WorldWideScience

Sample records for nuclear explosives dismantlement

  1. Strategies for the disposition of high explosives resulting from dismantlement of nuclear weapons

    International Nuclear Information System (INIS)

    Pruneda, C.; Humphrey, J.

    1993-03-01

    Many thousands of pounds of high quality main-charge explosives will result as surplus from the dismantlement of returns from the US nuclear weapons stockpile. The method most often employed for dealing with this surplus explosive is destruction by open burning. However, open burning as a means of treating excess explosives is losing favor because of environmental concerns associated with such an uncontrolled thermal destruction process. Thus, alternative processes for treatment of excess explosives from weapon dismantlement is discussed. These alternatives include: reformulation, crystalline component recovery, chemical conversion of the crystalline component to higher value products which may have civilian or military applications and, when necessary, treatment as waste in an environmentally benign fashion

  2. Explosive cutting techniques for dismantling of concrete structures in a nuclear power station following decommissioning

    International Nuclear Information System (INIS)

    Freund, H.U.; Fleischer, C.C.

    1993-01-01

    This report describes the work that has been jointly carried out, based on a common and complementary research programme, by the Battelle Institut e.V., Frankfurt and Taylor Woodrow Construction Ltd., Southall, on the controlled use of explosives for the cutting and safe removal of activated and contaminated parts of nuclear facilities without impairing the overall structural integrity. Previous work had demonstrated the feasibility of using explosive techniques for the stripping off of an equivalent thickness of concrete, for radiation protection, from the inside walls of nuclear facilities. The present research work aims at complementing, improving and optimizing the foregoing work. Extensive investigations have been executed on the adjustment of blasting parameters, material and structural effects, drilling techniques, particle distribution and on procedures for remote handling. The report presents the results obtained from field trials and theoretical analysis undertaken to augment the development programme. It concludes that the controlled use of explosives offers a safe and favourable dismantling technique for the decommissioning of nuclear facilities

  3. Dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Tallec, M.; Kus, J.P.

    2009-01-01

    Nuclear facilities have a long estimable lifetime but necessarily limited in time. At the end of their operation period, basic nuclear installations are the object of cleansing operations and transformations that will lead to their definitive decommissioning and then to their dismantling. Because each facility is somewhere unique, cleansing and dismantling require specific techniques. The dismantlement consists in the disassembly and disposing off of big equipments, in the elimination of radioactivity in all rooms of the facility, in the demolition of buildings and eventually in the reconversion of all or part of the facility. This article describes these different steps: 1 - dismantling strategy: main de-construction guidelines, expected final state; 2 - industries and sites: cleansing and dismantling at the CEA, EDF's sites under de-construction; 3 - de-construction: main steps, definitive shutdown, preparation of dismantling, electromechanical dismantling, cleansing/decommissioning, demolition, dismantling taken into account at the design stage, management of polluted soils; 4 - waste management: dismantlement wastes, national policy of radioactive waste management, management of dismantlement wastes; 5 - mastery of risks: risk analysis, conformability of risk management with reference documents, main risks encountered at de-construction works; 6 - regulatory procedures; 7 - international overview; 8 - conclusion. (J.S.)

  4. Dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Tallec, Michele; Kus, Jean-Pierre; Mogavero, Robert; Genelot, Gabriel

    2009-01-01

    Although the operational life of nuclear plants is long (around 60 years for French reactors) it is nonetheless limited in time, the stopping of it being essentially due to the obsolescence of materials and processes or to economic or safety considerations. The nuclear power plants are then subjected to cleanup and dismantling operations which have different objectives and require specific techniques. The cleanup and/or dismantling of a nuclear power produces significant quantities of waste which is generally of a different nature to that produced during the operation of the concerned plant. The radioactive waste produced by these operations is destined to be sent to the waste disposal facilities of the French National Agency for the Management of Nuclear Waste. (authors)

  5. The dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Lacoste, A.C.; Duthe, M.; Mignon, H.; Lambert, F.; Pradel, Ph.; Hillewaere, J.P.; Dupre la Tour, St.; Mandil, C.; Weil, L.; Eickelpasch, N.; Finsterwalder, L.

    1997-01-01

    for nuclear installations, the dismantling is an important part of their exploitation. The technology of dismantling is existing and to get a benefit from the radioactive decay, it seems more easy for operating company such E.D.F. to wait for fifty years before dismantling. But in order to get the knowledge of this operation, the Safety Authority wanted to devote this issue of 'Controle'to the dismantling method. This issue includes: the legal aspects, the risks assessment, the dismantling policy at E.D.F., the site of Brennilis (first French experience of dismantling), the dismantling techniques, the first dismantling of a fuel reprocessing plant, comparison with classical installations, economic aspect, some German experiences, the cleansing of the american site of Handford. (N.C.)

  6. Nuclear installations: decommissioning and dismantling

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This document is a compilation of seven talks given during the 1995 EUROFORUM conference about decommissioning and dismantling of Nuclear installations in the European Community. The first two papers give a detailed description of the legal, financial and regulatory framework of decommissioning and dismantling of nuclear facilities in the European Union and a review of the currently available decommissioning techniques for inventory, disassembly, decontamination, remote operations and management of wastes. Other papers describe some legal and technical aspects of reactor and plants dismantling in UK, Germany, Spain and France. (J.S.)

  7. The dismantling of CEA nuclear installations

    International Nuclear Information System (INIS)

    Piketty, Laurence

    2016-03-01

    After having indicated locations of French nuclear installations which are currently being dismantled (about 30 installations), and recalled the different categories of radioactive wastes with respect to their activity level and the associated storage options, this article gives an overview of various aspects of dismantling, more precisely in the case of installations owned and managed by the CEA. These operations comprise the dismantling itself, the recovery and packaging of wastes, old effluents and spent fuels. The organisation and responsible departments within the CEA are presented, and the author outlines some operational problematic issues met due to the age of installations (traceability of activities, regulation evolutions). The issue of financing is then discussed, and its uncertainties are outlined. The dismantling strategy within the CEA-DEN is described, with reference to legal and regulatory frameworks. The next parts of the article address the organisation and the economic impact of these decontamination and dismantling activities within the CEA-DEN, highlight how R and D and advanced technology are a support to this activities as R and D actions address all scientific and technical fields of nuclear decontamination and dismantling. An overview of three important dismantling works is proposed: Fontenay-aux-Roses, the Marcoule CEA centre (a reference centre in the field of nuclear dismantling and decontamination) and the Grenoble CEA centre (reconversion in R and D activities in the fields of technologies of information, of communication, technologies, for health, and in renewable energies). The last part addresses the participation to the Strategic Committee of the Nuclear Sector (CSFN)

  8. Method of dismantling nuclear fuel elements

    International Nuclear Information System (INIS)

    Adams, G.J.

    1983-01-01

    Nuclear fuel assemblies of the kind comprising fuel pins in dimpled cellular grids are freed from the grids to aid dismantling of the assemblies by causing a rotary sleeve to pass concentrically over the pins to remove the dimples in the grids and thereby increase the freedom of the pins in the cells of the grids. (author)

  9. Economical dismantling of nuclear power stations

    International Nuclear Information System (INIS)

    Mallok, J.; Andermann, H.

    1999-01-01

    The dismantling of nuclear power stations requires a high degree of security and economic efficiency due to the strong contamination of components and the close spatial conditions. In order to protect involved staff from radiation, modern remote-controlled technology is applied in sectors with heavy radioactive contamination such as reactor pressure vessels. The article shows, that the dismantling of reactor pressure vessels using a remote-controlled milling machine developed by the Siemens subsidiary Mechanik Center Erlangen GmbH, can be done in a secure and efficient way. (orig.) [de

  10. Nuclear safety training program (NSTP) for dismantling

    International Nuclear Information System (INIS)

    Cretskens, Pieter; Lenie, Koen; Mulier, Guido

    2014-01-01

    European Control Services (GDF Suez) has developed and is still developing specific training programs for the dismantling and decontamination of nuclear installations. The main topic in these programs is nuclear safety culture. We therefore do not focus on technical training but on developing the right human behavior to work in a 'safety culture' environment. The vision and techniques behind these programs have already been tested in different environments: for example the dismantling of the BN MOX Plant in Dessel (Belgium), Nuclear Safety Culture Training for Electrabel NPP Doel..., but also in the non-nuclear industry. The expertise to do so was found in combining the know-how of the Training and the Nuclear Department of ECS. In training, ECS is one of the main providers of education in risky tasks, like elevation and manipulation of charges, working in confined spaces... but it does also develop training on demand to improve safety in a certain topic. Radiation Protection is the core business in the Nuclear Department with a presence on most of the nuclear sites in Belgium. Combining these two domains in a nuclear safety training program, NSTP, is an important stage in a dismantling project due to specific contamination, technical and other risks. It increases the level of safety and leads to a harmonization of different working cultures. The modular training program makes it possible to evaluate constantly as well as in group or individually. (authors)

  11. Remote tool development for nuclear dismantling operations

    International Nuclear Information System (INIS)

    Craig, G.; Ferlay, J.C.; Ieracitano, F.

    2003-01-01

    Remote tool systems to undertake nuclear dismantling operations require careful design and development not only to perform their given duty but to perform it safely within the constraints imposed by harsh environmental conditions. Framatome ANP NUCLEAR SERVICES has for a long time developed and qualified equipment to undertake specific maintenance operations of nuclear reactors. The tool development methodology from this activity has since been adapted to resolve some very challenging reactor dismantling operations which are demonstrated in this paper. Each nuclear decommissioning project is a unique case, technical characterisation data is generally incomplete. The development of the dismantling methodology and associated equipment is by and large an iterative process combining design and simulation with feasibility and validation testing. The first stage of the development process involves feasibility testing of industrial tools and examining adaptations necessary to control and deploy the tool remotely with respect to the chosen methodology and environmental constraints. This results in a prototype tool and deployment system to validate the basic process. The second stage involves detailed design which integrates any remaining technical and environmental constraints. At the end of this stage, tools and deployment systems, operators and operating procedures are qualified on full scale mock ups. (authors)

  12. Decommissioning and dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Pelzer, N.

    1993-01-01

    The German law governing decommissioning and dismantling of nuclear installations can be called to be embryonic as compared to other areas of the nuclear regulatory system, and this is why the AIDN/INLA regional meeting organised by the German national committee in July 1992 in Schwerin has been intended to elaborate an assessment of the current legal situation and on this basis establish proposals for enhancement and development, taking into account the experience reported by experts from abroad. The proceedings comprise the paper of the opening session, 'Engineering and safety aspects of the decommissioning of nuclear installations', and the papers and discussions of the technical sessions entitled: - Comparative assessment of the regulatory regimes. - Legislation governing the decommissioning of nuclear installations in Germany. - Analysis of the purpose and law making substance of existing regulatory provisions for the decommissioning of nuclear installations. All seventeen papers of the meeting have been prepared for separate retrieval from the database. (orig./HSCH) [de

  13. Nuclear explosives and hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P

    1971-10-01

    A nuclear explosive 12 in. in diam and producing very little tritium is feasible in France. Such a device would be well adapted for contained nuclear explosions set off for the purpose of hydrocarbon storage or stimulation. The different aspects of setting off the explosive are reviewed. In the particular case of gas storage in a nuclear cavity in granite, it is demonstrated that the dose of irradiation received is extremely small. (18 refs.)

  14. The Dismantling of Nuclear Installations in France

    International Nuclear Information System (INIS)

    Bonnaure, P.

    2011-01-01

    As we saw in the previous article by Pierre Bonnaure, though it has long been decried for the dangers inherent in its production structures and the very long-lived waste that it generates, nuclear power may yet recover its credibility, particularly in France. However, on close examination, we see that the nuclear industry is beset by a number of unresolved questions, beginning with the dismantling of installations that have become obsolete or are set to become so. Nuclear power took off after the Second World War, but several generations of technology have been developed since then, and most currently functioning power-stations - mainly second-generation installations - are theoretically nearing the end of their useful lives, at least in terms of what was said when they were being built. The problem therefore arises of their dismantling and the clean-up of the sites on which they were built, a thorny question on which Pierre Bonnaure casts light in this article (prospects, strategies, financing, management of waste etc.). Unfortunately, it emerges that in France nothing has really been resolved, that public debate on the matter is decidedly limited and that investment (both financial investment and research) is not commensurate with the needs of a sector which is, after all, the source of three quarters of national electricity production. (author)

  15. Cleansing and dismantling of CEA-Saclay nuclear licensed facilities

    International Nuclear Information System (INIS)

    Jeanjacques, Michel; Delaire, Isabelle; Glevarec, Rebecca; Mandard, Lionel; Martin, Jean-Louis; Serrano, Roger

    2013-01-01

    This summary presents the cleansing and dismantling operations currently realized on the CEA center of Saclay (CEA-Saclay). It was initiated at the beginning of the 2000 years a cleansing and dismantling program of the old Nuclear Licensed Facilities (NLF). Currently this program relates the dismantling operations to the Hot Laboratories (Laboratoires de Haute Activite: LHA) and the old workshops of the Liquid Waste Treatment Plant (Station des Effluents Liquides: STEL), the dismantling preparation of Ulysse reactor and the dismantling studies to the Solid Waste Management Plant (SWMP; Zone de Gestion des Dechets Solides) and the Osiris reactor. (authors)

  16. Nuclear cleanup and decontamination for dismantling operations

    International Nuclear Information System (INIS)

    Bargues, S.; Solignac, Y.; Lapierre, Y.

    2003-01-01

    In the May 2003 issue of the review 'Controle', the French Nuclear Safety Authority (Autorite de Surete Nucleaire or ASN) reviewed the radiation protection and waste management principles applicable to dismantling operations carried out on nuclear installations, i.e. reactors, research laboratories, fuel cycle installations and nuclear power reactors. Estelle Chapelain, of the DGSNR (French General Directorate for Nuclear Safety and Radiation Protection), pointed out that dismantling work does not involve the same radioactive risks as operating an installation. For instance, 'the risk of disseminating radioactive material is generally greater because the dismantling process supposes the removal of one or more containment barriers'. In addition to this risk of internal exposure, the possibility of external irradiation of personnel must be taken into account due to the nature of the work carried out by the operators. The probability of conventional hazards is also accentuated, these hazards varying as work progresses (fire hazards during cutting operations, hazards associated with handling tasks, etc). Other risks must also be considered: hazards due to the ageing of installations, to loss of traceability, and finally the risks associated with waste management. Waste management falls within a strict regulatory framework specified by the decree dated December 31, 1999, which makes it compulsory to carry out a 'waste survey' with the aim of producing an inventory of waste and improving waste management. These surveys include 'waste zoning' to identify those areas liable to have been contaminated. These requirements lead operators to adapt their cleanup methodology in order to distinguish suspect rooms or equipment from those that can be deemed with certainty to be conventional. In its conclusion, the safety authority recalls the importance of 'the safety and radiation protection of dismantling operations being effectively managed and optimised, without imposing

  17. Underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Gary H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    In the Third Plowshare Symposium, held in 1964, data from a number of nuclear explosions were presented. At that time the basic elements of the nuclear explosion appeared to be well understood and relationships for predicting the gross nuclear effects were presented. Since that time, additional work has been done and many of the concepts have been extended. For example, nuclear explosions have been conducted at greater depths and with much greater yields. The physical and chemical properties of the material in which the explosions occur have been more accurately measured and related to explosion effects. Interpretation of the new information seems to indicate that the earlier relationships are valid over the ranges of energy and depths for which data is available but that effects relating to cavity and chimney sizes or fracturing had been overestimated at great depths of burst and higher yields. (author)

  18. Underground nuclear explosions

    International Nuclear Information System (INIS)

    Higgins, Gary H.

    1970-01-01

    In the Third Plowshare Symposium, held in 1964, data from a number of nuclear explosions were presented. At that time the basic elements of the nuclear explosion appeared to be well understood and relationships for predicting the gross nuclear effects were presented. Since that time, additional work has been done and many of the concepts have been extended. For example, nuclear explosions have been conducted at greater depths and with much greater yields. The physical and chemical properties of the material in which the explosions occur have been more accurately measured and related to explosion effects. Interpretation of the new information seems to indicate that the earlier relationships are valid over the ranges of energy and depths for which data is available but that effects relating to cavity and chimney sizes or fracturing had been overestimated at great depths of burst and higher yields. (author)

  19. Dismantling the nuclear research reactor Thetis

    Energy Technology Data Exchange (ETDEWEB)

    Michiels, P. [Belgoprocess, 2480 Dessel (Belgium)

    2013-07-01

    The research reactor Thetis, in service since 1967 and stopped in 2003, is part of the laboratories of the institution of nuclear science of the University of Ghent. The reactor, of the pool-type, was used as a neutron-source for the production of radio-isotopes and for activation analyses. The reactor is situated in a water pool with inner diameter of 3 m. and a depth of 7.5 m. The reactor core is situated 5.3 m under water level. Besides the reactor, the pool contains pneumatic loops, handling tools, graphite blocks for neutron moderation and other experimental equipment. The building houses storage rooms for fissile material and sources, a pneumatic circuit for transportation of samples, primary and secondary cooling circuits, water cleaning resin circuits, a ventilation system and other necessary devices. Because of the experimental character of the reactor, laboratories with glove boxes and other tools were needed and are included in the dismantling program. The building is in 3 levels with a crawl-space. The ground-floor contains the ventilation installation, the purification circuits with tanks, cooling circuits and pneumatic transport system. On the first floor, around the reactor hall, the control-room, visiting area, end-station for pneumatic transport, waste-storage room, fuel storage room and the labs are located. The second floor contains a few laboratories and end stations of the two high speed transfer tubes. The lowest level of the pool is situated under ground level. The reactor has been operated at a power of 150 kW and had a max operating power of 250 kW. Belgoprocess has been selected to decommission the reactor, the labs, storage halls and associated circuits to free release the building for conventional reuse and for the removal of all its internals as legal defined. Besides the dose-rate risk and contamination risk, there is also an asbestos risk of contamination. During construction of the installation, asbestos-containing materials were

  20. Iraq nuclear facility dismantlement and disposal project

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J R; Danneels, J [Sandia National Laboratories, Albuquerque, NM (United States); Kenagy, W D [U.S. Department of State, Bureau of International Security and Nonproliferation, Office of Nuclear Energy, Safety and Security, Washington, DC (United States); Phillips, C J; Chesser, R K [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX (United States)

    2007-07-01

    The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)

  1. Nuclear explosive driven experiments

    International Nuclear Information System (INIS)

    Ragan, C.E.

    1981-01-01

    Ultrahigh pressures are generated in the vicinity of a nuclear explosion. We have developed diagnostic techniques to obtain precise high pressures equation-of-state data in this exotic but hostile environment

  2. Method of dismantling a nuclear reactor

    International Nuclear Information System (INIS)

    Shirai, Masato; Hashimoto, Osamu.

    1984-01-01

    Purpose: To enable rapid and simple positioning for a plasma arc torch disposed to the inside of a nuclear reactor main body. Method: After removing the upper semi-spherical portion, fuel portion and control rod portion of a nuclear reactor, a rotary type girder is placed on the upper edge of a cylindrical portion remained after the removal of the upper semi-spherical portion. Then, the upper portion of a supporting rod provided with a swing arm having a plasma arc torch at the top end is situated at the center of the reactor main body. Then, the top end of the support rod is inserted to fix in the housing of control rod drives. Then, the swing arm is actuated to situate the plasma arc torch to a desired position to be cut, whereafter cutting is initiated while rotating the rotary type girder. Thus, plasma arc torch is moved horizontally along an arcuate trace, whereby pipeways, accessories or the likes disposed to the inside of the main body are at first cut and then the cylindrical portion constituting the main body is cut to dismantle the reactor. (Moriyama, K.)

  3. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    International Nuclear Information System (INIS)

    Jooho, W.; Baldwin, G.T.

    2005-01-01

    One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for 'complete, verifiable and irreversible dismantlement,' or 'CVID.' It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times

  4. Dismantling method for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Yamazaki, Shuji; Kato, Akihiro; Yoshida, Masafumi.

    1993-01-01

    An upper nozzle is detached from a control rod guide tube and an instrumentation tube. Subsequently, slots (slits) having a predetermined width are formed longitudinally at enlarged diameter portions of the control rod guide tube and the instrumentation tube. Then, the control rod guide tube and the instrumentation tube are separated from a lower nozzle, and pulled out from the lattice space of each of the support lattices. Thereafter, a predetermined key is inserted to a key insertion window formed at each of the support lattices, to distort a spring and take the fuel rod out of the lattice space of each of the support lattices. With such procedures, when the control rod guide tube and the instrumentation tube are pulled out of the lattice space of the support lattice, the enlarged diameter portion is narrowed to reduce the diameter, thereby enabling to take them out easily. Accordingly, since the space for inserting the key can be ensured, the nuclear fuel assemblies can easily be dismantled. In addition, fuel rods can be taken out smoothly and in an intact state. (I.N.)

  5. STMI: several years of experience in nuclear plant dismantling

    International Nuclear Information System (INIS)

    Moreau, J.C.

    1985-01-01

    Since 1977, when STMI performed its first dismantling operation, the Company appreciably improved in that field through important operations: the dismantling of the calciothermy and fluoration metal Pu preparation facility, in La Hague reprocessing plant; the dismantling of the slag treatment chain, associated to calciothermy and fluoration processes, in La Hague reprocessing plant; and the cleaning of EL4 cell in Marcoule. To perform these operations, STMI's operating teams, on top of decontamination and dismantling technologies, strived to improve handling and transportation technologies, and to nuclearize many equipments. In order to increase its technical efficiency, STMI signed a cooperation agreement with FRAMATOME company. Therefore, the union between the operational know-hows of STMI and the design experience of TECHNICATOME allow the needs of any customs facing a dismantling case to be satisfied [fr

  6. Dismantling of nuclear facilities: the industrial know-how

    International Nuclear Information System (INIS)

    Lellament, R.

    2004-01-01

    Numerous nuclear facilities in laboratories or research reactors have been decommissioned and dismantled over the 2 last decades throughout the world. The valuable feedback experience has allowed nuclear industry to design, upgrade and test specific techniques for dismantling. These techniques are efficient although they have been validated on a reduced number of nuclear power plants. In France only 3 power units have been dismantled: Chinon A1, A2 and Brennilis (EL4) and they are not representative of the real park of EDF'reactors. 6 PWR-type reactors have already been dismantled in the Usa. The results of a survey concerning 26 countries shows that the dismantling cost is around 320 dollars/kWe, it represents 15% of the construction cost which is far from being excessive as it is often read in the media. The dismantling costs can be broken into: - de-construction (25-55%), - wastes from dismantling (17-43%), - security and monitoring (8-13%), - site reclamation (5-13%), and - engineering and project management (5-24%). (A.C.)

  7. Technology and costs for dismantling a Swedish nuclear power plant

    International Nuclear Information System (INIS)

    1979-10-01

    Various estimates concerning the costs of decommissioning a redundant nuclear power reactor to the green fields state are given in the literature. The purpose of this study is to provide background material for the Swedish nuclear power utilities to estimate the costs and time required to dismantle an ASEA-ATOM Boiling Water Reactor. The units Oskarshamn II and Barsebeck 1, both with an installed capacity of approximately 600 MW, serve as reference plants. The time of operation before final shutdown is assumed to be 40 years. Dismantling operations are initiated one year after shutdown. When the dismantling of the plant is finished, the site is to be released for unrestricted use. The costs for dismantling and subsequent final disposal of the radioactive waste are estimated at approximately SEK 500 million (approximately US dollars 120 million) in terms of 1979 prices. The sum includes 25% contingency. The dismantling cost is equivalent to 10-15% of the installation cost of an equivalent new nuclear power plant. The exact percentage is dependent on the interest rate during the construction period. It is shown in the study that a total dismantling can be accomplished in less than five years. This report is a compilation of studies performed by ASEA-ATOM and VBB based on premises given by KBS. The reports from these studies are presented in appendices. (Auth.)

  8. Dismantling of nuclear facilities and related problems - Conference proceedings

    International Nuclear Information System (INIS)

    Tournebize, Frederic; Bordet, Didier; Charlety, Philippe; Gore, Thierry; Estrade, Jerome; Lemaire, Hermine; Ginet, Annick; Fabrier, Lionel; Evrard, Lydie; Furois, Timothee; Butez, Marc; Dutzer, Michel; Faure, Vincent; Billarand, Yann; Menuet, Lise; Lahaye, Thierry; Pin, Alain; Mougnard, Philippe; Charavy, Sylvain; Poncet, Philippe; Moggia, Fabrice; Dochy, Arnaud; Benjamin, Patrick; Poncet, Pierre-Emmanuel; Beneteau, Yannick; Richard, Jean-Baptiste; Pellenz, Gilles; Ollivier Dehaye, Catherine; Gerard, Stephane; Denissen, Luc; Davain, Henri; Duveau, Florent; Guyot, Jean-Luc; Ardellier, Luc

    2012-11-01

    The oldest French nuclear facilities, built for some of them in the 1950's for research or power generation purposes, have reached more or less the end of their life. More than 30 facilities have entered the shutdown or dismantling phase, among which 8 reactors of the very first generations of Electricite de France (EdF) reactors. The aim of this two-days conference is to take stock of the present day status and perspectives of the dismantling activity, to approach the question of the management of the wastes produced, and to share experience about large scale operations already carried out. This document gathers the available presentations given during this conference: 1 - the 'Passage' project (F. Tournebize); 2 - CEA-Grenoble: from Louis Neel to key enabling technologies (D. Bordet); 3 - Dismantling actions in France (L. Evrard); 4 - Securing control of long-term charges funding (T. Furois); 5 - Waste disposal projects and their contribution to the management of dismantling wastes (M. Butez); 6 - Specificities linked with dismantling activities (Y. Billarand); 7 - Dismantling safety: the ASN's point of view (L. Evrad); 8 - Labor Ministry viewpoint about the dismantling related questions (T. Lahaye); 9 - Consideration of organizational and human factors in dismantling operations: a new deal in the operators-service providers relation (L. Menuet); 10 - Diploma and training experience (A. Pin); 11 - Glove-boxes dismantling at La Hague plant - status and experience feedback (P. Mougnard); 12 - Dismantling of Siloe reactor (CEA-Grenoble): application of the ALARA approach (P. Charlety); 13 - BR3 - a complex dismantling: the neutron shield tank (NST) in remote operation and indirect vision (L. Denissen); 14 - Cleansing and dismantling of the Phebus PF containment (S. Charavy); 15 - Integration of dismantling at the design and exploitation stages of nuclear facilities (P. Poncet); 16 - Consideration during the design and exploitation stages of dispositions aiming at

  9. Dismantling at the CEA's Nuclear Energy Division: strategy and programmes

    International Nuclear Information System (INIS)

    Lecomte, C.; Prunele, D. de; Rozain, J.P.; Nokhamzon, J.G.; Tallec, M.

    2008-01-01

    The CEA's Nuclear Energy Division (DEN) nuclear facilities currently include seventeen reactors and thirty six other miscellaneous facilities, particularly laboratories, fuel processing units and facilities specific to waste management. Some of these are currently being dismantled or must be dismantled soon so that the DEN, the Nuclear Energy Division, can construct new equipment and thus have available a range of R and D facilities in line with the issues of the nuclear industry of the future. At CEA, the first nuclear facility dismantling operations go back several dozen years and involve numerous and varied facilities. The first operations of any significance took place in the 1960's and 1970's and covered, for example, the first plutonium plant at Fontenay-aux-Roses (total dismantling) and small research reactors or critical models - CESAR and PEGGY at Cadarache and MINERVE at Fontenay-aux Roses (civil engineering cleaned up and kept). At La Hague, the dismantling of AT1, a pilot workshop used by the CEA during the 1970's to process irradiated fuels from fast neutron reactors, was completed in March 2001 (IAEA former stage 3, excluding civil engineering demolition). On the other hand, during this period of first dismantling, the intermediate-sized reactors (G1, Rapsodie) were only partially dismantled after shut down, mainly due to the lack of graphite and sodium waste management routes at the time. About twenty facilities were thus dealt with up to 2001, in other words about half of all the nuclear facilities shut down permanently before this date. (authors)

  10. Dismantling of nuclear facilities. From a structural engineering perspective

    International Nuclear Information System (INIS)

    Block, Carsten; Henkel, Fritz-Otto; Bauer, Thomas

    2014-01-01

    The paper summarizes some important aspects, requirements and technical boundary conditions that need to be considered in dismantling projects in the nuclear sector from a structural engineering perspective. Besides general requirements regarding radiation protection, occupational safety, efficiency and cost effectiveness it is important to take into account other conditions which have a direct impact on technical details and the structural assessment of the dismantling project. These are the main aspects highlighted in this paper: - The structural assessment of dismantling projects has to be based on the as-built situation. - The limitations in terms of available equipment and space have to be taken into account. - The structural assessments are often non-standardized engineering evaluations. A selection of five dismantling projects illustrates the various structural aspects. (orig.)

  11. The long-term nuclear explosives predicament

    International Nuclear Information System (INIS)

    Swahn, J.

    1992-01-01

    A scenario is described, where the production of new military fissile materials is halted and where civil nuclear power is phased out in a 'no-new orders' case. It is found that approximately 1100 tonnes of weapons-grade uranium, 233 tonnes of weapons-grade plutonium and 3795 tonnes of reactor-grade plutonium have to be finally disposed of as nuclear waste. This material could be used for the construction of over 1 million nuclear explosives. Reactor-grade plutonium is found to be easier to extract from spent nuclear fuel with time and some physical characteristics important for the construction of nuclear explosives are improved. Alternative methods for disposal of the fissile material that will avoid the long-term nuclear explosives predicament are examined. Among these methods are dilution, denaturing or transmutation of the fissile material and options for practicably irrecoverable disposal in deep boreholes, on the sea-bed, and in space. It is found that the deep boreholes method for disposal should be the primary alternative to be examined further. This method can be combined with an effort to 'forget' where the material was put. Included in the thesis is also an evaluation of the possibilities of controlling the limited civil nuclear activities in a post-nuclear world. Some surveillance technologies for a post-nuclear world are described, including satellite surveillance. In a review part of the thesis, methods for the production of fissile material for nuclear explosives are described, the technological basis for the construction of nuclear weapons is examined, including use of reactor-grade plutonium for such purposes; also plans for the disposal of spent fuel from civil nuclear power reactors and for the handling of the fissile material from dismantled warheads is described. The Swedish plan for the handling and disposal of spent nuclear fuel is described in detail. (490 refs., 66 figs., 27 tabs.)

  12. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  13. Dismantling and decommissioning of Jose Cabrera nuclear power plant

    International Nuclear Information System (INIS)

    Rodriguez, A.

    2009-01-01

    With the start of the dismantling works at the Jose Cabrera nuclear power plant now in sight, this is an appropriate moment to look back and consider recent history. The first time that the issue of nuclear power plant dismantling was dealt with was in 1975, at a conference in Paris entitled Nuclear Energy Maturity. Up until then the entire question had been one of design, construction and operation, but since that moment and it has been quite a while since that conference dismantling has begun to be seen as just another activity in the nuclear cycle, a final activity that will sooner or later affect all the facilities, an activity different from its predecessors and with the ultimate objective of restoring the sites for whatever use might be determined. During the 1960s and 1970s, the construction of nuclear power plants was widespread across the entire world. It was the baby boom of nuclear energy and now, forty or fifty years later, we are seeing the arrival of the end of the service lifetime of these plants and are faced with the corresponding general process of dismantling these installations. The dismantling of nuclear power plants has ceased to be an emerging issue and is now consolidated as a regular activity in the nuclear industry, albeit an activity that lacks adequate financing or specific regulation in certain countries. Fortunately this is not the case in Spain, since economic provisions have been planned and the regulatory framework developed. In view of the above, the dismantling of the nuclear power plants is an industrial activity involving specific technologies that implies new professional and business opportunities that should be absorbed and seized by society. In Spain the path followed in this direction has been a long one, as is underlined by the experiences of dismantling the Argos (Barcelona, 1998- 2004) and Arbi (Bilbao, 2002-2005) research reactors, the Andujar Uranium Mill (Jaen, 1991-1995), the Vandellos I nuclear power plant

  14. Peaceful nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-07-01

    Article V of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) specifies that the potential benefits of peaceful applications of nuclear explosions be made available to non-nuclear weapon states party to the Treaty 'under appropriate international observation and through appropriate international procedures'. The International Atomic Energy Agency's responsibility and technical competence in this respect have been recognized by its Board of Governors, the Agency's General Conference and the United Nations' General Assembly. Since 1968 when the United Nations Conference of Non-Nuclear Weapon States also recommended that the Agency initiate the necessary studies in the peaceful nuclear explosions (PNE) field, the Agency has taken the following steps: 1. The exchange of scientific and technical information has been facilitated by circulating information on the status of the technology and through the Agency's International Nuclear Information System. A bibliography of PNE-related literature was published in 1970. 2. In 1972, guidelines for 'the international observation of PNE under the provisions of NPT and analogous provisions in other international agreements' were developed and approved by the Board of Governors. These guidelines defined the basic purpose of international observation as being to verify that in the course of conducting a PNE project the intent and letter of Articles I and II of the NPT are not violated. 3. In 1974, an advisory group developed 'Procedures for the Agency to Use in Responding to Requests for PNE-Related Services'. These procedures have also been approved by the Board of Governors. 4. The Agency has convened a series of technical meetings which reviewed the 'state-of-the- art'. These meetings were convened in 1970, 1971, 1972 and in January 1975. The Fourth Technical Committee was held in Vienna from 20-24 January 1975 under the chairmanship of Dr. Allen Wilson of Australia with Experts from: Australia, France, Federal

  15. The dismantling of nuclear installations: The dismantling of nuclear installations at the CEA's Directorate for nuclear energy; The CEA's sanitation and dismantling works: example of one of the Marcoule UP1 program lots; Research and innovation in sanitation-dismantling; Global optimisation of the management of dismantling radioactive wastes

    International Nuclear Information System (INIS)

    Hauet, Jean-Pierre; Piketty, Laurence; Moitrier, Cyril; Blanchard, Samuel; Soulabaille, Yves; Georges, Christine; Dutzer, Michel; Legee, Frederic

    2016-01-01

    This publication proposes a set of four articles which addresses issues related to the dismantling of nuclear installations in France, notably for the different involved actors such as the CEA and the ANDRA. The authors more particularly address the issue and the general strategy of dismantling within the Directorate for nuclear energy of the CEA; comment the example of one of the Marcoule UP1 program lots to highlight sanitation and dismantling works performed by the CEA; discuss current research and innovation activities within the CEA regarding sanitation and dismantling; and comment how to globally optimise the management of radioactive wastes produced by dismantling activities

  16. Clean-up and dismantling, Dismantling - legacy of the past, prospects for the future: CEA, a pioneer in the dismantling process, nuclear dismantling, research and innovation dedicated to dismantling

    International Nuclear Information System (INIS)

    Lorec, Amelie

    2016-01-01

    France - a world leader in the whole nuclear power cycle - is also responsible for the clean-up and dismantling of its end-of-life nuclear facilities. Here, the CEA is considered to be a pioneer both in the project ownership of work sites and in the R and D for optimising the timescales, costs and safety of those work sites. Its responsibilities range from defining the most appropriate scenario, characterising the radiological state of equipment and decontaminating premises, carrying out dismantling and optimising the resulting waste. With this wide range of skills and the diversity of its facilities, the CEA Nuclear Energy Division is developing innovative solutions which are already the subject of industrial transfers. Two-thirds of France's end-of-life nuclear facilities belong to the CEA - a situation connected with its history. This implies setting up clean-up and dismantling work sites which have unprecedented scientific, human and financial challenges. Every regulated nuclear installation (INB) (nuclear reactors, laboratories, etc.) has a limited operating life. When it stops being used, it is first cleaned up (removal of radioactive substances), then dismantled (disassembly of components) in accordance with the baseline safety requirements, and finally decommissioned so that it can be used for other purposes or be demolished. Cleanup and dismantling operations concern all the facility's components, such as hot (shielded) cells which can be found in some laboratories. As the owner of its clean-up and dismantling projects, the CEA also devotes a significant amount of R and D to reducing the timescales, costs and waste from current and future programmes, while improving their safety. The resulting innovations often lead to industrial transfers. (authors)

  17. A Study on Dismantling and Verifying North Korea's Nuclear Capabilities

    International Nuclear Information System (INIS)

    Kim, Young Jae; Cheon, Seong Whun

    2007-10-01

    North Korea's nuclear weapon development is a serious threat to South Korea's national security and can become a trigger to change the status quo in the Korean peninsula. Having prevailed security dynamics in Northeast Asia last 20 years, the North Korea's nuclear problem faced a key turning point when Pyongyang tested its first nuclear weapon on October 9, 2006. Despite this test, however, diplomatic efforts to resolve the nuclear issue were never given up, resulting in a so-called, initial agreement signed at the Six-Party Talks in February 2007. With the Six-Party Talks being held more than four years, the six countries have had sufficient time to discuss principal and political matters regarding the dismantlement of North Korea's nuclear weapons. Under the circumstances, this report is going to study practical and detail issues related with dismantling the North's nuclear weapons. Specifically, in light of historical experiences, the report will investigate possible problems to be faced in the course of dismantlement and propose policy measures to overcome these problems

  18. Provisions for the dismantling of nuclear facilities are sufficient

    International Nuclear Information System (INIS)

    Le Ngoc, B.

    2016-01-01

    The European Union has assessed the provisions made by the nuclear plant operators to face the future costs of dismantling. The United-Kingdom and the Netherlands are the single E.U. members to have provisions covering the whole of the expenses (respectively 100% and 94%). The figure for France is very low 33% (far below the European average of 56%). According to French authorities the provisions for the dismantling of nuclear facilities are strictly defined by law: they must be made progressively till the decommissioning and they must be composed by dedicated assets. The costs of the dismantling is regularly re-assessed for taking into account technological progress and changes in regulation. Furthermore the French system limits the period in which provisions are made to the initial operating life of the plant: mostly 40 years which is a prudent measure. In other E.U. members like Germany, the provisions are not covered by dedicated assets which might endanger the capacity of the operator to face the future costs. The progressiveness of the French systems of provision-making is fair because the dismantling costs are spread equally over the entire operating period of the facility. (A.C.)

  19. Dismantlement and destruction of chemical, nuclear and conventional weapons

    International Nuclear Information System (INIS)

    Schulte, N.T.

    1997-01-01

    The safe destruction and dismantling of chemical, nuclear and conventional weapons is of fundamental importance to the security of all countries represented in this volume. Expertise in the field is not confined to one country or organisation: all can benefit from each other. There is an ever present danger of proliferation of weapons of mass destruction: approximately two dozen countries have ongoing programmes to develop or acquire such weapons, and many are also gaining the capability to build air-surface delivery systems. But much can be done to prevent proliferation by reducing leakage of materials and know-how and by solving the problems of the destruction of surplus weapons systems, which has now come to be a key issue. In 13 sessions of the workshop attention was paid to (1) Dismantlement and Destruction of Chemical, Nuclear and Conventional Weapons; (2) Status of Implementation of Arms Control Treaties and Voluntary Commitments; (3) National Perspectives on Cooperation in Disarmament; (4) Stocktaking of National and Bilateral Disposal/Destruction Programmes: Chemical Weapons; (5) Stocktaking of National and Bilateral Disposal/Destruction Programmes: Nuclear Weapons; (6) Stocktaking of National and Bilateral Disposal/Destruction Programmes: Conventional Weapons. Session; (7) Experience with Currently Employed Chemical Destruction Technologies; (8) Alternative Chemical Destruction Technologies; (9) Deactivation, Dismantlement and Destruction of Delivery Systems and Infrastructure for Nuclear Weapons; (10) Storage, Safeguarding and Disposition of Fissile Materials; (11) Technologies for Conversion and Civil Use of Demilitarized Materials; (12) International Organizations; and (13) Environmental Challenges Posed by Chemical and Nuclear Disarmament

  20. Nuclear explosions and their effects

    Energy Technology Data Exchange (ETDEWEB)

    1958-01-01

    A brief historical background is given of the development of the atomic bomb. Also included is an account of the Hiroshima-Nagasaki bombing, plus some information on the testing and production of nuclear weapons by the United States, United Kingdom, and Russia. More detailed consideration is given to the following: the scientific principles of fission and fusion explosions; the energy released in fission and the radioactivity of fission products; blast, thermal, and radiologicalal effects of nuclear explosions; long-term radiological hazards from fall-out; and genetic effects of nuclear explosions. A brief account is given of the fission chain process, the concept of critical size, and the principles of implosion as applied to nuclear explosions. Limited information is presented on the controlled release of thermonuclear energy and catalyzed fusion reaction. Discussions are included on dose rates from radiation sources inside and outside the body, the effect of nuclear explosions on the weather, and the contamination of fish and marine organisms.

  1. Peaceful applications of nuclear explosions

    International Nuclear Information System (INIS)

    Wallin, L.B.

    1975-12-01

    The intension of this report is to give a survey of the field of peaceful applications of nuclear explosions. As an introduction some examples of possibilities of application are given together with a simple description of nuclear explosions under ground. After a summary of what has been done and will be done in this field nationally and internationally, a short discussion of advantages and problems with peaceful application of nuclear explosions follows. The risks of spreading nuclear weapons due to this applications are also touched before the report is finished with an attempt to judge the future development in this field. (M.S.)

  2. Stade. Decommissioning and dismantling of the nuclear power plant - from the nuclear power plant to the green lawn. 3. ed.

    International Nuclear Information System (INIS)

    2008-01-01

    The nuclear power plant Stade (KKS) was shutdown in 2003 and is being dismantled since 2005. The contribution covers the following issues: What means decommissioning and dismantling? What was the reason for decommissioning? What experiences on the dismantling of nuclear power plants are available? What is the dismantling procedure? What challenges for the power plant personal result from dismantling? What happens with the deconstruction material? What happens with the resulting free area (the ''green lawn'')? What is the legal frame work for dismantling?

  3. Towards the creation of an industrial sector dedicated to nuclear dismantling

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    In next decades the business of nuclear dismantling is expected to grow exponentially due to the decommissioning of nuclear facilities that will have reached the end of their operating life. Dismantling has 2 main features: dismantling operations on a same site can span decades and dismantling is a new activity in which innovations are likely to appear and may benefit other sectors. In France regional authorities have promoted public-private partnerships in order to make working together small enterprises very specialized in sectors like robotic, laser cutting, waste processing, remote operations... with public laboratories dedicated to nuclear research, and with graduate schools to include dismantling in curriculum and with major industrial operators of the nuclear industry. The aim is the creation of jobs and the building of an industrial sector able to win market shares in the worldwide business of nuclear dismantling. (A.C.)

  4. Metal Radioactive Waste Recycling from the Dismantling of Nuclear Facilities

    International Nuclear Information System (INIS)

    Fajt, B.; Prah, M.

    1996-01-01

    In the dismantling process of nuclear power plants a large amount of metal residues are generated. The residues of interest are stainless steel, copper and aluminium and can be reprocessed either for restricted or unrestricted use. Although there are many questions about the further use of these materials it should be convenient to recycle them. This paper discusses the complexity of the management of these metals. The radiation protection requirements are the most important principles. For these purposes great efforts in the decontamination have to be made. Regulatory aspects, clearance levels as well as characteristic of steel recycling industry, radiological impact and new developments are discussed. (author)

  5. Latest expertise investigations in nuclear dismantling and industrial applications

    International Nuclear Information System (INIS)

    Gallozzi Ulmann, Adrien; Chazalet, Julien; Couturier, Pierre; Touzain, Etienne; Amgarou, Khalil; Menaa, Nabil

    2013-06-01

    During the last decades, CANBERRA has developed know-how, expertise and intervention strategies based on its feedback experiences in many countries. This document covers a wide range of applications involving nuclear characterization, for which CANBERRA is able to provide measurement set-up and results, activity characterization and radioactive source localization, as well as to guarantee safety or process thresholds corresponding to the customer's needs. To improve processes best-in-class methodology, know-how and tools have been used in complex examples described in this paper. CANBERRA has demonstrated its ability to better and efficiently prepare for and execute decontamination and dismantling activities. (authors)

  6. Pilot tests for dismantling by blasting of the biological shield of a shut down nuclear power station

    International Nuclear Information System (INIS)

    Freund, H.U.

    1995-01-01

    Following free-field tests on concrete blocks the feasibility of explosive dismantling of the biological shield of nuclear power stations has been succesfully tested at the former hotsteam reaction in Karlstein/Main Germany. For this purpose a model shield of scale 1:2 was embedded into the reactor structure at which bore-hole blasting tests employing up to about 15 kg of explosive were performed. An elaborate measurement system allowed to receive detailed information on the blast side-effects: Special emphasis was focussed on the quantitative registration of the dynamic blast loads; data for the transfer of the dismantling method to the removal of real ractor structures were obtained. (orig.) [de

  7. A Study on Dismantling of Westinghouse Type Nuclear Reactor

    International Nuclear Information System (INIS)

    Jeong, Woo-Tae; Lee, Sang-Guk

    2014-01-01

    KHNP started a research project this year to develop a methodology to dismantle nuclear reactors and internals. In this paper, we reviewed 3D design model of the reactor and suggested feasible cutting scheme.. Using 3-D CAD model of Westinghouse type nuclear reactor and its internals, we reviewed possible options for disposal. Among various options of dismantling the nuclear reactor, plasma cutting was selected to be the best feasible and economical method. The upper internals could be segmented by using a band saw. It is relatively fast, and easily maintained. For cutting the lower internals, plasma torch was chosen to be the best efficient tool. Disassembling the baffle and the former plate by removing the baffle former bolts was also recommended for minimizing storage volume. When using plasma torch for cutting the reactor vessel and its internal, installation of a ventilation system for preventing pollution of atmosphere was recommended. For minimizing radiation exposure during the cutting operation, remotely controlled robotic tool was recommended to be used

  8. Hydrocarbon production with nuclear explosives

    International Nuclear Information System (INIS)

    Wade Watkins, J.

    1970-01-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  9. Hydrocarbon production with nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Wade Watkins, J [Petroleum Research, Bureau of Mines, U.S. Department of the Interior, Washington, DC (United States)

    1970-05-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  10. 8. Peaceful uses of nuclear explosions

    International Nuclear Information System (INIS)

    Musilek, L.

    1992-01-01

    The chapter deals with peaceful uses of nuclear explosions. Described are the development of the underground nuclear explosion, properties of radionuclides formed during the explosion, their distribution, the release of radioactive products of underground nuclear explosions into the air, their propagation in the atmosphere, and fallout in the landscape. (Z.S.). 1 tab., 8 figs., 19 refs

  11. Cost effective decommissioning and dismantling of nuclear power plants

    International Nuclear Information System (INIS)

    Wasinger, Karl

    2012-01-01

    As for any large and complex project, the basis for cost effective decommissioning and dismantling of nuclear power plants is established with the development of the project. Just as its construction, dismantling of a nuclear power plant is similarly demanding. Daily changing situations due to the progress of construction - in the present case progress of dismantling - result in significant logistical challenges for project managers and site supervisors. This will be aggravated by the fact that a considerable amount of the removed parts are contaminated or even activated. Hence, not only occupational health, safety and environmental protection is to be assured, employees, public and environment are to be adequately protected against the adverse effect of radioactive radiation as well. Work progress and not least expenses involved with the undertaking depend on adherence to the planned course of actions. Probably the most frequent cause of deviation from originally planned durations and costs of a project are disruptions in the flow of work. For being enabled to counteract in a timely and efficient manner, all required activities are to be comprehensively captured with the initial planning. The effect initial activities may have on subsequent works until completion must particularly be investigated. This is the more important the larger and more complex the project actually are. Comprehensive knowledge of all the matters which may affect the progress of the works is required in order to set up a suitable work break-down structure; such work break-down structure being indispensable for successful control and monitoring of the project. In building the related organizational structure of the project, all such stakeholders not being direct part of the project team but which may potentially affect the progress of the project are to be considered as well. Cost effective and lost time injury free dismantling of decommissioned nuclear power plants is based on implementing

  12. Recycling of concrete generated from Nuclear Power Plant dismantling

    International Nuclear Information System (INIS)

    Ogawa, Hideo; Nawa, Toyoharu; Ishikura, Takeshi; Tanaka, Hiroaki

    2013-01-01

    Reactor decommissioning required various technologies such as dismantling of facilities, decontamination, radioactivity measurement and recycling of dismantling wastes. This article discussed recycling of demolished concrete wastes. Dismantling of reactor building of large one unit of nuclear power plants would generate about 500 K tons of concrete wastes, about 98% of which was non-radioactive and could be used as base course material or backfill material after crushed to specified particle size. Since later part of 1990s, high quality recycled aggregate with specified limit of bone-dry density, water absorptivity and amount of fine aggregate had been developed from demolished concrete with 'Heat and rubbing method', 'Eccentric rotor method' and 'Screw grinding method' so as to separate cements attached to aggregate. Recycled aggregates were made from concrete debris with 'Jaw crusher' to particle size less than 40 mm and then particle size control or grinded by various grinding machines. Recycled fine aggregates made from crushing would have fragile site with cracks, air voids and bubbles. The author proposed quality improvement method to selectively separate fragile defects from recycled aggregates using weak grinding force, leaving attached pastes much and preventing fine particle generation as byproducts. This article outlined experiments to improve quality of recycled fine aggregates and their experimental results confirmed improvement of flow ability and compressive strength of mortal using recycled fine aggregates using 'Particle size selector' and 'Ball mill' so as to remove their fragile parts less than 2%. Mortal made from recycled fine aggregate could also prevent permeation of chloride ion. Recycled aggregate could be used for concrete instead of natural aggregate. (T. Tanaka)

  13. Note n. SD3-DEM-01 regulations procedures relative to the based nuclear installations dismantling

    International Nuclear Information System (INIS)

    2003-02-01

    This note aims to define the regulations procedures relative to the safety of based nuclear installations dismantling defined by the decree of the 11 december 1963 modified. The first part describes the two main phases of a based nuclear installation life, the operating and the dismantling phase. The second part is devoted to the procedures. (A.L.B.)

  14. System for detecting nuclear explosions

    International Nuclear Information System (INIS)

    Rawls, L.E.

    1978-01-01

    Apparatus for detecting underground nuclear explosions is described that is comprised of an antenna located in the dielectric substance of a deep waveguide in the earth and adapted to detect low frequency electromagnetic waves generated by a nuclear explosion, the deep waveguide comprising the high conductivity upper sedimentary layers of the earth, the dielectric basement rock, and a high conductivity layer of basement rock due to the increased temperature thereof at great depths, and means for receiving the electromagnetic waves detected by said antenna means

  15. Reserves for shutdown/dismantling and disposal in nuclear technology. Theses and recommendations on reform options

    International Nuclear Information System (INIS)

    Meyer, Bettina

    2012-01-01

    The study on reserves for shutdown, dismantling and disposal of nuclear facilities covers the following topics: cost for shutdown, dismantling and disposal and amount and transparency of nuclear reserves, solution by y stock regulated by public law for long-term liabilities, and improvement of the protection in the event of insolvency for the remaining EVU reserves for short- and intermediate-term liabilities. The appendix includes estimations and empirical values for the cost of shutdown and dismantling, estimation of disposal costs, and a summary of Swiss studies on dismantling and disposal and transfer to Germany.

  16. Status of the Digital Mock-up System for the dismantling of the nuclear facilities

    International Nuclear Information System (INIS)

    Park, Hee Seoung; Kim, S. K.; Lee, K. W.; Oh, W. J.

    2004-12-01

    The database system have already developed is impossible to solve a quantitative evaluation about a various situation from the dismantle activities of the reactor had contaminated with radioactivity. To satisfy the requirements for safety and economical efficiency among a major decommissioning technologies, it need a system that can evaluate and estimate dismantling scheduling, amount of radioactive waste being dismantled, and decommissioning cost. We have review and analyzed status of the digital mock-up system to get a technical guide because we have no experience establishment of one relation to dismantling of research reactor and nuclear power plant

  17. Nuclear Explosions 1945-1998

    Energy Technology Data Exchange (ETDEWEB)

    Bergkvist, Nils-Olov; Ferm, Ragnhild

    2000-07-01

    The main part of this report is a list of nuclear explosions conducted by the United States, the Soviet Union, the United Kingdom, France, China, India and Pakistan in 1945-98. The list includes all known nuclear test explosions and is compiled from a variety of sources including officially published information from the USA, Russia and France. The details given for each explosion (date, origin time, location, yield, type, etc.) are often compiled from more than one source because the individual sources do not give complete information. The report includes a short background to nuclear testing and provides brief information on the Comprehensive Nuclear-Test-Ban Treaty and the verification regime now being established to verify compliance with the treaty. It also summarizes nuclear testing country by country. The list should be used with some caution because its compilation from a variety of sources means that some of the data could be incorrect. This report is the result of cooperation between the Defence Research Establishment (FOA) and the Stockholm International Peace Research Institute (SIPRI)

  18. Seismic coupling of nuclear explosions

    International Nuclear Information System (INIS)

    Larson, D.B.

    1989-01-01

    The new Giant Magnet Experimental Facility employing digital recording of explosion induced motion has been constructed and successfully tested. Particle velocity and piezoresistance gage responses can be measured simultaneously thus providing the capability for determining the multi-component stress-strain history in the test material. This capability provides the information necessary for validation of computer models used in simulation of nuclear underground testing, chemical explosion testing, dynamic structural response, earth penetration response, and etc. This report discusses fully coupled and cavity decoupled explosions of the same energy (0.622 kJ) were carried out as experiments to study wave propagation and attenuation in polymethylmethacrylate (PMMA). These experiments produced particle velocity time histories at strains from 2 x 10 -3 to as low as 5.8 x 10 -6 . Other experiments in PMMA, reported recently by Stout and Larson 8 provide additional particle velocity data to strains of 10 -1

  19. Remote dismantling of the French Brennilis nuclear power plant

    International Nuclear Information System (INIS)

    Studenski, Joerg

    2009-01-01

    The paper deals with the remote dismantling of the decommissioned EL4 prototype power plant Brennilis in France. The block contains the reactor pressure vessel including internals and biological shield, the piping and the control systems. The authors describe the general operation principle of the reactor to illustrate the peculiarities of the dismantling concept and the concept-related challenges. Detailed information is given concerning the following issues: creation of an access to the reactor block, the used remote technology, dismantling of the coolant piping and the axial shield, dismantling of the reactor pressure vessel and the lateral shield. Special attention is given on the minimization of the produced radioactive waste.

  20. Remote dismantling of the French Brennilis nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Studenski, Joerg [NUKEM Technologies GmbH (Germany)

    2009-07-01

    The paper deals with the remote dismantling of the decommissioned EL4 prototype power plant Brennilis in France. The block contains the reactor pressure vessel including internals and biological shield, the piping and the control systems. The authors describe the general operation principle of the reactor to illustrate the peculiarities of the dismantling concept and the concept-related challenges. Detailed information is given concerning the following issues: creation of an access to the reactor block, the used remote technology, dismantling of the coolant piping and the axial shield, dismantling of the reactor pressure vessel and the lateral shield. Special attention is given on the minimization of the produced radioactive waste.

  1. Reduction of radioactivity produced by nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Lessler, Richard M [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    Four main sources contribute to the radioactivity produced by a nuclear explosive: 1. Fission products from the nuclear explosive, 2. Fusion products from the nuclear explosive, 3. Induced radioactivity in the nuclear explosive, 4. Induced radioactivity in the environment. This paper will summarize some of the work done at the Lawrence Radiation Laboratory at Livermore to reduce the radioactivity from these sources to levels acceptable for peaceful applications. Although it is theoretically possible to have no radioactivity produced by nuclear explosives, this goal has not been achieved.

  2. Experimental nuclear explosions and the arms race

    International Nuclear Information System (INIS)

    Lenci, F.

    1989-01-01

    This paper discusses how experimental nuclear explosions have basically three aims: a study of the effects of nuclear weapons; the development of new nuclear weapons; and control of the efficiency and security of nuclear weapons

  3. Evaluation methodology of a manipulator actuator for the dismantling process during nuclear decommissioning

    International Nuclear Information System (INIS)

    Park, Jongwon; Kim, Chang-Hoi; Jeong, Kyung-min; Choi, Byung-Seon; Moon, Jeikwon

    2016-01-01

    Highlights: • A methodology to evaluate actuators of a dismantling manipulator. • Evaluation criteria for choosing the most suitable actuator type. • A mathematical evaluation model for evaluation. • The evaluation method is expected to be used for determining other manipulators. - Abstract: This paper presents a methodology to evaluate actuators of a manipulator for dismantling nuclear power plants. Actuators are the most dominant components because a dismantling manipulator relies heavily on the actuator type used. To select the most suitable actuator, evaluation criteria are presented in four categories based on the nuclear dismantling environment. A mathematical model is presented and evaluation results are calculated with weights and scores for each criterion. The proposed evaluation method is expected to be used for determining other aspects of the design of dismantling manipulators.

  4. Disposal of fissionable material from dismantled nuclear weapons

    International Nuclear Information System (INIS)

    Taylor, J.J.

    1991-01-01

    The reduction in tensions between the United States and the Soviet Union has improved the prospects for nuclear disarmament, making it more likely that significant numbers of nuclear warheads will be dismantled by the United States and USSR in the foreseeable future. Thus, the question becomes more urgent as to the disposition of the weapons materials, highly enriched uranium and plutonium. It is timely, therefore, to develop specific plans for such disposal. The overall process for disposal of weapons materials by the burnup option involves the following steps: (1) removing the weapons material from the warheads, (2) converting the material to a fuel form suitable for power reactors, (3) burning it up as a power reactor fuel, and (4) removing the spent fuel and placing it in a permanent repository. This paper examines these four steps with the purpose of answering the following questions. What facilities would be appropriate for the disposal process? Do they need to be dedicated facilities, or could industrial facilities be used? What is the present projection of the economics of the burnup process, both the capital investment and the operating costs? How does one assure that fissionable materials will not be diverted to military use during the disposal process? Is the spent fuel remaining from the burnup process proliferation resistant? Would the disposal of spent fuel add an additional burden to the spent fuel permanent repository? The suggested answers are those of the author and do not represent a position by the Electric Power Research Institute

  5. Sites with nuclear facilities in the state of dismantling and their future from the public perspective

    International Nuclear Information System (INIS)

    Kretz, Simon Philipp

    2015-01-01

    The thesis on the public perspective at sites of nuclear facility dismantling covers the following issues: the change of German energy landscapes under social and political points of view, theoretical frame of the work, combination of empirical studies and the theoretical approaches in a space concept, action model and hypotheses on the situation and development in communities with nuclear facilities in the state of dismantling, description of the interviewees, and the empirical results of the interviews.

  6. Decision support system for the dismantling of building in nuclear facilities

    International Nuclear Information System (INIS)

    Zeiher, M.

    2009-01-01

    In case of decommissioning and dismantling the complex structure of nuclear facilities requires a thorough selection of dismantling methods and a detailed operations planning. The decision for an appropriate technology with respect to economic, environmental and radiation protection aspects has to take into account that the different procedural steps are coordinated. Component specific boundary conditions and process parameters have to be considered. A data base was established that includes the process parameters for different dismantling methodologies. The next step is the determination of specific requirements of plant operators and engineers in order to identify the tasks in the frame of the dismantling process. The authors describes the decision support algorithm that allows to enhance the dismantling efficiency.

