially taken from an older German facility, other parts are generic. Moreover, a selected set of reported events corresponding to this partial process is taken as auxiliary data. The investigation of this partial process from the fuel fabrication as an example application shows that PSA methods are in principle applicable to nuclear fuel cycle facilities. Here, the focus is on preventing an initiating event, so that the system analysis is directed to the modeling of fault trees for initiating events. The quantitative results of this exemplary study are given as point values for the average occurrence frequencies. They include large uncertainties because of the limited documentation and data basis available, and thus have only methodological character. While quantitative results are given, further detailed information on process components and process flow is strongly required for robust conclusions with respect to the real process. (authors)

  18. Outline of the report on the seismic safety examination of nuclear facilities based on the 1995 Hyogoken-Nanbu earthquake (tentative translation) - September 1995

    International Nuclear Information System (INIS)

    2003-01-01

    From the standpoint of thoroughly confirming the seismic safety of nuclear facilities, Nuclear Safety Commission established an Examination Committee on the Seismic Safety of Nuclear Power Reactor Facilities (hereinafter called Seismic Safety Examination Committee) based on the 1995 Hyogoken-Nanbu Earthquake on January 19, 1995, two days after the occurrence of the earthquake, in order to examine the validity of related guidelines on the seismic design to be used for the safety examination. This report outlines the results of the examinations by the Seismic Safety Examination Committee: basic principle of examinations at the seismic safety examination committee, overview on the related guidelines of the seismic design, information and knowledge obtained on the 1995 Hyogoken-Nanbu earthquake, examination of validity of the guidelines based on various information of the Hyogoken-Nanbu earthquake. The Seismic Design Examination Committee surveyed the related guidelines on seismic design, selected the items to be examined, and examined on those items based on the knowledge obtained from the Hyogoken-Nanbu Earthquake. As a result, the Committee confirmed that the validity of the guidelines regulating the seismic design of nuclear facilities is not impaired even though on the basis of the Hyogoken-Nanbu Earthquake. However, the people related to the nuclear facilities may not be content with the above result, but continuously put efforts in doing the following matters to improve furthermore the reliability of seismic design of nuclear facilities by always reflecting the latest knowledge on the seismic design. 1) - The people related to nuclear facilities must seriously accept the fact that valuable knowledge could be obtained from the Hyogoken-Nanbu Earthquake, try to study and analyze the obtained data, and reflect the results of investigations, studies, and examinations conducted appropriately to the seismic design of nuclear facilities referring to the investigations

  19. Hot Cell Facility (HCF) Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  20. Hot Cell Facility (HCF) Safety Analysis Report

    International Nuclear Information System (INIS)

    MITCHELL, GERRY W.; LONGLEY, SUSAN W.; PHILBIN, JEFFREY S.; MAHN, JEFFREY A.; BERRY, DONALD T.; SCHWERS, NORMAN F.; VANDERBEEK, THOMAS E.; NAEGELI, ROBERT E.

    2000-01-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR

  1. Accidental safety analysis methodology development in decommission of the nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, G. H.; Hwang, J. H.; Jae, M. S.; Seong, J. H.; Shin, S. H.; Cheong, S. J.; Pae, J. H.; Ang, G. R.; Lee, J. U. [Seoul National Univ., Seoul (Korea, Republic of)

    2002-03-15

    Decontamination and Decommissioning (D and D) of a nuclear reactor cost about 20% of construction expense and production of nuclear wastes during decommissioning makes environmental issues. Decommissioning of a nuclear reactor in Korea is in a just beginning stage, lacking clear standards and regulations for decommissioning. This work accident safety analysis in decommissioning of the nuclear facility can be a solid ground for the standards and regulations. For source term analysis for Kori-1 reactor vessel, MCNP/ORIGEN calculation methodology was applied. The activity of each important nuclide in the vessel was estimated at a time after 2008, the year Kori-1 plant is supposed to be decommissioned. And a methodology for risk analysis assessment in decommissioning was developed.

  2. DRY TRANSFER FACILITY CRITICALITY SAFETY CALCULATIONS

    International Nuclear Information System (INIS)

    C.E. Sanders

    2005-01-01

    This design calculation updates the previous criticality evaluation for the fuel handling, transfer, and staging operations to be performed in the Dry Transfer Facility (DTF) including the remediation area. The purpose of the calculation is to demonstrate that operations performed in the DTF and RF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Dry Transfer Facility Description Document'' (BSC 2005 [DIRS 173737], p. 3-8). A description of the changes is as follows: (1) Update the supporting calculations for the various Category 1 and 2 event sequences as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2005 [DIRS 171429], Section 7). (2) Update the criticality safety calculations for the DTF staging racks and the remediation pool to reflect the current design. This design calculation focuses on commercial spent nuclear fuel (SNF) assemblies, i.e., pressurized water reactor (PWR) and boiling water reactor (BWR) SNF. U.S. Department of Energy (DOE) Environmental Management (EM) owned SNF is evaluated in depth in the ''Canister Handling Facility Criticality Safety Calculations'' (BSC 2005 [DIRS 173284]) and is also applicable to DTF operations. Further, the design and safety analyses of the naval SNF canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. Also, note that the results for the Monitored Geologic Repository (MGR) Site specific Cask (MSC) calculations are limited to the

  3. Quarterly report on Defense Nuclear Facilities Safety Board Recommendation 90-7 for the period ending December 31, 1992

    International Nuclear Information System (INIS)

    Cash, R.J.; Dukelow, G.T.; Forbes, C.J.

    1993-03-01

    This is the seventh quarterly report on the progress of activities addressing safety issues associated with Hanford Site high-level radioactive waste tanks that contain ferrocyanide compounds. In the presence of oxidizing materials, such as nitrates or nitrites, ferrocyanide can be made to explode in the laboratory by heating it to high temperatures [above 285 degrees C (545 degrees F)]. In the mid 1950s approximately 140 metric tons of ferrocyanide were added to 24 underground high-level radioactive waste tanks. An implementation plan (Cash 1991) responding to the Defense Nuclear Facilities Safety Board Recommendation 90-7 (FR 1990) was issued in March 1991 describing the activities that were planned and underway to address each of the six parts of Recommendation 90-7. A revision to the original plan was transmitted to US Department of Energy by Westinghouse Hanford Company in December 1992. Milestones completed this quarter are described in this report. Contents of this report include: Introduction; Defense Nuclear Facilities Safety Board Implementation Plan Task Activities (Defense Nuclear Facilities Safety Board Recommendation for enhanced temperature measurement, Recommendation for continuous temperature monitoring, Recommendation for cover gas monitoring, Recommendation for ferrocyanide waste characterization, Recommendation for chemical reaction studies, and Recommendation for emergency response planning); Schedules; and References. All actions recommended by the Defense Nuclear Facilities Safety Board for emergency planning by Hanford Site emergency preparedness organizations have been completed

  4. Safety assessment and surveillance of decommissioning operations at DOE's nuclear facilities

    International Nuclear Information System (INIS)

    Cowgill, M.G.; Prochnow, D.; Worthington, P.R.

    1995-01-01

    A description is provided of a systematic approach currently being developed and deployed at the Department of Energy to obtain assurance that post-operational activities at nuclear facilities will be conducted in a safe manner. Using this approach, personnel will have available a formalized set of safety principles and associated question sets to assist them in the conducting of safety assessments and surveillance. Information gathered through this means will also be analyzed to determine if there are any generic complex-wide strengths or deficiencies associated with decommissioning activities and to which attention should be drawn

  5. Civaux nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Civaux, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  6. Chooz nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Chooz, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  7. Brennilis nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Brennilis, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  8. Nuclear safety in crisis regions

    International Nuclear Information System (INIS)

    Ustohalova, Veronika; Englert, Matthias

    2017-01-01

    The use of nuclear energy demands extensive institutional and material infrastructure upon a foundation of stable intrastate conditions and interstate relations. Conflicts can result in catastrophic accidents, either deliberately or unintentionally. If there are nuclear facilities located in a crisis region, the risk of a nuclear disaster is markedly heightened. This can be explained not only in terms of the strategic relevance of the energy supply in military conflicts, but also the increased accident risks and hazards arising from collateral damage, as well as the erosion of the safety culture and institutional control in crisis regions with a nuclear infrastructure. Even just the escalation of a political dispute or the persistence of low intensity conflicts can make it generally more difficult and complex to maintain nuclear safety, if intrastate safety mechanisms come under strain or even fail as a result. So far no instance of military escalation, past or present, has led to an accident in a civil nuclear facility. Nevertheless, questions are clearly raised about the vulnerability of nuclear facilities in crisis regions and the risks associated with this vulnerability. Despite the potentially far-reaching consequences, too little attention is currently being paid to the linkage between intra- and interstate conflicts and the safety of nuclear facilities in crisis regions. The aim of the research presented here was to explore this theme and, after laying the groundwork in this manner, to raise awareness among policy-makers and the wider public. In this context the escalation of conflicts in the Ukraine is a particular focus. The first part of the report begins with a systematic look at the link between crisis regions and/or conflicts and nuclear safety. The various impact pathways relating to nuclear facility safety and the associated risks are described in relation to potential hazards induced by crises and wars. A nuclear facility can itself become a theatre

  9. Nuclear safety in crisis regions

    Energy Technology Data Exchange (ETDEWEB)

    Ustohalova, Veronika; Englert, Matthias

    2017-04-12

    The use of nuclear energy demands extensive institutional and material infrastructure upon a foundation of stable intrastate conditions and interstate relations. Conflicts can result in catastrophic accidents, either deliberately or unintentionally. If there are nuclear facilities located in a crisis region, the risk of a nuclear disaster is markedly heightened. This can be explained not only in terms of the strategic relevance of the energy supply in military conflicts, but also the increased accident risks and hazards arising from collateral damage, as well as the erosion of the safety culture and institutional control in crisis regions with a nuclear infrastructure. Even just the escalation of a political dispute or the persistence of low intensity conflicts can make it generally more difficult and complex to maintain nuclear safety, if intrastate safety mechanisms come under strain or even fail as a result. So far no instance of military escalation, past or present, has led to an accident in a civil nuclear facility. Nevertheless, questions are clearly raised about the vulnerability of nuclear facilities in crisis regions and the risks associated with this vulnerability. Despite the potentially far-reaching consequences, too little attention is currently being paid to the linkage between intra- and interstate conflicts and the safety of nuclear facilities in crisis regions. The aim of the research presented here was to explore this theme and, after laying the groundwork in this manner, to raise awareness among policy-makers and the wider public. In this context the escalation of conflicts in the Ukraine is a particular focus. The first part of the report begins with a systematic look at the link between crisis regions and/or conflicts and nuclear safety. The various impact pathways relating to nuclear facility safety and the associated risks are described in relation to potential hazards induced by crises and wars. A nuclear facility can itself become a theatre

  10. Inquiry relating to safety due to modification of usage of nuclear fuel material (establishment of waste safety testing facility) in Tokai Laboratory, Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1979-01-01

    Application was made to the director of the Science and Technology Agency (STA) for the license relating to the modification of usage of nuclear fuel material (the establishment of waste safety testing facility) from the director of the Japan Atomic Energy Research Institute on November 30, 1978. After passing through the safety evaluation in the Nuclear Safety Bureau of STA, inquiry was conducted to the head of the Atomic Energy Safety Commission (AESC) on June 6, 1979, from the director of the STA. The head of AESC directed to conduct the safety examination to the head of the Nuclear Fuel Safety Examination Specialist Committee on June 7, 1979. The content of the modification of usage of nuclear fuel material is the establishment of waste safety testing facility to study and test the safety relating to the treatment and disposal of high level radioactive liquid wastes due to the reprocessing of spent fuel. As for the results of the safety examination, the siting of the waste safety testing facility which is located in the Tokai Laboratory, Japan Atomic Energy Research Institute (JAERI), and the test plan of the glass solidification of high level radioactive liquid are presented as the outline of the study plan. The building, main equipments including six cells, the isolation room and the glove box, the storage, and the disposal facilities for gas, liquid and solid wastes are explained as the outline of the facilities. Concerning the items from the viewpoint of safety, aseismatic design, slightly vacuum operation, shielding, decay heat removal, fire protection, explosion protection, criticality management, radiation management and environmental effect were evaluated, and the safety was confirmed. (Nakai, Y.)

  11. Risk-informing safety reviews for non-reactor nuclear facilities: an example application

    International Nuclear Information System (INIS)

    Mubayi, V.; Yue, M.; Bari, R.A.; Azarm, M.A.; Mukaddam, W.; Good, G.; Gonzalez, F.

    2013-01-01

    This paper describes a methodology used to model potential accidents in fuel cycle facilities that employ chemical processes to separate and purify nuclear materials. The methodology is illustrated with an example that uses event and fault trees to estimate the frequency of a specific energetic reaction that can occur in nuclear material processing facilities. The methodology used probabilistic risk assessment (PRA)-related tools as well as information about the chemical reaction characteristics, information on plant design and operational features, and generic data about component failure rates and human error rates. The accident frequency estimates for the specific reaction can be useful to help to risk-inform a safety review process and assess compliance with regulatory requirements. (authors)

  12. Decree of the Czech Labor Safety Office No. 263/1991 amending the Decree No. 76/1989 on ensuring safety of technical facilities in the nuclear power sector

    International Nuclear Information System (INIS)

    1995-01-01

    Some provisions of the Decree of the Czech Labor Safety Office No. 76/1989 on ensuring safety of technical facilities in the nuclear power sector are amended, particularly in the field of construction activities, assembling, reconstruction and repair of nuclear power facilities. The Decree entered into force on 28 June 1991. (J.B.)

  13. Ventilation in nuclear facilities. Organisation of nuclear safety in France

    International Nuclear Information System (INIS)

    Bouhet, J.C.

    1982-01-01

    Having defined safety and analysis of safety, the nature and significance of nuclear hazards are indicated, highlighting the importance of ventilation for safety. The authorization procedure for the creation and commissioning of an installation is also indicated. The list of safety organizations in France is given. Mention is then made of the general technical regulations, their aim and working out. To conclude, normalization and its application to the ventilation of nuclear installations is examined [fr

  14. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2010; Rapport sur la surete nucleaire et la radioprotection des installations nucleaires de Chooz - 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-15

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chooz nuclear power plant (Ardennes (FR)): 2 PWR reactors in operation (Chooz B, INB 139 and 144) and one partially dismantled PWR reactor (Chooz A, INB 163). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  15. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2010; Rapport sur la surete nucleaire et la radioprotection des installations nucleaires de Flamanville - 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-15

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Flamanville nuclear power plant (Manche (FR)): 2 PWR reactors in operation (INB 108 and 109), and 1 PWR under construction (Flamanville 3, INB 167). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, water consumption and waste management at Flamanville 3 construction site) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  16. EUROSAFE Forum for nuclear safety. Towards Convergence of Technical Nuclear Safety Practices in Europe. Safety Improvements - Reasons, Strategies, Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Erven, Ulrich (ed.) [Gesellschaft fuer Anlagen- und Reaktorsicherheit, GRS mbH, Schwertnergasse 1, 50667 Koeln (Germany); Cherie, Jean-Bernard (ed.) [Institut de Radioprotection et de Surete Nucleaire, IRSN, BP 17, 92262 Fontenay-aux-Roses Cedex (France); Boeck, Benoit De (ed.) [Association Vincotte Nuclear, AVN, Rue Walcourt 148, 1070 Bruxelles (Belgium)

    2005-07-01

    The EUROSAFE Forum for Nuclear Safety is part of the EUROSAFE approach, which consists of two further elements: the EUROSAFE Tribune and the EUROSAFE Web site. The general aim of EUROSAFE is to contribute to fostering the convergence of technical nuclear safety practices in a broad European context. This is done by providing technical safety and research organisations, safety authorities, power utilities, the rest of the industry and non-governmental organisations mainly from the European Union and East-European countries, and international organisations with a platform for the presentation of recent analyses and R and D in the field of nuclear safety. The goal is to share experiences, to exchange technical and scientific opinions, and to conduct debates on key issues in the fields of nuclear safety and radiation protection. The EUROSAFE Forum on 2005 focused on Safety Improvements, Reasons - Strategies - Implementation, from the point of view of the authorities, TSOs and industry. Latest work in nuclear installation safety and research, waste management, radiation safety as well as nuclear material and nuclear facilities security carried out by GRS, IRSN, AVN and their partners in the European Union, Switzerland and Eastern Europe are presented. A high level of nuclear safety is a priority for the countries of Europe. The technical safety organisations play an important role in contributing to that objective through appropriate approaches to major safety issues as part of their assessments and research activities. The challenges to nuclear safety are international. Changes in underlying technologies such as instrumentation and control, the impact of electricity market deregulation, demands for improved safety and safety management, the ageing of nuclear facilities, waste management, maintaining and improving scientific and technical knowledge, and the need for greater transparency - these are all issues where the value of an international approach is gaining

  17. EUROSAFE Forum for nuclear safety. Towards Convergence of Technical Nuclear Safety Practices in Europe. Safety Improvements - Reasons, Strategies, Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Erven, Ulrich [Gesellschaft fuer Anlagen- und Reaktorsicherheit, GRS mbH, Schwertnergasse 1, 50667 Koeln (Germany); Cherie, Jean-Bernard [Institut de Radioprotection et de Surete Nucleaire, IRSN, BP 17, 92262 Fontenay-aux-Roses Cedex (France); Boeck, Benoit De [Association Vincotte Nuclear, AVN, Rue Walcourt 148, 1070 Bruxelles (Belgium)

    2005-07-01

    The EUROSAFE Forum for Nuclear Safety is part of the EUROSAFE approach, which consists of two further elements: the EUROSAFE Tribune and the EUROSAFE Web site. The general aim of EUROSAFE is to contribute to fostering the convergence of technical nuclear safety practices in a broad European context. This is done by providing technical safety and research organisations, safety authorities, power utilities, the rest of the industry and non-governmental organisations mainly from the European Union and East-European countries, and international organisations with a platform for the presentation of recent analyses and R and D in the field of nuclear safety. The goal is to share experiences, to exchange technical and scientific opinions, and to conduct debates on key issues in the fields of nuclear safety and radiation protection. The EUROSAFE Forum on 2005 focused on Safety Improvements, Reasons - Strategies - Implementation, from the point of view of the authorities, TSOs and industry. Latest work in nuclear installation safety and research, waste management, radiation safety as well as nuclear material and nuclear facilities security carried out by GRS, IRSN, AVN and their partners in the European Union, Switzerland and Eastern Europe are presented. A high level of nuclear safety is a priority for the countries of Europe. The technical safety organisations play an important role in contributing to that objective through appropriate approaches to major safety issues as part of their assessments and research activities. The challenges to nuclear safety are international. Changes in underlying technologies such as instrumentation and control, the impact of electricity market deregulation, demands for improved safety and safety management, the ageing of nuclear facilities, waste management, maintaining and improving scientific and technical knowledge, and the need for greater transparency - these are all issues where the value of an international approach is gaining

  18. Evaluation of natural phenomena hazards as part of safety assessments for nuclear facilities

    International Nuclear Information System (INIS)

    Kot, C.A.; Hsieh, B.J.; Srinivasan, M.G.; Shin, Y.W.

    1995-02-01

    The continued operation of existing US Department of Energy (DOE) nuclear facilities and laboratories requires a safety reassessment based on current criteria and guidelines. This also includes evaluations for the effects of Natural Phenomena Hazards (NPH), for which these facilities may not have been designed. The NPH evaluations follow the requirements of DOE Order 5480.28, Natural Phenomena Hazards Mitigation (1993) which establishes NPH Performance Categories (PCs) for DOE facilities and associated target probabilistic performance goals. These goals are expressed as the mean annual probability of exceedance of acceptable behavior for structures, systems and components (SSCs) subjected to NPH effects. The assignment of an NPH Performance Category is based on the overall hazard categorization (low, moderate, high) of a facility and on the function of an SSC under evaluation (DOE-STD-1021, 1992). Detailed guidance for the NPH analysis and evaluation criteria are also provided (DOE-STD-1020, 1994). These analyses can be very resource intensive, and may not be necessary for the evaluation of all SSCs in existing facilities, in particular for low hazard category facilities. An approach relying heavily on screening inspections, engineering judgment and use of NPH experience data (S. J. Eder et al., 1993), can minimize the analytical effort, give reasonable estimates of the NPH susceptibilities, and yield adequate information for an overall safety evaluation of the facility. In the following sections this approach is described in more detail and is illustrated by an application to a nuclear laboratory complex

  19. Nuclear safety

    International Nuclear Information System (INIS)

    2014-01-01

    The Program on Nuclear Safety comprehends Radioprotection, Radioactive Waste Management and Nuclear Material Control. These activities are developed at the Nuclear Safety Directory. The Radioactive Waste Management Department (GRR) was formally created in 1983, to promote research and development, teaching and service activities in the field of radioactive waste. Its mission is to develop and employ technologies to manage safely the radioactive wastes generated at IPEN and at its customer’s facilities all over the country, in order to protect the health and the environment of today's and future generations. The Radioprotection Service (GRP) aims primarily to establish requirements for the protection of people, as workers, contractors, students, members of the general public and the environment from harmful effects of ionizing radiation. Furthermore, it also aims to establish the primary criteria for the safety of radiation sources at IPEN and planning and preparing for response to nuclear and radiological emergencies. The procedures about the management and the control of exposures to ionizing radiation are in compliance with national standards and international recommendations. Research related to the main activities is also performed. The Nuclear Material Control has been performed by the Safeguard Service team, which manages the accountability and the control of nuclear material at IPEN facilities and provides information related to these activities to ABACC and IAEA. (author)

  20. Nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Nuclear Safety comprehends Radioprotection, Radioactive Waste Management and Nuclear Material Control. These activities are developed at the Nuclear Safety Directory. The Radioactive Waste Management Department (GRR) was formally created in 1983, to promote research and development, teaching and service activities in the field of radioactive waste. Its mission is to develop and employ technologies to manage safely the radioactive wastes generated at IPEN and at its customer’s facilities all over the country, in order to protect the health and the environment of today's and future generations. The Radioprotection Service (GRP) aims primarily to establish requirements for the protection of people, as workers, contractors, students, members of the general public and the environment from harmful effects of ionizing radiation. Furthermore, it also aims to establish the primary criteria for the safety of radiation sources at IPEN and planning and preparing for response to nuclear and radiological emergencies. The procedures about the management and the control of exposures to ionizing radiation are in compliance with national standards and international recommendations. Research related to the main activities is also performed. The Nuclear Material Control has been performed by the Safeguard Service team, which manages the accountability and the control of nuclear material at IPEN facilities and provides information related to these activities to ABACC and IAEA. (author)

  1. STACY and TRACY: nuclear criticality experimental facilities under construction

    International Nuclear Information System (INIS)

    Kobayashi, I.; Takeshita, I.; Yanagisawa, H.; Tsujino, T.

    1992-01-01

    Japan Atomic Energy Research Institute is constructing a Nuclear Fuel Cycle Safety Engineering Research Facility, NUCEF, where the following research themes essential for evaluating safety problems relating to back-end technology in nuclear fuel cycle facilities will be studied: nuclear criticality safety research; research on advanced reprocessing processes and partitioning; and research on transuranic waste treatment and disposal. To perform nuclear criticality safety research related to the reprocessing of light water reactor spent fuels, two criticality experimental facilities, STACY and TRACY, are under construction. STACY (Static Criticality Facility) will be used for the study of criticality conditions of solution fuels, uranium, plutonium and their mixtures. TRACY (Transient Criticality Facility) will be used to investigate criticality accident phenomena with uranium solutions. The construction progress and experimental programmes are described in this Paper. (author)

  2. Complementary safety assessment assessment of nuclear facilities - Tricastin facility - AREVA

    International Nuclear Information System (INIS)

    2011-01-01

    This complementary safety assessment analyses the robustness of the Areva part of the Tricastin nuclear site to extreme situations such as those that led to the Fukushima accident. This study includes the following facilities: Areva NC Pierrelatte, EURODIF production, Comurhex Pierrelatte, Georges Besse II plant and Socatri. Robustness is the ability for the plant to withstand events beyond which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accidental sequence. Moreover, safety is not only a matter of design or engineered systems but also a matter of organizing: task organization (including subcontracting) as well as the setting of emergency plans or the inventory of nuclear materials are taken into consideration in this assessment. This report is divided into 10 main chapters: 1) the feedback experience of the Fukushima accident; 2) description of the site and its surroundings; 3) featuring of the site's activities and installations; 4) accidental sequences; 5) protection from earthquakes; 6) protection from floods; 7) protection from other extreme natural disasters; 8) the loss of electrical power and of the heat sink; 9) the management of severe accidents; and 10) subcontracting policy. This analysis has identified 5 main measures to be taken to limit the risks linked to natural disasters: -) continuing the program for replacing the current conversion plant and the enrichment plant; -) renewing the storage of hydrofluoric acid at the de-fluorination workshop; -) assessing the seismic behaviour of some parts of the de-fluorination workshop and of the fluorine fabrication workshop; -) improving the availability of warning and information means in case of emergency; and -) improving the means to mitigate accidental gaseous releases. (A.C.)

  3. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, Calendar Year 1999

    International Nuclear Information System (INIS)

    2000-01-01

    This is the tenth Annual Report to the Congress describing Department of Energy activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of Energy regarding public health and safety issues at the Department's defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department's defense nuclear facilities. During 1999, Departmental activities resulted in the closure of nine Board recommendations. In addition, the Department has completed all implementation plan milestones associated with three Board recommendations. One new Board recommendation was received and accepted by the Department in 1999, and a new implementation plan is being developed to address this recommendation. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, opening of a repository for long-term storage of transuranic wastes, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction

  4. Decision no. 2011-DC-0222 of the French nuclear safety authority from May 5, 2011, ordering the Comurhex company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to Comurhex company, operator of the Tricastin uranium conversion plant (France). (J.S.)

  5. CHANDA and ERINDA: Joint European programs for research on safety of nuclear facilities and waste reduction

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Roland; Hannaske, Roland; Koegler, Toni [Institut fuer Strahlenphysik, Helmholtz Zentrum DD-Rossendorf, 01328 Dresden (Germany); Institut fuer Kern- und Teilchenphysik, TU Dresden, 01069 Dresden (Germany); Grosse, Eckart [Institut fuer Kern- und Teilchenphysik, TU Dresden, 01069 Dresden (Germany); Junghans, Arnd R. [Institut fuer Strahlenphysik, Helmholtz Zentrum DD-Rossendorf, 01328 Dresden (Germany)

    2014-07-01

    In spite of the planned termination of the German nuclear power program neutron beam facilities in Germany can contribute considerably to research studies on the reduction of hazards due to nuclear waste. Transnational research programs support EU groups who want to carry out projects at the new tof set-up nELBE at HZDR, the calibrated n-flux at PTB and the FRANZ accelerator under construction at Frankfurt. Vice versa various facilities in the EU offer beams for transmutation and safety related studies with neutrons to German scientists under support by ERINDA (2011-2013) and CHANDA (2014-2017; solving challenges in nuclear data for the safety of European nuclear facilities). For work in that field scientific visits are also fostered to improve the exchange of experience between the partners (13 and in future about 35 from 18 countries). Plans for new projects as well as results obtained so far are discussed, and special emphasis is given to the present research performed at nELBE on neutron scattering and absorption.

  6. SRTC criticality technical review: Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility's Waste Handling Facility

    International Nuclear Information System (INIS)

    Rathbun, R.

    1993-01-01

    Separate review of NMP-NCS-930058, open-quotes Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility's Waste Handling Facility (U), August 17, 1993,close quotes was requested of SRTC Applied Physics Group. The NCSE is a criticality assessment to determine waste container uranium limits in the Uranium Solidification Facility's Waste Handling Facility. The NCSE under review concludes that the NDA room remains in a critically safe configuration for all normal and single credible abnormal conditions. The ability to make this conclusion is highly dependent on array limitation and inclusion of physical barriers between 2x2x1 arrays of boxes containing materials contaminated with uranium. After a thorough review of the NCSE and independent calculations, this reviewer agrees with that conclusion

  7. Nuclear health and safety

    International Nuclear Information System (INIS)

    1991-04-01

    Numerous environmental, safety, and health problems found at other Department of Energy (DOE) defense nuclear facilities precipitated a review of these conditions at DOE's contractor-operated Pantex Plant, where our nation's nuclear weapons are assembled. This book focuses the review on examining key safety and health problems at Pantex and determining the need for external safety oversight of the plant

  8. Decision no. 2011-DC-0219 of the French nuclear safety authority from May 5, 2011, ordering the SOCATRI company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the SOCATRI company, operator of the nuclear dismantling and waste processing plants of the Tricastin site (France). (J.S.)

  9. Use of the Safety Monitor in operational decision-making at a nuclear generating facility

    International Nuclear Information System (INIS)

    Chien, Shan H.; Hook, Thomas G.; Lee, Roger J.

    1998-01-01

    The utilization of Safety Monitor at a nuclear generating facility in 1994 revolutionized the way US nuclear power plants manage configuration risks. At Southern California Edison (SCE) Company's San Onofre Nuclear Generating Station, it transformed probabilistic risk assessment (PRA) from a retrospective tool for understanding past risk into a prospective tool for controlling future risk. Since that time, many other nuclear utilities have taken aggressive steps in using PRA better to understand and manage risks associated with plant operation and maintenance. These utilities have employed a variety of methods ranging from systems similar to San Onofre's Safety Monitor to systems dramatically different in both technology and philosophy. In the development and use of its Safety Monitor, SCE has been guided by two philosophical goals: (1) maximize the objectivity of PRA-informed decision-making relative to managing configuration risks, and (2) ensure that risks are managed conservatively

  10. Siting of nuclear facilities. Selections from Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.

    1976-07-01

    The report presented siting policy and practice for nuclear power plants as developed in the U.S. and abroad. Twenty-two articles from Nuclear Safety on this general topic are reprinted since they provide a valuable reference source. The appendices also include reprints of some relevant regulatory rules and guides on siting. Advantages and disadvantages of novel siting concepts such as underground containment, offshore siting, and nuclear energy parks are addressed. Other topics include site criteria, risk criteria, and nuclear ship criteria.

  11. Siting of nuclear facilities. Selections from Nuclear Safety

    International Nuclear Information System (INIS)

    Buchanan, J.R.

    1976-07-01

    The report presented siting policy and practice for nuclear power plants as developed in the U.S. and abroad. Twenty-two articles from Nuclear Safety on this general topic are reprinted since they provide a valuable reference source. The appendices also include reprints of some relevant regulatory rules and guides on siting. Advantages and disadvantages of novel siting concepts such as underground containment, offshore siting, and nuclear energy parks are addressed. Other topics include site criteria, risk criteria, and nuclear ship criteria

  12. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs.

  13. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs

  14. Status of nuclear safety research - 2000

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Sasajima, Hideo; Umemoto, Michitaka; Yamamoto, Toshihiro; Tanaka, Tadao; Togashi, Yoshihiro; Nakata, Masahito

    2000-11-01

    The nuclear safety research at JAERI is performed in accordance with the long term plan on nuclear research, development and use and the safety research yearly plan determined by the government and under close relationship to the related departments in and around the Nuclear Safety Research Center. The criticality accident having occurred in Tokai-mura in 1999 has been the highest level nuclear accident in Japan and ensuring safety in whole nuclear cycle is severely questioned. The causes of such an accident have to be clarified not only technical points but also organizational points, and it is extremely important to make efforts in preventing recurrence, to fulfill emergency plan and to improve the safety of whole nuclear fuel cycle for restoring the reliability by the people to nuclear energy system. The fields of conducting safety research are engineering safety research on reactor facilities and nuclear fuel cycle facilities including research on radioactive waste processing and disposal and research and development on future technology for safety improvement. Also, multinational cooperation and bilateral cooperation are promoted in international research organizations in the center to internationally share the recognition of world-common issues of nuclear safety and to attain efficient promotion of research and effective utilization of research resources. (author)

  15. Safety of fuel cycle facilities. Topical issues paper no. 3

    International Nuclear Information System (INIS)

    Ranguelova, V.; Niehaus, F.; Delattre, D.

    2001-01-01

    A wide range of nuclear fuel cycle facilities are in operation. These installations process, use, store and dispose of radioactive material and cover: mining and milling, conversion, enrichment, fuel fabrication (including mixed oxide fuel), reactor, interim spent fuel storage, reprocessing, waste treatment and waste disposal facilities. For the purposes of this paper, reactors and waste disposal facilities are not considered. The term 'fuel cycle facilities' covers only the remainder of the installations listed above. The IAEA Secretariat maintains a database of fuel cycle facilities in its Member States. Known as the Nuclear Fuel Cycle Information System (NFCIS), it is available as an on-line service through the Internet. More than 500 such facilities have been reported under this system. The facilities are listed by facility type and operating status. Approximately one third of all of the facilities are located in developing States. About half of all facilities are reported to be operating, of which approximately 40% are operating in developing States. In addition, some 60 facilities are either in the design stage or under construction. Although the radioactive source term for most fuel cycle facilities is lower than the source term for reactors, which results in less severe consequences to the public from potential accidents at these fuel cycle installations, recent events at some fuel cycle facilities have given rise to public concern which has to be addressed adequately by national regulatory bodies and at the international level. Worldwide, operational experience feedback warrants improvements in the safety of these facilities. Some of the hazards are similar for reactor and non-reactor facilities. However, the differences between these installations give rise to specific safety concerns at fuel cycle facilities. In particular, these concerns include: criticality, radiation protection of workers, chemical hazards, fire and explosion hazards. It is recognized

  16. Regulatory control of nuclear facility valves and their actuators

    International Nuclear Information System (INIS)

    1993-01-01

    The methods and procedures by which the Finnish Centre for Radiation and Nuclear Safety (STUK) regulates valves and their actuators in nuclear power plants and in other nuclear facilities are specified in the guide. The scope of regulation depends on the Safety Class of the valve and the actuator in question. The Safety Classification principles for the systems, structures and components of the nuclear power plants are described in the guide YVL 2.1 and the regulatory control of the nuclear facility safety valves is described in the guide YVL 5.4

  17. White paper on nuclear safety in 2000

    International Nuclear Information System (INIS)

    2001-04-01

    This report is composed of three parts and a subjective part Part 1 includes special articles on the measures for the security of nuclear safety and the future problems described from the beginning of the security. Taking consideration that there exists potential risk in the utilization of nuclear energy in addition to the previous accidents in the area of nuclear energy, future measures to take for safety security were discussed as well as the reorganization of government facilities. In addition, the measures for nuclear safety according to the special nuclear disaster countermeasure law and the future problems were described. In Part 2, the trend of nuclear safety in 2000 and the actual effects of 'the basic principle for the countermeasures of the hour' proposed by the nuclear safety commission were outlined. Moreover, the activities of the commission in 2000 were briefly described. In Part 3, various activities for security of nuclear safety, the safety regulation system and the disaster protection system in nuclear facilities, nuclear safety researches in Japan were described in addition to international cooperation as to nuclear safety. Finally, various materials related to the nuclear safety commission, and the materials on the practical activities for nuclear safety were listed in the subjective part. (M.N.)

  18. Progress of nuclear safety research. 2001

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Sasajima, Hideo; Nishiyama, Yutaka (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-10-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy or the Safety Research Annual Plan issued by the Japanese government. The safety research at JAERI concerns the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety. This report summarizes the nuclear safety research activities of JAERI from April 1999 through March 2001. (author)

  19. Business of Nuclear Safety Analysis Office, Nuclear Technology Test Center

    International Nuclear Information System (INIS)

    Hayakawa, Masahiko

    1981-01-01

    The Nuclear Technology Test Center established the Nuclear Safety Analysis Office to execute newly the works concerning nuclear safety analysis in addition to the works related to the proving tests of nuclear machinery and equipments. The regulations for the Nuclear Safety Analysis Office concerning its organization, business and others were specially decided, and it started the business formally in August, 1980. It is a most important subject to secure the safety of nuclear facilities in nuclear fuel cycle as the premise of developing atomic energy. In Japan, the strict regulation of safety is executed by the government at each stage of the installation, construction, operation and maintenance of nuclear facilities, based on the responsibility for the security of installers themselves. The Nuclear Safety Analysis Office was established as the special organ to help the safety examination related to the installation of nuclear power stations and others by the government. It improves and puts in order the safety analysis codes required for the cross checking in the safety examination, and carries out safety analysis calculation. It is operated by the cooperation of the Science and Technology Agency and the Agency of Natural Resources and Energy. The purpose of establishment, the operation and the business of the Nuclear Safety Analysis Office, the plan of improving and putting in order of analysis codes, and the state of the similar organs in foreign countries are described. (Kako, I.)

  20. Selecting of key safety parameters in reactor nuclear safety supervision

    International Nuclear Information System (INIS)

    He Fan; Yu Hong

    2014-01-01

    The safety parameters indicate the operational states and safety of research reactor are the basis of nuclear safety supervision institution to carry out effective supervision to nuclear facilities. In this paper, the selecting of key safety parameters presented by the research reactor operating unit to National Nuclear Safety Administration that can express the research reactor operational states and safety when operational occurrence or nuclear accident happens, and the interrelationship between them are discussed. Analysis shows that, the key parameters to nuclear safety supervision of research reactor including design limits, operational limits and conditions, safety system settings, safety limits, acceptable limits and emergency action level etc. (authors)

  1. Safety and regulatory aspects of front end facilities of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Khan, Kirity Bhushan; Jha, S.K.; Bhasin, Vivek; Behere, P.G.

    2017-01-01

    Nuclear Fuels Group of BARC consists of various divisions with diverse activities but impeccable safety records. This has been made possible with strict safety culture among trained personnel across all divisions. The major activities of this group encompass the front end fuel fabrication facilities for thermal and fast reactors and post irradiation examination of fuel and structural materials. The group has been responsible for delivering departmental targets, as and when required, fulfilling all safety and security requirements. The present article covers the safety and regulatory aspects of this group with special emphasis on group safety management by the administrative/organizational control, the procedure followed for regulatory review and control which are carried out and the laid down procedures for identifying, classifying and reporting of safety related incidents. (author)

  2. Decision no. 2011-DC-0223 of the French nuclear safety authority from May 5, 2011, ordering the MELOX SA company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to MELOX SA company, operator of the Melox MOX fuel fabrication plant of Marcoule (France). (J.S.)

  3. Decision no. 2011-DC-0218 of the French nuclear safety authority from May 5, 2011, ordering the EURODIF SA company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the EURODIF SA company, operator of the George Besse I uranium enrichment plant of the Tricastin site (France). (J.S.)

  4. Quality management in nuclear facilities decommissioning

    International Nuclear Information System (INIS)

    Garonis, Omar H.

    2002-01-01

    Internationally, the decommissioning organizations of nuclear facilities carry out the decommissioning according to the safety requirements established for the regulatory bodies. Some of them perform their activities in compliance with a quality assurance system. This work establishes standardization through a Specifications Requirement Document, for the management system of the nuclear facilities decommissioning organizations. It integrates with aspects of the quality, environmental, occupational safety and health management systems, and also makes these aspects compatible with all the requirements of the nuclear industry recommended for the International Atomic Energy Agency (IAEA). (author)

  5. Nuclear criticality safety basics for personnel working with nuclear fissionable materials. Phase I

    International Nuclear Information System (INIS)

    Vausher, A.L.

    1984-10-01

    DOE order 5480.1A, Chapter V, ''Safety of Nuclear Facilities,'' establishes safety procedures and requirements for DOE nuclear facilities. The ''Nuclear Criticality Safety Basic Program - Phase I'' is documented in this report. The revised program has been developed to clearly illustrate the concept of nuclear safety and to help the individual employee incorporate safe behavior in his daily work performance. Because of this, the subject of safety has been approached through its three fundamentals: scientific basis, engineering criteria, and administrative controls. Only basics of these three elements were presented. 5 refs

  6. Complementary safety assessments - Report by the French Nuclear Safety Authority

    International Nuclear Information System (INIS)

    2011-12-01

    As an immediate consequence of the Fukushima accident, the French Authority of Nuclear Safety (ASN) launched a campaign of on-site inspections and asked operators (mainly EDF, AREVA and CEA) to make complementary assessments of the safety of the nuclear facilities they manage. The approach defined by ASN for the complementary safety assessments (CSA) is to study the behaviour of nuclear facilities in severe accidents situations caused by an off-site natural hazard according to accident scenarios exceeding the current baseline safety requirements. This approach can be broken into 2 phases: first conformity to current design and secondly an approach to the beyond design-basis scenarios built around the principle of defence in depth. 38 inspections were performed on issues linked to the causes of the Fukushima crisis. It appears that some sites have to reinforce the robustness of the heat sink. The CSA confirmed that the processes put into place at EDF to detect non-conformities were satisfactory. The complementary safety assessments demonstrated that the current seismic margins on the EDF nuclear reactors are satisfactory. With regard to flooding, the complementary safety assessments show that the complete reassessment carried out following the flooding of the Le Blayais nuclear power plant in 1999 offers the installations a high level of protection against the risk of flooding. Concerning the loss of electrical power supplies and the loss of cooling systems, the analysis of EDF's CSA reports showed that certain heat sink and electrical power supply loss scenarios can, if nothing is done, lead to core melt in just a few hours in the most unfavourable circumstances. As for nuclear facilities that are not power or experimental reactors, some difficulties have appeared to implement the CSA approach that was initially devised for reactors. Generally speaking, ASN considers that the safety of nuclear facilities must be made more robust to improbable risks which are not

  7. State-of-the-art WEB -technologies and ecological safety of nuclear power engineering facilities

    International Nuclear Information System (INIS)

    Batij, V.G.; Batij, E.V.; Rud'ko, V.M.; Kotlyarov, V.T.

    2004-01-01

    Prospects of web-technologies using in the field of improvement radiation safety level of nuclear power engineering facilities is seen. It is shown that application of such technologies will enable entirely using the data of all information systems of radiation control

  8. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, Calendar Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-02-01

    This is the tenth Annual Report to the Congress describing Department of Energy activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of Energy regarding public health and safety issues at the Department's defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department's defense nuclear facilities. During 1999, Departmental activities resulted in the closure of nine Board recommendations. In addition, the Department has completed all implementation plan milestones associated with three Board recommendations. One new Board recommendation was received and accepted by the Department in 1999, and a new implementation plan is being developed to address this recommendation. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, opening of a repository for long-term storage of transuranic wastes, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

  9. 340 Waste Handling Facility interim safety basis

    International Nuclear Information System (INIS)

    Bendixsen, R.B.

    1995-01-01

    This document establishes the interim safety basis (ISB) for the 340 Waste Handling Facility (340 Facility). An ISB is a documented safety basis that provides a justification for the continued operation of the facility until an upgraded final safety analysis report is prepared that complies with US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports. The ISB for the 340 Facility documents the current design and operation of the facility. The 340 Facility ISB (ISB-003) is based on a facility walkdown and review of the design and operation of the facility, as described in the existing safety documentation. The safety documents reviewed, to develop ISB-003, include the following: OSD-SW-153-0001, Operating Specification Document for the 340 Waste Handling Facility (WHC 1990); OSR-SW-152-00003, Operating Limits for the 340 Waste Handling Facility (WHC 1989); SD-RE-SAP-013, Safety Analysis Report for Packaging, Railroad Liquid Waste Tank Cars (Mercado 1993); SD-WM-TM-001, Safety Assessment Document for the 340 Waste Handling Facility (Berneski 1994a); SD-WM-SEL-016, 340 Facility Safety Equipment List (Berneski 1992); and 340 Complex Fire Hazard Analysis, Draft (Hughes Assoc. Inc. 1994)

  10. Information note about the protection of nuclear facilities against aircraft crashes

    International Nuclear Information System (INIS)

    2001-01-01

    The protection of nuclear facilities against external risks (earthquakes, floods, fires etc..) is an aspect of safety taken into consideration by the French authority of nuclear safety (ASN). Concerning the aircraft crashes, the fundamental safety rules make three categories of aircraft: the small civil aircraft (weight 5.7 t). Nuclear facilities are designed to resist against crashes of aircraft from the first category only, because the probability of the accidental crash of a big aircraft are extremely low. This document comprises an information note about the protection of nuclear facilities against aircraft crashes, a dossier about the safety of nuclear facilities with respect to external risks in general (natural disasters and aircraft crashes), and an article about the protection of nuclear power plants against aircraft crashes (design, safety measures, regulation, surveillance, experience feedback). (J.S.)

  11. Technical Support Section Instrument Support Program for nuclear and nonnuclear facilities with safety requirements

    International Nuclear Information System (INIS)

    Adkisson, B.P.; Allison, K.L.

    1995-01-01

    This document describes requirements, procedures, and supervisory responsibilities of the Oak Ridge National Laboratory (ORNL) Instrumentation and Controls (I ampersand C) Division's Technical Support Section (TSS) for instrument surveillance and maintenance in nonreactor nuclear facilities having identified Operational Safety Requirements (OSRs) or Limiting Conditions Document (LCDs). Implementation of requirements comply with the requirements of U.S. Department of Energy (DOE) Orders 5480.5, 5480.22, and 5481.1B; Martin Marietta Energy Systems, Inc. (Energy Systems), Policy Procedure ESS-FS-201; and ORNL SPP X-ESH-15. OSRs and LCDs constitute an agreement or contract between DOE and the facility operating management regarding the safe operation of the facility. One basic difference between OSRs and LCDs is that violation of an OSR is considered a Category II occurrence, whereas violation of an LCD requirement is considered a Category III occurrence (see Energy Systems Standard ESS-OP-301 and ORNL SPP X-GP-13). OSRs are required for high- and moderate-hazard nuclear facilities, whereas the less-rigorous LCDs are required for low-hazard nuclear facilities and selected open-quotes generally acceptedclose quotes operations. Hazard classifications are determined through a hazard screening process, which each division conducts for its facilities

  12. Nuclear health and safety

    International Nuclear Information System (INIS)

    1991-08-01

    This paper is a review of environmental and safety programs at facilities in the Naval Reactors Program which shows no basis for allegations that unsafe conditions exist there or that the environment is being harmed by activities conducted there. The prototype reactor design provides safety measures that are consistent with commercial nuclear power plants. Minor incidents affecting safety and the environment have occurred, however, and dents affecting safety and the environment have occurred, however, and as with other nuclear facilities, past activities have caused environmental problems that require ongoing monitoring and vigilance. While the program has historically been exempt from most oversight, some federal and state environmental oversight agencies have recently been permitted access to Naval Reactors facilities for oversight purposes. The program voluntarily cooperates with the Nuclear Regulatory Commission regarding reactor modifications, safety improvements, and component reliability. In addition, the program and its contractors have established an extensive internal oversight program that is geared toward reporting the slightest deviations from requirements or procedures. Given the program's classification policies and requirements, it does not appear that the program routinely overclassifies information to prevent its release to the public or to avoid embarrassment. However, GAO did not some instances in which documents were improperly classified

  13. Design requirements for new nuclear reactor facilities in Canada

    International Nuclear Information System (INIS)

    Shim, S.; Ohn, M.; Harwood, C.

    2012-01-01

    The Canadian Nuclear Safety Commission (CNSC) has been establishing the regulatory framework for the efficient and effective licensing of new nuclear reactor facilities. This regulatory framework includes the documentation of the requirements for the design and safety analysis of new nuclear reactor facilities, regardless of size. For this purpose, the CNSC has published the design and safety analysis requirements in the following two sets of regulatory documents: 1. RD-337, Design of New Nuclear Power Plants and RD-310, Safety Analysis for Nuclear Power Plants; and 2. RD-367, Design of Small Reactor Facilities and RD-308, Deterministic Safety Analysis for Small Reactor Facilities. These regulatory documents have been modernized to document past practices and experience and to be consistent with national and international standards. These regulatory documents provide the requirements for the design and safety analysis at a high level presented in a hierarchical structure. These documents were developed in a technology neutral approach so that they can be applicable for a wide variety of water cooled reactor facilities. This paper highlights two particular aspects of these regulatory documents: The use of a graded approach to make the documents applicable for a wide variety of nuclear reactor facilities including nuclear power plants (NPPs) and small reactor facilities; and, Design requirements that are new and different from past Canadian practices. Finally, this paper presents some of the proposed changes in RD-337 to implement specific details of the recommendations of the CNSC Fukushima Task Force Report. Major changes were not needed as the 2008 version of RD-337 already contained requirements to address most of the lessons learned from the Fukushima event of March 2011. (author)

  14. The safety of nuclear installations

    International Nuclear Information System (INIS)

    1993-01-01

    This Safety Fundamental publication sets out basic objectives, concepts and principles for ensuring safety that can be used both by the IAEA in its international assistance operations and by Member States in their national nuclear programmes. These Safety Fundamentals apply primarily to those nuclear installations in which the stored energy developed in certain situations could potentially results in the release of radioactive material from its designated location with the consequent risk of radiation exposure of people. These principles are applicable to a broad range of nuclear installations, but their detailed application will depend on the particular technology and the risks posed by it. In addition to nuclear power plants, such installations may include: research reactors and facilities, fuel enrichment, manufacturing and reprocessing plants; and certain facilities for radioactive waste treatment and storage

  15. Regulatory overview report 2013 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2014-06-01

    The Swiss Federal Nuclear Safety Inspectorate (ENSI) acting as the regulatory body of the Swiss Federation assesses and monitors nuclear facilities in Switzerland: these include five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) at Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI) and the two universities of Basel and Lausanne. Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the overview required concerning nuclear safety. It ensures that the facilities comply with regulations. Its regulatory responsibilities include the transport of radioactive materials from and to nuclear facilities and the preparations for a deep geological repository for nuclear waste. ENSI maintains its own emergency organisation, an integral part of the national emergency structure. It provides the public with information on particular events in nuclear facilities. This Surveillance Report describes operational experience, systems technology, radiological protection and management in all the nuclear facilities. Generic issues relevant to all facilities such as probabilistic safety analyses are described. In 2013, the five nuclear power plants in Switzerland (Beznau Units 1 and 2, Muehleberg, Goesgen and Leibstadt) were all operated safely and had complied with their approved operating conditions. The nuclear safety at all plants was rated as being good. 34 events were reported. During operation, no reactor scrams were recorded. On the INES scale, ranging from 0-7, ENSI rated all reportable events as Level 0. The ENSI safety evaluation reflects both reportable events and the results of the approximately 460 inspections conducted during 2013. ZWILAG consists of several storage halls, a conditioning plant and a plasma plant. At the end of 2013, the cask storage hall

  16. Estimating Fire Risks at Industrial Nuclear Facilities

    International Nuclear Information System (INIS)

    Coutts, D.A.

    1999-01-01

    The Savannah River Site (SRS) has a wide variety of nuclear production facilities that include chemical processing facilities, machine shops, production reactors, and laboratories. Current safety documentation must be maintained for the nuclear facilities at SRS. Fire Risk Analyses (FRAs) are used to support the safety documentation basis. These FRAs present the frequency that specified radiological and chemical consequences will be exceeded. The consequence values are based on mechanistic models assuming specific fire protection features fail to function as designed

  17. H.R. 3521: Nuclear Facilities Occupational Safety Improvement Act of 1989. Introduced in the House of Representatives, One Hundredth First Congress, First Session, October 25, 1989

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Bill H.R.3521 was introduced in the House of Representatives of the United States on October 25, 1989. The purpose of this Act and the amendments made by this Act are to improve and enforce standards for employee health and safety at Department of Energy nuclear facilities. Congress finds that worker health and safety at Department of Energy nuclear facilities could be made substantially safer by applying standards developed by experts in the field of occupational health and safety. A section-by-section analysis makes up most of the report with emphasis on the following: application of OSHA to DOE nuclear facilities; cooperation with inspections and investigations; transfer and allocation of appropriations and personnel; worker training requirements; performance of NIOSH functions at DOE nuclear facilities; medical examinations of employees; and labor-management health and safety committees at DOE nuclear facilities

  18. Report on the seismic safety examination of nuclear facilities based on the 1995 Hyogoken-Nanbu earthquake

    International Nuclear Information System (INIS)

    2001-01-01

    Just after the Hyogoken-Nanbu Earthquake occurred, Nuclear Safety Commission of Japan established a committee to examine the validity or related guidelines on the seismic design to be used for the safety examination. After the 8 months study, the committee confirmed that the validity of guidelines regulating the seismic design of nuclear facilities is not impaired even though on the basis of the Hyogoken-Nanbu earthquake. This report is the outline of the Committee's study results. (author)

  19. Development of High-Level Safety Requirements for a Pyroprocessing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Seok Jun; Jo, Woo Jin; You, Gil Sung; Choung, Won Myung; Lee, Ho Hee; Kim, Hyun Min; Jeon, Hong Rae; Ku, Jeong Hoe; Lee, Hyo Jik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Korea Atomic Energy Research Institute (KAERI) has been developing a pyroproceesing technology to reduce the waste volume and recycle some elements. The pyroprocessing includes several treatment processes which are related with not only radiological and physical but also chemical and electrochemical properties. Thus, it is of importance to establish safety design requirements considering all the aspects of those properties for a reliable pyroprocessing facility. In this study, high-level requirements are presented in terms of not only radiation protection, nuclear criticality, fire protection, and seismic safety but also confinement and chemical safety for the unique characteristics of a pyroprocessing facility. Several high-level safety design requirements such as radiation protection, nuclear criticality, fire protection, seismic, confinement, and chemical processing were presented for a pyroprocessing facility. The requirements must fulfill domestic and international safety technology standards for a nuclear facility. Furthermore, additional requirements should be considered for the unique electrochemical treatments in a pyroprocessing facility.

  20. Report on operation of nuclear facilities in 1991

    International Nuclear Information System (INIS)

    1992-06-01

    The Slovenian Nuclear Safety Administration (SNSA) prepared a report on nuclear safety in the republic of Slovenia in 1991 as part of its regular practice of reporting on its work to the Government and the National Assembly of the Republic of Slovenia. The report is divided into three thematic chapters covering the activities of the SNSA, the operation of nuclear facilities in Slovenia, the activity of international missions in Slovenia and the operation of nuclear facilities around the world.

  1. Report on operation of nuclear facilities in Slovenia in 1991

    International Nuclear Information System (INIS)

    1992-11-01

    Slovenian Nuclear Safety Administration (SNSA) is responsible for: nuclear safety, transport of nuclear and radioactive materials, safeguarding nuclear materials, and conducting regulatory process related to liability for nuclear damage, qualification and training of operators at nuclear facilities, quality assurance and inspection of nuclear facilities. The major nuclear facility supervised by SNSA is the Nuclear Power Plant in Krsko with a pressurized water reactor of 632 MW electric power. Beside the nuclear power plant, TRIGA Mark 11 Research Reactor of 250 kW thermal power operates within the Reactor Center of Jozef Stefan Institute. There is an interim storage of low and medium radioactive waste at the Reactor Center. Also the Uranium mine Zirovski Vrh was supervised by SNSA. All the nuclear power facilities in Republic of Slovenia were operating safely in 1991. There were no significant events that could be evaluated as a safety problem or a breach of technical specifications. A great part of activities of SNSA was focused on the next visit of the IAEA OSART team (Operational Safety Assessment Review Team) in Krsko Nuclear Power Plant and on the visit of the INSARR mission (Integrated Safety Assessment of Research Reactors) for the TRIGA Mark 11 Research Reactor. (author)

  2. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    International Nuclear Information System (INIS)

    C.E. Sanders

    2005-01-01

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility

  3. Experimental facilities for gas-cooled reactor safety studies. Task group on Advanced Reactor Experimental Facilities (TAREF)

    International Nuclear Information System (INIS)

    2009-01-01

    In 2007, the NEA Committee on the Safety of Nuclear Installations (CSNI) completed a study on Nuclear Safety Research in OECD Countries: Support Facilities for Existing and Advanced Reactors (SFEAR) which focused on facilities suitable for current and advanced water reactor systems. In a subsequent collective opinion on the subject, the CSNI recommended to conduct a similar exercise for Generation IV reactor designs, aiming to develop a strategy for ' better preparing the CSNI to play a role in the planned extension of safety research beyond the needs set by current operating reactors'. In that context, the CSNI established the Task Group on Advanced Reactor Experimental Facilities (TAREF) in 2008 with the objective of providing an overview of facilities suitable for performing safety research relevant to gas-cooled reactors and sodium fast reactors. This report addresses gas-cooled reactors; a similar report covering sodium fast reactors is under preparation. The findings of the TAREF are expected to trigger internationally funded CSNI projects on relevant safety issues at the key facilities identified. Such CSNI-sponsored projects constitute a means for efficiently obtaining the necessary data through internationally co-ordinated research. This report provides an overview of experimental facilities that can be used to carry out nuclear safety research for gas-cooled reactors and identifies priorities for organizing international co-operative programmes at selected facilities. The information has been collected and analysed by a Task Group on Advanced Reactor Experimental Facilities (TAREF) as part of an ongoing initiative of the NEA Committee on the Safety of Nuclear Installations (CSNI) which aims to define and to implement a strategy for the efficient utilisation of facilities and resources for Generation IV reactor systems. (author)

  4. Nuclear criticality safety training: guidelines for DOE contractors

    International Nuclear Information System (INIS)

    Crowell, M.R.

    1983-09-01

    The DOE Order 5480.1A, Chapter V, Safety of Nuclear Facilities, establishes safety procedures and requirements for DOE nuclear facilities. This guide has been developed as an aid to implementing the Chapter V requirements pertaining to nuclear criticality safety training. The guide outlines relevant conceptual knowledge and demonstrated good practices in job performance. It addresses training program operations requirements in the areas of employee evaluations, employee training records, training program evaluations, and training program records. It also suggests appropriate feedback mechanisms for criticality safety training program improvement. The emphasis is on academic rather than hands-on training. This allows a decoupling of these guidelines from specific facilities. It would be unrealistic to dictate a universal program of training because of the wide variation of operations, levels of experience, and work environments among DOE contractors and facilities. Hence, these guidelines do not address the actual implementation of a nuclear criticality safety training program, but rather they outline the general characteristics that should be included

  5. Disaster countermeasures around nuclear facilities

    International Nuclear Information System (INIS)

    Tatsuta, Yoshinori

    1982-01-01

    The following matters are described. Safety regulation administration for nuclear power plants; nuclear disaster countermeasures in the United States; disaster countermeasures around nuclear facilities (a report of the ad hoc committee in Nuclear Safety Commission), including general requirements, the scope of areas to take the countermeasures, emergency environmental monitoring, guidelines for taking the countermeasures, and emergency medical treatment. In the nuclear safety administration, the system of stationing safety expert personnel on the sites of nuclear power generation and qualifying the persons in charge of reactor operation in the control room is also introduced. As for the disaster countermeasures, such as the detection of an abnormal state, the notification of the abnormality to various organs concerned, the starting of emergency environmental monitoring, the establishment of the countermeasure headquarters, and emergency measures for the local people. (Mori, K.)

  6. Application of Framework for Integrating Safety, Security and Safeguards (3Ss) into the Design Of Used Nuclear Fuel Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Badwan, Faris M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Demuth, Scott F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-06

    Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design of the

  7. Regulatory control of nuclear safety in Finland. Annual report 2008

    International Nuclear Information System (INIS)

    Kainulainen, E.

    2009-06-01

    This report covers the regulatory control of nuclear safety in 2008, including the design, construction and operation of nuclear facilities, as well as nuclear waste management and nuclear materials. The control of nuclear facilities and nuclear waste management, as well as nuclear non-proliferation, concern two STUK departments: Nuclear Reactor Regulation and Nuclear Waste and Material Regulation. It constitutes the report on regulatory control in the field of nuclear energy, which the Radiation and Nuclear Safety Authority (STUK) is required to submit to the Ministry of Employment and the Economy pursuant to section 121 of the Finnish Nuclear Energy Decree. The first parts of the report explain the basics of the nuclear safety regulation included as part of STUK's responsibilities, as well as the objectives of the operations, and briefly introduce the objects of regulation. The chapter concerning the development and implementation of legislation and regulations describes changes in nuclear legislation, as well as the progress of STUK's YVL Guide revision. The chapter also includes a summary of the application of the updated YVL Guides to nuclear facilities. The section concerning the regulation of nuclear facilities contains a complete safety assessment of the nuclear facilities currently in operation or under construction. For the nuclear facilities in operation, the section describes plant operation, events during operation, annual maintenance, development of the plants and their safety, and observations made during monitoring. Data and observations gained during regulatory activities are reviewed with a focus on ensuring the safety functions of nuclear facilities and the integrity of structures and components. The report also includes a description of the oversight of the operations and quality management of organisations, oversight of operational experience feedback activities, and the results of these oversight activities. The radiation safety of nuclear

  8. A State-of-the-Art Report on Technologies of a Safety Assessment and a Radioactivity Exposure Assessment for the Decommissioning Process of Nuclear Facilities

    International Nuclear Information System (INIS)

    Jeong, Kwan Seong; Kang, Young Ae; Lee, Dong Gyu; Lee, Kune Woo; Jung, Chong Hun

    2007-09-01

    This report is to provide the reference contents of research and development for technologies of radioactivity exposure and safety assessment for development of the decommissioning technology for nuclear facilities. This report consists of as follows: - Analyzing and discussing on state-of-the-art technologies of a radioactivity exposure assessment of a decommissioning for nuclear facilities - Analyzing and discussing on state-of-the-art technologies of a safety assessment of a decommissioning for nuclear facilities

  9. A State-of-the-Art Report on Technologies of a Safety Assessment and a Radioactivity Exposure Assessment for the Decommissioning Process of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwan Seong; Kang, Young Ae; Lee, Dong Gyu; Lee, Kune Woo; Jung, Chong Hun

    2007-09-15

    This report is to provide the reference contents of research and development for technologies of radioactivity exposure and safety assessment for development of the decommissioning technology for nuclear facilities. This report consists of as follows: - Analyzing and discussing on state-of-the-art technologies of a radioactivity exposure assessment of a decommissioning for nuclear facilities - Analyzing and discussing on state-of-the-art technologies of a safety assessment of a decommissioning for nuclear facilities.

  10. Evolution of nuclear safety regulation for BARC Facilities

    International Nuclear Information System (INIS)

    Jayarajan, K.; Taly, Y.K.

    2017-01-01

    Safety programmes in BARC stared during the formative years and grown its stature, as the years passed by. Seventeen years of BSC, with one hundred meetings, have been quite eventful with several achievements. BSC could bring all facilities of BARC under its safety umbrella and could streamline many safety and regulatory activities. BSC aims at incident free operation of all facilities and protection of the workers, the public, the environment from radiation and other hazards. Although, incidents could not be entirely prevented, BSC have taken every event as a lesson and used the experience for improving safety. Safety enhancement is an endless journey, which has to be performed by joining hands of the managers, designers, manufacturers, inspectors and operators, in addition to the regulators

  11. Development of the Advanced Nuclear Safety Information Management (ANSIM) System

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jae Min; Ko, Young Cheol; Song, Tai Gil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Korea has become a technically independent nuclear country and has grown into an exporter of nuclear technologies. Thus, nuclear facilities are increasing in significance at KAERI (Korea Atomic Energy Research Institute), and it is time to address the nuclear safety. The importance of nuclear safety cannot be overemphasized. Therefore, a management system is needed urgently to manage the safety of nuclear facilities and to enhance the efficiency of nuclear information. We have established ISP (Information Strategy Planning) for the Integrated Information System of nuclear facility and safety management. The purpose of this paper is to develop a management system for nuclear safety. Therefore, we developed the Advanced Nuclear Safety Information Management system (hereinafter referred to as the 'ANSIM system'). The ANSIM system has been designed and implemented to computerize nuclear safety information for standardization, integration, and sharing in real-time. Figure 1 shows the main home page of the ANSIM system. In this paper, we describe the design requirements, contents, configurations, and utilizations of the ANSIM system

  12. Spent Nuclear Fuel Project Safety Management Plan

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities

  13. Radiation protection databases of nuclear safety regulatory authority

    International Nuclear Information System (INIS)

    Janzekovic, H.; Vokal, B.; Krizman, M.