  7. Transparency in nuclear warhead dismantlement -- Limited chain of custody and warhead signatures

    International Nuclear Information System (INIS)

    Kiernan, G.; Percival, M.; Bratcher, L.

    1996-01-01

    The goal of the US Safeguards, Transparency, and Irreversibility (STI) initiative is the development of a series of transparency measures that provide confidence that nuclear warheads are actually being dismantled and that the fissile material being removed from these dismantled weapons is not recycled into new production. A limited chain of custody (LCC) would follow a warhead from the time it is declared excess until it is actually dismantled and the fissile materials are stored. Measurement of warhead signatures is an option in LCC using radiation detection techniques to confirm that a warhead has been dismantled, without intrusive inspections within the dismantlement facility. This paper discusses LCC and warhead signatures as well as indicate first results of laboratory measurements related to warhead signatures

  8. S.T.M.I.: Several years of experience in nuclear plant dismantling

    International Nuclear Information System (INIS)

    Moreau, J.C.

    1986-01-01

    Since 1977, when STMI performed its first dismantling operation, the Company appreciably improved in that field through important operations: the dismantling of the calciothermy and fluoration metal Pu preparation facility, in La Hague reprocessing plant, the dismantling of the slag treatment chain, associated to calciothermy and fluoration processes, in La Hague reprocessing plant, the cleaning of EL4 cell in Marcoule. To perform these operations, STMI's operating teams, on top of decontamination and dismantling technologies, strived to improve handling and transportation technologies, and to nuclearize many equipments. In order to increase its technical efficiency, STMI signed a cooperation agreement with TECHNICATOME company. Therefore, the union between the operational know-hows of STMI and the design experience of TECHNICATOME allow the needs of any customs facing a dismantling case to be satisfied [fr

  9. Cutting Method of the CAD model of the Nuclear facility for Dismantling Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ikjune; Choi, ByungSeon; Hyun, Dongjun; Jeong, KwanSeong; Kim, GeunHo; Lee, Jonghwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Current methods for process simulation cannot simulate the cutting operation flexibly. As is, to simulate a cutting operation, user needs to prepare the result models of cutting operation based on pre-define cutting path, depth and thickness with respect to a dismantle scenario in advance. And those preparations should be built again as scenario changes. To be, user can change parameters and scenarios dynamically within a simulation configuration process so that the user saves time and efforts to simulate cutting operations. This study presents the methodology of cutting operation which can be applied to all the procedure in the simulation of dismantling of nuclear facilities. We developed the cutting simulation module for cutting operation in the dismantling of the nuclear facilities based on proposed cutting methodology. We defined the requirement of model cutting methodology based on the requirement of the dismantling of nuclear facilities. And we implemented cutting simulation module based on API of the commercial CAD system.

  10. The inherent advantages of delayed dismantling of decommissioning nuclear stations

    International Nuclear Information System (INIS)

    Liederman, J.M.; Saroudis, J.I.

    1985-01-01

    Recent studies in Canada pertaining to the decommissioning of the CANDU 600 MW(e) reactor have led to the development of the option of a ''static state'' condition. This alternative is based on judging risk and benefit to society considering the greatly reduced potential radiation exposure to personnel after 30 to 80 years have elapsed, following the final shutdown of the reactor. After approximately 80 to 120 years have elapsed, the decay in all systems and components (with the exception of the reactor assembly) would be such that radiation fields would be at background levels producing an environment that would be acceptable for Stage 3 decommissiong. This philosophy is based on the current engineering judgement that: - All systems, components, and structures which were associated with the nuclear processes and are radioactive, can be put into a static or storage state, and a containment function maintained at low cost for prolonged periods of between 80 to 120 years. - Between 80 to 120 years after shutdown, most of the radioactivity, except for some long lived radionuclides in the reactor vessel itself and its vault, will have naturally decayed to near releasable limits without any external intervention. - There is a lower overall risk to society in this approach, than dismantling and transporting radioactive materials prematurely. This philosophy is developed taking into consideration radiation protection, financial and risk assessment issues. The Canadian concept of dry storage of spent fuel is part of this philosophy and may be of interest to decommissioned nuclear plants of other types. 4 tables, 5 graphs

  11. Peaceful nuclear explosions and thermodynamics

    International Nuclear Information System (INIS)

    Prieto, F.E.

    1975-01-01

    Some theoretical advances in the thermodynamics of very high pressures are reviewed. A universal (system-independent) formulation of the thermodynamics is sketched, and some of the equations more frequently used are written in system-independent form. Among these equations are: Hugoniot pressure and temperature as functions of volume; the Mie-Gruneisen equation; and an explicit form for the equation of state. It is also shown that this formalism can be used to interpret and predict results from peaceful nuclear explosions. (author)

  12. Ideas for peaceful nuclear explosions in USSR

    International Nuclear Information System (INIS)

    1970-01-01

    Three papers prepared in USSR have been made available to the Agency for circulation among Member States. One examines radioactive contamination and methods for predicting it, of natural environments during underground explosions. Another deals with the mechanical effect of underground explosions. The third, which forms the basis of this article, reviews possible applications of peaceful nuclear explosions in the Soviet economy. (author)

  13. Recycling of concrete waste generated from nuclear power plant dismantling

    International Nuclear Information System (INIS)

    Ogawa, Hideo; Nagase, Takahiro; Tanaka, Hiroaki; Nawa, Toyoharu

    2012-01-01

    Non-radioactive concrete waste generated from dismantling of a standard large nuclear power plant is estimated to be about 500,000 tons in weight. Using such waste as recycled aggregate within the enclosure of the plant requires a new manufacturing technology that generates a minimal amount of by-product powder. Recycled aggregate has brittle parts with defects such as cracks, pores, and voids in residual paste from original concrete. This study presents a method of selectively removing the defective parts during manufacture to improve the quality of the recycled fine aggregate. With this selective removal method used, the amount of by-product powder can be reduced by half as compared to that by a conventional method. The influences of the characteristics of the recycled fine aggregate on the flowability and strength of the mortar using recycled fine aggregate were evaluated by multiple linear regression analysis. The results clearly showed that the flowability was primarily affected by the filling fraction of recycled fine aggregate, while the compressive strength of mortar was primarily affected by the fraction of defects in the aggregate. It was also found that grains produced by a granulator have more irregularities in the surfaces than those produced by a ball mill, providing an increased mortar strength. Using these findings from this study, efforts are also being made to develop a mechanical technology that enables simultaneous processing of decontamination and recycling. The granulator under consideration is capable of grinding the surfaces of irregularly shaped particles and may be used successfully, under optimal conditions, for the surface decontamination of concrete waste contaminated with radioactive materials. (author)

  14. Nuclear explosives testing readiness evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Valk, T.C.

    1993-09-01

    This readiness evaluation considers hole selection and characterization, verification, containment issues, nuclear explosive safety studies, test authorities, event operations planning, canister-rack preparation, site preparation, diagnostic equipment setup, device assembly facilities and processes, device delivery and insertion, emplacement, stemming, control room activities, readiness briefing, arming and firing, test execution, emergency response and reentry, and post event analysis to include device diagnostics, nuclear chemistry, and containment. This survey concludes that the LLNL program and its supporting contractors could execute an event within six months of notification, and a second event within the following six months, given the NET group`s evaluation and the following three restraints: (1) FY94 (and subsequent year) funding is essentially constant with FY93, (2) Preliminary work for the initial event is completed to the historical sic months status, (3) Critical personnel, currently working in dual use technologies, would be recallable as needed.

  15. General phenomenology of underground nuclear explosions

    International Nuclear Information System (INIS)

    Derlich, S.; Supiot, F.

    1969-01-01

    An essentially qualitatively description is given of the phenomena related to underground nuclear explosions (explosion of a single unit, of several units in line, and simultaneous explosions). In the first chapter are described the phenomena which are common to contained explosions and to explosions forming craters (formation and propagation of a shock-wave causing the vaporization, the fusion and the fracturing of the medium). The second chapter describes the phenomena related to contained explosions (formation of a cavity with a chimney). The third chapter is devoted to the phenomenology of test explosions which form a crater; it describes in particular the mechanism of formation and the different types of craters as a function of the depth of the explosion and of the nature of the ground. The aerial phenomena connected with explosions which form a crater: shock wave in the air and focussing at a large distance, and dust clouds, are also dealt with. (authors) [fr

  16. Deregulation in the field of decommissioning and dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Kurz, A.

    1994-05-01

    The report comprises two articles covering current topics of the decommissioning and dismantling of nuclear facilities. In the first article written by Kurz, the legal standards are listed together with conclusions and proposals regarding their implementation for the further development of this field of law. The article by Baumgaertel is aimed at evaluating the regulations governing nuclear technology as regards their applicability to the decommissioning and dismantling of nuclear facilities. These articles shall contribute to the discussions taking place in this field at the moment. As a result, an appropriate and project-specific application of the legal provisions and not legally binding (technical) regulations in the field of nuclear technology (deregulation) in the licensing procedures required for the decommissioning and dismantling of nuclear facilities is requested by the authors. (orig.) [de

  17. Environmental control for nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, A W; Wells, W H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    Peaceful applications introduce some new environmental considerations into the design of nuclear explosives. Much of the experience gained in weapon work can be applied, but the requirement of survival in a very deep hole is not found in any military system. We will briefly mention the overall environment and make a few comparisons with some general characteristics of the weapon environment. The major portion of this paper is devoted to the special problems of pressure and temperature found in the emplacement environment. Potential users should know where we stand with regard to survival in hostile environments in terms of feasibility and possible effects on field operations. In all applications there are several things competing for the available diameter. Given that explosives can be made to work over a range of diameters and that necessary environmental control is feasible, all further discussions can be related to the cost of providing a hole big enough to accomplish the task. The items competing for diameter are: 1) bare nuclear assembly 2) insulation and cooling system if needed 3) pressure canister 4) shielding material 5) emplacement clearance All of these must be considered with the cost of the hole in optimizing an overall design. Conditions in a particular location will affect the shielding requirements and the emplacement clearance. The nuclear assembly can vary in size, but the long development time requires that decisions be made quite early, perhaps in ignorance of the economic details of a particular application. The pressure canister is a relatively straightforward design problem that can be resolved by giving appropriate consideration to all of the design requirements. In particular for 20,000 psi pressure in the emplacement hole, a canister of heat-treated alloy steel having a yield strength of 200,000 psi and a wall thickness which is about .07 times the outside diameter is adequate and straight- forward to fabricate. The insulation and cooling

  18. Nuclear explosion and internal contamination

    International Nuclear Information System (INIS)

    Aeberhardt, A.

    1956-01-01

    By the study of the conditions of internal contamination due to the radioactive mixture produced by a nuclear explosion, the parts played by the relative weights of the different elements and the mode of expression of the doses are considered. Only the knowledge of the weight composition of the contamination mixture and of its evolution as a function of time can provide the required basis for the study of its metabolism in the organism. The curves which give the composition of the fission product mixture - in number of nuclei - - as a function of time - have been established. These curves are applied to some practical examples, particularly relative to the nature of contamination, radiotoxicity of some elements and assessment of hazards. (author) [fr

  19. Decommissioning of nuclear facilities: COGEMA expertise devoted to UP1 reprocessing plant dismantling programme

    International Nuclear Information System (INIS)

    Gay, A.

    2001-01-01

    Over the last past decades, the French nuclear industry has acquired a great experience and know-how in the field of dismantling. Today this experience amounts to more than 200,000 hours. The fundamental aims within dismantling strategy are the same as for all nuclear facilities: minimising doses received by workers, minimising waste volume and adapting waste management to radioactivity levels, minimising costs. French experience is based on technologies which are currently used in nuclear maintenance facilities. Dismantling is a dynamic process especially in the field of decontamination (chemical and mechanical), cleaning, robotics and remote control operations. The strategy for the dismantling of former UP1 reprocessing plant is based on the feedback of experience gained through the dismantling of other facilities such as the AT1 workshop at La Hague. This workshop, a pilot plant for reprocessing of fast-breeder reactor fuels (Rapsodie and Phenix) has to be dismantled to IAEA level 3 (unrestricted site use), excluding civil works structures. Currently conducted by trained shifts, this dismantling project should end in 1999. The experience already acquired proves that chemical rinsings with the use of specific reagents is sufficient to decontaminate the hot cells and that the use of remote operations or robotics is not as important as previously envisaged. The UP1 reprocessing plant of Marcoule operated from 1958 to 1997. End of the operation was pronounced on the 31st of December 1997. 20,000 tons of spent fuels were reprocessed at UP1. The cleaning and dismantling operations at the Marcoule site depend upon the CEA, EDF and COGEMA. The Defence and Industry Ministries asked for a specific structure to be set up. An economic interest group called CODEM was created in May 1996. CODEM decides, finances and supervises dismantling operations, while respecting the constraints of nuclear safety, environmental protection and cost-effectiveness. The cleaning operations of

  20. Preliminary dismantling for the decommissioning of nuclear licensed facilities at the CEA Centre in Fontenay aux Roses

    International Nuclear Information System (INIS)

    Estivie, D.; Bohar, M.P.; Jeanjacques, M.; Binet, C.

    2008-01-01

    Under the perimeter modification programme for the Nuclear Licensed Facilities (NLFs) of the French Atomic Energy Commission centre at Fontenay aux Roses (CEN-FAR), preliminary dismantling work proved necessary to decommission the buildings outside the nuclear perimeter and create interim storage areas for waste packages. This summary describes the dismantling of Buildings 07, 53 and 91/54, which are the most representative of the preliminary dismantling work. (author)

  1. Engineering effects of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Charles R [CER Geonuclear Corporation, Las Vegas, NV (United States)

    1970-05-01

    Useful effects of contained underground nuclear explosions are discussed in light of today's most promising potential applications. Relevant data obtained through exploration of explosion environments of nine U.S. tests in competent rock are summarized and presented as a practical basis for estimating magnitudes of effects. Effects discussed include chimney configuration, permeability, and volume as well as rubble particle size distributions and extents of permeability change in the chimney wall rock. Explosion mediums include shale, granite, dolomite, and salt. (author)

  2. Engineering effects of underground nuclear explosions

    International Nuclear Information System (INIS)

    Boardman, Charles R.

    1970-01-01

    Useful effects of contained underground nuclear explosions are discussed in light of today's most promising potential applications. Relevant data obtained through exploration of explosion environments of nine U.S. tests in competent rock are summarized and presented as a practical basis for estimating magnitudes of effects. Effects discussed include chimney configuration, permeability, and volume as well as rubble particle size distributions and extents of permeability change in the chimney wall rock. Explosion mediums include shale, granite, dolomite, and salt. (author)

  3. Nuclear and non-nuclear safety aspects in nuclear facilities dismantling. The example of a PWR pilot decommissioning project

    International Nuclear Information System (INIS)

    Massaut, V.; Deboodt, P.; Dadoumont, J.; Valenduc, P.; Denissen, L.

    2002-01-01

    The dismantling of nuclear facilities, and in particular of nuclear power plants, involves new challenges for the nuclear industry. Although the dismantling of various activated and contaminated components is nowadays considered as almost industrial practice, the safety aspects of decommissioning bring some specific features which are not always taken into account in the operation of the plants. Moreover, most of the plants and facilities currently decommissioned are rather old and were never foreseen to be decommissioned. The operations involved in dismantling and decontamination, often imply new or unforeseen situations. On the nuclear, or radiological side, the radioprotection optimisation of the operations involved often requires to model the environment and to analyse different scenarios to tackle the operation. Recent 3-D software (like the Visiplan software) allowing representation of the actual environment and the influence of the various sources present, is really needed to be able to minimise the radiological impact on the operators. The risk of contamination spread, by opening loops and components or by the dismantling process itself, is also an important aspect of the radiological protection study. Nevertheless, the radiological aspects of the safety approach are not the only ones to be dealt with when decommissioning nuclear facilities. Indeed, classical industrial safety aspects are also important: the dismantling can bring handling and transporting risk (heavy loads, difficult ways, uneasy access, etc.) but also the handling of toxic or hazardous materials. For instance, the removal of asbestos in contaminated areas can lead to additional hazard; the presence of alkali metals (like Na or NaK), of toxic metals (like e.g. Beryllium) or of corrosive fluids (acid,...) have to be tackled often in unstructured environment, and sometimes with limited knowledge of the actual situation. This leads to approach the operations following the ASARA principle (As

  4. Taking into account of dismantling constraints in the design of nuclear facilities

    International Nuclear Information System (INIS)

    Gouhier, E.; Moitrier, C.; Girones, P.; Pitrou, Y.; Poncet, P.; O'Sullivan, P.

    2014-01-01

    The taking into account of dismantling constraints in the design of nuclear facilities allows the reduction of the dosimetry during the dismantling operations, the reduction of the amount of wastes to manage and the saving of time and money by foreseeing an adequate and simple solution for each component. It is to notice that the strategy of life-extension strengthens that of dismantling because life-extension implies the possibility for any component of the reactor except the pressure vessel to be replaced. The feedback experience capitalized on various types of nuclear facilities have enabled IAEA and OECD to publish recommendations to facilitate dismantling. For instance, pipes and ventilation ducts must be designed to minimize the deposit of dust and residues, the natural porosity of concrete must be limited through the use of polishing products or a metal liner, the type and concentrations of impurities present in the structure materials must be controlled to limit radioactivation, the documentation describing the facility must be kept up to date, or the history of contamination events must be recorded all along the life of the facility. The integration of the dismantling constraints in the design stage is illustrated with 3 examples: the Georges Besse 2 enrichment fuel plant, new reactors (EPR, ASTRID and RJH), and ITER. (A.C.)

  5. Foam decontamination of large nuclear components before dismantling

    International Nuclear Information System (INIS)

    Costes, J.R.; Sahut, C.

    1998-01-01

    Following some simple theoretical considerations, the authors show that foam compositions can be advantageously circulated them for a few hours in components requiring decontamination before dismantling. The technique is illustrated on six large ferritic steel valves, then on austenitic steel heat exchangers for which the Ce(III)/Ce(IV) redox pair was used to dissolve the chromium; Ce(III) was reoxidized by ozone injection into the foam vector gas. Biodegradable surfactants are sued in the process; tests have shown that the foaming power disappears after a few days, provided the final radioactive liquid waste is adjusted to neutral pH, allowing subsequent coprecipitation of concentration treatment. (author)

  6. Glossary on peaceful nuclear explosions terms

    International Nuclear Information System (INIS)

    1980-01-01

    The report presents a glossary of terms in the area of peaceful nuclear explosions. The terms are in English, French, Russian and Spanish with cross-references for the corresponding terms of the other languages

  7. Education and research when dismantling nuclear plants at the Technical University Dresden

    International Nuclear Information System (INIS)

    Hurtado, A.; Anthofer, A.; Cloppenborg, T.; Schreier, M.

    2013-01-01

    With the decision by the German government in 2011 to revoke the operating permission from 8 of the existing 17 German nuclear power plants, the responsibility of decommissioning and dismantling these plants has moved back into the focus of public awareness. Under the current legal conditions, the last nuclear plant will be disconnected from the grid on 31.12.2022 and this will create an enormous challenge for all the involved approving authorities, expert organisations, as well as companies involved in dismantling the plants. The development of new and efficient dismantling technologies and strategies is required to perform these highly responsible tasks. On the other hand, the nuclear competence and knowhow, as well as the promotion of young talents in the relevant scientific fields must be preserved. Technological and economic solutions are in demand for the various plants due to the different specifics of nuclear power plants. This will still require e.g. in the field of radiation protection highly qualified and well trained staff in future. The training of these skilled employees will require expanding the subject matter taught at universities, colleges and polytechnics to suit the changed parameters. The chair for hydrogen and nuclear energy technology at the TU Dresden will in future offer lectures as part of a new teaching discipline with the focus on dismantling and disposal. The course 'Dismantling nuclear power plants' took place for the first time in the summer semester 2013. It is organised as a three-day block seminar with an excursion to the company NIS Ingenieurgesellschaft mbH in Alzenau. The company NIS is a subsidiary of the Siempelkamp Nukleartechnik GmbH. This article intends to provide an overview of the contents of the courses and the impressions of the participants. In this way the TU Dresden is making a further contribution to preserving nuclear competence and inter-disciplinary dialogue. (orig.)

  8. Do peaceful nuclear explosions have a future

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The idea of peaceful uses for nuclear explosive devices arose almost simultaneously with the concept of the nuclear explosion itself. It has been a powerful idea in that it soon generated major study efforts in the United States and the USSR and also captured the interest of many developing nations. But in spite of this considerable interest and much expenditure of funds and effort, the expectation that economically viable uses will be found for peaceful nuclear explosions looks even more distant now that when the first studies were initiated. This, at least, is the conclusion of two recent U.S. studies of the economic feasibility and time scale for application of peaceful nuclear explosions by the United States. The larger of these two studies was prepared by the Gulf Universities Research Consortium, and dealt particularly with possibilities for use in the United States by 1990 of contained, i.e., underground, peaceful nuclear explosions. This paper provides briefer analysis by an ad hoc panel assesses the implications of the Gulf report, considers other uses for peaceful nuclear explosions, and summarizes the reasons why there is only a small possibility that there will be significant use of them by the United States before the year 2000

  9. Adaptation of high pressure water jets with abrasives for nuclear installations dismantling

    International Nuclear Information System (INIS)

    Rouviere, R.; Pinault, M.; Gasc, B.; Guiadeur, R.; Pilot, M.

    1989-01-01

    This report presents the work realized for adjust the cutting technology with high pressure water jet with abrasives for nuclear installation dismantling. It has necessited the conception and the adjustement of a remote tool and the realization of cutting tests with waste produce analysis. This technic can be ameliorated with better viewing systems and better fog suction systems

  10. Polychlorinated biphenyls (PCBs) in the frame of the dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Hagenbart, Lars; Held, Christian; Reichert, Alexander

    2013-01-01

    During construction and maintenance of nuclear facilities PCB (polychlorinated biphenyls) containing paints were used in a large extent in the past. The WAK dismantling and disposal Company has dismantles such facilities and identified the PCB in the buildings. Besides the radionuclides the conventional hazardous material group of the PCBs has also to be disposed. The respective legal regulations have to be considered. In the frame of the contribution the radiological release of building structures with respect to re-use or demolition and residual PCB containing materials is discussed. The radiological disposal in final repositories and the conventional disposal regulations for releasable residual wastes are reported.

  11. Health and Safety Considerations Associated with Sodium-Cooled Experimental Nuclear Fuel Dismantlement

    Energy Technology Data Exchange (ETDEWEB)

    Carvo, Alan E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    Between the mid-1970s and the mid-1980s Sandia National Laboratory constructed eleven experimental assemblies to simulate debris beds formed in a sodium-cooled fast breeder reactor. All but one of the assemblies were irradiated. The experimental assemblies were transferred to the Idaho National Laboratory (INL) in 2007 and 2008 for storage, dismantlement, recovery of the uranium for reuse in the nuclear fuel cycle, and disposal of unneeded materials. This paper addresses the effort to dismantle the assemblies down to the primary containment vessel and repackage them for temporary storage until such time as equipment necessary for sodium separation is in place.

  12. Method and jig for dismantling nuclear fuel assembly

    International Nuclear Information System (INIS)

    Urata, Megumi; Watahiki, Minoru.

    1989-01-01

    The object of the present inention is to extract a fuel element from a lower tie plate safely and at high efficiency by a remote control operation. That is, a forked top end of a lever of a dismantling jig is inserted between the tapered portion of a lower end plug and a lower tie plate. Then, a load is applied to the counter-lower end side of the lever by a motor. This exerts an elevating force to the fuel elements to easily release fixture between the lower end plug and the lower tie plate. Since the fuel can of fuel elements is not applied with a force by this mehtod, operation safety can be improved. (I.J.)

  13. The dismantling of nuclear power plants which are not in use

    International Nuclear Information System (INIS)

    Tanguy, P.

    1987-01-01

    At the end of its life span, a nuclear power plant contains big quantities of radioactive products. The corresponding risks must be controlled and over the long range, all radioactivity must be definitively removed. The latter operation is called dismantling. In France, at the beginning of 1987, five nuclear units which were permanently put out of use have to be dismantled. These units are presented in this article. From this presentation, it can be seen that there are now techniques which provide for complete control of the risks corresponding to radioactivity. However, in France, as in the rest of the world, the dismantling of nuclear plants will not attain its full industrial level until the 21st Century. The problems which have to be solved are known, but better performing technologies have to be developed in order to obtain a superior protection of dismantling work crews and a reduction of costs. This article concludes with an appeal for high French interest in international activities in this field [fr

  14. Review of Soviet studies related to peaceful underground nuclear explosions

    International Nuclear Information System (INIS)

    Lin, W.

    1978-01-01

    Theoretical and empirical studies of contained and crater-forming underground nuclear explosions by USSR investigators are reviewed and summarized. Published data on U.S., USSR, and French cavity-forming nuclear explosions are compared with those predicted by the formula. Empirical studies on U.S. and USSR cratering explosions, both high explosions, both high explosive and nuclear are summarized. The parameters governing an excavation explosion are reviewed

  15. Shutdown, dismantling and decommissioning of nuclear facilities in France - Guide no. 6 - Update of 30/08/2016

    International Nuclear Information System (INIS)

    2016-01-01

    After a recall of the regulatory context and references, this guide addresses the strategy for an immediate dismantling of an installation, the dismantling planning, the different phases of the end of life of nuclear base installations, the authorization of definitive stop and dismantling, the preliminary phase preparing the definitive stop (regulatory context, technical aspects), the dismantling phase (regulatory context, technical aspects for the concerned operations, the security functions, hardware important for security, taking ageing into account), and the final status of installations (downgrading, constraints)

  16. Expertise of the Oeko-Institute on the application to obtain permission to partially dismantle the Niederaichbach nuclear power plant

    International Nuclear Information System (INIS)

    1985-01-01

    This expertise gives an overview on the problems associated with the decommissioning and dismantling of the Niederaichbach nuclear power plant, considering technical and legal aspects. It wants to prove that the dismantling of this reactor cannot serve as evidence to prove the general feasibility of reactor dismantling. Much space is dedicated to the discussion about where the borderline should be drawn between radioactive and non-radioactive materials according to the ordinance on radiation protection. The reasons for rejecting the partial dismantling application are given. (DG) [de

  17. The role of congress in future disposal of fissile materials from dismantled nuclear weapons

    International Nuclear Information System (INIS)

    Donnelly, W.H.; Davis, Z.S.

    1991-01-01

    Assuming the Soviet Union remains intact as a major power and the superpowers do not retrogress to a new Cold War era, it is likely that the United States and the Soviet Union will eventually agree to deep cuts in their nuclear arsenals. Future arms control agreements may be coupled with companion agreements to stop production of fissile materials for nuclear weapons, to dismantle the warheads of the nuclear weapons, and to dispose of their fissile materials to prevent reuse in new warheads. Such agreements would be negotiated by the U.S. executive branch but probably would require ratification, funding, and enabling legislation from the U.S. Congress if they are to succeed. There follows a brief review of the ideas for disposal of fissile materials from dismantled nuclear warheads and the potential role and influence of the Congress in the negotiation, ratification, and implementation of U.S.-Soviet agreements for such disposal

  18. A methodology to simulate the cutting process for a nuclear dismantling simulation based on a digital manufacturing platform

    International Nuclear Information System (INIS)

    Hyun, Dongjun; Kim, Ikjune; Lee, Jonghwan; Kim, Geun-Ho; Jeong, Kwan-Seong; Choi, Byung Seon; Moon, Jeikwon

    2017-01-01

    Highlights: • Goal is to provide existing tech. with cutting function handling dismantling process. • Proposed tech. can handle various cutting situations in the dismantlement activities. • Proposed tech. can be implemented in existing graphical process simulation software. • Simulation results have demonstrated that the proposed technology achieves its goal. • Proposed tech. enlarges application of graphic simulation into dismantlement activity. - Abstract: This study proposes a methodology to simulate the cutting process in a digital manufacturing platform for the flexible planning of nuclear facility decommissioning. During the planning phase of decommissioning, visualization and verification using process simulation can be powerful tools for the flexible planning of the dismantling process of highly radioactive, large and complex nuclear facilities. However, existing research and commercial solutions are not sufficient for such a situation because complete segmented digital models for the dismantling objects such as the reactor vessel, internal assembly, and closure head must be prepared before the process simulation. The preparation work has significantly impeded the broad application of process simulation due to the complexity and workload. The methodology of process simulation proposed in this paper can flexibly handle various dismantling processes including repetitive object cuttings over heavy and complex structures using a digital manufacturing platform. The proposed methodology, which is applied to dismantling scenarios of a Korean nuclear power plant in this paper, is expected to reduce the complexity and workload of nuclear dismantling simulations.

  19. Radiological impact of very slightly radioactive copper and aluminium recovered from dismantled nuclear facilities

    International Nuclear Information System (INIS)

    Garbay, H.; Chapuis, A.M.; Cahuzac, O.; Guetat, P.; Haristoy, D.; Renaud, P.

    1991-01-01

    This work is in keeping with a large evaluation of doses likely to be received by public and non nuclear workers when dismantling nuclear installations. A bibliographic study and inquiries are realized, in the nuclear field to evaluate quantities of very slightly radioactive materials, in the conventional copper and aluminium recovery fields: waste recovery, metal refinery and processing, occupational or domestic uses of the metals or their alloys. In fact copper and aluminium waste arising from the dismantling of nuclear installations are mainly electrical cables constituents including insulation material which is mainly polyvinyle chloride (PVC). Estimated quantities are relatively low compared to steel quantities arising from dismantling. The study is based on the hypothesis of two PWRs dismantled per year, estimated quantities are 200 tonnes of copper, 40 tonnes of aluminium and 500 tonnes of PVC. A special case is also studied, which is the dismantling of low and medium uranium enrichment plant in Pierrelatte (France); the plant pipework is mainly made of an aluminium and magnesium alloy: AG3. From these informations, one can define exposure scenarios which may occur with a non negligible probability. The doses likely to be received under the foreseen conditions are calculated. Reference doses are established from recommendations of international organisations as ICRP, IAEA, NEA. Comparing the calculated doses and the reference doses, the activity level of the initial waste can be deduced as to follow the recommendations. The mean specific activity of main beta-gamma emitters in copper, aluminium and PVC are of the same order of magnitude, 10Bq.g -1 . In the case of alpha emitters specific activity levels depend on the material and on the radionuclide, from 2 Bq.g -1 to 10 Bq.g -1 in copper, from 10 Bq.g -1 to 50 Bq.g -1 in aluminium

  20. Radioactive and Other Effects of Nuclear Explosion

    International Nuclear Information System (INIS)

    Ilijas, B.; Cizmek, A.; Prah, M.; Medakovic, S.

    2008-01-01

    As a result of long lasting efforts of international community to definitely ban all test nuclear explosions, the Comprehensive Nuclear-Test-Ban Treaty (CTBT) was opened for signature in New York on 24 September 1996, when it was signed by 71 states, including Croatia. The State Office for Nuclear Safety (SONS) which, as an independent state regulatory authority has a responsibility for activities relating to nuclear safety, including the national authority over this Treaty, is actively engaged in CTBTO activities. The nuclear explosion causes a lot of effects (blast, thermal, radioactive, electromagnetic) which differs a lot in its nature, reach, lasting and other. The longest lasting aftermath is from the radioactive effects that cause a radioactive fallout and a lot of radioactive elements in the environment, created by the influence of a primary beam of radiation. Fission and fusion are the main source of radionuclide created by the nuclear explosion, and the longest lasting aftermaths are by the fission products, namely their offspring in natural disintegration chains. This can make contaminated areas inappropriate for life for very long periods. Even in the case of underground nuclear explosion (when underground cavity is formed with no effects on the surface), a leakage of radioactive gases through cracks is possible. A number of radionuclide is created by the neutron activation of elements naturally present in an environment, because a very strong neutron radiation appears in the moment of nuclear explosion. The abundance of particular radionuclide is a very much dependent of a place of performing nuclear explosion and a composition of soil or water in the vicinity.(author)

  1. Failure prevention with stress measurement for dismantling of nuclear facilities. Final report

    International Nuclear Information System (INIS)

    Komber, T.; Reimche, W.; Bach, F.W.

    2003-07-01

    The dismantling of nuclear facilities is in progress since 20 years in Germany. Practical experiences in decommissioning have shown, that problem can occur during dismantling operations caused by release of residual stresses. In this case cutting parts or cutting tools get jammed if mechanical cutting techniques are used. The aim of this research work was to develop measuring techniques for the determination of the stress state in RPV, to predict the deformation during dismantling operations. This can serve as additional base for improved decommissioning planning and for time optimised dismantling. For determination of the stress state in components two small and inexpensive measuring techniques were new designed, for remote-controlled on-site use in atmosphere and under water. For the nondestructive determination of the directional stress state, based on the magnetostriction and the Harmonic-Analysis of alternating magnetic fields, a new developed rotating sensor is in use with a principal magnetisation direction. Because of the mainly isotropic material properties and the directional stresses, measured Harmonic values are influenced mainly by the stress state in the surface areas. In this way it is possible to determine the stress state qualitatively and the direction of principal stresses in the surface areas of the component. As an alternative to the established wire strain gauge, which remote-controlled application is still not possible under water, a new slot jet cutting strain control technique was designed. This technique detects the deformation in the surface after stresses are cut free by a water jet. So the stress state could be determined quantitatively in the surface and assessed in the depth. With the help of these two measuring techniques it is possible to characterize the stress state along a planned cutting line. The use of an adapted FEM simulation enables to calculate and determine the deformation of the cutting gap beforehand. These information

  2. Glass produced by underground nuclear explosions

    International Nuclear Information System (INIS)

    Schwartz, L.; Piwinskii, A.; Ryerson, F.; Tewes, H.; Beiriger, W.

    1983-01-01

    Detonation of an underground nuclear explosive produces a strong shock wave which propagates spherically outward, vaporizing the explosive and nearby rock and melting, the surrounding rock. The vaporized material expands adiabatically, forming a cavity. As the energy is dissipated during the cavity formation process, the explosive and rock debris condense and mix with the melted rock. The melt flows to the bottom of the cavity where it is quenched by fractured rock fragments falling from above as the cavity collapses. Measurements indicate that about 740 tonnes of rock and/or soil are melted for every kiloton (10 12 calories) of explosive energy, or about 25% of the explosive energy goes to melting rock. The resulting glass composition reflects the composition of the unaltered rock with explosive debris. The appearance ranges from white pumice to dense, dark lava. The bulk composition and color vary with the amount of explosive iron incorporated into the glass. The refractory explosion products are mixed with the solidified melt, although the degree of mixing is variable. Electron microprobe studies of glasses produced by Rainier in welded tuff have produced the following results: glasses are dehydrated relative to the host media, glasses are extremely heterogeneous on a 20 μm scale, a ubiquitous feature is the presence of dark marble-cake regions in the glass, which were locally enriched in iron and may be related to the debris, optically amorphous regions provide evidence of shock melting, only limited major element redistribution and homogenization occur within the cavity

  3. Management of wastes from dismantled nuclear power plants

    International Nuclear Information System (INIS)

    1979-01-01

    The problems associated with the management of radioactive wastes encountered in the dismantling of a 1200MWe PWR reactor are considered. It is possible to extend all the conclusions reached in these studies to BWR's or other reactors of the same type using light water as a coolant and moderator. The studies performed established the specific characteristics of these wastes: a gamma activity due essentially to 60 Co (after some fifty years this radioisotope will have decayed sufficiently to enable it to be stored without shielding); the presence of 63 Ni and 59 Ni (these long half-life beta emitting radioisotopes need to be stored over a long or even indefinite period of time); contaminated components (60% of the overall wastes), the reselling of these components involving costly decontamination processes. Extensive studies have been conducted on the management and handling of these wastes: packaging, transport, processing, storage and a great many techniques have been developed. However, further developments in concentration methods (fusion, crushing, cryogenics etc) and the selection of storage sites for this type of waste are necessary. Depending on the solutions chosen, the global cost of the wastes coming from a 1200 MW PWR reactor can vary between 10 and 20 million BFR

  4. The conceptual solutions concerning decommissioning and dismantling of Russian civil nuclear powered ships

    International Nuclear Information System (INIS)

    Kulikov, Konstantin N.; Nizamutdinov, Rinat A.; Abramov, Andrey N.

    2013-01-01

    From 1959 up to 1991 nine civil nuclear powered ships were built in Russia: eight ice-breakers and one lash lighter carrier (cargo ship). At the present time three of them were taking out of service: ice-breaker 'Lenin' is decommissioned as a museum and is set for storage in the port of Murmansk, nuclear ice-breakers 'Arktika' and 'Sibir' are berthing. The ice-breakers carrying rad-wastes appear to be a possible source of radiation contamination of Murmansk region and Kola Bay because the ship long-term storage afloat has the negative effect on hull's structures. As the result of this under the auspices of the Federal Targeted Program 'Nuclear and Radiation Safety of Russia for 2008 and the period until 2015' the conception and projects of decommissioning of nuclear-powered ships are developed by the State corporation Rosatom with the involvement of companies of United Shipbuilding Corporation. In developing the principal provisions of conception of decommissioning and dismantling of icebreakers the technical and economic assessment of dismantling options in ship-repairing enterprises of North-West of Russia was performed. The paper contains description of options, research procedure, analysis of options of decommissioning and dismantling of nuclear ice-breakers, taking into account the principle of optimization of potential radioactive effect to personnel, human population and environment. The report's conclusions contain the recommendations for selection of option for development of nuclear icebreaker decommissioning and dismantling projects. (authors)

  5. Nuclear dismantling and asbestos elimination: the same challenge?

    International Nuclear Information System (INIS)

    Dadoumont, J.; Deboodt, P.

    1998-01-01

    The ALARA principle constitutes a powerful tool for workers dosimetry management in the nuclear field. A consequence of the application of this principle could be an accentuation of the nuclear risk face to the industrial risk. Using works of asbestos elimination in nuclear medium, the present article examines how a generalization of the utilization of the ALARA principle is conceivable and how the existing obstacles could be removed. (N.C.)

  6. Radiation protection during backfitting or dismantling work in the controlled area of nuclear facilities

    International Nuclear Information System (INIS)

    Baumann, J.; Kausch, S.; Palmowski, J.

    1980-01-01

    Backfitting measures or dismantling activities within the controlled area put special requirements on radiological protection. This is to be shown by the example of the following cases. Sanitation of the general decontamination services of the Karlsruhe Nuclear Research Center; waste water, equipment decontamination, incineration and packaging facility; dismantling and disposal of high-radiation components including decontamination of buildings of the Eurochemic reprocessing plant at Mol; reconstruction of the HDR plant for safety experiments together with waste management for components and systems, as e.g. pressure vessel internals, pipes etc.; exchange of the steam dryer and the water separator including planning of the conditioning process in the Wuergassen nuclear power plant. This lecture deals with the engineering and organizational problems, especially accounting for radiological protection and enters into planning of measures for radiological protection, their organization and execution, problems of direct and remote-controlled work also being discussed. The question of personnel qualification is also commented on. (orig.) [de

  7. Control of radioactive waste in dismantling of a nuclear facility; Control de residuos radiactivos en desmantelamiento de una instalacion nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Campayo, E.

    2014-07-01

    In the dismantling of a nuclear facility are generated radioactive waste that must be suitably processed. The overall process, in a simplified manner, contemplates the characterization in origin, their segregation on the basis of physical, mechanical, and radiological characteristics and their packaging. (Author)

  8. Application and development of dismantling technologies for decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Bach, W.; Kremer, G.; Ruemenapp, T.

    2006-01-01

    The decommissioning of nuclear installations poses a challenge to high performance underwater cutting technologies because of complex limiting conditions, like radioactive contamination, accessibility, geometry of work piece, material thickness and composition. For the safe dismantling of the moderator tank and the thermal shield of the Multi-purpose Research Reactor (MZFR) Karlsruhe the development and the use of thermal cutting tools will be demonstrated, in this case the underwater plasma arc cutting and the contact arc metal cutting (CAMC). (orig.)

  9. Quality Assurance in the Vandellos 1 Nuclear Power Plant Dismantling and Decommissioning Project

    International Nuclear Information System (INIS)

    Soto Lanuza, A.

    2000-01-01

    General description of the Quality Assurance System established and implemented for the efficient development of the current activities specified in the Dismantling and Decommissioning Plan for Vandellos I Nuclear Power Plant. Aspects related to the Quality organization, scope and applicability on the established Quality Assurance Manual, availability of requirements and recommendations on quality as well as actions to be taken for the correct verification on the quality and practical application of the Manual should be described. (Author)

  10. The dismantling of nuclear installations in the Grenoble CEA centre - Press book 2013

    International Nuclear Information System (INIS)

    Laveissiere, Stephane; Coronini, Vincent

    2013-01-01

    After having outlined the importance of the project for the Grenoble CEA centre, this document presents the objectives, issues and challenges of dismantling activities performed on various nuclear installations located in the CEA centre of Grenoble. Objectives are presented in terms of agenda, predicted production of radioactive wastes, budget, personnel and steering committee. The various nuclear installations are presented: experimental reactors (Melusine, Siloe, Siloette), LAMA (laboratory of analysis of active materials), STED (station for the treatment of effluents and wastes). The safety and protection of workers is addressed in terms of protection and monitoring measures, and of exposure to radiations. The next part deals with the monitoring of the environment (actors, history of control of the centre's releases, control points, releases, atmosphere monitoring, and hydrological monitoring). A second part presents the global strategy of the CEA for its activities of sanitation and nuclear dismantling: present operations, dismantling activities in Fontenay-aux-Roses and in Marcoule, economic organization, contribution of advanced technology in radiological measurement and control, simulation and modelling, decontamination techniques, cutting operations, and remotely controlled operations

  11. Magnitude determination for large underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Lawrence D [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    A method is presented for determining the local magnitudes for large underground nuclear explosions. The Gutenberg-Richter nomograph is applied to the peak amplitudes for 24 large underground nuclear explosions that took place in Nevada. The amplitudes were measured at 18 California Wood-Anderson stations located 150-810 km from the explosion epicenter. The variation of the individual station magnitudes and magnitude corrections and the variation of the average and rms error estimates in the magnitude determinations are examined with respect to distance, azimuth, and event location. The magnitude prediction capability of the Gutenberg-Richter nomograph is examined on the basis of these two criteria, and certain corrections are suggested. The azimuthal dependence of the individual station magnitudes is investigated, and corrections for the California stations are calculated. Statistical weighting schemes for two-component data are employed, and the assumptions and limitations in the use of peak amplitudes are discussed. (author)

  12. Dismantling of nuclear facilities: the industrial know-how; Demantelement des installations nucleaires: les voies de la maitrise industrielle

    Energy Technology Data Exchange (ETDEWEB)

    Lellament, R. [Societe Francaise d' Energie Nucleaire (SFEN), Groupe de Reflexion Energie/Environnement, 75 - Paris (France)

    2004-11-01

    Numerous nuclear facilities in laboratories or research reactors have been decommissioned and dismantled over the 2 last decades throughout the world. The valuable feedback experience has allowed nuclear industry to design, upgrade and test specific techniques for dismantling. These techniques are efficient although they have been validated on a reduced number of nuclear power plants. In France only 3 power units have been dismantled: Chinon A1, A2 and Brennilis (EL4) and they are not representative of the real park of EDF'reactors. 6 PWR-type reactors have already been dismantled in the Usa. The results of a survey concerning 26 countries shows that the dismantling cost is around 320 dollars/kWe, it represents 15% of the construction cost which is far from being excessive as it is often read in the media. The dismantling costs can be broken into: - de-construction (25-55%), - wastes from dismantling (17-43%), - security and monitoring (8-13%), - site reclamation (5-13%), and - engineering and project management (5-24%). (A.C.)

  13. Neutron albedo effects of underground nuclear explosion

    International Nuclear Information System (INIS)

    Yang Bo; Ying Yangjun; Li Jinhong; Bai Yun

    2013-01-01

    The neutron field distribution is affected by the surrounding medium in the underground nuclear explosion. It will influence the radiation chemical diagnosis. By Monte Carlo simulation, the fuel burnup induced by device and neutron albedo was calculated. The analysis method of albedo effect on radiation chemical diagnosis result under special environment was proposed. Neutron albedo should be considered when capture reaction burnup fraction is used, and then correct analysis can be carried out on the nuclear device.The neutron field distribution is affected by the surrounding medium in the underground nuclear explosion. It will influence the radiation chemical diagnosis. By Monte Carlo simulation, the fuel burnup induced by device and neutron albedo was calculated. The analysis method of albedo effect on radiation chemical diagnosis result under special environment was proposed. Neutron albedo should be considered when capture reaction burnup fraction is used, and then correct analysis can be carried out on the nuclear device. (authors)

  14. Electromagnetic signals from underground nuclear explosions

    International Nuclear Information System (INIS)

    Malik, J.; Fitzhugh, R.; Homuth, F.

    1985-10-01

    Electromagnetic fields and ground currents resulting from underground nuclear explosions have been observed since the first such event. A few measurements have been reported, but most have not. There also have been some speculations as to their origin; the two most generally proposed are the magnetic bubble and the seismoelectric effect. The evidence seems to favor the latter mechanism. 15 refs., 36 figs

  15. Financial precautions for the decommissioning and dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Lukes, R.; Salje, P.; Feldmann, F.J.

    1978-01-01

    Starting from the fact that the disposal of nuclear-technical plants requires considerable means, the article asks if the financial guarantee for decommissioning and disposal should be requested before giving the licence. He shows the possibilities to ensure financial provisions and to describe their advantages and disadvantages. Planned decommissioning is dealt with separately from unplanned, decommissioning. (UN) [de

  16. Vapor explosion studies for nuclear and non-nuclear industries

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, Rusi P. [Arden L. Bement, Jr. Professor Nuclear Engineering, School of Nuclear Engineering, 1290 Nuclear Engineering Building, Room 108C, Purdue University, West Lafayette, IN 47905 (United States)]. E-mail: rusi@purdue.edu

    2005-05-01

    Energetic melt-water explosions are a well-established contributor to risk for nuclear reactors, and even more so for the metal casting industry. In-depth studies were undertaken in an industry-national laboratory collaborative effort to understand the root causes of explosion triggering and to evaluate methods for prevention. The steam explosion triggering studies (SETS) facility was devised and implemented for deriving key insights into explosion prevention. Data obtained indicated that onset of base surface-entrapment induced explosive boiling-caused trigger shocks is a result of complex combination of surface wettability, type of coating (organic versus inorganic), degree of coating wearoff, existence of bypass pathways for pressure relief, charring and non-condensable gas (NCG) release potential. Of these parameters NCGs were found to play a preeminent role on explosion prevention by stabilizing the melt-water steam interface and acting as a shock absorber. The role of NCGs was experimentally confirmed using SETS for their effect on stable film boiling using a downward facing heated body through which gases were injected. The presence of NCGs in the steam film layer caused a significant delay in the transitioning of film-to-nucleate boiling. The role of NCGs on explosion prevention was thereafter demonstrated more directly by introducing molten metal drops into water pools with and without NCG bubbling. Whereas spontaneous and energetic explosions took place without NCG injection, only benign quenching occurred in the presence of NCGs. Gravimetric analyses of organic coatings which are known to prevent explosion onset were also found to release significant NCGs during thermal attack by melt in the presence of water. These findings offer a novel, simple, cost-effective technique for deriving fundamental insights into melt-water explosions as well as for explosion prevention under most conditions of interest to metal casting, and possibly for nuclear reactor

  17. An approach to evaluate the cutting time for the nuclear dismantling simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jonghwan; Hyun, Dongjun; Kang, Sinyoung; Kim, Ikjune; Jeong, Kwan-Seong; Choi, Byung-Seon; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Nuclear power plant (NPP) decommissioning involves various processes and technologies. Decommissioning should be performed after a comprehensive review of the information related to these processes and technologies. There are various means of prior examination and evaluation to ensure the feasibility and safety of the decommissioning process plan. Our dismantling simulation system aims to simulate and evaluate whole processes related to the dismantlement of core equipment of NPP such as the device preparation, cutting operation, waste transfer, and so on. This paper introduces the estimation methodology of the time required for the cutting processes based on real cutting conditions in order to provide effective economic evaluation functionalities used for the system. The methodology to estimate the time required for the remote cutting process in the nuclear dismantling simulation system was proposed. Among the factors which mainly determine the time, the cutting trace was directly calculated from the simulation system and the continuous cutting speed was obtained by proper order of the spline fitting with constraint conditions.

  18. Use of laser cutting techniques for dismantling tasks in nuclear facilities

    International Nuclear Information System (INIS)

    Haferkamp, H.; Drygalla, M.; Goede, M.

    2001-01-01

    A handguided laser processing system developed by laser zentrum Hannover e.V. (LZH) allows impressive cutting, notching, and material removal applications for the dismantling of nuclear power plants. The handguided unit is equipped with a motor drive for consistent processing results and flexible processing for as long as desired. It offers the possibility to adjust the nozzle as well as focal position in order that various materials with different material thicknesses may be processed. The set process parameters may be viewed on a display which also indicates the laser processing programme selected. An integrated exhaust system guarantees a shielded process. The operator is not only protected against process emissions but also against laser beam reflexions. The handguided unit is connected to the laser beam source via an optical fibre and can be used for laser output powers of up to 1500 W with a high beam quality. For handguided laser material processing low emissions at high feed rates as well as cutting kerf widths between 0.5 and 0.3 mm for special applications such as the dismantling of large facilities or units, etc. are decisive, especially when cutting metal sheets for the dismantling of nuclear power plants. (orig.)

  19. Use of laser cutting techniques for dismantling tasks in nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Haferkamp, H.; Drygalla, M.; Goede, M. [Laser Zentrum Hannover e.V. (Germany)

    2001-07-01

    A handguided laser processing system developed by laser zentrum Hannover e.V. (LZH) allows impressive cutting, notching, and material removal applications for the dismantling of nuclear power plants. The handguided unit is equipped with a motor drive for consistent processing results and flexible processing for as long as desired. It offers the possibility to adjust the nozzle as well as focal position in order that various materials with different material thicknesses may be processed. The set process parameters may be viewed on a display which also indicates the laser processing programme selected. An integrated exhaust system guarantees a shielded process. The operator is not only protected against process emissions but also against laser beam reflexions. The handguided unit is connected to the laser beam source via an optical fibre and can be used for laser output powers of up to 1500 W with a high beam quality. For handguided laser material processing low emissions at high feed rates as well as cutting kerf widths between 0.5 and 0.3 mm for special applications such as the dismantling of large facilities or units, etc. are decisive, especially when cutting metal sheets for the dismantling of nuclear power plants. (orig.)

  20. Dismantling and removal of the Niederaichbach nuclear power plant (KKN) to the 'Green Field'. Final report

    International Nuclear Information System (INIS)

    Valencia, L.; Prechtl, E.

    1998-04-01

    The major objective of the present project consisted in the complete dismantling and removal of the Niederaichbach nuclear power plant (KKN), ranging from the state of safe enclosure to re-establishing the original state of vegetation of the site (so-called 'green field'). By reaching this objective, principle feasibility of the complete removal of a power reactor was demonstrated. In addition, considerable experience has been gained with regard to the execution of all phases of such a complex project and project optimization. The following phases of the project can be distinguished: - Licensing procedure - dismantling of the inactive, contaminated and activated plant sections - disassembly of the activated building structures and decontamination of the buildings - demolition (conventional) of the buildings and recultivation of the site. Moreover, the project included the work performed under the direct supervision of the licensing authority, comprehensive radiation protection activities, the solution of waste management problems and the respective public relations work. (orig./MM) [de

  1. The management of radioactive wastes and the dismantling of nuclear installations in Spain

    International Nuclear Information System (INIS)

    Bouchet, Bertrand

    2014-08-01

    This report first presents the Spanish institutional framework, briefly presents the multi-year national plan of management of radioactive wastes, and indicates the origin and volume of radioactive wastes produced in Spain. It addresses the management of low and medium level wastes, the case of spent fuel and high level wastes (storage in pool and installations of temporary warehousing, project of a centralized temporary storage, the question of definitive management), and proposes an overview of R and D activities in the different domains of waste management in Spain: waste technology, technologies and processes of treatment, packaging and dismantling, materials and containment systems, behaviour and safety assessment, radiological protection and associated modelling, infrastructure and cooperation. The two last parts briefly address the funding of waste management and the dismantling of nuclear installations

  2. Nuclear explosion and internal contamination; Explosion nucleaire et contamination interne

    Energy Technology Data Exchange (ETDEWEB)

    Aeberhardt, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    By the study of the conditions of internal contamination due to the radioactive mixture produced by a nuclear explosion, the parts played by the relative weights of the different elements and the mode of expression of the doses are considered. Only the knowledge of the weight composition of the contamination mixture and of its evolution as a function of time can provide the required basis for the study of its metabolism in the organism. The curves which give the composition of the fission product mixture - in number of nuclei - - as a function of time - have been established. These curves are applied to some practical examples, particularly relative to the nature of contamination, radiotoxicity of some elements and assessment of hazards. (author) [French] Etudiant les modalites de la contamination interne par les elements radioactifs apparus lors d'une explosion nucleaire, le role de la 'masse' et le mode d'expression des doses sont envisages. La connaissance de la composition en 'masse' du melange contaminant et de son evolution en fonction du temps peut seule apporter les bases necessaires a l'etude de son comportement dans l'organisme. Les courbes donnant la composition du melange de produits de fission - en nombre de noyaux - - en fonction du temps - ont ete etablies. Quelques applications pratiques, relatives en particulier a la nature de la contamination, a la radiotoxicite de certains elements et a l'evaluation de risque, sont envisagees a titre d'exemple. (auteur)

  3. Seismic coupling of nuclear explosions. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D B [ed.; Defense Advanced Research Projects Agency, Arlington, VA (United States)

    1989-12-31

    The new Giant Magnet Experimental Facility employing digital recording of explosion induced motion has been constructed and successfully tested. Particle velocity and piezoresistance gage responses can be measured simultaneously thus providing the capability for determining the multi-component stress-strain history in the test material. This capability provides the information necessary for validation of computer models used in simulation of nuclear underground testing, chemical explosion testing, dynamic structural response, earth penetration response, and etc. This report discusses fully coupled and cavity decoupled explosions of the same energy (0.622 kJ) were carried out as experiments to study wave propagation and attenuation in polymethylmethacrylate (PMMA). These experiments produced particle velocity time histories at strains from 2 {times} 10{sup {minus}3} to as low as 5.8 {times} 10{sup {minus}6}. Other experiments in PMMA, reported recently by Stout and Larson{sup 8} provide additional particle velocity data to strains of 10{sup {minus}1}.

  4. Cost calculations for decommissioning and dismantling of nuclear research facilities

    International Nuclear Information System (INIS)

    Andersson, I.; Backe, S.; Cato, A.; Lindskog, S.; Efraimsson, H.; Iversen, Klaus; Salmenhaara, S.; Sjoeblom, R.

    2008-07-01

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility (planning, building and operation), but it was only in the nineteen seventies that the waste issue really surface. Actually, the IAEA guidelines on decommissioning have been issued as recently as over the last ten years, and international advice on finance of decommissioning is even younger. No general international guideline on cost calculations exists at present. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological prerequisites. Consequently, any cost estimates based mainly on the particulars of the building structures and installations are likely to be gross underestimations. The present study has come about on initiative by the Swedish Nuclear Power Inspectorate (SKI) and is based on a common need in Denmark, Finland, Norway and Sweden. The content of the report may be briefly summarised as follows. The background covers design and operation prerequisites as well as an overview of the various nuclear research facilities in the four participating countries: Denmark, Finland, Norway and Sweden. The purpose of the work has been to identify, compile and exchange information on facilities and on methodologies for cost calculation with the aim of achieving an 80 % level of confidence. The scope has been as follows: 1) to establish a Nordic network 2) to compile dedicated guidance documents on radiological surveying, technical planning and financial risk identification and assessment 3) to compile and describe techniques for precise cost calculations at early stages 4) to compile plant and other relevant data A separate section is devoted in the report to good practice for the specific purpose of early but precise cost calculations for research facilities, and a separate section is devoted to techniques for assessment of cost

  5. Cost calculations for decommissioning and dismantling of nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I. (Studsvik Nuclear AB (Sweden)); Backe, S. (Institute for Energy Technology (Norway)); Cato, A.; Lindskog, S. (Swedish Nuclear Power Inspectorate (Sweden)); Efraimsson, H. (Swedish Radiation Protection Authority (Sweden)); Iversen, Klaus (Danish Decommissioning (Denmark)); Salmenhaara, S. (VTT Technical Research Centre of Finland (Finland)); Sjoeblom, R. (Tekedo AB, (Sweden))

    2008-07-15

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility (planning, building and operation), but it was only in the nineteen seventies that the waste issue really surface. Actually, the IAEA guidelines on decommissioning have been issued as recently as over the last ten years, and international advice on finance of decommissioning is even younger. No general international guideline on cost calculations exists at present. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological prerequisites. Consequently, any cost estimates based mainly on the particulars of the building structures and installations are likely to be gross underestimations. The present study has come about on initiative by the Swedish Nuclear Power Inspectorate (SKI) and is based on a common need in Denmark, Finland, Norway and Sweden. The content of the report may be briefly summarised as follows. The background covers design and operation prerequisites as well as an overview of the various nuclear research facilities in the four participating countries: Denmark, Finland, Norway and Sweden. The purpose of the work has been to identify, compile and exchange information on facilities and on methodologies for cost calculation with the aim of achieving an 80 % level of confidence. The scope has been as follows: 1) to establish a Nordic network 2) to compile dedicated guidance documents on radiological surveying, technical planning and financial risk identification and assessment 3) to compile and describe techniques for precise cost calculations at early stages 4) to compile plant and other relevant data A separate section is devoted in the report to good practice for the specific purpose of early but precise cost calculations for research facilities, and a separate section is devoted to techniques for assessment of cost

  6. Dismantling of civilian nuclear powered fleet technical support vessels. engineering solutions - 59386

    International Nuclear Information System (INIS)

    Kulikov, Konstantin N.; Nizamutdinov, Rinat A.; Abramov, Andrey N.