    2003-01-01

    Radiation protection and nuclear safety of nuclear installations have a common objective, protection against ionising radiation. The operational safety of a nuclear power plant is evaluated using performance indicators as for instance collective radiation exposure, unit capability factor, unplanned capability loss factor, etc. As stated by WANO (World Association of Nuclear Operators) the performance indicators are 'a management tool so each operator can monitor its own performance and progress, set challenging goals for improvement and consistently compare performance with that of other plants or industry'. In order to make the analysis of the performance indicators feasible to an operator as well as to regulatory authorities a suitable database should be created based on the data related to a facility or facilities. Moreover, the international bodies found out that the comparison of radiation protection in nuclear facilities in different countries could be feasible only if the databases with well defined parameters are established. The article will briefly describe the development of international databases regarding radiation protection related to nuclear facilities. The issues related to the possible development of the efficient radiation protection control of a nuclear facility based on experience of the Slovenian Nuclear Safety Administration will be presented. (author)

  14. Operational status of nuclear facilities in Japan. 2012 edition

    International Nuclear Information System (INIS)

    2012-01-01

    This document is a compilation which provides an outline of the administration of nuclear facility safety regulations as well as various data including operational status, the status of periodical and safety inspections, the status of issues, and radiation management on nuclear power reactor facilities, reactor facilities in the research and development stage, and fabrication, reprocessing, disposal, and storage facilities in fiscal year 2011 (from April 2011 to March 2012). (J.P.N.)

  15. Activities of the Nuclear Regulatory Authority of the Slovak Republic and safety of nuclear facilities in the Slovak Republic in 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The report summarizes activities of the Nuclear Regulatory Authority of the Slovak Republic (NRA SR) in 1994 and briefly presents results of the national expert supervision over nuclear safety facilities in the SR in 1994. In 1994, the NRA SR have performed a national supervision of following organizations: SE, a.s. - Jaslovske Bohunice Nuclear Power Plant (V-1 Nuclear Power Plant (V-1 NPP), V-2 Nuclear Power Plant (V-2 NPP), A-1 Nuclear Power Plant (A-1 NPP)); Mochovce Nuclear Power Plant; Radioactive waste repository, Mochovce); Organizations providing a specialized training of NPP personnel; Organizations providing specific deliveries and activities for the nuclear power industry; Organizations having an owner of nuclear materials; Organizations providing activities related to import of radioactive sources; Organizations using radioactive sources. Organization structure of the NRA SR is explained. In the presented Chapter 1 - Safety of nuclear power plants in the Slovak Republic - safety aspects of the Slovak NPPs are reported. The next activities are reported: nuclear materials and safeguards; radioactive waste; emergency planning and NRA SR's control and crisis centre; international activities to improve the national surveillance quality; other activities

  16. Nuclear safety policy statement in korea

    International Nuclear Information System (INIS)

    Kim, W.S.; Kim, H.J.; Choi, K.S.; Choi, Y.S.; Park, D.K.

    2006-01-01

    Full text: Wide varieties of programs to enhance nuclear safety have been established and implemented by the Korean government in accordance with the Nuclear Safety Policy Statement announced in September 1994. The policy statement was intended to set the long-term policy goals for maintaining and achieving high-level of nuclear safety and also help the public understand the national policy and a strong will of the government toward nuclear safety. It has been recognized as very effective in developing safety culture in nuclear-related organizations and also enhancing nuclear safety in Korea. However, ageing of operating nuclear power plants and increasing of new nuclear facilities have demanded a new comprehensive national safety policy to cover the coming decade, taking the implementation results of the policy statement of 1994 and the changing environment of nuclear industries into consideration. Therefore, the results of safety policy implementation have been reviewed and, considering changing environment and future prospects, a new nuclear safety policy statement as a highest level national policy has been developed. The implementation results of 11 regulatory policy directions such as the use of Probabilistic Safety Assessment, introduction of Periodic Safety Review, strengthening of safety research, introduction of Risk Based Regulation stipulated in the safety policy statement of 1994 were reviewed and measures taken after various symposia on nuclear safety held in Nuclear Safety Days since 1995 were evaluated. The changing international and domestic environment of nuclear industry were analysed and future prospects were explored. Based on the analysis and review results, a draft of new nuclear safety policy statement was developed. The draft was finalized after the review of many prominent experts in Korea. Considering changing environment and future prospects, new policy statement that will show government's persistent will for nuclear safety has been

  17. Regulatory oversight report 2012 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2013-04-01

    The Swiss Federal Nuclear Safety Inspectorate (ENSI) assesses and monitors nuclear facilities in Switzerland. These include the five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) and the nuclear facilities at the Paul Scherrer Institute (PSI), at the Federal Institute of Technology in Lausanne (EPFL) and at the University of Basel. Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the required overview of nuclear safety in the relevant facilities. It ensures that the facilities comply with the regulations and operate as required by law. Its regulatory responsibilities also include the transport of radioactive materials from and to nuclear facilities and the preparations for a deep geological repository for nuclear waste. ENSI maintains its own emergency organisation. It formulates and updates its own guidelines which stipulate the criteria for evaluating the current activities and future plans of the operators of nuclear facilities. ENSI produces regular reports on its regulatory activities and nuclear safety in Swiss nuclear facilities. It fulfils its statutory obligation to provide the public with information on particular events and findings in nuclear facilities. In 2012, the five nuclear power plants in Switzerland were all operated safely. 34 events were reported; on the international INES scale of 0 to 7, ENSI rated 33 events as Level 0 and 1 as Level 1. ENSI evaluates the safety of each nuclear power plant as part of a systematic safety evaluation taking account of both reportable events and other findings, in particular the results of more than 400 inspections conducted by ENSI during 2012. ZWILAG consists of several interim storage halls, a conditioning plant and an incineration/melting plant. At the end of 2012, the cask storage hall contained 40 transport/storage casks

  18. Nuclear Safety Charter; Charte Surete Nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The AREVA 'Values Charter' reaffirmed the priority that must be given to the requirement for a very high level of safety, which applies in particular to the nuclear field. The purpose of this Nuclear Safety Charter is to set forth the group's commitments in the field of nuclear safety and radiation protection so as to ensure that this requirement is met throughout the life cycle of the facilities. It should enable each of us, in carrying out our duties, to commit to this requirement personally, for the company, and for all stakeholders. These commitments are anchored in organizational and action principles and in complete transparency. They build on a safety culture shared by all personnel and maintained by periodic refresher training. They are implemented through Safety, Health, and Environmental management systems. The purpose of these commitments, beyond strict compliance with the laws and regulations in force in countries in which we operate as a group, is to foster a continuous improvement initiative aimed at continually enhancing our overall performance as a group. Content: 1 - Organization: responsibility of the group's executive management and subsidiaries, prime responsibility of the operator, a system of clearly defined responsibilities that draws on skilled support and on independent control of operating personnel, the general inspectorate: a shared expertise and an independent control of the operating organization, an organization that can be adapted for emergency management. 2 - Action principles: nuclear safety applies to every stage in the plant life cycle, lessons learned are analyzed and capitalized through the continuous improvement initiative, analyzing risks in advance is the basis of Areva's safety culture, employees are empowered to improve nuclear Safety, the group is committed to a voluntary radiation protection initiative And a sustained effort in reducing waste and effluent from facility Operations, employees and

  19. Safety issues to be taken into account in designing future nuclear fusion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Perrault, Didier, E-mail: didier.perrault@irsn.fr

    2016-11-01

    Highlights: • Assess if decay heat removal is a safety function. • Re-study accidents considered for ITER and identify those specific to DEMO. • Limit tritium inventory and optimize main gaseous tritium release routes. • Take into account constraints related to requirements of waste disposal routes. - Abstract: For several years now, the French “Institut de Radioprotection et de Sûreté Nucléaire” has been carrying out expertise of ITER fusion facility safety files at the request of the French “Autorité de Sûreté Nucléaire”. As part of the lengthy process which should lead to mastering nuclear fusion, different fusion facility projects are currently under study throughout the world to be ready to continue building on the work which will take place in the ITER facility. On the basis of the experience acquired during the ITER safety expertise, the IRSN has carried out a preliminary study of the safety issues which seem necessary to take into account right from the earliest design phase of these DEMO facilities. The issues studied have included the decay heat removal, exposure to ionizing radiation, potential accidents, and effluent releases and waste. The study shows that it will be important to give priority to the following actions, given that their results would have a major influence on the design: assess if decay heat removal is a safety function, re-study the accidents considered in the context of the ITER project and identify those specific to DEMO, and optimize each of the main routes for gaseous tritium releases.

  20. Report on nuclear safety on the operation of nuclear facilities in 1989

    International Nuclear Information System (INIS)

    Gregoric, M.; Levstek, M. F.; Horvat, D.; Kocuvan, M.; Cresnar, N.

    1990-01-01

    Currently Yugoslavia has one 632 MWe nuclear power plant (NPP) of PWR design, located at Krsko in the Socialist Republic (SR) of Slovenia. Krsko NPP, which is a two-loop plant, started power operation in 1981. In general, reactor safety activities in the SR of Slovenia are mostly related to upgrading the safety of our Krsko NPP and to developing capabilities for use in future units. This report presents the nuclear safety related legislation and organization of the corresponding regulatory body, and the activities related to nuclear safety of the participating organizations in the SR of Slovenia in 1989.

  1. Report on nuclear safety on the operation of nuclear facilities in 1990

    International Nuclear Information System (INIS)

    Gregoric, M.; Grlicarev, I.; Horvat, D.; Levstek, M.F.; Lukacs, E.; Kocuvan, M.; Skraban, A.

    1991-06-01

    Currently Yugoslavia has one 632 MWe nuclear power plant (NPP) of PWR design, located at Krsko in the Socialist Republic (SR) of Slovenia. Krsko NPP, which is a two-loop plant, started power operation in 1981. In general, reactor safety activities in the SR of Slovenia are mostly related to upgrading the safety of our Krsko NPP and to developing capabilities for use in future units. This report presents the nuclear safety related legislation and organization of the corresponding regulatory body, and the activities related to nuclear safety of the participating organizations in the SR of Slovenia in 1990.

  2. A proactive method for safety management in nuclear facilities; Um metodo proativo para gerenciamento da seguranca em instalacoes nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Grecco, Claudio Henrique dos Santos; Carvalho, Paulo Victor Rodrigues de; Santos, Isaac Antonio Luquetti dos, E-mail: grecco@ien.gov.br, E-mail: paulov@ien.gov.br, E-mail: luquetti@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN/RJ), Rio de Janeiro, RJ (Brazil). Div. de Instrumentacao e Confiabilidade Humana

    2014-07-01

    Due to the modern approach to address the safety of nuclear facilities which highlights that these organizations must be able to assess and proactively manage their activities becomes increasingly important the need for instruments to evaluate working conditions. In this context, this work presents a proactive method of managing organizational safety, which has three innovative features: 1) the use of predictive indicators that provide current information on the performance of activities, allowing preventive actions and not just reactive in safety management, different from safety indicators traditionally used (reactive indicators) that are obtained after the occurrence of undesired events; 2) the adoption of resilience engineering approach in the development of indicators - indicators are based on six principles of resilience engineering: top management commitment, learning, flexibility, awareness, culture of justice and preparation for the problems; 3) the adoption of the concepts and properties of fuzzy set theory to deal with subjectivity and consistency of human trials in the evaluation of the indicators. The fuzzy theory is used primarily to map qualitative models of decision-making, and inaccurate representation methods. The results of this study aim an improvement in performance and safety in organizations. The method was applied in a radiopharmaceutical shipping sector of a nuclear facility. The results showed that the method is a good monitoring tool objectively and proactively of the working conditions of an organizational domain.

  3. Seismic qualification of safety class components in non-reactor nuclear facilities at Hanford site

    International Nuclear Information System (INIS)

    Ocoma, E.C.

    1989-01-01

    This paper presents the methods used during the walkdowns to compile as-built structural information to seismically qualify or verify the seismic adequacy of safety class components in the Plutonium Finishing Plant complex. The Plutonium finishing Plant is a non-reactor nuclear facility built during the 1950's and was designed to the Uniform Building Code criteria for both seismic and wind events. This facility is located at the US Department of Energy Hanford Site near Richland, Washington

  4. Significant incidents in nuclear fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs.

  5. Significant incidents in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs

  6. Decision no. 2011-DC-0216 of the French nuclear safety authority from May 5, 2011, ordering the Laue Langevin Institute to proceed to a complementary safety evaluation of its basic nuclear facility (high flux reactor - INB no. 67) in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the Laue Langevin Institute, operator of the high flux research reactor (RHF) of Grenoble (France). (J.S.)

  7. Recent developments in IFE safety and tritium research and considerations for future nuclear fusion facilities

    International Nuclear Information System (INIS)

    Reyes, Susana; Anklam, Tom; Meier, Wayne; Campbell, Patrick; Babineau, Dave; Becnel, James; Taylor, Craig; Coons, Jim

    2016-01-01

    Highlights: • The safety characteristics and at risk inventories in an IFE facility are discussed. • The primary nuclear hazard is the potential exposure of workers and/or the public to tritium and/or neutronically activated products. • Recent technology developments in tritium processing are key for minimization of inventories. • Initial safety studies indicate that hazards associated to the use of liquid lithium can be appropriately managed. • Simulation of worst-case scenarios indicate that the accident consequences are limited and below the limit for public evacuation. - Abstract: Over the past five years, the fusion energy group at Lawrence Livermore National Laboratory (LLNL) has made significant progress in the area of safety and tritium research for Inertial Fusion Energy (IFE). Focus has been driven towards the minimization of inventories, accident safety, development of safety guidelines and licensing considerations. Recent technology developments in tritium processing and target fill have had a major impact on reduction of tritium inventories in the facility. A safety advantage of inertial fusion energy using indirect-drive targets is that the structural materials surrounding the fusion reactions can be protected from target emissions by a low-pressure chamber fill gas, therefore eliminating plasma-material erosion as a source of activated dust production. An important inherent safety advantage of IFE when compared to other magnetic fusion energy (MFE) concepts that have been proposed to-date (including ITER), is that loss of plasma control events with the potential to damage the first wall, such as disruptions, are non-conceivable, therefore eliminating a number of potential accident initiators and radioactive in-vessel source term generation. In this paper, we present an overview of the safety assessments performed to-date, comparing results to the US DOE Fusion Safety Standards guidelines and the recent lessons-learnt from ITER safety and

  8. Recent developments in IFE safety and tritium research and considerations for future nuclear fusion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Susana, E-mail: reyes20@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA (United States); Anklam, Tom; Meier, Wayne; Campbell, Patrick [Lawrence Livermore National Laboratory, Livermore, CA (United States); Babineau, Dave; Becnel, James [Savannah River National Laboratory, Aiken, SC (United States); Taylor, Craig; Coons, Jim [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-11-01

    Highlights: • The safety characteristics and at risk inventories in an IFE facility are discussed. • The primary nuclear hazard is the potential exposure of workers and/or the public to tritium and/or neutronically activated products. • Recent technology developments in tritium processing are key for minimization of inventories. • Initial safety studies indicate that hazards associated to the use of liquid lithium can be appropriately managed. • Simulation of worst-case scenarios indicate that the accident consequences are limited and below the limit for public evacuation. - Abstract: Over the past five years, the fusion energy group at Lawrence Livermore National Laboratory (LLNL) has made significant progress in the area of safety and tritium research for Inertial Fusion Energy (IFE). Focus has been driven towards the minimization of inventories, accident safety, development of safety guidelines and licensing considerations. Recent technology developments in tritium processing and target fill have had a major impact on reduction of tritium inventories in the facility. A safety advantage of inertial fusion energy using indirect-drive targets is that the structural materials surrounding the fusion reactions can be protected from target emissions by a low-pressure chamber fill gas, therefore eliminating plasma-material erosion as a source of activated dust production. An important inherent safety advantage of IFE when compared to other magnetic fusion energy (MFE) concepts that have been proposed to-date (including ITER), is that loss of plasma control events with the potential to damage the first wall, such as disruptions, are non-conceivable, therefore eliminating a number of potential accident initiators and radioactive in-vessel source term generation. In this paper, we present an overview of the safety assessments performed to-date, comparing results to the US DOE Fusion Safety Standards guidelines and the recent lessons-learnt from ITER safety and

  9. Posiva's application for a decision in principle concerning a disposal facility for spent nuclear fuel. STUK's statement and preliminary safety appraisal

    Energy Technology Data Exchange (ETDEWEB)

    Ruokola, E. [ed.

    2000-03-01

    In May 1999, Posiva Ltd submitted to the Government an application, pursuant to the Nuclear Energy Act, for a Decision in Principle on a disposal facility for spent nuclear fuel from the Finnish nuclear power plants. The Ministry of Trade and Industry requested the Radiation and Nuclear Safety Authority (STUK) to draw up a preliminary safety appraisal concerning the proposed disposal facility. In the beginning of this report, STUK's statement to the Ministry and Industry concerning the proposed disposal facility is given. In that statement, STUK concludes that the Decision in Principle is currently justified from the standpoint of safety. The statement is followed by a safety appraisal, where STUK deems, how the proposed disposal concept, site and facility comply with the safety requirements included in the Government's Decision (478/1999). STUK's preliminary safety appraisal was supported by contributions from a number of outside experts. A collective opinion by an international group of ten distinguished experts is appended to this report. (orig.)

  10. Regulatory system for control of nuclear facilities in Bangladesh

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2005-01-01

    All human activities have associated risks. Nuclear programme is no exception. The Bangladesh Atomic Energy Commission (BAEC), constituted in February 1973 through the promulgation of the Presidential order 15 of 1973. Functions of BAEC include research and development in peaceful application of atomic energy, generation of electricity and promotion of international relations congenial to implementation of its programmes and projects. In 1993 the Government of Bangladesh promulgated the law on Nuclear Safety and Radiation Control. Considering the human resources, expertise and facilities needed for implementation of the provisions of the NSRC law, BAEC was entrusted with the responsibility to enforce it. The responsibilities of the BAEC cover nuclear and radiological safety within the installations of BAEC and radiological safety in the manifold applications of radioisotopes and radiation sources within the country. An adequate and competent infrastructure has been built to cater to the diverse nuclear and radiation protection requirements of all nuclear facilities in Bangladesh, arising at different stages from site selection to day-to-day operation. In addition, periodic inspections of the nuclear facilities are carried out. The licensing and regulatory inspection systems for controlling of nuclear installations and radiation sources are established. The paper describes the legal provisions, responsibilities and organization of BAEC with special emphasis on nuclear safety and radiation protection of nuclear facilities in Bangladesh. (author)

  11. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    C.E. Sanders

    2005-04-07

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for

  12. Consensus standards utilized and implemented for nuclear criticality safety in Japan

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Okuno, Hiroshi; Naito, Yoshitaka

    1996-01-01

    The fundamental framework for the criticality safety of nuclear fuel facilities regulations is, in many advanced countries, generally formulated so that technical standards or handbook data are utilized to support the licensing safety review and to implement its guidelines. In Japan also, adequacy of the safety design of nuclear fuel facilities is checked and reviewed on the basis of licensing safety review guides. These guides are, first, open-quotes The Basic Guides for Licensing Safety Review of Nuclear Fuel Facilities,close quotes and as its subsidiaries, open-quotes The Uranium Fuel Fabrication Facility Licensing Safety Review Guidesclose quotes and open-quotes The Reprocessing Facility Licensing Safety Review Guides.close quotes The open-quotes Nuclear Criticality Safety Handbook close-quote of Japan and the Technical Data Collection are published and utilized to supply related data and information for the licensing safety review, such as for the Rokkasho reprocessing plant. The well-established technical standards and data abroad such as those by the American Nuclear Society and the American National Standards Institute are also utilized to complement the standards in Japan. The basic principles of criticality safety control for nuclear fuel facilities in Japan are duly stipulated in the aforementioned basic guides as follows: 1. Guide 10: Criticality control for a single unit; 2. Guide 11: Criticality control for multiple units; 3. Guide 12: Consideration for a criticality accident

  13. High-risk facilities. Emergency management in nuclear, chemical and hazardous waste facilities

    International Nuclear Information System (INIS)

    Kloepfer, Michael

    2012-01-01

    The book on emergency management in high-risk facilities covers the following topics: Change in the nuclear policy, risk management of high-risk facilities as a constitutional problem - emergency management in nuclear facilities, operational mechanisms of risk control in nuclear facilities, regulatory surveillance responsibilities for nuclear facilities, operational mechanism of the risk control in chemical plants, regulatory surveillance responsibilities for chemical facilities, operational mechanisms of the risk control in hazardous waste facilities, regulatory surveillance responsibilities for hazardous waste facilities, civil law consequences in case of accidents in high-risk facilities, criminal prosecution in case of accidents in high-risk facilities, safety margins as site risk for emission protection facilities, national emergency management - strategic emergency management structures, warning and self-protection of the public in case of CBRN hazards including aspects of the psych-social emergency management.

  14. Decision no. 2011-DC-0224 of the French nuclear safety authority from May 5, 2011, ordering the French atomic energy and alternative energies commission (CEA) to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the French atomic energy commission (CEA). (J.S.)

  15. Nuclear facility safeguards as specified by the Czechoslovak administrative law

    International Nuclear Information System (INIS)

    Elias, J.; Svab, J.

    1978-01-01

    A study is presented of the legal aspects of nuclear safeguards for the operation of nuclear power facilities evaluating the development of the legal arrangement over the past five years, i.e., encoding nuclear safeguards for nuclear facilities in the new building regulations (Act No. 50/1976 Coll. of Laws on Urban Planning and Building Regulations and implementing provisions). It also discusses the juridical position of State surveillance over the nuclear safety of nuclear facilities and its relation to surveillance carried out by specialized bodies of the State work safety inspection and to surveillance carried out by hygiene inspection bodies. (J.S.)

  16. Procedure for estimating facility decommissioning costs for non-fuel-cycle nuclear facilities

    International Nuclear Information System (INIS)

    Short, S.M.

    1988-01-01

    The Nuclear Regulatory Commission (NRC) staff has been reappraising its regulatory position relative to the decommissioning of nuclear facilities over the last several years. Approximately 30 reports covering the technology, safety, and costs of decommissioning reference nuclear facilities have been published during this period in support of this effort. One of these reports, Technology, Safety, and Costs of Decommissioning Reference Non-Fuel-Cycle Nuclear Facilities (NUREG/CR-1754), was published in 1981 and was felt by the NRC staff to be outdated. The Pacific Northwest Laboratory (PNL) was asked by the NRC staff to revise the information provided in this report to reflect the latest information on decommissioning technology and costs and publish the results as an addendum to the previous report. During the course of this study, the NRC staff also asked that PNL provide a simplified procedure for estimating decommissioning costs of non-fuel-cycle nuclear facilities. The purpose being to provide NRC staff with the means to easily generate their own estimate of decommissioning costs for a given facility for comparison against a licensee's submittal. This report presents the procedure developed for use by NRC staff

  17. Seismic safety assessment of nuclear facilities other than NPPs

    International Nuclear Information System (INIS)

    Coman, O.; Dragomirescu, A.; Kope, F.; Zemtev, N.

    2003-01-01

    Many research nuclear facilities are much simpler as compared with a Nuclear Power Plant (NPP) and the accident scenarios corresponding to an external initiating events and the relevant shutdown paths are much easier to be identified. Therefore, simpler methods than an EE-PSA can be often involved in the evaluation of the overall risk associated to such nuclear facilities in respect to External Event Hazards. (author)

  18. Safety issues of nuclear production of hydrogen

    International Nuclear Information System (INIS)

    Piera, Mireia; Martinez-Val, Jose M.; Jose Montes, Ma

    2006-01-01

    Hydrogen is not an uncommon issue in Nuclear Safety analysis, particularly in relation to severe accidents. On the other hand, hydrogen is a household name in the chemical industry, particularly in oil refineries, and is also a well known chemical element currently produced by steam reforming of natural gas, and other methods (such as coal gasification). In the not-too-distant future, hydrogen will have to be produced (by chemical reduction of water) using renewable and nuclear energy sources. In particular, nuclear fission seems to offer the cheapest way to provide the primary energy in the medium-term. Safety principles are fundamental guidelines in the design, construction and operation both of hydrogen facilities and nuclear power plants. When these two technologies are integrated, a complete safety analysis must consider not only the safety practices of each industry, but any interaction that could be established between them. In particular, any accident involving a sudden energy release from one of the facilities can affect the other. Release of dangerous substances (chemicals, radiotoxic effluents) can also pose safety problems. Although nuclear-produced hydrogen facilities will need specific approaches and detailed analysis on their safety features, a preliminary approach is presented in this paper. No significant roadblocks are identified that could hamper the deployment of this new industry, but some of the hydrogen production methods will involve very demanding safety standards

  19. Reports and operational engineering: An independent safety assessment of Department of Energy nuclear reactor facilities

    International Nuclear Information System (INIS)

    Rochman, A.; Washburn, B.W.

    1981-02-01

    The Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee, established via an October 24, 1979 memorandum from the Department of Energy (DOE) Under Secretary, was instructed to review the ''Kemeny Commission'' recommendations and to identify possible implications for DOE's nuclear facilities. As a result of this review, the Committee recommended that DOE carry out assessments in seven categories. The assessments would address specific topics identified for each category as delineated in the NFPQT ''Guidelines for Assessing the Safe Operation of DOE-Owned Reactors,'' dated May 7, 1980. The Committee recognized that similar assessments had been ongoing in the DOE program and safety overview organizations since the Three Mile Island nuclear accident and it was the Committee's intent to use the results of those ongoing assessments as an input to their evaluations. This information would be supplemented by additional studies consisting of the subject-related documents used at each reactor facility studied, and an on-site review of these reactor facilities by professional personnel within the Department of Energy, its operating contractors and independent consultants. 1 tab

  20. Critical experiments facility and criticality safety programs at JAERI

    International Nuclear Information System (INIS)

    Kobayashi, Iwao; Tachimori, Shoichi; Takeshita, Isao; Suzaki, Takenori; Miyoshi, Yoshinori; Nomura, Yasushi

    1985-10-01

    The nuclear criticality safety is becoming a key point in Japan in the safety considerations for nuclear installations outside reactors such as spent fuel reprocessing facilities, plutonium fuel fabrication facilities, large scale hot alboratories, and so on. Especially a large scale spent fuel reprocessing facility is being designed and would be constructed in near future, therefore extensive experimental studies are needed for compilation of our own technical standards and also for verification of safety in a potential criticality accident to obtain public acceptance. Japan Atomic Energy Research Institute is proceeding a construction program of a new criticality safety experimental facility where criticality data can be obtained for such solution fuels as mainly handled in a reprocessing facility and also chemical process experiments can be performed to investigate abnormal phenomena, e.g. plutonium behavior in solvent extraction process by using pulsed colums. In FY 1985 detail design of the facility will be completed and licensing review by the government would start in FY 1986. Experiments would start in FY 1990. Research subjects and main specifications of the facility are described. (author)

  1. Elements of nuclear safety

    CERN Document Server

    Libmann, Jacques

    1996-01-01

    This basically educational book is intended for all involved in nuclear facility safety. It dissects the principles and experiences conducive to the adoption of attitudes compliant with what is now known as "safety culture". This book is accessible to a wide range of readers.

  2. Decommissioning of Australian nuclear facilities - a regulatory perspective

    International Nuclear Information System (INIS)

    Diamond, T.V.; Mabbott, P.E.; Lawrence, B.R.

    2000-01-01

    Decommissioning has been a key political, economic and technical issue for the nuclear industry in recent years as older nuclear facilities have been retired. The management of decommissioning is an important part of nuclear safety as the potential exists for occupational exposures that are several times those expected during normal operation. It involves pre-planning and preparatory measures, procedures and instructions, technical and safety assessments, technology for handling large volumes of radioactive material, cost analyses, and a complex decision process. A challenge for the Commonwealth Government regulatory body, the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), is to allow the Commonwealth entities that operate nuclear facilities ample freedom to address the above, at the same time ensuring that international best practice is invoked to ensure safety. Accordingly, ARPANSA has prepared a regulatory guideline, first drafted by the Nuclear Safety Bureau in March 1997, that documents the process and the criteria that it uses when assessing an application from an operating organisation for a decommissioning licence. Copyright (2000) Australasian Radiation Protection Society Inc

  3. Safety aspects of front-end fuel cycle facilities

    International Nuclear Information System (INIS)

    Srinivasan, G.R.

    2003-01-01

    Safety of fuel cycle facilities (FCFs) other than Nuclear Power Plants is gaining importance all over the nuclear world as one would not like to leave behind any area of nuclear field in the journey toward excellence in the safe conduct of business in the whole of the nuclear industry. Safety should be part of every day activities, procedures, business practices, system and in fact of the people themselves

  4. Regulatory Safety Requirements for Operating Nuclear Installations

    International Nuclear Information System (INIS)

    Gubela, W.

    2017-01-01

    The National Nuclear Regulator (NNR) is established in terms of the National Nuclear Regulator Act (Act No 47 of 1999) and its mandate and authority are conferred through sections 5 and 7 of this Act, setting out the NNR's objectives and functions, which include exercising regulatory control over siting, design, construction etc of nuclear installations through the granting of nuclear authorisations. The NNR's responsibilities embrace all those actions aimed at providing the public with confidence and assurance that the risks arising from the production of nuclear energy remain within acceptable safety limits -> Therefore: Set fundamental safety standards, conducting pro-active safety assessments, determining licence conditions and obtaining assurance of compliance. The promotional aspects of nuclear activities in South Africa are legislated by the Nuclear Energy Act (Act No 46 of 1999). The NNR approach to regulations of nuclear safety and security take into consideration, amongst others, the potential hazards associated with the facility or activity, safety related programmes, the importance of the authorisation holder's safety related processes as well as the need to exercise regulatory control over the technical aspects such as of the design and operation of a nuclear facility in ensuring nuclear safety and security. South Africa does not have national nuclear industry codes and standards. The NNR is therefore non-prescriptive as it comes to the use of industry codes and standards. Regulatory framework (current) provide for the protection of persons, property, and environment against nuclear damage, through Licensing Process: Safety standards; Safety assessment; Authorisation and conditions of authorisation; Public participation process; Compliance assurance; Enforcement

  5. Storage of Spent Nuclear Fuel. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide provides recommendations and guidance on the storage of spent nuclear fuel. It covers all types of storage facilities and all types of spent fuel from nuclear power plants and research reactors. It takes into consideration the longer storage periods that have become necessary owing to delays in the development of disposal facilities and the decrease in reprocessing activities. It also considers developments associated with nuclear fuel, such as higher enrichment, mixed oxide fuels and higher burnup. The Safety Guide is not intended to cover the storage of spent fuel if this is part of the operation of a nuclear power plant or spent fuel reprocessing facility. Guidance is provided on all stages for spent fuel storage facilities, from planning through siting and design to operation and decommissioning, and in particular retrieval of spent fuel. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Roles and responsibilities; 4. Management system; 5. Safety case and safety assessment; 6. General safety considerations for storage of spent fuel. Appendix I: Specific safety considerations for wet or dry storage of spent fuel; Appendix II: Conditions for specific types of fuel and additional considerations; Annex: I: Short term and long term storage; Annex II: Operational and safety considerations for wet and dry spent fuel storage facilities; Annex III: Examples of sections of operating procedures for a spent fuel storage facility; Annex IV: Site conditions, processes and events for consideration in a safety assessment (external human induced phenomena); Annex V: Site conditions, processes and events for consideration in a safety assessment (external natural phenomena); Annex VI: Site conditions, processes and events for consideration in a safety assessment (external human induced phenomena); Annex VII: Postulated initiating events for consideration in a safety assessment (internal phenomena).

  6. Environmental licensing of nuclear facilities: compatibility of technical competencies

    International Nuclear Information System (INIS)

    Shu, J.; Paiva, R.L.C. de; Mezrahi, A.; Cardoso, E.M.; Aquino, W.P.; Deppe, A.L.; Menezes, R.M.; Prado, V.; Franco, N.M.F.L.; Nouailhetas, Y.; Xavier, A.M.

    1996-01-01

    The Brazilian Nuclear Energy Commission (CNEN) has the technical competency for diagnosing environmental radiological impacts, as well as evaluating the safety and requiring adequate control of the facilities which, due to their activities, represent a potential risk of radiological contamination for the environment. The institution is responsible for emission of radioprotection guidelines, controls and surveys in nuclear safety according to the country's regulations and international recommendations. The methodology to assure the limitation of radiation exposure is consequence from shared control over the nuclear activities, in special the nuclear facilities. According to the Federal Constitution of 1988, the nuclear activities must be under exclusive control of the Union in special related to the nuclear policies, economical, laboral and nuclear safety aspects, while the health and environmental controls of these activities are shared by the Federation, Union, States, Federal District and Counties. The controls related to specific aspects have to be harmonized in such a way to be optimized and effective. In this paper the results of compatibilization of nuclear legislation and environmental legislation are presented aiming to optimize the licensing of nuclear facilities. (author)

  7. Insight from a Critical Review on the Safety Analysis of Nuclear Fuel Cycle Facility for Domestic Regulatory System

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Chung, Young Wook; Jeong, Seung Young

    2010-01-01

    Korea has 20 nuclear power plants in operation, and 10,761 ton of spent fuel deposited in plant sites. The capacity of reservoir for spent fuel in plant sites is to begin to be full in 2016. The light water reactors of 16 units generate around 320 ton/year and the heavy water reactors of 4 units around 380 ton/year in Korea. And the electricity generated by nuclear power plants is planned to increase up to 59% share by 2030. Spent fuel classified as high level radioactive waste in law is characterized by high level radiation, high heat generation, and high radiological toxicity. In the contrary, it is also a very useful domestic energy source. Thus, the safe management of spent fuel is very important confronting job in nuclear industry. Advanced fuel cycle (AFC) using pyro-process is an innovative technology, by which environmental load is drastically relieved because the extracted long-lived fission products are burn in fast breeder reactors. Domestic nuclear industry also has a perspective road map for the construction of AFC facilities. However, there is not a sufficiently detailed licensing regulatory system yet. Moreover, there is no systematic frame for the safety evaluation. This paper reviews the safety analysis system of foreign fuel cycle facilities. Critical review leads to the insight for setting-up safety analysis system of domestic AFC facilities

  8. Investigation on candidates of principal facilities for exposure dose to public for the facilities using nuclear material

    International Nuclear Information System (INIS)

    Shimazaki, Yosuke; Sawahata, Hiroaki; Takada, Shoji; Fujimoto, Nozomu

    2015-01-01

    HTTR holds the nuclear fuel material use facilities in its reactor facilities, for the purpose of study on the fracture behavior of fuel and release behavior of fission products, development of high-performance fuel, and measurement of neutron flux. Due to the revision of the 'Act on the regulation of nuclear source material, nuclear fuel material and reactor', the facilities having the 'Important safety-related facilities' among the facilities applicable to the Enforcement Ordinance Article 41 (Article 41 facilities) has come to need to conform to the 'Regulations concerning standards for the location, structure, and equipment of used facilities and others'. In this case, actions such as modification by all possible means are required. The nuclear fuel substance use facilities of HTTR correspond to Article 41 facilities. So, whether it is a candidate for the 'Important safety-related facilities' has been examined. As a result, it is confirmed that the facilities are not correspond to the 'Important safety-related facilities', and it has been concluded that modification measures for the purpose of conforming to this approval standard rule are not necessary as of the present. (A.O.)

  9. Introduction to the nuclear criticality safety evaluation of facility X-705, Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Sheaffer, M.K.; Keeton, S.C.

    1993-01-01

    This report is the first in a series of documents that will evaluate nuclear criticality safety in the Decontamination and Recovery Facility, X-705, Portsmouth Gaseous Diffusion Plant. It provides an overview of the facility, categorizes its functions for future analysis, reviews existing NCS documentation, and explains the follow-on effort planned for X-705. A detailed breakdown of systems, subsystems, and operational areas is presented and cross-referenced to existing NCS documentation

  10. Regulatory measures of BARC Safety Council to control radiation exposure in BARC Facilities

    International Nuclear Information System (INIS)

    Rajdeep; Jolly, V.M.; Jayarajan, K.

    2018-01-01

    Bhabha Atomic Research Centre is involved in multidisciplinary research and developmental activities, related to peaceful use of nuclear energy including societal benefits. BARC facilities at different parts of India include nuclear fuel fabrication facilities, research reactors, nuclear recycle facilities and various Physics, Chemistry and Biological laboratories. BARC Safety Council (BSC) is the regulatory body for BARC facilities and takes regulatory measures for radiation protection. BSC has many safety committees for radiation protection including Operating Plants Safety Review Committee (OPSRC), Committee to Review Applications for Authorization of Safe Disposal of Radioactive Wastes (CRAASDRW) and Design Safety Review Committees (DSRC) in 2 nd tier and Unit Level Safety Committees (ULSCs) in 3 rd tier under OPSRC

  11. A graded approach to safety documentation at processing facilities

    International Nuclear Information System (INIS)

    Cowen, M.L.

    1992-01-01

    Westinghouse Savannah River Company (WSRC) has over 40 major Safety Analysis Reports (SARs) in preparation for non-reactor facilities. These facilities include nuclear material production facilities, waste management facilities, support laboratories and environmental remediation facilities. The SARs for these various projects encompass hazard levels from High to Low, and mission times from startup, through operation, to shutdown. All of these efforts are competing for scarce resources, and therefore some mechanism is required for balancing the documentation requirements. Three of the key variables useful for the decision making process are Depth of Safety Analysis, Urgency of Safety Analysis, and Resource Availability. This report discusses safety documentation at processing facilities

  12. Creation of a new-generation research nuclear facility

    International Nuclear Information System (INIS)

    Girchenko, A.A.; Matyushin, A.P.; Kudryavtsev, E.M.; Skopin, V.P.; Shchepelev, R.M.

    2013-01-01

    The SO-2M research nuclear facility operated on the industrial area of the institute. The facility is now removed from service. In view of this circumstance, it is proposed to restore the facility at the new qualitative level, i.e., to create a new-generation research nuclear facility with a very high safety level consisting of a subcritical bench and a proton accelerator (electronuclear facility). Competitive advantages and design features have been discussed and the productive capacity of the research nuclear facility under development has been evaluated [ru

  13. Safety in connection with the request for approval of the installation alteration in the fuel reprocessing facilities of Power Reactor and Nuclear Fuel Development Corporation (report)

    International Nuclear Information System (INIS)

    1982-01-01

    A report to the Prime Minister by the Nuclear Safety Commission was presented concerning the safety in the installation alteration of the fuel reprocessing facilities, as PNC had requested its approval to the Prime Minister. The safety was confirmed. The items of examination on the safety made by the committee on Examination of Nuclear Fuel Safety of NSC were the aseismic design of liquid waste storage, uranium denitration facility, intermediate gate and radioactive solid waste storage; the criticality safety design of the denitration facility; the radiation shielding design of the liquid waste storage, denitration facility and solid waste storage; the function of radioactive material containment of the liquid waste storage and denitration facility; the radiation control in the liquid waste storage, denitration facility and solid waste storage; the waste management in the liquid waste storage and denitration facility; fire and explosion prevention in the liquid waste storage; exposure dose from the liquid waste storage and denitration facility. (Mori, K.)

  14. Safety culture in the nuclear versus non-nuclear organization

    International Nuclear Information System (INIS)

    Haber, S.B.; Shurberg, D.A.

    1996-01-01

    The importance of safety culture in the safe and reliable operation of nuclear organizations is not a new concept. The greatest barriers to this area of research are twofold: (1) the definition and criteria of safety culture for a nuclear organization and (2) the measurement of those attributes in an objective and systematic fashion. This paper will discuss a proposed resolution of those barriers as demonstrated by the collection of data across nuclear and non-nuclear facilities over a two year period

  15. The Department of Energy nuclear criticality safety program

    International Nuclear Information System (INIS)

    Felty, J.R.

    2004-01-01

    This paper broadly covers key events and activities from which the Department of Energy Nuclear Criticality Safety Program (NCSP) evolved. The NCSP maintains fundamental infrastructure that supports operational criticality safety programs. This infrastructure includes continued development and maintenance of key calculational tools, differential and integral data measurements, benchmark compilation, development of training resources, hands-on training, and web-based systems to enhance information preservation and dissemination. The NCSP was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 97-2, Criticality Safety, and evolved from a predecessor program, the Nuclear Criticality Predictability Program, that was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 93-2, The Need for Critical Experiment Capability. This paper also discusses the role Dr. Sol Pearlstein played in helping the Department of Energy lay the foundation for a robust and enduring criticality safety infrastructure.

  16. Emergency preparedness source term development for the Office of Nuclear Material Safety and Safeguards-Licensed Facilities

    International Nuclear Information System (INIS)

    Sutter, S.L.; Mishima, J.; Ballinger, M.Y.; Lindsey, C.G.

    1984-08-01

    In order to establish requirements for emergency preparedness plans at facilities licensed by the Office of Nuclear Materials Safety and Safeguards, the Nuclear Regulatory Commission (NRC) needs to develop source terms (the amount of material made airborne) in accidents. These source terms are used to estimate the potential public doses from the events, which, in turn, will be used to judge whether emergency preparedness plans are needed for a particular type of facility. Pacific Northwest Laboratory is providing the NRC with source terms by developing several accident scenarios for eleven types of fuel cycle and by-product operations. Several scenarios are developed for each operation, leading to the identification of the maximum release considered for emergency preparedness planning (MREPP) scenario. The MREPP scenarios postulated were of three types: fire, tornado, and criticality. Fire was significant at oxide fuel fabrication, UF 6 production, radiopharmaceutical manufacturing, radiopharmacy, sealed source manufacturing, waste warehousing, and university research and development facilities. Tornadoes were MREPP events for uranium mills and plutonium contaminated facilities, and criticalities were significant at nonoxide fuel fabrication and nuclear research and development facilities. Techniques for adjusting the MREPP release to different facilities are also described

  17. Development of a methodology for safety classification on a non-reactor nuclear facility illustrated using an specific example

    International Nuclear Information System (INIS)

    Scheuermann, F.; Lehradt, O.; Traichel, A.

    2015-01-01

    To realize the safety of personnel and environment systems and components of nuclear facilities are classified according to their potential danger into safety classes. Based on this classification different demands on the manufacturing quality result. The objective of this work is to present the standardized method developed by NUKEM Technologies Engineering Services for the categorization into the safety classes restricted to Non-reactor nuclear facilities (NRNF). Exemplary the methodology is used on the complex Russian normative system (four safety classes). For NRNF only the lower two safety classes are relevant. The classification into the lowest safety class 4 is accordingly if the maximum resulting dose following from clean-up actions in case of incidents/accidents remains below 20 mSv and the volume activity restrictions of set in NRB-99/2009 are met. The methodology is illustrated using an example. In short the methodology consists of: - Determination of the working time to remove consequences of incidents, - Calculation of the dose resulting from direct radiation and due to inhalation during these works. The application of this methodology avoids over-conservative approaches. As a result some previously higher classified equipment can be classified into the lower safety class.

  18. Program of nuclear criticality safety experiment at JAERI

    International Nuclear Information System (INIS)

    Kobayashi, Iwao; Tachimori, Shoichi; Takeshita, Isao; Suzaki, Takenori; Ohnishi, Nobuaki

    1983-11-01

    JAERI is promoting the nuclear criticality safety research program, in which a new facility for criticality safety experiments (Criticality Safety Experimental Facility : CSEF) is to be built for the experiments with solution fuel. One of the experimental researches is to measure, collect and evaluate the experimental data needed for evaluation of criticality safety of the nuclear fuel cycle facilities. Another research area is a study of the phenomena themselves which are incidental to postulated critical accidents. Investigation of the scale and characteristics of the influences caused by the accident is also included in this research. The result of the conceptual design of CSEF is summarized in this report. (author)

  19. Building Nuclear Safety and Security Culture Within Regulatory Body

    International Nuclear Information System (INIS)

    Huda, K.

    2016-01-01

    To achieve a higher level of nuclear safety and security, it needs to develop the safety and security culture not only in the facility but also in the regulatory body. The regulatory body, especially needs to develop the safety and security culture within the organization, because it has a function to promote and oversee the culture in the facilities. In this sense, the regulatory body should become a role model. Development of the nuclear safety and security culture should be started by properly understanding its concept and awakening the awareness of individual and organization on the importance of nuclear safety and security. For effectiveness of the culture development in the regulatory body, the following steps are suggested to be taken: setting up of the regulatory requirements, self-assessment, independent assessment review, communication with the licensee, oversight of management system implementation, and integration with regulatory activities. The paper discusses those steps in the framework of development of nuclear safety and security culture in the regulatory body, as well as some important elements in building of the culture in the nuclear facilities. (author)

  20. Safety standards and safety record of nuclear power plants

    International Nuclear Information System (INIS)

    Davis, A.B.

    1984-01-01

    This paper focuses on the use of standards and the measurement and enforcement of these standards to achieve safe operation of nuclear power plants. Since a discussion of the safety standards that the Nuclear Regulatory Commission (NRC) uses to regulate the nuclear power industry can be a rather tedious subject, this discussion will provide you with not only a description of what safety standards are, but some examples of their application, and various indicators that provide an overall perspective on safety. These remarks are confined to the safety standards adopted by the NRC. There are other agencies such as the Environmental Protection Agency, the Occupational Safety and Health Administration, and the state regulatory agencies which impact on a nuclear power plant. The NRC has regulatory authority for the commercial use of the nuclear materials and facilities which are defined in the Atomic Energy Act of 1954 to assure that the public health and safety and national security are protected

  1. Saint-Laurent-des-Eaux nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Saint-Laurent-des-Eaux, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  2. Report on nuclear and radiological safety in 1994

    International Nuclear Information System (INIS)

    Lovincic, D.

    1995-01-01

    The Slovenian Nuclear Safety Administration (SNSA) in cooperation with the Health Inspectorate, prepared the Report on Nuclear and Radiological Safety in the Republic of Slovenia for 1994 as part of its regular practice of reporting on its activities to the Government and the Parliament of the Republic of Slovenia. The report is divided into seven thematic chapters covering the activities of the SNSA, the operation of nuclear facilities in Slovenia, the activities of the Agency for Radwaste Management (ARAO), the activities of international safety missions in Slovenia, environmental radioactivity monitoring in Slovenia, ionizing radiation sources control by Slovenian Health Inspectorate and review of the operation of nuclear facilities around the world.

  3. Safety guide data on radiation shielding in a reprocessing facility

    International Nuclear Information System (INIS)

    Sekiguchi, Noboru; Naito, Yoshitaka

    1986-04-01

    In a reprocessing facility, various radiation sources are handled and have many geometrical conditions. To aim drawing up a safety guidebook on radiation shielding in order to evaluate shielding safety in a reprocessing facility with high reliability and reasonableness, JAERI trusted investigation on safety evaluation techniques of radiation shielding in a reprocessing facility to Nuclear Safety Research Association. This report is the collection of investigation results, and describes concept of shielding safety design principle, radiation sources in reprocessing facility and estimation of its strength, techniques of shielding calculations, and definite examples of shielding calculation in reprocessing facility. (author)

  4. H.R. 2098: This Act may be cited as the Nuclear Facilities Occupational Safety Improvement Act of 1991, introduced in the US House of Representatives, One Hundred Second Congress, First Session, April 25, 1991

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Worker health and safety at Department of Energy nuclear facilities could be made substantially safer by applying standards developed by experts in the field of occupational health and safety. This bill was introduced into the US House of Representatives on April 25, 1991 to amend the Occupational Safety and Health Act of 1970 to improve and enforce standards for employee health and safety at Department of Energy nuclear facilities. Individual sections address the following: application of OSHA to DOE nuclear facilities; cooperation with inspections and investigations; transfer and allocation of appropriations and personnel; worker training requirements; performance of NIOSH functions at DOE nuclear facilities; medical examinations of employees at DOE nuclear facilities; and labor-management health and safety committees at Doe nuclear facilities

  5. Assessment of safety culture in the Iranian nuclear installations

    International Nuclear Information System (INIS)

    Farahani, H.F.; Davilu, H.; Sepanloo, K.

    2005-01-01

    The deficient safety culture (S.C) is the center of safety issues of nuclear industry. To benefit from the advantages of nuclear technology and considering the fact of potential hazards of accidents in nuclear installations it is essential to view safety as the highest priority. S.C is an amalgamation of values, standards, morals and norms of acceptable behavior. Organizations having effective S.C show constant commitment to safety as a top level priority. Furthermore, the personnel of a nuclear facility shall recognize the safety significance of their tasks. Many people even those who work in the field of safety do not have a correct understanding of what S.C looks like in practical sense. In this study, by conducting a survey according to IAEA-TECDOC-1329 in some nuclear facilities, the S.C within the Iranian nuclear facilities is assessed. The human and organizational factors in Tehran Research Reactor are evaluated using a questionnaire method with active participation of the reactor operators. The results sho w that the operators are pretty aware of the subject. Also it has been identified some areas of improvement. (authors)

  6. Study on HVAC system in nuclear facility

    International Nuclear Information System (INIS)

    Baeg, S. Y.; Song, W. S.; Oh, Y. O.; Ju, Y. S.; Hong, K. P.

    2003-01-01

    Heating, Ventilation and Air Conditioning (HVAC) system in nuclear facility should be equipped and constructed more stable and allowable than that in common facility. The purpose of HVAC system is the maintenance of optimum working environment, the protection of worker against a contaminated air and the prevention of atmospheric contamination due to an outward ventilation, etc.. The basic scheme of a safety operation of nuclear facility is to prevent the atmospheric contamination even in low level. The adaptability of HVAC system which is in operation. In this study, the design requirements of HVAC system in nuclear facility and the HVAC systems in foreign countries are reviewed, and the results can be utilized in the design of HVAC system in nuclear facility

  7. Risk assessment on hazards for decommissioning safety of a nuclear facility

    International Nuclear Information System (INIS)

    Jeong, Kwan-Seong; Lee, Kune-Woo; Lim, Hyeon-Kyo

    2010-01-01

    A decommissioning plan should be followed by a qualitative and quantitative safety assessment of it. The safety assessment of a decommissioning plan is applied to identify the potential (radiological and non-radiological) hazards and risks. Radiological and non-radiological hazards arise during decommissioning activities. The non-radiological or industrial hazards to which workers are subjected during a decommissioning and dismantling process may be greater than those experienced during an operational lifetime of a facility. Workers need to be protected by eliminating or reducing the radiological and non-radiological hazards that may arise during routine decommissioning activities and as well as during accidents. The risk assessment method was developed by using risk matrix and fuzzy inference logic, on the basis of the radiological and non-radiological hazards for a decommissioning safety of a nuclear facility. Fuzzy inference of radiological and non-radiological hazards performs a mapping from radiological and non-radiological hazards to risk matrix. Defuzzification of radiological and non-radiological hazards is the conversion of risk matrix and priorities to the maximum criterion method and the mean criterion method. In the end, a composite risk assessment methodology, to rank the risk level on radiological and non-radiological hazards of the decommissioning tasks and to prioritize on the risk level of the decommissioning tasks, by simultaneously combining radiological and non-radiological hazards, was developed.

  8. Extension of responsibilities of the State Office for Nuclear Safety

    International Nuclear Information System (INIS)

    Hrehor, M.

    1995-01-01

    The responsibilities of the State Office for Nuclear Safety have been extended by Act No. 85/1995 to cover protection against ionizing radiation. The following responsibilities of the State Office for Nuclear Safety are defined by the Act: a) state surveillance over nuclear safety of nuclear facilities, and over radioactive waste and spent fuel management; b) state surveillance over nuclear materials, their record-keeping and accountancy; c) state surveillance over the safeguarding of nuclear facilities and nuclear materials; d) state surveillance over selected materials, facilities and technologies used in the nuclear field, as well as dual-purpose materials and facilities; e) state surveillance over protection against ionizing radiation; f) coordination of the performance of the Radiation Monitoring Network over the Czech Republic and responsibility for international exchange of data on the radiological situation. The Act is reproduced in full, and the organizational structure of the Office is shown in a chart. (J.B.)

  9. 340 Waste handling Facility Hazard Categorization and Safety Analysis

    International Nuclear Information System (INIS)

    Rodovsky, T.J.

    2010-01-01

    The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3. The final hazard categorization for the deactivated 340 Waste Handling Facility (340 Facility) is presented in this document. This hazard categorization was prepared in accordance with DOE-STD-1 027-92, Change Notice 1, Hazard Categorization and Accident Analysis Techniques for Compliance with Doe Order 5480.23, Nuclear Safety Analysis Reports. The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category (HC) 3. Routine nuclear waste receiving, storage, handling, and shipping operations at the 340 Facility have been deactivated, however, the facility contains a small amount of radioactive liquid and/or dry saltcake in two underground vault tanks. A seismic event and hydrogen deflagration were selected as bounding accidents. The generation of hydrogen in the vault tanks without active ventilation was determined to achieve a steady state volume of 0.33%, which is significantly less than the lower flammability limit of 4%. Therefore, a hydrogen deflagration is not possible in these tanks. The unmitigated release from a seismic event was used to categorize the facility consistent with the process defined in Nuclear Safety Technical Position (NSTP) 2002-2. The final sum-of-fractions calculation concluded that the facility is less than HC 3. The analysis did not identify any required engineered controls or design features. The Administrative Controls that were derived from the analysis are: (1) radiological inventory control, (2) facility change control, and (3) Safety Management Programs (SMPs). The facility configuration and radiological inventory shall be controlled to ensure that the assumptions in the analysis remain valid. The facility commitment to SMPs protects the integrity of the facility and environment by ensuring training, emergency response, and radiation protection. The full scale

  10. Recent development in safety regulation of nuclear fuel cycle activities

    International Nuclear Information System (INIS)

    Kato, S.

    2001-01-01

    Through the effort of deliberation and legislation over five years, Japanese government structure was reformed this January, with the aim of realizing simple, efficient and transparent administration. Under the reform, the Agency for Nuclear and Industrial Safety (ANIS) was founded in the Ministry of Economy, Trade and Industry (METI) to be responsible for safety regulation of energy-related nuclear activities, including nuclear fuel cycle activities, and industrial activities, including explosives, high-pressure gasses and mining. As one of the lessons learned from the JCO criticality accident of September 1999, it was pointed out that the government's inspection function was not enough for fuel fabrication facilities. Accordingly, new statutory regulatory activities were introduced, namely, inspection of observance of safety rules and procedures for all kinds of nuclear operators and periodic inspection of fuel fabrication facilities. In addition, in order to cope with insufficient safety education and training of workers in nuclear facilities, licensees of nuclear facilities are required by law to specify safety education and training for their workers. ANIS is committed to enforce these new regulatory activities effectively and efficiently. In addition, it is going to be prepared, in its capacity as safety regulatory authority, for future development of Japanese fuel cycle activities, including commissioning of JNFL Rokkasho reprocessing plant and possible application for licenses for JNFL MOX fabrication plant and for spent fuel interim storage facilities. (author)

  11. Regulatory oversight report 2016 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2017-06-01

    ENSI, the Swiss Federal Nuclear Safety Inspectorate, assesses and monitors safety in the Swiss nuclear facilities. These include the five nuclear power plants: Beznau Units 1 and 2 (KKB1 and KKB2), Muehleberg (KKM), Goesgen (KKG) and Leibstadt (KKL), the interim storage facilities based at each plant, the Central Interim Storage Facility (Zwilag) in Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI), the University of Basel (UniB) and the Federal Institute of Technology in Lausanne (EPFL). Using a combination of inspections, regulatory meetings, checks, analyses and the reporting of the operators of individual facilities, ENSI obtains the required overview of nuclear safety in these facilities. It ensures that they operate as required by law. ENSI's regulatory responsibilities also include the transport of radioactive materials from and to nuclear facilities and preparations for a deep geological repository for radioactive waste. ENSI maintains its own emergency organisation, which is an integral part of the national emergency structure that would be activated in the event of a serious incident at a nuclear facility in Switzerland. ENSI reports periodically on its supervisory activities. It informs the public about special events and findings in the nuclear installations. All five nuclear power plants in Switzerland operated safely during the past year. Nuclear safety at all plants in operation was rated as good or satisfactory. In 2016, there were 31 reportable events at the nuclear power plants. 30 events were rated Level 0 (event of no or low safety significance) on the International Nuclear and Radiological Event Scale (INES) and one was rated Level 1 (anomaly) at KKL. Zwilag consists of several interim storage buildings, a conditioning plant and a plasma plant (incineration/melting plant). At the end of 2016, the cask storage hall contained 56 transport/storage casks with spent fuel assemblies and vitrified residue

  12. Nuclear safety culture and nuclear safety supervision

    International Nuclear Information System (INIS)

    Chai Jianshe

    2013-01-01

    In this paper, the author reviews systematically and summarizes up the development process and stage characteristics of nuclear safety culture, analysis the connotation and characteristics of nuclear safety culture, sums up the achievements of our country's nuclear safety supervision, dissects the challenges and problems of nuclear safety supervision. This thesis focused on the relationship between nuclear safety culture and nuclear safety supervision, they are essential differences, but there is a close relationship. Nuclear safety supervision needs to introduce some concepts of nuclear safety culture, lays emphasis on humanistic care and improves its level and efficiency. Nuclear safety supervision authorities must strengthen nuclear safety culture training, conduct the development of nuclear safety culture, make sure that nuclear safety culture can play significant roles. (author)

  13. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Safety of nuclear fuel cycle facilities. Vol. 9 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. The INPRO manual is comprised of an overview volume (No. 1), and eight additional volumes covering the areas of economics (Volume 2), infrastructure (Volume 3), waste management (Volume 4), proliferation resistance (Volume 5), physical protection (Volume 6), environment (Volume 7), safety of nuclear reactors (Volume 8), and safety of nuclear fuel cycle facilities (laid out in this report) (Volume 9).This report elaborates on the guidance given in the INPRO report 'Methodology for the assessment of innovative nuclear reactors and fuel cycles', IAEA-TECDOC-1434, and the previous INPRO report 'Guidance for the evaluation for innovative nuclear reactors and fuel cycles', IAEA-TECDOC-1362 (2003), in the area of safety of nuclear reactors. The present version of this manual deals with safety issues related to design and operation of mining, milling, refining, conversion, enrichment, fuel fabrication, fuel storage and fuel reprocessing facilities. The INPRO Manual starts with an introduction in Chapter 1. Chapter 2 sets out the necessary input for an INPRO assessment of the safety of an innovative nuclear fuel cycle facility. This includes information on the design for the plant and the safety

  14. Safety of and regulations for nuclear fuel cycle facilities. Report of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-05-01

    In order to compile information on the nature of the safety concerns and current status of the regulations concerning nuclear fuel cycle facilities in Member States, an IAEA Technical Committee meeting on this topic was convened from 8 to 12 May 2000 in Vienna. The present publication contains the results of this meeting. The contributions of the participants in Annex 3 exemplify the work done in some Member States to develop an adequate regulatory framework to oversee the safe operation of these facilities

  15. No 2943. Project of law relative to nuclear transparency and safety

    International Nuclear Information System (INIS)

    2006-03-01

    This project of law comprises 5 titles dealing with: 1 - general dispositions: definition and scope of nuclear safety, security, radiation protection, operators liability, facilities in concern; 2 - the high nuclear safety authority: role and duties; 3 - public information in the domain of nuclear safety and radiation protection: information right of the public, local information commissions, high committee for nuclear safety transparency and information; 4 - basic nuclear facilities and transport of radioactive materials: applicable rules, police controls and measures, penal dispositions (investigations, sanctions); 5 - miscellaneous dispositions: changes made with respect to previous legislative texts. (J.S.)

  16. Nuclear Safety through International Cooperation

    International Nuclear Information System (INIS)

    Flory, Denis

    2013-01-01

    The Fukushima Daiichi nuclear accident was the worst at a nuclear facility since the Chernobyl accident in 1986. It caused deep public anxiety and damaged confidence in nuclear power. Following this accident, strengthening nuclear safety standards and emergency response has become an imperative at the global level. The IAEA is leading in developing a global approach, and the IAEA Action Plan on Nuclear Safety is providing a comprehensive framework and acting as a significant driving force to identify lessons learned and to implement safety improvements. Strengthening nuclear safety is addressed through a number of measures proposed in the Action Plan including 12 main actions focusing on safety assessments in the light of the accident. Significant progress has been made in assessing safety vulnerabilities of nuclear power plants, strengthening the IAEA's peer review services, improvements in emergency preparedness and response capabilities, strengthening and maintaining capacity building, as well as widening the scope and enhancing communication and information sharing with Member States, international organizations and the public. Progress has also been made in reviewing the IAEA's safety standards, which continue to be widely applied by regulators, operators and the nuclear industry in general, with increased attention and focus on accident prevention, in particular severe accidents, and emergency preparedness and response.

  17. International Nuclear Safety Center (INSC) database

    International Nuclear Information System (INIS)

    Sofu, T.; Ley, H.; Turski, R.B.

    1997-01-01

    As an integral part of DOE's International Nuclear Safety Center (INSC) at Argonne National Laboratory, the INSC Database has been established to provide an interactively accessible information resource for the world's nuclear facilities and to promote free and open exchange of nuclear safety information among nations. The INSC Database is a comprehensive resource database aimed at a scope and level of detail suitable for safety analysis and risk evaluation for the world's nuclear power plants and facilities. It also provides an electronic forum for international collaborative safety research for the Department of Energy and its international partners. The database is intended to provide plant design information, material properties, computational tools, and results of safety analysis. Initial emphasis in data gathering is given to Soviet-designed reactors in Russia, the former Soviet Union, and Eastern Europe. The implementation is performed under the Oracle database management system, and the World Wide Web is used to serve as the access path for remote users. An interface between the Oracle database and the Web server is established through a custom designed Web-Oracle gateway which is used mainly to perform queries on the stored data in the database tables

  18. Introduction to nuclear facilities engineering

    International Nuclear Information System (INIS)

    Sapy, Georges

    2012-06-01

    Engineering, or 'engineer's art', aims at transforming simple principle schemes into operational facilities often complex especially when they concern the nuclear industry. This transformation requires various knowledge and skills: in nuclear sciences and technologies (nuclear physics, neutronics, thermal-hydraulics, material properties, radiation protection..), as well as in non-nuclear sciences and technologies (civil engineering, mechanics, electricity, computer sciences, instrumentation and control..), and in the regulatory, legal, contractual and financial domains. This book explains how this huge body of knowledge and skills must be organized and coordinated to create a reliable, exploitable, available, profitable and long-lasting facility, together with respecting extremely high safety, quality, and environmental impact requirements. Each aspect of the problem is approached through the commented presentation of nuclear engineering macro-processes: legal procedures and administrative authorizations, nuclear safety/radiation protection/security approach, design and detailed studies, purchase of equipments, on-site construction, bringing into operation, financing, legal, contractual and logistic aspects, all under the global control of a project management. The 'hyper-complexness' of such an approach leads to hard points and unexpected events. The author identifies the most common ones and proposes some possible solutions to avoid, mitigate or deal with them. In a more general way, he proposes some thoughts about the performance factors of a nuclear engineering process

  19. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    International Nuclear Information System (INIS)

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-01

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites

  20. Nuclear and radiological safety in Slovenia in 1994

    Energy Technology Data Exchange (ETDEWEB)

    Lovincic, D [Slovenian Nuclear Safety Administration, Ljubljana (Slovenia)

    1995-07-01

    The Slovenian Nuclear Safety Administration (SNSA) in cooperation with the Health Inspectorate, prepared the Report on Nuclear and Radiological Safety in the Republic of Slovenia for 1994 as part of its regular practice of reporting on its activities to the Government and the Parliament of the Republic of Slovenia. The report is divided into seven thematic chapters covering the activities of the SNSA, the operation of nuclear facilities in Slovenia, the activities of the Agency for Radwaste Management (ARAO), the activities of international safety missions in Slovenia, environmental radioactivity monitoring in Slovenia, ionizing radiation sources control by Slovenian Health Inspectorate and review of the operation of nuclear facilities around the world. (author)

  1. Nuclear and radiological safety in Slovenia in 1994

    International Nuclear Information System (INIS)

    Lovincic, D.