    2012-01-01

    At the present time six nuclear technical support vessels are operated and maintained by Atomflot. Two of them (Volodarsky FTB (floating technical base) and Lepse FTB) were taken out of service for decommissioning and are stored afloat. One more vessel Lotta FTB should be decommissioned during next two years. The nuclear technological support ships carrying spent nuclear fuel (SNF), liquid and solid radioactive wastes (LRW and SRW) appear to be a possible radiation contamination of Murmansk region and Kola Bay because the Ship long-term storage afloat has the negative effect on hull's structures technical condition. As a result of this in the context of the Federal Program 'Nuclear and Radiation Safety' (2008-2015) NIPTB Onega OAO was engaged by state corporation Rosatom to develop the dismantling procedure for Volodarsky FTB and Lotta FTB. Before developing of nuclear technological support ships decommissioning projects the technical and economic assessment of decommissioning/dismantling was carried out. The following options were examined: - formation of module as one-piece Ship's hull for long-term storage at Saida Bay; - formation of separated modules for long-term storage at Saida Bay; - complete dismantling of hull's structures, systems and equipment with packing all generated SRW into certified long-term storage containers. This paper contains description of options, research procedure, comparative analysis of options of decommissioning and dismantling (D and D) of nuclear technological support ships and its difference with dismantling of nuclear submarine. On the basis of the technical and economic assessment of FTB D and D options the least expensive on the first D and D stage and the least duration option is the option 1 (Formation of module as one-piece Ship's hull for long-term storage at Saida Bay). By the implementation of the given option there will be the need of large areas for modules storage at Saida Bay. It was not considered while working out

  7. Better to detect nuclear explosions

    International Nuclear Information System (INIS)

    North, Bob

    1987-01-01

    In a 150 km 2 reserve just west of Yellowknife in the Northwest Territories, three GSC employees operate one of the most sensitive seismic arrays in existence for locating ground movement around the world. The array station is staffed year round despite the harsh climate. Since 1963 the Yellowknife seismic array has contributed data which will significantly aid international efforts to achieve a nuclear test ban treaty

  8. Investigation of specific applications of laser cutting for dismantling of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Tarroni, G.; De Zaiacomo, T.; Melandri, C.; Formignani, M.; Barilli, L.; Di Fino, M.; Picini, P.; Galuppi, G.; Rocca, C.; Manassero, G.; Migliorati, B.

    1992-01-01

    The aim of this work, performed on an experimental basis in a frame of strict collaboration between industry (FIAT-CIEI and FIAT-CRF in Turin) and public research laboratories (ENEA-PAS-FIBI in Bologna, ENEA-PAS-ISP and ENEA-TIB-TECNLAS in Rome) and supported by a CEC contract, was to bring out the items for better evaluation of the laser beam application possibilities in dismantling nuclear power plants. The main topics of the research have been: study and definition of the relevant basic parameters ruling the aerosol generation rate and behaviour in terms of physical and chemical characteristics. This work has been performed in a facility specifically designed for aerosol measurements and equipped with a 2kW laser source; study of the feasibility of local abatement of the aerosols produced and of the pressure drop in the HEPA filters; study of long distance transmission of the laser beam power performed with a 5kW laser source with an evaluation of the power loss and beam characteristic modifications; study of laser beam technique application for dismantling the Garigliano power plant steam drum in order to better demonstrate the feasibility of the use of this technique. The research resulted in the conclusion that the laser beam is actually appropriate for long distance dismantling of metal components.

  9. Cutting and decontamination technologies for nuclear facility dismantling; Technologien zur Zerlegung und zur Dekontamination von kerntechnischen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, Felix; Grone, Georg von; Schultmann, Frank

    2017-03-15

    The German Government's decision to phase-out nuclear power will lead to a substantial increase of the number of nuclear decommissioning and dismantling projects. The decommissioning of nuclear facilities must meet the requirements of the radiation protection ordinance. This study deals with the decontamination and dismantling technologies available to meet radiation protection requirements. The aim of this study is to determine the state of the art in the field of decommissioning and dismantling technologies. Furthermore, future trends in the development and application of such technologies should be identified. A detailed study of current literature provides an overview of established decommissioning technologies. Moreover, experts were consulted in order to facilitate a practical assessment. The experts' statements indicate that (apart from the chemical decontamination of the primary circuit) the use of mechanical methods is generally preferred. Abrasive methods are rated as particularly efficient. According to the experts, the development of new decontamination technologies may allow a more efficient decontamination. However, the success of a new technology will be subject to its application costs. Mechanical technologies are preferred for the dismantling of nuclear facilities. The band saw has been identified as a standard tool in nuclear dismantling. The survey has concluded that there is no need for new dismantling technologies. The potential lies in the optimization of existing processes and techniques. With regard to remotely operated systems, experts' opinions vary on whether the use of these systems will increase in future. Most areas inside a nuclear facility have low radiation levels that allow the use of human labour for the dismantling. However, there is a need for an improvement in the allocation and management of decommissioning projects.

  10. Propulsion of space ships by nuclear explosion

    Science.gov (United States)

    Linhart, J. G.; Kravárik, J.

    2005-01-01

    Recent progress in the research on deuterium-tritium (D-T) inertially confined microexplosions encourages one to reconsider the nuclear propulsion of spaceships based on the concept originally proposed in the Orion project. We discuss first the acceleration of medium-sized spaceships by D-T explosions whose output is in the range of 0.1 10 t of TNT. The launching of such a ship into an Earth orbit or beyond by a large nuclear explosion in an underground cavity is sketched out in the second section of the paper, and finally we consider a hypothetical Mars mission based on these concepts. In the conclusion it is argued that propulsion based on the Orion concept only is not the best method for interplanetary travel owing to the very large number of nuclear explosion required. A combination of a super gun and subsequent rocket propulsion using advanced chemical fuels appears to be the best solution for space flights of the near future.

  11. Horizontal dimensions of ionosphere agitation provoked by underground nuclear explosions

    International Nuclear Information System (INIS)

    Drobzheva, Ya.V.; Krasnov, V.M.; Sokolova, O.I.

    2001-01-01

    The horizontal dimensions of ionosphere agitation provoked by underground nuclear explosions have been experimentally determined for 13 explosions conducted at the Balapan test site of the Semipalatinsk test site. (author)

  12. Cost effective decommissioning and dismantling of nuclear power plants; Kosteneffizienz bei Stilllegung und Rueckbau von Kernkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Wasinger, Karl [AREVA NP GmbH, Offenbach (Germany)

    2012-10-15

    As for any large and complex project, the basis for cost effective decommissioning and dismantling of nuclear power plants is established with the development of the project. Just as its construction, dismantling of a nuclear power plant is similarly demanding. Daily changing situations due to the progress of construction - in the present case progress of dismantling - result in significant logistical challenges for project managers and site supervisors. This will be aggravated by the fact that a considerable amount of the removed parts are contaminated or even activated. Hence, not only occupational health, safety and environmental protection is to be assured, employees, public and environment are to be adequately protected against the adverse effect of radioactive radiation as well. Work progress and not least expenses involved with the undertaking depend on adherence to the planned course of actions. Probably the most frequent cause of deviation from originally planned durations and costs of a project are disruptions in the flow of work. For being enabled to counteract in a timely and efficient manner, all required activities are to be comprehensively captured with the initial planning. The effect initial activities may have on subsequent works until completion must particularly be investigated. This is the more important the larger and more complex the project actually are. Comprehensive knowledge of all the matters which may affect the progress of the works is required in order to set up a suitable work break-down structure; such work break-down structure being indispensable for successful control and monitoring of the project. In building the related organizational structure of the project, all such stakeholders not being direct part of the project team but which may potentially affect the progress of the project are to be considered as well. Cost effective and lost time injury free dismantling of decommissioned nuclear power plants is based on implementing

  13. Natural gas production from underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    1965-01-01

    A remote location in Rio Arriba County, NW. New Mexico, is being considered as the site for an experiment in the use of a nuclear explosive to increase production from a natural gas field. A feasibility study has been conducted by the El Paso Natural Gas Co., the U.S. Atomic Energy commission, and the U.S. Bureau of Mines. As presently conceived, a nuclear explosive would be set in an emplacement hole and detonated. The explosion would create a cylinder or ''chimney'' of collapsed rock, and a network of fractures extending beyond the chimney. The fractures are the key effect. These would consist of new fractures, enlargement of existing ones, and movement along planes where strata overlap. In addition, there are a number of intangible but important benefits that could accrue from the stimulating effect. Among these are the great increase in recoverable reserves and the deliverability of large volumes of gas during the periods of high demand. It is believed that this type of well stimulation may increase the total gas production of these low permeability natural gas fields by about 7 times the amounts now attainable.

  14. Underground nuclear explosions at Astrakhan, USSR

    International Nuclear Information System (INIS)

    Borg, I.Y.

    1982-01-01

    The three underground nuclear explosions recorded in 1980 and 1981 by Hagfors Observatory in Sweden are in the vicinity of Astrakhan on the Caspian Sea. They are believed to be associated with the development of a gas condensate field discovered in 1973. The gas producing horizons are in limestones at 4000 m depth. They are overlain by bedded, Kungarian salts. Salt domes are recognized in the area. Plans to develop the field are contained in the 11th Five Year Plan (1981-82). The USSR has solicited bids from western contractors to build gas separation and gas processing plant with an annual capacity of 6 billion m 3 . Ultimate expansion plans call for three plants with the total capacity of 18 billion m 3 . By analogy with similar peaceful nuclear explosions described in 1975 by the Soviets at another gas condensate field, the underground cavities are probably designed for storage of unstable, sour condensate after initial separation from the gaseous phases in the field. Assuming that the medium surrounding the explosions is salt, the volume of each cavity is on the order of 50,000 m 3

  15. Integrated control system for nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ragsdale, William F [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    The Integrated Control System (ICS) has been developed to facilitate Plowshare nuclear detonations by following a unified system approach. This system consolidates the techniques for firing, safety program, scientific program, and communications. Maximum emphasis is placed upon control and data transmission by radio rather than hardwire or coaxial cable. The ICS consists of a Command Point (CP) Trailer, a radio repeater station, a field station (the ICE Box), and several chassis located in the explosive canister. Commands originate in the CP and are transmitted via microwave radio to the ICE Box; monitors are returned to the CP from the canister, the ICE Box, and sensors near ground zero. The system allows complete checkout and operation before shipment to the field. The explosive canister may be dry-run at the assembly area (at NTS) before shipment to the field. The basic detonation functions for every event are: 1. Arming and firing commands in the explosive canister and at surface ground zero. 2. Environmental monitors and suitable arming monitors in the explosive canister. 3. Safety monitors at the zero site for weather, RAMS (Remote Area Monitoring System), and cavity collapse. Secondary functions that may be required for a specific project are: 4. Scientific program of phenomenology measurements. 5. Explosive performance measurements. 6. Ground zero television. 7. Auxiliary communications such as local telephones, VHF radio. By combining functions that have previously been performed by separate organizations and systems, the ICS attempts a minimum cost detonation service. Economy of operation results because: 1. Operating personnel work on more than one sub-system. 2. Interfaces and interface complexity are minimized. 3. A reduced dependence upon signal cables results from a microwave-based system. 4. Pre-fabrication allows test operation before shipment to the field and minimizes setup time in the field. The ICS is in use on the Sturtevant event and is

  16. Interim storage of dismantled nuclear weapon components at the U.S. Department of Energy Pantex Plant

    International Nuclear Information System (INIS)

    Guidice, S.J.; Inlow, R.O.

    1995-01-01

    Following the events of 1989 and the subsequent cessation of production of new nuclear weapons by the US, the mission of the Department of Energy (DOE) Nuclear Weapons Complex has shifted from production to dismantlement of retired weapons. The sole site in the US for accomplishing the dismantlement mission is the DOE Pantex Plant near Amarillo, Texas. Pending a national decision on the ultimate storage and disposition of nuclear components form the dismantled weapons, the storage magazines within the Pantex Plant are serving as the interim storage site for pits--the weapon plutonium-bearing component. The DOE has stipulated that Pantex will provide storage for up to 12,000 pits pending a Record of Decision on a comprehensive site-wide Environmental Impact Statement in November 1996

  17. Cavities produced by underground nuclear explosions

    International Nuclear Information System (INIS)

    Butkovich, T.R.

    1976-01-01

    This investigation studied the displacement of rock that formerly occupied cavities produced by underground nuclear explosions. There are three possible explanations for this displacement: the volume could be displaced to the free surface; it could occupy previously air-filled pores removed from the surrounding rock through compaction; or it could be accounted for by persisting compressive stresses induced by the outgoing shock wave. The analysis shows it unlikely that stored residual elastic stresses account for large fractions of cavity volumes. There is limited experimental evidence that free surface displacement accounts for a significant portion of this volume. Whenever the explosion mediums contain air-filled pores, the compaction of these pores most likely accounts for all the volume. Calculations show that 4 percent air-filled porosity can account for all the cavity volume within about 4 cavity radii and that even 1 percent can account for a significant fraction of the volume

  18. Surface effects of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

    1997-06-01

    The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

  19. Investigation of specific applications of laser cutting for dismantling of nuclear power plants

    International Nuclear Information System (INIS)

    Tarroni, G.; De Zaiacomo, T.; Melandri, C.; Formignani, M.; Barilli, L.; Di Fino, M.; Picini, P.; Galuppi, G.; Rocca, C.; Manassero, G.; Migliorati, B.

    1991-02-01

    The aim of this work, performed on an experimental basis in a frame of strict collaboration between industry (FIAT-CIEI and FIAT-CRF in Turin) and public research laboratories (ENEA-PAS-FIBI in Bologna, ENEA-PAS-ISP and ENEA-TIB-TECNLAS in Rome) and supported by a CEC contract, was to bring out the items for better evaluation of the laser beam application possibilities in dismantling nuclear power plants. The main topics of the research have been: 1) study and definition of the relevant basic parameters ruling the aerosol generation rate and behaviour in terms of physical and chemical characteristics. This work has been performed in a facility specifically designed for aerosol measurements and equipped with a 2kW laser source; 2) study of the feasibility of local abatement of the aerosols produced and of the pressure drop in the HEPA filters; 3) study of long distance transmission of the laser beam power performed with a 5kW laser source with an evaluation of the power loss and beam characteristic modifications; 4) study of laser beam technique application for dismantling the Garigliano power plant steam drum in order to better demonstrate the feasibility of the use of this technique. The research resulted in the conclusion that the laser beam is actually appropriate for long distance dismantling of metal components. Although the main aspects of the laser cutting process have been examined, some problems remain to be investigated. This could be performed, after proper cost-benefit evaluation, during a future decommissioning programme. (author)

  20. Investigation of specific applications of laser cutting for dismantling of nuclear power plants

    International Nuclear Information System (INIS)

    Migliorati, B.; Difino, M.; Manassero, G.

    1990-01-01

    The aim of this work, performed on an experimental basis in a frame of strict collaboration between industry (Fiat-CIEI and Fiat-CRF in Turin) and public research laboratories (ENEA-PAS-FIBI in Bologna, ENEA-PAS-ISP and ENEA-TIB-TECNLAS in Rome) and supported by a CEC contract, was to bring out the items for better evaluation of the laser beam application possibilities in dismantling nuclear power plants. The main topics of the research have been: (i) study and definition of the relevant basic parameters ruling the aerosol generation rate and behaviour in terms of physical and chemical characteristics. This work has been performed in a facility specifically designed for aerosol measurements and equipped with a 2kW laser source; (ii) study of the feasibility of local abatement of the aerosols produced and of the pressure drop in the HEPA filters; (iii) study of long-distance transmission of the laser beam power performed with a 5KW laser source with an evaluation of the power loss and beam characteristic modifications; (iv) study of laser beam technique application for dismantling the Garigliano power plant steam drum in order to better demonstrate the feasibility of the use of this technique. The research resulted in the conclusion that the laser beam is actually appropriate for long-distance dismantling of metal components. Although the main aspects of the laser cutting process have been examined, some problems remain to be investigated. This could be performed, after proper cost-benefit evaluation, during a future decommissioning programme

  1. Investigation of specific applications of laser cutting for dismantling of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Tarroni, G; De Zaiacomo, T; Melandri, C; Formignani, M; Barilli, L [ENEA - Area Energia, Ambiente e Salute - Centro Ricerche Energia ' Ezio Clementel' - Bologna (Italy); Di Fino, M [ENEA - Area Energia, Ambiente e Salute, Centro Ricerche Energia, Frascati, Rome (Italy); Picini, P; Galuppi, G; Rocca, C [ENEA - Area Energia, Ambiente e Salute, Centro Ricerche Energia, Casaccia, Rome (Italy); Manassero, G [Centro Ricerche FIAT, Orbassano, Torino (Italy); Migliorati, B [FIAT-CIEI, Torino (Italy)

    1991-02-15

    The aim of this work, performed on an experimental basis in a frame of strict collaboration between industry (FIAT-CIEI and FIAT-CRF in Turin) and public research laboratories (ENEA-PAS-FIBI in Bologna, ENEA-PAS-ISP and ENEA-TIB-TECNLAS in Rome) and supported by a CEC contract, was to bring out the items for better evaluation of the laser beam application possibilities in dismantling nuclear power plants. The main topics of the research have been: 1) study and definition of the relevant basic parameters ruling the aerosol generation rate and behaviour in terms of physical and chemical characteristics. This work has been performed in a facility specifically designed for aerosol measurements and equipped with a 2kW laser source; 2) study of the feasibility of local abatement of the aerosols produced and of the pressure drop in the HEPA filters; 3) study of long distance transmission of the laser beam power performed with a 5kW laser source with an evaluation of the power loss and beam characteristic modifications; 4) study of laser beam technique application for dismantling the Garigliano power plant steam drum in order to better demonstrate the feasibility of the use of this technique. The research resulted in the conclusion that the laser beam is actually appropriate for long distance dismantling of metal components. Although the main aspects of the laser cutting process have been examined, some problems remain to be investigated. This could be performed, after proper cost-benefit evaluation, during a future decommissioning programme. (author)

  2. Delayed signatures of underground nuclear explosions

    Science.gov (United States)

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.

    2016-03-01

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.

  3. Recognition method for three-dimensional image in dismantling of nuclear power plant

    International Nuclear Information System (INIS)

    Chino, Koichi.

    1993-01-01

    The present invention constitutes three-dimensional images of structures, in a short period of time, at a place where a man can hardly access upon dismantling of a large scaled nuclear power facilities contaminated by radioactive materials. That is, a television set is disposed on a movable rack. Images of structures as an objective are taken and compared with previously inputted data, to constitute rough images. The television set is moved to an evaluated position where a view angle changes sufficiently based on the rough images. Images of the objective structures are taken at the position after movement. A plurality of thus obtained images and previously stored information concerning the structures are compared, examined and corrected if required, and the three-dimensional images of the objective structures are recognized. According to the present invention, the three-dimensional images of the structures in the nuclear power plant can be recognized automatically at high accuracy by one television set. (I.S.)

  4. Evaluation of the secondary radiation impact on personnel during the dismantling of contaminated nuclear equipment

    Directory of Open Access Journals (Sweden)

    Stankunas Gediminas

    2013-01-01

    Full Text Available The article contains a numerical analysis of the secondary radiation contribution to the total radiation affecting the operational personnel during the dismantling activities of the contaminated equipment at a nuclear power plant. This study considers a widely applicable Monte Carlo particle transport code MCNPX and real Ignalina nuclear power plant records. A simplified albedo method is investigated in order to analyze the selected geometrical design cases. Additionally, the impact of the secondary radiation on the personnel dose was analyzed. The numerical MCNPX simulation allowed ascertaining the optimal distance between the source and the wall for the working personnel in closed rooms with contaminated equipment. The developed dose rate maps of the secondary radiation showed cross-sectional distribution of the dose rate inside the enclosed area.

  5. Automatic Estimation of the Radiological Inventory for the Dismantling of Nuclear Facilities

    International Nuclear Information System (INIS)

    Garcia-Bermejo, R.; Felipe, A.; Gutierrez, S.; Salas, E.; Martin, N.

    2008-01-01

    The estimation of the radiological inventory of Nuclear Facilities to be dismantled is a process that included information related with the physical inventory of all the plant and radiological survey. Estimation of the radiological inventory for all the components and civil structure of the plant could be obtained with mathematical models with statistical approach. A computer application has been developed in order to obtain the radiological inventory in an automatic way. Results: A computer application that is able to estimate the radiological inventory from the radiological measurements or the characterization program has been developed. In this computer applications has been included the statistical functions needed for the estimation of the central tendency and variability, e.g. mean, median, variance, confidence intervals, variance coefficients, etc. This computer application is a necessary tool in order to be able to estimate the radiological inventory of a nuclear facility and it is a powerful tool for decision taken in future sampling surveys

  6. Explosive plugging of nuclear heat exchangers

    International Nuclear Information System (INIS)

    Crossland, B.; Bahrani, A.S.; Townsley, W.J.

    1977-01-01

    Explosive welding is a well established process for cladding one metal on another or for welding tubes to tubeplates or lap welding, etc. Recently, the process has been adapted to plugging of heat exchangers in conventional and nuclear power plant, where it has already been accepted especially in situations where the access is difficult and remote from the site of plugging. The paper describes the explosive plugging techniques developed in the Department of Mechanical and Industrial Engineering of The Queen's University of Belfast for the reheater and superheater of the PFR, and for the reheater of the AGR. For the PFR a point charge system has been used which causes a spherical expansion of the plug, which gives two zones of welding. Initially for the much larger plug required for the AGR it was proposed to use a parallel stand-off welding set-up, but it proved difficult or impossible to avoid a crevice. Consequently, a rim charge set-up has been developed which gives a circular ring expansion of the plug with two zones of welding. Besides the problem of the design of the plug and explosive charge geometry it has also been necessary to consider the distortion of holes adjoining the hole in which a plug is welded. Bunging of adjoining holes in order to reduce the distortion has also been investigated

  7. Evolution of radiation protection of overall decommissioning and Dismantling of a Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ortiz, M. T.; Ondaro, M.; Irun, I.; Just, J.

    2000-01-01

    From the point of view of Radiological Protection, the overall Decommissioning and Dismantling (D and D) Plan of a Nuclear Power Plant cannot be considered in isolation without considering the evolution of the radiological characteristics of the installation and the site itself from previous, during and final states. This experience of D and D is the first in Spain and in other European countries due to several aspects: 1) the reference reactor technology, 2) total grass power, and 3) management of a great amount of materials to be released. Three decommissioning alternatives were studied: Indefinite maintenance in shutdown state, Stage 1. Stage 2 for the defuelled reactor vessel and contents, with decontamination of most of the rest of the site. Immediate dismantling to Stage 3. Stage 2 was the alternative selected with the release of 80% of the site, keeping the remaining 20% of the site as a regulated area, housing the reactor vessel in a new structure and removing the radioactive waste. The above, along with the fact that this is a specific type of natural uranium-graphite-gas plant (NUGG) and that ownership of the facility has been transferred for dismantling (from HIFRENSA to ENRESA), implies a series of preliminary considerations that, for the purposes of this article, are compiled in the following aspects: a) Preliminary phase prior to transfer, b) Preparatory phase, and c) Dismantling phase. This paper describes aspects under the D and D experiences at CN-V1 NPP, now in progress, from the point of view of the radiological aspects in relation with the continuous updating of the source term. Operative Radiological nuclide vectors, applicable in the Radiation Protection tasks, are also commented to prevent and evaluate several risks during the execution of the works. Finally, there is a description of the results obtained from the work performed to decay the three actual nuclide vectors, to evaluate and obtain activity calculations for the release of the

  8. Challenges of dismantling

    International Nuclear Information System (INIS)

    Chevet, P.F.; Schilz, F.; Rondeau, J.M.; Piketty, L.; Dupraz, B.; Conte, D.; Duguey, M.; Louet, C.A.; Dorison, A.; Dutzer, M.; Boucau, J.; Eimer, M.; Boutin, D.; Revilla, J.L.; Golshan, M.; Smith, G.

    2015-01-01

    This document is made up of short articles whose issue is reactor dismantling. The first article presents the French strategy that can be featured by immediate dismantling (the dismantling process is prepared a long time before decommissioning and begins as soon as the reactor is shut down) and massive dismantling (a lot of nuclear facilities will be decommissioned in a near future). The following 4 articles give the viewpoints of ASN (Nuclear Safety Authority), EDF (for its fleet of PWRs), CEA (for its experimental reactors and nuclear facilities) and AREVA (for the EURODIF George Besse plant). Costs and financing are dealt with in an article that says that the cost is greatly dependent on the final state: a complete nuclear-free area or an area whose radioactivity is below safe standards and that law implies to constitute provisions all along the operating life of the facility to cover dismantling costs. Dismantling generates a huge amount of very low-level radioactive wastes particularly metal scraps that might be recycled and get out of nuclear industry, an article details the feasibility of such recycling. Another article shows the impact of massive dismantling on the management of radioactive wastes. In an article Westinghouse presents its experience in the cutting of internal equipment of the reactor core. The last 2 articles presents the dismantling strategies in Spain and in the UK. (A.C.)

  9. Decommissioning and dismantling of nuclear and fuel cycle facilitites in Spain

    International Nuclear Information System (INIS)

    Gravalos, J.M.; Alamo, S.

    1992-01-01

    In the recent past, and as a consequence of a fire in the turbine island of the Vandellos I Graphite Gas type Nuclear Plant, which damaged the facility to a point that recovery was not judged economically feasible, the authorities decided on the final shutdown of the plant. Several studies were performed in order to select the dismantling strategy to be adopted. In spite of Valdellos I being the first commercial reactor to be decommissioned in Spain, several research reactors and fuel cycle facilities, which have reached the end of their commercial lives, are at present at different stages of their dismantling and decommissioning process as is described further. The development of an exemption policy for below regulatory concern wastes is considered a very significant issue regarding decommissioning as it has a large impact on radioactive waste volumes, and thus on costs. Aware of this problem ENRESA together with Spanish regulatory authorities are working in close cooperation with CEC research programs to complete the development of criteria and methodologies for the application of exemption practices in Spain

  10. Underwater-manipulation system for measuring- and cutting tasks in dismantling decommissioned nuclear facilities. Final report

    International Nuclear Information System (INIS)

    Stegemann, D.; Reimche, W.; Hansch, M.; Spitzer, M.

    1995-01-01

    Not only manipulators are necessary for dismantling and inspection of structure parts in decomissioned nuclear facilities, but flexible underwater-vehicles. Free-diving underwater-vehicles for inspection and dismantling tasks are still not developed and tested. Aim of the project is the development of sensors and devices for the position determination and the depth regulation. For inspection tasks an ultrasonic measurement and dosimeter device shall be built up. A measurement device has been developed which evaluates the ultrasonic time of flight from a transmitter at the vehicle to several receivers, installed in the reactor pressure vessel. The depth regulation is based on a pressure sensor and the direct control of the thrusters. The ultrasonic measurements are realized by an adapted ultrasonic card, the γ-dosimetry with an ionization chamber and a pA-amplifier. An acoustic orientation system was built up, which measures very accurately with one transmitter mounted on the vehicle and four receivers. Problem occur by reflection from the walls of the basin. The depth regulation is working faultless. The ultrasonic device is preferably used for distance measurement. The radiation measurement device was tested and mounted in the vehicle. (orig./HP) [de

  11. Radiation protection procedures for the dismantling and decontamination of nuclear facility

    International Nuclear Information System (INIS)

    Almeida, C.C.; Garcia, R.H.L.; Cambises, P.B.S.; Silva, T.M. da; Paiva, J.E.; Carneiro, J.C.G.G.; Rodrigues, D.L.

    2013-01-01

    This work presents the operational procedures and conditions to ensure the required level of protection and safety during the dismantling and decontamination of a natural uranium purification facility at IPEN-CNEN/SP, Brazil. The facility was designed for chemical processing of natural uranium, aiming to obtain the uranyl nitrate, nuclear-grade. Afterwards, the installation operated in treatment and washing of thorium sulfate and thorium oxycarbonate dissolution, to get thorium nitrate as final product. A global evaluation of the potential exposure situation was carried out by radioprotection team in order to carry out the operations planned. For the facility dismantling, was established both measures to control the radiation exposure at workplace and individual monitoring of workers. A combination of physical, chemical and mechanical methods was used in the decontamination procedure applied in this unit. Concerning the internal operation procedures of IPEN-CNEN/SP, the radioactive waste control, the transport of the radioactive materials and authorization of use of decontaminated equipment were also subject of study. (author)

  12. Nuclear explosives in water-resource management

    Energy Technology Data Exchange (ETDEWEB)

    Piper, Arthur M [United States Department of the Interior, Geological Survey (United States)

    1970-05-15

    Nuclear explosives afford diverse tools for managing our water resources. These include principally: the rubble column of a fully contained underground detonation, the similar rubble column of a retarc, the crater by subsidence, the throwout crater of maximum volume (the latter either singly or in-line), and the ejecta of a valley-slope crater. By these tools, one can create space in which to store water, either underground or on the land surface - in the latter instance, to a considerable degree independently of the topography. Underground, one can accelerate movement of water by breaching a confining bed, a partition of a compartmented aquifer, or some other obstruction in the natural 'plumbing system'. Finally, on the land surface, one can modify the natural pattern of water flow, by canals excavated with in-line detonation. In all these applications, the potential advantage of a nuclear explosive rests chiefly in undertakings of large scale, under a consequent small cost per unit of mechanical work accomplished.

  13. The AIDA-MOX 1 program: Results of the French-Russian study on peaceful use of plutonium from dismantled Russian Nuclear weapons

    International Nuclear Information System (INIS)

    Yegorov, N.N.; Kudriavtsev, E.; Poplavsky, V.; Polyakov, A.; Ouin, X.; Camarcat, N.; Sicard, B.; Bernard, H.

    1997-01-01

    The Intergovernmental Agreement signed on November 12, 1992, between the governments of France and the Russian Federation instituted cooperation between the two countries for the safe elimination of the excess Russian nuclear weapons. France has allocated 400 million francs to this program, covering transportation and dismantling of nuclear weapons, interim storage and subsequent commercial use of the nuclear materials from the dismantled weapons, nuclear materials accountancy and safeguards, and scientific research. The concept of loading commercial Russian reactors with fuel fabricated from the plutonium recovered from dismantled nuclear weapons of the former Soviet Union is gaining widespread acceptance, and is at the heart of the French-Russian AIDA/MOX project

  14. The nuclear installations dismantling and the management of radioactive wastes; Le demantelement des installations nucleaires et la gestion des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-01-15

    As other industrial activities, the nuclear industry causes risks. The risks bound to the dismantling operations are known and controlled. After a presentation of the dismantling and radioactive wastes challenge, this document proposes recommendations based on the first experiences of dismantling and wastes storage. It aims then to answer to the questions relative to the cost and the financing of the operations. Finally it wonders on the public information modalities. (A.L.B.)

  15. Declassification of radioactive water from a pool type reactor after nuclear facility dismantling

    Science.gov (United States)

    Arnal, J. M.; Sancho, M.; García-Fayos, B.; Verdú, G.; Serrano, C.; Ruiz-Martínez, J. T.

    2017-09-01

    This work is aimed to the treatment of the radioactive water from a dismantled nuclear facility with an experimental pool type reactor. The main objective of the treatment is to declassify the maximum volume of water and thus decrease the volume of radioactive liquid waste to be managed. In a preliminary stage, simulation of treatment by the combination of reverse osmosis (RO) and evaporation have been performed. Predicted results showed that the combination of membrane and evaporation technologies would result in a volume reduction factor higher than 600. The estimated time to complete the treatment was around 650 h (25-30 days). For different economical and organizational reasons which are explained in this paper, the final treatment of the real waste had to be reduced and only evaporation was applied. The volume reduction factor achieved in the real treatment was around 170, and the time spent for treatment was 194 days.

  16. Stimulation of innovation in the course of decommissioning and dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Bach, F.W.

    1996-01-01

    For the last 30 years, national and international projects have been performed for development and testing of dismantling and cutting technology, covering theoretical experiments as well as laboratory work and applications in pilot projects. An aspect of major interest of the scientific and technical studies was the adjustment of conventional thermal, mechanical, hydraulic and (electro)chemical cutting processes to the specific requirements posed by nuclear facilities. At first sight, one would not expect much innovative potential in the field of cutting technology alone, except for, perhaps, process optimizations such as extensions of dwell times or process stability. However, the intelligent application of available cutting techniques and tools or instruments, leading in their proper combinations to novel techniques and experience, is an interesting challenge to scientists and engineers and hold a wide range of innovative potential. The paper presents some cutting techniques of particular interest in this context. (orig./DG)

  17. Study of aerosol diffusion behaviors in dismantling nuclear facilities. Contract research

    International Nuclear Information System (INIS)

    Shimada, Taro; Tachibana, Mitsuo; Yanagihara, Satoshi

    2001-09-01

    To evaluate aerosol diffusion behaviors under dismantling of nuclear facilities, plasma arc cuttings were conducted in the enclosure. The flow of air and high temperature gas in the enclosure were visualized, and the temperature distributions in the enclosure and the number density and size distribution of aerosol and the temperature in air of outlet flow were measured in the experiments. As a result, it was confirmed that ascending high temperature gas flow produced by the plasma arc is corresponded with aerosol diffusion behavior during cutting. It was also confirmed that after completing the cuttings the aerosol tends to fall due to decreasing of flow velocity of high temperature gas and the aerosol which reaches near the floor is resuspended by relatively high velocity exhaust flow. (author)

  18. Decommissioning and dismantling of nuclear research facilities in Switzerland: lessons learned

    International Nuclear Information System (INIS)

    Leibundgut, Fritz

    2017-01-01

    Paul Scherrer Institute is the largest research institute for natural and engineering science in Switzerland. It operated various nuclear facilities from 1960 to 2011: Research reactors DIORIT, SAPHIR and PROTEUS, and an incineration plant for low and medium level radioactive waste. Concerning SAPHIR research reactor: in operation from 1958 to 1993, planning of decommissioning from 1998 to 2000. Decommissioning work started in 2004. Finishing is planned for 2019. Concerning DIORIT research reactor: operation as DIORIT I (20 MWth) from 1960 to 1967, then reconstruction to DIORIT II (30 MWth) and operation from 1970 until 1977. Planning of decommissioning from 1992 to 1994. Decommissioning work started in 1994 and was finished in 2012. Concerning PROTEUS research reactor: in operation from 1966 to 2011. Planning of decommissioning from 2013 to 2014. Starting of decommissioning work is planned for 2017, finishing is planned for the end of 2018 Incineration plant: In operation from 1974 to 2002. Planning of decommissioning from 2011 to 2012. Starting of decommissioning work in 2016. Finishing planned for end of 2019. Treatment of various material categories from dismantling: Concerning aluminum: because of the production of H_2 during solidification in concrete, it was necessary to minimize the surface area. When dismantling research reactors, the aluminum removed was melted in an induction furnace and poured into a 4.5 m"3 concrete container to solidify. Cutting the metal and handling it was largely accomplished remote control, using conventional technology. Concerning Steel/Cast-iron: the storage containers to be filled determined the method used for reducing the size of these materials, and the technique used for handling them. The goal was to optimize the packing density to reduce repository costs. The selected method of reducing the size of components is to cut them up using diamond-tipped tools, like saw blades. Concerning Graphite: for graphite, grinding was the

  19. Detecting and identifying underground nuclear explosions

    International Nuclear Information System (INIS)

    Spiliopoulos, S.

    1996-01-01

    The monitoring of underground nuclear explosions involves, first determining that the signals have originated from a test site and if so, then a pattern recognition analysis is undertaken to determine whether the signals originate from an explosion rather than an earthquake. In this we are aided by seismic observations of previous explosions from each test site. To determine the origin of a signal use is first made of the two seismic arrays in central Australia. Each of these arrays consists of 20 spatially separated sensors (seismometers), and each of which can provide a preliminary estimate of the location of the source. In practice this is done automatically by inserting delays into the output of each of the sensors to compensate for a seismic signal taking a finite time to cross the array, and then adding the output of each sensor to form what are called 'array beams'. When the correct delays for a particular azimuth and wavespeed (corresponding to a particular source location) have been inserted, the signals recorded by each sensor will be in phase and the energy in the array beam will be a maximum. Because the seismic background noise at each sensor is not correlated, this beam forming also improves the signal-to-noise ratio. In this sense a seismic array is equivalent to other arrays of sensors - e.g. a radar antenna. Having determined that a signal originates from somewhere near a test site a more precise location can be obtained from the times that the signal arrives at different seismic stations

  20. Detecting and identifying underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Spiliopoulos, S. [Australian Geological Survey Organisation, Anzac Park, Canberra, ACT (Australia). Department of Primary Industry

    1996-12-31

    The monitoring of underground nuclear explosions involves, first determining that the signals have originated from a test site and if so, then a pattern recognition analysis is undertaken to determine whether the signals originate from an explosion rather than an earthquake. In this we are aided by seismic observations of previous explosions from each test site. To determine the origin of a signal use is first made of the two seismic arrays in central Australia. Each of these arrays consists of 20 spatially separated sensors (seismometers), and each of which can provide a preliminary estimate of the location of the source. In practice this is done automatically by inserting delays into the output of each of the sensors to compensate for a seismic signal taking a finite time to cross the array, and then adding the output of each sensor to form what are called `array beams`. When the correct delays for a particular azimuth and wavespeed (corresponding to a particular source location) have been inserted, the signals recorded by each sensor will be in phase and the energy in the array beam will be a maximum. Because the seismic background noise at each sensor is not correlated, this beam forming also improves the signal-to-noise ratio. In this sense a seismic array is equivalent to other arrays of sensors - e.g. a radar antenna. Having determined that a signal originates from somewhere near a test site a more precise location can be obtained from the times that the signal arrives at different seismic stations

  1. National School of Dismantling

    International Nuclear Information System (INIS)

    Ivaldi, Fabienne

    2003-01-01

    The National Institut of Nuclear Sciences and Techniques founded of 2001 a National School of Dismantling, NSD, at the end, which was validated by CEA, COGEMA, EDF and ANDRA. This school addresses four major issues: Decontamination; Dismantling; Demolition and waste Disposal (4D). Dedicated for instructing scientific and technical knowledge and know-how, needed in dismantling the nuclear installations, NSD has as targets: - personnel at engineering and operational level; - personnel occupied with involved trades from conception through intervention; - students and employees on leave; - employees while training on the job. Initial basic education for students in collaboration with schools and universities concerns: - master degree in radioactive waste management; - master degree in dismantling; - professional license in 3 D; - pro 4 D graduation. NSD is also engaged in continual formation for employees qualified, or not, adapted to the needs generated by the following tasks and personnel: - introduction in dismantling; - project team; - specialist engineer; - team head; - agent for remedial action; - agent for dismantling. The National School of Dismantling joins a network of human and technological capabilities confined within the 4 D frame, namely: - scientific and technical competencies (experts, instructors working in the nuclear field and dismantling); - pedagogical competence (professionals from basic and continual education); - specific material means such as those used by construction site schools, mock-ups, rooms for practical training etc

  2. General phenomenology of underground nuclear explosions; Phenomenologie generale des explosions nucleaires souterraines

    Energy Technology Data Exchange (ETDEWEB)

    Derlich, S; Supiot, F [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    An essentially qualitatively description is given of the phenomena related to underground nuclear explosions (explosion of a single unit, of several units in line, and simultaneous explosions). In the first chapter are described the phenomena which are common to contained explosions and to explosions forming craters (formation and propagation of a shock-wave causing the vaporization, the fusion and the fracturing of the medium). The second chapter describes the phenomena related to contained explosions (formation of a cavity with a chimney). The third chapter is devoted to the phenomenology of test explosions which form a crater; it describes in particular the mechanism of formation and the different types of craters as a function of the depth of the explosion and of the nature of the ground. The aerial phenomena connected with explosions which form a crater: shock wave in the air and focussing at a large distance, and dust clouds, are also dealt with. (authors) [French] On donne une description essentiellement qualitative des phenomenes lies aux explosions nucleaires souterraines (explosion d'un seul engin, d'engins en ligne et explosions simultanees). Dans un premier chapitre sont decrits les phenomenes communs aux explosions contenues et aux explosions formant un cratere (formation et propagation d'une onde de choc provoquant la vaporisation, la fusion et la fracturation du milieu). Le deuxieme chapitre decrit les phenomenes lies aux tirs contenus (formation d'une cavite et d'une cheminee). Le troisieme chapitre est consacre a la phenomenologie des tirs formant un cratere et decrit notamment le mecanisme de formation et les differents types de crateres en fonction de la profondeur d'explosion et de la nature du terrain. Les phenomenes aeriens lies aux explosions formant un cratere: onde de pression aerienne et focalisation a grande distance, nuages de poussieres, sont egalement abordes. (auteurs)

  3. Implementation of the environmental management plan for the dismantling of nuclear powered submarines at Zvezdochka Shipyard, Russia

    International Nuclear Information System (INIS)

    Washer, M.; Cull, M.; Crocker, C.; Ivanov, V.; Shepurev, A.; Khan, B.U.Z.; Lee, M.; Gerchikov, M.

    2007-01-01

    Department of Foreign Affairs and International Trade Canada is funding the dismantling of twelve nuclear powered submarines (NPS) from the Russian Federation's Northern Fleet as part of the Global Partnership Initiative against weapons and materials of mass destruction. In this paper, work performed by Nuclear Safety Solutions Ltd. and its collaborators in support of these activities is described. First, an environmental impact assessment of towing and dismantling NPS in the Kola Peninsula, and the Barents and White Seas was performed. The assessed activities included: towing of NPS from Naval Bases in Murmansk Region to the Zvezdochka shipyard (Severodvinsk); defuelling of onboard reactors; dismantling of NPS at Zvezdochka; and waste management. The assessment helped identify mitigation measures that could prevent the occurrence of adverse effects. Next, the project team defined and implemented an environmental management plan (EMP) based on the shipyard's existing environmental policy and the mitigating measures identified during the environmental assessment. Specific targets were defined to track the progress of the EMP implementation, and are described in this paper. During the study period, three Victor Class NPS were dismantled at Zvezdochka. The major benefits realized include: removal and spent nuclear fuel assemblies; treatment/decontamination of liquid and solid radioactive waste; and the cultivation of collaboration between Russian and Western expertise. (author)

  4. Implementation of the environmental management plan for the dismantling of nuclear powered submarines at Zvezdochka shipyard, Russia

    International Nuclear Information System (INIS)

    Washer, M.; Cull, M.; Crocker, C.; Ivanov, V.; Shepurev, A.; Khan, B.U.Z.; Lee, M.; Gerchikov, M.

    2008-01-01

    Department of Foreign Affairs and International Trade Canada is funding the dismantling of twelve nuclear powered submarines (NPS) from the Russian Federation's Northern Fleet as part of the Global Partnership Initiative against weapons and materials of mass destruction. In this paper, work performed by Nuclear Safety Solutions Ltd. and its collaborators in support of these activities is described. First, an environmental impact assessment of towing and dismantling NPS in the Kola Peninsula, and the Barents and White Seas was performed. The assessed activities included: towing of NPS from Naval Bases in Murmansk Region to the Zvezdochka shipyard (Severodvinsk); defuelling of onboard reactors; dismantling of NPS at Zvezdochka; and waste management. The assessment helped identify mitigation measures that could prevent the occurrence of adverse effects. Next, the project team defined and implemented an environmental management plan (EMP) based on the shipyard's existing environmental policy and the mitigating measures identified during the environmental assessment. Specific targets were defined to track the progress of the EMP implementation, and are described in this paper. During the study period, three Victor Class NPS were dismantled at Zvezdochka. The major benefits realized include: removal of spent nuclear fuel assemblies; treatment/ decontamination of liquid and solid radioactive waste; and the cultivation of collaboration between Russian and Western expertise. (author)

  5. Radiological hazards from nuclear explosions and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Cockcroft, J D

    1955-01-01

    The level of radioactive contamination in the world produced by all the nuclear bomb explosions and peaceful atomic energy activities is at present so low that it should not cause any anxiety. The radiation level which gives rise to serious harmful effects is probably at least a thousand times the present level of contamination. We do not at present know this figure with any accuracy, and long-term genetic studies are required to determine this.

  6. Development of project management data calculation models relating to dismantling of nuclear facilities. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Sukegawa, Takenori; Ohshima, Soichiro; Shiraishi, Kunio; Yanagihara, Satoshi [Department of Decommissioning and Waste Management, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai Ibaraki (Japan)

    1999-02-01

    Labor-hours necessary for dismantling activities are generally estimated based on experience, for example, as a form of unit productivity factors such as the relationship between labor-hours and weight of components dismantled which were obtained by actual dismantling activities. The project management data calculation models together with unit productivity factors for basic dismantling work activities were developed by analyzing the data obtained from the Japan Power Demonstration Reactor (JPDR) dismantling project, which will be applicable to estimation of labor-hours in various dismantling conditions. Typical work breakdown structures were also prepared by categorizing repeatable basic dismantling work activities for effective planning of dismantling activities. The labor-hours for dismantling the JPDR components and structures were calculated by using the code system for management of reactor decommissioning (COSMARD), in which the work breakdown structures and the calculation models were contained. It was confirmed that the labor-hours could be easily estimated by COSMARD through the calculations. This report describes the labor-hour calculation models and application of these models to COSMARD. (author)

  7. Further studies on melting of radioactive metallic wastes from the dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Diepenau, H.; Seidler, M.

    1991-01-01

    Melting of radioactive waste metal from the dismantling/refurbishing of nuclear installations is an acceptable way for nuclear waste recycling. This material can be used for the casting of qualified products such as type A- and type B-waste containers. The results of the melting facility -TAURUS- were used to build the industrial scale melting facility -CARLA- at Siempelkamp. The test results and the longterm-behaviour of the facility showed that the licensing conditions can be respected. The radiation exposure of workers was in the range of the admissible limit for non-exposed people. The radiation exposure of the environment is far below the value of the German Radiation Protection Law. The activity distribution within the product is homogeneous, so that its activity can be measured exactly before it is sent back in the nuclear area. By melting waste copper it is possible to respect the specific limits for unrestricted reuse, whereas for brass the limit for conditioned reuse in the industrial field was reached. Radioactive carbon can only be bound in form of small graphite lamellas or nodules in the cast iron; i.e. radioactive carbon can only be added to the melt as crushed material. During the research programme 2000 Mg of waste steel was melted at industrial scale and mainly products such as shielding blocks and waste containers were produced. 12 figs., 27 tabs., 6 refs

  8. U.S. nuclear exotica: Peaceful use of nuclear explosives

    International Nuclear Information System (INIS)

    Sylves, R.T.

    1986-01-01

    Project Plowshare, the U.S. Atomic Energy Commission (AEC) program to investigate possible non-military uses for nuclear explosives, was an offshoot of President Eisenhower's ''Atoms for Peace'' proposal. Plowshare was, in a sense, two separate programs. One was for nuclear excavation projects applied to grand-scale civil engineering ventures. Much of what had sustained nuclear excavation Plowshare in the 1960s was the hope and belief that this new instrument of civil engineering would prove its value in construction of a second great Pan-American canal. The other was for contained underground blasting to serve parties interested in mining, underground natural gas storage, and long-term disposal of toxic and radioactive materials. Both programs were intertwined with military and national security-related experiments. Given the heavy security which justifiably surrounded AEC use of thermonuclear devices, and fears of nuclear terrorism as well as nuclear proliferation concerns, even Plowshare's most ardent supporters never expected the project to hand private industry a thermonuclear explosive device

  9. A row-charge nuclear cratering explosion in alluvial rocks

    International Nuclear Information System (INIS)

    Kireev, V.V.; Kedrovskij, O.L.; Valentinov, Yu.A.; Myasnikov, K.V.; Nikiforov, G.A.; Prozorov, L.B.; Potapov, V.K.

    1975-01-01

    A brief description is given of the first row-charge nuclear cratering explosion in alluvial rocks carried out on the route of the Pechora-Kolva canal. The authors explain the purposes of the explosion, describe the geological conditions, indicate the emplacement parameters and yields of the charges, present data on the dynamics of development of the explosion and report on its seismic effects. The parameters of the resulting trench cut and the characteristics of the rock ejecta are also given. The possibility of using nuclear explosions for hydrotechnological projects requiring large excavations in a thick stratum of weak water-bearing rocks is considered

  10. Cavity pressure history of contained nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, C E [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    Knowledge of pressure in cavities created by contained nuclear explosions is useful for estimating the possibility of venting radioactive debris to the atmosphere. Measurements of cavity pressure, or temperature, would be helpful in evaluating the correctness of present code predictions of underground explosions. In instrumenting and interpreting such measurements it is necessary to have good theoretical estimates of cavity pressures. In this paper cavity pressure is estimated at the time when cavity growth is complete. Its subsequent decrease due to heat loss from the cavity to the surrounding media is also predicted. The starting pressure (the pressure at the end of cavity growth) is obtained by adiabatic expansion to the final cavity size of the vaporized rock gas sphere created by the explosion. Estimates of cavity size can be obtained by stress propagation computer codes, such as SOC and TENSOR. However, such estimates require considerable time and effort. In this paper, cavity size is estimated using a scheme involving simple hand calculations. The prediction is complicated by uncertainties in the knowledge of silica water system chemistry and a lack of information concerning possible blowoff of wall material during cavity growth. If wall material blows off, it can significantly change the water content in the cavity, compared to the water content in the ambient media. After cavity growth is complete, the pressure will change because of heat loss to the surrounding media. Heat transfer by convection, radiation and conduction is considered, and its effect on the pressure is calculated. Analysis of cavity heat transfer is made difficult by the complex nature of processes which occur at the wall where melting, vaporization and condensation of the gaseous rock can all occur. Furthermore, the melted wall material could be removed by flowing or dripping to the cavity floor. It could also be removed by expansion of the steam contained in the melt (blowoff) and by

  11. Underground Nuclear Explosions and Release of Radioactive Noble Gases

    Science.gov (United States)

    Dubasov, Yuri V.

    2010-05-01

    Over a period in 1961-1990 496 underground nuclear tests and explosions of different purpose and in different rocks were conducted in the Soviet Union at Semipalatinsk and anovaya Zemlya Test Sites. A total of 340 underground nuclear tests were conducted at the Semipalatinsk Test Site. One hundred seventy-nine explosions (52.6%) among them were classified as these of complete containment, 145 explosions (42.6%) as explosions with weak release of radioactive noble gases (RNG), 12 explosions (3.5%) as explosions with nonstandard radiation situation, and four excavation explosions with ground ejection (1.1%). Thirty-nine nuclear tests had been conducted at the Novaya Zemlya Test Site; six of them - in shafts. In 14 tests (36%) there were no RNG release. Twenty-three tests have been accompanied by RNG release into the atmosphere without sedimental contamination. Nonstandard radiation situation occurred in two tests. In incomplete containment explosions both early-time RNG release (up to ~1 h) and late-time release from 1 to 28 h after the explosion were observed. Sometimes gas release took place for several days, and it occurred either through tunnel portal or epicentral zone, depending on atmospheric air temperature.

  12. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21

  13. Using SAFRAN Software to Assess Radiological Hazards from Dismantling of Tammuz-2 Reactor Core at Al-tuwaitha Nuclear Site

    Science.gov (United States)

    Abed Gatea, Mezher; Ahmed, Anwar A.; jundee kadhum, Saad; Ali, Hasan Mohammed; Hussein Muheisn, Abbas

    2018-05-01

    The Safety Assessment Framework (SAFRAN) software has implemented here for radiological safety analysis; to verify that the dose acceptance criteria and safety goals are met with a high degree of confidence for dismantling of Tammuz-2 reactor core at Al-tuwaitha nuclear site. The activities characterizing, dismantling and packaging were practiced to manage the generated radioactive waste. Dose to the worker was considered an endpoint-scenario while dose to the public has neglected due to that Tammuz-2 facility is located in a restricted zone and 30m berm surrounded Al-tuwaitha site. Safety assessment for dismantling worker endpoint-scenario based on maximum external dose at component position level in the reactor pool and internal dose via airborne activity while, for characterizing and packaging worker endpoints scenarios have been done via external dose only because no evidence for airborne radioactivity hazards outside the reactor pool. The in-situ measurements approved that reactor core components are radiologically activated by Co-60 radioisotope. SAFRAN results showed that the maximum received dose for workers are (1.85, 0.64 and 1.3mSv/y) for activities dismantling, characterizing and packaging of reactor core components respectively. Hence, the radiological hazards remain below the low level hazard and within the acceptable annual dose for workers in radiation field

  14. The effects of fallout from nuclear explosions

    International Nuclear Information System (INIS)

    Cook, J.

    1987-01-01

    Early fallout from surface or near surface nuclear explosions leads to radiation doses at levels sufficient to cause deaths from the acute effects of radiation over large areas, particularly if no means of avoiding exposure are available. For example, early fallout from a 10 megatonne weapon could lead to doses in excess of 4 or 5 grays (at which half of those exposed die) over an area of about 25,000 square kilometres, in a deposit perhaps 400 km long and 80 km wide. The survivors of early fallout are likely to experience a significant increase in thyroid disease (for children at the time of exposure), in leukaemia and a probably detectable increase in cancer. It is unlikely that there would be any significant increase in the incidence of genetic disability and ill-health in the children of the survivors. Delayed fallout would be distributed fairly uniformly around the earth. The additional cancer and genetic risks from delayed fallout are small, the cancer risk being less than 1 per cent of natural incidence and the genetic risk being undetectable

  15. Subsidence caused by an underground nuclear explosion

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, W W [Environmental Research Corp., Alexandria, VA (United States)

    1970-05-15

    An underground nuclear detonation creates a cavity, which may be followed by the formation of a rubble chimney and possibly by a surface subsidence crater. A knowledge of the mechanisms of surface and subsurface subsidence is valuable not only because of the potential engineering uses of the chimneys and craters that may form, but also for the prevention of surface damage. Some of the parameters that are of interest in the subsidence phenomenon are the height and volume of the chimney, the porosity of the chimney, the crater size (depth and radius) and shape, and the time required after detonation for formation of the chimney or crater. The influence of the properties of the subsidence medium on the geometry of the subsidence crater must be considered. The conditions under which partial or complete subsidence is prevented must also be studied. The applicability of the relations that have been developed for the flow of bulk solids for relatively small masses and low pressures to the subsidence problem associated with nuclear explosions is examined. Rational modifications are made to describe the subsidence problem. Sensitivity of the subsidence parameters to material properties and the prevailing geometry is shown. Comparison with observed results at the Nevada Test Site is made and the variations encountered are found to be within reasonable limits. The chimney size and subsidence crater dimensions are found to be a function of the bulking characteristics of the medium, the strength parameters, the dimensions of the subsurface cavity, and the depth of the cavity. The great influence of the strength parameters on the collapse times is shown. For a given medium, the prevention of subsidence is dependent on the cavity size. (author)

  16. The imitator of nuclear explosion signals for field operations

    International Nuclear Information System (INIS)

    Wang Lusong; Xie Yujun; Tan Youjin; Wang Liping

    1999-01-01

    According to the present system of the nuclear explosion monitoring equipment (NEME), the imitator of nuclear explosion signals for field operation is urgently needed by NEME, which has been fitted out to the army and some new types that will be finalized soon. The authors have made the imitator for the equipment, and as the cause of this research, it can be used not only in training and maintenance for army but also in research and production for scientific research institutions and industrial enterprise. Function of this imitator is to imitate the NEMP, the light and shock wave signals of nuclear explosion in proper order. The time difference of the process accords with the true location of nuclear explosion. This research is of great military importance

  17. A process for separating aggregate from concrete waste during the dismantlement of nuclear power plants

    International Nuclear Information System (INIS)

    Koga, Yasuo; Inoue, Toshikatsu; Tateyashiki, Hisashi; Sukekiyo, Mitsuaki; Okamoto, Masamichi; Asano, Touichi.

    1997-01-01

    The decommissioning and dismantling of nuclear power plants will produce a large quantity of non-active waste concrete. From the viewpoint of recycling of this waste concrete the recovery of aggregate contained in concrete at 80% and reuse of it into a new plant construction are envisioned. For these purposes we have studied the recovery process of aggregate from concrete composed of a heating step followed by a milling step onto waste concrete blocks. We have found that higher operation temperature brings a better effect for the separation of aggregate from a concrete body, however too high temperature may reversely degrade a quality of recovered aggregate itself. The most effective heating temperature which is considered not to give the damage to a quality of aggregate stays between 200-500degC. The effect of a duration at such temperature zone is relatively small. As a conclusion we have found that 300degC of heating temperature and 30-120 minutes of a duration in a rod mill with high efficiency of rubbing work for getting coarse aggregate and an agitate mill for fine aggregate might be proper operating conditions under which we can recover both coarse and fine aggregate with the quality within JASS 5N standard. (author)

  18. Study into the applicabilities of lasers for the dismantling of decommissioned nuclear power plant

    International Nuclear Information System (INIS)

    Haferkamp, H.; Bach, F.W.; Vinke, T.; Kinzel, A.; Mack, N.; Kuboschek, M.; Grobe, K.

    1989-01-01

    The project was intended to screen current laser technology for potential applications of laser beams in the dismantling of decommissioned nuclear power plant. As with CO 2 , Nd-YAG, or excimer lasers, developments clearly proceed towards higher output power. The market survey shows the CO 2 -laser to be the most efficient at present, with a great number of laser units available on the market in the range up to 5 kW, and some in the range up to 15 kW. The CO 2 -laser has exclusively been used so far for cutting work in steel plates thicker than 10 mm. Characteristic conditions of application include the high output power of more than 2 kW, long beam lengths, oxygen supply at strongly increased working pressure, sometimes from external sources. The maximum cutting work achieved in the laboratory was 110 mm in structural steel, 90 mm in austenitic steel, and 160 mm in concrete, all under conditions of easy access to the material. It remains to be examined whether steel cutting work at constrained positions will allow separation of wall thicknesses of more than 10 mm. Laser beam cutting under water is feasible in principle but has not been much studied yet. There also are only few sampling results of measurements of dust and aerosol quantities resulting from laser beam cutting work. (orig.) [de

  19. Shutdown and degradation: Optimization of thermal cutting processes for the dismantling of nuclear facilities. Final report

    International Nuclear Information System (INIS)

    Schultz, H.; Hammer, G.; Hampe, A.; Homburg, A.

    1996-01-01

    Cutting processes are required for the dismantling of nuclear facilities which emit only a minimum of contaminated material in the form of shavings, sparks, dust, steam concentrate etc. and equipment which is easy to handle and can be remote controlled. A check of the usual mechanical, thermal and thermo-mechanical cutting procedures showed to what varying extent they are suitable for these tasks. Also the laser beam cutting was able to reduce the material discharge by optimal joints. For the investigation, the plasma cutting and the laser beam cutting were used with the aim of reducing considerably the material discharge by changing the adjust and device setting data for theses cases. The adapting of the speed and the amounts of gas turned out to be effective measures in reducing discharge. Adhesion of metal mass and slag in the joint edge could be achieved with aggressive bearth formation. The expectations made of the project could be fulfilled and process parameters for a pollutant optimised cutting determined. (orig.) [de

  20. EDF decommissioning and dismantling policy a global commitment to safety, environment and cost efficiency of nuclear energy

    International Nuclear Information System (INIS)

    Rondeau, J.

    2001-01-01

    Until recently, EDF's policy regarding the dismantling of its decommissioned nuclear power plants was to reach 'level 2' (release of non-nuclear facilities) and to postpone final dismantling for another 30-40 years. Today, some studies suggest that a full deconstruction program of the first generation NPPs (9 units) could be optimized over the period 2000 - 2025. EDF has acquired during the last ten years an unique experience, both as an operator and as an engineering company, in the frame of the decommissioning programme of its own NPPs. Many types of reactors, including graphite moderated one, PWR, are at varying stages of the dismantling process.Plant operation quality is at the core of a satisfactory control of releases. Over the last decade, as a result of the efforts of all operating sites associated with good in-house operating practice feedback, the overall release volume has been divided by two, and the release activity by one hundred. Another issue given increased attention is radiological cleanliness. EDF-DPN launched a 'radiological cleanliness' action plan revolving around two main themes: increased monitoring of nuclear-related transportations, site entrance and access to controlled areas, along with on-site radiological cleanliness, particularly during maintenance work tasks. Progress is already apparent in several points at issue and the overall objective of the action plan should be attained. (author)

  1. Removing of the fuel element storage basin by explosive technique in the course of decommissioning of the Nuclear research reactor FR 2 in the research center Karlsruhe. Permission and technical execution

    International Nuclear Information System (INIS)

    Jehle, P.; Freund, H.U.