    1995-01-01

    The Slovenian Nuclear Safety Administration (SNSA) in cooperation with the Health Inspectorate, prepared the Report on Nuclear and Radiological Safety in the Republic of Slovenia for 1994 as part of its regular practice of reporting on its activities to the Government and the Parliament of the Republic of Slovenia. The report is divided into seven thematic chapters covering the activities of the SNSA, the operation of nuclear facilities in Slovenia, the activities of the Agency for Radwaste Management (ARAO), the activities of international safety missions in Slovenia, environmental radioactivity monitoring in Slovenia, ionizing radiation sources control by Slovenian Health Inspectorate and review of the operation of nuclear facilities around the world. (author)

  2. Annual report to Congress. Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 2000

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-03-01

    This Annual Report to the Congress describes the Department of Energy's activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board. During 2000, the Department completed its implementation and proposed closure of one Board recommendation and completed all implementation plan milestones associated with two additional Board recommendations. Also in 2000, the Department formally accepted two new Board recommendations and developed implementation plans in response to those recommendations. The Department also made significant progress with a number of broad-based safety initiatives. These include initial implementation of integrated safety management at field sites and within headquarters program offices, issuance of a nuclear safety rule, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

  3. Annual report to Congress. Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 2000

    International Nuclear Information System (INIS)

    2001-01-01

    This Annual Report to the Congress describes the Department of Energy's activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board. During 2000, the Department completed its implementation and proposed closure of one Board recommendation and completed all implementation plan milestones associated with two additional Board recommendations. Also in 2000, the Department formally accepted two new Board recommendations and developed implementation plans in response to those recommendations. The Department also made significant progress with a number of broad-based safety initiatives. These include initial implementation of integrated safety management at field sites and within headquarters program offices, issuance of a nuclear safety rule, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction

  4. Implementing partnerships in nonreactor facility safety analyses

    International Nuclear Information System (INIS)

    Courtney, J.C.; Perry, W.H.; Phipps, R.D.

    1996-01-01

    Faculty and students from LSU have been participating in nuclear safety analyses and radiation protection projects at ANL-W at INEL since 1973. A mutually beneficial relationship has evolved that has resulted in generation of safety-related studies acceptable to Argonne and DOE, NRC, and state regulatory groups. Most of the safety projects have involved the Hot Fuel Examination Facility or the Fuel Conditioning Facility; both are hot cells that receive spent fuel from EBR-II. A table shows some of the major projects at ANL-W that involved LSU students and faculty

  5. Applicability of trends in nuclear safety analysis to space nuclear power systems

    International Nuclear Information System (INIS)

    Bari, R.A.

    1992-01-01

    A survey is presented of some current trends in nuclear safety analysis that may be relevant to space nuclear power systems. This includes: lessons learned from operating power reactor safety and licensing; approaches to the safety design of advanced and novel reactors and facilities; the roles of risk assessment, extremely unlikely accidents, safety goals/targets; and risk-benefit analysis and communication

  6. Independent body for surveillance over nuclear safety in the Slovak Republic established

    International Nuclear Information System (INIS)

    Zlatnansky, J.

    1994-01-01

    The position, role, tasks and organizational structure of the Nuclear Safety Authority of the Slovak Republic are outlined. The Authority is responsible for state surveillance over nuclear safety of nuclear facilities including surveillance over radioactive waste management, over spent fuel management and other stages of the fuel cycle, as well as over nuclear materials including their accountancy and recording. The body is also responsible for assessing projects within the nuclear energy use programme and the quality of selected nuclear technological facilities and instrumentation, as well as for Slovak commitments and obligations under international agreements concerned with nuclear safety of nuclear facilities and with radioactive wastes. (J.B.). 1 fig

  7. Safety culture in the maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    2005-01-01

    Safety culture is the complexity of beliefs, shared values and behaviour reflected in making decisions and performing work in a nuclear power plant or nuclear facility. The definition of safety culture and the related concepts presented in the IAEA literature are widely known to experts. Since the publication of Safety Culture, issued by the IAEA as INSAG-4 in 1991, the IAEA has produced a number of publications on strengthening the safety culture in organizations that operate nuclear power plants and nuclear facilities. However, until now the focus has been primarily on the area of operations. Apart from operations, maintenance in plants and nuclear facilities is an aspect that deserves special attention, as maintenance activities can have both a direct and an indirect effect on equipment reliability. Adverse safety effects can arise, depending upon the level of skill of the personnel involved, safety awareness and the complexity of the work process. Any delayed effects resulting from challenges to maintenance can cause interruptions in operation, and hence affect the safety of a plant or facility. Building upon earlier IAEA publications on this topic, this Safety Report reviews how challenges to the maintenance of nuclear power plants can affect safety culture. It also highlights indications of a weakening safety culture. The challenges described are in areas such as maintenance management; human resources management; plant condition assessment and the business environment. The steps that some Member States have taken to address safety culture aspects are detailed and singled out as good practices, with a view to disseminating and exchanging experiences and lessons learned. Although this report is primarily directed at plant maintenance organizations, the subject matter is applicable to a wider audience, including plant contracting organizations and regulatory authorities

  8. Status of safety at Areva group facilities. 2007 annual report

    International Nuclear Information System (INIS)

    2007-01-01

    This report describes the status of nuclear safety and radiation protection in the facilities of the AREVA group and gives information on radiation protection in the service operations, as observed through the inspection programs and analyses carried out by the General Inspectorate in 2007. Having been submitted to the group's Supervisory Board, this report is sent to the bodies representing the personnel. Content: 1 - A look back at 2007 by the AREVA General Inspector: Visible progress in 2007, Implementation of the Nuclear Safety Charter, Notable events; 2 - Status of nuclear safety and radiation protection in the nuclear facilities and service operations: Personnel radiation protection, Event tracking, Service operations, Criticality control, Radioactive waste and effluent management; 3 - Performance improvement actions; 4 - Description of the General Inspectorate; 5 - Glossary

  9. Global Nuclear Safety and Security Network

    International Nuclear Information System (INIS)

    Guo Lingquan

    2013-01-01

    The objectives of the Regulatory Network are: - to contribute to the effectiveness of nuclear regulatory systems; - to contribute to continuous enhancements, and - to achieve and promote radiation and nuclear safety and security by: • Enhancing the effectiveness and efficiency of international cooperation in the regulation of nuclear and radiation safety of facilities and activities; • Enabling adequate access by regulators to relevant safety and security information; • Promoting dissemination of information on safety and security issues as well as information of good practices for addressing and resolving these issues; • Enabling synergies among different web based networks with a view to strengthening and enhancing the global nuclear safety framework and serving the specific needs of regulators and international organizations; • Providing additional information to the public on international regulatory cooperation in safety and security matters

  10. Regulatory oversight of nuclear safety in Finland. Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Kainulainen, E. (ed.)

    2012-07-01

    The report constitutes the report on regulatory control in the field of nuclear energy which the Radiation and Nuclear Safety Authority (STUK) is required to submit once a year to the Ministry of Employment and the Economy pursuant to Section 121 of the Nuclear Energy Decree. The report is also delivered to the Ministry of Environment, the Finnish Environment Institute, and the regional environmental authorities of the localities in which a nuclear facility is located. The regulatory control of nuclear safety in 2011 included the design, construction and operation of nuclear facilities, as well as nuclear waste management and nuclear materials. The first parts of the report explain the basics of nuclear safety regulation included as part of STUK's responsibilities, as well as the objectives of the operations, and briefly introduce the objects of regulation. The chapter concerning the development and implementation of legislation and regulations describes changes in nuclear legislation, as well as the progress of STUK's YVL Guide revision work. The section concerning the regulation of nuclear facilities contains an overall safety assessment of the nuclear facilities currently in operation or under construction. The chapter concerning the regulation of the final disposal project for spent nuclear fuel de-scribes the preparations for the final disposal project and the related regulatory activities. The section concerning nuclear non-proliferation describes the nuclear non-proliferation control for Finnish nuclear facilities and final disposal of spent nuclear fuel, as well as measures required by the Additional Protocol of the Safeguards Agreement. The chapter describing the oversight of security arrangements in the use of nuclear energy discusses oversight of the security arrangements in nuclear power plants and other plants, institutions and functions included within the scope of STUK's regulatory oversight. The chapter also discusses the national and

  11. Application of the DOE Nuclear Safety Policy goal

    International Nuclear Information System (INIS)

    Coles, G.A.; Hey, B.E.; Leach, D.S.; Muhlestein, L.D.

    1992-08-01

    The US Department of Energy (DOE) issued their Nuclear Safety Policy for implementation on September 9, 1991. The statement noted that it was the DOE's policy that the general public should be protected such that no individual would bear significant additional risk to health and safety from operation of their nuclear facilities above the risks to which members of the general population were normally exposed. The intent is that from the nuclear safety policy will follow specific safety rules, orders, standards and other requirements. The DOE Nuclear Safety Policy provides general statements in the areas of management involvement and accountability, providing technically competent personnel, oversight and self-assessment, promoting a safety culture, and quantitative safety goals as aiming points for performance. In general, most DOE Management and Operating Contractors should have programs in place which address the general statements noted above. Thus, compliance with the general statements of the DOE Nuclear Safety Policy should present no significant difficulty. Consequently, the focus of this paper will be the two quantitative safety goals reproduced below from the DOE Nuclear Safety Policy. ''The risk to an average individual in the vicinity of a DOE facility for prompt fatalities that might result from accidents should not exceed one tenth of one percent (0.1 %) of the sum of prompt fatalities resulting from other accidents to which members of the population are generally exposed. For evaluation purposes, individuals are assumed to be located within one mile of the site boundary.'' ''The risk to the population in the area of a DOE nuclear facility for cancer fatalities that might result from operations should not exceed one tenth of one percent (0.1 %) of the sum of all cancer fatality risks resulting from all other causes. For evaluation purposes, individuals are assumed to be located within 10 miles of the site boundary.''

  12. The role of probabilistic safety assessment and probabilistic safety criteria in nuclear power plant safety

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this Safety Report is to provide guidelines on the role of probabilistic safety assessment (PSA) and a range of associated reference points, collectively referred to as probabilistic safety criteria (PSC), in nuclear safety. The application of this Safety Report and the supporting Safety Practice publication should help to ensure that PSA methodology is used appropriately to assess and enhance the safety of nuclear power plants. The guidelines are intended for use by nuclear power plant designers, operators and regulators. While these guidelines have been prepared with nuclear power plants in mind, the principles involved have wide application to other nuclear and non-nuclear facilities. In Section 2 of this Safety Report guidelines are established on the role PSA can play as part of an overall safety assurance programme. Section 3 summarizes guidelines for the conduct of PSAs, and in Section 4 a PSC framework is recommended and guidance is provided for the establishment of PSC values

  13. Nuclear safety review for the year 1997

    International Nuclear Information System (INIS)

    1998-12-01

    The Nuclear Safety Review attempts to summarize the global nuclear safety scene during 1997. It starts with discussion of significant safety related events worldwide: International cooperation; reactor facilities; radioactive waste management; medical uses of radiation sources; events at other facilities and transport of radioactive material. This is followed by a description of principal IAEA activities that contributed to global nuclear safety, namely: legally binding international agreements; non-binding safety standards and their application. The third part highlights developments in Member States as they reported them. The review closes with a description of issues that are likely to be prominent in the coming year(s). A draft version was submitted to the March 1998 session of the IAEA Board of Governors, and this final version has been prepared in light of the discussion in the Board and was submitted for information to the 42nd session of the IAEA General Conference

  14. Progress of nuclear safety research, (1)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successively in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also, the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts, and in this Part 1, the reactor safety research is described. The safety of nuclear fuel, the integrity and safety of pressure boundary components, the engineered safety in LOCA, fuel behavior in accident and others are reported. (Kako, I.)

  15. Annual report ''nuclear safety in France''; Le rapport annuel ''la surete nucleaire en France''

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This document is the 2001 annual report of the French authority of nuclear safety (ASN). It summarizes the highlights of the year 2000 and details the following aspects: the nuclear safety in France, the organization of the control of nuclear safety, the regulation relative to basic nuclear facilities, the control of facilities, the information of the public, the international relations, the organisation of emergencies, the radiation protection, the transport of radioactive materials, the radioactive wastes, the PWR reactors, the experimental reactors and other laboratories and facilities, the nuclear fuel cycle facilities, and the shutdown and dismantling of nuclear facilities. (J.S.)

  16. The regulatory system of nuclear safety in Russia

    International Nuclear Information System (INIS)

    Mizoguchi, Shuhei

    2013-01-01

    This article explains what type of mechanism the nuclear system has and how nuclear safety is regulated in Russia. There are two main organizations in this system : ROSATOM and ROSTEKHADZOR. ROSATOM, which was founded in 2007, incorporates all the nuclear industries in Russia, including civil nuclear companies as well as nuclear weapons complex facilities. ROSTEKHNADZOR is the federal body that secures and supervises the safety in using atomic energy. This article also reviews three laws on regulating nuclear safety. (author)

  17. Fatigue damage of nuclear facilities

    International Nuclear Information System (INIS)

    2001-01-01

    The conference on the fatigue damage of nuclear facilities, organized by the SFEN (french society of nuclear energy), took place at Paris the 23. of november 2000. Eleven papers were presented, showing the state of the art and the research programs in the domain of the sizing rules, safety, installations damage, examination and maintenance. (A.L.B.)

  18. Focus on the studies in support of fire safety analysis. IRSN modelling approach for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Espargilliere, Julien; Meyrand, Raphael; Vinot, Thierry [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France)

    2015-12-15

    For a fire safety analysis, in order to comply with nuclear safety goals, a nuclear fuel facility operator has to define the elements important for safety to be maintained, even in the case of a fire. One of the key points of this fire analysis is the assessment of possible fire scenarios in the facility. This paper presents the IRSN method applied to a case study to assess fire scenarios which have the most harmful effects on safety targets. The layout consists in a central room (fire cell) containing three glove boxes with radioactive material and three electrical cabinets. This room is linked to two connecting compartments (the fire cell and these two compartments define the containment cell) and then to two corridors. Each room is equipped with a mechanical ventilation system, and a pressure cascade is established from the corridors to the central room. A fire scenario was studied with fire ignition occurring in an electrical cabinet. This scenario has a set of safety goals (prevention of fire cell and containment device failure, propagation of the fire). This case study was conducted with the IRSN code SYLVIA based on two zones modelling. Safety goals were associated with key parameters and performance criteria to be fulfilled. Modelling assumptions were defined in order to maximize physical effects of the fire. Sensitivity studies were also conducted on key parameters such as oxygen limitation, equivalent-fuel definition. Eventually, a critical analysis of the code models was carried out.

  19. Nuclear Safety Review for the Year 2004

    International Nuclear Information System (INIS)

    2005-08-01

    medical techniques using radiation continue to pose patient safety challenges. By the end of 2004, 69 countries had made a political commitment to work towards following the guidance contained in the Code of Conduct on the Safety and Security of Radioactive Sources. International initiatives by the Agency and others are also strengthening the control over radioactive sources, and in 2004 guidance was developed regarding the import and export of radioactive sources. The safety record for the transport of radioactive material continues to be excellent. Even with this record, there are continual challenges to limit the volume of radioactive material transport activities. The lessons from these challenges are being identified, analysed and shared so that the transport of radioactive material essential for medical and industrial applications will continue. A number of countries continue to develop geological disposal facilities for spent fuel and high level radioactive waste and many countries operate near surface disposal facilities for low and intermediate level radioactive waste. With the delays in the development of permanent disposal facilities, increasing attention is being given to the safety of storage facilities. The lack of appropriate funding mechanisms for nuclear installation decommissioning remains a concern. Although most countries operating nuclear installations have adequate emergency preparedness and response systems in place, others - particularly those without nuclear installations - still lack a basic level of radiological emergency preparedness.

  20. Licensee responsibility for nuclear power plant safety

    International Nuclear Information System (INIS)

    Schneider, Horst

    2010-01-01

    Simple sentences easy to grasp are desirable in regulations and bans. However, in a legal system, their meaning must be unambiguous. Article 6, Paragraph 1 of the EURATOM Directive on a community framework for the nuclear safety of nuclear facilities of June 2009 states that 'responsibility for the nuclear safety of a nuclear facility is incumbent primarily on the licensee.' The draft 'Safety Criteria for Nuclear Power Plants, Revision D, April 2009' of the German Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety (BMU) (A Module 1, 'Safety Criteria for Nuclear Power Plants: Basic Safety Criteria' / '0 Principles' Paragraph 2) reads: 'Responsibility for ensuring safety rests with the licensee. He shall give priority to compliance with the safety goal over the achievement of other operational objectives.' In addition, the existing rules and regulations, whose rank is equivalent to that of international regulations, assign priority to the safety goal to be pursued by the licensee over all other objectives of the company. The operator's responsibility for nuclear safety can be required and achieved only on the basis of permits granted, which must meet legal requirements. The operator's proximity to plant operation is the reason for his 'primary responsibility.' Consequently, verbatim incorporation of Article 6, Paragraph 1 of the EURATOM Directive would only be a superscript added to existing obligations of the operator - inclusive of a safety culture designed as an incentive to further 'the spirit of safety-related actions' - without any new legal contents and consequences. In the reasons of the regulation, this would have to be clarified in addition to the cryptic wording of 'responsibility.. primarily,' at the same time expressing that operators and authorities work together in a spirit of openness and trust. (orig.)

  1. Different aspects of safety in Nuclear Fuel Plant at Pitesti, Romania

    International Nuclear Information System (INIS)

    Ivana, T.; Epure, Gh.

    2009-01-01

    Nuclear Fuel Plant (FCN) is a facility that produces fuel bundles of CANDU-6 type for the CANDU nuclear power plant. Only natural and depleted uranium in bulk and itemized form are present as nuclear materials in this facility. Uranium and wastes from the plant are handled, processed, treated and stored throughout the entire facility. The nuclear materials with natural and depleted uranium are entirely under nuclear safeguards. The amount of uranium present in the plant in different forms and activities together with zircaloy, beryllium and other hazardous substances, wastes, explosive materials at high temperatures, etc. lead to special measures undertaken by Nuclear Safety Department (DNS) to ensure nuclear safety. Different aspects of safety are continuously monitored in the plant: operational safety, industrial safety, radiological safety, labour safety, informational safety. The emergency preparedness and response, physical protection and the security of the plant and of the transportation of radioactive materials are contributing to cover the multitude of safety aspects. The safety culture of workers built directly on the safety components completes this activity in the plant. In addition the aspects of safety, security and safeguards are in permanent synergy, parts of the three components being included in each other. In the future the policy of FCN will be focused so that any improvement of one of the safety components will be reflected in improving the other safety aspects. (authors)

  2. Nuclear Safety Culture & Leadership in Slovenske Elektrarne

    International Nuclear Information System (INIS)

    Janko, P.

    2016-01-01

    This presentation shows practically how nuclear safety culture is maintained and assessed in Slovenske elektrarne, supported by human performance program and leadership model. Safety is the highest priority and it must be driven by the Leaders in the field. Human Performance is key to safety and therefore key to our success. Safety Policy of our operating organization—licence holder, is in line with international best practices and nuclear technology is recognised as special and unique. All nuclear facilities adopt a clear safety policy and are operated with overriding priority to nuclear safety, the protection of nuclear workers, the general public and the environment from risk of harm. The focus is on nuclear safety, although the same principles apply to radiological safety, industrial safety and environmental safety. Safety culture is assessed regularly based (every two years) on eight principles for strong safety culture in nuclear utilities. Encourage excellence in all plant activities and to go beyond compliance with applicable laws and regulations. Adopt management approaches embodying the principles of Continuous Improvement and risk Management is never ending activity for us. (author)

  3. Radiation safety and regulatory aspects in Medical Facilities

    International Nuclear Information System (INIS)

    Banerjee, Sharmila

    2017-01-01

    Radiation safety and regulatory aspect of medical facilities are relevant in the context where radiation is used in providing healthcare to human patients. These include facilities, which carry out radiological procedures in diagnostic radiology, including dentistry, image-guided interventional procedures, nuclear medicine, and radiation therapy. The safety regulations provide recommendations and guidance on meeting the requirements for the safe use of radiation in medicine. The different safety aspects which come under its purview are the personnel involved in medical facilities where radiological procedures are performed which include the medical practitioners, radiation technologists, medical physicists, radiopharmacists, radiation protection and over and above all the patients. Regulatory aspects cover the guidelines provided by ethics committees, which regulate the administration of radioactive formulation in human patients. Nuclear medicine is a modality that utilizes radiopharmaceuticals either for diagnosis of physiological disorders related to anatomy, physiology and patho-physiology and for diagnosis and treatment of cancer

  4. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos

    2009-01-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  5. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: vasconv@cdtn.br, e-mail: silvaem@cdtn.br, e-mail: aclc@cdtn.br, e-mail: reissc@cdtn.br

    2009-07-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  6. Industrial fans used in nuclear facilities

    International Nuclear Information System (INIS)

    Carlson, J.A.

    1987-01-01

    Industrial fans are widely used in nuclear facilities, and their most common use is in building ventilation. To control the spread of contamination, airflows are maintained at high levels. Therefore, the selection of the fan and fan control are important to the safety of people, equipment and the environment. As a result, 80% of all energy used in nuclear facilities is fan energy. Safety evolves from the durability, control and redundancy in the system. In new or retrofit installations, testing and qualification of fans and systems are completed prior to start-up. Less important but necessary is the energy conservation aspect of fan selection and installations. Fan efficiency, type of control and system installation are evaluated for energy use

  7. Analysis and consideration for the US criteria of nuclear fuel cycle facilities to resist natural disasters

    International Nuclear Information System (INIS)

    Shen Hong

    2013-01-01

    Natural disasters pose a threat to the safety of nuclear facilities. Fukushima nuclear accident tells us that nuclear safety in siting, design and construction shall be strengthened in case of external events caused by natural disasters. This paper first analyzes the DOE criteria of nuclear fuel cycle facilities to resist natural disasters. Then to develop our national criteria for natural disaster resistance of nuclear fuel cycle facilities is suggested, so as to ensure the safety of these facilities. (authors)

  8. Request from nuclear fuel cycle and criticality safety design

    International Nuclear Information System (INIS)

    Hamasaki, Manabu; Sakashita, Kiichiro; Natsume, Toshihiro

    2005-01-01

    The quality and reliability of criticality safety design of nuclear fuel cycle systems such as fuel fabrication facilities, fuel reprocessing facilities, storage systems of various forms of nuclear materials or transportation casks have been largely dependent on the quality of criticality safety analyses using qualified criticality calculation code systems and reliable nuclear data sets. In this report, we summarize the characteristics of the nuclear fuel cycle systems and the perspective of the requirements for the nuclear data, with brief comments on the recent issue about spent fuel disposal. (author)

  9. Nuclear safety research in France

    International Nuclear Information System (INIS)

    Tanguy, P.

    1976-01-01

    As a consequence of the decision of choosing light water reactors (PWR) for the French nuclear plants of the next ten years, a large safety program has been launched referring to three physical barriers against fission product release: the fuel element cladding, main primary system boundary and the containment. The parallel development of French-designed fast breeder reactors involved safety studies on: sodium boiling, accidental fuel behavior, molten fuel-sodium interaction, core accident and protection, and external containment. The rapid development of nuclear energy resulted in a corresponding development of safety studies relating to nuclear fuel facilities. French regulations also required a special program to be developed for the realistic evaluation of the consequences of external agressions, the French cooperation to multinational safety research being also intensive

  10. Research for the safety of existing nuclear facilities

    International Nuclear Information System (INIS)

    Teschendorff, Victor; Bruna, Giovanni B.; Gelder, Pieter de

    2007-01-01

    The essential role of research for maintaining the high safety standard for the existing nuclear installations is outlined in the context of internationally agreed needs. The three co-authoring Technical Safety Organisations are committed to continued safety research, recognising operational experience and new technologies as the main driving forces. The safety margin concept is introduced and new trends in traditional and new areas of safety research are identified. The importance of a sufficient experimental infrastructure and international co-operation in sustainable networks is highlighted. (orig.)

  11. Radiation protection in nuclear facilities

    International Nuclear Information System (INIS)

    Piechowski, J.; Lochard, J.; Lefaure, Ch.; Schieber, C.; Schneider, Th; Lecomte, J.F.; Delmont, D.; Boitel, S.; Le Fauconnier, J.P.; Sugier, A; Zerbib, J.C.; Barbey, P.

    1998-01-01

    Close ties exist between nuclear safety and radiation protection. Nuclear safety is made up of all the arrangements taken to prevent accidents occurring in nuclear facilities, these accidents would certainly involved a radiological aspect. Radiation protection is made up of all the arrangements taken to evaluate and reduce the impact of radiation on workers or population in normal situations or in case of accident. In the fifties the management of radiological hazards was based on the quest for minimal or even zero risk. This formulation could lead to call some activities in question whereas the benefits for the whole society were evident. Now a new attitude more aware of the real risks and of no wasting resources prevails. This attitude is based on the ALARA principle whose purpose is to maintain the exposure to radiation as low as reasonably achievable taking into account social and economic concerns. This document regroups articles illustrating different aspects of the radiation protection in nuclear facilities such as a research center, a waste vitrification workshop and a nuclear power plant. The surveillance of radiological impacts of nuclear sites on environment is examined, a point is made about the pending epidemiologic studies concerning La Hague complex. (A.C.)

  12. Accidents in nuclear facilities: classification, incidence and impact

    International Nuclear Information System (INIS)

    Galicia A, J.; Paredes G, L. C.

    2012-10-01

    A general analysis of the 146 accidents reported officially in nuclear facilities from 1945 to 2012 is presented, among them some took place in: power or research nuclear reactors, critical and subcritical nuclear assemblies, handling of nuclear materials inside laboratories belonging to institutes or universities, in radiochemistry industrial plants and nuclear fuel factories. In form graph the incidence of these accidents is illustrated classified for; category, decades, geographical localization, country classification before the OECD, failure type, and the immediate or later victims. On the other hand, the main learned lessons of the nuclear accidents of Three Mile Island, Chernobyl and Fukushima are stood out, among those that highlight; the human factors, the necessity of designs more innovative and major technology for the operation, control and surveillance of the nuclear facilities, to increase the criterions of nuclear, radiological and physics safety applied to these facilities, the necessity to carry out probabilistic analysis of safety more detailed for cases of not very probable accidents and their impact, to revalue the selection criterions of the sites for nuclear locations, the methodology of post-accident sites recovery and major instrumentation for parameters evaluation and the radiological monitoring among others. (Author)

  13. Importance of tests in nuclear facilities

    International Nuclear Information System (INIS)

    Guillemard, B.

    1985-10-01

    In nuclear facilities, safety related systems and equipments are subject, along their whole service-life, to numerous tests. This paper analyses the role of tests in the successive stages of design, construction, exploitation of a nuclear facility. It examines several aspects of test quality control: definition of needs, test planning, intrinsic quality of each test, control of interfaces (test are both the end and the starting point of many actions concerned by quality) and the application [fr

  14. Progress of nuclear safety research, 1990

    International Nuclear Information System (INIS)

    1990-07-01

    Since the Japan Atomic Energy Research Institute (JAERI) was founded as a nonprofit, general research and development organization for the peaceful use of nuclear energy, it has actively pursued the research and development of nuclear energy. Nuclear energy is the primary source of energy in Japan where energy resources are scarce. The safety research is recognized at JAERI as one of the important issues to be clarified, and the safety research on nuclear power generation, nuclear fuel cycle, waste management and environmental safety has been conducted systematically since 1973. As of the end of 1989, 38 reactors were in operation in Japan, and the nuclear electric power generated in 1988 reached 29 % of the total electric power generated. 50 years have passed since nuclear fission was discovered in 1939. The objective of the safety research at JAERI is to earn public support and trust for the use of nuclear energy. The overview of the safety research at JAERI, fuel behavior, reliability of reactor structures and components, reactor thermal-hydraulics during LOCA, safety assessment of nuclear power plants and nuclear fuel cycle facilities, radioactive waste management and environmental radioactivity are reported. (K.I.)

  15. Regulation of chemical safety at fuel cycle facilities by the United States Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Ramsey, Kevin M.

    2013-01-01

    When the U.S. Nuclear Regulatory Commission (NRC) was established in 1975, its regulations were based on radiation dose limits. Chemical hazards rarely influenced NRC regulations. After the Three Mile Island reactor accident in 1979, the NRC staff was directed to address emergency planning at non-reactor facilities. Several fuel cycle facilities were ordered to submit emergency plans consistent with reactor emergency plans because no other guidance was available. NRC published a notice that it was writing regulations to codify the requirements in the Orders and upgrade the emergency plans to address all hazards, including chemical hazards. The legal authority of NRC to regulate chemical safety was questioned. In 1986, an overfilled uranium hexafluoride cylinder ruptured and killed a worker. The NRC staff was directed to address emergency planning for hazardous chemicals in its regulations. The final rule included a requirement for fuel cycle facilities to certify compliance with legislation requiring local authorities to establish emergency plans for hazardous chemicals. As with emergency planning, NRC's authority to regulate chemical safety during routine operations was limited. NRC established memoranda of understanding (MOUs) with other regulatory agencies to encourage exchange of information between the agencies regarding occupational hazards. In 2000, NRC published new, performance-based, regulations for fuel cycle facilities. The new regulations required an integrated safety analysis (ISA) which used quantitative standards to assess chemical exposures. Some unique chemical exposure cases were addressed while implementing the new regulations. In addition, some gaps remain in the regulation of hazardous chemicals at fuel cycle facilities. The status of ongoing efforts to improve regulation of chemical safety at fuel cycle facilities is discussed. (authors)

  16. Consecutive collection of new finding and knowledge on science and technology to be reflected to seismic safety assessment for nuclear facilities

    International Nuclear Information System (INIS)

    Tsutsumi, Hideaki; Iijima, Toru

    2013-05-01

    JNES had been collecting and analyzing new finding and knowledge on science and technology to be reflected to seismic safety assessment for nuclear facilities, which was updated so as to develop a system to organize and disseminate such information in response to Nuclear Regulation Authority (NRA)'s policy on new safety regulations requesting enhanced protective measures against extreme natural hazards. The tasks were as follows; (1) collection of new finding and knowledge from seismic safety research of JNES, (2) constructing database of seismic safety research from documents published by committees and including the Great East Japan Earthquake and (3) dissemination of information related to seismic research. As for JFY 2012 activities, collecting and analyzing new finding and knowledge were on three areas such as active fault, seismic source/ground motion and tsunami. 4 theme related with the Great East Japan Earthquake, 7 items not related with the Great East Japan Earthquake and one item on external event were collected and analyzed whether incorporating in seismic safety research important for regulation to increase seismic safety of nuclear facilities, with no such theme confirmed. (T. Tanaka)

  17. Security Culture in Physical Protection of Nuclear Material and Facility

    International Nuclear Information System (INIS)

    Susyanta-Widyatmaka; Koraag, Venuesiana-Dewi; Taswanda-Taryo

    2005-01-01

    In nuclear related field, there are three different cultures: safety, safeguards and security culture. Safety culture has established mostly in nuclear industries, meanwhile safeguards and security culture are relatively new and still developing. The latter is intended to improve the physical protection of material and nuclear facility. This paper describes concept, properties and factors affecting security culture and interactions among these cultures. The analysis indicates that anybody involving in nuclear material and facility should have strong commitment and awareness of such culture to establish it. It is concluded that the assessment of security culture outlined in this paper is still preliminary for developing and conduction rigorous security culture implemented in a much more complex facility such as nuclear power plant

  18. Reducing nuclear danger through intergovernmental technical exchanges on nuclear materials safety management

    International Nuclear Information System (INIS)

    Jardine, L.J.; Peddicord, K.L.; Witmer, F.E.; Krumpe, P.F.; Lazarev, L.; Moshkov, M.

    1997-01-01

    The United States and Russia are dismantling nuclear weapons and generating hundreds of tons of excess plutonium and high enriched uranium fissile nuclear materials that require disposition. The U.S. Department of Energy and Russian Minatom organizations.are planning and implementing safe, secure storage and disposition operations for these materials in numerous facilities. This provides a new opportunity for technical exchanges between Russian and Western scientists that can establish an improved and sustained common safety culture for handling these materials. An initiative that develops and uses personal relationships and joint projects among Russian and Western participants involved in fissile nuclear materials safety management contributes to improving nuclear materials nonproliferation and to making a safer world. Technical exchanges and workshops are being used to systematically identify opportunities in the nuclear fissile materials facilities to improve and ensure the safety of workers, the public, and the environment

  19. Safety overview of the National Ignition Facility

    International Nuclear Information System (INIS)

    Brereton, S.J.; McLouth, L.; Odell, B.; Singh, M.; Tobin, M.; Trent, M.

    1996-01-01

    The National Ignition Facility (NIF) is a proposed US Department of Energy inertial confinement laser fusion facility. The candidate sites for locating the NIF are: Los Alamos National Laboratory, Sandia National Laboratory, the Nevada Test Site, and Lawrence Livermore National Laboratory (LLNL), the preferred site. The NIF will operate by focusing 192 laser beams onto a tiny deuterium- tritium target located at the center of a spherical target chamber. The NIF mission is to achieve inertial confinement fusion (ICF) ignition, access physical conditions in matter of interest to nuclear weapons physics, provide an above ground simulation capability for nuclear weapons effects testing, and contribute to the development of inertial fusion for electrical power production. The NIF has been classified as a radiological, low hazard facility on the basis of a preliminary hazards analysis and according to the DOE methodology for facility classification. This requires that a safety analysis be prepared under DOE Order 5481.1B, Safety Analysis and Review System. A draft Preliminary Safety Analysis Report (PSAR) has been written, and this will be finalized later in 1996. This paper summarizes the safety issues associated with the operation of the NIF. It provides an overview of the hazards, estimates maximum routine and accidental exposures for the preferred site of LLNL, and concludes that the risks from NIF operations are low

  20. Report on the operation of nuclear facilities in Slovenia in 1993

    International Nuclear Information System (INIS)

    Lovincic, D.

    1994-01-01

    The Slovenian Nuclear Safety Administration (SNSA) prepared a Report on Nuclear Safety in 1993 as part of its regular practice of reporting on its work to the Government and the National Assembly of the Republic of Slovenia. The report is divided into five thematic chapters covering the activities of the SNSA, the operation of nuclear facilities in Slovenia, the activity of international missions in Slovenia, the Posavje - 93 exercise and the operation of nuclear facilities around the world. (author)

  1. Report on the operation of nuclear facilities in Slovenia in 1993

    Energy Technology Data Exchange (ETDEWEB)

    Lovincic, D [Slovenian Nuclear Safety Administration, Ljubljana (Slovenia)

    1994-07-01

    The Slovenian Nuclear Safety Administration (SNSA) prepared a Report on Nuclear Safety in 1993 as part of its regular practice of reporting on its work to the Government and the National Assembly of the Republic of Slovenia. The report is divided into five thematic chapters covering the activities of the SNSA, the operation of nuclear facilities in Slovenia, the activity of international missions in Slovenia, the Posavje - 93 exercise and the operation of nuclear facilities around the world. (author)

  2. OECD/NEA WGFCS Workshop: Safety Assessment of Fuel Cycle Facilities - Regulatory Approaches and Industry Perspectives

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear fuel is produced, processed, and stored mainly in industrial-scale facilities. Uranium ores are processed and refined to produce a pure uranium salt stream, Uranium is converted and enriched, nuclear fuel is fabricated (U fuel and U/Pu fuel for the closed cycle option); and spent fuel is stored and reprocessed in some countries (close cycle option). Facilities dedicated to the research and development of new fuel or new processes are also considered as Fuel Cycle Facilities. The safety assessment of nuclear facilities has often been led by the methodology and techniques initially developed for Nuclear Power Plants. As FCFs cover a wide diversity of installations the various approaches of national regulators, and their technical support organizations, for the Safety Assessment of Fuel Cycle Facilities are also diverse, as are the approaches by their industries in providing safety justifications for their facilities. The objective of the Working Group on Fuel Cycle Safety is to advance the understanding for both regulators and operators of relevant aspects of nuclear fuel cycle safety in member countries. A large amount of experience is available in safety assessment of FCFs, which should be shared to develop ideas in this field. To contribute to this task, the Workshop on 'Safety Assessment of Fuel Cycle Facilities - Regulatory Approaches and Industry Perspectives' was held in Toronto, on 27 - 29 September 2011. The workshop was hosted by Canadian Nuclear Safety Commission. The current proceedings provide summary of the results of the workshop with the text of the papers given and presentations made

  3. Regulatory quality assurance requirements for the operation of nuclear R and D facilities in Korea

    International Nuclear Information System (INIS)

    Kwon, H.I.; Lim, N.J.

    2006-01-01

    Full text: Korea Atomic Energy Research Institute (KAERI) has many R and D facilities in operation. including HANARO research reactor, radioactive waste treatment facility (RWTF), post-irradiation examination facility (PIEF) and irradiated material test facility (IMEF). Recently. nation-wide interest is focused on the safety and security of major industrial facilities. Safe operation of nuclear facilities is imperative because of the consequence of public disaster by radiological release/contamination, in case of an accident. Recently, Ministry of Science and Technology (MOST) of the Korean government announced amendments of Atomic Energy laws to enforce requirements of the physical protection and radiological emergency. All provisions on nuclear safety regulation and radiation protection are entrusted to the Atomic Energy Act(AEA). The Act is enacted as the main law concerning the safety regulation of nuclear installations, and is supplemented by the Enforcement Decree and Enforcement Regulation of the Act. These Atomic Energy laws include provisions on the construction permission and the operation license of nuclear installations, such as nuclear power reactors, research reactors, nuclear ships, nuclear fuel fabrication facilities, spent fuel treatment facilities, etc. Regulatory requirements for the regulatory inspection and the safety measures for operation are also defined in the laws. The Notice of the MOST prescribes specific issues including regulatory requirements and technical standards, as entrusted by the AEA, the Decree and the Regulation. Detailed QA requirements for nuclear installations are specified differently, depending upon the type of facility. The guidelines for safety reviews and regulatory inspections are developed by the Korea Institute of Nuclear Safety (KINS), which is an exclusive organization for safety regulation of nuclear installations in Korea. In this paper, the context of the Atomic Energy laws were reviewed to confirm the

  4. Nuclear safety regulations in the Republic of Croatia

    International Nuclear Information System (INIS)

    Cizmek, A.; Horvatic, M.; Ilijas, B.; Medakovic, S.

    2009-01-01

    Based on Nuclear Safety Act (Official Gazette No. 173/03) in 2006 State Office for Nuclear Safety (SONS) adopted beside Ordinance on performing nuclear activities (Official Gazette No. 74/06) and Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety (Official Gazette No. 74/06) the new Ordinance on the control of nuclear material and special equipment (Official Gazette No. 15/08) and Ordinance on conditions for nuclear safety and protection with regard to the sitting, design, construction, use and decommissioning of a facility in which a nuclear activity is to be performed (Official Gazette No. 71/08). The Ordinance on performing nuclear activities regulates the procedure of notification of the intent to perform nuclear activities, submitting the application for the issue of a licence to perform nuclear activities, and the procedure for issuing decisions on granting a license to perform nuclear activity. The Ordinance also regulates the content of the form for notification of the intent to perform nuclear activities, as well as of the application for the issue of a licence to perform the nuclear activity and the method of keeping the register of nuclear conditions, whereas compliance is established by the decision passed by SONS. Ordinance on special conditions (requirements) for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety regulates these mentioned activities Ordinance on the control of nuclear material and special equipment lays down the list of nuclear materials and special equipment as well as of nuclear activities covered by the system of control of production of special equipment and non-nuclear material, the procedure for notifying the intention to and filing the application for a licence to carry out nuclear activities, and the format and contents of the forms for doing so. This Ordinance

  5. Joint nuclear safety research projects between the US and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Bougaenko, S.E.; Kraev, A.E.; Hill, D.L.; Braun, J.C.; Klickman, A.E.

    1998-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) formed international Nuclear Safety Centers in October 1995 and July 1996, respectively, to collaborate on nuclear safety research. Since January 1997, the two centers have initiated the following nine joint research projects: (1) INSC web servers and databases; (2) Material properties measurement and assessment; (3) Coupled codes: Neutronic, thermal-hydraulic, mechanical and other; (4) Severe accident management for Soviet-designed reactors; (5) Transient management and advanced control; (6) Survey of relevant nuclear safety research facilities in the Russian Federation; (8) Advanced structural analysis; and (9) Development of a nuclear safety research and development plan for MINATOM. The joint projects were selected on the basis of recommendations from two groups of experts convened by NEA and from evaluations of safety impact, cost, and deployment potential. The paper summarizes the projects, including the long-term goals, the implementing strategy and some recent accomplishments for each project

  6. CSNI collective statement on support facilities for existing and advanced reactors. The function of OECD/Nea joint projects Nea committee on the safety of nuclear installations (CSNI)

    International Nuclear Information System (INIS)

    2008-01-01

    The NEA Committee on the Safety of Nuclear Installations (CSNI) has recently completed a study on the availability and utilisation of facilities supporting safety studies for current and advanced nuclear power reactors. The study showed that significant steps had been undertaken in the past several years in support of safety test facilities, mainly by conducting multinational joint projects centered on the capability of unique test facilities worldwide. Given the positive experience of the safety research projects, it has been recommended that efforts be made to prioritize technical issues associated with advanced (Generation IV) reactor designs and to develop options on how to efficiently obtain the necessary data through internationally co-ordinated research, preparing a gradual extension of safety research beyond the needs set by currently operating reactors. This statement constitutes a reference for future CSNI activities and for safety authorities, R and D centres and industry for internationally co-ordinated research initiatives in the nuclear safety research area. (author)

  7. Principles and standards of nuclear safety and their implementation

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1979-01-01

    Nuclear safety starts with the design of a nuclear facility and is only completed with its decommissioning. In the various phases of a nuclear facility's lifetime, safety evaluations are required. The licensing prerequisites for construction, operation, modification, decommissioning are based on elements of the relevant national legislation and related ordinances as well as on international regulations. They should be expanded by a system of criteria and standards spelling out the proven practice as developed over the last decades in the industrialized countries and by international organizations such IAEA with its safety codes and guides. (NEA) [fr

  8. An independent safety assessment of Department of Energy nuclear reactor facilities: Safety overview and management function

    International Nuclear Information System (INIS)

    Booth, M.; Brodsky, R.S.; Frankhouser, W.L.

    1981-02-01

    The Under Secretary of Energy established the Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee in October, 1979, in the aftermath of the Three Mile Island (TMI) nuclear accident, to assess the adequacy of training of personnel at DOE nuclear facilities. Subsequently, in February, 1980, the charge to this Committee was modified to assess all implications of the Kemeny Commission report on TMI with regard to DOE nuclear reactors, excluding those in the Division of Naval Reactors. The modified charge was also limited, for the time being, to reactor facilities instead of all nuclear facilities. This report describes the portion of the revised assessment activities that was assigned to the Assessment Support Team

  9. Development of an auditable safety analysis in support of a radiological facility classification

    International Nuclear Information System (INIS)

    Kinney, M.D.; Young, B.

    1995-01-01

    In recent years, U.S. Department of Energy (DOE) facilities commonly have been classified as reactor, non-reactor nuclear, or nuclear facilities. Safety analysis documentation was prepared for these facilities, with few exceptions, using the requirements in either DOE Order 5481.1B, Safety Analysis and Review System; or DOE Order 5480.23, Nuclear Safety Analysis Reports. Traditionally, this has been accomplished by development of an extensive Safety Analysis Report (SAR), which identifies hazards, assesses risks of facility operation, describes and analyzes adequacy of measures taken to control hazards, and evaluates potential accidents and their associated risks. This process is complicated by analysis of secondary hazards and adequacy of backup (redundant) systems. The traditional SAR process is advantageous for DOE facilities with appreciable hazards or operational risks. SAR preparation for a low-risk facility or process can be cost-prohibitive and quite challenging because conventional safety analysis protocols may not readily be applied to a low-risk facility. The DOE Office of Environmental Restoration and Waste Management recognized this potential disadvantage and issued an EM limited technical standard, No. 5502-94, Hazard Baseline Documentation. This standard can be used for developing documentation for a facility classified as radiological, including preparation of an auditable (defensible) safety analysis. In support of the radiological facility classification process, the Uranium Mill Tailings Remedial Action (UMTRA) Project has developed an auditable safety analysis document based upon the postulation criteria and hazards analysis techniques defined in DOE Order 5480.23

  10. Chemical process safety at fuel cycle facilities

    International Nuclear Information System (INIS)

    Ayres, D.A.

    1997-08-01

    This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document

  11. Criticality safety and facility design considerations

    International Nuclear Information System (INIS)

    Waltz, W.R.

    1991-06-01

    Operations with fissile material introduce the risk of a criticality accident that may be lethal to nearby personnel. In addition, concerns over criticality safety can result in substantial delays and shutdown of facility operations. For these reasons, it is clear that the prevention of a nuclear criticality accident should play a major role in the design of a nuclear facility. The emphasis of this report will be placed on engineering design considerations in the prevention of criticality. The discussion will not include other important aspects, such as the physics of calculating limits nor criticality alarm systems

  12. Importance of the licensing process on the safety culture in the Brazilian nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Motta, E.S.; Sousa, A.L.B. de; Paiva, R.L.C. de; Mezrahi, A.

    2013-01-01

    The main objective of the Nuclear Fuel Cycle Facilities licensing processes is to ensure the safety of these installations in their entire life cycle (in the installation site selection, designing, construction, pre-operational tests, operational and decommissioning phases). The Brazilian licensing process requires from the operator, among others, before the operating license: (I) a Site Report and a Final Safety Analysis Report, ensuring that all safety related issues are adequately analyzed and understood; (II) a formal structured Management System focused on the installation safety; and (III) dissemination of safety related information to all involved operator employees and subcontractors. Therefore, these requirements reflect in an adequate operator actions and practices, ensuring a working environment with a high level of safety culture. (author)

  13. Importance of the licensing process on the safety culture in the Brazilian nuclear fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    Motta, E.S.; Sousa, A.L.B. de; Paiva, R.L.C. de; Mezrahi, A., E-mail: emotta@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The main objective of the Nuclear Fuel Cycle Facilities licensing processes is to ensure the safety of these installations in their entire life cycle (in the installation site selection, designing, construction, pre-operational tests, operational and decommissioning phases). The Brazilian licensing process requires from the operator, among others, before the operating license: (I) a Site Report and a Final Safety Analysis Report, ensuring that all safety related issues are adequately analyzed and understood; (II) a formal structured Management System focused on the installation safety; and (III) dissemination of safety related information to all involved operator employees and subcontractors. Therefore, these requirements reflect in an adequate operator actions and practices, ensuring a working environment with a high level of safety culture. (author)

  14. Results of activities of the State Office for Nuclear Safety in state supervision of nuclear safety of nuclear facilities and radiation protection in 2003

    International Nuclear Information System (INIS)

    Kovar, P.

    2004-01-01

    The report summarises results of activities of the State Office for Nuclear Safety (SUJB) in the supervision of nuclear safety and radiation protection in the Czech Republic. The first part of the report evaluates nuclear safety of nuclear installations and contains information concerning the results of supervision of radiation protection in 2003 in the Czech Republic. The second part of the report describes new responsibilities of the SUJB in the domain of nuclear, chemical, bacteriological (biological) and toxin weapons ban. (author)

  15. Present status of nuclear power safety studies in JAERI, 1994

    International Nuclear Information System (INIS)

    1994-10-01

    Securing safety in the development and utilization of nuclear power is the prerequisite, and in order to maintain the safety of nuclear power facilities at level corresponding to the expansion and diversification of nuclear power development and utilization, it is necessary to promote the safety research. The reliable evaluation of environmental effect and the safe disposal of radioactive waste are the indispensable conditions. Japan Atomic Energy Research Institute has carried out the research on the engineering safety of nuclear reactors and nuclear fuel cycle facilities and the research on the environmental safety related to environmental radiation and the treatment and disposal of radioactive waste. In this book, the researches on the safety of reactor fuel, the reliability of reactor machinery and equipment and structures, the thermo-hydraulic behavior of reactors at the time of accidents, the behavior of reactors at the time of severe accidents, the analytical research on the safety of reactors, the researches on the safety of nuclear fuel cycle, the treatment and disposal of radioactive waste, the assessment and analysis of environmental radiation and radioactivity, and the individual researches related to nuclear power safety are reported. (K.I.)

  16. Safety assessment for spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Practice has been prepared as part of the IAEA's programme on the safety assessment of interim spent fuel storage facilities which are not an integral part of an operating nuclear power plant. This report provides general guidance on the safety assessment process, discussing both deterministic and probabilistic assessment methods. It describes the safety assessment process for normal operation and anticipated operational occurrences and also related to accident conditions. 10 refs, 2 tabs

  17. Industrial safety in a nuclear decommissioning environment observations and lessons learned

    International Nuclear Information System (INIS)

    Brevig, D.

    2008-01-01

    Decommissioning activities present unusual and unexpected workplace safety challenges that go far beyond the traditional experience of nuclear power plant managers. A blend of state-of-the-art safety program management tools along with new and practical applications are required to ensure high industrial safety performance. The demanding and rigorously applied nuclear safety engineering standards that are accepted as normal and routine in the operation of a nuclear power facility, should transform as an industrial safety standard during the non-operating period of decommissioning. In addition, historical measures of non-nuclear industrial safety injury rates would or should not be acceptable safety behaviors during a nuclear decommissioning project. When complex projects, such as the decommissioning of a nuclear generating facility are undertaken, the workforce brings experience, qualifications, and assumptions to the project. The overall multi-year general schedule is developed, with more schedule details, for example, for the nearest rolling 12-18 months. Methods are established for the selection of contractors to assist in areas that are not normal tasks for the facility workforce, whose normal activity is managing and operating a nuclear generating station. However, it is critical to manage those contractors to the agreed work scope to ensure success is maintained by both parties, e.g. the job gets done, on schedule, on budget, all parties are financially whole when the work is complete, and safely. The purpose of this paper is to provide a perspective of nuclear plant personal safety in the ever changing industrial environment created by the demolition of robust and often radiologically contaminated structures in a nuclear facility decommissioning project. (author)

  18. Industrial safety in a nuclear decommissioning environment observations and lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Brevig, D. [Independent Consultant, San Clemente (United States)

    2008-07-01

    Decommissioning activities present unusual and unexpected workplace safety challenges that go far beyond the traditional experience of nuclear power plant managers. A blend of state-of-the-art safety program management tools along with new and practical applications are required to ensure high industrial safety performance. The demanding and rigorously applied nuclear safety engineering standards that are accepted as normal and routine in the operation of a nuclear power facility, should transform as an industrial safety standard during the non-operating period of decommissioning. In addition, historical measures of non-nuclear industrial safety injury rates would or should not be acceptable safety behaviors during a nuclear decommissioning project. When complex projects, such as the decommissioning of a nuclear generating facility are undertaken, the workforce brings experience, qualifications, and assumptions to the project. The overall multi-year general schedule is developed, with more schedule details, for example, for the nearest rolling 12-18 months. Methods are established for the selection of contractors to assist in areas that are not normal tasks for the facility workforce, whose normal activity is managing and operating a nuclear generating station. However, it is critical to manage those contractors to the agreed work scope to ensure success is maintained by both parties, e.g. the job gets done, on schedule, on budget, all parties are financially whole when the work is complete, and safely. The purpose of this paper is to provide a perspective of nuclear plant personal safety in the ever changing industrial environment created by the demolition of robust and often radiologically contaminated structures in a nuclear facility decommissioning project. (author)

  19. Regulatory oversight report 2008 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2009-04-01

    This annual report issued by the Swiss Federal Nuclear Inspectorate (ENSI) reports on the work carried out by the Inspectorate in 2008. This report reviews the regulatory activities in the four Swiss nuclear power stations and in four further nuclear installations in various Swiss research facilities. It deals with topics such as operational details, technologies in use, radiation protection, radioactive wastes, emergency dispositions, personnel and provides an assessment of operations from the safety point of view. Also, the transportation of nuclear materials - both nuclear fuels and nuclear wastes - is reported on. General topics discussed include probabilistic safety analyses and accident management, earthquake damage analysis and agreements on nuclear safety. The underground disposal of highly-radioactive nuclear wastes and work done in the rock laboratories are discussed, as are proposals for additional nuclear power stations

  20. Decommissioning of Facilities. General Safety Requirements. Pt. 6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-15

    Decommissioning is the last step in the lifetime management of a facility. It must also be considered during the design, construction, commissioning and operation of facilities. This publication establishes requirements for the safe decommissioning of a broad range of facilities: nuclear power plants, research reactors, nuclear fuel cycle facilities, facilities for processing naturally occurring radioactive material, former military sites, and relevant medical, industrial and research facilities. It addresses all the aspects of decommissioning that are required to ensure safety, aspects such as roles and responsibilities, strategy and planning for decommissioning, conduct of decommissioning actions and termination of the authorization for decommissioning. It is intended for use by those involved in policy development, regulatory control and implementation of decommissioning.

  1. Human factors in nuclear safety oversight

    International Nuclear Information System (INIS)

    Taylor, K.

    1989-01-01

    The mission of the nuclear safety oversight function at the Savannah River Plant is to enhance the process and nuclear safety of site facilities. One of the major goals surrounding this mission is the reduction of human error. It is for this reason that several human factors engineers are assigned to the Operations assessment Group of the Facility Safety Evaluation Section (FSES). The initial task of the human factors contingent was the design and implementation of a site wide root cause analysis program. The intent of this system is to determine the most prevalent sources of human error in facility operations and to assist in determining where the limited human factors resources should be focused. In this paper the strategy used to educate the organization about the field of human factors is described. Creating an awareness of the importance of human factors engineering in all facets of design, operation, and maintenance is considered to be an important step in reducing the rate of human error

  2. Criticality accident of nuclear fuel facility. Think back on JCO criticality accident

    International Nuclear Information System (INIS)

    Naito, Keiji

    2003-09-01

    This book is written in order to understand the fundamental knowledge of criticality safety or criticality accident of nuclear fuel facility by the citizens. It consists of four chapters such as critical conditions and criticality accident of nuclear facility, risk of criticality accident, prevention of criticality accident and a measure at an occurrence of criticality accident. A definition of criticality, control of critical conditions, an aspect of accident, a rate of incident, damage, three sufferers, safety control method of criticality, engineering and administrative control, safety design of criticality, investigation of failure of safety control of JCO criticality accident, safety culture are explained. JCO criticality accident was caused with intention of disregarding regulation. It is important that we recognize the correct risk of criticality accident of nuclear fuel facility and prevent disasters. On the basis of them, we should establish safety culture. (S.Y.)

  3. Storage facilities of spent nuclear fuel in dry for Mexican nuclear facilities

    International Nuclear Information System (INIS)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A.; Mendoza F, J. E.; Sanchez J, J.

    2013-10-01

    In this article the relevant aspects of the spent fuel storage and the questions that should be taken in consideration for the possible future facilities of this type in the country are approached. A brief description is proposed about the characteristics of the storage systems in dry, the incorporate regulations to the present Nuclear Regulator Standard, the planning process of an installation, besides the approaches considered once resolved the use of these systems; as the modifications to the system, the authorization periods for the storage, the type of materials to store and the consequent environmental impact to their installation. At the present time the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) considers the possible generation of two authorization types for these facilities: Specific, directed to establish a new nuclear installation with the authorization of receiving, to transfer and to possess spent fuel and other materials for their storage; and General, focused to those holders that have an operation license of a reactor that allows them the storage of the nuclear fuel and other materials that they possess. Both authorizations should be valued according to the necessities that are presented. In general, this installation type represents a viable solution for the administration of the spent fuel and other materials that require of a temporary solution previous to its final disposal. Its use in the nuclear industry has been increased in the last years demonstrating to be appropriate and feasible without having a significant impact to the health, public safety and the environment. Mexico has two main nuclear facilities, the nuclear power plant of Laguna Verde of the Comision Federal de Electricidad (CFE) and the facilities of the TRIGA Reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) that will require in a future to use this type of disposition installation of the spent fuel and generated wastes. (Author)

  4. IRSN - Annual Report 2013. Financial Report 2013. Enhancing nuclear safety

    International Nuclear Information System (INIS)

    Schuler, Matthieu; Marchal, Valerie; Albert, Marc-Gerard; Aurelle, Jacques; Bigot, Marie-Pierre; Bruna, Giovanni; Charron, Sylvie; Clavelle, Stephanie; Cousinou, Patrick; Deschamps, Patrice; Delattre, Aleth; Demeillers, Didier; Dumas, Agnes; Franquard, Dominique; Laloi, Patrick; Lorthioir, Stephane; Monti, Pascale; Rollinger, Francois; Rouyer, Veronique; Rutschkovsky, Nathalie; Scott De Martinville, Edouard; Tharaud, Christine; Verpeaux, Jean-Luc; Jaunet, Camille; Hedouin, Jean-Christophe; Pascal-Heuze, Charlotte

    2014-03-01

    IRSN, a public entity with industrial and commercial activities, is placed under the joint authority of the Ministries of Defense, Environment, Industry, Research, and Health. It is the nation's public service expert in nuclear and radiation risks, and its activities cover all the related scientific and technical issues. Its areas of specialization include the environment and radiological emergency response, human radiation protection in both a medical and professional capacity, and in both normal and post-accident situations, the prevention of major accidents, nuclear reactor safety, as well as safety in nuclear plants and laboratories, transport and waste treatment, and nuclear defense and security expertise. IRSN interacts with all parties concerned by these risks (public authorities, in particular nuclear safety and security authorities, local authorities, companies, research organizations, stakeholders' associations, etc.) to contribute to public policy issues relating to nuclear safety, human and environmental protection against ionizing radiation, and the protection of nuclear materials, facilities, and transport against the risk of malicious acts. This document is the 2013 issue of IRSN's activity report. Content: 1 - Organization, key figures; 2 - Strategy: Progress and main activities in 2013, Transparency and communications policy, Promoting a safety and radiation protection culture; 3 - Activities: Safety (Safety of existing facilities, Studies and researches, About defense, Conducting assessments of future facilities); Nuclear security and non-proliferation (Nuclear security activities, International non-proliferation controls); Radiation protection - environment and human health (Environmental and population exposure, Radiation protection in the workplace, Effects of chronic exposure, Protection in health care); Emergency and post-accident situations efficiency; 4 - Efficiency: Health, safety, environmental, protection and quality, Human resources

  5. Report on nuclear and radiological safety in 1995

    International Nuclear Information System (INIS)

    Lovincic, D.

    1996-07-01

    The Slovenian Nuclear Safety Administration (SNSA) in cooperation with the Health Inspectorate of the Republic of Slovenia and the Administration for Rescue and Disaster Relief (URSZR) has prepared a Report on Nuclear and Radiological Safety in the Republic of Slovenia for 1995. The report is presenting: the activities of the SNSA; the operation of nuclear facilities; monitoring of radioactivity; control of ionizing radiation and nuclear electricity generation.

  6. Non-technical issues in safety assessments for nuclear disposal facilities

    International Nuclear Information System (INIS)

    Kallenbach-Herbert, Beate; Brohmann, Bettina

    2010-09-01

    The paper highlights that a comprehensive approach to safety affords the consideration of technology, organisation, personnel and social environment. In several safety relevant contexts of nuclear waste disposal these fields are closely interrelated. The approach for the consideration of socio-scientific aspects which is sketched in this paper supports the systematic treatment of safety relevant non-technical issues in the safety case or in safety assessments for a disposal project. Furthermore it may foster the dialogue among specialists from the technical, the natural- and the socio-scientific field on questions of disposal safety. In this way it may contribute to a better understanding among the affected scientific disciplines in nuclear waste disposal.

  7. Safety in manufacturing of nuclear fuel

    International Nuclear Information System (INIS)

    Daste, Bernard

    1980-01-01

    Production of low enriched uranium fuel raises specific safety problems resulting from the very nature of the manufacturing process as from the industrial size generally given to the new facilities for this kind of production. The author exposes the experience so far acquired by F.B.F.C. (Societe franco-belge de fabrication du combustible) which is making important investments in order to meet the fuel needs of the French nuclear programme. After a short description of the fuel and the principal stages of its production, he analyses the potential nuclear hazards of the F.B.F.C. facilities operation and the adequate safety measures taken [fr

  8. Nuclear safety in Slovak Republic. Safety analysis reports for WWER 440 reactors

    International Nuclear Information System (INIS)

    Rohar, S.

    1999-01-01

    Implementation of nuclear power program is connected to establishment of regulatory body for safe regulation of siting, construction, operation and decommissioning of nuclear installations. Licensing being one of the most important regulatory surveillance activity is based on independent regulatory review and assessment of information on nuclear safety for particular nuclear facility. Documents required to be submitted to the regulatory body by the licensee in Slovakia for the review and assessment usually named Safety Analysis Report (SAR) are presented in detail in this paper. Current status of Safety Analysis Reports for Bohunice V-1, Bohunice V-2 and Mochovce NPP is shown

  9. Regulatory overview report 2014 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2015-06-01

    The Swiss Federal Nuclear Safety Inspectorate (ENSI), acting as the regulatory body of the Swiss Federation, assesses and monitors nuclear facilities in Switzerland: the five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) at Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI), the University of Basel (UniB) and the Federal Institute of Technology in Lausanne (EPFL). Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the required overview of nuclear safety. It ensures that they comply with regulations. Its regulatory responsibilities include the transport of radioactive materials from and to nuclear facilities and the preparations for a deep geological repository for nuclear waste. ENSI maintains its own emergency organisation, an integral part of the national emergency structure. It provides the public with information on particular events in nuclear facilities. This Surveillance Report describes the operational experience, systems technology, radiological protection and management in all nuclear facilities. Generic issues relevant to all facilities such as probabilistic safety analyses are described. In 2014, all five nuclear power plants in Switzerland (Beznau Units I and 2, Muehleberg, Goesgen and Leibstadt) were operated safely. The nuclear safety at all plants was rated as good. 38 events were reported. There was one reactor scram at the Leibstadt nuclear power plant. On the International Event Scale (INES), ranging from 0--7, 37 events were rated as Level 0; one event was rated as INES 1: drill holes had penetrated the steel wall of the containment to secure two hand-held fire extinguishers. ZWILAG consists of several interim storage halls, a conditioning plant and a plasma plant. At the end of 2014, the cask storage hall contained 42

  10. Progress of nuclear safety research, (2)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successevely in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts and in this Part 2, the environmental safety research is described. The evaluation and analysis of environmental radioactivity, the study on radioactive waste management and the studies on various subjects related to environmental safety are reported. (Kako, I.)

  11. Auxiliary facilities on nuclear ship 'MUTSU'

    International Nuclear Information System (INIS)

    Tsujimura, Shotaro; Takigami, Yoshio.