    1999-01-01

    The fuel element storage basin was removed by explosive technique in the course of the decommissioning of the nuclear research reactor FR 2. This basin consisted of 6.800 tons of heavily reinforced concrete with 25 tons of stainless steel lining. The reactor building including residual radioactive inventory was constructionally connected to the basin and had to stay undamaged. For this reason and due to the fact that the storage basin as operational part of the nuclear facility was subject to the German nuclear law the dismantling had to follow stringent licensing and control requirements. Special restrictions concerned the tolerable reactor building vibrations and the direct blast loadings which could affect the structural integrity of the building enclosing the basin. The explosive dismantling operations which also included the final removal of the building foundation were successfully performed in 90 separate blasts employing 490 kg of commercial explosives. (orig.) [de

  2. Parameters of Dismantling Techniques Related to Costs for Decommissioning of Nuclear Facilities

    International Nuclear Information System (INIS)

    Jeong, Kwanseong; Moon, Jeikwon; Choi, Byungseon

    2012-01-01

    Reliable cost estimating is one of the most important elements of decommissioning operation. Reliable cost estimating is one of the most important elements of decommissioning planning. Alternative technologies may be evaluated and compared on their efficiency and effectiveness, and measured against a baseline cost as to the feasibility and benefit derived from the technology. This principle ensures that the cost consideration is economically sound and practical for funding. This paper provides a list with basic review of cutting and dismantling techniques, including some typical characteristics if available, as well as aspects of implementation, parameters of cutting and dismantling techniques in decommissioning costing. This paper gives an overview of the principles of the unit factor approach and its implementation in costing in relation to dismantling activities. In general, proper evaluation of decommissioning costs is important for following issues and relevant measures for achieving the listed aspects are: · Selection of a decommissioning strategy and activities: several decommissioning options should be evaluated: · Support to a cost-benefit analysis to ensure that the principle of optimization and reasonably practicable measures are applied: the extent of evaluated decommissioning options should cover all possible scenarios for dismantling activities; · Estimate of required financial resources for the selected strategy: the selected option should involve the dismantling activities in a structure and extent relevant to real procedure of dismantling activities; · Preparation of the project schedule, workforce requirements and phased funding needs: dismantling activities should be structured according to the tasks of the decommissioning schedule; · Definition of measures for proper management and maintenance of resources for safe and timely decommissioning: the time distribution and safety related parameters of dismantling activities should be known

  3. Gas pressure from a nuclear explosion in oil shale

    International Nuclear Information System (INIS)

    Taylor, R.W.

    1975-01-01

    The quantity of gas and the gas pressure resulting from a nuclear explosion in oil shale is estimated. These estimates are based on the thermal history of the rock during and after the explosion and the amount of gas that oil shale releases when heated. It is estimated that for oil shale containing less than a few percent of kerogen the gas pressure will be lower than the hydrostatic pressure. A field program to determine the effects of nuclear explosions in rocks that simulate the unique features of oil shale is recommended. (U.S.)

  4. Industry potential of large scale uses for peaceful nuclear explosives

    International Nuclear Information System (INIS)

    Russell, P.L.

    1969-01-01

    The industrial potential for peaceful uses of nuclear explosions entering a critical stage of development. Should Project Gasbuggy, an experiment to determine to what extent an underground nuclear explosion can stimulate the production of natural gas from low-permeability formations, prove a technical or economic success, a great step forward will have been made. Should other experiments now being considered in natural gas, oil shale, copper, coal, water resources, underground storage, and others, also demonstrate technical or economic advantage, it is conceivable to expect peaceful nuclear explosion to grow from our current rate of one or two experimental shots per year to hundreds of production explosions per year. This growth rate could be severely restricted or reduced to zero if public safety and environmental control cannot be exercised. (author)

  5. Industry potential of large scale uses for peaceful nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Russell, P L [Bureau of Mines, Denver, CO (United States)

    1969-07-01

    The industrial potential for peaceful uses of nuclear explosions entering a critical stage of development. Should Project Gasbuggy, an experiment to determine to what extent an underground nuclear explosion can stimulate the production of natural gas from low-permeability formations, prove a technical or economic success, a great step forward will have been made. Should other experiments now being considered in natural gas, oil shale, copper, coal, water resources, underground storage, and others, also demonstrate technical or economic advantage, it is conceivable to expect peaceful nuclear explosion to grow from our current rate of one or two experimental shots per year to hundreds of production explosions per year. This growth rate could be severely restricted or reduced to zero if public safety and environmental control cannot be exercised. (author)

  6. Melting of contaminated steel scrap from the dismantling of the CO2 systems of gas cooled, graphite moderated nuclear reactors

    International Nuclear Information System (INIS)

    Feaugas, J.; Jeanjacques, M.; Peulve, J.

    1994-01-01

    G2 and G3 are the natural Uranium cooled reactors Graphite/Gas. The two reactors were designed for both plutonium and electricity production (45 MWe). The dismantling of the reactors at stage 2 has produced more than 4 000 tonnes of contaminated scrap. Because of their large mass and low residual contamination level, the French Atomic Energy Commission (CEA) considered various possibilities for the processing of these metallic products in order to reduce the volume of waste going to be stored. After different studies and tests of several processes and the evaluation of their results, the choice to melt the dismantled pipeworks was taken. It was decided to build the Nuclear Steel Melting Facility known as INFANTE, in cooperation with a steelmaker (AHL). The realization time schedule for the INFANTE lasted 20 months. It included studies, construction and the licensing procedure. (authors). 2 tabs., 3 figs

  7. Trend analysis of explosion events at overseas nuclear power plants

    International Nuclear Information System (INIS)

    Shimada, Hiroki

    2008-01-01

    We surveyed failures caused by disasters (e.g., severe storms, heavy rainfall, earthquakes, explosions and fires) which occurred during the 13 years from 1995 to 2007 at overseas nuclear power plants (NPPs) from the nuclear information database of the Institute of Nuclear Safety System. Incorporated (INSS). The results revealed that explosions were the second most frequent type of failure after fires. We conducted a trend analysis on such explosion events. The analysis by equipment, cause, and effect on the plant showed that the explosions occurred mainly at electrical facilities, and thus it is essential to manage the maintenance of electrical facilities for preventing explosions. In addition, it was shown that explosions at transformers and batteries, which have never occurred at Japan's NPPs, accounted for as much as 55% of all explosions. The fact infers that this difference is attributable to the difference in maintenance methods of transformers (condition based maintenance adopted by NPPs) and workforce organization of batteries (inspections performed by utilities' own maintenance workers at NPPs). (author)

  8. Status and perspectives of the dismantling of nuclear power plants in Germany (Dismantling monitoring 2015); Stand und Perspektiven des Rueckbaus von Kernkraftwerken in Deutschland (''Rueckbau-Monitoring 2015'')

    Energy Technology Data Exchange (ETDEWEB)

    Wealer, Ben; Seidel, Jan Paul [Technische Univ. Berlin (Germany); Gerbaulet, Clemens; Hirschhausen, Christian von [Technische Univ. Berlin (Germany); Deutsches Institut fuer Wirtschaftsforschung, Berlin (Germany)

    2015-11-15

    The dismantling monitoring 2015 covers the nuclear power plants HDR Grosswelzheim, Niederaichbach (KKN), MZFR Karlsruhe, Lingen (KWL), Gundremmingen unit A (KRB-A), VAK Kahl, Muehlheim-Kaerlich (KMK), THTR-300 Hamm-Uentrop, AVR Juelich, Greifswald (KGR 1-5), KNK II Karlsruhe, Rheinsberg (KKR), Wuergassen (KWW), Stade (KKS), Obrigheim (KWO), SNR 300. The post-operational phase activities of other shut-down nuclear power plants and the active companies are summarized.

  9. The management of waste originating from the dismantling of nuclear power stations, a growth business that has yet to be optimized

    International Nuclear Information System (INIS)

    Cahen, B.

    2013-01-01

    The dismantling of a nuclear power plant consists of all the operations undertaken by the operator after the definitive shutdown, until such time that risks to humanity and the environment on the site are strictly limited or totally removed. Thus, the dismantling process may necessitate stripping and decontaminating a building which will be reusable, or it can go as far as the total demolition of machinery, equipment and structures. Cleaning up the land is an integral part of the dismantling brief. In France, dismantling requires prior authorization by government decree, after approval by the Nuclear Safety Authority. The decree stipulates the terms and nature of all the operations to be undertaken and the final state to be obtained by the operator. (author)

  10. Effects of Containment on Radionuclide Releases from Underground Nuclear Explosions

    Science.gov (United States)

    Carrigan, C. R.; Sun, Y.

    2016-12-01

    Confirming the occurrence of an underground nuclear explosion can require capturing short-lived noble gas radioisotopes produced by the explosion, sometimes referred to as the "smoking gun" for nuclear explosion detection. It is well known that the radioisotopic distribution resulting from the detonation evolves with time in the explosion cavity. In effect, the explosion cavity or chimney behaves as a chemical reactor. As long as the parent and daughter radionuclides remain in a closed and well-mixed cavity, parameters, such as radioxenon isotopic ratios, can be calculated analytically from a decay-chain network model. When gases from the cavity migrate into the containment regime, consideration of a "leaky reactor" model is more appropriate. We consider several implications of such a leaky reactor model relevant to interpretations of gas samples from the subsurface during an on-site inspection that could potentially be carried out under the Comprehensive Nuclear Test Ban Treaty. Additionally, we have attempted to validate our leaky reactor model against atmospheric observations of radioactive xenon isotopes detected by radionuclide monitoring stations in Japan and Russia following the February 2013 DPRK underground nuclear explosion (Carrigan et al., 2016). While both model uncertainty and observational error are significant, our model of isotopic evolution appears to be in broad agreement with radionuclide observations, and for the first time links atmospheric measurements of radioxenon isotopic ratios to estimates of seismic yield. Carrigan et al., Scientific Reports 6, Article number: 23032 (2016) doi:10.1038/srep23032

  11. Nuclear cost studies for decontamination and dismantling. The interim storage for spent fuels at Studsvik

    International Nuclear Information System (INIS)

    Sjoeblom, Rolf; Sjoeoe, Cecilia; Lindskog, Staffan; Cato, Anna

    2005-05-01

    The interim store for spent fuel (FA) at Studsvik was designed and constructed in 1962-64. It has been used for wet storage of fuel from the Aagesta Nuclear Power Plant as well as the R2 reactor at Studsvik. FA comprises three cylindrical pools for fuel storage as well as equipment for handling and decontamination. The purpose of the present work is to develop methodology for calculation of future costs for decontamination and dismantling of nuclear research facilities. The analysis is based on information from Studsvik as well as results from information searches. The requirements on precision of cost calculations is high, also at early stages. The reason for this is that the funds are to be collected now but are to be used some time in the future. At the same time they should neither be insufficient nor superfluous. It is apparent from the compilation and analysis that when methodology that has been developed for the purpose of cost calculations for power reactors is applied to research facilities certain drawbacks become apparent, e.g. difficulties to carry out variation analyses. Generally, feedback of data on incurred costs for the purpose of cost calculations can be achieved by using one or more scaling factors together with weighing factors which are established based on e g expert judgement. For development and utilisation of such tools it is necessary to have access to estimated costs together with incurred ones. In the report, the following combination of aspects is identified as being of primary significance for achieving a high precision: Calculations with the possibility to 'calibrate' against incurred costs; Radiological surveying tailored to the needs for calculations; Technical planning including selection of techniques to be used; Identification of potential sources for systematic deviations. In the case of FA, some of the sources of uncertainty are as follows: Damaged surface layers in the pools; Maintenance status for the drains; Radiological

  12. Chapter 2. Peculiarities of radioactive particle formation and isotope fractionation resulted from underground nuclear explosions

    International Nuclear Information System (INIS)

    1996-01-01

    Radioactive particles, forming terrain fallouts from underground nuclear explosion differ sufficiently from radioactive particles, produced by atmospheric nuclear explosions. Patterns of underground nuclear explosion development, release of radioactivity to the atmosphere, formation of a cloud and base surge, peculiarities of formed radioactive particles, data on isotope fractionation in radioactive particles are presented. Scheme of particle activation, resulted from underground explosions is given

  13. Underground nuclear explosion effects in granite rock fracturing

    International Nuclear Information System (INIS)

    Derlich, S.

    1970-01-01

    On the Saharan nuclear test site in Hoggar granite, mechanical properties of the altered zones were studied by in situ and laboratory measurements. In situ methods of study are drillings, television, geophysical and permeability measurements. Fracturing is one of the most important nuclear explosion effects. Several altered zones were identified. There are: crushed zone, fractured zone and stressed zone. Collapse of crushed and fractured zone formed the chimney. The extent of each zone can be expressed in terms of yield and of characteristic parameters. Such results are of main interest for industrial uses of underground nuclear explosives in hard rock. (author)

  14. Nuclear Explosion Monitoring Research and Engineering Program - Strategic Plan

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A. [DOE/NNSA

    2004-09-01

    The Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Nuclear Explosion Monitoring Research and Engineering (NEM R&E) Program is dedicated to providing knowledge, technical expertise, and products to US agencies responsible for monitoring nuclear explosions in all environments and is successful in turning scientific breakthroughs into tools for use by operational monitoring agencies. To effectively address the rapidly evolving state of affairs, the NNSA NEM R&E program is structured around three program elements described within this strategic plan: Integration of New Monitoring Assets, Advanced Event Characterization, and Next-Generation Monitoring Systems. How the Program fits into the National effort and historical accomplishments are also addressed.

  15. Underground nuclear explosion effects in granite rock fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Derlich, S [Commissariat a l' Energie Atomique, Centre d' Etude de Bruyeres-le-Chatel (France)

    1970-05-01

    On the Saharan nuclear test site in Hoggar granite, mechanical properties of the altered zones were studied by in situ and laboratory measurements. In situ methods of study are drillings, television, geophysical and permeability measurements. Fracturing is one of the most important nuclear explosion effects. Several altered zones were identified. There are: crushed zone, fractured zone and stressed zone. Collapse of crushed and fractured zone formed the chimney. The extent of each zone can be expressed in terms of yield and of characteristic parameters. Such results are of main interest for industrial uses of underground nuclear explosives in hard rock. (author)

  16. Benefits of explosive cutting for nuclear-facility applications

    International Nuclear Information System (INIS)

    Hazelton, R.F.; Lundgren, R.A.; Allen, R.P.

    1981-06-01

    The study discussed in this report was a cost/benefit analysis to determine: (1) whether explosive cutting is cost effective in comparison with alternative metal sectioning methods and (2) whether explosive cutting would reduce radiation exposure or provide other benefits. Two separate approaches were pursued. The first was to qualitatively assess cutting methods and factors involved in typical sectioning cases and then compare the results for the cutting methods. The second was to prepare estimates of work schedules and potential radiation exposures for candidate sectioning methods for two hypothetical, but typical, sectioning tasks. The analysis shows that explosive cutting would be cost effective and would also reduce radiation exposure when used for typical nuclear facility sectioning tasks. These results indicate that explosive cutting should be one of the principal cutting methods considered whenever steel or similar metal structures or equipment in a nuclear facility are to be sectioned for repair or decommissioning. 13 figures, 7 tables

  17. Radioactive rare gases emission at underground nuclear explosions

    International Nuclear Information System (INIS)

    Dubasov, Yu.V.

    2016-01-01

    The examples of radioactive rare gases emission at underground nuclear explosions conducted in the USSR on the Novaya Zemlya and Semipalatinsk test sites are considered. It is pointed out that in the case of evasive explosion in vertical wells without apparent radioactive gases emission the samples of subsurface gas must contain the traces of radioactive rare gases. Under the inspection of evasive explosion in horizontal workings of rock massif, one should guided by the analysis of atmospheric air samples in the inspected area [ru

  18. Soviet experience with peaceful uses of nuclear explosions

    International Nuclear Information System (INIS)

    Nordyke, M.D.

    1976-01-01

    The Soviet Union is pursuing an active program for developing peaceful uses of nuclear explosions (PNE). They have reported 16 explosions, with applications ranging from putting out oil-well fires and stimulating oil recovery to creating instant dams and canals. The data reported generally agree with U.S. experience. Seismic data collected by western sources on explosions outside the known Soviet test sites indicate that the Soviet program is at least twice as large as they have reported. The accelerated pace of these events suggests that in some applications the Soviet PNE program is approaching routine industrial technology

  19. Underground nuclear explosions. Study of the cavity radius

    International Nuclear Information System (INIS)

    Michaud, L.

    1968-11-01

    An underground nuclear explosion creates a cavity due to the expansion of the surrounding medium vaporized by the shot. The cavity radius is related to the energy of explosion and to the overburden pressure of the medium. The introduction of new elements such as the environment of the device (in a deep hole or in a tunnel) and the cohesion of the medium leads to a relationship which determines this radius. The known French and American underground explosions performed in various media, energy and overburden conditions, satisfy this relationship with a good precision. (author) [fr

  20. Criticality safety in high explosives dissolution

    International Nuclear Information System (INIS)

    Troyer, S.D.

    1997-01-01

    In 1992, an incident occurred at the Pantex Plant in which the cladding around a fissile material component (pit) cracked during dismantlement of the high explosives portion of a nuclear weapon. Although the event did not result in any significant contamination or personnel exposures, concerns about the incident led to the conclusion that the current dismantlement process was unacceptable. Options considered for redesign, dissolution tooling design considerations, dissolution tooling design features, and the analysis of the new dissolution tooling are summarized. The final tooling design developed incorporated a number of safety features and provides a simple, self-contained, low-maintenance method of high explosives removal for nuclear explosive dismantlement. Analyses demonstrate that the tooling design will remain subcritical under normal, abnormal, and credible accident scenarios. 1 fig

  1. Differences in coupling between chemical and nuclear explosions

    International Nuclear Information System (INIS)

    Glenn, L.A.

    1992-01-01

    The teleseismic amplitude resulting from an underground explosion is proportional to the asymptotic value of the reduced displacement potential (φ∞) or, in physical terms, to the permanent change in volume measured anywhere beyond the range at which the outgoing wave has become elastic. φ∞ decreases with increasing initial cavity size (r o ) until the cavity is large enough to preclude inelastic behavior in the surrounding rock, at which point no further decrease occurs. With nuclear explosions, φ∞ can also be reduced by decreasing the initial cavity size over a certain range. This occurs because, in this range of r 0 W -1/3 (where W is the yield) the thermal pressure in the surrounding medium increases much more slowly than does the thermal energy. With chemical explosions, by contrast, r 0 W -1/3 cannot be decreased below the fully tamped limit because the energy density is bounded above. Moreover, for the most of the cavity expansion period the ratio of specific heats of the chemical explosion products is substantially higher than the equivalent ratio in a nuclear explosion, so that the cavity pressure in the former case is higher as well and this further amplifies the differences between the two. Calculations show that the teleseismic amplitude could be as much as 50% higher for an equivalent tamped chemical explosion in salt than was observed in the SALMON nuclear event

  2. Digital Autoradiography as a novel complementary technique for the investigation of radioactive contamination in nuclear facilities under dismantlement

    International Nuclear Information System (INIS)

    Haudebourg, Raphael; Fichet, Pascal; Goutelard, Florence

    2015-01-01

    The detection (location and quantification) of nuclear facilities to be dismantled possible contamination with low-range particles emitters ( 3 H, other low-energy β emitters, a emitters) remains a tedious and expensive task. Indeed, usual remote counters show a too low sensitivity to these non-penetrating radiations, while conventional wipe tests are irrelevant for fixed radioactivity evaluation. The only method to accurately measure activity levels consists in sampling and running advanced laboratory analyses (spectroscopy, liquid scintillation counting, pyrolysis...). Such measurements generally induce sample preparation, waste production (destructive analyses, solvents), nuclear material transportation, long durations, and significant labor mobilization. Therefore, the search for the limitation of their number and cost easily conflicts with the necessity to perform a dense screening for sampling (to maximize the representativeness of the samples), in installations of thousands of square meters (floors, wells, ceilings), plus furniture, pipes, and other wastes. To overcome this contradiction, Digital Autoradiography (D. A.) was re-routed from bio molecular research to radiological mapping of nuclear installations under dismantling and to waste and sample analysis. After in-situ exposure to the possibly-contaminated areas to investigate, commercial reusable radiosensitive phosphor screens (of a few 100 cm 2 ) were scanned in the proper laboratory device and sharp quantitative images of the radioactivity could be obtained. The implementation of geostatistical tools in the data processing software enabled the exhaustive characterization of concrete floors at a rate of 2 weeks / 100 m 2 , at lowest costs. Various samples such as drilled cores, or tank and wood pieces, were also successfully evaluated with this method, for decisive results. Thanks to the accurate location of potential contamination spots, this approach ensures relevant and representative sampling

  3. ''1995/2010: site drainage and nuclear facilities dismantling program'' result 2001

    International Nuclear Information System (INIS)

    2001-01-01

    A drainage and dismantling planing with the corresponding wastes management, has been decided for the CEA of Fontenay aux roses, in 1995. It will end in 2010. This document presents the main evolutions occurred since october 2000. (A.L.B.)

  4. Investigations of gas explosions in a nuclear coal gasification plant

    International Nuclear Information System (INIS)

    Schulte, K.

    1981-01-01

    The safety research program on gas cloud explosions is performed in the context of the German project of the Prototype Plant Nuclear Process Heat. By the work within this project, it is tried to extend the use of nuclear energy to non-electric application. The programme comprises efforts in several scientific disciplines. The final goal is to provide a representative pressure-time-function or a set of such functions. These functions should be the basis for safe design and construction of the nuclear reactor system of a coal gasification plant. No result yet achieved contradicts the assumption that released process gas is only able to deflagrate. It should be possible to demonstrate that, if unfavourable configurations are avoided, a design pressure of 300 mbar is sufficient to withstand an explosion of process gas; this pressure should never be exceeded by process gas explosions irrespective of gas mass released and distance to release point, except possibly in relatively small areas

  5. Dismantling techniques

    International Nuclear Information System (INIS)

    Wiese, E.

    1998-01-01

    Most of the dismantling techniques used in a Decontamination and Dismantlement (D and D) project are taken from conventional demolition practices. Some modifications to the techniques are made to limit exposure to the workers or to lessen the spread of contamination to the work area. When working on a D and D project, it is best to keep the dismantling techniques and tools as simple as possible. The workers will be more efficient and safer using techniques that are familiar to them. Prior experience with the technique or use of mock-ups is the best way to keep workers safe and to keep the project on schedule

  6. Dismantling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, E.

    1998-03-13

    Most of the dismantling techniques used in a Decontamination and Dismantlement (D and D) project are taken from conventional demolition practices. Some modifications to the techniques are made to limit exposure to the workers or to lessen the spread of contamination to the work area. When working on a D and D project, it is best to keep the dismantling techniques and tools as simple as possible. The workers will be more efficient and safer using techniques that are familiar to them. Prior experience with the technique or use of mock-ups is the best way to keep workers safe and to keep the project on schedule.

  7. Remote techniques for the underwater dismantling of reactor internals at the nuclear power plant Gundremmingen unit A

    International Nuclear Information System (INIS)

    Eickelpasch, N.; Steiner, H.; Priesmeyer, U.

    1997-01-01

    Unit A of the nuclear power plant in Gundremmingen (KRB A) is a boiling water reactor with an electrical power of 250 MWe. It was shut down in 1977 after eleven years of operation. The actual decommissioning started in 1983. Since then more than 5200 tons of contaminated components have been dismantled. Special cutting and handling tools were tested, developed and optimized for the purpose of working in radiation fields and under water. Due to the special design of KRB A, which uses a dual-cycle system for additional steam generation, the experience gained is transferable to pressurized water reactors. (Author)

  8. Remote control for the underwater dismantling of reactor internals at the nuclear power plant Gundremmingen unit A

    International Nuclear Information System (INIS)

    Eickelpasch, N.; Steiner, H.; Priesmeyer, U.

    1996-01-01

    The unit A of the nuclear power plant in Gundremmingen (KRB A) is a boiling water reactor with an electrical power of 250 MW e . It was shut down in 1977 after 11 years of operation. The actual decommissioning started in 1983. Meanwhile more than 5200 tons of contaminated components have been dismantled. Special cutting and handling tools were tested, developed and optimized for the purpose of working in radiation fields and under water. Due to the special design of KRB A, using an dual cycle system for additional steam generation, the experience gained is transferable to pressurised water reactors as well. (Author)

  9. UDIN's dismantling projects

    International Nuclear Information System (INIS)

    Laffaille, C.

    1993-01-01

    The role of UDIN (Central unit for nuclear facility decommissioning) at the CEA is reviewed together with the main specific aspects of nuclear dismantling: the different options and dismantling strategies and costs. The characteristics of the main on-going projects are described: graphite-gas reactors (G2/G3), RAPSODIE (RNR), AT1 (pilot RNR fuel reprocessing plant), ELAN II B (Cesium source conditioning plant), EL4 (heavy water/CO2 reactor), RM2 (fuel control radio-metallurgical laboratory) and UB-UM (Uranium enrichment plant)

  10. The nonproliferation treaty and peaceful uses of nuclear explosives

    International Nuclear Information System (INIS)

    Ehrlich, Thomas

    1970-01-01

    In the past, nuclear arms control and peaceful uses of nuclear explosives were seen by many proponents of each as competing - if not opposing - interests. At one extreme, some viewed peaceful uses as an annoying irritant on the way to general and complete disarmament. At the other extreme, some considered arms-control arrangements - particularly those limiting nuclear testing - as bothersome barriers to realizing the full benefits of peaceful nuclear explosions. Most people found themselves somewhere between those extremes. But most also felt a continuing tension between essentially opposing forces. This polarity has been significantly altered by the 1968 Treaty on the Nonproliferation of Nuclear Weapons. It is believed that the future use of nuclear explosives for peaceful purposes will depend in large measure on the international arrangements worked out under the treaty. I also believe that the success of the treaty in checking proliferation of nuclear weapons is contingent, in substantial part, on those peaceful-uses arrangements. In the areas covered by the treaty, therefore, one could view an active development of peaceful uses for nuclear explosives as complementing rather than conflicting with nuclear arms control. The treaty is primarily a security agreement. It is aimed at reducing the risk of nuclear war by establishing permanency in the current separation of nuclear-weapon and non-nuclear-weapon nations. By its terms, each nuclear-weapon state agrees not to transfer nuclear weapons or other nuclear explosive devices to any recipient, and each non-nuclear-weapon state agrees not to receive such weapons or devices. The non-nuclear- weapon parties are also obligated to negotiate safeguards agreements with the International Atomic Energy Agency covering peaceful-uses activities. And all signatories agree not to transfer fissionable material to those parties unless they are subject to such agreements. These provisions are all part of a scheme to limit the

  11. The nonproliferation treaty and peaceful uses of nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ehrlich, Thomas [School of Law, Stanford University, CA (United States)

    1970-05-01

    In the past, nuclear arms control and peaceful uses of nuclear explosives were seen by many proponents of each as competing - if not opposing - interests. At one extreme, some viewed peaceful uses as an annoying irritant on the way to general and complete disarmament. At the other extreme, some considered arms-control arrangements - particularly those limiting nuclear testing - as bothersome barriers to realizing the full benefits of peaceful nuclear explosions. Most people found themselves somewhere between those extremes. But most also felt a continuing tension between essentially opposing forces. This polarity has been significantly altered by the 1968 Treaty on the Nonproliferation of Nuclear Weapons. It is believed that the future use of nuclear explosives for peaceful purposes will depend in large measure on the international arrangements worked out under the treaty. I also believe that the success of the treaty in checking proliferation of nuclear weapons is contingent, in substantial part, on those peaceful-uses arrangements. In the areas covered by the treaty, therefore, one could view an active development of peaceful uses for nuclear explosives as complementing rather than conflicting with nuclear arms control. The treaty is primarily a security agreement. It is aimed at reducing the risk of nuclear war by establishing permanency in the current separation of nuclear-weapon and non-nuclear-weapon nations. By its terms, each nuclear-weapon state agrees not to transfer nuclear weapons or other nuclear explosive devices to any recipient, and each non-nuclear-weapon state agrees not to receive such weapons or devices. The non-nuclear- weapon parties are also obligated to negotiate safeguards agreements with the International Atomic Energy Agency covering peaceful-uses activities. And all signatories agree not to transfer fissionable material to those parties unless they are subject to such agreements. These provisions are all part of a scheme to limit the

  12. A Parameter Study of Large Fast Reactor Nuclear Explosion Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Wiesel, J R

    1969-02-15

    An IBM-code EEM (Explosive Excursion Model) has been developed for calculating the energy releases associated with the explosive disassembly of a large fast reactor following a superprompt critical condition. The assumed failure chain of events and the possible core collapse following a fuel meltdown give the input data and initial conditions, the most important of which is the reactivity insertion rate at the moment of the explosive core disassembly. The dependence of the energy releases on the reactivity insertion rate, the Doppler reactivity feedback, the power form factor and the core size have been studied. The model enables a quick estimation of conservative values of the destructive mechanical energy releases following a nuclear explosion and gives suggestions as to how to reduce or even avoid such excursions.

  13. A Parameter Study of Large Fast Reactor Nuclear Explosion Accidents

    International Nuclear Information System (INIS)

    Wiesel, J.R.

    1969-02-01

    An IBM-code EEM (Explosive Excursion Model) has been developed for calculating the energy releases associated with the explosive disassembly of a large fast reactor following a superprompt critical condition. The assumed failure chain of events and the possible core collapse following a fuel meltdown give the input data and initial conditions, the most important of which is the reactivity insertion rate at the moment of the explosive core disassembly. The dependence of the energy releases on the reactivity insertion rate, the Doppler reactivity feedback, the power form factor and the core size have been studied. The model enables a quick estimation of conservative values of the destructive mechanical energy releases following a nuclear explosion and gives suggestions as to how to reduce or even avoid such excursions

  14. Swords into plowshares: the 'invention' of peaceful nuclear explosions

    International Nuclear Information System (INIS)

    Findlay, T.

    1986-11-01

    This paper examines the early history of so-called peaceful nuclear explosions or PNEs: the proposed use of nuclear explosives for non-military purposes such as digging canals, building harbours, mining precious metals and increasing the flow of oil wells and natural gas deposits. It traces the origins of the United States PNE program, Project Plowshare, with particular focus on the role of Edward Teller and the Lawrence Livermore Laboratory. The paper also deals with the relationship between Plowshare and the 1958-61 nuclear test moratorium and the nuclear fallout controversy during that period. A key question addressed is whether Project Plowshare was simply a 'political' ploy designed to advance the anti-moratorium, anti-test ban and pro-nuclear weapon cause or whether its roots are to be found in the almost manic enthusiasm of the time for exploiting the 'peaceful atom'. The paper concludes that peaceful nuclear explosions were indeed largely a product of the same 1950s' ethos that gave the world such atomic-age 'white elephants' as the nuclear powered rocket, the nuclear-powered aircraft and the plutonium pacemaker

  15. EDV supported dynamic fire protection concept adaptation during dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Mummert, Maxi; Traichel, Anke; Dilger, Matthias

    2013-01-01

    Fire protection concepts are supposed to be a decision guide for the definition of measures and priorities in fire fighting and fire prevention. In case of reactor dismantling a fire protection concept for the actual status is required. Following the fuel removal from the reactor the protection goals are reduced to the safe confinement of radioactive materials and the restriction of radiation exposure. A dynamic fire protection concept was developed to allow the compliance with the required protection measures with respect to the protection targets. The implementation of the dynamic fire protection concept simplifies the planning of the dismantling steps and to adjust the fire protection measured in the frame of changes in the plant.

  16. Tools and tool application for the dismantling of the nuclear power plant Brennilis in France

    International Nuclear Information System (INIS)

    Bienia, Harald; Welbers, Philipp; Krueger, Peter; Noll, Thomas

    2012-01-01

    The EL-4 reactor in the NPP Brennilis in France is a CO2 cooled heavy water moderated test reactor with net power of 70 MW, the reactor started operation in 1967 and was decommissioned in 1985. Due to the construction features it was not necessary to enter the reactor area during operation, therefore the reactor pressure vessel and the surrounding piping systems are built in a very compact way. The dismantling procedures are therefore different from German BWR or PWR systems, the remote cutting and handling tools have to be adapted to the different features. Because of the high local dosage rate in the reactor hall it is also necessary to perform the erection of the dismantling equipment by robot systems. For cutting of the piping system a new plasma cutting technique, the hot wire method will be used. Other mechanical cutting techniques have to be used for instance for zircaloy containing components due to fire prevention purposes. The required time for tool and manipulator changes, including wearing part replacements constitute a significant part of the dismantling schedule. The suction/exhaust system for radioactive dust removal allowed a reduction of the total personal dose by one third of the allowed dose.

  17. Genetical effects of radiations from products of nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Spiers, F W

    1955-01-01

    Relative radiation dose-rates to man and to Drosophila are discussed. Data previously presented by Prof. J.B.S. Haldane on the genetical effects of radiation resulting from nuclear explosions are reviewed. A reply from Prof. Haldane presents revised calculations of radiation dose rates.

  18. Discrimination of nuclear-explosion and lightning electromagnetic pulse

    International Nuclear Information System (INIS)

    Qi Shufeng; Li Ximei; Han Shaoqing; Niu Chao; Feng Jun; Liu Daizhi

    2012-01-01

    The discrimination of nuclear-explosion and lightning electromagnetic pulses was studied using empirical mode decomposition and the fractal analytical method. The box dimensions of nuclear-explosion and lightning electromagnetic pulses' original signals were calculated, and the box dimensions of the intrinsic mode functions (IMFs) of nuclear-explosion and lightning electromagnetic pulses' original signals after empirical mode decomposition were also obtained. The discrimination of nuclear explosion and lightning was studied using the nearest neighbor classification. The experimental results show that, the discrimination rate of the box dimension based on the first and second IMF after the original signal empirical mode decomposition is higher than that based on the third and forth IMF; the discrimination rate of the box dimension based on the original signal is higher than that based on any IMF; and the discrimination rate based on two-dimensional and three-dimensional characters is higher and more stable than that based on one-dimensional character, besides, the discrimination rate based on three-dimensional character is over 90%. (authors)

  19. The CTBT Verification Regime: Monitoring the Earth for nuclear explosions

    International Nuclear Information System (INIS)

    2011-03-01

    The Comprehensive nuclear-Test-Ban Treaty (CTBT) bans all nuclear weapon tests. Its unique verification regime is designed to detect nuclear explosions anywhere on the planet - in the oceans, underground and in the atmosphere. once complete, the international Monitoring system (iMs) will consist of 337 facilities located in 89 countries around the globe. The iMs is currently operating in test mode so that data are already transmitted for analysis from monitoring facilities to the international Data Centre (iDC) at the headquarters of the preparatory Commission for the Comprehensive nuclear-Test-Ban Treaty Organization (CTBTO) in Vienna. Data and analysis results are shared with Member states.

  20. Possible hazard reduction by using distributed phased nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Chilton, Frank [Theoretical Physics Program, Stanford Research Institute, Menio Park, CA (United States); [Department of Applied Science, University of California, Davis, CA (United States); Cheney, James A [Department of Civil Engineering, University of California, Davis, CA (United States)

    1970-05-15

    The use of two or more nuclear devices, phased together in order to constructively add their respective particle velocities, is proposed herein. By directing the seismic waves of the nuclear explosions to make them more efficient in accomplishing the intended construction, we hope to be able to reduce the radioactivity, seismic, and airblast hazards substantially. Experiments are being performed with one gram charges of PETN. (author)

  1. Damage caused to houses and equipment by underground nuclear explosions

    International Nuclear Information System (INIS)

    Delort, F.; Guerrini, C.

    1969-01-01

    A description is given of the damaged caused to various structures, buildings, houses, mechanical equipment and electrical equipment by underground nuclear explosions in granite. For each type of equipment or building are given the limiting distances for a given degree of damage. These distances have been related to a parameter characterizing the movement of the medium; it is thus possible to generalize the results obtained in granite, for different media. The problem of estimating the damage caused at a greater distance from the explosion is considered. (authors) [fr

  2. Reserves for shutdown/dismantling and disposal in nuclear technology. Theses and recommendations on reform options; Rueckstellungen fuer Stilllegung/Rueckbau und Entsorgung im Atombereich. Thesen und Empfehlungen zu Reformoptionen

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Bettina [Forum Oekologisch-Soziale Marktwirtschaft e.V. (FOeS), Berlin (Germany). Green Budget Germany (GBG)

    2012-04-11

    The study on reserves for shutdown, dismantling and disposal of nuclear facilities covers the following topics: cost for shutdown, dismantling and disposal and amount and transparency of nuclear reserves, solution by y stock regulated by public law for long-term liabilities, and improvement of the protection in the event of insolvency for the remaining EVU reserves for short- and intermediate-term liabilities. The appendix includes estimations and empirical values for the cost of shutdown and dismantling, estimation of disposal costs, and a summary of Swiss studies on dismantling and disposal and transfer to Germany.

  3. Trends in Nuclear Explosion Monitoring Research & Development - A Physics Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Maceira, Monica [Los Alamos National Laboratory; Blom, Philip Stephen [Los Alamos National Laboratory; Maccarthy, Jonathan K. [Los Alamos National Laboratory; Marcillo, Omar Eduardo [Los Alamos National Laboratory; Euler, Garrett Gene [Los Alamos National Laboratory; Begnaud, Michael Lee [Los Alamos National Laboratory; Ford, Sean R. [Lawrence Livermore National Laboratory; Pasyanos, Michael E. [Lawrence Livermore National Laboratory; Orris, Gregory J. [Naval Research Laboratory; Foxe, Michael P. [Pacific Northwest National Laboratory; Arrowsmith, Stephen J. [Sandia National Laboratory; Merchant, B. John [Sandia National Laboratory; Slinkard, Megan E. [Sandia National Laboratory

    2017-06-01

    This document entitled “Trends in Nuclear Explosion Monitoring Research and Development – A Physics Perspective” reviews the accessible literature, as it relates to nuclear explosion monitoring and the Comprehensive Nuclear-Test-Ban Treaty (CTBT, 1996), for four research areas: source physics (understanding signal generation), signal propagation (accounting for changes through physical media), sensors (recording the signals), and signal analysis (processing the signal). Over 40 trends are addressed, such as moving from 1D to 3D earth models, from pick-based seismic event processing to full waveform processing, and from separate treatment of mechanical waves in different media to combined analyses. Highlighted in the document for each trend are the value and benefit to the monitoring mission, key papers that advanced the science, and promising research and development for the future.

  4. The market of nuclear plant dismantling. The new EDF's strategy, process standardisation, robotization: which perspectives for the market by 2030?

    International Nuclear Information System (INIS)

    2017-09-01

    Dismantling appears as the most promising activity in the nuclear sector due to ageing plants, to ambitious objectives of reduction of the nuclear share in the energy mix, or to high expertise of French companies in robotic and digital solutions for deconstruction in radioactive environments. However, the development of the dismantling market depends on EDF decisions: the extension of nuclear reactor lifetime postpones the development of this market. In this context, this study aims at giving an anticipated view of the plant dismantling market by 2030, at deciphering growth levers for the sector actors, and at understanding the sector operation and the business model of operators. Thus, the report presents the main components of the market (key figures, dismantling types, dismantling steps, sector ecosystem, barriers to enter the market, costs, contractual relationships), proposes an analysis of the market and of its perspectives (situation in France, and at the world level, predictive scenario for 2030), and discusses the development axes and demand evolutions (robotization and digitalisation, elaboration of standardised processes, management of wastes produced by nuclear dismantling, internationalisation of French actors). It also proposes an overview of actors in France, and identity sheets for commissioners (EDF, New Areva), contractors (Onet, Vinci, Engie), and other actors (Veolia, Assystem, Ortec, Cybernetix, Oreka Group). The last part proposes synthetic sheets for more than 110 companies of the sector (general information, management and financial performance data under the form of tables and figures) and comparative tables according to 5 key indicators. Data are presented for a period ranging from 2010 to 2016

  5. Systems analysis of radiation safety during dismantling of power-plant equipment at a nuclear power station

    International Nuclear Information System (INIS)

    Bylkin, B.K.; Shpitser, V.Ya.

    1993-01-01

    A systems analysis of the radiation safety makes possible an ad hoc determination of the elements forming the system, as well as the establishment of the characteristics of their interaction with radiation-effect factors. Here the authors will present part of the hierarchical analysis procedure, consisting in general of four separate procedures. The purpose is to investigate and analyze the mean and stable (on the average) indices of radiation safety, within the framework of alternative mathematical models of dismantling the power-plant equipment of a nuclear power station. The following three of the four procedures are discussed: (1) simulated projection, of the processing of radioactive waste; (2) analysis of the redistribution of radionuclides during the industrial cycle of waste treatment; (3) planning the collective dose load during the dismantling operation. Within the framework of the first of these procedures, the solutions to the problem of simulating a waste-treatment operation of maximum efficiency are analyzed. This analysis is based on the use of a data base for the parameters of the installations, assemblies, and equipment, enabling the integration of these in a simulation of a complex automated facility. The results were visualized in an AUTOCAD-10 medium using a graphical data base containing an explanation of the rooms

  6. Education and research when dismantling nuclear plants at the Technical University Dresden; Lehre und Forschung beim Rueckbau kerntechnischer Anlagen an der Technischen Universitaet Dresden

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, A.; Anthofer, A.; Cloppenborg, T.; Schreier, M. [Technische Univ. Dresden (Germany). Inst. fuer Energietechnik

    2013-08-15

    With the decision by the German government in 2011 to revoke the operating permission from 8 of the existing 17 German nuclear power plants, the responsibility of decommissioning and dismantling these plants has moved back into the focus of public awareness. Under the current legal conditions, the last nuclear plant will be disconnected from the grid on 31.12.2022 and this will create an enormous challenge for all the involved approving authorities, expert organisations, as well as companies involved in dismantling the plants. The development of new and efficient dismantling technologies and strategies is required to perform these highly responsible tasks. On the other hand, the nuclear competence and knowhow, as well as the promotion of young talents in the relevant scientific fields must be preserved. Technological and economic solutions are in demand for the various plants due to the different specifics of nuclear power plants. This will still require e.g. in the field of radiation protection highly qualified and well trained staff in future. The training of these skilled employees will require expanding the subject matter taught at universities, colleges and polytechnics to suit the changed parameters. The chair for hydrogen and nuclear energy technology at the TU Dresden will in future offer lectures as part of a new teaching discipline with the focus on dismantling and disposal. The course 'Dismantling nuclear power plants' took place for the first time in the summer semester 2013. It is organised as a three-day block seminar with an excursion to the company NIS Ingenieurgesellschaft mbH in Alzenau. The company NIS is a subsidiary of the Siempelkamp Nukleartechnik GmbH. This article intends to provide an overview of the contents of the courses and the impressions of the participants. In this way the TU Dresden is making a further contribution to preserving nuclear competence and inter-disciplinary dialogue. (orig.)

  7. Proposed radiation hardened mobile vehicle for Chernobyl dismantlement and nuclear accident response

    International Nuclear Information System (INIS)

    Rowland, M.S.; Holliday, M.A.; Karpachov, J.A.

    1995-01-01

    Researchers are developing a radiation hardened, Telerobotic Dismantling System (TDS) to remediate the Chernobyl facility. To withstand the severe radiation fields, the robotic system, will rely on electrical motors, actuators, and relays proven in the Chernobyl power station. Due to its dust suppression characteristics and ability to cut arbitrary materials the authors propose using a water knife as the principle tool to slice up the large fuel containing masses. The front end of the robot will use a minimum number of moving parts by locating most of the susceptible and bulky components outside the work area. Hardened and shielded video cameras will be designed for remote control and viewing of the robotic functions. Operators will supervise and control robot movements based on feedback from a suite of sensory systems that would include vision systems, radiation detection and measurement systems and force reflection systems. A gripper will be instrumented with a variety of sensors (e.g. force, torque, or tactile), allowing varying debris surface properties to be grasped. The gripper will allow the operator to manipulate and segregate debris items without entering the radiologically and physically dangerous dismantlement operations area. The robots will initially size reduce the FCM's to reduce the primary sources of the airborne radionuclides. The robot will then remove the high level waste for packaging or decontamination, and storage nearby

  8. The Air Blast Wave from a Nuclear Explosion

    Science.gov (United States)

    Reines, Frederick

    The sudden, large scale release of energy in the explosion of a nuclear bomb in air gives rise, in addition to nuclear emanations such as neutrons and gamma rays, to an extremely hot, rapidly expanding mass of air.** The rapidly expanding air mass has an initial temperature in the vicinity of a few hundred thousand degrees and for this reason it glows in its early stages with an intensity of many suns. It is important that the energy density in this initial "ball of fire" is of the order of 3 × 103 times that found in a detonating piece of TNT and hence that the initial stages of the large scale air motion produced by a nuclear explosion has no counterpart in an ordinary. H. E. explosion. Further, the relatively low temperatures ˜2,000°C associated with the initial stages of an H. E. detonation implies that the thermal radiation which it emits is a relatively insignificant fraction of the total energy involves. This point is made more striking when it is remembered that the thermal energy emitted by a hot object varies directly with the temperature in the Rayleigh Jeans region appropriate to the present discussion. The expansion of the air mass heated by the nuclear reaction produces, in qualitatively the same manner as in an H.E. explosion or the bursting of a high pressure balloon, an intense sharp pressure pulse, a shock wave, in the atmosphere. As the pressure pulse spreads outward it weakens due to the combined effects of divergence and the thermodynamically irreversible nature of the shock wave. The air comprising such a pressure pulse or blast wave moves first radially outward and then back towards the center as the blast wave passes. Since a permanent outward displacement of an infinite mass of air would require unlimited energy, the net outward displacement of the air distant from an explosion must approach zero with increasing distance. As the distance from the explosion is diminished the net outward displacement due to irreversible shock heating of

  9. Containment analysis for the simultaneous detonation of two nuclear explosives

    International Nuclear Information System (INIS)

    Terhune, R.W.; Glenn, H.D.; Burton, D.E.; Rambo, J.T.

    1977-01-01

    The explosive phenomenology associated with the simultaneous detonation of two 2.2-kt nuclear explosives is examined. A comprehensive spatial-time pictorial of the resultant shock-wave phenomenology is given. The explosives were buried at depths of 200 m and 280 m, corresponding to a separation of approximately 4 final cavity radii. Constitutive relations for the surrounding medium were derived from the geophysical logs and core samples taken from an actual emplacement configuration at the Nevada Test Site. Past calculational studies indicate that successful containment may depend upon the development of a strong tangential-stress field (or ''containment cage'') surrounding the cavity at late times. A series of conditions that must be met to insure formation of this cage are presented. Calculational results, based on one- and two-dimensional finite-difference codes of continuum mechanics, describe how each condition has been fulfilled and illustrate the dynamic sequence of events important to the formation of the containment cage. They also indicate, at least for the geological site chosen, that two nuclear explosives do not combine to threaten containment

  10. Direct calibration of the yield of nuclear explosion

    International Nuclear Information System (INIS)

    Nakanishi, K.; Nikolayev, A.

    1994-06-01

    The determination of the power of underground nuclear explosions (UNE) is of great significance. The seismic method of UNE yield determination allows monitoring at large distances, but is less precise than local monitoring methods. A way is proposed to calibrate UNE based on the idea of the vibroseis method in which powerful vibrators are used to produce seismic waves in the UNE epicenter; UNE calibration is carried out by comparison of the vibroseis record with a UNE seismogram. Results of preliminary work on the problem are presented. It is based on experience with vibrosounding of the Earth as well as earthquakes and chemical and nuclear explosions wave field structure studies. It is concluded that UNE calibration with the aid of seismic vibrators is both possible and expedient

  11. Peaceful uses of nuclear explosions. Vol.2 (1969-1979)

    International Nuclear Information System (INIS)

    1980-01-01

    The present bibliography on Peaceful Uses of Nuclear Explosions is the 43rd in the Bibliographical Series of the International Atomic Energy Agency and the second such IAEA publication on PNE. It deals with theoretical aspects and peaceful applications of nuclear explosions. The bibliography contains 1335 references to the literature published in the period from 1969 to 1979. Most references have been supplied with abstracts in English. The material is listed by subject; within each subject it is arranged alphabetically by author. An Author Index including corporate authors and a Subject Index are given at the end of the bibliography. The Subject Index is basically a permutated-title keyword-in-context index

  12. Origins of displacements caused by underground nuclear explosions

    International Nuclear Information System (INIS)

    Rinehart, John S.

    1970-01-01

    Elastic theory has been used to calculate the relative displacement that will occur between the two sides of a loose boundary when a plane wave strikes the boundary obliquely. The calculations suggest that the displacements produced along loose fractures and faults close in to the underground nuclear explosions are a direct consequence of reflection of the transient stress wave at this loose boundary. Quantitatively the results agree fairly well with the limited data that are available. (author)

  13. Origins of displacements caused by underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Rinehart, John S [ESSA Research Laboratories, and Department of Mechanical Engineering, University of Colorado, Boulder, CO (United States)

    1970-05-15

    Elastic theory has been used to calculate the relative displacement that will occur between the two sides of a loose boundary when a plane wave strikes the boundary obliquely. The calculations suggest that the displacements produced along loose fractures and faults close in to the underground nuclear explosions are a direct consequence of reflection of the transient stress wave at this loose boundary. Quantitatively the results agree fairly well with the limited data that are available. (author)

  14. Dismantling of Vandellos I

    International Nuclear Information System (INIS)

    Armada, J. R.

    2003-01-01

    Spain is witnessing the phase-out of a nuclear power plant. It is a unique experience in our country and therefore the dismantling work has been watched closely, not only from here but also from abroad. The Empresa Nacional de Residuos Radiactivos (ENRESA) is in charge of managing the dismantling and decommissioning work of the Vandellos-I nuclear power plant, located in the municipality of L'Hospitalet de l'Infant (Tarragona). the work began five years ago and has been executed on schedule. the appearance of what was one of the first Spanish commercial nuclear power plants has been changed radically to leave premises suitable for any other activity. (Author)

  15. Cost-benefit analyses for decommissioning and dismantling of nuclear power stations

    International Nuclear Information System (INIS)

    Hock, R.

    1988-01-01

    According to ICRP provisions, radiation doses to the population are to be kept as low as possible, on the basis of a justifiable relationship between additional expense for dose reduction and the radiological benefit. The paper examines whether this optimisation principle requires maximum conceivable limits of personal doses as a result of materials recovery from dismantling ought to be reviewed, and whether clearance levels for materials to be recycled have to be reduced. The cost-benefit assessments presented for various options take into account the cost involved for processing and recycling methods as well as the social burden of dose commitments. A comparison in terms of radiological safety is presented for ultimate disposal of material, or meltdown of material subject to appropriate radiological measurement and surveillance. (DG) [de

  16. Recognition structure of semipalatinsk residents caused by nuclear explosion tests

    International Nuclear Information System (INIS)

    Hirabayashi, Kyoko; Satoh, Kenichi; Ohtaki, Megu; Muldagaliyev, T.; Apsalikov, K.; Kawano, Noriyuki

    2012-01-01

    Authors' team of Hiroshima University and Scientific Research Institute of Radiation Medicine and Ecology (Kazakhstan) has been investigating the health state, exposure route, contents and mental effect of nuclear explosion tests of Semipalatinsk residents through their witness and questionnaire since 2002, to elucidate the humanistic damage of nuclear tests. Reported here is the recognition structure in the title statistically analyzed with use of frequently spoken words in the witness. The audit was performed in 2002-2007 to 994 residents who had experienced ground explosion tests during the period from 1949 to 1962 and were living in 26 villages near the old test site. Asked questions concerning nuclear tests involved such items as still unforgettable matters, dreadful events, regretting things, thought about the test, requests; and matters about themselves, their family, close friends and anything. The frequency of the test site-related words heard in the interview were analyzed with hierarchical clustering and multi-dimensional scaling with a statistic software R for computation and MeCab for morphological analysis. Residents' recognition was found to be of two structures of memory at explosion tests and anger/dissatisfaction/anxiety to the present state. The former contained the frequent words of mushroom cloud, flash, blast, ground tremble and outdoor evacuation, and the latter, mostly anxiety about health of themselves and family. Thus residents have had to be confronted with uneasiness of their health even 20 years after the closure of the test site. (T.T.)

  17. Nuclear Explosion Monitoring History and Research and Development

    Science.gov (United States)

    Hawkins, W. L.; Zucca, J. J.

    2008-12-01

    Within a year after the nuclear detonations over Hiroshima and Nagasaki the Baruch Plan was presented to the newly formed United Nations Atomic Energy Commission (June 14, 1946) to establish nuclear disarmament and international control over all nuclear activities. These controls would allow only the peaceful use of atomic energy. The plan was rejected through a Security Council veto primarily because of the resistance to unlimited inspections. Since that time there have been many multilateral, and bilateral agreements, and unilateral declarations to limit or eliminate nuclear detonations. Almost all of theses agreements (i.e. treaties) call for some type of monitoring. We will review a timeline showing the history of nuclear testing and the more important treaties. We will also describe testing operations, containment, phenomenology, and observations. The Comprehensive Nuclear Test Ban Treaty (CTBT) which has been signed by 179 countries (ratified by 144) established the International Monitoring System global verification regime which employs seismic, infrasound, hydroacoustic and radionuclide monitoring techniques. The CTBT also includes on-site inspection to clarify whether a nuclear explosion has been carried out in violation of the Treaty. The US Department of Energy (DOE) through its National Nuclear Security Agency's Ground-Based Nuclear Explosion Monitoring R&D Program supports research by US National Laboratories, and universities and industry internationally to detect, locate, and identify nuclear detonations. This research program builds on the broad base of monitoring expertise developed over several decades. Annually the DOE and the US Department of Defense jointly solicit monitoring research proposals. Areas of research include: seismic regional characterization and wave propagation, seismic event detection and location, seismic identification and source characterization, hydroacoustic monitoring, radionuclide monitoring, infrasound monitoring, and

  18. For a public management of funds dedicated to nuclear dismantling: the TESEN (fund for the Energy transition and a fair phasing out nuclear), and its assignment to the financing of energy transition

    International Nuclear Information System (INIS)

    Autissier, Isabelle; Germa, Philippe

    2013-01-01

    The report outlines that the cost of nuclear energy in France is largely under-assessed because of the under-evaluation of the future dismantling of nuclear installations and of the management of radioactive wastes. It outlines that provisions made for this dismantling are insufficient, opaque and very risky. This report proposes the creation of a fund independent from nuclear operators to make pay the actual cost of nuclear energy and reduce the French electrical dependence on this energy, to secure long-term financing to finance the dismantling, to bring the financing for the decades to come to finance energy transition, to finance energy transition at reasonable rates, and to clarify the governance for phasing out nuclear

  19. Emplacement and stemming of nuclear explosives for Plowshare applications

    International Nuclear Information System (INIS)

    Cramer, J.L.

    1970-01-01

    This paper will discuss the various methods used for emplacement and design considerations that must be taken into account when the emplacement and stemming method is selected. The step-by-step field procedure will not be discussed in this paper. The task of emplacing and stemming the nuclear explosive is common to all Plowshare experiments today. All present-day applications of a nuclear explosive for Plowshare experiments require that the detonation take place some distance below the surface of the ground. This is normally done by lowering the explosive into an emplacement hole to a desired depth and then backfilling the hole with a suitable stemming material. At first glance it scenes like a very straightforward, simple task to perform. It would appear to be a task that could become a standard procedure for all experiments; however, this is not the case. In actuality, the emplacement and stemming of a nuclear explosive must almost be a custom design. It varies with the application of the experiment, i.e., cratering or underground engineering. It also varies with the condition of the hole, the available equipment to do the job, the actual purpose of the stemming, possible postshot reentry, hydrology, geology, and future production. A very important item that must always be considered is the protection of the firing and signal cables during the downhole and stemming operation. Each of these things must be considered; ignoring any one of them could jeopardize one of the objectives of the experiment or perhaps even the experiment itself. It should be emphasized that for a multiple-shot program such as would be used to develop a gas field where the geology, depths of burial etc. are the same, the emplacement and stemming operation would be standardized, as would all other parts of the program. However, for individual experiments in totally different areas, complete standardization of the emplacement and stemming is impossible

  20. Emplacement and stemming of nuclear explosives for Plowshare applications

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, J L [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    This paper will discuss the various methods used for emplacement and design considerations that must be taken into account when the emplacement and stemming method is selected. The step-by-step field procedure will not be discussed in this paper. The task of emplacing and stemming the nuclear explosive is common to all Plowshare experiments today. All present-day applications of a nuclear explosive for Plowshare experiments require that the detonation take place some distance below the surface of the ground. This is normally done by lowering the explosive into an emplacement hole to a desired depth and then backfilling the hole with a suitable stemming material. At first glance it scenes like a very straightforward, simple task to perform. It would appear to be a task that could become a standard procedure for all experiments; however, this is not the case. In actuality, the emplacement and stemming of a nuclear explosive must almost be a custom design. It varies with the application of the experiment, i.e., cratering or underground engineering. It also varies with the condition of the hole, the available equipment to do the job, the actual purpose of the stemming, possible postshot reentry, hydrology, geology, and future production. A very important item that must always be considered is the protection of the firing and signal cables during the downhole and stemming operation. Each of these things must be considered; ignoring any one of them could jeopardize one of the objectives of the experiment or perhaps even the experiment itself. It should be emphasized that for a multiple-shot program such as would be used to develop a gas field where the geology, depths of burial etc. are the same, the emplacement and stemming operation would be standardized, as would all other parts of the program. However, for individual experiments in totally different areas, complete standardization of the emplacement and stemming is impossible.

  1. Relative source comparison of the NPE to underground nuclear explosions at local distances

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.T. [Lawrence Livermore National Lab., CA (United States)

    1994-12-31

    The Non-Proliferation Experiment (NPE) provides an opportunity to compare broadband characteristics of chemical to nuclear explosions at a group of local stations (4 to 40 km distant). The locations for these stations were established on bedrock to record a small partially decoupled nuclear explosion and two nearby nuclear experiments, all shots within {open_quotes}N{close_quotes} Tunnel on Rainier Mesa, Area 12. These sites were also occupied to record aftershocks from the Little Skull Mountain earthquake and chemical explosions from the USGS Sierra Experiment. To minimize calibration errors during this period, redundant instrumentation were used for each event. THe analysis emphasizes the source characteristics of the different explosions. The 300-lb chemical calibration explosion allows removal of path effects from each explosion. The NPE and nearby experiments produce very similar waveforms. The decoupled nuclear explosion and the 300-lb chemical calibration explosion show higher frequency content consistent with a higher corner frequency for the sources.