    1989-01-01

    The nuclear ship 'MUTSU' has been moored at SEKINEHAMA, MUTU City in AOMORI Prefecture and several tests and works are being carried out on the ship. The construction of the auxiliary facilities for these works on the ship was completed in safety in August 1988. After that the facilities have fulfilled their function. The outlines of design, fabrication and construction of the facilities are described in this paper. (author)

  12. Radiological dose assessment from the operation of Daeduk nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Won Tae; Kim, Eun Han; Suh, Kyung Suk; Choi, Young Gil [Korea Atomic Energy Research Institute, Taejon (Korea)

    2000-02-01

    The objective of this project is to assure the public acceptance for nuclear facilities, and the environmental safety from the operation of Daeduk nuclear facilities, such as HANARO research reactor, nuclear fuel processing facilities and others. For identifying the integrity of their facilities, the maximum individual doses at the site boundary and on the areas with high population density were assessed. Also, the collective doses within radius 80 km from the site were assessed. The radiation impacts for residents around the site from the operation of Daeduk nuclear facilities in 1999 were neglectable. 8 refs., 10 figs., 27 tabs. (Author)

  13. The role of staff training in the safety of nuclear facilities

    International Nuclear Information System (INIS)

    Koechlin, J.C.; Tanguy, P.

    1980-01-01

    Although nuclear energy largely involves automatic protection systems enabling the effects of human error to be mitigated, the human factor still remains of extreme importance in nuclear risk analysis. Hence, the attainment of the high safety standards sought after for nuclear energy must of necessity entail staff training programmes which take into account the concern for nuclear safety. It is incumbent upon constructors and operators to evolve a training programme suited to each job, and the safety authorities are responsible for assessing whether the programme is satisfactory from the standpoint of safety and, where necessary, for issuing the relevant certificates or permits. The paper makes some comments on the cost of human error and the profitability of investment in training, on the importance of practical training and of the role of simulators, and on the need for operators to note and analyse all operational abnormalities, which are so often an advance warning of accidents. The training of special safety teams is examined, with consideration of three aspects: safety assessment, inspection, and action to be taken in the event of accident. Finally, some information is given on the human reliability studies under way and their implications for nuclear safety and training, with emphasis on the valuable assistance rendered in this matter by international organizations. (author)

  14. Nuclear law - Nuclear safety

    International Nuclear Information System (INIS)

    Pontier, Jean-Marie; Roux, Emmanuel; Leger, Marc; Deguergue, Maryse; Vallar, Christian; Pissaloux, Jean-Luc; Bernie-Boissard, Catherine; Thireau, Veronique; Takahashi, Nobuyuki; Spencer, Mary; Zhang, Li; Park, Kyun Sung; Artus, J.C.

    2012-01-01

    This book contains the contributions presented during a one-day seminar. The authors propose a framework for a legal approach to nuclear safety, a discussion of the 2009/71/EURATOM directive which establishes a European framework for nuclear safety in nuclear installations, a comment on nuclear safety and environmental governance, a discussion of the relationship between citizenship and nuclear, some thoughts about the Nuclear Safety Authority, an overview of the situation regarding the safety in nuclear waste burying, a comment on the Nome law with respect to electricity price and nuclear safety, a comment on the legal consequences of the Fukushima accident on nuclear safety in the Japanese law, a presentation of the USA nuclear regulation, an overview of nuclear safety in China, and a discussion of nuclear safety in the medical sector

  15. Ensuring ecology safety, furthering the development of nuclear energy

    International Nuclear Information System (INIS)

    Shang Zhaorong; Chen Xiaoqiu; Tang Senming

    2008-01-01

    Ecology safety is as important as political safety, national defense safety, economy safety, food safety, etc. The nuclear power development is an important step for the national energy structure optimization, ecology caring, and implementing sustainable development. The aquatic ecology is important on disposal of low-level liquid waste and cooling water from NPPs and nuclear fuel cycle facilities, and people pay more attention to ecology impact and human threat from the nuclear energy. The author describes relevant ecology problems correlated with nuclear energy such as impact of thermal discharge, ecology sensitive zone, ecology restoration, etc. in order to emphasis that development of nuclear energy should guarantee ecology safety for the sustainable development of nuclear energy. (authors)

  16. Results of operation and current safety performance of nuclear facilities located in the Russian Federation

    Science.gov (United States)

    Kuznetsov, V. M.; Khvostova, M. S.

    2016-12-01

    After the NPP radiation accidents in Russia and Japan, a safety statu of Russian nuclear power plants causes concern. A repeated life time extension of power unit reactor plants, designed at the dawn of the nuclear power engineering in the Soviet Union, power augmentation of the plants to 104-109%, operation of power units in a daily power mode in the range of 100-70-100%, the use of untypical for NPP remixed nuclear fuel without a careful study of the results of its application (at least after two operating periods of the research nuclear installations), the aging of operating personnel, and many other management actions of the State Corporation "Rosatom", should attract the attention of the Federal Service for Ecological, Technical and Atomic Supervision (RosTekhNadzor), but this doesn't happen. The paper considers safety issues of nuclear power plants operating in the Russian Federation. The authors collected statistical information on violations in NPP operation over the past 25 years, which shows that even after repeated relaxation over this period of time of safety regulation requirements in nuclear industry and highly expensive NPP modernization, the latter have not become more safe, and the statistics confirms this. At a lower utilization factor high-power pressure-tube reactors RBMK-1000, compared to light water reactors VVER-440 and 1000, have a greater number of violations and that after annual overhauls. A number of direct and root causes of NPP mulfunctions is still high and remains stable for decades. The paper reveals bottlenecks in ensuring nuclear and radiation safety of nuclear facilities. Main outstanding issues on the storage of spent nuclear fuel are defined. Information on emissions and discharges of radioactive substances, as well as fullness of storages of solid and liquid radioactive waste, located at the NPP sites are presented. Russian NPPs stress test results are submitted, as well as data on the coming removal from operation of NPP

  17. A safety decision analysis for Saudi Arabian nuclear research facility

    International Nuclear Information System (INIS)

    Abulfaraj, W.H.; Abdul-Fattah, A.F.

    1985-01-01

    Establishment of a nuclear research facility should be the first step in planning for introducing the nuclear energy to Saudi Arabia. The fuzzy set decision theory is selected among different decision theories to be applied for this analysis. Four research reactors from USA are selected for the present study. The IFDA computer code, based on the fuzzy set theory is applied. Results reveal that the FNR reactor is the best alternative for the case of Saudi Arabian nuclear research facility, and MITR is the second best. 17 refs

  18. Demonstration of safety of decommissioning of facilities using radioactive material

    International Nuclear Information System (INIS)

    Batandjieva, Borislava; O'Donnell, Patricio

    2008-01-01

    Full text:The development of nuclear industry worldwide in the recent years has particular impact on the approach of operators, regulators and interested parties to the implementation of the final phases (decommissioning) of all facilities that use radioactive material (from nuclear power plants, fuel fabrication facilities, research reactors to small research or medical laboratories). Decommissioning is becoming an increasingly important activity for two main reasons - termination of the practice in a safe manner with the view to use the facility or the site for other purposes, or termination of the practice and reuse the facility or site for new built nuclear facilities. The latter is of special relevance to multi-facility sites where for example new nuclear power plants and envisaged. However, limited countries have the adequate legal and regulatory framework, and experience necessary for decommissioning. In order to respond to this challenge of the nuclear industry and assist Member States in the adequate planning, conduct and termination of decommissioning of wide range of facilities, over the last decade the IAEA has implemented and initiated several projects in this field. One of the main focuses of this assistance to operators, regulators and specialists involved in decommissioning is the evaluation and demonstration of safety of decommissioning. This importance of these Agency activities was also highlighted in the International Action Plan on Decommissioning, during the second Joint Convention meeting in 2006 and the International Conference on Lessons Learned from Decommissioning in Athens in 2006. The IAEA has been providing technical support to its Member States in this field through several mechanisms: (1) the establishment of a framework of safety standards on decommissioning and development of a supporting technical documents; (2) the establishment of an international peer review mechanism for decommissioning; (3) the technical cooperation projects

  19. Regulatory regime and its influence in the nuclear safety

    International Nuclear Information System (INIS)

    Laaksonen, J.

    1999-01-01

    Main elements of nuclear regulatory regime in general is presented. These elements are: national rules and safety regulations, system of nuclear facility licensing, activities of regulatory body. Regulatory body is needed to specify the national safety regulations, review and assess the safety documentation presented to support license application, make inspections to verify fulfilment of safety regulations and license conditions, monitor the quality of work processes of user organization, and to assess whether these processes provide a high safety level, promote high safety culture, promote maintenance and development of national infrastructure relevant to nuclear safety, etc

  20. Nuclear and radiological safety in Slovenia in 1995

    International Nuclear Information System (INIS)

    Lovincic, D.

    1996-01-01

    The Slovenian Nuclear Safety Administration (SNSA) in cooperation with the Health Inspectorate of the Republic of Slovenia and the Administration for Rescue and Disaster Relief (URSZR) has prepared a Report on Nuclear and Radiological Safety in the Republic of Slovenia for 1995. The report is presenting: the activities of the SNSA; the operation of nuclear facilities; monitoring of radioactivity; control of ionizing radiation and nuclear electricity generation. (author)

  1. Current status of nuclear safety research

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Efforts at nuclear safety research have expanded year by year in Japan, in term of money and technical achievement. The Atomic Energy Commission set last year the five year nuclear safety research program, a guideline by which various research institutes will be able to develop their own efforts in a concerted manner. From the results of the nuclear safety research which cover very wide areas ranging from reactor engineering safety, safety of nuclear fuel cycle facilities, prevention of radiation hazards to the adequate treatment and disposal of radioactive wastes, AIJ hereafter focuses of LWR engineering safety and prevents two articles, one introducing the current results of the NSSR program developed by JAERI and the other reporting the LWR reliability demonstration testing projects being promoted by MITI. The outline of these demonstration tests was reported in this report. The tests consist of earthquake resistance reliability test of nuclear power plants, steam generator reliability tests, valve integrity tests, fuel assembly reliability tests, reliability tests of heat affected zones and reliability tests of pumps. (Kobatake, H.)

  2. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-01-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the ''front end'' and ''back end'' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of the Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  3. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-10-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the 'front end' and 'back end' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of The Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  4. Catalogue and classification of technical safety standards, rules and regulations for nuclear power reactors and nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Fichtner, N.; Becker, K.; Bashir, M.

    1977-01-01

    The present report is an up-dated version of the report 'Catalogue and Classification of Technical Safety Rules for Light-water Reactors and Reprocessing Plants' edited under code No EUR 5362e, August 1975. Like the first version of the report, it constitutes a catalogue and classification of standards, rules and regulations on land-based nuclear power reactors and fuel cycle facilities. The reasons for the classification system used are given and discussed

  5. USNRC licensing process as related to nuclear criticality safety

    International Nuclear Information System (INIS)

    Ketzlach, N.

    1987-01-01

    The U.S. Code of Federal Regulations establishes procedures and criteria for the issuance of licenses to receive title to, own, acquire, deliver, receive, possess, use, and initially transfer special nuclear material; and establishes and provides for the terms and conditions upon which the Nuclear Regulatory Commission (NRC) will issue such licenses. Section 70.22 of the regulations, ''Contents of Applications'', requires that applications for licenses contain proposed procedures to avoid accidental conditions of criticality. These procedures are elements of a nuclear criticality safety program for operations with fissionable materials at fuels and materials facilities (i.e., fuel cycle facilities other than nuclear reactors) in which there exists a potential for criticality accidents. To assist the applicant in providing specific information needed for a nuclear criticality safety program in a license application, the NRC has issued regulatory guides. The NRC requirements for nuclear criticality safety include organizational, administrative, and technical requirements. For purely technical matters on nuclear criticality safety these guides endorse national standards. Others provide guidance on the standard format and content of license applications, guidance on evaluating radiological consequences of criticality accidents, or guidance for dealing with other radiation safety issues. (author)

  6. The Fukushima Daiichi Nuclear Power Plant Accident: OECD/NEA Nuclear Safety Response and Lessons Learnt

    International Nuclear Information System (INIS)

    2013-01-01

    Following the March 2011 accident at the Fukushima Daiichi nuclear power plant, all NEA member countries took early action to ensure and confirm the continued safety of their nuclear power plants and the protection of the public. After these preliminary safety reviews, all countries with nuclear facilities carried out comprehensive safety reviews, often referred to as 'stress tests', which reassessed safety margins of nuclear facilities with a primary focus on challenges related to conditions experienced at the Fukushima Daiichi nuclear power plant, for example extreme external events and the loss of safety functions, or capabilities to cope with severe accidents. As appropriate, improvements are being made to safety and emergency response systems to ensure that nuclear power plants are capable of withstanding events that lead to loss of electrical power and/or cooling capability. In the weeks following the accident, the NEA immediately began establishing expert groups in the nuclear safety and radiological protection areas, as well as contributing to information exchange with the Japanese authorities and other international organisations. It promptly provided a forum for high-level decision makers and regulators within the G8-G20 frameworks. The NEA actions taken at the international level in response to the accident have been carried out primarily by the three NEA standing technical committees concerned with nuclear and radiation safety issues - the Committee on Nuclear Regulatory Activities (CNRA), the Committee on the Safety of Nuclear Installations (CSNI) and the Committee on Radiation Protection and Public Health (CRPPH) - under the leadership of the CNRA. More than two years following the accident, the NEA continues to assist the Japanese authorities in dealing with their nuclear safety and recovery efforts as well as to facilitate international co-operation on nuclear safety and radiological protection matters. It is strongly supporting the establishment of

  7. What is new in the Act on Nuclear Safety

    International Nuclear Information System (INIS)

    Novosel, N.

    2005-01-01

    The Act on Nuclear Safety was passed by the Croatian Parliament on 15 October 2003, and published in Narodne novine (official journal) No. 173/03. This Act regulates safety measures for using nuclear materials and equipment, regulates nuclear activities, and establishes the National Office for Nuclear Safety. The new act supersedes the Act on Protective Measures Against Ionising Radiation and Safety in the Use of Nuclear Facilities and Installations (Narodne novine No. 18/81) and the Act on Protection against Ionising Radiation and Special Safety Measures in Using Nuclear Energy (Narodne novine No. 53/91). Regulations based on the latter Act shall apply until they are replaced by new regulations based on the Act on Nuclear Safety. Provisions of this Act apply for nuclear activities, nuclear materials and specified equipment. Croatia does not have nuclear facilities on its territory, but a Croatian power utility company owns 50% of the Nuclear Power Plant Krsko on the territory of Slovenia. In that respect, Croatia has assumed responsibilities defined by the Agreement between the Government of the Republic of Slovenia and the Government of the Republic of Croatia on the Regulation of the Status and Other Legal Relationships, Connected with Investments in the Krsko Nuclear Power Plant, its Exploitation and Decommissioning (Narodne novine No. 9/02, International Agreements). Having accessioned international conventions and agreements, Croatia has also assumed the responsibility to implement their provisions. In the process of European and international integrations, Croatia has to harmonize with the European and international standards in nuclear safety.(author)

  8. Safety Analysis of Spent Nuclear Fuel and Radwaste Facilities

    International Nuclear Information System (INIS)

    Poskas, P.; Ragaisis, V.

    2001-01-01

    The overview of the activities in the Laboratory of Heat Transfer in Nuclear Reactors related with the assessment of thermal, neutronic and radiation characteristics in spent nuclear fuel and radwaste facilities are performed. Activities related with decommissioning of Ignalina NPP are also reviewed. (author)

  9. Evolutionary approaches for the safety evaluation of the nuclear fuel cycle facilities: lessons learnt from french experiences and assessment of future challenges

    International Nuclear Information System (INIS)

    Greneche, D.

    2007-01-01

    This paper is aimed at presenting the recent work carried out in France on the evolution of the safety of the nuclear fuel cycle facilities (FCF). 5 main categories of FCF have been dealt with in this article: uranium conversion, uranium enrichment, fresh fuel fabrication (including Mox fuel), spent fuel storage, and spent fuel reprocessing. The specific of FCF are reviewed and it appears that FCF have generally a safety advantage over reactors: the relatively slow evolution of physico-chemical phenomena causing severe accident conditions. Generally speaking, nuclear safety is ensured through the combination of actions taken at 4 levels: design, implementation, operation and inspection. It must be underlined that the French safety analysis process is primarily based on a deterministic approach (itself based on the fundamental principle of defense-in-depth), supplemented if necessary with probabilistic safety assessment (PSA) to detect potential weak points in a nuclear facility. All this process is well implemented in reactors but in the case of FCF it is generally limited to the deterministic approach. It is showed that the approaches and general principles implemented in the safety analysis of reactors apply well to FCF but the probabilistic analysis of safety remains nevertheless little practiced in FCF for which they still require significant developments. (A.C.)

  10. Nuclear safety and radiation protection report of the Tricastin power plant - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Tricastin nuclear power plant (INB 87 and 88, Saint-Paul-Trois-Chateaux, Drome (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  11. Nuclear safety and radiation protection report of the Tricastin power plant - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Tricastin nuclear power plant (INB 87 and 88, Saint-Paul-Trois-Chateaux, Drome (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  12. Device for increasing the safety in the environment of nuclear facilities in case of containment failure

    International Nuclear Information System (INIS)

    Morlock, G.; Wiesemes, J.; Bachner, D.

    1978-01-01

    In order to increase the safety in the environment of nuclear facilities, e.g. in case of containment failure, with respect to released radioactive material new or existing facilities are covered with ground. The ground material has got a consistency very much reducing the permeability for liquids and gases. In addition irrigation devices for keeping the ground wet and/or intermediate layers of films pervious to water, e.g. perforated sheets, may be provided. Additionally the ground is protected against frost. Especially suited for ground material is clay. (DG) [de

  13. Maintaining knowledge, training and infrastructure for research and development in nuclear safety - INSAG-16. A report by the International Nuclear Safety Advisory Group

    International Nuclear Information System (INIS)

    2003-01-01

    The purpose of this report is to emphasize the importance of maintaining capabilities for nuclear research and education, especially with regard to safety aspects, so that nuclear safety may be maintained in IAEA Member States, and to alert Member States to the potential for significant harm if the infrastructure for research, development and education is not maintained. If the infrastructure for nuclear safety is not maintained, there will be a steady decrease in expertise, and thus in capability to respond to new challenges. The lead time in developing replacement educational opportunities is very long, because most institutions will require an indication of the number of enthusiastic potential students before investing in new infrastructure, and potential students may look elsewhere in the absence of an exciting analytical and experimental programme and a growing career field. Once lost, it would require massive inputs of resources from many IAEA Member States to attempt to re-establish the infrastructure, as was done to establish it when nuclear technology was new. The result could be a downward spiral in which expertise is lost, influence of the technical community on the decision making process is diminished, and complacency, fed by diminished technical capability, begins to exert a strong effect. In view of the above, INSAG has the following recommendations: In order to maintain and further enhance the safety of nuclear facilities and to protect workers and the public and the environment from radiological consequences, the infrastructure for safety research (experimental facilities, highly competent staff and modern analytical tools) must be maintained and supported by the responsible governmental organizations as well as by the operating organizations and manufacturers. This support should include international networking and co-operation, including joint funding of centres of excellence that have facilities and equipment for use in nuclear research

  14. AREVA General Inspectorate 2010 Annual Report. Status of safety in nuclear facilities

    International Nuclear Information System (INIS)

    2010-01-01

    After messages by different managers, this report proposes a description of the context for nuclear safety: group's policy in matters of nuclear safety and radiation protection, regulatory changes (in France, with respect to information, changes in administrative organization, overhaul of general technical regulations, international context). It describes the organizational changes which occurred within the company. It reports actions regarding transparency, briefly describes actions and principles aimed at improving safety, indicates and comments noteworthy nuclear events, discusses their assessment from a HOF (human and organizational factors) perspective, comments lessons learned from inspections, comments data regarding radiation protection and actions aimed at improving radiation protection. It discusses environmental impact issues. It addresses the different processes and factors which transversely appear in nuclear safety: safety management, human and organizational factors, safety in design, project management, and emergency management. Several specific risks are discussed: criticality control, nuclear materials safeguards, fire, spill prevention, transportation, radioactive waste, shutdown and dismantling, service operations, mining, and environmental liabilities. Document in French and in English

  15. Supervision of electrical and instrumentation systems and components at nuclear facilities

    International Nuclear Information System (INIS)

    1986-01-01

    The general guidelines for the supervision of nuclear facilities carried out by the Finnish Centre for Radiation and Nuclear Safety (STUK) are set forth in the guide YVL 1.1. This guide shows in more detail how STUK supervises the electrical and instrumentation systems and components of nuclear facilities

  16. NS [Nuclear Safety] update. Current safety and security activities and developments taking place in the Department of Nuclear Safety and Security, Issue no. 6, March 2008

    International Nuclear Information System (INIS)

    2008-03-01

    The current issue presents information about the following activities: 1) International Conference on Illicit Nuclear Trafficking which took place in November 2007 in Edinburgh. The principal aim of the conference was to examine the threat and context of illicit nuclear trafficking of radioactive material, specifically, what is being done to combat such trafficking and where more needs to be done. The conference was also to consider how the obligations and commitments of the legally binding and non-binding international instruments could be and are being implemented by various States. 2) INSAG Message on Nuclear Safety Infrastructure in which the INSAG Chairman Richard Meserve addressed nuclear safety in the current context and various issues that warrant special attention. 3) approved for publication the Safety Requirements publication on Safety of Nuclear Fuel Cycle Facilities. 4) The Asian Nuclear Safety Network (ANSN)

  17. NSC confirms principles for safety review on Radioactive Waste Burial Facilities

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The Nuclear Safety Commission authorized the scope of Principles for Safety Examination on Radioactive Waste Burial Facilities as suitable, the draft report for which was established by the Special Committee on Safety Standards of Radioactive Waste (Chairman Prof. Masao Sago, Science University of Tokyo) and reported on March 10 to the NSC. The principles include the theory that the facility must be controlled step by step, corresponding to the amount of radioactivity over 300 to 400 years after the burial of low-level solid radioactive waste with site conditions safe even in the event of occurrence of a natural disaster. The principles will be used for administrative safety examination against the application of the business on low-level radioactive waste burial facility which Japan Nuclear Fuel Industries, Inc. is planning to install at Rokkashomura, Aomori Prefecture. (author)

  18. Factor analysis on hazards for safety assessment in decommissioning workplace of nuclear facilities using a semantic differential method

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwan-Seong [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)], E-mail: ksjeongl@kaeri.re.kr; Lim, Hyeon-Kyo [Chungbuk National University, 410 Sungbong-ro, Heungduk-gu, Cheongju, Chungbuk 361-763 (Korea, Republic of)

    2009-10-15

    The decommissioning of nuclear facilities must be accomplished according to its structural conditions and radiological characteristics. An effective risk analysis requires basic knowledge about possible risks, characteristics of potential hazards, and comprehensive understanding of the associated cause-effect relationships within a decommissioning for nuclear facilities. The hazards associated with a decommissioning plan are important not only because they may be a direct cause of harm to workers but also because their occurrence may, indirectly, result in increased radiological and non-radiological hazards. Workers need to be protected by eliminating or reducing the radiological and non-radiological hazards that may arise during routine decommissioning activities as well as during accidents. Therefore, to prepare the safety assessment for decommissioning of nuclear facilities, the radiological and non-radiological hazards should be systematically identified and classified. With a semantic differential method of screening factor and risk perception factor, the radiological and non-radiological hazards are screened and identified.

  19. An international contribution to decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Lazo, T.

    1995-01-01

    Nuclear power plants and fuel cycle facilities must be retired from service when they have completed their design objective, become obsolete or when they no longer fulfill current safety, technical or economic requirements. Decommissioning is defined as the set of technical and administrative operations that provides adequate protection of workers and public against radiation risks, minimizes impact on the environment and involves manageable costs. A traditional definition of the stages of decommissioning has been proposed by the IAEA and is largely used worldwide. A number of factors have to be considered when selecting the optimum strategy, which include the national nuclear policy, characteristics of the facility, health and safety, environmental protection, radioactive waste management, future use of the site, improvements of the technology that may be achieved in the future, costs and availability of funds and various social considerations. The paper describes the current situation of nuclear facilities and the associated forthcoming requirements and problems of decommissioning. This task requires a complete radionuclide inventory, decontamination methods, disassembly techniques and remote operations. Radiation safety presents three aspects: nuclear safety, protection of workers and protection of the public. An appropriate delay to initiate decommissioning after shutdown of a facility may considerably reduce workers exposures and costs. Decommissioning also generates significant quantities of neutron-activated and surface contaminated materials which require a specific management. A vigorous international cooperation and coordinated research programs have been encouraged by the NEA for a minimization of costs and efforts and to provide a basis for consensus of opinions on policies, strategies and criteria. (J.S.). 19 refs., 5 figs., 3 tabs

  20. Presentation of the process External communications on the nuclear facilities operation of the Adjunct Head Office of Nuclear Safety of Comision Nacional de Seguridad Nuclear y Salvaguardias; Presentacion del proceso Comunicaciones externas sobre el funcionamiento de instalaciones nucleares de la Direccion General Adjunta de Seguridad Nuclear de la Comision Nacional de Seguridad Nuclear y Salvaguardias

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa V, J. M., E-mail: jmespinosa@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2012-10-15

    The Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) in use of their attributions granted by the Regulation Law of the constitutional Art. 27 in nuclear matter began the development of the called process External communications on the nuclear facilities operation, with the purpose of negotiating the evaluation of the concerns related with the safety of the nuclear facilities received these of external people to the CNSNS. The process External communications on the nuclear facilities operation will allow to the public's members and the workers that carry out activities inside the mark regulator imposed by the CNSNS that report to this Commission their concerns related with safety for several means (for example, directly to the personnel of the assigned Office, official and public statements, phone communication, electronic mail, etc.) The present article presents the legal mark confers the CNSNS the attributions to develop the mentioned process and exposes the most important elements that compose it. The term External communication on the nuclear facilities operation is defined and also is described how these communications are received, evaluated and closed by the assigned Office. Of equal way the objectives that intents to reach this process are indicated. The intention of the mentioned process is to strengthen the actions that the CNSNS carries out in the execution of its functions to maintain the safety standards in the operation of the nuclear facilities in Mexico. (Author)

  1. Management of National Nuclear Power Programs for assured safety

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, T.J. (ed.)

    1985-01-01

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

  2. Management of National Nuclear Power Programs for assured safety

    International Nuclear Information System (INIS)

    Connolly, T.J.

    1985-01-01

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA)

  3. Consideration of external events in the design of nuclear facilities other than nuclear power plants, with emphasis on earthquakes

    International Nuclear Information System (INIS)

    2003-03-01

    The design of nuclear facilities other than nuclear power plants in relation to external events is not a well harmonized practice around the world. Traditionally, the design of these facilities has either been left to the provisions collected in national building codes and other industrial codes not specifically intended for nuclear facilities, or it has been the subject of complex analyses of the type usually performed for nuclear power plants. The IAEA has recently started a programme of development of safety standards for such facilities. The need to define the appropriate safety requirements for nuclear installations prompted a generic review of siting and design approaches for these facilities in relation to external events. Therefore the assessment methods for siting and design were reviewed by the engineering community to provide the overall design of such facilities with the necessary reliability level. This report aims to provide guidelines for the assessment of the safety of nuclear facilities other than nuclear power plants in relation to external events through the application of simplified methods and procedures for their siting and design. The approach adopted is both simplified and conservative compared with that used for power reactors. It seeks to provide a rational balance for a suitable combination of sustainable effort in site investigations and refinement in design procedures, compatible with the assigned safety objectives. This publication is related to IAEA-TECDOC-348 'Earthquake Resistant Design of Nuclear Facilities with Limited Radioactive Inventory' (1985) which focused on the seismic design of nuclear facilities with limited radioactive inventory. After some 17 years, parts of IAEA-TECDOC-348 needed modification, as new operational data have become available from many facilities. In addition, sophisticated design methodologies are now more easily obtainable, and experts felt that the trade-off between sustainable investment in the

  4. Safety study of fire protection for nuclear fuel cycle facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Based on the investigation of fire protection standards for domestic and foreign nuclear facilities, the fire protection guideline for nuclear fuel cycle facility has been completed. In 2012, trial operation is started by private company using the guideline. In addition, the acquisition of fire evaluation data for a components (electric cable) targeted for spread of fire and the evaluation model of fire source were continued for the fire hazard analysis (FHA). (author)

  5. Safety study of fire protection for nuclear fuel cycle facility

    International Nuclear Information System (INIS)

    2013-01-01

    Based on the investigation of fire protection standards for domestic and foreign nuclear facilities, the fire protection guideline for nuclear fuel cycle facility has been completed. In 2012, trial operation is started by private company using the guideline. In addition, the acquisition of fire evaluation data for a components (electric cable) targeted for spread of fire and the evaluation model of fire source were continued for the fire hazard analysis (FHA). (author)

  6. Radiological safety of nuclear power plants in India

    International Nuclear Information System (INIS)

    Sathish, A.V.

    2015-01-01

    Safety in nuclear power plants (NPPs) is often less understood and more talked about, thus the author wanted to share the facts to clear the myths. Safety is accorded overriding priority in all the activities. All nuclear facilities are sited, designed, constructed, commissioned and operated in accordance with strict quality and safety standards. Principles of defence in depth, redundancy and diversity are followed in the design of all nuclear facilities and their systems/components. PPs in India are not only safe but are also well regulated, have proper radiological protection of workers and the public, regular surveillance, approved standard operating and maintenance procedures, a well-defined waste management methodology, periodically rehearsed emergency preparedness and disaster management plans. The regulatory framework in the country is robust, with the independent Atomic Energy Regulatory Board (AERB) having powers to frame the policies, laying down safety standards, monitoring and enforcing all the safety provisions. As a result, India's safety record has been excellent in over 400 reactor years of operation of power reactors

  7. Losing nuclear expertise - A safety concern

    International Nuclear Information System (INIS)

    Ziakova, M.

    2002-01-01

    Full text: Since the mid of eighties several important changes in human beings behaviour, which influence nuclear field, can be observed - the loss of interest in studying technical disciplines (namely nuclear), strong pressure of environmental movements, stagnation of electricity consumption and deregulation of electric markets. All these factors create conditions which are leading to the decrease of job positions related to the nuclear field connected particularly with research, design and engineering. Loss of interest in studying nuclear disciplines together with the decrease of number of job positions has led to the declining of university enrolments, closing of university departments and research reactors. In this manner just a very small number of appropriately educated new experts are brought In the same moment the additional internal factor - the relative ageing of the human workforce on both sites operators of nuclear facilities and research and engineering organisations can be observed. All these factors, if not addressed properly, could lead to the loss of nuclear expertise and the loss of nuclear expertise represents the direct thread to the nuclear safety. The latest studies have shown that at present NPPs cannot be replaced by other kinds of electric sources and in no case by renewable ones in an efficient manner. Therefore it is necessary to carefully manage knowledge gathered in the nuclear field during the years and to keep on the nuclear safety research, education and training to ensure and upgrade safe and reliable operation of existing and future nuclear facilities. This is responsibility of both the governments of the states using nuclear applications and owners of nuclear facilities. (author)

  8. White paper on nuclear safety in 1981

    International Nuclear Information System (INIS)

    1981-01-01

    The measures to research, develop and utilize atomic energy in Japan have been strengthened since the Atomic Energy Act was instituted in 1955, always on the major premise of securing the safety. The Nuclear Safety Commission established in October, 1978, has executed various measures to protect the health and safety of the nation as the center of the atomic energy safety regulation administration in Japan. Now, the Nuclear Safety Commission has published this annual report on atomic energy safety, summarizing various activities for securing the safety of atomic energy since its establishment to the end of March, 1981. This report is the inaugural issue, and the course till the Nuclear Safety Commission has made its start is also described. The report is composed of general remarks, response to the TMI accident, the safety regulation and security of nuclear facilities, the treatment and disposal of radioactive wastes, the investigation of environmental radioactivity, the countermeasures for preventing disasters around nuclear power stations and others, the research on the safety of atomic energy, international cooperation, and the improvement of the basis for securing the safety. Various related materials are attached. (Kako, I.)