  2. Further retardation could lead to a hold-up of nuclear reactor dismantling; Weitere Verzoegerungen koennten zu einem Stillstand des Kernkraft-Rueckbaus fuehren

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Konstantin (comp.) [Innovations- und Technologieberatung Altran, Frankfurt am Main (Germany). Bereich Energy and Industry

    2015-07-01

    The following issues concerning the consequences of the German nuclear power phaseout are discussed: the cost of reactor dismantling could increase; the complete deconstruction of a nuclear power plant including environmental revitalization take a time of 10-15 years; the largest challenge is the still unsolved problem of final disposal; further retardations could trigger a complete deadlock of the deconstruction due to completely filled interim storage facilities. A further problem is the knowledge preservation due to the lack of students.

  3. Enhanced coupling and decoupling of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Terhune, R.W.; Snell, C.M.; Rodean, H.C.

    1979-09-04

    The seismic coupling efficiency of nuclear explosions was studied in granite by means of computer calculations as a function of scaled explosion source radius. The scaled source radii were varied from 0.1 m/kt/sup 1/3/ (point source) to 20 m/kt/sup 1/3/ (representing a nearly full decoupling cavity). It was found that seismic coupling efficiency is at a maximum when the scaled source radius is approximately 2 m/kt/sup 1/3/. The primary cause of this maximum in seismic wave source strength is the effect of initial source radius on peak particle velocity and pulse duration of the outgoing elastic wave. A secondary cause is that rock vaporization (an energy sink) does not occur for scaled source radii somewhat greater than 1 m/kt/sup 1/3/. Therefore, for scaled source radii greater than 1 m/kt/sup 1/3/, there is additional energy available for seismic wave generations. Available data for some nuclear explosions at the Nevada Test Site do not provide sufficient evidence to either support or negate the enhanced coupling that is indicated by calculations at scaled source radii of 1-2 m/kt/sup 1/3/.

  4. Enhanced coupling and decoupling of underground nuclear explosions

    International Nuclear Information System (INIS)

    Terhune, R.W.; Snell, C.M.; Rodean, H.C.

    1979-01-01

    The seismic coupling efficiency of nuclear explosions was studied in granite by means of computer calculations as a function of scaled explosion source radius. The scaled source radii were varied from 0.1 m/kt/sup 1/3/ (point source) to 20 m/kt/sup 1/3/ (representing a nearly full decoupling cavity). It was found that seismic coupling efficiency is at a maximum when the scaled source radius is approximately 2 m/kt/sup 1/3/. The primary cause of this maximum in seismic wave source strength is the effect of initial source radius on peak particle velocity and pulse duration of the outgoing elastic wave. A secondary cause is that rock vaporization (an energy sink) does not occur for scaled source radii somewhat greater than 1 m/kt/sup 1/3/. Therefore, for scaled source radii greater than 1 m/kt/sup 1/3/, there is additional energy available for seismic wave generations. Available data for some nuclear explosions at the Nevada Test Site do not provide sufficient evidence to either support or negate the enhanced coupling that is indicated by calculations at scaled source radii of 1-2 m/kt/sup 1/3/

  5. Technical challenges for dismantlement verification

    International Nuclear Information System (INIS)

    Olinger, C.T.; Stanbro, W.D.; Johnston, R.G.; Nakhleh, C.W.; Dreicer, J.S.

    1997-01-01

    In preparation for future nuclear arms reduction treaties, including any potential successor treaties to START I and II, the authors have been examining possible methods for bilateral warhead dismantlement verification. Warhead dismantlement verification raises significant challenges in the political, legal, and technical arenas. This discussion will focus on the technical issues raised by warhead arms controls. Technical complications arise from several sources. These will be discussed under the headings of warhead authentication, chain-of-custody, dismantlement verification, non-nuclear component tracking, component monitoring, and irreversibility. The authors will discuss possible technical options to address these challenges as applied to a generic dismantlement and disposition process, in the process identifying limitations and vulnerabilities. They expect that these considerations will play a large role in any future arms reduction effort and, therefore, should be addressed in a timely fashion

  6. The promising opportunity of dismantlement

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    Civil engineering, mechanics and waste conditioning companies are thriving around the market of nuclear facilities dismantlement which is promised to a huge development in the coming decade. This paper presents a map of the opportunities of the dismantlement market throughout Europe (research and power reactors, fuel fabrication plants, spent fuel reprocessing plants) and a cost estimation of a given dismantling work with respect to the different steps of the work. In France a small core of about twenty companies is involved in nuclear dismantlement but the French market is also looking towards foreign specialists of this activity. The British market is also targeted by the French companies but for all the actors the technological or commercial advance gained today will be determining for the future markets. (J.S.)

  7. The present status of scientific applications of nuclear explosions

    International Nuclear Information System (INIS)

    Cowan, G.A.; Diven, B.C.

    1970-01-01

    This is the fourth in a series of symposia which started, in 1957 at Livermore with the purpose of examining the peaceful uses of nuclear explosives. Although principal emphasis has b een placed on technological applications, the discussions have, from the outset, included the fascinating question of scientific uses. Of the possible scientific applications which were mentioned at the 1957 meeting, the proposals which attracted most attention involved uses of nuclear explosions for research in seismology. It is interesting to note that since then a very large and stimulating body of data in the field of seismology has been collected from nuclear tests. Ideas for scientific applications of nuclear explosions go back considerably further than 1957. During the war days Otto Frisch at Los Alamos suggested that a fission bomb would provide an excellent source of fast neutrons which could be led down a vacuum pipe and used for experiments in a relatively unscattered state. This idea, reinvented, modified, and elaborated upon in the ensuing twenty-five years, provides the basis for much of the research discussed in this morning's program. In 1952 a somewhat different property of nuclear explosions, their ability to produce intense neutron exposures on internal targets and to synthesize large quantities of multiple neutron capture products, was dramatically brought to our attention by analysis of debris from the first large thermonuclear explosion (Mike) in which the elements einsteinium and fermiun were observed for the first time. The reports of the next two Plowshare symposia in 1959 and 1964 help record the fascinating development of the scientific uses of neutrons in nuclear explosions. Starting with two 'wheel' experiments in 1958 to measure symmetry of fission in 235-U resonances, the use of external beams of energy-resolved neutrons was expanded on the 'Gnome' experiment in 1961 to include the measurement of neutron capture excitation functions for 238-U, 232-Th

  8. The present status of scientific applications of nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, G A; Diven, B C [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)

    1970-05-15

    This is the fourth in a series of symposia which started, in 1957 at Livermore with the purpose of examining the peaceful uses of nuclear explosives. Although principal emphasis has {sup b}een placed on technological applications, the discussions have, from the outset, included the fascinating question of scientific uses. Of the possible scientific applications which were mentioned at the 1957 meeting, the proposals which attracted most attention involved uses of nuclear explosions for research in seismology. It is interesting to note that since then a very large and stimulating body of data in the field of seismology has been collected from nuclear tests. Ideas for scientific applications of nuclear explosions go back considerably further than 1957. During the war days Otto Frisch at Los Alamos suggested that a fission bomb would provide an excellent source of fast neutrons which could be led down a vacuum pipe and used for experiments in a relatively unscattered state. This idea, reinvented, modified, and elaborated upon in the ensuing twenty-five years, provides the basis for much of the research discussed in this morning's program. In 1952 a somewhat different property of nuclear explosions, their ability to produce intense neutron exposures on internal targets and to synthesize large quantities of multiple neutron capture products, was dramatically brought to our attention by analysis of debris from the first large thermonuclear explosion (Mike) in which the elements einsteinium and fermiun were observed for the first time. The reports of the next two Plowshare symposia in 1959 and 1964 help record the fascinating development of the scientific uses of neutrons in nuclear explosions. Starting with two 'wheel' experiments in 1958 to measure symmetry of fission in 235-U resonances, the use of external beams of energy-resolved neutrons was expanded on the 'Gnome' experiment in 1961 to include the measurement of neutron capture excitation functions for 238-U, 232

  9. Establishment of data base of regional seismic recordings from earthquakes, chemical explosions and nuclear explosions in the Former Soviet Union

    Energy Technology Data Exchange (ETDEWEB)

    Ermolenko, N.A.; Kopnichev, Yu.F.; Kunakov, V.G.; Kunakova, O.K.; Rakhmatullin, M.Kh.; Sokolova, I.N.; Vybornyy, Zh.I. [AN SSSR, Moscow (Russian Federation). Inst. Fiziki Zemli

    1995-06-01

    In this report results of work on establishment of a data base of regional seismic recordings from earthquakes, chemical explosions and nuclear explosions in the former Soviet Union are described. This work was carried out in the Complex Seismological Expedition (CSE) of the Joint Institute of Physics of the Earth of the Russian Academy of Sciences and Lawrence Livermore National Laboratory. The recording system, methods of investigations and primary data processing are described in detail. The largest number of digital records was received by the permanent seismic station Talgar, situated in the northern Tien Shan, 20 km to the east of Almaty city. More than half of the records are seismograms of underground nuclear explosions and chemical explosions. The nuclear explosions were recorded mainly from the Semipalatinsk test site. In addition, records of the explosions from the Chinese test site Lop Nor and industrial nuclear explosions from the West Siberia region were obtained. Four records of strong chemical explosions were picked out (two of them have been produced at the Semipalatinsk test site and two -- in Uzbekistan). We also obtained 16 records of crustal earthquakes, mainly from the Altai region, close to the Semipalatinsk test site, and also from the West China region, close to the Lop Nor test site. In addition, a small number of records of earthquakes and underground nuclear explosions, received by arrays of temporary stations, that have been working in the southern Kazakhstan region are included in this report. Parameters of the digital seismograms and file structure are described. Possible directions of future work on the digitizing of unique data archive are discussed.

  10. The challenges of dismantling

    International Nuclear Information System (INIS)

    Sene, Monique; Lheureux, Yves; Leroyer, Veronique; Rollinger, Francois; Gauthier, Florence; Depauw, Denis; Reynal, Nathalie; Fraysse, Thierry; Burger, Eric; Bertrand, Adrien; Vallat, Christophe; Bernet, Philippe; Eimer, Michel; Boutin, Dominique; Bietrix, Philippe; Richard, Francoise; Piketty, Laurence; Mouchet, Chantal; Charre, Jean-Pierre

    2014-01-01

    This document gathers Power Point presentations which address the contexts and challenges of dismantling (legal framework, safety and radiation protection challenges, waste processing industry), and propose illustrations of dismantling challenges (example of operations to prepare EURODIF dismantling and CLIGEET work-group on EURODIF dismantling, examples of dismantling of EDF installations and CLIs' opinion on the dismantling of EDF installations, Brennilis dismantling follow-up performed by the CLI, examples of dismantling of CEA installations and opinion of a CLI on the dismantling of CEA installations)

  11. BRET fuel assembly dismantling machine

    International Nuclear Information System (INIS)

    Titzler, P.A.; Bennett, K.L.; Kelley, R.S. Jr.; Stringer, J.L.

    1984-08-01

    An automated remote nuclear fuel assembly milling and dismantling machine has been designed, developed, and demonstrated at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington. The machine can be used to dismantle irradiated breeder fuel assemblies from the Fast Flux Test Facility prior to fuel reprocessing. It can be installed in an existing remotely operated shielded hot cell facility, the Fuels and Materials Examination Facility (FMEF), at the Hanford Site in Richland, Washington

  12. A Study on intelligent measurement of nuclear explosion equivalent in atmosphere

    International Nuclear Information System (INIS)

    Wang Desheng; Wu Xiaohong

    1999-01-01

    Measurement of nuclear explosion equivalent in atmosphere is an important subject for nuclear survey. Based on the relations between nuclear explosion equivalent and the minimum illuminance time of light radiation from nuclear explosion. The method of RC differential valley time detection and mean-time taking is presented the method, using a single-chip computer as a intelligent part, can realize intelligent measurement of minimum illuminance time with high reliability and low power consumption. This method provides a practical mean for quick, accurate and reliable measurement of nuclear explosion equivalent in atmosphere

  13. Environmental contamination due to nuclear weapon tests and peaceful uses of nuclear explosions

    International Nuclear Information System (INIS)

    Petr, I.; Jandl, J.

    1979-01-01

    The effect of nuclear weapons tests and of the peaceful uses of nuclear explosions on the environment is described. The local and global fallout and the fallout distribution are analysed for the weapon tests. The radiation effects of external and internal irradiation on the population are discussed and the overall radiation risk is estimated. (author)

  14. Advancing Explosion Source Theory through Experimentation: Results from Seismic Experiments Since the Moratorium on Nuclear Testing

    Science.gov (United States)

    Bonner, J. L.; Stump, B. W.

    2011-12-01

    On 23 September 1992, the United States conducted the nuclear explosion DIVIDER at the Nevada Test Site (NTS). It would become the last US nuclear test when a moratorium ended testing the following month. Many of the theoretical explosion seismic models used today were developed from observations of hundreds of nuclear tests at NTS and around the world. Since the moratorium, researchers have turned to chemical explosions as a possible surrogate for continued nuclear explosion research. This talk reviews experiments since the moratorium that have used chemical explosions to advance explosion source models. The 1993 Non-Proliferation Experiment examined single-point, fully contained chemical-nuclear equivalence by detonating over a kiloton of chemical explosive at NTS in close proximity to previous nuclear explosion tests. When compared with data from these nearby nuclear explosions, the regional and near-source seismic data were found to be essentially identical after accounting for different yield scaling factors for chemical and nuclear explosions. The relationship between contained chemical explosions and large production mining shots was studied at the Black Thunder coal mine in Wyoming in 1995. The research led to an improved source model for delay-fired mining explosions and a better understanding of mining explosion detection by the International Monitoring System (IMS). The effect of depth was examined in a 1997 Kazakhstan Depth of Burial experiment. Researchers used local and regional seismic observations to conclude that the dominant mechanism for enhanced regional shear waves was local Rg scattering. Travel-time calibration for the IMS was the focus of the 1999 Dead Sea Experiment where a 10-ton shot was recorded as far away as 5000 km. The Arizona Source Phenomenology Experiments provided a comparison of fully- and partially-contained chemical shots with mining explosions, thus quantifying the reduction in seismic amplitudes associated with partial

  15. Dismantling system of concrete thermal shielding walls

    International Nuclear Information System (INIS)

    Machida, Nobuhiro; Saiki, Yoshikuni; Ono, Yorimasa; Tokioka, Masatake; Ogino, Nobuyuki.

    1985-01-01

    Purpose: To enable safety and efficient dismantling of concrete thermal shielding walls in nuclear reactors. Method: Concrete thermal shielding walls are cut and dismantled into dismantled blocks by a plasma cutting tool while sealing the top opening of bioshielding structures. The dismantled blocks are gripped and conveyed. The cutting tool is remote-handled while monitoring on a television receiver. Slugs and dusts produced by cutting are removed to recover. Since the dismantling work is carried out while sealing the working circumstance and by the remote control of the cutting tool, the operators' safety can be secured. Further, since the thermal sealing walls are cut and dismantled into blocks, dismantling work can be done efficiently. (Moriyama, K.)

  16. A portable system for nuclear, chemical agent, and explosives identification

    International Nuclear Information System (INIS)

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.; Caffrey, A.J.

    2001-01-01

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium γ-ray detector. The FRIS system uses an electromechanically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine a prompt-gamma neutron-activation analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material

  17. A Portable System for Nuclear, Chemical Agent and Explosives Identification

    International Nuclear Information System (INIS)

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Caffrey, A.J.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.

    2000-01-01

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium γ-ray detector. The FRIS system uses an electrochemically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine an active neutron interrogation and analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material

  18. Nuclear winter: Global consequences of multiple nuclear explosions

    International Nuclear Information System (INIS)

    Turco, R.P.; Toon, O.B.; Ackerman, T.P.; Pollack, J.B.; Sagan, C.

    1984-01-01

    Concern has been raised over the short- and long-term consequences of the dust, smoke, radioactivity, and toxic vapors that would be generated by a nuclear war. The discovery that dense clouds of soil particles may have played a major role in past mass extinctions of life on Earth has encouraged the reconsideration of nuclear war effects. These developments have led the authors to calculate, using new data and improved models, the potential global environmental effects of dust and smoke clouds (henceforth referred to as nuclear dust and smoke) generated in a nuclear war. They neglect the short-term effects of blast, fire, and radiation. Most of the world's population could probably survive the initial nuclear exchange and would inherit the postwar environment. Accordingly, the longer-term and global-scale aftereffects of nuclear war might prove to be as important as the immediate consequences of the war

  19. A Hydrogen Ignition Mechanism for Explosions in Nuclear Facility Piping Systems

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, Robert A.

    2013-09-18

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  20. SCOPE-RADTEST: Radioactivity from nuclear test explosions

    International Nuclear Information System (INIS)

    Shapiro, C.S.; Tsaturov, Y.

    1993-10-01

    The SCOPE-RADTEST program consists of an international collaborative study involving Russia, the USA, China, and Kazakhstan. It will focus on the releases of radioactivity that resulted from nuclear test explosions that have taken place at various test sites around the world for peaceful and military purposes. RADTEST will focus on these principal tasks: (1) To inventory data on measurements of radionuclide deposition densities, and identify gaps in these data. (2) To compare old and develop new models of radioactive transport to better understand the deposition densities of radionuclides both on and near the nuclear test sites, including areas downwind where potentially significant episodes of fallout have occurred (such as the Altaj Region of Russia). (3) To study the migration of the radionuclides through the biosphere, including all pathways to humans. This will include the study of the effects on other biota that have impacts on humans. The main focus will be to characterize the nature and magnitude of the dose to humans. This will include dose reconstructions from past events, and also an increased capability for dose prediction from possible future accidental or deliberate explosions. (4)To analyze the data on the effects of these doses (including low doses) on human health. The test sites to be studied would include the Nevada Test Site (USA), South Pacific Islands (USA), Novaja Zemla (Russia), Semipalatinsk (Kazakhstan) and Luc Bu Pu (Lop Nor) (China). Tests at these sites include most of the total of nuclear explosions that have been conducted. Other sites, (including the sites of the U.K. and France), as appropriate, may also be included where tests were conducted for peaceful or military purposes

  1. The Use of Nuclear Explosives To Disrupt or Divert Asteroids

    Energy Technology Data Exchange (ETDEWEB)

    Dearborn, D S; Patenaude, S; Managan, R A

    2007-02-20

    Nuclear explosives are a mature technology with well-characterized effects. Proposed utilizations include a near asteroid burst to ablate surface material and nudge the body to a safer orbit, or a direct sub-surface burst to fragment the body. For this latter method, previous estimates suggest that for times as short as 1000 days, over 99.999% of the material is diverted, and no longer impacts the Earth, a huge mitigation factor. To better understand these possibilities, we have used a multidimensional radiation/hydrodynamics code to simulate sub-surface and above surface bursts on an inhomogeneous, 1 km diameter body with an average density of 2 g/cc. The body, or fragments (up to 750,000) are then tracked along 4 representative orbits to determine the level of mitigation achieved. While our code has been well tested in simulations on terrestrial structures, the greatest uncertainty in these results lies in the input. These results, particularly the effort to nudge a body into a different orbit, are dependant on NEO material properties, like the dissipation of unconsolidated material in a low gravity environment, as well as the details on an individual body's structure. This problem exists in simulating the effect of any mitigation technology. In addition to providing an greater understanding of the results of applying nuclear explosives to NEO-like bodies, these simulations suggest what must be learned about these bodies to improve the predictive capabilities. Finally, we will comment on some of the popular misinformation abounding about the utility of nuclear explosives.

  2. Modelling of nuclear explosions in hard rock sites

    International Nuclear Information System (INIS)

    Brunish, W.M.; App, F.N.

    1993-01-01

    This study represents part of a larger effort to systematically model the effects of differing source region properties on ground motion from underground nuclear explosions at the Nevada Test Site. In previous work by the authors the primary emphasis was on alluvium and both saturated and unsaturated tuff. We have attempted to model events on Pahute Mesa, where either the working point medium, or some of the layers above the working point, or both, are hard rock. The complex layering at these sites, however, has prevented us from drawing unambiguous conclusions about modelling hard rock

  3. The tank's dynamic response under nuclear explosion blast wave

    International Nuclear Information System (INIS)

    Xu Mei; Wang Lianghou; Li Xiaotian; Yu Suyuan; Zhang Zhengming; Wan Li

    2005-01-01

    To weapons and equipment, blast wave is the primary destructive factor. In this paper, taken the real model-59 tank as an example, we try to transform the damage estimation problem into computing a fluid structure interaction problem with finite element method. The response of tank under nuclear explosion blast wave is computed with the general-coupling algorithm. Also, the dynamical interaction of blast wave and tank is reflected in real time. The deformation of each part of the tank is worked out and the result corresponds to the real-measured data. (authors)

  4. Simulated nuclear optical signatures using explosive light sources (ELS)

    International Nuclear Information System (INIS)

    Glaser, R.F.

    1979-05-01

    Four Explosive Light Source (aluminium powder and oxygen) tests were conducted on the test range at Sandia Laboratories in Albuquerque (SLA) from 28 February through 7 March 1978. Although several types of measuring devices were used, the report documents only the optical time histories measured by the bhangmeters and the NBDS, and explains the conclusions reached. In general, the four shots made it possible to gather clear-air optical transmission data, determine the suitability of ELS to simulate the optical effects of a nuclear burst, and provide experience for the larger scale ELS tests to be conducted at Fort Ord, CA in April

  5. Simulated nuclear optical signatures using explosive light sources (ELS)

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, R.F.

    1979-05-01

    Four Explosive Light Source (aluminium powder and oxygen) tests were conducted on the test range at Sandia Laboratories in Albuquerque (SLA) from 28 February through 7 March 1978. Although several types of measuring devices were used, the report documents only the optical time histories measured by the bhangmeters and the NBDS, and explains the conclusions reached. In general, the four shots made it possible to gather clear-air optical transmission data, determine the suitability of ELS to simulate the optical effects of a nuclear burst, and provide experience for the larger scale ELS tests to be conducted at Fort Ord, CA in April.

  6. Appraisal of the radiological situation following a nuclear explosion

    International Nuclear Information System (INIS)

    Andreev, E.

    1976-01-01

    The physical laws governing a nuclear explosion and the characteristics of initial and residual radiation are set forth for an atomic and a neutron bomb. Consequent issues are successively discussed for local, continental, and global fallout, and formation of the radioactive trace. Impact aspects considered include: physico-chemical characteristics of fission products; inhalation, ingestion, and percutaneous routes of intake; distribution, localization, and removal from the body. Assessment is also made of external gamma irradiation from the radioactive trace. Finally, consideration is given to problems of radiation injuries sorting, of dosimetry, and early diagnostics in an emergency situation. (A.B.)

  7. Studies of radioactivity from nuclear explosions for peaceful purposes

    Energy Technology Data Exchange (ETDEWEB)

    Siddons, R A [AWRE, Aldermaston (United Kingdom)

    1970-05-01

    Estimates are made of the extent and duration of hazards from radioactivity to the general public due to fallout from a cratering explosion. The nuclear explosive is assumed to be 'clean' in the sense that only a small fraction of the yield is derived from fission. Hypothetical examples take an explosive of total yield 100 kT, of which 10 kT, 1 kT and zero - the ultimate in cleanliness - are derived from fission. The maximum permitted level to the public is taken as 0.5 rem in a period of one year. Sources of activity considered are fission products, residual thermonuclear material (tritium), neutron induced activity in the device materials and neutron induced activity in the surrounding rock. Estimates of the production are made, and are associated with a distribution function derived from the Sedan fallout measurements. The hazards from radioactivity associated with the creation of a storage reservoir for natural gas have also been considered. In this case the main problem is contamination of the product by tritium left in the chimney. The possibility of flushing out this tritium with water is discussed. (author)

  8. Studies of radioactivity from nuclear explosions for peaceful purposes

    International Nuclear Information System (INIS)

    Siddons, R.A.

    1970-01-01

    Estimates are made of the extent and duration of hazards from radioactivity to the general public due to fallout from a cratering explosion. The nuclear explosive is assumed to be 'clean' in the sense that only a small fraction of the yield is derived from fission. Hypothetical examples take an explosive of total yield 100 kT, of which 10 kT, 1 kT and zero - the ultimate in cleanliness - are derived from fission. The maximum permitted level to the public is taken as 0.5 rem in a period of one year. Sources of activity considered are fission products, residual thermonuclear material (tritium), neutron induced activity in the device materials and neutron induced activity in the surrounding rock. Estimates of the production are made, and are associated with a distribution function derived from the Sedan fallout measurements. The hazards from radioactivity associated with the creation of a storage reservoir for natural gas have also been considered. In this case the main problem is contamination of the product by tritium left in the chimney. The possibility of flushing out this tritium with water is discussed. (author)

  9. Development of an air cleaning system for dissolving high explosives from nuclear warheads

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Wilson, K.; Staggs, K.; Wapman, D. [Lawrence Livermore National Lab., CA (United States)

    1997-08-01

    The Department of Energy (DOE) has a major effort underway in dismantling nuclear weapons. In support of this effort we have been developing a workstation for removing the high explosive (HE) from nuclear warheads using hot sprays of dimethyl sulfoxide (DMSO) solvent to dissolve the HE. An important component of the workstation is the air cleaning system that is used to contain DMSO aerosols and vapor and radioactive aerosols. The air cleaning system consists of a condenser to liquefy the hot DMSO vapor, a demister pad to remove most of the DMSO aerosols, a high efficiency particulate air (HEPA) filter to remove the remaining aerosols, an activated carbon filter to remove the DMSO vapor, and a final HEPA filter to meet the redundancy requirement for HEPA filters in radioactive applications. The demister pad is a 4{double_prime} thick mat of glass and steel fibers and was selected after conducting screening tests on promising candidates. We also conducted screening tests on various activated carbons and found that all had a similar performance. The carbon breakthrough curves were fitted to a modified Wheeler`s equation and gave excellent predictions for the effect of different flow rates. After all of the components were assembled, we ran a series of performance tests on the components and system to determine the particle capture efficiency as a function of size for dioctyl sebacate (DOS) and DMSO aerosols using laser particle counters and filter samples. The pad had an efficiency greater than 990% for 0.1 {mu}m DMSO particles. Test results on the prototype carbon filter showed only 70% efficiency, instead of the 99.9% in small scale laboratory tests. Thus further work will be required to develop the prototype carbon filter. 7 refs., 18 figs., 10 tabs.

  10. A simple dynamic rising nuclear cloud based model of ground radioactive fallout for atmospheric nuclear explosion

    International Nuclear Information System (INIS)

    Zheng Yi

    2008-01-01

    A simple dynamic rising nuclear cloud based model for atmospheric nuclear explosion radioactive prediction was presented. The deposition of particles and initial cloud radius changing with time before the cloud stabilization was considered. Large-scale relative diffusion theory was used after cloud stabilization. The model was considered reasonable and dependable in comparison with four U.S. nuclear test cases and DELFIC model results. (authors)

  11. Underground nuclear explosions. Geological survey of the cavities; Explosions nucleaires souterraines etude geologique des cavites

    Energy Technology Data Exchange (ETDEWEB)

    Faure, J [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    A geological survey of underground nuclear explosions makes it possible to determine the main characteristics of the cavity formed. The lower portion is spherical; the same was very likely true of the roof, which collapses in the majority of media with the exception of rock-salt. Its radius, for a given bomb size, can vary by a factor of two according to the type of rock. The lay-out of its contents depends on the characteristics of the solid and liquid products at the moment of the roof collapse; according to the medium involved, mixing of the rubble and the mud-flow occurs (granite) or does not occur (tuff and alluvia). In all media, the average physical properties can be evaluated. (author) [French] L'etude geologique d'explosions nucleaires souterraines permet de determiner les principaux caracteres de la cavite creee. Sa partie inferieure est spherique; il en etait vraisemblablement de meme de sa voute, effondree dans la plupart des milieux a l'exception du sel gemme. Son rayon, a energie d'engin egale, varie selon les roches du simple au double. La disposition de son contenu depend des caracteristiques des produits solides et liquides au moment de la chute du toit; selon le cas, il n'y a pas (tuf et alluvions) ou il y a (granite) melange des eboulis et des laves. Dans tous les milieux, les proprietes physiques moyennes peuvent etre evaluees. (auteur)

  12. Earthquake and nuclear explosion location using the global seismic network

    International Nuclear Information System (INIS)

    Lopez, L.M.

    1983-01-01

    The relocation of nuclear explosions, aftershock sequence and regional seismicity is addressed by using joint hypocenter determination, Lomnitz' distance domain location, and origin time and earthquake depth determination with local observations. Distance domain and joint hypocenter location are used for a stepwise relocation of nuclear explosions in the USSR. The resulting origin times are 2.5 seconds earlier than those obtained by ISC. Local travel times from the relocated explosions are compared to Jeffreys-Bullen tables. P times are found to be faster at 9-30 0 distances, the largest deviation being around 10 seconds at 13-18 0 . At these distances S travel times also are faster by approximately 20 seconds. The 1977 Sumba earthquake sequence is relocated by iterative joint hypocenter determination of events with most station reports. Simultaneously determined station corrections are utilized for the relocation of smaller aftershocks. The relocated hypocenters indicate that the aftershocks were initially concentrated along the deep trench. Origin times and depths are recalculated for intermediate depth and deep earthquakes using local observations in and around the Japanese Islands. It is found that origin time and depth differ systematically from ISC values for intermediate depth events. Origin times obtained for events below the crust down to 100 km depth are earlier, whereas no general bias seem to exist for origin times of events in the 100-400 km depth range. The recalculated depths for earthquakes shallower than 100 km are shallower than ISC depths. The depth estimates for earthquakes deeper than 100 km were increased by the recalculations

  13. Earthquake and nuclear explosion location using the global seismic network

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, L.M.

    1983-01-01

    The relocation of nuclear explosions, aftershock sequence and regional seismicity is addressed by using joint hypocenter determination, Lomnitz' distance domain location, and origin time and earthquake depth determination with local observations. Distance domain and joint hypocenter location are used for a stepwise relocation of nuclear explosions in the USSR. The resulting origin times are 2.5 seconds earlier than those obtained by ISC. Local travel times from the relocated explosions are compared to Jeffreys-Bullen tables. P times are found to be faster at 9-30/sup 0/ distances, the largest deviation being around 10 seconds at 13-18/sup 0/. At these distances S travel times also are faster by approximately 20 seconds. The 1977 Sumba earthquake sequence is relocated by iterative joint hypocenter determination of events with most station reports. Simultaneously determined station corrections are utilized for the relocation of smaller aftershocks. The relocated hypocenters indicate that the aftershocks were initially concentrated along the deep trench. Origin times and depths are recalculated for intermediate depth and deep earthquakes using local observations in and around the Japanese Islands. It is found that origin time and depth differ systematically from ISC values for intermediate depth events. Origin times obtained for events below the crust down to 100 km depth are earlier, whereas no general bias seem to exist for origin times of events in the 100-400 km depth range. The recalculated depths for earthquakes shallower than 100 km are shallower than ISC depths. The depth estimates for earthquakes deeper than 100 km were increased by the recalculations.

  14. Sites with nuclear facilities in the state of dismantling and their future from the public perspective; Standorte mit kerntechnischen Anlagen im Rueckbau und deren Zukunft aus der Perspektive der Bevoelkerung

    Energy Technology Data Exchange (ETDEWEB)

    Kretz, Simon Philipp

    2015-07-17

    The thesis on the public perspective at sites of nuclear facility dismantling covers the following issues: the change of German energy landscapes under social and political points of view, theoretical frame of the work, combination of empirical studies and the theoretical approaches in a space concept, action model and hypotheses on the situation and development in communities with nuclear facilities in the state of dismantling, description of the interviewees, and the empirical results of the interviews.

  15. Dose Prediction for surface nuclear explosions: case studies for Semipalatinsk and Lop Nur tests

    International Nuclear Information System (INIS)

    Takada, Jun

    2008-01-01

    Dose prediction method RAPS after surface nuclear explosion has been developed by using the empirical dose function of USA nuclear test. This method which provides us external total dose, dose rate at any distant, at any time for any yield of nuclear explosion, is useful for radiation protection in case of nuclear events such as terrorism and nuclear war. The validity of RAPS has been confirmed by application to historical surface nuclear test explosions. The first test case study which was done for the first test explosion of the former USSR at the Semipalatinsk Nuclear Test Site on August 29th 1949, shows a good agreement with luminescence dosimetry on a brick. This dose prediction method was applied nuclear tests in Lop Nur. The results indicate dangerous nuclear radiation influences including fatal risk in the wide Uygur area. (author)

  16. Implementing robotics in the Department of Energy Dismantlement Program

    International Nuclear Information System (INIS)

    Jones, A.T.

    1997-01-01

    Since the end of the cold war, as our nuclear stockpile has decreased, the Department of Energy (DOE) has been working rapidly to safely dismantle weapons returned by the military. In order to be retired, weapons must be returned to the Pantex Plant in Amarillo, Texas. There they are reduced to their component parts. Although many of these parts are not hazardous, some, including certain explosive assemblies and radioactive materials, are sufficiently hazardous so that special handling systems are necessary. This paper will describe several of these systems developed by Sandia for Pantex and their technical basis

  17. The Soviet program for peaceful uses of nuclear explosions

    International Nuclear Information System (INIS)

    Nordyke, M.D.

    1996-01-01

    The concept of utilizing the weapons of war to serve the peaceful pursuits of mankind is as old as civilization itself. Perhaps the most famous reference to this basic desire is recorded in the Book of Micah where the great prophet Isiah called upon his people 'to turn your spears into pitchforks and your swords into plowshares.' As the scientists at Los Alamos worked on developing the world's first atomic bomb, thoughts of how this tremendous new source of energy could be used for peaceful purposes generally focused on using the thermal energy generated by the slow fission of uranium in a reactor, such as those being used to produce Plutonium to drive electric power stations. However, being scientists in a new, exciting field, it was impossible to avoid letting their minds wander from the task at hand to other scientific or non-military uses for the bombs themselves. During the Manhattan Project, Otto Frisch, one of the pioneers in the development of nuclear fission process in the 1930s, first suggested using an atomic explosion as a source for a large quantities of neutrons which could used in scientific experiments designed to expand their understanding of nuclear physics. After the war was over, many grandiose ideas appeared in the popular press on how this new source of energy should be to serve mankind. Not to be left out of the growing enthusiasm for peaceful uses of atomic energy, the Soviet Union added their visions to the public record. This document details the Soviet program for using nuclear explosions in peacetime pursuits

  18. The Soviet program for peaceful uses of nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Nordyke, M.D.

    1996-07-24

    The concept of utilizing the weapons of war to serve the peaceful pursuits of mankind is as old as civilization itself. Perhaps the most famous reference to this basic desire is recorded in the Book of Micah where the great prophet Isiah called upon his people `to turn your spears into pitchforks and your swords into plowshares.` As the scientists at Los Alamos worked on developing the world`s first atomic bomb, thoughts of how this tremendous new source of energy could be used for peaceful purposes generally focused on using the thermal energy generated by the slow fission of uranium in a reactor, such as those being used to produce Plutonium to drive electric power stations. However, being scientists in a new, exciting field, it was impossible to avoid letting their minds wander from the task at hand to other scientific or non-military uses for the bombs themselves. During the Manhattan Project, Otto Frisch, one of the pioneers in the development of nuclear fission process in the 1930s, first suggested using an atomic explosion as a source for a large quantities of neutrons which could used in scientific experiments designed to expand their understanding of nuclear physics. After the war was over, many grandiose ideas appeared in the popular press on how this new source of energy should be to serve mankind. Not to be left out of the growing enthusiasm for peaceful uses of atomic energy, the Soviet Union added their visions to the public record. This document details the Soviet program for using nuclear explosions in peacetime pursuits.

  19. Cost calculations for decommissioning and dismantling of nuclear research facilities, Phase 1

    International Nuclear Information System (INIS)

    Andersson, Inga; Backe, S.; Iversen, Klaus; Lindskog, S; Salmenhaara, S.; Sjoeblom, R.

    2006-11-01

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility. However, no actual international guideline on cost calculations exists at present. Intuitively, it might be tempting to regard costs for decommissioning of a nuclear facility as similar to those of any other plant. However, the presence of radionuclide contamination may imply that the cost is one or more orders of magnitude higher as compared to a corresponding inactive situation, the actual ratio being highly dependent on the level of contamination as well as design features and use of the facility in question. Moreover, the variations in such prerequisites are much larger than for nuclear power plants. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological and other prerequisites. Application of inadequate methodologies especially at early stages has often lead to large underestimations. The goals of the project and the achievements described in the report are as follows: 1) Advice on good practice with regard to: 1a) Strategy and planning; 1b) Methodology selection; 1c) Radiological surveying; 1d) Uncertainty analysis; 2) Techniques for assessment of costs: 2a) Cost structuring; 2b) Cost estimation methodologies; 3) Compilation of data for plants, state of planning, organisations, etc.; 3a) General descriptions of relevant features of the nuclear research facilities; 3b) General plant specific data; 3c) Example of the decommissioning of the R1 research reactor in Sweden; 3d) Example of the decommissioning of the DR1 research reactor in Denmark. In addition, but not described in the present report, is the establishment of a Nordic network in the area including an internet based expert system. It should be noted that the project is planned to exist for at least three years and that the present report is an interim one

  20. Cost calculations for decommissioning and dismantling of nuclear research facilities, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Inga [StudsvikNuclear AB (Sweden); Backe, S. [Institute for Energy Technology (Norway); Iversen, Klaus [Danish Decommissioning (Denmark); Lindskog, S [Swedish Nuclear Power Inspectorate (Sweden); Salmenhaara, S. [VTT Technical Research Centre of Finland (Finland); Sjoeblom, R. [Tekedo AB (Sweden)

    2006-11-15

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility. However, no actual international guideline on cost calculations exists at present. Intuitively, it might be tempting to regard costs for decommissioning of a nuclear facility as similar to those of any other plant. However, the presence of radionuclide contamination may imply that the cost is one or more orders of magnitude higher as compared to a corresponding inactive situation, the actual ratio being highly dependent on the level of contamination as well as design features and use of the facility in question. Moreover, the variations in such prerequisites are much larger than for nuclear power plants. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological and other prerequisites. Application of inadequate methodologies especially at early stages has often lead to large underestimations. The goals of the project and the achievements described in the report are as follows: 1) Advice on good practice with regard to: 1a) Strategy and planning; 1b) Methodology selection; 1c) Radiological surveying; 1d) Uncertainty analysis; 2) Techniques for assessment of costs: 2a) Cost structuring; 2b) Cost estimation methodologies; 3) Compilation of data for plants, state of planning, organisations, etc.; 3a) General descriptions of relevant features of the nuclear research facilities; 3b) General plant specific data; 3c) Example of the decommissioning of the R1 research reactor in Sweden; 3d) Example of the decommissioning of the DR1 research reactor in Denmark. In addition, but not described in the present report, is the establishment of a Nordic network in the area including an internet based expert system. It should be noted that the project is planned to exist for at least three years and that the present report is an interim one

  1. Dismantling and rehabilitation programme of nuclear and radioactive facilities at the Spanish Research Centre (CIEMAT)

    International Nuclear Information System (INIS)

    Diaz Diaz, J.L.; Lopez Jimenez, J.

    2002-01-01

    Ciemat was gradually proceeding to the decommissioning of its more than 60 historical facilities. At present, a general decommissioning programme has been established that includes, to a different extent, all radioactive and nuclear facilities and their areas of influence, particularly those related to the front-end and back-end of the nuclear fuel cycle, hot cells and three experimental reactors. The purpose of the programme is to manage a model of a research centre integrating, on one side, a set of radioactive and conventional facilities and laboratories, and, on the other, a small area temporarily classified as a nuclear facility dedicated to the radioactive wastes management and providing an interim storage for materials under safeguards. The largest part of the radioactive wastes produced will be sent to El Cabril, a near surface disposal facility for low and intermediate level wastes, and the rest will be temporarily stored at Ciemat. This paper presents the main features of the programme and the lessons learned in its execution so far. (author)

  2. Nuclear Winter: Global Consequences of Multiple Nuclear Explosions

    Science.gov (United States)

    Turco, R. P.; Toon, O. B.; Ackerman, T. P.; Pollack, J. B.; Sagan, Carl

    1983-12-01

    The potential global atmospheric and climatic consequences of nuclear war are investigated using models previously developed to study the effects of volcanic eruptions. Although the results are necessarily imprecise, due to a wide range of possible scenarios and uncertainty in physical parameters, the most probable first-order effects are serious. Significant hemispherical attenuation of the solar radiation flux and subfreezing land temperatures may be caused by fine dust raised in high-yield nuclear surface bursts and by smoke from city and forest fires ignited by airbursts of all yields. For many simulated exchanges of several thousand megatons, in which dust and smoke are generated and encircle the earth within 1 to 2 weeks, average light levels can be reduced to a few percent of ambient and land temperatures can reach -15 degrees to -25 degrees C. The yield threshold for major optical and climatic consequences may be very low: only about 100 megatons detonated over major urban centers can create average hemispheric smoke optical depths greater than 2 for weeks and, even in summer, subfreezing land temperatures for months. In a 5000-megaton war, at northern mid-latitude sites remote from targets, radioactive fallout on time scales of days to weeks can lead to chronic mean doses of up to 50 rads from external whole-body gamma-ray exposure, with a likely equal or greater internal dose from biologically active radionuclides. Large horizontal and vertical temperature gradients caused by absorption of sunlight in smoke and dust clouds may greatly accelerate transport of particles and radioactivity from the Northern Hemisphere to the Southern Hemisphere. When combined with the prompt destruction from nuclear blast, fires, and fallout and the later enhancement of solar ultraviolet radiation due to ozone depletion, long-term exposure to cold, dark, and radioactivity could pose a serious threat to human survivors and to other species.

  3. Performance of electrical contact pins near a nuclear explosion

    International Nuclear Information System (INIS)

    Ragan, C.E.; Silbert, M.G.; Ellis, A.N.; Robinson, E.E.; Daddario, M.J.

    1977-09-01

    The pressures attainable in equation-of-state studies using nuclear-explosion-driven shock waves greatly exceed those that can be reached in normal laboratory conditions. However, the diagnostic instrumentation must survive in the high-radiation environment present near such an explosion. Therefore, a set of experiments were fielded on the Redmud event to test the feasibility of using electrical contact pins in this environment. In these experiments a 60-cm-high shield of boron-lead was placed on the rack lid approximately 1 m from the device. A sample consisting of slabs of molybdenum and 238 U was placed on top of the shield, and twelve electrical contact pins were embedded to five different depths in the materials. Five different multiplexing-charging circuits were used for the pins, and a piezoelectric quartz gauge was placed on top of the uranium to obtain an estimate of the fission-energy deposition. All of the charged pins survived the radiation and produced signals indicating shock arrival. The uncertainty in determining the pin-closure time was approximately 3 ns. The signal from the quartz gauge corresponded to a pressure that was consistent with the calculated neutron fluence

  4. Coda Spectral Peaking for Nevada Nuclear Test Site Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, K R; Mayeda, K; Walter, W R

    2007-09-10

    We have applied the regional S-wave coda calibration technique of Mayeda et al. (2003) to earthquake data in and around the Nevada Test Site (NTS) using 4 regional broadband stations from the LLNL seismic network. We applied the same path and site corrections to tamped nuclear explosion data and averaged the source spectra over the four stations. Narrowband coda amplitudes from the spectra were then regressed against inferred yield based on the regional m{sub b}(Pn) magnitude of Denny et al. (1987), along with the yield formulation of Vergino and Mensing (1990). We find the following: (1) The coda-derived spectra show a peak which is dependent upon emplacement depth, not event size; (2) Source size estimates are stable for the coda and show a dependence upon the near-source strength and gas porosity; (3) For explosions with the same m{sub b}(Pn) or inferred yield, those in weaker material have lower coda amplitudes at 1-3 Hz.

  5. Brazilian participation in the International Monitoring System for Nuclear Explosions

    International Nuclear Information System (INIS)

    Veloso, Jose Alberto Vivas

    1995-01-01

    On January 1, 1995, Brazil was integrated to the world-wide seismic system, through the Seismological Observatory of the University of Brasilia, dedicated to detect and identify underground nuclear explosions. This is an unprecedented global effort program to conduct a seismic test of rapid data collection, distribution and processing evolving the most advanced sensors, global communications and data processing technologies. By the end of February, 49 countries were incorporated and the present test represents a first training step towards the final definition of an International Monitoring System to monitoring a Comprehensive test Band Treaty. Besides accomplishing its main goal, the global monitoring program will be able to supply rapidly, through the International Data Center, important information to the seismological community. (author). 2 figs

  6. Symposium on engineering with nuclear explosives. Proceedings. Volume 2

    International Nuclear Information System (INIS)

    1970-05-01

    This symposium on 'Engineering with Nuclear Explosives' reports to the Plowshare community, both national and international, the progress achieved since April 1964, the date of the Third Plowshare Symposium. In structuring the technical presentations, contributions of broadest interest were placed at the beginning, thus forming a common base of current information and applied science understanding developed in support of Plowshare technology. Sessions of speciality or pertaining to specific areas of application and engineering follow logically in the program. The Plenary Session reviewed the current status of the Plowshare Program from the technical, government, and industrial points of view. The 112 papers presented at 15 technical sessions covered all technical aspects of the Plowshare Program. The conference summary reviewed principal themes, areas of significant advance, and subjects requiring further attention that emerged during the technical conference. This proceedings is the record of the symposium

  7. Symposium on engineering with nuclear explosives. Proceedings. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1970-05-01

    This symposium on 'Engineering with Nuclear Explosives' reports to the Plowshare community, both national and international, the progress achieved since April 1964, the date of the Third Plowshare Symposium. In structuring the technical presentations, contributions of broadest interest were placed at the beginning, thus forming a common base of current information and applied science understanding developed in support of Plowshare technology. Sessions of speciality or pertaining to specific areas of application and engineering follow logically in the program. The Plenary Session reviewed the current status of the Plowshare Program from the technical, government, and industrial points of view. The 112 papers presented at 15 technical sessions covered all technical aspects of the Plowshare Program. The conference summary reviewed principal themes, areas of significant advance, and subjects requiring further attention that emerged during the technical conference. These proceedings are the record of the symposium.

  8. Symposium on engineering with nuclear explosives. Proceedings. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1970-05-15

    This symposium on 'Engineering with Nuclear Explosives' reports to the Plowshare community, both national and international, the progress achieved since April 1964, the date of the Third Plowshare Symposium. In structuring the technical presentations, contributions of broadest interest were placed at the beginning, thus forming a common base of current information and applied science understanding developed in support of Plowshare technology. Sessions of speciality or pertaining to specific areas of application and engineering follow logically in the program. The Plenary Session reviewed the current status of the Plowshare Program from the technical, government, and industrial points of view. The 112 papers presented at 15 technical sessions covered all technical aspects of the Plowshare Program. The conference summary reviewed principal themes, areas of significant advance, and subjects requiring further attention that emerged during the technical conference. This proceedings is the record of the symposium.

  9. Symposium on engineering with nuclear explosives. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    1970-05-01

    This symposium on 'Engineering with Nuclear Explosives' reports to the Plowshare community, both national and international, the progress achieved since April 1964, the date of the Third Plowshare Symposium. In structuring the technical presentations, contributions of broadest interest were placed at the beginning, thus forming a common base of current information and applied science understanding developed in support of Plowshare technology. Sessions of speciality or pertaining to specific areas of application and engineering follow logically in the program. The Plenary Session reviewed the current status of the Plowshare Program from the technical, government, and industrial points of view. The 112 papers presented at 15 technical sessions covered all technical aspects of the Plowshare Program. The conference summary reviewed principal themes, areas of significant advance, and subjects requiring further attention that emerged during the technical conference. These proceedings are the record of the symposium

  10. Mass casualties of radiation injuries after nuclear weapon explosion

    International Nuclear Information System (INIS)

    Messerschmidt, O.

    1980-01-01

    Burns, mechanical lesions, radiation injuries as well as combinations of these types of injuries as a consequence of a nuclear explosion demand different basic lines of triage. The lack of a suitable physical dosimetry is a special problem for the evaluation of radiation injuries. While in cases of wounds and burns treatment, like surgery, is recommended to take place early, for example, within hours or days after those injuries, treatment of radiation victims is necessary only in the stage of severe haematologic changes including disturbances of coagulation and occurrence of high fever which appears after one or two weeks subsequent to exposure. The lack of medical personnel and medical equipment result in even a worse prognosis for the various injuries than in peace time accidents. (orig.) [de

  11. The good wealth of dismantlement

    International Nuclear Information System (INIS)

    Maincent, G.

    2009-01-01

    Civil engineering, mechanical and waste conditioning companies are working hard on the market of nuclear facilities dismantling. This market has a great future ahead of it in the ten years to come. According to the European Commission, 50 to 60 reactors among the 157 actually in service in the European Union should be dismantled by 2025. The cost per reactor is estimated to 10-15% of the initial investment, which represents an enormous amount of money, estimated to 20-39 billion euros for the only French nuclear park. In France, this market is shared by a core of about 20 companies, like Spie Nucleaire, Onet, Vinci (Nuvia) and Areva. Some dismantling sites require a specific skill, in particular those in relation with the research activity of the CEA (the French atomic energy commission) or involving specific technologies (research reactors, spent fuel reprocessing plants, sodium-cooled rectors..). (J.S.)

  12. Modelling of nuclear explosions in hard rock sites

    International Nuclear Information System (INIS)

    Brunish, W.M.; App, F.N.

    1993-01-01

    This study represents part of a larger effort to systematically model the effects of differing source region properties on ground motion from underground nuclear explosions at the Nevada Test Site. In previous work by the authors the primary emphasis was on alluvium and both saturated and unsaturated tuff. We have attempted to model events on Pahute Mesa, where either the working point medium, or some of the layers above the working point, or both, are hard rock. The complex layering at these sites, however, has prevented us from drawing unambiguous conclusions about modelling hard rock. In order to learn more about the response of hard rock to underground nuclear explosions, we have attempted to model the PILEDRIVER event. PILEDRIVER was fired on June 2, 1966 in the granite stock of Area 15 at the Nevada Test Site. The working point was at a depth of 462.7 m and the yield was determined to be 61 kt. Numerous surface, sub-surface and free-field measurements were made and analyzed by SRI. An attempt was made to determine the contribution of spall to the teleseismic signal, but proved unsuccessful because most of the data from below-shot-level gauges was lost. Nonetheless, there is quite a bit of good quality data from a variety of locations. We have been able to obtain relatively good agreement with the experimental PILEDRIVER waveforms. In order to do so, we had to model the granodiorite as being considerably weaker than ''good quality'' granite, and it had to undergo considerable weakening due to shock damage as well. In addition, the near-surface layers had to be modeled as being weak and compressible and as have a much lower sound speed than the material at depth. The is consistent with a fractured and jointed material at depth, and a weathered material near the surface

  13. Discussions on JNC roles and issues on management and disposition of surplus plutonium from the dismantlement of nuclear warhead

    International Nuclear Information System (INIS)

    2000-04-01

    Japan Nuclear Cycle Development Institute (JNC) and Russian Federation are now promoting the collaborative project to use the fast breeder reactor of BN-600 for the Russian surplus plutonium under the framework of the bilateral agreement on peaceful use of atomic energy. Based upon this background, JNC organized a study group to survey the world aspect on surplus plutonium resulting in START (Strategic Arms Reduction Treaty). The study group, including technical experts and also experts on international affairs, made a report after their survey and gave wide range discussion on various issues. The surplus plutonium of Russian Federation was estimated to be 102 - 136 tones. There were shortages of back end technologies in Russian infrastructures for dismantling, reprocessing and disposition of the surplus plutonium. A supporting leadership of USA to Russian Federation met some difficulties due to the strategic gap between both countries. One of the examples is the temporal evolution of USA attitude toward the CANDU (thermal power reactors of Canadian design characterized by heavy water moderator, pressure tube construction, and on-power refuelling) option to use surplus plutonium as MOX (Mixed OXide) fuels. Additional supports from the G8 (Group of eight) countries except USA and Russian Federation came up to their expectation. For examples, the joint group of French, German and Russian is promoting DEMOX (Demonstration of MOX fuel) project but is on the way to discussion depending on various thoughts about mutual benefits. Many issues remained in joint project with CIS (Commonwealth of Independent States), such as safeguard, nonproliferation, energy supply and demand, and environmental impacts. In addition, public opinions will give some impacts to policy makers, especially in USA. This report had analyzed many viewpoints for technical and political issues on surplus plutonium in the world, and pointed out consequences, merits and demerits after possible many

  14. Building confidence and partnership through the safe and secure dismantlement of nuclear weapons

    International Nuclear Information System (INIS)

    Goodby, J.E.

    1993-01-01

    The cold war is behind us now. It was with us a long time and we came to know it well. It was a dangerous time, but it had familiar contours and predictable reference points. Now, the topography of the bipolar confrontation is gone. We face great uncertainty and, yes, danger is still our companion. It is close at hand in the deadly relics of the cold war-the thousands of nuclear weapons that have been left behind like mines buried in a battlefield long after the guns have fallen silent. Our challenge is to construct a new and safer framework for our mutual relations beyond the cold war, based not on suspicion and fear, but on confidence and partnership. In doing so, it would be well to reflect on the enormous resources that were devoted to building weapons as compared to the relatively modest resources that will be needed to invest in peace. From that comparison should emerge a sense of proportion as to what we are called upon to do. We have choices. We can idly 'sleepwalk through history' and, once again, allow nuclear weapons to generate suspicion, competition, tension, and arms races reminiscent of the cold war. If we allow that to happen, we will have failed in our duty to posterity, and future generations will and should-judge us harshly. This would truly be the 'march of folly'. But if we seize the moment to build a solid foundation of confidence and partnership, we will surely be celebrated for our legacy of wisdom and peace. This is that moment. Let us now be wise

  15. Weapons dismantlement issues in independent Ukraine

    International Nuclear Information System (INIS)

    Zack, N.R.

    1995-01-01

    The American Association for the Advancement of Science sponsored a seminar during September 1993 in Kiev, Ukraine, titled, ''Toward a Nuclear-Free Future--Barriers and Problems.'' It brought together Ukrainians, Belarusians and Americans to discuss the legal, political, economic, technical, and safeguards and security dimensions of nuclear weapons dismantlement and destruction. US representatives initiated discussions on legal and treaty requirements and constraints, safeguards and security issues surrounding dismantlement, storage and disposition of nuclear materials, warhead transportation, and economic considerations. Ukrainians gave presentations on arguments for and against the Ukraine keeping nuclear weapons, the Ukrainian Parliament's nonapproval of START 1, alternative strategies for dismantling silos and launchers, and economic and security implications of nuclear weapons removal from the Ukraine. Participants from Belarus discussed proliferation and control regime issues. This paper will highlight and detail the issues, concerns and possible impacts of the Ukraine's dismantlement of its nuclear weapons

  16. Target: The green meadow. How much knowledge is needed for the dismantling of nuclear power plants?; Ziel: die Gruene Wiese. Wieviel Know-how man braucht, um ein Kernkraftwerk zurueckzubauen

    Energy Technology Data Exchange (ETDEWEB)

    Bach, Friedrich-Wilhelm; Hassel, Thomas [Unterwassertechnikum Hannover (UWTH), Hannover (Germany). Inst. fuer Werkstoffkunde

    2013-07-01

    As from the year 2022, there will no nuclear power plant exist in Germany. In the contribution under consideration two scientists from the Institute of Materials Science (Hanover, Federal Republic of Germany) report on the preparations and the necessary technical knowledge in order to dismantle the highly complex nuclear facilities and to recultivate former nuclear power plant sites.

  17. Dismantling the activated annular water tank of the Rheinsberg nuclear power plant

    International Nuclear Information System (INIS)

    Klietz, Maik; Konitzer, Arnold; Luedeke, Michael

    2010-01-01

    Acting on behalf of Energiewerke Nord GmbH Lubmin, Anlagen- und Kraftwerksrohrleitungsbau Greifswald GmbH (AKB) planned and built a station for disassembly of the activated annular water tank (RWB) of the decommissioned Rheinsberg nuclear power plant. As part of this demolition step, the annular water tank must be conditioned and disposed of as a component of the reactor facility. This required planning, manufacturing, testing and construction on site of suitable disassembly and handling techniques and the necessary plant and equipment. The client opted for disassembly by means of a diamond cable saw for conditioning the annular water tank into segments fit for shipping, and defined the basic components for the disassembly station in a specification of deliveries and services. The disassembly station serves to divide the annular water tank by means of diamond cable saws into 2 sections in such a way that segment pieces for transport are produced. The existing activation of the annular water tank also entailed the need to plan for the shortest possible time to be spent on handling near the annular water tank, providing radiological protection to the personnel, and performing the sawing steps from a separate operating console assisted by camera surveillance. After works acceptance tests at the manufacturer's, AKB, in October 2009 and February 2010, the disassembly station was delivered to the customer at Rheinsberg KKR free from defects in June 2010. (orig.)

  18. Disposition of plutonium from dismantled nuclear weapons: Fission options and comparisons

    International Nuclear Information System (INIS)

    Omberg, R.P.; Walter, C.E.

    1993-01-01

    Over the next decade, the United States expects to recover about 50 Mg of excess weapon plutonium and the Republic of Russia expects to recover a similar amount. Ensuring that these large quantities of high-grade material are not reused in nuclear weapons has drawn considerable attention. In response to this problem, the US Department of Energy (DOE) chartered the Plutonium Disposition Task Force (PDTF), in the summer of 1992, to assess a range of practical means for disposition of excess US plutonium. This report summarizes and compares the ''Fission Options'' provided to the Fission Working Group Review Committee (the committee) of the PDTF. The review by the committee was based on preliminary information received as of December 4, 1992, and as such the results summarized in this report should also be considered preliminary. The committee concluded that irradiation of excess weapon plutonium in fission reactors in conjunction with the generation of electricity and storing the spent fuel is a fast, cost-effective, and environmentally acceptable method of addressing the safeguards (diversion) issue. When applied appropriately, this method is consistent with current nonproliferation policy. The principal effect of implementing the fission options is at most a moderate addition of plutonium to that existing in commercial spent fuel. The amount of plutonium in commercial spent fuel by the year 2000 is estimated to be 300 Mg. The addition of 50 Mg of excess weapon plutonium, in this context, is not a determining factor, moreover, several of the fission options achieve substantial annihilation of plutonium

  19. Gas cloud explosions and their effect on nuclear power plant, basic development of explosion codes

    International Nuclear Information System (INIS)

    Hall, S.F.; Martin, D.; MacKenzie, J.

    1985-01-01

    The study of factors influencing the pressure and velocity fields produced by the burning of flammable substances has been in progress at SRD for some years. This paper describes an extension of these studies by using existing codes for a parametric survey, and modifying codes to produce more realistic representations of explosions and developing a two dimensional combustion code, FLARE. The one dimensional combustion code, GASEX1, has been used to determine the pressure from a burning gas cloud for a number of different fuels, concentrations and burning velocities. The code was modified so that gas concentrations could be modelled. Results for concentration gradients showed the pressure depended on local conditions and the burning velocity. The two dimensional code, GASEX2, was modified to model the interaction of pressure waves with structures. It was used, with results from GASEX1, to model the interaction of a pressure wave from the combustion of a gas cloud with a rigid structure representing a nuclear power plant. The two dimensional code FLARE has been developed to model the interaction of flames and pressure waves with structures. The code incorporates a simple turbulence model with a turbulence dependent reaction rate. Validation calculations have been carried out for the code. (author)

  20. Dismantlement of nuclear facilities decommissioned from the Russian navy: Enhancing regulatory supervision of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Sneve, M.K.