  9. Regulatory oversight on nuclear safety in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Huang, T-T. [Atomic Energy Council, New Taipei City, Taiwan (China)

    2014-07-01

    Taiwan is a densely populated island and over 98% of its energy is imported, 16.5% of which is nuclear, in the form of materials and services. Ensuring that the most stringent nuclear safety standards are met therefore remains a priority for the government and the operator, Taiwan power Company (Taipower). There are eight nuclear power reactors in Taiwan, six of which are in operation and two are under construction. The first began operating nearly 40 years ago. For the time being the issue of whether to decommission or extend life of the operating units is also being discussed and has no conclusion yet. Nuclear energy has been a hot issue in debate over the past decades in Taiwan. Construction of Lungmen nuclear power plant, site selection of a final low-level waste disposal facility, installation of spent fuel dry storage facilities and safety of the currently operating nuclear power reactors are the issues that all Taiwanese are concerned most. In order to ensure the safety of nuclear power plant, the Atomic Energy Council (AEC) has implemented rigorous regulatory work over the past decades. After the Fukushima accident, AEC has conducted a reassessment program to re-evaluate all nuclear power plants in Taiwan, and asked Taipower to follow the technical guidelines, which ENSREG has utilized to implement stress test over nuclear power plants in Europe. In addition, AEC has invited two expert teams from OECD/NEA and ENSREG to conduct peer reviews of Taiwan's stress test national report in 2013. My presentation will focus on activities regulating safety of nuclear power programs. These will cover (A) policy of nuclear power regulation in Taiwan, (B)challenges of the Lungmen Plant, (C) post-Fukushima safety re-assessment, and (D)radioactive waste management. (author)

  10. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    The nuclear fuel cycle covers the procurement and preparation of fuel for nuclear power reactors, its recovery and recycling after use and the safe storage of all wastes generated through these operations. The facilities associated with these activities have an extensive and well documented safety record accumulated over the past 40 years by technical experts and safety authorities. This report constitutes an up-to-date analysis of the safety of the nuclear fuel cycle, based on the available experience in OECD countries. It addresses the technical aspects of fuel cycle operations, provides information on operating practices and looks ahead to future activities

  11. The decommissioning of nuclear facilities; Le demantelement des installations nucleaires de base

    Energy Technology Data Exchange (ETDEWEB)

    Niel, J.Ch.; Rieu, J.; Lareynie, O.; Delrive, L.; Vallet, J.; Girard, A.; Duthe, M.; Lecomte, C.; Rozain, J.P.; Nokhamzon, J.G.; Davoust, M.; Eyraud, J.L.; Bernet, Ph.; Velon, M.; Gay, A.; Charles, Th.; Leschaeva, M.; Dutzer, M.; Maocec, Ch.; Gillet, G.; Brut, F.; Dieulot, M.; Thuillier, D.; Tournebize, F.; Fontaine, V.; Goursaud, V.; Birot, M.; Le Bourdonnec, Th.; Batandjieva, B.; Theis, St.; Walker, St.; Rosett, M.; Cameron, C.; Boyd, A.; Aguilar, M.; Brownell, H.; Manson, P.; Walthery, R.; Wan Laer, W.; Lewandowski, P.; Dorms, B.; Reusen, N.; Bardelay, J.; Damette, G.; Francois, P.; Eimer, M.; Tadjeddine, A.; Sene, M.; Sene, R

    2008-11-15

    This file includes five parts: the first part is devoted to the strategies of the different operators and includes the following files: the decommissioning of nuclear facilities Asn point of view, decommissioning of secret nuclear facilities, decommissioning at the civil Cea strategy and programs, EDF de-construction strategy, Areva strategy for decommissioning of nuclear facilities; the second one concerns the stakes of dismantling and includes the articles as follow: complete cleanup of buildings structures in nuclear facilities, decommissioning of nuclear facilities and safety assessment, decommissioning wastes management issues, securing the financing of long-term decommissioning and waste management costs, organizational and human factors in decommissioning projects, training for the decommissioning professions: the example of the Grenoble University master degree; the third part is devoted to the management of dismantling work sites and includes the different articles as follow: decommissioning progress at S.I.C.N. plant, example of decommissioning work site in Cea Grenoble: Siloette reactor decommissioning, matters related to decommissioning sites, decommissioning of french nuclear installations: the viewpoint of a specialist company, specificities of inspections during decommissioning: the Asn inspector point of view; the fourth part is in relation with the international approach and includes as follow: IAEA role in establishing a global safety regime on decommissioning, towards harmonization of nuclear safety practices in Europe: W.E.N.R.A. and the decommissioning of nuclear facilities, EPA superfund program policy for decontamination and decommissioning, progress with remediation at Sellafield, progress and experiences from the decommissioning of the Eurochemic reprocessing plant in Belgium, activities of I.R.S.N. and its daughter company Risk-audit I.r.s.n./G.r.s. international in the field of decommissioning of nuclear facilities in eastern countries

  12. Evaluation of Influence Factors within Implementing of Nuclear Safety Culture in Embarking Countries

    International Nuclear Information System (INIS)

    Situmorang, J.

    2016-01-01

    The evaluation of the implementation nuclear safety culture at BATAN has been performed. BATAN is Indonesia’s national nuclear energy agency. Nowadays, BATAN is planning to develop an experimental power reactor. To implement the nuclear safety culture BATAN has issued BATAN chairman regulation (Perka BATAN 200). Perka BATAN is the reference for individuals and organizations to implement nuclear safety culture which includes basic principles, mechanisms, assessment, as well as the implementation of the application of safety culture. It covers the establishment of safety policies, program development, program implementation, development and measurement of safety culture. Each facilities within BATAN is expected to well implement a safety culture. The implementation of safety culture is developed by considering the characteristics, attributes and indicators. The characteristics, attributes and indicators referenced are elaborated from the IAEA. The activities to strengthen safety culture are monthly workshop with participants is head of every facilities, safety leadership training and workshop for safety division manager in every facilities. It is also issued a handbook of safety that is distributed to all employees BATAN.

  13. Developing safety culture in nuclear activities. Practical suggestions to assist progress

    International Nuclear Information System (INIS)

    2000-01-01

    The term 'safety culture' was introduced by the International Nuclear Safety Advisory Group (INSAG) in Summary Report on the Post-Accident Review Meeting on the Chernobyl Accident published by the IAEA as Safety Series No. 75-INSAG-1 in 1986, and expanded in Basic Safety Principles for Nuclear Power Plants, Safety Series No. 75-INSAG-3 in 1988. This publication supplements INSAG-4 published in 1991 which includes the definition and concept of safety culture describing practices valuable in establishing and maintaining a sound safety culture in a number of countries. It is intended for those who design, construct, manufacture, operate, maintain or decommission nuclear facilities. It should be practically useful for all those involved in operating nuclear facilities. It will also provide a reference for groups such as regulators who have an interest in developing, improving and evaluating safety culture training and individuals engaged in nuclear activities, and for bodies such as ethics review committees who should take into account safety culture issues for certifying professional excellence in the medical field

  14. Developing safety culture in nuclear activities. Practical suggestions to assist progress

    International Nuclear Information System (INIS)

    1998-01-01

    The term 'safety culture' was introduced by the International Nuclear Safety Advisory Group (INSAG) in Summary Report on the Post-Accident Review Meeting on the Chernobyl Accident published by IAEA as safety Series No. 75-INSAG-1 in 1986, and expanded in Basic Safety principles for Nuclear Power Plants, Safety Series No. 75-INSAG-3 in 1988. This publication supplements INSAG-4 published in 1991 which includes the definition and concept of safety culture describing practices valuable in establishing and maintaining a sound safety culture in a number of countries. It is intended for those who design, construct, manufacture, operate, maintain or decommission nuclear facilities. It should be practically useful for all those involved in operating nuclear facilities. It will also provide a reference for groups such as regulators who have an interest in developing, improving and evaluating safety culture training and individuals engaged in nuclear activities, and for bodies such as ethics review committees who should take into account safety culture issues for certifying professional excellence in the medical field

  15. USAEC Controls for Nuclear Criticality Safety

    Energy Technology Data Exchange (ETDEWEB)

    McCluggage, W. C. [Division of Operational Safety, United States Atomic Energy Commission Washington, DC (United States)

    1966-05-15

    This is a paper written to provide a broad general view of the United States Atomic Energy Commission's controls for nuclear criticality safety within its own facilities. Included also is a brief' discussion of the USAEC's methods of obtaining assurance that the controls are being applied. The body of the document contains three sections. The first two describe the functions of the USAEC; the third deals with the contractors. The provisions of the Atomic Energy Act applicable to health and safety are discussed in relation to nuclear criticality safety. The use of United States Atomic Energy Commission manual chapters and Federal regulations is described. The functions of the USAEC Headquarters' offices and the operations offices are briefly outlined. Comments regarding the USAEC's inspection, auditing and appraisal programmes are included. Also briefly mentioned are the basic qualifications which must be met to become a contractor to possess and process or use fissionable materials. On the plant, factory or facility level the duties and responsibilities of industrial management are briefly outlined. The fundamental standards and their origin, together with the principal documents and guides are mentioned. The chief methods of control used by contractors operating large USAEC facilities and plants are described and compared. These include diagrams of how a typical nuclear criticality safety problem is handled from inception, design, construction and finally plant operation. Also included is a brief discussion of the contractors' methods of assuring strict employee compliance with the operating rules and limits. (author)

  16. Engineering design guidelines for nuclear criticality safety

    International Nuclear Information System (INIS)

    Waltz, W.R.

    1988-08-01

    This document provides general engineering design guidelines specific to nuclear criticality safety for a facility where the potential for a criticality accident exists. The guide is applicable to the design of new SRP/SRL facilities and to major modifications Of existing facilities. The document is intended an: A guide for persons actively engaged in the design process. A resource document for persons charged with design review for adequacy relative to criticality safety. A resource document for facility operating personnel. The guide defines six basic criticality safety design objectives and provides information to assist in accomplishing each objective. The guide in intended to supplement the design requirements relating to criticality safety contained in applicable Department of Energy (DOE) documents. The scope of the guide is limited to engineering design guidelines associated with criticality safety and does not include other areas of the design process, such as: criticality safety analytical methods and modeling, nor requirements for control of the design process

  17. Proceedings of the seminar on nuclear safety research and the workshop on reactor safety research

    International Nuclear Information System (INIS)

    2001-07-01

    The seminar on the nuclear safety research was held on November 20, 2000 according to the start of new five year safety research plan (FY2001-2005: established by Nuclear Safety Commission) with 79 participants. In the seminar, Commissioner Dr. Kanagawa gave the outline of the next five year safety research plan. Following this presentation, progresses and future scopes of safety researches in the fields of reactor facility, fuel cycle facility, radioactive waste and environmental impact on radiation at Japan Atomic Energy Research Institute (JAERI) were reported. After the seminar, the workshop on reactor safety research was held on November 21-22, 2000 with 141 participants. In the workshop, four sessions titled safety of efficient and economic utilization of nuclear fuel, safety related to long-term utilization of power reactors, research on common safety-related issues and toward further improvement of nuclear safety were organized and, outcomes and future perspectives in these wide research R and D in the related area at other organizations including NUPEC, JAPEIC and Kansai Electric Power Co. was presented in each session. This report compiles outlines of the presentations and used materials in the seminar and the workshop to form the proceedings for the both meetings. (author)

  18. Promoting safety in nuclear installations. The IAEA has established safety standards for nuclear reactors and provides expert review and safety services to assist Member States in their application

    International Nuclear Information System (INIS)

    2002-01-01

    More than 430 nuclear power plants (NPPs) are currently operating in 30 countries around the world. The nuclear share of total electricity production ranges from about 20 percent in the Czech Republic and United States to nearly 78 percent in France and Lithuania. Worldwide, nuclear power generates about 16% of the total electricity. The safety of such nuclear installations is fundamental. Every aspect of a power plant must be closely supervised and scrutinized by national regulatory bodies to ensure safety at every phase. These aspects include design, construction, commissioning, trial operation, commercial operation, repair and maintenance, plant upgrades, radiation doses to workers, radioactive waste management and, ultimately, plant decommissioning. Safety fundamentals comprise defence-in-depth, which means having in place multiple levels of protection. nuclear facilities; regulatory responsibility; communicating with the public; adoption of the international convention on nuclear safety including implementation of IAEA nuclear safety standards. This publication covers topics of designing for safety (including safety concepts, design principles, and human factors); operating safety (including safety culture and advance in operational safety); risk assessment and management

  19. Opinions of the well-informed persons about the nuclear reactor facility periodical inspection

    International Nuclear Information System (INIS)

    Aeba, Yoichi; Ishikawa, Michio; Enomoto, Toshiaki; Oomori, Katsuyoshi

    2005-01-01

    Falsifications of self-inspection records in the shrouds and of leakage rates for containment vessels at TEPCO nuclear power plants destroyed public trust in nuclear safety. The Nuclear Reactor Regulation Law and Electric Utility Law were amended to enhance the nuclear safety regulation system. The major improvements are that operators are legally required to conduct inspection (periodical operator inspection) and recording and keeping inspection results. The operator performs 'periodical operator inspection' regularly, and Nuclear and Industrial Safety Agency (NISA) performs periodical inspection' about particularly important facilities/function in safety. Sixteen opinions of well-informed persons about the nuclear reactor facility periodical inspection were presented in this special number. Interval of periodical inspection less than thirteen months was disputed. Maintenance activities should be more rationalized based on risk information. (T. Tanaka)

  20. Nuclear fuel cycle facilities, laboratories, irradiators, particle accelerators, under-decommissioning reactors and radioactive waste management facilities safety. Lessons learned from events notified between 2005 and 2008

    International Nuclear Information System (INIS)

    2001-01-01

    Maintaining high levels of safety in nuclear facilities requires constant vigilance by everyone involved, especially by plant operators who are first and foremost responsible for safety in their facilities. Safety can never be taken for granted; constant efforts must be made to improve it, by taking new knowledge and available operating feedback into account. In this respect, a substantial part of operating feedback is made up of lessons learned from analysing events, incidents or accidents occurring in France or in similar facilities abroad. To encourage the diffusion of operating feedback, IRSN has produced a report concerning events notified to the Nuclear Safety Authority (ASN) by operators of LUDD facilities between 2005 and 2008. The main objective is to make general lessons for safety in this type of facility available based on a cross-disciplinary analysis of notified events and noted evolution trends. IRSN has had tools for managing information concerning events occurring in France and abroad for many years. These tools are used to analyse the events in order to take into account the relevant lessons learned in the safety assessments performed on behalf of ASN and also to define study and research programmes to maintain its expertise and expand its knowledge. The report has 4 sections: - the first section (chapters 2 to 4) presents the LUDD facilities so that the facilities themselves, their diversity and the main associated risks can be better understood. It also includes a brief reminder of plant operator obligations in notifying events and describes the database used by the Institute to manage the data relating to the notified events; - the second section (chapter 5) summarises the main changes noted in the events notified to ASN during 2005 to 2008 and provides an overall assessment of the consequences of these events for the environment, the population and the workers; - the third section (chapter 6) describes significant events occurring in France

  1. Seismic reevaluation of nuclear facilities worldwide: Overview and status

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, R D; Hardy, G S; Ravindra, M K [EQE International, Irvine, CA (United States); Johnson, J J [EQE International, San Francisco, CA (United States); Hoy, A J [EQE International Ltd., Birchwood, Warrington (United Kingdom)

    1995-07-01

    Existing nuclear facilities throughout the world are being subjected to severe scrutiny of their safety in tile event of an earthquake. In the United States, there have been several licensing and safety review issues for which industry and regulatory agencies have cooperated to develop rational and economically feasible criteria for resolving the issues. Currently, all operating nuclear power plants in the United States are conducting an Individual Plant Examination of External Events, including earthquakes beyond tile design basis. About two-thirds of tile operating plants are conducting parallel programs for verifying, tile seismic adequacy of equipment for the design basis earthquake. The U.S. Department of Energy is also beginning to perform detailed evaluations of their facilities, many of which had little or no seismic design. Western European countries also have been reevaluating their older nuclear power plants for seismic events often adapting the criteria developed in the United States. With the change in tile political systems in Eastern Europe, there is a strong emphasis from their Western European neighbors to evaluate and Upgrade tile safely of their operating nuclear power plants. Finally, nuclear facilities in Asia are, also, being evaluated for seismic vulnerabilities. This paper focuses oil tile methodologies that have been developed for reevaluation of existing nuclear power plants and presents examples of the application of these methodologies to nuclear facilities worldwide. (author)

  2. Seismic reevaluation of nuclear facilities worldwide: Overview and status

    International Nuclear Information System (INIS)

    Campbell, R.D.; Hardy, G.S.; Ravindra, M.K.; Johnson, J.J.; Hoy, A.J.

    1995-01-01

    Existing nuclear facilities throughout the world are being subjected to severe scrutiny of their safety in tile event of an earthquake. In the United States, there have been several licensing and safety review issues for which industry and regulatory agencies have cooperated to develop rational and economically feasible criteria for resolving the issues. Currently, all operating nuclear power plants in the United States are conducting an Individual Plant Examination of External Events, including earthquakes beyond tile design basis. About two-thirds of tile operating plants are conducting parallel programs for verifying, tile seismic adequacy of equipment for the design basis earthquake. The U.S. Department of Energy is also beginning to perform detailed evaluations of their facilities, many of which had little or no seismic design. Western European countries also have been reevaluating their older nuclear power plants for seismic events often adapting the criteria developed in the United States. With the change in tile political systems in Eastern Europe, there is a strong emphasis from their Western European neighbors to evaluate and Upgrade tile safely of their operating nuclear power plants. Finally, nuclear facilities in Asia are, also, being evaluated for seismic vulnerabilities. This paper focuses oil tile methodologies that have been developed for reevaluation of existing nuclear power plants and presents examples of the application of these methodologies to nuclear facilities worldwide. (author)

  3. To reprocess to recycle. The nuclear safety

    International Nuclear Information System (INIS)

    1999-01-01

    After a summary of fundamental notions of radioactivity and nuclear safety, the first part of this work is devoted to the organisation in France to provide the nuclear facilities safety. The second part related to the fuel cycle describes the big steps of this cycle and particularly the stakes and objectives of the reprocessing -recycling as well as the valorization of reusable matters such plutonium and uranium. The risks identification, means to control them, in conception, realisation and operation are described in the third, fourth and fifth parts. In this last part the managements of accidental situations is treated. The sixth and last part is devoted to the environment protection, treats the control of waste release of reprocessing -recycling facilities, of these waste management that is to say every disposition made by Cogema to limit the impact of its installations on environment. In this last part are also described the safety of nuclear and radioactive matters transport, and the definitive breakdown of installations. (N.C.)

  4. Radioactive waste storage facilities, involvement of AVN in inspection and safety assessment

    International Nuclear Information System (INIS)

    Simenon, R.; Smidts, O.

    2006-01-01

    The legislative and regulatory framework in Belgium for the licensing and the operation of radioactive waste storage buildings are defined by the Royal Decree of 20 July 2001 (hereby providing the general regulations regarding to the protection of the population, the workers and the environment against the dangers of ionising radiation). This RD introduces in the Belgian law the radiological protection and ALARA-policy concepts. The licence of each nuclear facility takes the form of a Royal Decree of Authorization. It stipulates that the plant has to be in conformity with its Safety Analysis Report. This report is however not a public document but is legally binding. Up to now, the safety assessment for radioactive waste storage facilities, which is implemented in this Safety Analysis Report, has been judged on a case-by-case basis. AVN is an authorized inspection organisation to carry out the surveillance of the Belgian nuclear installations and performs hereby nuclear safety assessments. AVN has a role in the nuclear safety and radiation protection during all the phases of a nuclear facility: issuance of licenses, during design and construction phase, operation (including reviewing and formal approval of modifications) and finally the decommissioning. Permanent inspections are performed on a regular basis by AVN, this by a dedicated site inspector, who is responsible for a site of an operator with nuclear facilities. Besides the day-to-day inspections during operation there are also the periodic safety reviews. AVN assesses the methodological approaches for the analyses, reviews and approves the final studies and results. The conditioned waste in Belgium is stored on the Belgoprocess' sites (region Mol-Dessel) for an intermediate period (about 80 years). In the meantime, a well-defined inspection programme is being implemented to ensure that the conditioned waste continues to be stored safely during this temporary storage period. This programme was draw up by

  5. Dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Tallec, Michele; Kus, Jean-Pierre; Mogavero, Robert; Genelot, Gabriel

    2009-01-01

    Although the operational life of nuclear plants is long (around 60 years for French reactors) it is nonetheless limited in time, the stopping of it being essentially due to the obsolescence of materials and processes or to economic or safety considerations. The nuclear power plants are then subjected to cleanup and dismantling operations which have different objectives and require specific techniques. The cleanup and/or dismantling of a nuclear power produces significant quantities of waste which is generally of a different nature to that produced during the operation of the concerned plant. The radioactive waste produced by these operations is destined to be sent to the waste disposal facilities of the French National Agency for the Management of Nuclear Waste. (authors)

  6. Nuclear criticality safety analysis summary report: The S-area defense waste processing facility

    International Nuclear Information System (INIS)

    Ha, B.C.

    1994-01-01

    The S-Area Defense Waste Processing Facility (DWPF) can process all of the high level radioactive wastes currently stored at the Savannah River Site with negligible risk of nuclear criticality. The characteristics which make the DWPF critically safe are: (1) abundance of neutron absorbers in the waste feeds; (2) and low concentration of fissionable material. This report documents the criticality safety arguments for the S-Area DWPF process as required by DOE orders to characterize and to justify the low potential for criticality. It documents that the nature of the waste feeds and the nature of the DWPF process chemistry preclude criticality

  7. Safety investigation of 'Mutsu', the first nuclear ship in Japan (the correspondence to the guideline of safety design examination, etc.)

    International Nuclear Information System (INIS)

    1981-01-01

    Japan Nuclear Ship Development Agency had made previously application for the permission of the alteration of the reactor installation in the nuclear ship Mutsu (the first of this kind in Japan), based on the overall safety investigation of the ship made by JNDA. Taking the opportunity of the governmental safety examination concerning the permission, the correspondence of the safety aspects of the n.s. Mutsu to the existing guidelines for the safety of nuclear reactor facilities was examined. These results to further enhance the safety of the n.s. Mutsu are described concerning the following matters: the safety design examination guideline for power-generating LWR facilities (58 items); the safety evaluation guideline for power-generating LWR facilities (the analysis of abnormal transients during operation and accidents); the safety countermeasures to be adopted in the reactor plant of the n.s. Mutsu from the situation of the TMI nuclear accident in U.S. (7 in design and 10 in operation management); the analysis simulating the TMI accident. (J.P.N.)

  8. Safety assessment for facilities and activities. General safety requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF 6 ; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  9. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  10. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2010-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  11. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation.? read more The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are

  12. Blueprint for nuclear safety - a nonregulatory strategy

    International Nuclear Information System (INIS)

    Knight, J.P.

    1989-01-01

    The Department of Energy operates a nuclear complex that now numbers over 250 facilities nationwide, many of which date back to the 1940s and 1950s. In 1985, Secretary Herrington moved to establish the Office of Environment, Safety and Health, give it needed resources and authorities, and begin extensive environmental protection and safety evaluations of all major DOE sites and facilities. On the nuclear safety side this necessitates an integrated program that not only strengthens oversight but also builds DOE-wide technical capabilities and promotes safety performance. This has led up to focus our attention on three areas: (1) the DOE safety oversight system -- its resources, technical capabilities, and effectiveness; (2) the safety policy development and review; and (3) the Department's capabilities to foster technical inquisitiveness and overall excellence in safety performance. The essence of this approach is found in this last term -- performance. Performance that is results-oriented; founded on realized safety enhancements and risk reduction, not merely regulation for its own sake. Performance not merely in terms of hardware fixes, but also focusing on the human part of the safety equation

  13. The advanced neutron source facility: Safety philosophy and studies

    International Nuclear Information System (INIS)

    Greene, S.R.; Harrington, R.M.

    1988-01-01

    The Advanced Neutron Source (ANS) is currently the only new civilian nuclear reactor facility proposed for construction in the United States. Even though the thermal power of this research-oriented reactor is a relatively low 300 MW, the design will undoubtedly receive intense scrutiny before construction is allowed to proceed. Safety studies are already under way to ensure that the maximum degree of safety in incorporated into the design and that the design is acceptable to the Department of Energy (DOE) and can meet the Nuclear Regulatory Commission regulations. This document discusses these safety studies

  14. Applying Digital Technologies to Strengthen Nuclear Safety

    International Nuclear Information System (INIS)

    Huffeteau, S.; Roy, C.

    2016-01-01

    Full text: The paper describes how the development of some information technologies can further contribute to the safety of nuclear facilities and their competitiveness. After repositioning the nuclear industry engineering practices in their historical and economic context, the paper describes five engineering practices or use cases widely developed especially in the aerospace industry: requirement management, business process enforcement by digitization of data and processes, facilities configuration management, engineering information unification, and digital licensing. Information technology (IT) plays a mandatory role for driving this change since IT is now mature enough to handle the level of complexity the nuclear industry requires. While the detailed evaluation of the expecting gains in cost decrease or safety increase can be difficult to quantify, the paper presents illustrative benefits reachable by a development of these practices. (author

  15. AEC sets five year nuclear safety research program

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The research by the government for the establishment of means of judging the adequacy of safety measures incorporated in nuclear facilities, including setting safety standards and collecting documents of general criteria, and the research by the industry on safety measures and the promotion of safety-related technique are stated in the five year program for 1976-80 reported by subcommittees, Atomic Energy Commission (AEC). Four considerations on the research items incorporated in the program are 1) technical programs relating to the safety of nuclear facilities and the necessary criteria, 2) priority of the relevant items decided according to their impact on circumstances, urgency, the defence-indepth concept and so on, 3) consideration of all relevant data and documents collected, and research subjects necessary to quantify safety measurement, and 4) consideration of technological actualization, the capability of each research body, the budget and the time schedule. In addition, seven major themes decided on the basis of these points are 1) reactivity-initiated accident, 2) LOCA, 3) fuel behavior, 4) structural safety, 5) radioactive release, 6) statistical method of safety evaluation, and 7) seismic characteristics. The committee has deliberated the appropriate division of researches between the government and the industry. A set of tables showing the nuclear safety research plan for 1976-80 are attached. (Iwakiri, K.)

  16. Occupational Safety Review of High Technology Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee Cadwallader

    2005-01-31

    This report contains reviews of operating experiences, selected accident events, and industrial safety performance indicators that document the performance of the major US DOE magnetic fusion experiments and particle accelerators. These data are useful to form a basis for the occupational safety level at matured research facilities with known sets of safety rules and regulations. Some of the issues discussed are radiation safety, electromagnetic energy exposure events, and some of the more widespread issues of working at height, equipment fires, confined space work, electrical work, and other industrial hazards. Nuclear power plant industrial safety data are also included for comparison.

  17. Methodology and technology of decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    1986-01-01

    The decommissioning and decontamination of nuclear facilities is a topic of great interest to many Member States of the International Atomic Energy Agency (IAEA) because of the large number of older nuclear facilities which are or soon will be retired from service. In response to increased international interest in decommissioning and to the needs of Member States, the IAEA's activities in this area have increased during the past few years and will be enhanced considerably in the future. A long range programme using an integrated systems approach covering all the technical, regulatory and safety steps associated with the decommissioning of nuclear facilities is being developed. The database resulting from this work is required so that Member States can decommission their nuclear facilities in a safe time and cost effective manner and the IAEA can effectively respond to requests for assistance. The report is a review of the current state of the art of the methodology and technology of decommissioning nuclear facilities including remote systems technology. This is the first report in the IAEA's expanded programme and was of benefit in outlining future activities. Certain aspects of the work reviewed in this report, such as the recycling of radioactive materials from decommissioning, will be examined in depth in future reports. The information presented should be useful to those responsible for or interested in planning or implementing the decommissioning of nuclear facilities

  18. Contribution of Rostechnadzor in Implementing the State Nuclear Safety Policy

    International Nuclear Information System (INIS)

    Ferapontov, A.

    2016-01-01

    The report considers major areas of Rostechnadzor activities on implementation of the state policy in the area of nuclear safety, including actions to be implemented. Ensuring nuclear and radiation safety in the use of atomic energy is one of the most important components of the national security of the Russian Federation. On March 1, 2012, the President of the Russian Federation approved the Basics of State Policy in the Area of Nuclear and Radiation Safety aimed at consistent reduction of risks associated with man-made impact on the public and the environment in using atomic energy, as well as at prevention of emergencies and accidents in nuclear and radiation hazardous facilities. Rostechnadzor is an authorized body for state safety regulation in the use of atomic energy, which implements functions of regulatory and legal control, licensing of various types of activity and federal state supervision of the atomic energy facilities. The activity in the area of regulatory and legal control is implemented in compliance with the Concept of Enhancement of Regulatory and Legal Control of Safety and Standardization in the Area of the Use of Atomic Energy and the Plan of Implementation of this Concept, which envisages the completion of reviewing the regulatory and legal documents by 2023. Corresponding to the Basics of State Policy in the Area of Nuclear and Radiation Safety of the Russian Federation for the Period of 2025, Rostechnadzor successfully implemented the actions of the Federal Target Programme of Nuclear and Radiation Safety up to 2015, creating all conditions for phased reduction of the amounts of nuclear legacy and ensuring radical increase in their level of nuclear and radiation safety. In 2016, Rostechnadzor embarked on implementation of the Federal Target Programme of Nuclear and Radiation Safety up to 2030, with creation of infrastructure facilities for spent fuel and radioactive waste management and definitive response to the challenges of nuclear

  19. A study on optimization of the nuclear safety system

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Koh, Byung Joon; Kim, Jin Soo; Kim, Byoung Do; Cho, Seong Won; Kwon, Seog Kwon; Choi, Kwang Sik

    1986-12-01

    The number of nuclear facilities (nuclear power plants, research reactors, nuclear fuel facilities) under construction or in operation in Korea continues to increase and this has brought about increased importance and concerns toward nuclear safety in Korea. Also, domestic nuclear related organizations are increasingly carrying out the design/construction of nuclear power plants and the development /supply of nuclear fuels. In order to flexibly respond to these changes and to suggest direction to take, it is necessary to re-examine the current nuclear safety regulation system. This study is carried out in two stages and this report describes the results of the analysis and the assessment of the nuclear licencing system of such foreign countries as sweden and German, as the first of the two. In this regard, this study includes the analysis on the backgrounds on the choice of nuclear licensing system, the analysis on the licensing procedures, the analysis on the safety inspection system and the enforcement laws, the analysis on the structure and function of the regulatory, business and research organizations as well as the analysis on the relationship between the safety research and the regulatory duties. In this study, the German safety inspection system and the enforcement procedures and the Swedish nuclear licensing system are analyzed in detail. By comparing and assessing the finding with the current Korea Nuclear Licensing System, this study points out some reform measures of the Korean system that needs to improved. With the changing situations in mind, this study aims to develop the nuclear safety regulation system optimized for Korean situation by re-examining the current regulation system. (Author)

  20. The 8th questionnaire survey report of safety control in nuclear medicine

    International Nuclear Information System (INIS)

    2008-01-01

    A questionnaire survey on safety of nuclear medicine studies was conducted under the subcommittee for radionuclide imaging and nuclear medicine technology of Japan Radioisotope Association to promote patient safety. Questionnaires were sent to 1300 hospitals and 21 clinical laboratories in Japan with 1034 facilities responded (78.3%). Sixty percents of the workers in the facilities were nuclear medicine technologists. Medical doctors comprised 20% of the workers, but 32% in the university hospitals. The number of laboratory technologists decreased in all categories of the facilities. Composite PET/CT scanners increased sharply, whereas 2-detector and 3-detector imaging systems decreased. Regular maintenance was performed in approximately 80% of the SPECT imaging systems, while the single head imaging systems were maintained less frequently. Filmless systems were employed in 25.3% of all of the facilities responded, with the higher rate in the university hospitals. The number of accidents and incidents in the facilities decreased. Falls on floor and fall from an examination bed were reported. The nuclear medicine technologists were concerned about safety mechanism of imaging systems, and dimension and height of examination beds. They also wanted prompt supply of safety information and easy interconnectivity among different data of various vendors' systems. The results of this survey may be a valuable source of information on safety of nuclear medicine procedures. (author)