    2013-01-01

    The availability of up to date regulatory norms and standards for nuclear and radiation safety, relevant to the management of nuclear legacy situations, combined with effective and efficient regulatory procedures for licensing and monitoring compliance, are considered to be extremely important. Accordingly the NRPA has set up regulatory cooperation programs with corresponding authorities in the Russian Federation. Cooperation began with the civilian regulatory authorities and was more recently extended to include the military authority and this joint cooperation supposed to develop the regulatory documents to improve supervision over nuclear and radiation safety while managing the nuclear military legacy facilities in Northwest Russia and other regions of the country. (Author)

  1. Dismantlement of nuclear facilities decommissioned from the Russian navy: Enhancing regulatory supervision of nuclear and radiation safety

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, M.K.

    2013-03-01

    The availability of up to date regulatory norms and standards for nuclear and radiation safety, relevant to the management of nuclear legacy situations, combined with effective and efficient regulatory procedures for licensing and monitoring compliance, are considered to be extremely important. Accordingly the NRPA has set up regulatory cooperation programs with corresponding authorities in the Russian Federation. Cooperation began with the civilian regulatory authorities and was more recently extended to include the military authority and this joint cooperation supposed to develop the regulatory documents to improve supervision over nuclear and radiation safety while managing the nuclear military legacy facilities in Northwest Russia and other regions of the country. (Author)

  2. Environmental assessment for the purchase of Russian low enriched uranium derived from the dismantlement of nuclear weapons in the countries of the former Soviet Union

    International Nuclear Information System (INIS)

    1994-01-01

    The United States is proposing to purchase from the Russian Federation low enriched uranium (LEU) derived from highly enriched uranium (HEU) resulting from the dismantlement of nuclear weapons in the countries of the former Soviet Union. The purchase would be accomplished through a proposed contract requiring the United States to purchase 15,250 metric tons (tonnes) of LEU (or 22,550 tonnes of UF 6 ) derived from blending 500 metric tones uranium (MTU) of HEU from nuclear warheads. The LEU would be in the form of uranium hexafluoride (UF 6 ) and would be converted from HEU in Russia. The United States Enrichment Corporation (USEC) is the entity proposing to undertake the contract for purchase, sale, and delivery of the LEU from the Russian Federation. The US Department of Energy (DOE) is negotiating the procedure for gaining confidence that the LEU is derived from HEU that is derived from dismantled nuclear weapons (referred to as ''transparency),'' and would administer the transparency measures for the contract. There are six environments that could potentially be affected by the proposed action; marine (ocean); US ports of entry; truck or rail transportation corridors; the Portsmouth GDP; the electric power industry; and the nuclear fuel cycle industry. These environmental impacts are discussed

  3. Environmental assessment for the purchase of Russian low enriched uranium derived from the dismantlement of nuclear weapons in the countries of the former Soviet Union

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The United States is proposing to purchase from the Russian Federation low enriched uranium (LEU) derived from highly enriched uranium (HEU) resulting from the dismantlement of nuclear weapons in the countries of the former Soviet Union. The purchase would be accomplished through a proposed contract requiring the United States to purchase 15,250 metric tons (tonnes) of LEU (or 22,550 tonnes of UF{sub 6}) derived from blending 500 metric tones uranium (MTU) of HEU from nuclear warheads. The LEU would be in the form of uranium hexafluoride (UF{sub 6}) and would be converted from HEU in Russia. The United States Enrichment Corporation (USEC) is the entity proposing to undertake the contract for purchase, sale, and delivery of the LEU from the Russian Federation. The US Department of Energy (DOE) is negotiating the procedure for gaining confidence that the LEU is derived from HEU that is derived from dismantled nuclear weapons (referred to as ``transparency),`` and would administer the transparency measures for the contract. There are six environments that could potentially be affected by the proposed action; marine (ocean); US ports of entry; truck or rail transportation corridors; the Portsmouth GDP; the electric power industry; and the nuclear fuel cycle industry. These environmental impacts are discussed.

  4. Skills management medical labor in the plan of dismantling and decommissioning of the nuclear power plant Jose Cabrera

    International Nuclear Information System (INIS)

    Garcia Martinez, M.

    2012-01-01

    The model adopted for managing the skills of workers in the various contracts present in the dismantling in order to minimize, on the one hand, workplace accidents attributable to previous health status of the worker and the other the effects on the health could have a possible exposure to ionizing radiation. This model is based on the close coordination between the departments directly involved.

  5. French Regulatory Framework for the Recycling/Reuse of Nuclear Waste and the Dismantling of George Besse Gaseous Diffusion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Themines, R., E-mail: robert.themines@areva.com [AREVA (France)

    2011-07-15

    The regulatory framework in France governing the management of materials containing low levels of radionuclides is described. The plans for the management of the materials arising from the dismantling of the Georges Besse Gaseous Diffusion Plant are described as an example of the application of the regulations. (author)

  6. The feasibility of uranium enrichment in Brazil for use in nuclear bombs and the conceptual project of a nuclear explosive

    International Nuclear Information System (INIS)

    Rosa, L.P.

    1990-05-01

    This work reports the steps to define a brazilian system of nuclear safeguards under the congress responsibility. It discusses as well the feasibility of uranium enrichment for nuclear weapons, the construction of a nuclear submarine and the conceptual project of a nuclear explosive. (A.C.A.S.)

  7. Summary of USSR reports on mechanical and radioactivity effects of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Paul [Civil Engineering Department, Stanford University, Stanford, CA (United States)

    1970-05-01

    Two reports have been issued by the USSR which examine the mechanical effects and radioactive contamination of the environment from underground nuclear explosions. In reviewing the mechanical effects, the institute of Terrestrial Physics of the USSR Academy of Sciences emphasizes the advantages of nuclear explosives, namely the tremendous power and small dimensions, in the industrial and construction fields. The authors note that the mechanical effects are based not only upon the explosive yield but also upon the thermodynamic properties of the cavity gases during expansion. These properties may vary widely depending upon the rock material. A list of the basic parameters affecting the mechanical effects of contained nuclear explosions includes: cavity volume, dimensions of the chimney, degree of rock fracturing, intensity of the compression wave as a function of distance from shot point, and seismic effects. The second paper describes the phenomenology of radioactive contamination of the environment for both contained and excavation explosions.

  8. Summary of USSR reports on mechanical and radioactivity effects of underground nuclear explosions

    International Nuclear Information System (INIS)

    Kruger, Paul

    1970-01-01

    Two reports have been issued by the USSR which examine the mechanical effects and radioactive contamination of the environment from underground nuclear explosions. In reviewing the mechanical effects, the institute of Terrestrial Physics of the USSR Academy of Sciences emphasizes the advantages of nuclear explosives, namely the tremendous power and small dimensions, in the industrial and construction fields. The authors note that the mechanical effects are based not only upon the explosive yield but also upon the thermodynamic properties of the cavity gases during expansion. These properties may vary widely depending upon the rock material. A list of the basic parameters affecting the mechanical effects of contained nuclear explosions includes: cavity volume, dimensions of the chimney, degree of rock fracturing, intensity of the compression wave as a function of distance from shot point, and seismic effects. The second paper describes the phenomenology of radioactive contamination of the environment for both contained and excavation explosions

  9. The 20th nuclear explosion test of the Peoples' Republic of China (underground nuclear test)

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    (1) The New China News Agency and the Radio Peking announced that China conducted the underground nuclear explosion test on 17 October, 1976. However, no exact data concerning the data, the place and the scale of this test was stated in above announcement. (2) However, relatively high radioactivity than that of normal level was detected in the rain and dry fallout samples collected from several prefectures. (author)

  10. Engineering with nuclear explosives near populated areas - A survey from the technological and economic viewpoint

    Energy Technology Data Exchange (ETDEWEB)

    Parker, K [AWRE, Aldermaston (United Kingdom)

    1970-05-01

    Current experience with underground firings of nuclear explosives and of large charges of conventional explosives is largely confined to sparsely populated areas such as the Nevada and Sahara deserts and parts of Siberia. On the other hand many of the commercial applications proposed for nuclear explosives are directly relevant to industrialized areas, where consumptions of energy and natural resources are high, as are population densities. In many of these areas there is a need to increase the efficiency with which natural gas, oil and electrical power are supplied and to make safe disposal of fluid wastes; completely contained nuclear explosions could be a useful tool in achieving some or all of these aims. Whilst radioactivity and air blast hazards are likely to rule out nuclear cratering operations near densely populated areas, the prospects for carrying out completely contained explosions are much better, providing seismic damage is kept within reasonable bounds. In large areas of Western Europe and on the eastern, southern and western seaboards of the United States this might be achieved by using nuclear explosions beneath the seabed at a reasonable distance from the nearest coastline, always provided the relevant political issues can be resolved. Stimulation and storage of North Sea natural gas, construction of off-shore oil storage and storage of electrical energy are areas where engineering with nuclear explosives merits more detailed investigation and some of the relevant technical problems are discussed. (author)

  11. Engineering with nuclear explosives near populated areas - A survey from the technological and economic viewpoint

    International Nuclear Information System (INIS)

    Parker, K.

    1970-01-01

    Current experience with underground firings of nuclear explosives and of large charges of conventional explosives is largely confined to sparsely populated areas such as the Nevada and Sahara deserts and parts of Siberia. On the other hand many of the commercial applications proposed for nuclear explosives are directly relevant to industrialized areas, where consumptions of energy and natural resources are high, as are population densities. In many of these areas there is a need to increase the efficiency with which natural gas, oil and electrical power are supplied and to make safe disposal of fluid wastes; completely contained nuclear explosions could be a useful tool in achieving some or all of these aims. Whilst radioactivity and air blast hazards are likely to rule out nuclear cratering operations near densely populated areas, the prospects for carrying out completely contained explosions are much better, providing seismic damage is kept within reasonable bounds. In large areas of Western Europe and on the eastern, southern and western seaboards of the United States this might be achieved by using nuclear explosions beneath the seabed at a reasonable distance from the nearest coastline, always provided the relevant political issues can be resolved. Stimulation and storage of North Sea natural gas, construction of off-shore oil storage and storage of electrical energy are areas where engineering with nuclear explosives merits more detailed investigation and some of the relevant technical problems are discussed. (author)

  12. Dismantling technologies trends

    International Nuclear Information System (INIS)

    Devaux, P.

    2009-01-01

    In this work dismantling technologies trends realized by the CEA are reviewed. There following technologies are presented: Data acquisition from facilities; Scenario studies; Remote handling and carriers; Dismantling techniques; Decontamination.

  13. The research development on the movement of the gas in nuclear explosion clouds

    International Nuclear Information System (INIS)

    Li Xiaoli; Zheng Yi; Zhu Shilei

    2010-01-01

    This paper is intends to analysis several experimental research and also the numerical modeling on the movement of explosion clouds. Following this, the paper gives some development of the numerical modeling and also its restriction during its application to the gas in Nuclear Explosion Clouds. Finally, the model applied to different stage are pointed out. (authors)

  14. EDF's dismantling experience

    International Nuclear Information System (INIS)

    Mira, J.J.

    1993-01-01

    The dismantling policy at EDF, taking into account technical, economical and socio-political factors, is presented. The various current realizations are reviewed and their dismantling solution discussed: Chinon A2, Chinon A1, Marcoule G1, G2, G3, Brennilis (EL4). Several dismantling projects are also described (Chinon A3, St-Laurent A1-A2, Chooz A). The various dismantling operations are presented and scheduled

  15. Deregulation in the field of decommissioning and dismantling of nuclear facilities. Legal frame conditions and regulations in the field of nuclear engineering; Deregulierung bei der Stillegung und Beseitigung nuklearer Anlagen; Rechtliche Rahmenbedingungen und kerntechnisches Regelwerk

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, A [Kernforschungszentrum Karlsruhe GmbH (Germany). Vorstandsbereich 2 - Neue Technologien und Grundlagenforschung; Baumgaertel, G [Kernforschungszentrum Karlsruhe GmbH (Germany). Koordinationsstelle Genehmigungsverfahren (KGV)

    1994-05-01

    The report comprises two articles covering current topics of the decommissioning and dismantling of nuclear facilities. In the first article written by Kurz, the legal standards are listed together with conclusions and proposals regarding their implementation for the further development of this field of law. The article by Baumgaertel is aimed at evaluating the regulations governing nuclear technology as regards their applicability to the decommissioning and dismantling of nuclear facilities. These articles shall contribute to the discussions taking place in this field at the moment. As a result, an appropriate and project-specific application of the legal provisions and not legally binding (technical) regulations in the field of nuclear technology (deregulation) in the licensing procedures required for the decommissioning and dismantling of nuclear facilities is requested by the authors. (orig.) [Deutsch] Der Bericht enthaelt zwei Ausarbeitungen zu aktuellen Themenstellungen der Stillegung und Beseitigung nuklearer Anlagen. Der Bericht von Kurz beinhaltet eine thesenartige Auflistung der normativen Voraussetzungen mit Schlussfolgerungen und Umsetzungsvorschlaegen zur Weiterentwicklung dieses Rechtsgebietes; die Ausarbeitung von Baumgaertel beinhaltet eine wertende Durchsicht des kerntechnischen Regelwerkes im Hinblick auf die Anwendbarkeit bei der Stillegung und Beseitigung nuklearer Anlagen. Die Ausarbeitungen dienen als Beitrag zur aktuellen Diskussion in diesem Themenfeld. Im Ergebnis fordern die Autoren die angemessene, vorhabensspezifische Anwendung der rechtlichen Voraussetzungen des kerntechnischen Regelwerkes (Deregulierung) in den zur Stillegung und Beseitigung nuklearer Anlagen erforderlichen Genehmigungsverfahren. (orig.)

  16. Numerical simulation of the ionization effects of low- and high-altitude nuclear explosions

    International Nuclear Information System (INIS)

    Zhao Zhengyu; Wang Xiang

    2007-01-01

    Low-altitude and high-altitude nuclear explosions are sources of intensive additional ionization in ionosphere. In this paper, in terms of the ionization equilibrium equation system and the equation of energy deposition of radiation in atmosphere, and considering the influence of atmosphere, the temporal and spatial distribution of ionization effects caused by atmospheric nuclear detonation are investigated. The calculated results show that the maximum of additional free electron density produced by low-altitude nuclear explosion is greater than that by the high-altitude nuclear burst. As to the influence of instant nuclear radiation, there is obvious difference between the low-altitude and the high-altitude explosions. The influence range and the continuance time caused by delayed nuclear radiation is less for the low-altitude nuclear detonation than that for the high-altitude one. (authors)

  17. Study of the chimney produced by an underground nuclear explosion; Etude de la cheminee creee par une explosion nucleaire souterraine

    Energy Technology Data Exchange (ETDEWEB)

    Derlich, S [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    Underground nuclear explosions lead to the formation of a cavity which is roughly of spherical shape. The roof of this cavity is unstable and collapses in most cases, leading to the formation of a chimney. The height and the diameter depend on the energy of the charge and on the nature of the surroundings. The chronology of the various stages can be determined by seismic observations. The interior of the chimney is filled, either partially or completely, with rubble earth. This phenomenon is of great importance as far as the use of nuclear explosions for industrial applications is concerned. (author) [French] Les explosions nucleaires souterraines creent une cavite de forme grossierement spherique. La voute de cette cavite est instable et s'effondre dans la plupart des cas, donnant lieu a la formation d'une cheminee. La hauteur et le diametre sont fonction de l'energie du tir et de la nature du milieu. La chronologie des evenements peut etre determinee par des observations seismiques. L'interieur des cheminees est occupe, en partie ou en totalite, par des eboulis. Ce phenomene presente un grand interet pour l'utilisation des explosions nucleaires a des fins industrielles. (auteur)

  18. Radioactive contamination of copper produced using nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Crouse, D J; Arnold, W D; Hurst, F J

    1970-05-15

    Laboratory tests simulating the processing of copper ore after fracturing with nuclear explosives indicate that only very small fractions of the radioactive fission products will be dissolved on leaching with dilute sulfuric acid. Tritium (as tritiated water) will be by far the dominant radionuclide in the circulating leach liquor, assuming use of a fusion device. Only 106Ru appears of significant importance with respect to contamination of the cement copper. It is rejected effectively in electrolytic purification and, therefore, the final copper product should be very low in radiocontamination and not hazardous to the customer. The activity level may be high enough, however, to make the copper unsuitable for some specific uses. If necessary, solvent extraction can be used as an alternative to the cementation process to reduce the radioactivity of the copper products. The tritium in the circulating liquor and the 106Ru in the cement copper are potential hazards at the plant site and must be given consideration in designing and operating the facility. However since the activity levels will be low, the protection necessary to ensure safety of the operating personnel should be neither difficult nor costly to provide. (author)

  19. The ionization effects from nuclear explosions in high-altitude and their effect to radio propagation

    International Nuclear Information System (INIS)

    Guan Rongsheng; Li Qin

    1997-01-01

    A high-altitude nuclear explosions releases large quantities of energetic particles and electromagnetic radiation capable of producing ionization in the atmosphere. These particles and rays radiation character in the atmosphere are discussed. Ionizations due to explosion X rays, γ rays, neutrons and β particles are considered separately. The time-space distribution of additional electron density is computed and its nature is analyzed. The effects of explosion-induced ionization on the absorption of radio wave is considered and the dependence of the absorption on explosion characteristics, distance from the earth's atmosphere, and frequency of the radio wave is determined

  20. Wavelet analysis and it's applications to recognition of nuclear explosion and lightning

    International Nuclear Information System (INIS)

    Zhang Zhongshan; Zhang Enshan; Gao Chunxia

    1999-01-01

    An approach to feature extraction and recognition of the characteristic signal is studied. And the method is applied to recognition of nuclear explosions and lightning. The results show the method is valid

  1. UTEX modeling of xenon signature sensitivity to geology and explosion cavity characteristics following an underground nuclear explosion

    Science.gov (United States)

    Lowrey, J. D.; Haas, D.

    2013-12-01

    Underground nuclear explosions (UNEs) produce anthropogenic isotopes that can potentially be used in the verification component of the Comprehensive Nuclear-Test-Ban Treaty. Several isotopes of radioactive xenon gas have been identified as radionuclides of interest within the International Monitoring System (IMS) and in an On-Site Inspection (OSI). Substantial research has been previously undertaken to characterize the geologic and atmospheric mechanisms that can drive the movement of radionuclide gas from a well-contained UNE, considering both sensitivities on gas arrival time and signature variability of xenon due to the nature of subsurface transport. This work further considers sensitivities of radioxenon gas arrival time and signatures to large variability in geologic stratification and generalized explosion cavity characteristics, as well as compares this influence to variability in the shallow surface.

  2. Characteristics of acoustic wave from atmospheric nuclear explosions conducted at the USSR Test Sites

    Science.gov (United States)

    Sokolova, Inna

    2015-04-01

    Availability of the acoustic wave on the record of microbarograph is one of discriminate signs of atmospheric (surface layer of atmosphere) and contact explosions. Nowadays there is large number of air wave records from chemical explosions recorded by the IMS infrasound stations installed during recent decade. But there is small number of air wave records from nuclear explosions as air and contact nuclear explosions had been conducted since 1945 to 1962, before the Limited Test Ban Treaty was signed in 1963 (the treaty banning nuclear weapon tests in the atmosphere, in outer space and under water) by the Great Britain, USSR and USA. That time there was small number of installed microbarographs. First infrasound stations in the USSR appeared in 1954, and by the moment of the USSR collapse the network consisted of 25 infrasound stations, 3 of which were located on Kazakhstan territory - in Kurchatov (East Kazakhstan), in Borovoye Observatory (North Kazakhstan) and Talgar Observatory (Northern Tien Shan). The microbarograph of Talgar Observatory was installed in 1962 and recorded large number of air nuclear explosions conducted at Semipalatinsk Test Site and Novaya Zemlya Test Site. The epicentral distance to the STS was ~700 km, and to Novaya Zemlya Test Site ~3500 km. The historical analog records of the microbarograph were analyzed on the availability of the acoustic wave. The selected records were digitized, the database of acoustic signals from nuclear explosions was created. In addition, acoustic signals from atmospheric nuclear explosions conducted at the USSR Test Sites were recorded by analogue broadband seismic stations at wide range of epicentral distances, 300-3600 km. These signals coincide well by its form and spectral content with records of microbarographs and can be used for monitoring tasks and discrimination in places where infrasound observations are absent. Nuclear explosions which records contained acoustic wave were from 0.03 to 30 kt yield for

  3. Recognition of underground nuclear explosion and natural earthquake based on neural network

    International Nuclear Information System (INIS)

    Yang Hong; Jia Weimin

    2000-01-01

    Many features are extracted to improve the identified rate and reliability of underground nuclear explosion and natural earthquake. But how to synthesize these characters is the key of pattern recognition. Based on the improved Delta algorithm, features of underground nuclear explosion and natural earthquake are inputted into BP neural network, and friendship functions are constructed to identify the output values. The identified rate is up to 92.0%, which shows that: the way is feasible

  4. Closing the sky. The total dismantling of the Jose Cabrera nuclear power plant demonstrates maturity in the nuclear sector

    International Nuclear Information System (INIS)

    Rodriguez, A.

    2015-01-01

    This article aims to put the situation of the decommissioning of nuclear power plants in the world into perspective as an already consolidated activity and with an important future of industrial activity. The decommissioning project that Enresa is currently performing in the old Jose Cabrera plant is being explained in detail, by providing data of the newest and most relevant technical aspects as well as the lessons learned to be reusable in other decommissioning projects. The previous background, the project planning, the activities performed and those still to be done as well as their timing are being explained in detail. (Author)

  5. Steam explosion - physical foundations and relation to nuclear reactor safety

    International Nuclear Information System (INIS)

    Schumann, U.

    1982-08-01

    'Steam explosion' means the sudden evaporation of a fluid by heat exchange with a hotter material. Other terms are 'vapour explosion', 'thermal explosion', and 'energetic fuel-coolant interaction (FCI)'. In such an event a large fraction of the thermal energy initially stored in the hot material may possibly be converted into mechanical work. For pressurized water reactors one discusses (e.g. in risk analysis studies) a core melt-down accident during which molten fuel comes into contact with water. In the analysis of the consequences one has to investigate steam explosions. In this report an overview over the state of the knowledge is given. The overview is based on an extensive literature review. The objective of the report is to provide the basic knowledge which is required for understanding of the most important theories on the process of steam explosions. Following topics are treated: overview on steam explosion incidents, work potential, spontaneous nucleation, concept of detonation, results of some typical experiments, hydrodynamic fragmentation of drops, bubbles and jets, coarse mixtures, film-boiling, scenario of a core melt-down accident with possible steam-explosion in a pressurized water reactor. (orig.) [de

  6. Quality Assurance in the Vandellos 1 Nuclear Power Plant Dismantling and Decommissioning Project; La garantia de calidad en el proyecto de desmantelamiento y clausura de la Central Nuclear de Vandellos I

    Energy Technology Data Exchange (ETDEWEB)

    Soto Lanuza, A

    2000-07-01

    General description of the Quality Assurance System established and implemented for the efficient development of the current activities specified in the Dismantling and Decommissioning Plan for Vandellos I Nuclear Power Plant. Aspects related to the Quality organization, scope and applicability on the established Quality Assurance Manual, availability of requirements and recommendations on quality as well as actions to be taken for the correct verification on the quality and practical application of the Manual should be described. (Author)

  7. Numerical simulation of stress wave propagation from underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, J T; Petersen, F L [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    This paper presents a numerical model of stress wave propagation (SOC) which uses material properties data from a preshot testing program to predict the stress-induced effects on the rock mass involved in a Plowshare application. SOC calculates stress and particle velocity history, cavity radius, extent of brittle failure, and the rock's efficiency for transmitting stress. The calculations are based on an equation of state for the rock, which is developed from preshot field and laboratory measurements of the rock properties. The field measurements, made by hole logging, determine in situ values of the rock's density, water content, and propagation velocity for elastic waves. These logs also are useful in judging the layering of the rock and in choosing which core samples to test in the laboratory. The laboratory analysis of rock cores includes determination of hydrostatic compressibility to 40 kb, triaxial strength data, tensile strength, Hugoniot elastic limit, and, for the rock near the point of detonation, high-pressure Hugoniot data. Equation-of-state data are presented for rock from three sites subjected to high explosive or underground nuclear shots, including the Hardhat and Gasbuggy sites. SOC calculations of the effects of these two shots on the surrounding rock are compared with the observed effects. In both cases SOC predicts the size of the cavity quite closely. Results of the Gasbuggy calculations indicate that useful predictions of cavity size and chimney height can be made when an adequate preshot testing program is run to determine the rock's equation of state. Seismic coupling is very sensitive to the low-pressure part of the equation of state, and its successful prediction depends on agreement between the logging data and the static compressibility data. In general, it appears that enough progress has been made in calculating stress wave propagation to begin looking at derived numbers, such as number of cracks per zone, for some insight into the

  8. Numerical simulation of stress wave propagation from underground nuclear explosions

    International Nuclear Information System (INIS)

    Cherry, J.T.; Petersen, F.L.

    1970-01-01

    This paper presents a numerical model of stress wave propagation (SOC) which uses material properties data from a preshot testing program to predict the stress-induced effects on the rock mass involved in a Plowshare application. SOC calculates stress and particle velocity history, cavity radius, extent of brittle failure, and the rock's efficiency for transmitting stress. The calculations are based on an equation of state for the rock, which is developed from preshot field and laboratory measurements of the rock properties. The field measurements, made by hole logging, determine in situ values of the rock's density, water content, and propagation velocity for elastic waves. These logs also are useful in judging the layering of the rock and in choosing which core samples to test in the laboratory. The laboratory analysis of rock cores includes determination of hydrostatic compressibility to 40 kb, triaxial strength data, tensile strength, Hugoniot elastic limit, and, for the rock near the point of detonation, high-pressure Hugoniot data. Equation-of-state data are presented for rock from three sites subjected to high explosive or underground nuclear shots, including the Hardhat and Gasbuggy sites. SOC calculations of the effects of these two shots on the surrounding rock are compared with the observed effects. In both cases SOC predicts the size of the cavity quite closely. Results of the Gasbuggy calculations indicate that useful predictions of cavity size and chimney height can be made when an adequate preshot testing program is run to determine the rock's equation of state. Seismic coupling is very sensitive to the low-pressure part of the equation of state, and its successful prediction depends on agreement between the logging data and the static compressibility data. In general, it appears that enough progress has been made in calculating stress wave propagation to begin looking at derived numbers, such as number of cracks per zone, for some insight into the

  9. Evaluation of scheduling problems for the project planning of large-scale projects using the example of nuclear facility dismantling; Evaluation von Schedulingproblemen fuer die Projektplanung von Grossprojekten am Beispiel des kerntechnischen Rueckbaus

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, Felix; Schellenbaum, Uli; Stuerck, Christian; Gerhards, Patrick; Schultmann, Frank

    2017-05-15

    The magnitude of widespread nuclear decommissioning and dismantling, regarding deconstruction costs and project duration, exceeds even most of the prominent large-scale projects. The deconstruction costs of one reactor are estimated at several hundred million Euros and the dismantling period for more than a decade. The nuclear power plants built in the 1970s are coming closer to the end of their planned operating lifespan. Therefore, the decommissioning and dismantling of nuclear facilities, which is posing a multitude of challenges to planning and implementation, is becoming more and more relevant. This study describes planning methods for large-scale projects. The goal of this paper is to formulate a project planning problem that appropriately copes with the specific challenges of nuclear deconstruction projects. For this purpose, the requirements for appropriate scheduling methods are presented. Furthermore, a variety of possible scheduling problems are introduced and compared by their specifications and their behaviour. A set of particular scheduling problems including possible extensions and generalisations is assessed in detail. Based on the introduced problems and extensions, a Multi-mode Resource Investment Problem with Tardiness Penalty is chosen to fit the requirements of nuclear facility dismantling. This scheduling problem is then customised and adjusted according to the specific challenges of nuclear deconstruction projects. It can be called a Multi-mode Resource Investment Problem under the consideration of generalized precedence constraints and post-operational costs.

  10. The Japan Power Demonstration Reactor (JPDR) dismantling activities. Management of JPDR dismantling waste

    International Nuclear Information System (INIS)

    Abe, Masayoshi; Nakata, Susumu; Ito, Shinichi

    1996-01-01

    The management of wastes, both radioactive and non-radioactive, is one of the most important issues for a safe and reasonable dismantling operation of nuclear power plants. A large amount of radioactive wastes is arising from a reactor dismantling operation in a relatively short period time, ranging in a wide variety from very low level to relatively high level. Moreover non-radioactive waste is also in a huge amount. The dismantling operation of Japan Power Demonstration Reactor (JPDR) resulted in 24,440 tons of dismantling wastes, of which about 15% was radioactive and 85% non-radioactive. These wastes were managed successfully implementing a well developed management plan for JPDR dismantling waste. Research and development works for handling of JPDR dismantling wastes were performed, including fixation of loose contamination on surface, volume reduction and waste containers for on-site transportation and interim storage. The JPDR dismantling wastes generated were classified and categorized depending on their materials, characteristics and activity level. Approximately 2,100 tons of radioactive wastes were stored in the interim storage facilities on site using developed containers, and 1,670 tons of radioactive concrete waste were used for a safe demonstration test of a simple near-surface disposal for very low level waste. Other dismantling wastes such as steel and concrete which were categorized as non-radioactive were recycled and reused as useful resources. This paper describes the management of the JPDR dismantling wastes. (author)

  11. The timing of reactor dismantling

    International Nuclear Information System (INIS)

    Roberts, P.

    2000-01-01

    Work has been progressing across the world for the decommissioning of nuclear reactors. The initial work focused on the early, complete dismantling but this was associated with small size reactors and was done for experimental or demonstration purposes. The situation now is that an increasing number of full size power reactors are being shutdown and decision are being made as to the decommissioning strategy to be applied, e.g. with respect to the appropriate timing of reactor dismantling. There are two basic approaches to the timing of reactor dismantling, which are to either proceed with dismantling on an early time scale or to delay it for a period of years. There are a number of examples worldwide of both approaches being taken but one common feature of the approach taken by most countries is that decisions are made on a case by case basis, taking account of relevant factors, and as a result the strategy can vary from reactor to reactor and from country to country. Decisions on timing take account of the following main factors: safety, radioactive decay, financial factors, radioactive waste, reactor type, technology, repository availability, site re-use, regulatory standards, plant knowledge/records, other issues

  12. NATO Advanced Research Workshop on Explosives Detection Using Magnetic and Nuclear Resonance Techniques

    CERN Document Server

    Fraissard, Jacques

    2009-01-01

    Nuclear quadrupole resonance (NQR) a highly promising new technique for bulk explosives detection: relatively inexpensive, more compact than NMR, but with considerable selectivity. Since the NQR frequency is insensitive to long-range variations in composition, mixing explosives with other materials, such as the plasticizers in plastic explosives, makes no difference. The NQR signal strength varies linearly with the amount of explosive, and is independent of its distribution within the volume monitored. NQR spots explosive types in configurations missed by the X-ray imaging method. But if NQR is so good, why it is not used everywhere? Its main limitation is the low signal-to-noise ratio, particularly with the radio-frequency interference that exists in a field environment, NQR polarization being much weaker than that from an external magnetic field. The distinctive signatures are there, but are difficult to extract from the noise. In addition, the high selectivity is partly a disadvantage, as it is hard to bui...

  13. General Research and Development problems in dismantling

    International Nuclear Information System (INIS)

    Lorin, C.

    1993-01-01

    R and D studies for dismantling nuclear facilities have been conducted in several domains: safety evaluation (3D cameras, gamma camera, gamma low level control bench, alpha measures); general studies (such as the Baladin software, an expert system for dismantling); decontamination techniques (utilisation of acid or base liquids, laser, ...); cutting techniques and tools (remote controlled grinder, remote controlled robot, carrier crane); robotics for remote operations and handling; waste processing

  14. Control of the dynamic environment produced by underground nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, D L; Jackson, E C; Miller, A B [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    One important aspect of any underground nuclear explosion is recording, retrieval and analysis of experiment and/or device performance. Most of the information is recorded or conditioned on sensitive electronic equipment and often transmitted via antennas that must remain in alignment. Sometimes diagnostic packages are located in towers near surface ground zero (SGZ). Also, some equipment is needed for timing and firing as well as safety requirements. Generally it is desirable to locate this equipment as close to SGZ as possible. This paper is a summary of LRL's method of controlling the dynamic environment in order to get good quality data and protect equipment while optimizing the cost. The overall problem blends together: (1) definition of input, i.e. ground shock parameters; (2) shock sensitivity or fragility level of equipment to the input and purpose (i.e. does it record or transmit through shock arrival time?); and (3) design of a fail-safe shock mount (SM) system to modify the shock environment when required. Before any SM system can be designed, items I and 2 must be answered as the ground shock can vary over a wide range and the sensitivity/fragility of the equipment can vary from less than 1/2 g to more than 100 g's, particularly if recording is done through shock arrival time. Keeping antennas in alignment is a somewhat different problem. Whenever possible the design of the SM system is based only on peak input parameters of the ground motion since detailed time histories of the ground motions are very difficult to predict. For towers and other systems which require detailed time histories, computer codes have been developed which allow a parametric study of the input ground motion's effect on the response of the system. This paper deals mainly with the close-in region where the dynamic environment is quite severe. In this region, non-standard methods and analysis are required. Out of this region, more standard methods can be used. (author)

  15. Control of the dynamic environment produced by underground nuclear explosives

    International Nuclear Information System (INIS)

    Bernreuter, D.L.; Jackson, E.C.; Miller, A.B.

    1970-01-01

    One important aspect of any underground nuclear explosion is recording, retrieval and analysis of experiment and/or device performance. Most of the information is recorded or conditioned on sensitive electronic equipment and often transmitted via antennas that must remain in alignment. Sometimes diagnostic packages are located in towers near surface ground zero (SGZ). Also, some equipment is needed for timing and firing as well as safety requirements. Generally it is desirable to locate this equipment as close to SGZ as possible. This paper is a summary of LRL's method of controlling the dynamic environment in order to get good quality data and protect equipment while optimizing the cost. The overall problem blends together: (1) definition of input, i.e. ground shock parameters; (2) shock sensitivity or fragility level of equipment to the input and purpose (i.e. does it record or transmit through shock arrival time?); and (3) design of a fail-safe shock mount (SM) system to modify the shock environment when required. Before any SM system can be designed, items I and 2 must be answered as the ground shock can vary over a wide range and the sensitivity/fragility of the equipment can vary from less than 1/2 g to more than 100 g's, particularly if recording is done through shock arrival time. Keeping antennas in alignment is a somewhat different problem. Whenever possible the design of the SM system is based only on peak input parameters of the ground motion since detailed time histories of the ground motions are very difficult to predict. For towers and other systems which require detailed time histories, computer codes have been developed which allow a parametric study of the input ground motion's effect on the response of the system. This paper deals mainly with the close-in region where the dynamic environment is quite severe. In this region, non-standard methods and analysis are required. Out of this region, more standard methods can be used. (author)

  16. The dismantling of nuclear installations and the radioactive wastes management. Report of the President of the Republic followed by the answers of concerned administrations and organisms; Le demantelement des installations nucleaires et la gestion des dechets radioactifs. Rapport au President de la Republique suivi des reponses des administrations et des organismes interesses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-01-15

    The discussed subjects concerns the situation and the challenges of the nuclear installations dismantling and the radioactive wastes management (main intervenors, panorama of the situation, rules applied to the dismantling and the radioactive wastes), the first experiences of dismantling and radioactive wastes disposal (experiences at the CEA and EDF, implementing of solutions for the disposal), interrogations and certainties (provision for future expenses, public information). (A.L.B.00.

  17. Explosively free-formed pass partition plate for a nuclear steam generator

    International Nuclear Information System (INIS)

    Schroeder, J.W.

    1980-01-01

    A large flow-separating dished plate of a complex shape was manufactured by near-contact explosive forming in which only an edge die was used. The shape of the part, for service in a large, nuclear steam generator, was obtained by careful sizing and placement of the explosive charge. The development of the technique and the manufacture of the plate are described. 4 refs

  18. Nuclear crime - a threat? Trade with nuclear explosives in Europe, political and social background

    International Nuclear Information System (INIS)

    Baumann, W.; Becker, D.; Brunner, H.; Fechner, J.; Frenzel, E.; Kaul, A.; Kesten, J.; Koschel, P.; Mattausch, E.; Mertens, D.; Nosske, D.; Stoll, W.; Willuhn, K.

    1995-01-01

    Nuclear Crime defined as illegal trade, transport and possession of fissille and other radioactive material, increasingly keeps government and public in suspense. As shown already by the two parts of the term, both Radiation Protection and Prosecution Authorities are concerned. In the focal theme of this issue, their opinions and experiences will be compiled with the aim of treating this really explosive topic critically, but factually correct from all sides. This intention requires answering several broad questions: -Where does the nuclear material come from? - What experiences with nuclear crime do exist? - What countermeasures are we able and ready to take? - What measurement techniques are at hand to recognize and avert the danger? and, with particular reference to the nuclear weapons material Plutonium: - Who is producing Pu, and in what shape and mixtures? - What is the real radiological risk of the 'ultra-poison' Pu? - What possibilities exist to remove Pu contaminations, and to decomparate it? The following contributions of competent authors from Germany and Switzerland convey a comprehensive picture of the present situation demonstrating equally that means and knowledge exist in both countries to efficiently overt the threat of Nuclear Crime. (orig.) [de

  19. Public inquiry related to the request by EDF of a definitive stopping and complete dismantling of the hardware storage installation of the Monts d'Arree nuclear power plant (INB n.162). Opinion and conclusions of the inquiry commission

    International Nuclear Information System (INIS)

    2010-03-01

    After a recall of the project of stopping and dismantling of the hardware storage installation (INB n.162) which had been created after the stopping and dismantling of the Monts d'Arree heavy water nuclear reactor (INB n.28), this report analyzes the results of the public inquiry, and highlights the arguments of those in favour of this project and those opposed to it. Then, it states the Inquiry Commission's opinion which addresses the request for a national public debate, the project justification, the inquiry file, the site radiological status, the site radiological control during works, the impacts of dismantling, the various risks (for the population and the workers, in terms of fire risks), the issue of radioactive wastes, economic aspects (costs, jobs, local economy, tourism and site image), and site reconversion

  20. Spectral content of seismic movements produced by underground nuclear explosions; Contenu spectral des mouvements seismiques dus aux explosions nucleaires souterraines

    Energy Technology Data Exchange (ETDEWEB)

    Albaret, A; Duclaux, F [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    After a summary of available data, both theoretical and experimental, concerning the spectral content of seismic movements, a description is given of the experiments carried out during the French nuclear explosions in the Sahara, and of the results obtained on the volume waves. A comparison is then made with certain American results. A new method is described for studying the amplitude spectra; it has made it possible to show that the amount of low frequencies in the spectrum increases with the power of the explosion, and decreases with the distance to the zero point and with the filtering effect of the weathered zone. A calculation is then made of the low cut-off ground filter, this giving a better representation of the initial seismic phenomenon. (authors) [French] Apres avoir resume les connaissances disponibles, aussi bien theoriques qu'experimentales, sur le contenu spectral des mouvements seismiques, on decrit les experiences effectuees a l'occasion des explosions nucleaires francaises du Sahara et les resultats obtenus sur les ondes de volume. Puis on les compare avec certains resultats americains. On decrit une nouvelle methode d'etude des spectres d'amplitudes qui montre que le spectre est d'autant plus riche en basses frequences que la puissance de l'explosion est grande, que la distance au point zero est faible et qu'il est moins filtre par la zone alteree superficielle. Puis on calcule le filtre terrain coupe-bas qui permet de donner une representation plus fidele du phenomene seismique initial. (auteurs)

  1. Plutonium characterisation with prompt high energy gamma-rays from (n,gamma) reactions for nuclear warhead dismantlement verification

    Energy Technology Data Exchange (ETDEWEB)

    Postelt, Frederik; Gerald, Kirchner [Carl Friedrich von Weizsaecker-Centre for Science and Peace Research, Hamburg (Germany)

    2015-07-01

    Measurements of neutron induced gammas allow the characterisation of fissile material (i.e. plutonium and uranium), despite self- and additional shielding. Most prompt gamma-rays from radiative neutron capture reactions in fissile material have energies between 3 and 6.5 MeV. Such high energy photons have a high penetrability and therefore minimise shielding and self-absorption effects. They are also isotope specific and therefore well suited to determine the isotopic composition of fissile material. As they are non-destructive, their application in dismantlement verification is desirable. Disadvantages are low detector efficiencies at high gamma energies, as well as a high background of gammas which result from induced fission reactions in the fissile material, as well as delayed gammas from both, (n,f) and(n,gamma) reactions. In this talk, simulations of (n,gamma) measurements and their implications are presented. Their potential for characterising fissile material is assessed and open questions are addressed.

  2. Yield estimation for nuclear explosions of semipalatinsk using rayleigh waves recorded at SRO, Mashhad

    International Nuclear Information System (INIS)

    Naghizadeh, M.; Javaherian, A.; Sadidkhooy, A.

    2005-01-01

    Surface wave amplitudes from explosion sources show less variation for a given event than body wave amplitudes, so it is natural to expect that yield estimation derived from surface waves will be more accurate than yield estimation derived from body waves. However yield estimation from surface waves is complicated by the presence of tectonic strain release, which acts like one or more earthquake sources superimposed on the explosion. Explosions on an island or near a mountain slope can exhibit anomalous surface waves similar to those caused by tectonic strain release. One of the methods in estimating the yield of nuclear explosions is to determine a relationship between the magnitude and the yield of an explosion. The kind of magnitude employed has an important role in this regard. In this paper, vertical component of long period seismograms at SRO, Mashhad from explosions occurred in semipalatinsk test site, semipalatinsk test site east of Kazakhstan) are considered. First, by using the relationships of IASPEI and Rezapour and Pearce (1998), we determined surface wave magnitude (MS) which is defined as the logarithm of the amplitude plus a distance correction. Then we derived a relation for M S versus yield for a data set which includes a 15 long period seismograms recorded at SRO Mashhad station from semipalatinsk test site nuclear explosions. Furthermore, by digitizing the vertical component of seismograms and transforming them to the frequency domain, the mean amplitude of records at frequency ranges of 0.04-0.06 Hz were calculated. Then, surface wave magnitudes in the frequency domain (M Sf ) and their corresponding yield-magnitude relationship were obtained. By comparing correlation coefficients of these two yield-magnitude relationships, following relationship M S = 1.079 log(Y) + 1.714, was chosen for estimating the yield of semipalatinsk test site nuclear explosion from seismograms of SRO

  3. Comments on conceptual questions concerning the clearance of wastes for disposal on a dump site during the decommissioning and dismantling of the nuclear power plant Obrigheim (KWO); Stellungnahme zu konzeptionellen Fragen der Freigabe zur Beseitigung auf einer Deponie bei Stilllegung und Abbau des Kernkraftwerks Obrigheim (KWO)

    Energy Technology Data Exchange (ETDEWEB)

    Kueppers, Christian

    2015-08-03

    The comments on conceptual questions concerning the clearance of wastes for disposal on a dump site during the decommissioning and dismantling of the nuclear power plant Obrigheim (KWO) cover the following issues: fundamentals of the 10 micro-Sv concept for clearance; specific regulations for the clearance of wastes from the dismantling of KWO for disposal on a dump site; disposal concept at shutdown and dismantling of KWO; measurements and control during clearance for disposal during shutdown and dismantling of KWO; documentation and reports.

  4. Vandellos-I Dismantling nearing completion

    International Nuclear Information System (INIS)

    Armada, J. R.

    2004-01-01

    Spain is witnessing the phase-out of a nuclear power plant. It is a unique experience in our country and therefore the dismantling work has been watched closely, not only from here but also from abroad. The Empresa Nacional de Residuos Radiactivos (ENRESA) is in charge of managring the dismantling and decommissioning work of the Vandellos-1 nuclear power plant, located in the municipally of l' Hospitalet de l'Infant (Tarragona). The work began five years ago and has been executed on schedule. The appearance of what was one of the first Spanish commercial nuclear power plants has been changed radically to leave premises suitable for any other activity. (Author)

  5. Material movement of medium surrounding an underground nuclear explosion; Mouvement materiel du milieu environnant une explosion nucleaire souterraine

    Energy Technology Data Exchange (ETDEWEB)

    Guerrini, C; Garnier, J L [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    The results of measurements of the mechanical effects in the, intermediate zone around underground nuclear explosions in Sahara granite are presented. After a description of the main characteristics of the equipment used, the laws drawn up using experimental results for the acceleration, the velocity, and the material displacement are presented. These laws are compared to those published in other countries for nuclear tests in granite, in tuff and in alluvial deposits. (authors) [French] Les resultats de mesures d'effets mecaniques en zone intermediaire autour d'essais nucleaires souterrains dans le granite du Sahara sont exposes. Apres avoir decrit, dans leurs grandes lignes, les materiels utilises, on presente les lois etablies avec les resultats experimentaux pour l'acceleration, la vitesse et le deplacement materiel. Ces lois sont comparees a celles publiees a l'etranger pour des essais nucleaires dans le granite, le tuf et les alluvions. (auteur)

  6. Some predicted peak ground motions for nuclear cratering explosions along the Qattara alignment in Egypt

    International Nuclear Information System (INIS)

    Bryan, J.B.

    1980-01-01

    Some predicted peak free-field ground motions at shot depth for the nuclear explosive excavation of a canal in Egypt are summarized. Peak values of displacement, velocity, acceleration, and radial stress are presented as a function of slant range from the working point. Results from two-dimensional TENSOR cratering calculations are included. Fits to ground motion measurements in other media are also shown. This summary is intended to help specify engineering design requirements for detonating nuclear explosive salvos which are required to efficiently excavate the canal. It also should be useful in guiding estimates for gage response ranges in ground motion measurements

  7. Data of the 21st nuclear explosion test of the People's Republic of China

    International Nuclear Information System (INIS)

    1977-01-01

    The news of Kyodo-Reuter said that on 17 November 1976 the Energy Research and Development Administration (ERDA), U.S.A., announced for the 21st nuclear explosion test of the People's Republic of China. The radioactivity surveillance was carried out for the period from 18 November 1976 to 25 November 1976. From the results of the surveillance, a few effects of this nuclear explosion test were detected in the radioactivity measurement of rain, dry fallout, and air-borne dust. (author)

  8. Data of the 22nd nuclear explosion test of the People's Republic of China

    International Nuclear Information System (INIS)

    1978-01-01

    US. Energy Research and Development Administration (US ERDA) announced for the 22 nd nuclear explosion test of the People's Republic of China. The radioactivity surveillance was carried out for the period from September 19, to September 28, 1977. From the results of this surveillance, the effects of this nuclear explosion test were detected in the radioactivity measurement of rainwater, dry fallout, air-borne dusts in upper atmosphere, and raw milk samples. Survey on iodine-131 concentrations in raw milk was continued until October 11, 1977. The results of radioactivity surveillance were described in the following articles. (author)

  9. A line technology of subterranean mining by means of nuclear explosions

    International Nuclear Information System (INIS)

    Gushchin, V.V.; Vasin, K.D.; Nifontov, B.I.; Odrov, Yu.L.; Myasnikov, K.V.; Kol'tsov, V.M.; Kornev, G.N.; Degtyarev, V.A.

    1976-01-01

    The basic principles of a line technology of extracting firm ores, including break-up of ore by means of subterranean nuclear explosions, the removal of ore from sorting blocks by means of vibrator feeders and transporting it to intermediate levels via a new type of belt conveyor on mobile supports are considered. A method of crushing ore by nuclear explosions on reflecting surfaces is proposed to obtain a more uniform fragmentation of ore, increase the output of fragmented ore per unit capacity, and to preserve mining output. The basic principles of designing a system of mining based on a line technology are formulated and one variant of such a system is presented

  10. Development of a Risk-Based Decision-Support-Model for Protecting an Urban Medical Center from a Nuclear Explosion

    International Nuclear Information System (INIS)

    Ben-Dor, G.; Shohet, I.M.; Ornai, D.; Brosh, B.

    2014-01-01

    Nuclear explosion is the worst man-made physical threat on the human society. The nuclear explosion includes several consequences, some of them are immediate and others are long term. The major influences are: long duration blast, extreme thermal release, nuclear radiations, and electro-magnetic pulse (EMP). Their damage range is very wide. When nuclear explosion occurs above or in an urban area it is possible that one or more medical centers will be affected. Medical centers include several layers of structures defined by their resistance capacity to the nuclear explosion influences, beginning with the structure's frame and ending with different systems and with vulnerable medical critical infrastructures such as communications, medical gas supply, etc. A comprehensive literature survey revealed that in spite of the necessity and the importance of medical centers in the daily life and especially in emergency and post nuclear explosion, there is a lack of research on this topic

  11. The role of atmospheric nuclear explosions on the stagnation of global warming in the mid 20th century

    Science.gov (United States)

    Fujii, Yoshiaki

    2011-04-01

    This study suggests that the cause of the stagnation in global warming in the mid 20th century was the atmospheric nuclear explosions detonated between 1945 and 1980. The estimated GST drop due to fine dust from the actual atmospheric nuclear explosions based on the published simulation results by other researchers (a single column model and Atmosphere-Ocean General Circulation Model) has served to explain the stagnation in global warming. Atmospheric nuclear explosions can be regarded as full-scale in situ tests for nuclear winter. The non-negligible amount of GST drop from the actual atmospheric explosions suggests that nuclear winter is not just a theory but has actually occurred, albeit on a small scale. The accuracy of the simulations of GST by IPCC would also be improved significantly by introducing the influence of fine dust from the actual atmospheric nuclear explosions into their climate models; thus, global warming behavior could be more accurately predicted.

  12. Decree no. 2005-79 from January 26, 2005, authorizing the Atomic Energy Commission to proceed to the definitive shutdown and dismantling operations of the nuclear facility no.21, named Siloette research reactor, in the Grenoble city territory (Isere)

    International Nuclear Information System (INIS)

    2005-02-01

    On May 26, 2003, the French atomic energy commission (CEA) addressed an authorization demand for the definitive shutdown and dismantling of the Siloette research reactor. After a technical and administrative instruction of this demand by the French nuclear safety authority (ASN), a project of decree has been presented on July 6, 2004 at the permanent section of the inter-ministry commission of basic nuclear facilities. The commission gave its favourable judgment which is the object of this decree. (J.S.)

  13. Decree no. 2005-78 from January 26, 2005, authorizing the Atomic Energy Commission to proceed to the definitive shutdown and dismantling operations of the nuclear facility no.20, named Siloe reactor, in the Grenoble city territory (Isere)

    International Nuclear Information System (INIS)

    2005-02-01

    On March 19, 2003, the French atomic energy commission (CEA) addressed an authorization demand for the definitive shutdown and dismantling of the Siloe reactor. After a technical and administrative instruction of this demand by the French nuclear safety authority (ASN), a project of decree has been presented on July 6, 2004 at the permanent section of the inter-ministry commission of basic nuclear facilities. The commission gave its favourable judgment which is the object of this decree. (J.S.)

  14. Achievements and prospects of robotics in dismantling operations

    International Nuclear Information System (INIS)

    Clement, G.; Goetghebeur, S.; Ravera, J.P.

    1993-01-01

    After a definition of 'robotic systems' (poly functionality is the main concept), the nuclear facilities that have used robotic systems for their dismantling are reviewed; the various robot intervention domains in dismantling, the different types of machines and the work carried out by robots are presented. Difficulties arising from robot utilization for reactor dismantling, robot design considerations, reliability, personnel training needs, tooling and costs are discussed. Applicability criteria are derived concerning radio protection, hard working conditions, task complexity, multiplicity and quality, and costs

  15. Comparison of the effects in the rock mass of large-scale chemical and nuclear explosions. Final technical report, June 9, 1994--October 9, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Spivak, A.A.

    1995-04-01

    It was found that in the first approximation the mechanical effect of underground nuclear explosion is analogous to the effect of chemical explosion. Really qualitative analysis shows that accompanying mechanical effects of nuclear and chemical explosions are the same: in the both cases explosion consequences are characterized by formation of the camouplet cavity (crater after explosion near free surface), destruction of the rock massif near explosion centre, creation of the stress wave, which forms seismoexplosive effect a long distance from explosion epicentre. Qualitative likeness of underground nuclear explosions and chemical explosions is the base of modelling the mechanical effects of the underground nuclear explosion. In this paper we`ll compare two explosions: nuclear (15-04-84) and chemical (27.06.95) with large power. These explosions were realized at the same geological conditions at Degelen test area, which is a part of the Semipalatinsk Test Site. In the case of the nuclear explosion, the charge was disposed in the face of the deep horizontal gallery. The charge of the chemical explosion was a semisphere from explosives at the rock massif surface. In the both case rock massif behavior after explosions was investigated at underground conditions (in the case of chemical explosion -- in the long underground excavation from explosion epicentre). Mechanical effects from the nuclear and chemical explosions were investigated with the same methods. The changes in geological medium after a large-scale explosive actions will be analyzed in detail too. Investigations of the influence of tectonic energy on the mechanical effects after underground nuclear, explosions represents the main interest. In this paper we`ll discuss this question on the data from underground nuclear explosion, realized 08.09.89 in the deep well at the Balapan test area, at the Semipalatinsk Test Site.

  16. [Assessment of modern radioecological situation at nuclear explosion "Chagan" (Balapan Site, Semipalatinsk Nuclear Test Site, Kazakhstan)].

    Science.gov (United States)

    Evseeva, T I; Maĭstrenko, T A; Geras'kin, S A; Belykh, E S; Umarov, M A; Sergeeva, I Iu; Sergeev, V Iu

    2008-01-01

    Results on estimation of modern radioecological situation at nuclear explosion "Chagan" based on large-scale cartographic studies (1:25000) of a test area (4 km2) are presented. Maximum gamma-irradiation doses were observed at bulk of ground surrounded a crater and at radioactive fall-outs extended to the North-East and to the SouthWest from the crater. Based on data on artificial radionuclide specific activity most part of soil samples were attributed to radioactive wastes according to IAEA (1996) and OSPORB (1999). Natural decrease of soil radioactivity up to safety level due to 60Co, 137Cs, 90Sr, 152Eu, 154Eu radioactive decay and 241Am accumulation-decay will not take place within the next 60 years at the studied area.

  17. Nuclear EMP induced chaos. [Effect of nuclear explosion on power and communication facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dance, B

    1983-04-01

    It is anticipated that a single nuclear explosion, of adequate size, on the outside of the atmosphere would generate a pulse of sufficient intensity to damage communications equipment (including telephones, radio transmitters and receivers), and to disrupt main power supplies. This damage could be done by a very intense, short duration electro-magnetic pulse (EMP). The article discusses the generation and history of EMP, the test facilities that are needed for EMP test, and techniques that can be used to harden equipment against EMP. It is also important to protect extensive systems against EMP. The article points out that fibre-optics are very useful, because they are EMP resistant and a single fibre can also carry a very high data rate.

  18. Evaluation of the pressure loads generated by hydrogen explosion in auxiliary nuclear building

    International Nuclear Information System (INIS)

    Ahmed Bentaib; Alexandre Bleyer; Pierre Pailhories; Jean-Pierre L'heriteau; Bernard Chaumont; Jerome Dupas; Jerome Riviere

    2005-01-01

    Full text of publication follows: In the framework of nuclear safety, a hydrogen leaks in the auxiliary nuclear building would raise a explosion hazard. A local ignition of the combustible mixture would give birth initially to a slow flame, rapidly accelerated by obstacles. This flame acceleration is responsible for high pressure loads that can damage the auxiliary building and destroy safety equipments in it. In this paper, we evaluate the pressure loads generated by an hydrogen explosion for both bounding and realistic explosion scenarios. The bounding scenarios use stoichiometric hydrogen-air mixtures and the realistic scenarios correspond to hydrogen leaks with mass flow rate varying between 1 g/s and 9 g/s. For every scenario, the impact of the ignition location and ignition time are investigated. The hydrogen dispersion and explosion are computed using the TONUS code. The dispersion model used is based on a finite element solver and the explosion is simulated by a structured finite volumes EULER equation solver and the combustion model CREBCOM which simulates the hydrogen/air turbulent flame propagation, taking into account 3D complex geometry and reactants concentration gradients. The pressure loads computed are then used to investigate the occurrence of a mechanical failure of the tanks located in the auxiliary nuclear building and containing radioactive fluids. The EUROPLEXUS code is used to perform 3D mechanical calculations because the loads are non uniform and of rather short deviation. (authors)

  19. Review of possible peaceful applications of nuclear explosions in the national economy of the Soviet Union

    International Nuclear Information System (INIS)

    Witherspoon, Paul A.

    1970-01-01

    The following review will give some of the current thinking of Soviet scientists and engineers on the possibilities of using nuclear explosions for peaceful purposes in the Soviet Union. This review is taken from a more detailed report that was presented under the same title by Soviet participants at an information-exchange meeting that was held in Vienna between the Soviet Union and the United States in April, 1969. Aside from a very brief review of one explosion in salt, the report does not give details on nuclear explosion effects (mechanical, seismic, radiation, or thermal). Rather, the report summarizes the results of design calculations and indicates the direction of Soviet planning for a variety of industrial applications. A complete translation of this report will be published by the Division of Technical Information and Education of AEC at Oakridge. (author)

  20. Review of possible peaceful applications of nuclear explosions in the national economy of the Soviet Union

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, Paul A [University of California, Berkeley (United States)

    1970-05-15

    The following review will give some of the current thinking of Soviet scientists and engineers on the possibilities of using nuclear explosions for peaceful purposes in the Soviet Union. This review is taken from a more detailed report that was presented under the same title by Soviet participants at an information-exchange meeting that was held in Vienna between the Soviet Union and the United States in April, 1969. Aside from a very brief review of one explosion in salt, the report does not give details on nuclear explosion effects (mechanical, seismic, radiation, or thermal). Rather, the report summarizes the results of design calculations and indicates the direction of Soviet planning for a variety of industrial applications. A complete translation of this report will be published by the Division of Technical Information and Education of AEC at Oakridge. (author)

  1. The Superphenix dismantling

    International Nuclear Information System (INIS)

    Carle, R.

    1999-01-01

    This document presents selected abstracts of Remy Carle's presentation on the dismantling of Superphenix (october 1998). The author wonders about the consequences of such a decision. After a chronological account of this fast reactor project, its cost and the scientific and technical contribution, the dismantling problem is considered. For EDF (Electricite De France) the dismantling dimension is considered at the same time of the design. The main problem is the liquid sodium reprocessing: a technical but also a financing problem. The end of the speech deals with the political aspects of Superphenix and the relations with the public. (A.L.B.)

  2. Explosion-evaporation model for fragment production in intermediate-energy nuclear collisions

    International Nuclear Information System (INIS)

    Fai, G.; Randrup, J.

    1981-01-01

    Nuclear collisions at intermediate energies may create transient systems of hot nuclear matter that decay into many nuclear fragments. The disassembly of such a nuclear fireball is described as a two-stage process. In the primary explosion stage the system quickly fragments into nucleons and composite nuclei according to the available phase space. The explosion produces excited nuclei with half-lives longer than the time associated with the breakup. In the secondary evaporation stage, these nuclei decay, first by sequential emission of light particles (neutrons, protons, alphas), later by electromagnetic radiation. The secondary stage in general changes the relative abundancies of the various fragment species. This general feature makes it essential to take account of the composite fragments before using d/p as a measure of the entropy of the initial source. The formation of unbound nuclei at the explosion stage also has the desirable effect of enhancing the final abundancies of particularly stable nuclei, e.g., 4 He. For neutron-excessive sources the presence of composite nuclei amplifies the ratio of observed neutrons and protons; this effect persists for heavier mirror systems. Predictions of the model are qualitatively compared to available experimental data. The model offers a convenient way to augment existing dynamical models, such as intra-nuclear cascade and nuclear fluid dynamics, to yield actual nuclear fragments rather than merely matter distributions

  3. Africa's contribution to putting an end to nuclear explosions

    International Nuclear Information System (INIS)

    2010-09-01

    African States play an important role in worldwide efforts towards nuclear non-proliferation and disarmament. All 53 African States are parties to the Nuclear Non-Proliferation Treaty (NPT), which aims at preventing the spread of nuclear weapons and weapons technology, advancing nuclear disarmament, and facilitating the peaceful uses of nuclear energy. Of Africa's 53 States, 51 have signed the Comprehensive Nuclear-Test-Ban Treaty (CTBT) and 38 have also ratified it as of September 2010. Mauritius and Somalia are the only two States still to sign the Treaty. The States that have signed but not yet ratified are: Angola, Chad, Comoros, Congo, Egypt, Equatorial Guinea, Gambia, Ghana, Guinea, Guinea-Bissau, Sao Tome and Principe, Swaziland and Zimbabwe. Egypt's ratification is of particular importance as it is one of those States whose ratification is required for the Treaty's entry into force.

  4. Simulation Study of Near-Surface Coupling of Nuclear Devices vs. Equivalent High-Explosive Charges

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Kevin B [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walton, Otis R [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benjamin, Russ [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunlop, William H [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-29

    A computational study was performed to examine the differences in near-surface ground-waves and air-blast waves generated by high-explosive energy sources and those generated by much higher energy - density low - yield nuclear sources. The study examined the effect of explosive-source emplacement (i.e., height-of-burst, HOB, or depth-of-burial, DOB) over a range from depths of -35m to heights of 20m, for explosions with an explosive yield of 1-kt . The chemical explosive was modeled by a JWL equation-of-state model for a ~14m diameter sphere of ANFO (~1,200,000kg – 1 k t equivalent yield ), and the high-energy-density source was modeled as a one tonne (1000 kg) plasma of ‘Iron-gas’ (utilizing LLNL’s tabular equation-of-state database, LEOS) in a 2m diameter sphere, with a total internal-energy content equivalent to 1 k t . A consistent equivalent-yield coupling-factor approach was developed to compare the behavior of the two sources. The results indicate that the equivalent-yield coupling-factor for air-blasts from 1 k t ANFO explosions varies monotonically and continuously from a nearly perfec t reflected wave off of the ground surface for a HOB ≈ 20m, to a coupling factor of nearly zero at DOB ≈ -25m. The nuclear air - blast coupling curve, on the other hand, remained nearly equal to a perfectly reflected wave all the way down to HOB’s very near zero, and then quickly dropped to a value near zero for explosions with a DOB ≈ -10m. The near - surface ground - wave traveling horizontally out from the explosive source region to distances of 100’s of meters exhibited equivalent - yield coupling - factors t hat varied nearly linearly with HOB/DOB for the simulated ANFO explosive source, going from a value near zero at HOB ≈ 5m to nearly one at DOB ≈ -25m. The nuclear-source generated near-surface ground wave coupling-factor remained near zero for almost all HOB’s greater than zero, and then appeared to vary nearly - linearly with depth

  5. The threat of nuclear terrorism: Nuclear weapons or other nuclear explosive devices

    International Nuclear Information System (INIS)

    Maerli, Morten Bremer

    2001-01-01

    Full text: Conventional weaponry and tactics are likely to remain the primary terrorist means for a definitive majority of sub-national groups. No non-state actors have ever deployed or used a nuclear device. However, recent developments in international terrorism may point in the direction of future terrorist uses of weapons of mass destruction, including nuclear devices. Some terrorist groups with a high international profile have showed disturbing interests in acquiring nuclear weapon capabilities. As the 'terrorist nuclear weapon standards' are likely to be lower than the strict requirements for traditional state nuclear weapons, technical barriers should not be considered sufficient to avoid future nuclear terrorist violence. Preventing any extremist group from achieving their goals of large-scale nuclear killing is likely best done by preventing the access to fissile materials through state compliances to rigorous standards of Material Protection, Control and Accountability (MPC and A). (author)

  6. Some regulation aspects in dismantling

    International Nuclear Information System (INIS)

    Niel, J.C.

    1993-01-01

    In the French regulation framework, operations linked to dismantling are controlled by an overall technical and legislative system applied to all the different stages of the facility (commissioning, etc.). Government control on facilities under dismantling is aimed at dismantling operation safety and security, and dismantling waste processing in order to ensure public and environmental protection

  7. On-site inspection for the radionuclide observables of an underground nuclear explosion

    International Nuclear Information System (INIS)

    Burnett, J.L.

    2015-01-01

    Under the Comprehensive Nuclear-Test-Ban Treaty an on-site inspection (OSI) may be undertaken to identify signatures from a potential nuclear explosion. This includes the measurement of 17 particulate radionuclides ( 95 Zr, 95 Nb, 99 Mo, 99m Tc, 103 Ru, 106 Rh, 132 Te, 131 I, 132 I, 134 Cs, 137 Cs, 140 Ba, 140 La, 141 Ce, 144 Ce, 144 Pr, 147 Nd). This research provides an assessment of the potential to detect these radionuclides during an OSI within 1 week to 2 years after a nuclear explosion at two locations. A model has been developed that simulates the underground detonation of a 1 kT 235 U nuclear weapon with 1 % venting. This indicates a requirement to minimise the time since detonation with accurate determination of the test location. (author)

  8. Fire and the related effects of nuclear explosions. 1982 Asilomar Conference

    International Nuclear Information System (INIS)

    Martin, S.B.; Alger, R.S.

    1982-11-01

    This report summarizes the proceedings of a Federal Emergency Management Agency-sponsored Conference on fire and the related effects of nuclear explosions (with passing attention to earthquakes and other nonnuclear mishaps). This conference, the fifth of an annual series (formally called Blast/Fire Interaction Conferences), was held during the week of April 25, 1982, again at Asilomar, California

  9. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1981-05-01

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures

  10. Weapons of mass destruction: Overview of the CBRNEs (Chemical, Biological, Radiological, Nuclear, and Explosives).

    Science.gov (United States)

    Prockop, Leon D

    2006-11-01

    The events of September 11, 2001, made citizens of the world acutely aware of disasters consequent to present-day terrorism. This is a war being waged for reasons obscure to many of its potential victims. The term "NBCs" was coined in reference to terrorist weapons of mass destruction, i.e., nuclear, biological and chemical. The currently accepted acronym is "CBRNE" which includes Chemical, Biological, Radiological, Nuclear, and Explosive weapons. Non-nuclear explosives are the most common terrorist weapon now in use. Nuclear and radiological weapons are beyond the scope of this publication, which focuses on the "CBEs", i.e. chemical, biological and explosive weapons. Although neurologists will not be the first responders to CBEs, they must know about the neurological effects in order to provide diagnosis and treatment to survivors. Neurological complications of chemical, biological and explosive weapons which have or may be used by terrorists are reviewed by international experts in this publication. Management and treatment profiles are outlined.

  11. Radioactive fallout in France after the second Chinese nuclear explosion: atmospheric transfer processes

    International Nuclear Information System (INIS)

    Doury, A.; Bourgeon, P.

    1966-05-01

    The products released into the atmosphere by the second Chinese nuclear explosion were detected and measured in France during the months of May, June and July 1965. The main results are presented here and discussed. They are considered in particular in the light of the meteorological conditions as a function of the most recent hypotheses concerning transfer processes. (authors) [fr

  12. Lightning vulnerability of nuclear explosive test systems at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hasbrouck, R.T.

    1985-01-01

    A task force chartered to evaluate the effects of lightning on nuclear explosives at the Nevada Test Site has made several recommendations intended to provide lightning-invulnerable test device systems. When these recommendations have been implemented, the systems will be tested using full-threat-level simulated lightning

  13. Fire and the related effects of nuclear explosions. 1982 Asilomar Conference

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S.B.; Alger, R.S. (eds.)

    1982-11-01

    This report summarizes the proceedings of a Federal Emergency Management Agency-sponsored Conference on fire and the related effects of nuclear explosions (with passing attention to earthquakes and other nonnuclear mishaps). This conference, the fifth of an annual series (formally called Blast/Fire Interaction Conferences), was held during the week of April 25, 1982, again at Asilomar, California.

  14. Shell and explosive hydrogen burning. Nuclear reaction rates for hydrogen burning in RGB, AGB and Novae

    Energy Technology Data Exchange (ETDEWEB)

    Boeltzig, A. [Gran Sasso Science Institute, L' Aquila (Italy); Bruno, C.G.; Davinson, T. [University of Edinburgh, SUPA, School of Physics and Astronomy, Edinburgh (United Kingdom); Cavanna, F.; Ferraro, F. [Dipartimento di Fisica, Universita di Genova (Italy); INFN, Genova (Italy); Cristallo, S. [Osservatorio Astronomico di Collurania, INAF, Teramo (Italy); INFN, Napoli (Italy); Depalo, R. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); INFN, Padova (Italy); DeBoer, R.J.; Wiescher, M. [University of Notre Dame, Institute for Structure and Nuclear Astrophysics, Joint Institute for Nuclear Astrophysics, Notre Dame, Indiana (United States); Di Leva, A.; Imbriani, G. [Dipartimento di Fisica, Universita di Napoli Federico II, Napoli (Italy); INFN, Napoli (Italy); Marigo, P. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); Terrasi, F. [Dipartimento di Matematica e Fisica Seconda Universita di Napoli, Caserta (Italy); INFN, Napoli (Italy)

    2016-04-15

    The nucleosynthesis of light elements, from helium up to silicon, mainly occurs in Red Giant and Asymptotic Giant Branch stars and Novae. The relative abundances of the synthesized nuclides critically depend on the rates of the nuclear processes involved, often through non-trivial reaction chains, combined with complex mixing mechanisms. In this paper, we summarize the contributions made by LUNA experiments in furthering our understanding of nuclear reaction rates necessary for modeling nucleosynthesis in AGB stars and Novae explosions. (orig.)

  15. Nuclear structure near the particle drip-lines and explosive nucleosynthesis processes

    International Nuclear Information System (INIS)

    Kratz, K.L.; Pfeiffer, B.; Moeller, P.; Thielemann, F.K.; Wiescher, M.

    1999-01-01

    In this paper, we discuss the nuclear physics input for a selected set of explosive nucleosynthesis scenarios leading to rapid proton-- and neutron--capture processes. Observables (like e.g. luminosity curves or elemental abundance distributions) witness the interplay between nuclear structure aspects near the particle drip-lines and the appropriate astrophysical environments, and can give guidance to and constraints on stellar conditions and the associated nucleosynthesis. (authors)

  16. Surface-wave generation by underground nuclear explosions releasing tectonic strain

    International Nuclear Information System (INIS)

    Patton, H.J.

    1980-01-01

    Seismic surface-wave generation by underground nuclear explosions releasing tectonic strain is studied through a series of synthetic radiation-pattern calculations based on the earthquake-trigger model. From amplitude and phase radiation patterns for 20-s Rayleigh waves, inferences are made about effects on surface-wave magnitude, M/sub s/, and waveform character. The focus of this study is a comparison between two mechanisms of tectonic strain release: strike-slip motion on vertical faults and thrust motion on 45 0 dipping faults. The results of our calculations show that Rayleigh-wave amplitudes of the dip-slip model at F values between 0.75 and 1.5 are significantly lower than amplitudes of the strike-slip model or of the explosion source alone. This effect translates into M/sub s/ values about 0.5 units lower than M/sub s/ of the explosion alone. Waveform polarity reversals occur in two of four azimuthal quadrants for the strike-slip model and in all azimuths of the dip-slip-thrust model for F values above about 3. A cursory examination of waveforms from presumed explosions in eastern Kazakhstan suggests that releases of tectonic strain are accompanying the detonation of many of these explosions. Qualitatively, the observations seem to favor the dip-slip-thrust model, which, in the case of a few explosions, must have F values above 3

  17. Conditions of external loading of nuclear power plant structures by vapor cloud explosions and design requirements

    International Nuclear Information System (INIS)

    Geiger, W.

    1977-01-01

    In the design of nuclear power plant structures in the Federal Republic of Germany (FRG) the external loading by pressure waves from unconfined vapor cloud explosions is taken into account. The loading conditions used are based on simplified model considerations for the sequence of events which generates the pressure wave. The basic assumption is that the explosion of unconfined vapor clouds can evolve only in the form of a deflagration wave with a maximum overpressure of 0.3 bar. The research on gas explosions conducted in the FRG with a view to external reactor safety just as similar work in other countries demonstrates that there are still various problems which need further clarification. The principal issues are the maximum conceivable load and the modes of structrual response. This paper presents the main results of a status report commissioned by the German Ministry of the Inertior in which the whole sequence of events leading to the external loading of nuclear power plants and the corresponding response of the structure was scrutinized. Constitutive in establishing the status report have been thorough discussions with experts of the various fields. The following problem areas are discussed in the paper. Incidents leading to the release of large amounts of liquefied gas; Formation of explosive vapor clouds, ignition conditions; Development of the explosion, generation of the pressure wave; Interaction between pressure wave and reactor building. It is outlined where definite statements are possible and where uncertainties and information gaps exist. (Auth.)

  18. Gas cloud explosions and their effect on nuclear power plant. Phase 1: basic development of explosion codes

    International Nuclear Information System (INIS)

    Hall, S.F.; Martin, D.; MacKenzie, J.

    1984-01-01

    The study of factors influencing the pressure and velocity fields produced by the burning of clouds of flammable substances has been in progress in SRD for some years. During this time several computer codes have been developed to aid these studies. This report concerns an extension of these studies, which involves firstly, the use of the existing codes for systematic parameter surveys and secondly, the removal of some of the limitations on the code capabilities so that they become capable of producing more realistic representations of real explosions. This work is all aimed at the study of wave and velocity fields and the influence of rigid boundaries, such as the presence of strong buildings, e.g. nuclear power plants. These existing computer models have been used to investigate the scope and range of possible pressure loadings produced by gas cloud explosions and the interaction of their pressure fields with structures. Calculations have been undertaken for a number of different fuels and at different concentrations and burning velocities. The results of some of these calculations have been used in two-dimensional wave-structure interaction calculations with structures representative of nuclear power plant buildings. Finally, the development of a two-dimensional code capable of modelling flame and pressure wave interactions with structures is presented. This code has user-oriented input and output routines with particular attention having been paid to initial conditions, obstacles and graphics. The flux corrected transport method (the state-of-the-art method for dealing with flow with shocks) is used to solve a system of equations consisting of the usual conservation equations and a simple turbulence model (two-equation K-E model) including a simple turbulence-dependent chemical reaction rate

  19. Whistleblower litigation: A potential explosion in the nuclear industry

    International Nuclear Information System (INIS)

    Kowitt, A.J.; Panich, D.

    1990-01-01

    This article examines the protection offered nuclear employees and the limits of a nuclear employer's liability under section 210 of the Energy Reorganization Act. The author's warn that review by the US Supreme Court is not necessary but could only serve to expose the nuclear industry to an onslaught of litigation resulting from the assertion by an employee subjected to an adverse employment decision that the employee was engaged in a protected activity and as a result has a right to protection from retaliation by the employer

  20. Study on treatment of dust by dismantling

    International Nuclear Information System (INIS)

    Torikai, K.; Suzuki, K.

    1987-01-01

    In dismantling of nuclear reactors, various kinds of treatment of dust generated by cutting or dismantling concrete structures of components of reactors are evaluated for safety, cost, and performance comparing the work in air with water. A method of dust treatment for work in air is discussed. The dry method has an easy operation in practice and a good performance in the equipment, but has problem on the prevention from radioactive contamination by diffusion of dust in air. For the purpose of advancing the strong points and eliminating the weak points in dry method, an improved venturi scrubber system is proposed for dismantling work as a dust collecting system. The system consists of dust absorbing pipe, dust collector, separator of dust and water and dust transfer equipment to a storage of waste. This system would be expected to have better performance and lower operating cost in decommissioning nuclear reactors, especially, the number of dust filters, for example, HEPA filters, will be considerably saved

  1. General considerations on fire and explosions in a nuclear facility. Interaction with ventilation

    International Nuclear Information System (INIS)

    Savornin, J.

    1983-05-01

    After a brief survey of French regulations and documents used in defining fire and explosion precautions, a number of fires which have broken out in French nuclear power plants and their effects on ventilation are mentioned. Past or current tests and experiments in France are described, and the provisions made to create computer codes for refining fire safety analysis are presented. The regulations which have been established to reduce the risk of fire or explosion and to contain it without failure of the containment barrier provided by the ventilation system are then given [fr

  2. Characteristics of seismic waves from Soviet peaceful nuclear explosions in salt

    Energy Technology Data Exchange (ETDEWEB)

    Adushkin, V.V.; Kaazik, P.B.; Kostyuchenko, V.N.; Kuznetsov, O.P.; Nedoshivin, N.I.; Rubinshtein, K.D.; Sultanov, D.D. [Academy of Sciences, Moscow (Russian Federation). Inst. for Dynamics of the Geospheres

    1995-04-01

    The report is carried out by the Institute for Dynamics of the Geospheres, Russian Academy of Sciences under contract NB280344 with Lawrence Livermore National Laboratory, University of California. The work includes investigation of seismic waves generation and propagation from Soviet peaceful underground nuclear explosions in salt based on the data from temporary and permanent seismic stations. The explosions were conducted at the sites Azgir and Vega within the territory of the Caspian depression of the Russian platform. The data used were obtained in the following conditions of conduction: epicentral distance range from 0 to 60 degrees, yields from 1 to 65 kt and depths of burial from 160 to 1500 m.

  3. Nuclear explosives, ionizin.o. radiation and the effects on the biota of the natural environment

    International Nuclear Information System (INIS)

    Schultz, Vincent; Ward Whicker, F.

    1980-01-01

    After giving a general discussion of nuclear explosives, weapons testing and peaceful use of nuclear explosives under Plowshare project, ecological studies carried out at weapon test sites and Plowshare project sites in United States are reviewed. It is noted that though considerable data are available on the behaviour of radionuclides in natural environments on these sites, only a few observations of effects of ionizing radiations on the biota of the natural environments of these sites have been made. The major effects on the natural environments of these sites have been attributed to physical effects of nuclear detonations and site preparation. These effects are physical destruction of plants and animals and habitat modification such as soil disturbances. Recolonization of ground zeros and adjacent areas is observed to follow the successional pattern unique to the site. Observed effects of ionizing radiation on shrubs in the vicinity of cratering tests appear to be inconsequential when one considers the ecosystem as a whole. (M.G.B.)

  4. Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar-chang, Julio [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Revelle, Douglas [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning [Los Alamos National Laboratory

    2008-09-23

    These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  5. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2007-09-25

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  6. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

    2011-09-13

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  7. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Patterson, Eileen F.; Sandoval, Marisa N.

    2011-01-01

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  8. Proceedings of the 23rd Seismic Research Symposium: Worldwide Monitoring of Nuclear Explosions

    International Nuclear Information System (INIS)

    Warren, N. Jill; Chavez, Francesca C.

    2001-01-01

    These proceedings contain papers prepared for the 23rd Seismic Research Review: Worldwide Monitoring of Nuclear Explosions, held 2-5 October, 2001 in Jackson Hole, Wyoming. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  9. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A [Editor; Patterson, Eileen F [Editor

    2010-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  10. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2006-09-19

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  11. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Patterson, Eileen F.

    2010-01-01

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  12. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2006-01-01

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  13. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2007-01-01

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  14. Nuclab Marcoule: a dedicated waste management and dismantling support laboratory

    International Nuclear Information System (INIS)

    Dugne, Olivier; Bec-Espitalier, Lionel; Rosen, Jeremy

    2014-01-01

    Formerly dedicated to plutonium production support, NucLab was renovated to perform a wide range of analyses for dismantling, plant operation and process development activities mainly at Marcoule but also for external clients. The laboratory is a CEA entity in the Nuclear Energy Division. It provides services to several industrial operators (nuclear processes and power plants) in the fields of analytical chemistry, radioactivity measurements, in situ nuclear measurements, decontamination processes, industrial chemistry processes, and waste treatment. NucLab supports research, production, and dismantling activities in all areas of dismantling operations (authors)

  15. Risk assessment for transportation of radioactive materials and nuclear explosives

    International Nuclear Information System (INIS)

    Clauss, D.B.; Wilson, R.K.; Hartman, W.F.

    1991-01-01

    Sandia National Laboratories has the lead technical role for probabilistic risk assessments of transportation of nuclear weapons, components, and special nuclear material in support of the US Department of Energy. The emphasis of the risk assessments is on evaluating the probability of inadvertent disposal of radioactive material and the consequences of such a release. This paper will provide an overview of the methodology being developed for the risk assessment and will discuss the interpretation and use of the results. The advantages and disadvantages of using risk assessment as an alternative to performance-based criteria for packaging will be described. 2 refs., 1 fig

  16. Reform of reserve requirements for nuclear decommissioning, dismantling and disposal; Reform der Atomrueckstellungen fuer Stilllegung/Rueckbau und Entsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Bettina [Forum Oekologisch-Soziale Marktwirtschaft e.V. (FOeS), Berlin (Germany); Kuechler, Swantje; Wronski, Rupert [Forum Oekologisch-Soziale Marktwirtschaft e.V. (FOeS), Berlin (Germany). Bereich Energiepolitik

    2015-07-15

    This article reports on the ongoing intense discussion as to whether the financial reserves of nuclear power plant operators are sufficient. It starts out with an overview of the current scientific and political debate. This is followed by a brief analysis of nuclear financial reserves in 2014 and preceding years. The authors then present the reform concept of the Forum Oekologisch-Soziale Marktwirtschaft (FOes) and go on to compare it with concepts from the political realm.

  17. Set-up of polarographic analytical methods in the framework of nuclear reactor dismantling en of the decontamination of metallic pieces

    International Nuclear Information System (INIS)

    Poirier, S.; Rahier, A.

    1996-06-01

    Differential pulse polarography has been used to measure several chemical species, relevant to the dismantling and the decontamination of a nuclear power reactor. First, a method which allows the determination of low concentrations of Co in stainless steels has been studied. Co 3+ is reduced in the presence of ethylenediamine at pH 7.5 at -0.47 V vs Ag/AgCl sat. A preliminary extraction of iron (and partially chromium) in diethylether is required. Interferences with iron and nickel have been completely eliminated without using any precipitation technique. Some complications may result from the precipitation of residual Cr 3+ in the presence of EDA, even when fluorides are added. Next, the measurements of the main components of steels have been carried out successfully. The reduction of CrO 4 2- is observed at -0.46 V vs Ag/AgCl sat. in a medium containing 0.1 M KOH, 0.5 M citric acid and 1 M NH 3 . Adding dimethylglyoxime in the same medium allows to identify the reduction to Fe 2+ and Ni 2+ respectively at -1.65 and -1.13 V vs Ag/AgCl sat. Finally, the reduction to Cr 3+ is observed at -1.2 V vs Ag/AgCl sat. in an acetic buffer containing 0.1 M EDTA

  18. Laser cutting of steel plates up to 100 mm in thickness with a 6-kW fiber laser for application to dismantling of nuclear facilities

    Science.gov (United States)

    Shin, Jae Sung; Oh, Seong Yong; Park, Hyunmin; Chung, Chin-Man; Seon, Sangwoo; Kim, Taek-Soo; Lee, Lim; Lee, Jonghwan

    2018-01-01

    A cutting study with a high-power ytterbium-doped fiber laser was conducted for the dismantling of nuclear facilities. Stainless steel and carbon steel plates of various thicknesses were cut at a laser power of 6-kW. Despite the use of a low output of 6-kW, the cutting was successful for both stainless steel and carbon steel plates of up to 100 mm in thickness. In addition, the maximum cutting speeds against the thicknesses were obtained to evaluate the cutting performance. As representative results, the maximum cutting speeds for a 60-mm thickness were 72 mm/min for the stainless steel plates and 35 mm/min for the carbon steel plates, and those for a 100-mm thickness were 7 mm/min for stainless steel and 5 mm/min for carbon steel plates. These results show an efficient cutting capability of about 16.7 mm by kW, whereas other groups have shown cutting capabilities of ∼10 mm by kW. Moreover, the maximum cutting speeds were faster for the same thicknesses than those from other groups. In addition, the kerf widths of 60-mm and 100-mm thick steels were also obtained as another important parameter determining the amount of secondary waste. The front kerf widths were ∼1.0 mm and the rear kerf widths were larger than the front kerf widths but as small as a few millimeters.

  19. Consideration of impact of atmospheric intrusion in subsurface sampling for investigation of suspected underground nuclear explosions

    International Nuclear Information System (INIS)

    Lowrey, J.D.; Bowyer, T.W.; Haas, D.A.; Hayes, J.C.; Biegalski, S.R.

    2016-01-01

    Radioactive noble gases radioxenon and radioargon constitute the primary smoking gun of an underground nuclear explosion. The aim of subsurface sampling of soil gas as part of an on-site inspection (OSI) is to search for evidence of a suspected underground nuclear event. It has been hypothesized that atmospheric gas can disturb soil gas concentrations and therefore potentially add to problems in civilian source discrimination verifying treaty compliance under the comprehensive nuclear-test ban treaty. This work describes a study of intrusion of atmospheric air into the subsurface and its potential impact on an OSI using results of simulations from the underground transport of environmental xenon (UTEX) model. (author)

  20. Refinement of parameters of weak nuclear explosions conducted at the Semipalatinsk test site on the basis of historical seismograms study

    Science.gov (United States)

    Sokolova, Inna

    2014-05-01

    Many researchers working in the field of monitoring and discriminating of nuclear tests encounter the problem of lacking in seismic catalogues the information about source parameters for weak nuclear explosions. As usual, the information about origin time, coordinates and magnitude is absent, there is information about date, approximate coordinates and information about explosion yield. Huge work conducted on recovery of parameters of small underground nuclear explosions conducted at the Semipalatinsk Test Site using records of analogue seismic stations of the USSR located at regional distances was conducted by V. Khalturin, T. Rayutian, P. Richards (Pure and Applied Geophysics, 2001). However, if underground nuclear explosions are studied and described in literature quite well, then air and contact explosions were small and were not recorded by standard permanent seismic stations. In 1961-1962 maximum number of air and contact explosions was conducted at Opytnoye polye site of the STS. We managed to find and analyze additional seismic data from some temporary and permanent stations. That time IPE AS USSR installed a network of high-sensitive stations along Pamir-Baykal profile to study earth crust structure and upper mantle, the profile length was 3500 km. Epicentral distance from some stations of the profile to Opytnoye polye was 300-400 km. In addition, a permanent seismic station Semipalatinsk (SEM) located 175 km away from the site started its operation. The seismograms from this station became available recently. The digitized historical seismograms allowed to recover and add parameters for more than 36 air and surface explosions. Origin time, coordinates, magnitudes mpv, MLV and energy class K were determined for explosions. A regional travel-time curve for Central Kazakhstan constructed using records of calibration chemical explosions conducted at the STS in 1997-2000 and ground-truth underground nuclear explosions was used to determine kinematic parameters

  1. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2005-09-20

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  2. Proceedings of the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration

    International Nuclear Information System (INIS)

    Warren, N. Jill

    2002-01-01

    These proceedings contain papers prepared for the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration, held 17-19 September, 2002 in Ponte Vedra Beach, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  3. Measurements of Argon-39 at the U20az underground nuclear explosion site.

    Science.gov (United States)

    McIntyre, J I; Aalseth, C E; Alexander, T R; Back, H O; Bellgraph, B J; Bowyer, T W; Chipman, V; Cooper, M W; Day, A R; Drellack, S; Foxe, M P; Fritz, B G; Hayes, J C; Humble, P; Keillor, M E; Kirkham, R R; Krogstad, E J; Lowrey, J D; Mace, E K; Mayer, M F; Milbrath, B D; Misner, A; Morley, S M; Panisko, M E; Olsen, K B; Ripplinger, M D; Seifert, A; Suarez, R

    2017-11-01

    Pacific Northwest National Laboratory reports on the detection of 39 Ar at the location of an underground nuclear explosion on the Nevada Nuclear Security Site. The presence of 39 Ar was not anticipated at the outset of the experimental campaign but results from this work demonstrated that it is present, along with 37 Ar and 85 Kr in the subsurface at the site of an underground nuclear explosion. Our analysis showed that by using state-of-the-art technology optimized for radioargon measurements, it was difficult to distinguish 39 Ar from the fission product 85 Kr. Proportional counters are currently used for high-sensitivity measurement of 37 Ar and 39 Ar. Physical and chemical separation processes are used to separate argon from air or soil gas, yielding pure argon with contaminant gases reduced to the parts-per-million level or below. However, even with purification at these levels, the beta decay signature of 85 Kr can be mistaken for that of 39 Ar, and the presence of either isotope increases the measurement background level for the measurement of 37 Ar. Measured values for the 39 Ar measured at the site ranged from 36,000 milli- Becquerel/standard-cubic-meter-of-air (mBq/SCM) for shallow bore holes to 997,000 mBq/SCM from the rubble chimney from the underground nuclear explosion. Published by Elsevier Ltd.

  4. Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring

    International Nuclear Information System (INIS)

    Chavez, Francesca C.; Benson, Jody; Hanson, Stephanie; Mark, Carol; Wetovsky, Marvin A.

    2004-01-01

    These proceedings contain papers prepared for the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, held 21-23 September, 2004 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  5. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Francesca C. [Editor; Mendius, E. Louise [Editor

    2003-09-23

    These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  6. Proceedings of the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration

    Energy Technology Data Exchange (ETDEWEB)

    Warren, N. Jill [Editor

    2002-09-17

    These proceedings contain papers prepared for the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration, held 17-19 September, 2002 in Ponte Vedra Beach, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  7. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2005-01-01

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  8. Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Francesca C [Editor; Benson, Jody [Editor; Hanson, Stephanie [Editor; Mark, Carol [Editor; Wetovsky, Marvin A [Editor

    2004-09-21

    These proceedings contain papers prepared for the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, held 21-23 September, 2004 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  9. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

    2009-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  10. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base

    International Nuclear Information System (INIS)

    Chavez, Francesca C.; Mendius, E. Louise

    2003-01-01

    These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  11. A study of design features of civil works of nuclear installations facilitating their eventual refurbishing, renewal, dismantling or demolition

    International Nuclear Information System (INIS)

    Paton, A.A.; Benwell, P.; Irwin, T.F.; Hunter, I.

    1984-03-01

    This report describes a study that has been carried out to identify civil engineering features which could be incorporated in future gas cooled and light water cooled nuclear power plants to facilitate their decommissioning. The report reviews the problems likely to be met in decommissioning present day nuclear power plants and concludes that there is a number of such features which could be introduced in future designs to overcome or eliminate the problems. The report identifies and describes these features and recommends that further work be carried out to confirm their feasibility. The study briefly considered the possibility of refurbishing nuclear plants and concluded that this is not a realistic option in present circumstances. (author)

  12. Project management for the decommissioning and dismantling of nuclear facilities; Projektmanagement fuer Stilllegung und Rueckbau kerntechnischer Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, Joerg; Wilhelm, Oliver [ENBW Kernkraft GmbH, Neckarwestheim (Germany); Seizer, Burkhard; Schuetz, Tobias [Drees und Sommer, Stuttgart (Germany)

    2015-12-15

    The decommissioning of nuclear power plants is executed in a classic project manner as it is known from other construction projects. It is obvious to use the known portfolio of project management tools. The complexity that is created by the large size of the project in combination with safety requirements of the nuclear industry has to be handled. Complexity can only be managed addressing two main drivers: Prioritization and speed (agility) in project execution. Prioritization can be realized by applying tools like Earned Value Management. A high speed of project execution is established by applying Agile Management like SCRUM-methods. This method is adopted in the context of the cooperation ''Complex Projects'' to the needs of nuclear industry.

  13. Smoke production from multiple nuclear explosions in nonurban areas

    International Nuclear Information System (INIS)

    Small, R.D.; Bush, B.W.

    1985-01-01

    The amount of smoke that may be produced by wildland or rural fires as a consequence of a large-scale nuclear exchange is estimated. The calculation is based on a compilation of rural military facilities, identified from a wide variety of unclassified sources, together with data on their geographic positions, surrounding vegetation (fuel), and weather conditions. The ignition area (corrected for fuel moisture) and the amount of fire spread are used to calculate the smoke production. The results show a substantially lower estimated smoke production (from wildland fires) than in earlier nuclear winter studies. The amount varies seasonally and at its peak is less by an order of magnitude than the estimated threshold level necessary for a major attenuation of solar radiation. 32 references, 6 figures, 2 tables

  14. System of large transport containers for waste from dismantling light water and gas-cooled nuclear reactors. Volume 1

    International Nuclear Information System (INIS)

    Price, M.S.T.; Lafontaine, I.

    1985-01-01

    The purpose of this volume is to introduce the main types of nuclear reactor in the European Community (EC), select reference plants for further study, estimate the waste streams from the reference reactors, survey the transport regulations and assess existing containers

  15. The 500 billion euro market. Dismantling of nuclear power plants; Der 500-Milliarden-Euro-Markt. Rueckbau von Kernkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Trueck, Peter [Rochus Mummert Clean Energy, Hamburg (Germany); Oberle, Berthold [Rochus Mummert Clean Energy, Hamburg (Germany). Technologieberatung und Interim Management

    2013-10-01

    The decommissioning of the shut-down nuclear power plants is an enormous market potential. In order to develop this strategic business segment, different strategies offer for companies. [German] Der Rueckbau der abgeschalteten Kernkraftwerke bildet ein enormes Marktpotential. Um dieses strategische Geschaeftsfeld zu erschliessen, bieten sich fuer Unternehmen unterschiedliche Strategien an.

  16. Prohibiting and Preventing Nuclear Explosions: Background Information for Parliamentarians on the Comprehensive Nuclear-Test-Ban Treaty (CTBT)

    International Nuclear Information System (INIS)

    2010-07-01

    The object and purpose of the CTBT is to ban comprehensively nuclear weapon test explosions and any other nuclear explosion in any environment in an effectively verifiable manner. The CTBT aims at eliminating nuclear weapons by constraining the development and qualitative improvement of new or more advanced nuclear weapons. It plays a crucial role in the prevention of nuclear proliferation and in nuclear disarmament, thus contributing to a safer and more secure world. When the Treaty enters into force it will establish a treaty-implementing body (the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO)), including an on-site inspection mechanism and confidence-building measures as well as an International Monitoring System (IMS) and International Data Centre (IDC). The IMS and IDC are already being created and are being provisionally operated during the preparatory phase by the Preparatory Commission for the CTBTO and its Provisional Technical Secretariat in Vienna. Seismic, hydroacoustic, infrasound and radionuclide data are collected through the stations of the IMS and transmitted to Member States via the IDC. The IDC also processes the raw data received from the stations to derive objective products and services which will support the Treaty verification responsibilities. If the collected and analysed data indicate an ambiguous event, States may address concerns about possible noncompliance with the Treaty through a consultation and clarification process after it enters into force and may request an on-site inspection by the CTBTO.

  17. DELFIC-TES, Gamma Doses from Nuclear Explosion Radioactive Clouds

    International Nuclear Information System (INIS)

    1991-01-01

    1 - Description of program or function: DELFIC-TES computes the transit gamma exposure from the airborne cloud resulting from a nuclear burst for fixed targets located on or above the earth's surface. 2 - Method of solution - The system is based on a method of producing 'snapshots' of the moving cloud of airborne particles during the transport process of DELFIC. Each particle in each snapshot is then assigned an activity and these data are used to calculate transit exposure by employing an energy-dependent buildup factor technique

  18. Proceedings for the symposium on public health aspects of peaceful uses of nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-07-01

    The Southwestern Radiological Health Laboratory is very pleased to have sponsored this Symposium on the Public Health Aspects of the Peaceful Uses of Nuclear Explosives. The primary purpose of the Symposium was to disseminate and document current information and data on the public health aspects of this promising new technical field. In addition, it served to identify potential problem areas, stimulated discussion, and provided an opportunity for exchange of ideas and rapport between and among various individuals and groups sharing interests in various facets of Plowshare technology. These proceedings should serve these objectives and provide a resource of relevant information which may be used to evaluate what is presently known and unknown in the public health and safety area of the technology for peaceful applications of nuclear explosives.

  19. Study of the mineralogical transformations of granite by underground nuclear explosions

    International Nuclear Information System (INIS)

    Faure, Jean

    1970-01-01

    The object of the following communication is to prove new data about the petrographic effects of the underground nuclear explosions. It is founded on the results of trench tests in granite rock. The samples are collected by drilling and the temperature of the rock was measured in the hole. Four types of melted rocks can be sorted, grey-green glass and pumices, beige to red-brown pumices, dark lavas, dark veinlets and crushed granite. The distribution of these rocks is studied. Optical microscopy, X-rays and chemical analysis, study by electron probe, are made. The results complete previously published data. They are interesting as far as the use of nuclear explosions for industrial applications is concerned. (author)

  20. Proceedings for the symposium on public health aspects of peaceful uses of nuclear explosives

    International Nuclear Information System (INIS)

    1969-01-01

    The Southwestern Radiological Health Laboratory is very pleased to have sponsored this Symposium on the Public Health Aspects of the Peaceful Uses of Nuclear Explosives. The primary purpose of the Symposium was to disseminate and document current information and data on the public health aspects of this promising new technical field. In addition, it served to identify potential problem areas, stimulated discussion, and provided an opportunity for exchange of ideas and rapport between and among various individuals and groups sharing interests in various facets of Plowshare technology. These proceedings should serve these objectives and provide a resource of relevant information which may be used to evaluate what is presently known and unknown in the public health and safety area of the technology for peaceful applications of nuclear explosives

  1. Study of the mineralogical transformations of granite by underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Faure, Jean [Commissariat a I' Energie Atomique, Centre d' Etudes de Bruyeres-le-Chatel (France)

    1970-05-15

    The object of the following communication is to prove new data about the petrographic effects of the underground nuclear explosions. It is founded on the results of trench tests in granite rock. The samples are collected by drilling and the temperature of the rock was measured in the hole. Four types of melted rocks can be sorted, grey-green glass and pumices, beige to red-brown pumices, dark lavas, dark veinlets and crushed granite. The distribution of these rocks is studied. Optical microscopy, X-rays and chemical analysis, study by electron probe, are made. The results complete previously published data. They are interesting as far as the use of nuclear explosions for industrial applications is concerned. (author)

  2. Yield Estimation for Semipalatinsk Underground Nuclear Explosions Using Seismic Surface-wave Observations at Near-regional Distances

    Science.gov (United States)

    Adushkin, V. V.

    - A statistical procedure is described for estimating the yields of underground nuclear tests at the former Soviet Semipalatinsk test site using the peak amplitudes of short-period surface waves observed at near-regional distances (Δ Semipalatinsk explosions, including the Soviet JVE explosion of September 14, 1988, and it is demonstrated that it provides seismic estimates of explosion yield which are typically within 20% of the yields determined for these same explosions using more accurate, non-seismic techniques based on near-source observations.

  3. An evaluation on the scenarios of work trajectory during installation of dismantling equipment for decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, KwanSeong; Choi, ByungSeon; Moon, JeiKwon; Hyun, Dongjun; Lee, Jonghwan; Kim, IkJune; Kim, GeunHo; Kang, ShinYoung; Choi, JongWon; Jeong, SeongYoung; Ahn, SangMyeon; Lee, JungJun

    2016-01-01

    Highlights: • An evaluation on the scenarios of work trajectory. • An evaluation using the virtual decommissioning environments. • An evaluation on work movement under radiation environments. - Abstract: This study is intended to suggest an ergonomic evaluation on the working postural comfort. This study issued for the first time a methodology in view of combination between visual field and comfort. Especially, the ergonomic evaluation using the virtual decommissioning environments is user-friendly because setup of physical mock-up environments is difficult. This study verified the front and standing postures are best working postures during movement under radiation environments of nuclear facilities. It is expected that this methodology will make it possible to establish the ergonomic plan for decommissioning of nuclear facilities and safety of decommissioning will be improved and also decommissioning costs also can be reduced.

  4. Ionospheric disturbances due to underground nuclear explosions and other sources: an elementary discussion, Part I

    International Nuclear Information System (INIS)

    Wouters, L.F.

    1971-01-01

    The possible effect of verticle ground surface motion on the ionosphere, as a consequence of acoustic propagation, is discussed. Estimates of R. F. phase path perturbations are developed for several representative sources and several propagative modes (both terrestrial and atmospheric). In particular, amplitude models for ionospheric density perturbations are used. The discrimination of earth quakes and nuclear explosive disturbances is considered and some detailed properties of the extended atmosphere are described. A list of references is provided. (U.S.)

  5. Prototype explosives detection system based on nuclear resonance absorption in nitrogen

    International Nuclear Information System (INIS)

    Morgado, R.E.; Arnone, G.J.; Cappiello, C.C.

    1996-01-01

    A laboratory prototype system has been developed for the experimental evaluation of an explosives detection technique based on nuclear resonance absorption of gamma rays in nitrogen. Major subsystems include a radiofrequency quadrupole proton accelerator and associated beam transport system, a high-power gamma-ray production target, an airline-luggage tomographic inspection system, and an image- processing/detection-alarm subsystem. The detection system performance, based on a limited experimental test, is reported

  6. Peaceful nuclear explosions as a provocation and tasks of international organizations

    International Nuclear Information System (INIS)

    Welck, S. Freiherr von

    1975-01-01

    First there is a brief survey on how to make use of peaceful nuclear explosions and on the present state of technological development. Before their use on an international level materializes, a number of political, technical, legal, and ecological problems have to be solved at least provisionally. The extent to which international organizations can help to find these solutions is examined in detail. (HP/LN) [de

  7. Conclusions of a study for the large scale melting of radioactive steel scrap arising from the dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Cross, M.T.

    1992-01-01

    This Summary Paper gives an overview of the feasibility assessment carried out by AEA Technology for the evaluation of melting as a waste conditioning method for metallic Low-Level Wastes (LLW). The assessment wa carried out on behalf of BNFL, Nuclear Electric (NE) and the Department of Energy (DEn) in a work programme started in 1987 and completed during 1990. The salient technical findings and economic arguments for the method are presented in this brief appraisal of the study

  8. System of large transport containers for waste from dismantling light water and gas-cooled nuclear reactors. Volume 2

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1986-09-01

    This report deals with the operational, radiological and economic aspects of transport as well as conceptual designs of large containers for the transport of radioactive decommissioning wastes from nuclear power plants within the member states of the European Economic Community. The means of transport, the costs and radiological detriment are considered, and conceptual designs of containers are described. Recommendations are made for further studies. (U.K.)

  9. New wireless system for fire protection (detection) during dismantling works in Jose Cabrera NPP (CNJC); Nuevo Sistema Inalámbrico de detección contraincendios para el desmantelamiento de a Central Nuclear José Cabrera

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, F.J.; Gómez Rodríguez, C.A.

    2016-07-01

    José Cabrera Nuclear Power Plant is currently in an advanced stage in the process of dismantling and decommissioning. As part of that process, it is necessary to remove the maximum possible interference with operating systems, which are still needed to support the works ongoing or to ensure the safety. With that goal it has been installed a new wireless fire detection system that substitutes the old wired one. The coverage of this new system was initially focused on the containment building, establishing a first phase of analysis of signal coverage, and location of the different components in the building and a second phase of implementation (monitoring and testing) to demonstrate the reliability and robustness of the system in a building with such a complex geometry configuration. Currently the WIFI system is in operation, providing coverage to the containment building and other external facilities (laundry, control room, etc) that have been incorporated to support the process of dismantling.

  10. Comparison of the inelastic response of steel building frames to strong earthquake and underground nuclear explosion ground motion

    International Nuclear Information System (INIS)

    Murray, R.C.; Tokarz, F.J.

    1976-01-01

    Analytic studies were made of the adequacy of simulating earthquake effects at the Nevada Test Site for structural testing purposes. It is concluded that underground nuclear explosion ground motion will produce inelastic behavior and damage comparable to that produced by strong earthquakes. The generally longer duration of earthquakes compared with underground nuclear explosions does not appear to significantly affect the structural behavior of the building frames considered. A comparison of maximum ductility ratios, maximum story drifts, and maximum displacement indicate similar structural behavior for both types of ground motion. Low yield (10 - kt) underground nuclear explosions are capable of producing inelastic behavior in large structures. Ground motion produced by underground nuclear explosions can produce inelastic earthquake-like effects in large structures and could be used for testing large structures in the inelastic response regime. The Nevada Test Site is a feasible earthquake simulator for testing large structures

  11. Decommissioning and dismantling reactors and managing waste

    International Nuclear Information System (INIS)

    Bensoussan, E.; Reicher-Fournel, N.

    2005-01-01

    In the early forties/fifties, a number of countries launched the first developments in the field of nuclear power. Some of them now have large numbers of nuclear facilities and nuclear power plants which have met, and continue to meet, the objectives for which they were designed and built. Other plants, including nuclear fuel production and enrichment plants, experimental reactors or research reactors, will have to be dismantled and demolished in the near future. These activities are handled differently in different countries as a function of specific energy policies, advanced development plants, current financial resources, the availability of qualified engineers and specialized industries able to handle projects of this kind, as well as other factors. All dismantling and demolition projects serve the purpose of returning the respective sites to green-field conditions. (orig.)

  12. Decommissioning and dismantling: evaluation of possible radiological impacts from exceeding clearance levels at nuclear facilities. Final report

    International Nuclear Information System (INIS)

    Kirchhoff, J.; Stasch, W.P.; Thierfeldt, S.; Kugeler, E.

    2001-01-01

    On June 14, 2000 the German power utilities have reached an agreement with the German government (energy consent). According to that all nuclear power plants in Germany shall be shut down approximately until the year 2020 and shall be decommissioned afterwards. Almost 95% of the mass of a nuclear power plant can be re-used or recycled as normal material and waste after the necessary handling (decontamination) and clearance measurements. For the release of the entire mass of a NPP several hundreds of thousand radioactivity measurements (so called free release measurements) are necessary. With this huge number of measurements mistakes cannot be excluded. The study includes several radiological scenarios which could result from mistakes during the release/clearance procedure. The radiation doses calculated during the simulation show that some faulty releases can give rise to doses above the trivial dose level of some 10 μSv. An effective dose up to 400 μSv for individuals has been determined. However, with a high certainty it can be excluded that the individual effective dose will reach the range of 1000 μSv even with a hypothetical consideration of a concatenation of several conditions. Because of the low probability of appearance and their minimal radiological effects mistakes during the release procedure pose no hazards. (orig.) [de

  13. A framework for verifying the dismantlement and abandonment of nuclear weapons. A policy implication for the denuclearization of Korea Peninsula

    International Nuclear Information System (INIS)

    Ichimasa, Sukeyuki

    2011-01-01

    Denuclearization of Korean Peninsula has been a serious security issue in the North East Asian region. Although the Six-Party Talks has been suspended since North Korea declared a boycott in 2008, aims of denuclearizing North Korea has still been discussed. For instance, the recent Japan and the U.S. '2+2' dialogue affirmed its importance to achieve complete and verifiable denuclearization of North Korea, including scrutinizing its uranium enrichment program, through irreversible steps under the Six Party process. In order to identify effective and efficient framework for denuclearization of North Korea, this paper examines 5 major denuclearization methods including (1) the Nunn-Luger Method, (2) the Iraqi Method, (3) the South African Method, (4) the Libyan Method and (5) the denuclearization method shown in the Nuclear Weapons Convention (NWC), while referring to the recent developments of the verification studies for nuclear disarmament, such as a joint research conducted by the United Kingdom and Norway and any other arguments made by disarmament experts. Moreover, this paper argues what political and security conditions will be required to make North Korea to accept intrusive verification for its denuclearization. Conditions for successful denuclearization talks among the Six-Party member states and a realistic approach of verifiable denuclearization will be also examined. (author)

  14. SGDES: Management system dismantling of ENRESA

    International Nuclear Information System (INIS)

    Julian, A. de; Fernandez, M.; Vidaechea, S.

    2013-01-01

    ENRESA, the Spanish public company responsible for managing radioactive waste and nuclear facilities decommissioning, has developed a management information system (SGDES) for the decommissioning of nuclear power plants. Dismantling activities require a rigorous operations control within highly specialized, process systematization and safety framework, both under human and technological point of view. SGDES system is capable of responding to the mentioned operational needs, efficiently and safely.

  15. LEP dismantling starts

    CERN Multimedia

    2000-01-01

    Since the end of November, various teams have been getting stuck into dismantling the LEP accelerator and its four experiments. After making the installations safe, the dismantling and removal of 40,000 tonnes of equipment is underway. Down in the tunnel, it is a solemn moment. It is 10 o'clock on 13 December and Daniel Regin, one of those heading the dismantling work, moves in on a magnet, armed with a hydraulic machine. Surrounded by teams gathered there for a course in dismantling, he makes the first cut into LEP. The great deconstruction has begun. In little over than a year, the accelerator will have been cleared away to make room for its successor, the LHC. The start of the operation goes back to 27 November. Because before setting about the machine with hydraulic shears and monkey wrenches, LEP had first to be made safe - it was important to make sure the machine could be taken apart without risk. All the SPS beam injection systems to LEP were cut off. The fluids used for cooling the magnets and superc...

  16. Real-time detection and characterization of nuclear explosion using broadband analyses of regional seismic stations

    Science.gov (United States)

    Prastowo, T.; Madlazim

    2018-01-01

    This preliminary study aims to propose a new method of real-time detection and characterization of nuclear explosions by analyzing broadband seismic waveforms acquired from a network of regional seismic stations. Signal identification generated by a nuclear test was differentiated from natural sources of either earthquakes or other natural seismo-tectonic events by verifying crucial parameters, namely source depth, type of first motion, and P-wave domination of the broadband seismic wavesunder consideration. We examined and analyzed a recently hypothetical nuclear test performed by the North Koreangovernment that occurred on September 3, 2017 as a vital point to study. From spectral analyses, we found that the source of corresponding signals associated with detonations of the latest underground nuclear test was at a much shallower depth below the surface relatively compared with that of natural earthquakes, the suspected nuclear explosions produced compressional waves with radially directed outward from the source for their first motions, and the waves were only dominated by P-components. The results are then discussed in the context of potential uses of the proposed methodology for human-induced disaster early warning system and/or the need of rapid response purposes for minimizing the disaster risks.

  17. Explosion and detonation of ozone in mixtures with carrier gases employed in nuclear technology

    International Nuclear Information System (INIS)

    Weh, M.M.L.

    1988-09-01

    Explosive ozone is known to be formed during low temperature radiolysis of oxygen. Detailed knowledge on the explosion and the detonation of ozone is therefore required for safety considerations of nuclear installations such as proposed for the cryogenic separation of 85 krypton from the head end off gas of a reprocessing plant. The explosion properties of gaseous ozone in mixtures with oxygen, nitrogen, helium, argon, krypton, xenon and difluorodichloromethane were studied by varying the ozone concentration, the initial pressure and the shape of the vessel containing the gas. Detonation velocities were determined for gaseous mixtures of ozone with oxygen, argon, krypton or xenon as functions of the ozone concentration. In addition, the initial pressure was varied for ozone-xenon mixtures. The effect of a packing such as used in the 85 Kr-separation plant 'KRETA' in KfK on ozone-xenon detonation was investigated. In addition, the effect of low amounts of carbon monoxide, methane and nitrogen dioxide on the explosion (O 3 /Ar) and the detonation (O 3 /Xe) of an ozone-noble gas mixture was determined. (orig.) [de

  18. The study of steam explosions in nuclear systems. Advanced Reactor Severe Accident Program

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Yuen, W.W.; Angelini, S.; Chen, X.

    1995-01-01

    This report presents an overview of the steam explosion issue in nuclear reactor safety and our approach to assessing it. Key physics, models, and computational tools are described, and illustrative results are presented for ex-vessel steam explosions in an open pool geometry. An extensive set of appendices facilitate access to previously reported work that is an integral part of this effort. These appendices include key developments in our approach, key advances in our understanding from physical and numerical experiments, and details of the most advanced computational results presented in this report. Of major significance are the following features: A consistent two-dimensional treatment for both premixing and propagation which in practical settings are ostensibly at least two-dimensional phenomena; experimental demonstration of voiding and microinteractions which represent key behaviors in premixing and propagation respectively; demonstration of the explosion venting phenomena in open pool geometries which, therefore, can be counted on as a very important mitigative feature; and introduction of the idea of penetration cutoff as a key mechanism prohibiting large-scale premixing in usual ex-vessel situations involving high pour velocities and subcooled pools. This report is intended as an overview and is to be followed by code manuals for PM-ALPHA and ESPROSE.m, respective verification reports, and application documents for reactor-specific applications. The applications will employ the Risk Oriented Accident Analysis Methodology (ROAAM) to address the safety importance of potential steam explosions phenomena in evaluated severe accidents for passive Advanced Light Water Reactors (ALWRs)

  19. Nuclear cost studies for decontamination and dismantling. The interim storage for spent fuels at Studsvik.; Kaerntekniska kostnadsstudier avseende dekontaminering och nedlaeggning. Mellanfoervaret foer anvaent kaernbraensle (FA) i Studsvik.

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeblom, Rolf; Sjoeoe, Cecilia [Tekedo AB, Nykoeping (Sweden); Lindskog, Staffan; Cato, Anna [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    2005-05-01

    The interim store for spent fuel (FA) at Studsvik was designed and constructed in 1962-64. It has been used for wet storage of fuel from the Aagesta Nuclear Power Plant as well as the R2 reactor at Studsvik. FA comprises three cylindrical pools for fuel storage as well as equipment for handling and decontamination. The purpose of the present work is to develop methodology for calculation of future costs for decontamination and dismantling of nuclear research facilities. The analysis is based on information from Studsvik as well as results from information searches. The requirements on precision of cost calculations is high, also at early stages. The reason for this is that the funds are to be collected now but are to be used some time in the future. At the same time they should neither be insufficient nor superfluous. It is apparent from the compilation and analysis that when methodology that has been developed for the purpose of cost calculations for power reactors is applied to research facilities certain drawbacks become apparent, e.g. difficulties to carry out variation analyses. Generally, feedback of data on incurred costs for the purpose of cost calculations can be achieved by using one or more scaling factors together with weighing factors which are established based on e g expert judgement. For development and utilisation of such tools it is necessary to have access to estimated costs together with incurred ones. In the report, the following combination of aspects is identified as being of primary significance for achieving a high precision: Calculations with the possibility to 'calibrate' against incurred costs; Radiological surveying tailored to the needs for calculations; Technical planning including selection of techniques to be used; Identification of potential sources for systematic deviations. In the case of FA, some of the sources of uncertainty are as follows: Damaged surface layers in the pools; Maintenance status for the drains

  20. Determination of elements in concrete of a nuclear accelerator to dismantle, by instrumental neutron activation analysis, ICPMS and ICPAES

    International Nuclear Information System (INIS)

    Gaudry, A.; Bertho, X.; Piccot, D.; Fougeron, C.

    1998-01-01

    The distribution of radionuclides and their radioactivity in irradiated waste concrete are modelled using the characteristics of nuclear particle fluxes integrated all during the life-time of the installation, chemical composition of the material, and activation parameters of nuclear reactions produced by particles and secondary neutrons on elements. This paper describes the techniques used for determining the chemical composition of trace elements radioactivated by neutrons and particles, but also the major elements which act upon the neutron penetration into the depth of the concrete. Major elements were determined using mainly, Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) for Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, P and Instrumental Neutron Activation Analysis (INAA) for Al, Mn, Fe, Mg, Ca, Ba, Na, K, and other specific methods for C, O, S, and H. Trace elements were also determined using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and INAA. Forty five elements were determined. When present, solid iron was separated by a magnetic bar after previous breaking of the concrete. The concrete was powdered to a granulometry of less than 0.5 mm for INAA and homogenized. Iron was determined separately by INAA. For the determinations by ICP-AES and ICP-MS, powders were previously fused by means of LiBO 2 , then dissolved in dilute HNO 3 before analysis. A comparison between the results obtained, on the one hand, by ICP-AES and INAA, on the second hand, by ICP-MS and INAA revealed generally a very good agreement, making consistent analytical results

  1. APSTNG: Neutron interrogation for detection of nuclear and CW weapons, explosives, and drugs

    International Nuclear Information System (INIS)

    Rhodes, E.; Dickerman, C.E.; De Volpi, A.; Peters, C.W.

    1992-01-01

    A recently developed neutron diagnostic probe system has the potential to satisfy a significant number of van-mobile and fixed- portal requirements for nondestructive verification of sealed munitions and detection of contraband explosives and drugs. The probe is based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutrons generated from the deuterium-tritium reaction and that detects the alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron inelastic scattering and fission reactions identify nuclides associated with all major chemicals in chemical warfare agents, explosives, and drugs, as well as many pollutants and fissile and fertile special nuclear material. Flight times determined from determined from detection times of the gamma-rays and alpha-particles yield a separate tomographic image of each identified nuclide. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system that can be used along with or instead of the emission imaging system; a collimator is not required since scattered neutrons are removed by ''electronic collimation'' (detected neutrons not having the proper flight time to be uncollided are discarded). The small and relatively inexpensive APSTNG exhibits high reliability and can be quickly replaced. Proof-of-concept experiments have been performed under laboratory conditions for simulated nuclear and chemical warfare munitions and for explosives and drugs

  2. ISC origin times for announced and presumed underground nuclear explosions at several test sites

    International Nuclear Information System (INIS)

    Rodean, H.C.

    1979-01-01

    Announced data for US and French underground nuclear explosions indicate that nearly all detonations have occurred within one or two tenths of a second after the minute. This report contains ISC origin-time data for announced explosions at two US test sites and one French test site, and includes similar data for presumed underground nuclear explosions at five Soviet sites. Origin-time distributions for these sites are analyzed for those events that appeared to be detonated very close to the minute. Particular attention is given to the origin times for the principal US and Soviet test sites in Nevada and Eastern Kazakhstan. The mean origin times for events at the several test sites range from 0.4 s to 2.8 s before the minute, with the earlier mean times associated with the Soviet sites and the later times with the US and French sites. These times indicate lower seismic velocities beneath the US and French sites, and higher velocities beneath the sites in the USSR 9 figures, 8 tables

  3. APSTNG: Neutron interrogation for detection of explosives and drugs and nuclear and CW materials

    International Nuclear Information System (INIS)

    Rhodes, E.; Peters, C.W.

    1993-01-01

    A recently developed neutron diagnostic probe system has the potential to satisfy a significant number of van-mobile and fixed-portal requirements for nondestructive detection, including monitoring of contraband explosives, drugs, and weapon materials, and treaty verification of sealed munitions. The probe is based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutron generated from the deuterium-tritium reaction and that detects the alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions identify nuclides associated with all major chemicals in explosives, drugs, and chemical warfare agents, as well as many pollutants and fissile and fertile special nuclear material. Flight times determined from detection times of the gamma rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system that can be used along with or instead of the emission imaging system. Proof-of-concept experiments have been performed under laboratory conditions for simulated nuclear and chemical warfare munitions and for explosives and drugs. The small and relatively inexpensive APSTNG exhibits high reliability and can be quickly replaced. Surveillance systems based on APSTNG technology can avoid the large physical size, high capital and operating expenses, and reliability problems associated with complex accelerators

  4. Research into the melting/refining of contaminated steel scrap arising in the dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Harvey, D.S.

    1990-01-01

    The main part of this report is concerned with the steel-making behaviour of various radioisotopes encountered in steel from decommissioning of nuclear installations (e.g. cobalt 60, caesium 134 and europium 154). Under a wide range of conditions cobalt is largely absorbed by the steel, europium is absorbed by the slag, whereas caesium may be largely volatized, or largely absorbed by the slag. Radiation exposures which might occur during a large-scale recycling operation, during routine operations and accidents would not be significant according to published criteria in the UK. The second part of the report concerns the detection of radioactive materials which may be accidentally delivered to steelworks in scrap steel and used in steel-making. Detectors have been developed which would indicate the presence of radioactivity in scrap. A survey of the steelworks revealed areas where detection might be performed. Experiments have shown that a gamma ray detector of large volume could provide useful sensitivity of detection

  5. Dismantling the activated annular water tank of the Rheinsberg nuclear power plant; Zerlegung des aktivierten Ringwasserbehaelters des Kernkraftwerks Rheinsberg

    Energy Technology Data Exchange (ETDEWEB)

    Klietz, Maik; Konitzer, Arnold; Luedeke, Michael [Anlagen- und Kraftwerksrohrleitungsbau GmbH, Greifswald (Germany)

    2010-10-15

    Acting on behalf of Energiewerke Nord GmbH Lubmin, Anlagen- und Kraftwerksrohrleitungsbau Greifswald GmbH (AKB) planned and built a station for disassembly of the activated annular water tank (RWB) of the decommissioned Rheinsberg nuclear power plant. As part of this demolition step, the annular water tank must be conditioned and disposed of as a component of the reactor facility. This required planning, manufacturing, testing and construction on site of suitable disassembly and handling techniques and the necessary plant and equipment. The client opted for disassembly by means of a diamond cable saw for conditioning the annular water tank into segments fit for shipping, and defined the basic components for the disassembly station in a specification of deliveries and services. The disassembly station serves to divide the annular water tank by means of diamond cable saws into 2 sections in such a way that segment pieces for transport are produced. The existing activation of the annular water tank also entailed the need to plan for the shortest possible time to be spent on handling near the annular water tank, providing radiological protection to the personnel, and performing the sawing steps from a separate operating console assisted by camera surveillance. After works acceptance tests at the manufacturer's, AKB, in October 2009 and February 2010, the disassembly station was delivered to the customer at Rheinsberg KKR free from defects in June 2010. (orig.)

  6. The Japan Power Demonstration Reactor dismantling project. Radiation control

    International Nuclear Information System (INIS)

    Tomii, Hiroyuki; Seiki, Yoshihiro

    1996-01-01

    In the Japan Power Demonstration Reactor (JPDR) dismantling project, radiation control was performed properly with routine and special monitoring to keep the occupational safety and to collect data necessary for future dismantling of nuclear facilities. This report describes a summary of radiation control in the dismantling activities and some results of parametric analysis on dose equivalent evaluation, and introduces the following knowledge on radiological protection effectiveness of the dismantling systems applied in the project. a) Use of remote dismantling systems was effective in reducing equivalent workplace exposure. b) Utilization of existing facilities as radiation shield or radioactivity containment was effective in reducing workplace exposure, and also in increasing work efficiency. c) Use of underwater cutting systems was useful to minimize air contamination, and to reduce the dose equivalent rate in the working area. d) In the planning of dismantling, it is necessary to optimize the radiation protection by analyzing dismantling work procedures and evaluating radiological features of the dismantling systems applied, including additional work which the systems require brought from such activities. (author)

  7. Initial approaches to the establishment of a Russian data bank on nuclear explosions and compatibility with similar foreign data banks

    International Nuclear Information System (INIS)

    Izrael, Y.A.; Ognev, B.I.; Ryaboshapko, A.G.; Stukin, E.D.

    1998-01-01

    Nuclear-weapons tests and peaceful nuclear explosions, which had been conducted over the territory of the former USSR for 40 years, enabled the collection of a huge volume of information about the explosion parameters and radioactive contamination of natural environments. Presently, the information is being shared by various institutions that too part in the nuclear tests. The information is generally used for solving individual applied problems related to the studies of the consequences of nuclear tests. The relevant computerized data banks, which are being set up, are of an applied nature, i.e., they are oriented towards a limited number of applied programs. A unified Russian computer-aided information system on this problem does not exist. At the same time, the recently heightened public concern about medico-radiological, radioactivity and environmental consequences of nuclear explosions requires that the range of applied problems, which were not planned previously, should be expanded. (orig./GL)

  8. A safety evaluation of fire and explosion in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Nishio, Gunji; Takada, Junichi; Tukamoto, Michio; Watanabe, Kouji; Miyata, Teijirou

    1996-01-01

    The demonstration test was performed in JAERI to prove the adequacy of a safety evaluation for an air-ventilation system in the case of solvent fire and red-oil explosion in a nuclear fuel reprocessing plant. The test objectives were to obtain data of the safety evaluation on a thermofluid behavior and a confinement effect of radioactive materials during fire and explosion while the system is operating in a cell. The computer code was developed to evaluate the safety of associated network in the ventilation system and to estimate the confinement of radioactive materials in the system. The code was verified by comparison of code calculations with results of the demonstration test. (author)

  9. Search for evidence of nuclear involvement in the fatal explosion of a 'cold fusion' experiment

    International Nuclear Information System (INIS)

    Grant, P.M.; Whipple, R.E.; Andresen, B.D.; Russo, R.E.; Bazan, F.; Brunk, J.L.; Wong, K.M.

    1995-01-01

    Forensic analyses of debris from the fatal explosion of an electrochemical 'cold fusion' cell at SRI International were conducted at LLNL at the request of Cal-OSHA. One investigation focused on the possibility of conventional nuclear reaction mechanisms contributing to the total energy inventory of the incident. Selected metal components of the electrolysis apparatus were subjected to nondestructive γ-ray spectrometry with high-sensitivity, low-background Ge detector systems. The anticipated analytes in these studies were radioactivation products potentially induced in the explosion residue by either fast or thermal neutrons. The results of this investigation were negative within the temporal constraints of the incident and the analytical sensitivities of the instrumentation. (author) 5 refs.; 1 fig.; 2 tabs

  10. Simulation of the chemical environment of a nuclear explosion with exploding wires

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Walter; Block, Oliver U.J. [Nuclear Engineering, Kansas State University, Manhattan, KS (United States)

    1970-05-15

    The chemical processes in an expanding underground cavity resulting from a nuclear explosion cannot be predicted or controlled as well as such physical characteristics as crater size, magnitude of the outgoing shock wave, or the extent of rock fracturing. However in most underground nuclear explosions it would be desirable to control the chemical and/or physical form and amount of radioactive fallout venting from the explosion. The high temperatures and corresponding high energy densities produced by exploding wires are sufficient to produce in the wire and material immediately surrounding it the temperature (a few thousand degrees) required to simulate the chemical environment of a nuclear explosion in the time interval just preceding the venting of the cavity. The economics and the size of exploding wire apparatus make this type of experiment readily applicable to laboratory study. Design of exploding wire circuits to obtain particular temperatures or energy densities can be completed using several different combinations of circuit and wire conditions. Since the circuit parameters, including charging voltage, capacitor bank capacitance and circuit inductance primarily determine the cost of the necessary laboratory equipment, these parameters should be selected by theoretical expressions while also considering economic factors. Wire parameters are then experimentally determined to produce the most energetic explosions with the selected circuit parameters. A theoretical method applicable to designing exploding wire circuits to produce the desired high temperatures and energy densities in the wire and surrounding sample material has been obtained. The method assumes that a thermal spike of energy is deposited in a low conductivity material (typical of the earth's crust) surrounding the wire. From the assumed temperature distribution in the surrounding sample material the energy which must be deposited in the thermal spike to produce the desired temperature and

  11. Data analysis on work activities in dismantling of Japan Power Demonstration Reactor (JPDR). Contract research

    International Nuclear Information System (INIS)

    Shiraishi, Kunio; Sukegawa, Takenori; Yanagihara, Satoshi

    1998-03-01

    The safe dismantling of a retired nuclear power plant was demonstrated by completion of dismantling activities for the Japan Power Demonstration Reactor (JPDR), March, 1996, which had been conducted since 1986. This project was a flag ship project for dismantling of nuclear power plants in Japan, aiming at demonstrating an applicability of developed dismantling techniques in actual dismantling work, developing database on work activities as well as dismantling of components and structures. Various data on dismantling activities were therefore systematically collected and these were accumulated on computer files to build the decommissioning database; dismantling activities were characterized by analyzing the data. The data analysis resulted in producing general forms such as unit activity factors, for example, manpower need per unit weight of component to be dismantled, and simple arithmetic forms for forecasting of project management data to be applied to planning another dismantling project through the evaluation for general use of the analyzed data. The results of data analysis could be usefully applied to planning of future decommissioning of commercial nuclear power plants in Japan. This report describes the data collection and analysis on the JPDR dismantling activities. (author)

  12. Effects from airplane crashes and gas explosions to Leningrad nuclear plant

    International Nuclear Information System (INIS)

    Junttila, K.; Varpasuo, P.

    1998-01-01

    In this study the effects of aircraft crash and gas explosion to Leningrad Nuclear Power Plant has been researched. One of the two reactor buildings is modeled with finite element method using the pre-processor program MSC/PATRAN and analyzed with MSC/NASTRAN analysis program. In MSC/PATRAN or FEMAP, which is a pre-processor program of MSC/NASTRAN for Windows, the reactor building of the plant has been modeled with shell and beam elements and the load sets describing the aircraft crash and gas explosion have been developed. The crash loads are from Cessna 210 civil airplane crash with impact velocity 360 km/h and maximum impact force of 7 MN and Phantom RF-43 military airplane crash with impact velocity 215 m/s and with maximum impact force of 110 MN. The gas explosion pressure wave simulates the deflagration wave with maximum pressure of 0,045 MPa. Seven Cessna 210 airplane crash locations, two Phantom RF-43 airplane crash locations and one gas explosion load case is modeled. Airplane crash loads were from different directions and to different points of impact in the reactor building. The gas explosion load was assumed to affect the reactor building from one side parallel to one of the global coordinate axes of the model. With MSC/NASTRAN reactions from loads are analyzed. All loads were timedependent; their magnitude varied with time and consequently the analysis was carried out with the aid of transient response analysis. Time step in Cessna 210 analysis was 0,003 s and in Phantom RF-43 and gas explosion analyses 0,01 s. The greatest displacement from Cessna 210 loads was 12 mm and from Phantom RF-43 load 344 mm. The last value shows that construction would fail with that load. The greatest displacement from gas explosion load was 68 mm. Stresses are not so interesting in this preliminary analysis of the effects, but they are shown in pictures embedded in the report text. Displacements were greatest in upper part of the reactor building, where no intersections

  13. To the issue about negative consequences of underground nuclear explosions in the salt domes

    International Nuclear Information System (INIS)

    Belyashov, D.N.; Mokhov, V.A.; Murzadilov, T.D.

    1998-01-01

    I. From 1970 to 1984, 26 underground explosions were conducted at Azgir test site salt domes and Karachaganak gas-condensate deposit (KGKD) of Kazakhstan. Consequence, 9 and 6, relatively, underground cavities were created. At Azgir test site 5 cavities were filled by water and brines. Some of them were destroyed with surface spotting formation. It is noticed the spreading of radionuclides out of cavities bounds. At the KGKD gas-condensate is loaded into 4 cavities, another 2 cavities are in the accident condition, the last one (5TK) was filled by brine. There are characters of radioecological situation degradation above the last cavity. Radioactive logging in the cavity shown that the γ-activity of rock was increased more then 8 times in the distance of depths 0-64 m for 3 years. Apparently, outbreak of radioactive brines takes place along the zones of fissuring on the bound of casing tubes into the 5TK borehole and along enclosing rocks with sorption of radioactive isotopes in clay rocks. 2. There are examples of negative evolution of events at the Astrakhan gas-condensate deposit, where 15 nuclear cavities were created from 1980 to 1984 years. In 1986 year, 13 of them stopped to exist because of tectonic shearing, triggering by underground nuclear explosion in the salt dome. Many of them are flooded and they throw out the radioactive brines, reaching the surface. 3. Negative development of radioecological situation is occurred because of depressurization of cavities, their flooding, displacement of radionuclides with salt into the brines, destroying of cavities, extrusion of radioactive brines along the permeable zones, more often along the militant and observation boreholes. It is possible to spread of radioactive contamination along horizontal at the distance for l,5-3 km. In 2 years after the underground nuclear explosion at the Grachev oil deposit of Bashkiria radioactive tritium was detected in underground water and in the ground more then 3 km far from

  14. Decommissioning of the AVR reactor, concept for the total dismantling

    International Nuclear Information System (INIS)

    Marnet, C.; Wimmers, M.; Birkhold, U.

    1998-01-01

    After more than 21 years of operation, the 15 MWe AVR experimental nuclear power plant with pebble bed high temperature gas-cooled reactor was shout down in 1988. Safestore decommissioning began in 1994. In order to completely dismantle the plant, a concept for Continued dismantling was developed according to which the plant could be dismantled in a step-wise procedure. After each step, there is the possibility to transform the plant into a new state of safe enclosure. The continued dismantling comprises three further steps following Safestore decommissioning: 1. Dismantling the reactor vessels with internals; 2. Dismantling the containment and the auxiliary units; 3. Gauging the buildings to radiation limit, release from the validity range of the AtG (Nuclear Act), and demolition of the buildings. For these steps, various technical procedures and concepts were developed, resulting in a reference concept in which the containment will essentially remain intact (in-situ concept). Over the top of the outer reactor vessel a disassembling area for remotely controlled tools will be erected that tightens on that vessel and can move down on the vessel according to the dismantling progress. (author)

  15. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    International Nuclear Information System (INIS)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository

  16. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository.

  17. Time-domain study of tectonic strain-release effects on seismic waves from underground nuclear explosions

    International Nuclear Information System (INIS)

    Nakanishi, K.K.; Sherman, N.W.

    1982-09-01

    Tectonic strain release affects both the amplitude and phase of seismic waves from underground nuclear explosions. Surface wave magnitudes are strongly affected by the component of tectonic strain release in the explosion. Amplitudes and radiation patterns of surface waves from explosions with even small tectonic components change magnitudes significantly and show a strong dependence on receiver locations. A thrust-slip source superimposed on an isotropic explosion can explain observed reversals in waveform at different azimuths and phase delays between normal and reversed Rayleigh waves. The mechanism of this reversal is due to the phase relationship between reasonable explosion and tectonic release sources. Spallation or an unusual source time function are not required. The observations of Shagan River events imply thrust-slip motion along faults in a northwest-southeast direction, which is consistent with regional tectonics

  18. Method for dismantling shields

    International Nuclear Information System (INIS)

    Fukuzawa, Rokuro; Kondo, Nobuhiro; Kamiyama, Yoshinori; Kawasato, Ken; Hiraga, Tomoaki.

    1990-01-01

    The object of the present invention is to enable operators to dismantle shieldings contaminated by radioactivity easily and in a short period of time without danger of radiation exposure. A plurality of introduction pipes are embedded previously to the shielding walls of shielding members which contain a reactor core in a state where both ends of the introduction pipes are in communication with the outside. A wire saw is inserted into the introduction pipes to cut the shieldings upon dismantling. Then, shieldings can be dismantled easily in a short period of time with no radiation exposure to operator's. Further, according to the present invention, since the wire saw can be set easily and a large area can be cut at once, operation efficiency is improved. Further, since remote control is possible, cutting can be conducted in water and complicated places of the reactor. Biting upon starting the wire saw in the introduction pipe is reduced to facilitate startup for the rotation. (I.S.)

  19. Information report published in application of article 146 of the Regulation by the Commission of information related to the technical and financial feasibility of the dismantling of basic nuclear installations on the behalf of the Commission for sustainable development and land planning. Nr 4428

    International Nuclear Information System (INIS)

    Aubert, Julien; Romagnan, Barbara

    2017-01-01

    Based on visits, on hearings and on debates within the Commission, this report addresses the issue of the technical and financial feasibility of the dismantling of nuclear installations. Indeed, it appears that the technical feasibility is not as mastered as supposed, and that dismantling works will last longer than foreseen, with therefore a higher cost than foreseen. Thus, existing and foreseen funding might be insufficient, and the global strategy for dismantling should be seriously reviewed regarding both technical and financial points of view. Before reaching this conclusion, the report presents the general context: definition of dismantling, perspective of development of dismantling activities, specific case of marine reactors. The authors then present and comment initial basic principles (extrapolation with the Dampierre model, immediate dismantling, soil decontamination) and parameters which could result in cost reduction. The second part of the report discusses the technical issue, first by recalling and commenting the difficulties faced by EDF to dismantle its first reactors (case of Brennilis, complete shift by EDF regarding its strategy for graphite-gas reactors, case of Superphenix), secondly by outlining that waste management largely determines dismantling (situation for the different types of wastes, problem of saturation of some centres, issue of a release threshold, case of wastes from graphite-gas reactors), and thirdly by discussing the issue of subcontracting. The third part addresses the financial issue and EDF funding by discussing assessment principles and method used by EDF, by showing that the result is probably an under-assessment (due to optimistic hypotheses, to many unfunded expenses, and to under-assessed dismantling costs). The authors then compare the French situation with other countries (Germany, USA, Belgium, OECD countries) to show that institutional comparisons are consistent with each other. They propose a more detailed

  20. Device for Detection of Explosives, Nuclear and Other Hazardous Materials in Luggage and Cargo Containers

    Science.gov (United States)

    Kuznetsov, Andrey; Evsenin, Alexey; Gorshkov, Igor; Osetrov, Oleg; Vakhtin, Dmitry

    2009-12-01

    Device for detection of explosives, radioactive and heavily shielded nuclear materials in luggage and cargo containers based on Nanosecond Neutron Analysis/Associated Particles Technique (NNA/APT) is under construction. Detection module consists of a small neutron generator with built-in position-sensitive detector of associated alpha-particles, and several scintillator-based gamma-ray detectors. Explosives and other hazardous chemicals are detected by analyzing secondary high-energy gamma-rays from reactions of fast neutrons with materials inside a container. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. An array of several neutron detectors is used to detect fast neutrons from induced fission of nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 and MCNP-PoliMi codes was used to estimate the sensitivity of the device and its optimal configuration. Comparison of the features of three gamma detector types—based on BGO, NaI and LaBr3 crystals is presented.

  1. Device for Detection of Explosives, Nuclear and Other Hazardous Materials in Luggage and Cargo Containers

    International Nuclear Information System (INIS)

    Kuznetsov, Andrey; Evsenin, Alexey; Osetrov, Oleg; Vakhtin, Dmitry; Gorshkov, Igor

    2009-01-01

    Device for detection of explosives, radioactive and heavily shielded nuclear materials in luggage and cargo containers based on Nanosecond Neutron Analysis/Associated Particles Technique (NNA/APT) is under construction. Detection module consists of a small neutron generator with built-in position-sensitive detector of associated alpha-particles, and several scintillator-based gamma-ray detectors. Explosives and other hazardous chemicals are detected by analyzing secondary high-energy gamma-rays from reactions of fast neutrons with materials inside a container. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. An array of several neutron detectors is used to detect fast neutrons from induced fission of nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 and MCNP-PoliMi codes was used to estimate the sensitivity of the device and its optimal configuration. Comparison of the features of three gamma detector types--based on BGO, NaI and LaBr 3 crystals is presented.

  2. A study of internal dosimetry of Am-241 and Sr-90 by dismantling of a nuclear installation; Eine Fallstudie zur internen Dosimetrie von Am-241 und Sr-90 bei Rueckbau einer kerntechnischen Anlage

    Energy Technology Data Exchange (ETDEWEB)

    Froning, M.; Hill, P. [Forschungszentrum Juelich GmbH (Germany). Geschaeftsbereich Sicherheit und Strahlenschutz

    2016-07-01

    During dismantling operation in former nuclear facility routine incorporation monitoring had been part of the safety measures. For an occupational radiation worker positive measurements results for {sup 241}Am, {sup 90}Sr and {sup 137}Cs were obtained after the end of the working period. Follow up monitoring had been performed assessing urine and faeces samples for {sup 241}Am and {sup 90}Sr as well as in-vivo measurements for {sup 137}Cs. Ingestion could be proven as incorporation path. The internal dose assessment according to GMBl 2007{sup [1]} finally yielded internal dose at 13 μSv.

  3. The performance of transmission lines and cables subjected to electromagnetic radiation from a nuclear explosion (NEMP)

    International Nuclear Information System (INIS)

    Aguet, M.; Ianovici, M.; Lin, C.C.; Fornerod, F.

    1980-01-01

    The use of armoured cables for telecommunication and data transmission systems is practically essential to avoid electromagnetic interference. The authors have made a mathematical study of the probable effect of a high altitude nuclear explosion. Using a simplified model, the voltages and currents induced into single and multiple-sheathed, overhead and buried cables subjected to an intense magnetic pulse (50kV/m) from high altitude, are determined by computer. It is found that, contrary to expectations the current intensity in the second case is seven times greater than for the overhead conductor. (F.N.S.)

  4. Radioactive contamination of the biosphera after nuclear explosion, for an arbitrary wind field

    International Nuclear Information System (INIS)

    Tomon, S.

    1981-01-01

    Theoretical foundations have been developed of a method for defining the degree of air- and surface contamination following a nuclear explosion, for the variable wind vector in time and space. The wind description is taken to be discrete in time and horizontal plane as well as continuous (polynomial-approximated) in the perpendicular one. A stabilized clouds has been assumed, with initial normal distribution of activity. The formulae derived permit the volumetric activity in air as well as the dosage rate above the surface of the c ontaminated ground, to be determined. (author)

  5. Prototype selection based on FCM and its application in discrimination between nuclear explosion and earthquake

    International Nuclear Information System (INIS)

    Han Shaoqing; Li Xihai; Song Zibiao; Liu Daizhi

    2007-01-01

    The synergetic pattern recognition is a new way of pattern recognition with many excellent features such as noise resistance and deformity resistance. But when it is used in the discrimination between nuclear explosion and earthquake using existing methods of prototype selection, the results are not satisfying. A new method of prototype selection based on FCM is proposed in this paper. First, each group of training samples is clustered into c groups using FCM; then c barycenters or centers are chosen as prototypes. Experiment results show that compared with existing methods of prototype selection this new method is effective and it increases the recognition ratio greatly. (authors)

  6. Application of CPML to two-dimension numerical simulation of nuclear electromagnetic pulse from air explosions

    International Nuclear Information System (INIS)

    Gao Chunxia; Wang Lianghou

    2005-01-01

    The characteristics of different types of PML were analyzed and the convolutional PML was chosen to truncate the open boundaries in numerical simulation of nuclear electromagnetic pulse from air explosions. On the basis of the split-field PML and the plane-wave solution of electromagnetic field in free space, the unsplit-field PML was constructed. By applying the convolutional theorem of Fourier transform, the discrete iterative equations of electromagnetic field components were presented in the CPML media under the two-dimension prolate-spheroidal coordinate system. The numerical results indicate that the method of CPML can largely decrease calculation errors of boundary fields. (authors)

  7. The WAK decommissioning and dismantling program

    International Nuclear Information System (INIS)

    Eiben, K.; Fritz, P.

    1995-01-01

    After an extensive rinsing of the reprocessing equipment the operation in the plant was terminated in 1991 following the principal political decision to abolish reprocessing of nuclear fuel in Germany. Since July 1991 only the safety relevant units are still in operation including the waste storage facilities for 80 m 3 of high active waste concentrate (HAWC). The decommissioning and dismantling will be achieved in six steps taking into account that some of the reprocessing equipment can be dismantled before and the rest only after the HAWC has been vitrified approximately by mid 2000. So far two licenses for decommissioning have been granted. An application for the dismantling of twelve systems in the process building including headend and tailend facilities will be licensed in 1995. The remote dismantling of equipment from the hot cells in the process building is being planned and will be executed between 1998--2001. New remote handling equipment will be cold tested in a test facility scheduled to start in the middle of this year. The final task is the green meadow after demolishing of the building and remediation of the site which is scheduled for 2005

  8. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    International Nuclear Information System (INIS)

    Michael Kruzic

    2007-01-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D and D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release

  9. The destabilizing influence of heat flow on the geological environment during underground nuclear explosions

    International Nuclear Information System (INIS)

    Politikov, M.I.; Kamberov, I.M.; Krivchenko, V.F.; Lukashenko, S.N.; Solodukhin, V.P.

    2001-01-01

    The study has determined the fact that the processes of gas-radioactive ectoplasm intrusion from nuclear cavities in the geological environment bring the significant contribution in bosom destabilizing besides the mechanical rock destruction as affected by underground nuclear explosions. Not only heat field forming that reduces the rock resistance and increases its porosity is related to it, but also the forming, on the way, of man-caused contamination aureoles of the geological environment, including the underground water bearing horizon. Unfortunately, this problem is hardly studied, mainly for the lack of reliable apparatus and methods. Judging by the results of information search, the best way to solve the problem is not yet known. (author)

  10. Preventing nuclear explosive testing. Submitted to the House of Representatives, Ninety-Ninth Congress, First Session

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    H.J. Resolution 3 banning the testing of nuclear weapons over 150 kilotons seeks to slow the arms race by urging Congress to ratify the 1974 Threshold Test Ban Treaty and the 1976 Peaceful Nuclear Explosions Treaty and urging the President to resume negotiations with the Soviet Union. The House Foreign Affairs Committee report supports the concept after a series of hearings with verification experts and the weapons and intelligence establishments. Verification and weapons reliability were the key issues of concern, but the committee concluded that politics rather than technology prevented a comprehensive test ban. The report also includes the reminder in the minority view that talks were suspended after the Soviet invasion of Afghanistan and that scientists need further testing to make weapons safer and less vulnerable to terrorist action

  11. Synthetic seismograms - II. Synthesis of amplitude spectra and seismograms of P waves from underground nuclear explosions

    International Nuclear Information System (INIS)

    Banghar, A.R.

    1980-01-01

    As a part of programme of seismic detection of underground nuclear explosions, step by step variations in the amplitude spectra and waveforms of P wave signal, as it propagates from source to receiver region, are investigated. Influences on the amplitude spectra and waveforms of teleseismic p waves due to : (1) variation in the shape of reduced displacement potential, (2) variation of mantle Q values, (3) change in depth, (4) various yields, (5) spalling, and (6) variation of crustal structure at source as well as at receiver are studied. The results show that for a yield of 85 kilotons, the time structure of seismograms is nearly same for four types of reduced displacement potentials considered here. The duration of waveforms is affected both by crustal structure at source as well as due to spalling. In general, effect of receiver crust on seismograms is found to be minor. Synthesized and observed P wave seismograms for Longshot, Milrow and Cannikin underground nuclear explosions are computed at various seismometer array stations of the UKAEA. Computed seismograms compare well with the recorded ones. It is seen that: (1) overburden P wave velocity inferred from seismograms is less as compared to its value obtained from on-site measurements, and (2) the source function, the source crust transfer function, the mantle transfer function and the spalling function are the most important factors that influence shaping of spectra and seismograms. (M.G.B.)

  12. Use of nuclear explosions to create gas condensate storage in the USSR. LLL Treaty Verification Program

    International Nuclear Information System (INIS)

    Borg, I.Y.

    1982-01-01

    The Soviet Union has described industrial use of nuclear explosions to produce underground hydrocarbon storage. To examples are in the giant Orenburg gas condensate field. There is good reason to believe that three additional cavities were created in bedded salt in the yet to be fully developed giant Astrakhan gas condensate field in the region of the lower Volga. Although contrary to usual western practice, the cavities are believed to be used to store H 2 S-rich, unstable gas condensate prior to processing in the main gas plants located tens of kilometers from the producing fields. Detonations at Orenburg and Astrakhan preceded plant construction. The use of nuclear explosions at several sites to create underground storage of highly corrosive liquid hydrocarbons suggests that the Soviets consider this time and cost effective. The possible benefits from such a plan include degasification and stabilization of the condensate before final processing, providing storage of condensate during periods of abnormally high natural gas production or during periods when condensate but not gas processing facilities are undergoing maintenance. Judging from information provided by Soviet specialists, the individual cavities have a maximum capacity on the order of 50,000 m 3

  13. Status report on the conceivable outside pressure exerted on nuclear power stations by gaseous explosions

    International Nuclear Information System (INIS)

    Geiger, W.

    1977-01-01

    The following incidents to be taken into account in the whole process beginning with gas release and ending with a possible stress exerted on the power plant building are discussed in detail: Conditions leading to the release of large amounts of gas; formation of an explorable gas mixture cloud; ignition and course of explosion; pressure wave propagation in the surrounding air; construction dynamics and damaging effects. Experimental results obtainable so far and analyses of large explosions are discussed with a view to their consequences. Special emphasis is placed on the question as to whether extremely unfavourable conditions may lead to a detonation of the cloud instead of a deflagration. Considering the physical laws of cloud formation and the special initiation conditions governing free gas-air-mixtures as a result of gas dynamics and reaction kinetics it can be concluded that a detonation seems to be very unlikely. It is examined what kind of studies are still to be canied out in order to clarity the question of a possible detonation. On the other hand, it is not yet possible to give a decisive answer to the question of whether and to what extent nuclear power plants are endangered by gas cloud deflagration. Due to the complex wave field resulting from diffraction and reflexion of the incoming pressure wave by the buildings of the nuclear power station, a variety of stress functions are possible that may, under certain circumstances, lead to a selective excitation of single vibration modes of the structure. (orig.) [de

  14. A proposal to use chlorine-36 for monitoring the movement of radionuclides from nuclear explosions

    International Nuclear Information System (INIS)

    Phillips, F.M.; Davis, S.N.; Kubik, P.

    1990-01-01

    Chlorine-36 has been produced in large amounts by hundreds of nuclear explosions on the Nevada Test Site as well as 12 off-site explosions at eight locations in five states. Continued monitoring of the redistribution of radionuclides by subsurface water is of concern in most of the areas affected by the detonations. Chlorine-36 has the following advantages as a built-in tracer for this redistribution: its mobility is equal to or greater than water, its long half-life assures its continued usefulness over long periods, collection and storage of samples is simple, it is not subject to vapor transport at ordinary temperatures, its natural background is very low, and it does not form insoluble precipitates. Chlorine-36 from the Gnome event near Carlsbad, New Mexico, illustrates how 36 Cl can be used to help study the redistribution of radionuclides in the soil profile. Chlorine-36 is also potentially useful as a tracer to study movement of contaminants around large nuclear reactor complexes and near repositories for radioactive waste

  15. Brennilis, laboratory of dismantlement

    International Nuclear Information System (INIS)

    Dupin, L.

    2011-01-01

    This article comments some aspects of the dismantlement activity on the Brennilis site (in Brittany) where a heavy water reactor has been operated from 1966 to 1985. Half of the deconstruction work has been performed between 1996 and 2006. As the model proposed by EDF for this operation raised some questions, works have been stopped for a while, until July 2011 when a decree authorized them again, but for some parts of the site only. The reactor block must wait as no technical solution exists for storage. But, the experience from this site will be used for eight other first generation power plants

  16. LEP Dismantling: Wagons Roll!

    CERN Multimedia

    2001-01-01

    The first trucks transporting material from LEP and its four experiments left CERN on 31 January. Since the LEP dismantling operation began, the material had been waiting to be removed from the sites of the four experiments and the special transit area on the Prévessin site. On the evening of 30 January, the French customs authorities gave the green light for the transport operation to begin. So first thing the next day, the two companies in charge of recycling the material, Jaeger & Bosshard (Switzerland) and Excoffier (France), set to work. Only 1500 truckloads to go before everything has been removed!

  17. Calculation of isodose curves from initial neutron radiation of a hypothetical nuclear explosion using Monte Carlo Method

    International Nuclear Information System (INIS)

    Medeiros, Marcos P.C.; Rebello, Wilson F.; Andrade, Edson R.; Silva, Ademir X.

    2015-01-01

    Nuclear explosions are usually described in terms of its total yield and associated shock wave, thermal radiation and nuclear radiation effects. The nuclear radiation produced in such events has several components, consisting mainly of alpha and beta particles, neutrinos, X-rays, neutrons and gamma rays. For practical purposes, the radiation from a nuclear explosion is divided into i nitial nuclear radiation , referring to what is issued within one minute after the detonation, and 'residual nuclear radiation' covering everything else. The initial nuclear radiation can also be split between 'instantaneous or 'prompt' radiation, which involves neutrons and gamma rays from fission and from interactions between neutrons and nuclei of surrounding materials, and 'delayed' radiation, comprising emissions from the decay of fission products and from interactions of neutrons with nuclei of the air. This work aims at presenting isodose curves calculations at ground level by Monte Carlo simulation, allowing risk assessment and consequences modeling in radiation protection context. The isodose curves are related to neutrons produced by the prompt nuclear radiation from a hypothetical nuclear explosion with a total yield of 20 KT. Neutron fluency and emission spectrum were based on data available in the literature. Doses were calculated in the form of ambient dose equivalent due to neutrons H*(10) n - . (author)

  18. Calculation of isodose curves from initial neutron radiation of a hypothetical nuclear explosion using Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Marcos P.C.; Rebello, Wilson F.; Andrade, Edson R., E-mail: rebello@ime.eb.br, E-mail: daltongirao@yahoo.com.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear; Silva, Ademir X., E-mail: ademir@nuclear.ufrj.br [Corrdenacao dos Programas de Pos-Graduacao em Egenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    Nuclear explosions are usually described in terms of its total yield and associated shock wave, thermal radiation and nuclear radiation effects. The nuclear radiation produced in such events has several components, consisting mainly of alpha and beta particles, neutrinos, X-rays, neutrons and gamma rays. For practical purposes, the radiation from a nuclear explosion is divided into {sup i}nitial nuclear radiation{sup ,} referring to what is issued within one minute after the detonation, and 'residual nuclear radiation' covering everything else. The initial nuclear radiation can also be split between 'instantaneous or 'prompt' radiation, which involves neutrons and gamma rays from fission and from interactions between neutrons and nuclei of surrounding materials, and 'delayed' radiation, comprising emissions from the decay of fission products and from interactions of neutrons with nuclei of the air. This work aims at presenting isodose curves calculations at ground level by Monte Carlo simulation, allowing risk assessment and consequences modeling in radiation protection context. The isodose curves are related to neutrons produced by the prompt nuclear radiation from a hypothetical nuclear explosion with a total yield of 20 KT. Neutron fluency and emission spectrum were based on data available in the literature. Doses were calculated in the form of ambient dose equivalent due to neutrons H*(10){sub n}{sup -}. (author)

  19. Low-frequency electromagnetic measurements as a zero-time discriminant of nuclear and chemical explosions - OSI research final report

    International Nuclear Information System (INIS)

    Sweeney, J.J.

    1996-12-01

    This is the final report on a series of investigations of low frequency (1-40 Hz) electromagnetic signals produced by above ground and underground chemical explosions and their use for confidence building under the Comprehensive Test-Ban Treaty. I conclude that low frequency electromagnetic measurements can be a very powerful tool for zero-time discrimination of chemical and nuclear explosions for yields of 1 Kt or greater, provided that sensors can be placed within 1-2 km of the suspected detonation point in a tamper-proof, low noise environment. The report includes descriptions and analyses of low frequency electromagnetic measurements associated with chemical explosions carried out in a variety of settings (shallow borehole, open pit mining, underground mining). I examine cavity pressure data from the Non-Proliferation Experiment (underground chemical explosion) and present the hypothesis that electromagnetic signals produced by underground chemical explosions could be produced during rock fracturing. I also review low frequency electromagnetic data from underground nuclear explosions acquired by Lawrence Livermore National Laboratory during the late 1980s. (author)

  20. A REPRINT of a July 1991 Report to Congress, Executive Summary of Verification of Nuclear Warhead Dismantlement and Special Nuclear Material Controls

    International Nuclear Information System (INIS)

    Fuller, James L.

    2008-01-01

    With the renewed thinking and debate about deep reductions in nuclear weapons, including recent proposals about eliminating nuclear warheads altogether, republishing the general conclusions of the Robinson Committee Report of 1992 appears useful. The report is sometimes referred to as the 3151 Report, from Section 3151 of the National Defense Authorization Act for FY1991, from where its requirement originated. This report contains the Executive Summary only and the forwarding letters from the Committee, the President of the United States, the Secretary of Energy, and C Paul Robinson, the head of the Advisory Committee

  1. Hydrologic processes and radionuclide distribution in a cavity and chimney produced by the Cannikin nuclear explosion, Amchitka Island, Alaska

    International Nuclear Information System (INIS)

    Claassen, H.C.

    1978-01-01

    An analysis of hydraulic, chemical, and radiochemical data obtained in the vicinity of the site of a nuclear explosion (code-named Cannikin, 1971), on Amchitka Island, Alaska, was undertaken to describe the hydrologic processes associated with the saturation of subsurface void space produced by the explosion. Immediately after detonation of the explosive, a subsurface cavity was created surrounding the explosion point. This cavity soon was partly filled by collapse of overburden, producing void volume in a rubble chimney extending to land surface and forming a surface-collapse sink. Surface and groundwater immediately began filling the chimney but was excluded for a time from the cavity by the presence of steam. When the steam condensed, the accumulated water in the chimney flowed into the cavity region, picking up and depositing radioactive materials along its path. Refilling of the chimney voids then resumed and was nearly complete about 260 days after the explosion. The hydraulic properties of identified aquifers intersecting the chimney were used with estimates of surface-water inflow, chimney dimensions, and the measured water-level rise in the chimney to estimate the distribution of explosion-created porosity in the chimney, which ranged from about 10 percent near the bottom to 4 percent near the top. Chemical and radiochemical analyses of water from the cavity resulted in identification of three aqueous phases: groundwater, surface water, and condensed steam. Although most water samples represented mixtures of these phases, they contained radioactivity representative of all radioactivity produced by the explosion

  2. Clearance of materials from dismantling of nuclear facilities in Sweden - a study on whether the EU recommendations are applicable in Sweden; Friklassning av material fraan rivning av kaerntekniska anlaeggningar i Sverige - en utredning om EU:s rekommenderade regler aer tillaempbara i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    Hamrefors, Gunilla [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2004-02-01

    The report presents a study on whether the EU recommendations on clearance of metals, buildings and building rubble from the dismantling of nuclear facilities are applicable in Sweden. Analyses are made to estimate the amounts of waste that would be released from dismantling of the Swedish nuclear power plants and to what degree the costs of the licence holders would be influenced. A summary and evaluation of different methods and equipments for measurement is also given. The main conclusion is that the EU recommendations are applicable in Sweden.

  3. Dismantling of transuranic contaminated facilities

    International Nuclear Information System (INIS)

    Roux, P.

    1985-01-01

    The dismantling of transuranic contaminated facilities raises specific problems. A large part of these problems relates to the management of the waste resulting from dismantling. From the experience gained in the different centers CEA and COGEMA it appears that there are industrial solutions in the group CEA and that an engineering company such as SGN can export them [fr

  4. Machine for dismantling metal parts

    Energy Technology Data Exchange (ETDEWEB)

    Prokopov, O.I.; Loginovskiy, V.I.; Yagudin, S.Z.

    1982-01-01

    The purpose of the invention is to reduce the outlays of time for dismantling metal parts under conditions of eliminating open gas and oil gushers in operational drilling. This goal is achieved because the machine for dismantling the metal parts is equipped with a set of clamping elements arranged on the chassis, where each of them has a drive.

  5. Porous chromatographic materials as substrates for preparing synthetic nuclear explosion debris particles

    International Nuclear Information System (INIS)

    Harvey, S.D.; Carman, A.J.; Martin Liezers; Antolick, K.C.; Garcia, B.J.; Eiden, G.C.; Sweet, L.E.

    2013-01-01

    Several porous chromatographic materials were investigated as synthetic substrates for preparing surrogate nuclear explosion debris particles. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110 deg C) to drive off water, and then treating them at high temperatures (up to 800 deg C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-point metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies characterized material balance and the formation of recalcitrant species. Metal loading was 1.5-3 times higher than expected from the pore volume alone, a result attributed to surface coating. Most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating selective loading. High-temperature treatments caused reduced solubility of several metals, and the loss of some volatile species (rhenium and tellurium). Sample preparation reproducibility was high (the inter- and intra-batch relative standard deviations were 7.8 and 0.84 %, respectively) indicating suitability for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find use in radioanalytical methods development and/or serve as a starting material for the synthesis of more complex nuclear explosion debris forms (e.g., Trinitite). (author)

  6. The Soviet program for peaceful uses of nuclear explosions. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Nordyke, M.D.

    1996-10-01

    An extensive review is given of the US and Russian efforts on peaceful uses of nuclear explosions (PNE). The Soviet PNE program was many times larger than the US Plowshare program in terms of both the number of applications explored with field experiments and the extent to which they were introduced into industrial use. Several PNE applications, such as deep seismic sounding and oil stimulation, have been explored in depth and appear to have had a positive cost benefit at minimal public risk. Closure of runaway gas wells is another possible application where all other techniques fail. However, the fundamental problem with PNEs is the fact that, if they are to be economically significant, there must be widespread use of the technology, involving large numbers of sites, each of which presents a potential source of radioactivity to the environment and nearby communities. Russia now has more than 100 sites where significant high-level radioactivity has been buried. Experience over the last 20 years in US and in today`s Russia shows that it is virtually impossible to gain public acceptance of such applications of nuclear energy. In addition, PNEs also pose a difficult problem in the arms control area. Under a comprehensive test ban, any country conducting PNEs would, in appearance if not in fact, receive information useful for designing new nuclear weapons or maintaining an existing nuclear stockpile, information denied to the other parties to the treaty. 6 tabs, 10 figs.

  7. Radioactive Emissions from Fission-Based Medical Isotope Production and Their Effect on Global Nuclear Explosion Detection

    International Nuclear Information System (INIS)

    Bowyer, T.; Saey, P.

    2015-01-01

    The use of medical isotopes, such as Tc-99m, is widespread with over 30 million procedures being performed every year, but the fission-based production of isotopes used for medical procedures causes emissions into the environment. This paper will show that gaseous radioactive isotopes of xenon, such as Xe-133, are released in high quantities, because they have a high fission cross section and they are difficult to scrub from the processes used to produce the medical isotopes due to their largely unreactive nature. Unfortunately, the reasons that large amounts of radioactive xenon isotopes are emitted from isotope production are the same as those that make these isotopes the most useful isotopes for the detection of underground nuclear explosions. Relatively recently, the nuclear explosion monitoring community has established a provisional monitoring network for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) that includes radioactive xenon monitoring as a major component. This community has discovered that emissions from medical isotope production present a more serious problem to nuclear explosion monitoring than thought when the network was first conceived. To address the growing problem, a group of scientists in both the monitoring and the isotope production communities have come together to attempt to find scientific and pragmatic ways to address the emissions problems, recognizing that medical isotope production should not be adversely affected, while monitoring for nuclear explosions should remain effective as isotope production grows, changes, and spreads globally. (author)

  8. Development of decommissioning engineering support system for fugen. Development of support system during actual dismantlement works

    International Nuclear Information System (INIS)

    Masanori Izumi; Yukihiro Iguchi; Yoshiki Kannehira

    2005-01-01

    The Advanced Thermal Reactor, Fugen Nuclear Power Station was permanently shut down in March 2003, and is now preparing for decommissioning. We have been developing Decommissioning Engineering Support System (DEXUS) aimed at planning optimal dismantlement process and carrying out dismantlement work safely and precisely. DEXUS consists of 'decommissioning planning support system' and 'dismantling support system'. The dismantling support system is developed aiming at using during actual dismantling work. It consists of three subsystems such as 'Worksite Visualization System', 'Dismantling Data Collection System' and 'Generated Waste Management System'. 'Worksite Visualization System' is a support system designed to provide the necessary information to workers during actual dismantlement works. And this system adopts AR (Augmented Reality) technology, overlapping calculation information into real world. 'Dismantling Data Collection System' is to collect necessary data for improving accuracy of decommissioning planning by evaluating work content and worker equipage, work time for dismantlement works. 'Generated Waste Management system' is a system recording necessary information by attaching the barcode to dismantled wastes or the containers. We can get the information of generated waste by recording generation place, generated time, treatment method and the contents. These subsystems enable to carry out reasonable and safe decommissioning of Fugen. In addition, we expect that those systems will be used for decommissioning of other nuclear facilities in the future. (authors)

  9. Joint maximum-likelihood magnitudes of presumed underground nuclear test explosions

    Science.gov (United States)

    Peacock, Sheila; Douglas, Alan; Bowers, David

    2017-08-01

    Body-wave magnitudes (mb) of 606 seismic disturbances caused by presumed underground nuclear test explosions at specific test sites between 1964 and 1996 have been derived from station amplitudes collected by the International Seismological Centre (ISC), by a joint inversion for mb and station-specific magnitude corrections. A maximum-likelihood method was used to reduce the upward bias of network mean magnitudes caused by data censoring, where arrivals at stations that do not report arrivals are assumed to be hidden by the ambient noise at the time. Threshold noise levels at each station were derived from the ISC amplitudes using the method of Kelly and Lacoss, which fits to the observed magnitude-frequency distribution a Gutenberg-Richter exponential decay truncated at low magnitudes by an error function representing the low-magnitude threshold of the station. The joint maximum-likelihood inversion is applied to arrivals from the sites: Semipalatinsk (Kazakhstan) and Novaya Zemlya, former Soviet Union; Singer (Lop Nor), China; Mururoa and Fangataufa, French Polynesia; and Nevada, USA. At sites where eight or more arrivals could be used to derive magnitudes and station terms for 25 or more explosions (Nevada, Semipalatinsk and Mururoa), the resulting magnitudes and station terms were fixed and a second inversion carried out to derive magnitudes for additional explosions with three or more arrivals. 93 more magnitudes were thus derived. During processing for station thresholds, many stations were rejected for sparsity of data, obvious errors in reported amplitude, or great departure of the reported amplitude-frequency distribution from the expected left-truncated exponential decay. Abrupt changes in monthly mean amplitude at a station apparently coincide with changes in recording equipment and/or analysis method at the station.

  10. Associated-particle sealed-tube neutron probe: Detection of explosives, contraband, and nuclear materials

    International Nuclear Information System (INIS)

    Rhodes, E.; Dickerman, C.E.

    1996-01-01

    Continued research and development of the APSTNG shows the potential for practical field use of this technology for detection of explosives, contraband, and nuclear materials. The APSTNG (associated-particle sealed-tube generator) inspects the item to be examined using penetrating 14-MeV neutrons generated by the deuterium-tritium reaction inside a compact accelerator tube. An alpha detector built into the sealed tube detects the alpha-particle associated with each neutron emitted in a cone encompassing the volume to be inspected. Penetrating high-energy gamma-rays from the resulting neutron reactions identify specific nuclides inside the volume. Flight-times determined from the detection times of gamma-rays and alpha-particles separate the prompt and delayed gamma-ray spectra and allow a coarse 3-D image to be obtained of nuclides identified in the prompt spectrum. The generator and detectors can be on the same side of the inspected object, on opposite sides, or with intermediate orientations. Thus, spaces behind walls and other confined regions can be inspected. Signals from container walls can be discriminated against using the flight-time technique. No collimators or shielding are required, the neutron generator is relatively small, and commercial-grade electronics are employed. The use of 14-MeV neutrons yields a much higher cross-section for detecting nitrogen than that for systems based on thermal-neutron reactions alone, and the broad range of elements with significant 14-MeV neutron cross-sections extends explosives detection to other elements including low-nitrogen compounds, and allows detection of many other substances. Proof-of-concept experiments have been successfully performed for conventional explosives, chemical warfare agents, cocaine, and fissionable materials

  11. Surface motion induced by nuclear explosions beneath Pahute Mesa. Part I. Halfbreak, Greeley, Scotch, Boxcar events

    International Nuclear Information System (INIS)

    Perret, W.R.

    1976-10-01

    Results of surface motion studies conducted by Sandia Laboratories during seven underground nuclear explosions detonated beneath Pahute Mesa, Areas 19 and 20 of the Nevada Test Site, between 1966 and 1973 are reported. The report is divided into two parts of which this, Part I, includes (1) descriptions of the Pahute Mesa geological environment and of the purposes and instrumentation used in these programs (Chapter 1), and (2) description of four events, the data derived from each, and analysis of these data. These Part I events are HALFBEAK (Chapter 2), GREELEY (Chapter 3), SCOTCH (Chapter 4), and BOXCAR (Chapter 5) for all of which a nominally radial array of gage stations yielded data as a function of distance primarily, although in a few cases data were derived from stations at widely separated azimuths from the explosion. Results of the analysis indicate that average propagation velocity through the geologic column between the explosions and mesa surface was about 8800 ft/sec and that for horizontal distances greater than shot depth, refraction occurred within rhyolite flows with characteristic velocity of about 12,300 ft/sec. There is evidence which suggests possible deeper refraction at a velocity between 18,000 and 21,000 ft/sec. Only the verticle motion peaks follow a pattern amenable to regression analysis because geometrical effects influence horizontal motion amplitudes differently as horizontal distances increase. Particle velocities vary roughly as the inverse square of slant or radial range with exponent values ranging from -3.9 to -1.3. Displacements follow a similar pattern with exponents ranging from about -6 to -2. Displacement profiles at various times during the motion and displacement hodographs in the vertical-radial plane aid in understanding several local phenomena implied by individual motion records

  12. The use of contained nuclear explosions to create underground reservoirs, and experience of operating these for gas condensate storage

    International Nuclear Information System (INIS)

    Kedrovskij, O.L.; Myasnikov, K.V.; Leonov, E.A.; Romadin, N.M.; Dorodnov, V.F.; Nikiforov, G.A.

    1975-01-01

    Investigations on the creation of underground reservoirs by means of nuclear explosions have been going on in the Soviet Union for many years. In this paper the authors consider three main kinds of sites or formations that can be used for constructing reservoirs by this method, namely, low-permeable rocks, worked-out mines and rock salt formations. Formulae are given for predicting the mechanical effect of an explosion in rocks, taking their strength characteristics into account. Engineering procedures are described for sealing and restoring the emplacement holes, so that they can be used for operating the underground reservoir. Experience with the contruction and operation of a 50 000 m 3 gas-condensate reservoir in a rock salt formation is described. In the appendix to the paper a method is presented for calculating the stability of spherical cavities created by nuclear explosions in rock salt, allowing for the development of elasto-plastic deformations and creep

  13. Performance evaluation of spectral deconvolution analysis tool (SDAT) software used for nuclear explosion radionuclide measurements

    International Nuclear Information System (INIS)

    Foltz Biegalski, K.M.; Biegalski, S.R.; Haas, D.A.

    2008-01-01

    The Spectral Deconvolution Analysis Tool (SDAT) software was developed to improve counting statistics and detection limits for nuclear explosion radionuclide measurements. SDAT utilizes spectral deconvolution spectroscopy techniques and can analyze both β-γ coincidence spectra for radioxenon isotopes and high-resolution HPGe spectra from aerosol monitors. Spectral deconvolution spectroscopy is an analysis method that utilizes the entire signal deposited in a gamma-ray detector rather than the small portion of the signal that is present in one gamma-ray peak. This method shows promise to improve detection limits over classical gamma-ray spectroscopy analytical techniques; however, this hypothesis has not been tested. To address this issue, we performed three tests to compare the detection ability and variance of SDAT results to those of commercial off- the-shelf (COTS) software which utilizes a standard peak search algorithm. (author)

  14. Investigation and analysis of hydrogen ignition and explosion events in foreign nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Yasunori [Institute of Nuclear Safety System, Inc., Mihama, Fukui (Japan)

    2002-09-01

    Reports about hydrogen ignition and explosion events in foreign nuclear power plants from 1980 to 2001 were investigated, and 31 events were identified. Analysis showed that they were categorized in (1) outer leakage ignition events and (2) inner accumulation ignition events. The dominant event for PWR (pressurized water reactor) was outer leakage ignition in the main generator, and in BWR (boiling water reactor) it was inner accumulation ignition in the off-gas system. The outer leakage ignition was a result of work process failure with the ignition source, operator error, or main generator hydrogen leakage. The inner accumulation ignition events were caused by equipment failure or insufficient monitoring. With careful preventive measures, the factors leading to these events could be eliminated. (author)

  15. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1981-01-01

    The present review provides an understanding of our current knowledge of the carcinogenic effect of low-dose radiation in man, and surveys the epidemiological studies of human populations exposed to nuclear explosions and medical radiation. Discussion centers on the contributions of quantitative epidemiology to present knowledge, the reliability of the dose-incidence data, and those relevant epidemiological studies that provide the most useful information for risk estimation of cancer induction in man. Reference is made to dose-incidence relationships from laboratory animal experiments where they may obtain, for problems and difficulties in extrapolation from data obtained at high doses to low doses, and from animal data to the human situation. The paper describes the methods of application of such epidemiological data for estimation of excess risk of radiation-induced cancer in exposed human populations and discusses the strengths and limitations of epidemiology in guiding radiation protection philosophy and public health policy

  16. Decontamination and dismantlement of Plant 7 at Fernald

    International Nuclear Information System (INIS)

    Albertin, M.; Borgman, T.; Zebick, B.

    1994-01-01

    Decontamination and dismantlement (D ampersand D) tasks have been successfully completed on Plant 7 at the Fernald Environmental Management Project. The seven story facility was radiologically, chemically, and biologically contaminated. The work involved the D ampersand D work beginning with safe shutdown and gross decontamination, and ended with removal of the structural steel. A series of lessons learned were gained which include use of explosives, bidding tactics, safe shutdown, building decontamination and lockdown, use of seam climbers, etc

  17. Damage caused to houses and equipment by underground nuclear explosions; Degats dus aux explosions nucleaires souterraines sur les habitations et les equipements

    Energy Technology Data Exchange (ETDEWEB)

    Delort, F; Guerrini, C [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    A description is given of the damaged caused to various structures, buildings, houses, mechanical equipment and electrical equipment by underground nuclear explosions in granite. For each type of equipment or building are given the limiting distances for a given degree of damage. These distances have been related to a parameter characterizing the movement of the medium; it is thus possible to generalize the results obtained in granite, for different media. The problem of estimating the damage caused at a greater distance from the explosion is considered. (authors) [French] Les degats sur diverses structures, constructions, habitations, equipements mecaniques et materiels electriques provoques par des explosions nucleaires souterraines dans le granite sont decrits. On a indique pour chaque type de materiel ou de construction, les distances limites correspondant a un degre de gravite de dommage observe. Ces distances ont ete reliees a un parametre caracterisant le mouvement du milieu, permettant ainsi de generaliser les resultats obtenus dans le granite, a differents milieux. Le probleme de la prevision des degats en zone lointaine a ete aborde. (auteurs)

  18. Geotechnical studies relevant to the containment of underground nuclear explosions at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Heuze, F.E.

    1982-05-01

    The Department of Energy and the Department of Defense are actively pursuing a program of nuclear weapons testing by underground explosions at the Nevada Test Site (NTS). Over the past 11 years, scores of tests have been conducted and the safety record is very good. In the short run, emphasis is put on preventing the release of radioactive materials into the atmosphere. In the long run, the subsidence and collapse of the ground above the nuclear cavities also are matters of interest. Currently, estimation of containment is based mostly on empiricism derived from extensive experience and on a combination of physical/mechanical testing and numerical modeling. When measured directly, the mechanical material properties are obtained from short-term laboratory tests on small, conventional samples. This practice does not determine the large effects of scale and time on measured stiffnesses and strengths of geological materials. Because of the limited data base of properties and in situ conditions, the input to otherwise fairly sophisticated computer programs is subject to several simplifying assumptions; some of them can have a nonconservative impact on the calculated results. As for the long-term, subsidence and collapse phenomena simply have not been studied to any significant degree. This report examines the geomechanical aspects of procedures currently used to estimate containment of undergroung explosions at NTS. Based on this examination, it is concluded that state-of-the-art geological engineering practice in the areas of field testing, large scale laboratory measurements, and numerical modeling can be drawn upon to complement the current approach.

  19. Geotechnical studies relevant to the containment of underground nuclear explosions at the Nevada Test Site

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1982-05-01

    The Department of Energy and the Department of Defense are actively pursuing a program of nuclear weapons testing by underground explosions at the Nevada Test Site (NTS). Over the past 11 years, scores of tests have been conducted and the safety record is very good. In the short run, emphasis is put on preventing the release of radioactive materials into the atmosphere. In the long run, the subsidence and collapse of the ground above the nuclear cavities also are matters of interest. Currently, estimation of containment is based mostly on empiricism derived from extensive experience and on a combination of physical/mechanical testing and numerical modeling. When measured directly, the mechanical material properties are obtained from short-term laboratory tests on small, conventional samples. This practice does not determine the large effects of scale and time on measured stiffnesses and strengths of geological materials. Because of the limited data base of properties and in situ conditions, the input to otherwise fairly sophisticated computer programs is subject to several simplifying assumptions; some of them can have a nonconservative impact on the calculated results. As for the long-term, subsidence and collapse phenomena simply have not been studied to any significant degree. This report examines the geomechanical aspects of procedures currently used to estimate containment of undergroung explosions at NTS. Based on this examination, it is concluded that state-of-the-art geological engineering practice in the areas of field testing, large scale laboratory measurements, and numerical modeling can be drawn upon to complement the current approach

  20. Some possible applications of peaceful nuclear explosions in the recovery of natural resources from beneath the seabed

    International Nuclear Information System (INIS)

    Parker, K.

    1975-01-01

    The technical, economic and environmental advantages and disadvantages of using nuclear explosions as an aid to recovering natural resources from beneath the seabed are discussed and compared with those in applications on land. Particular consideration is given to their use in assisting petroleum production as offshore development moves into deeper waters. (author)