WorldWideScience

Sample records for nuclear engineering program

  1. Accreditation of nuclear engineering programs

    International Nuclear Information System (INIS)

    Williamson, T.G.

    1989-01-01

    The American Nuclear Society (ANS) Professional Development and Accreditation Committee (PDAC) has the responsibility for accreditation of engineering and technology programs for nuclear and similarly named programs. This committee provides society liaison with the Accreditation Board for Engineering and Technology (ABET), is responsible for the appointment and training of accreditation visitors, nomination of members for the ABET Board and Accreditation Commissions, and review of the criteria for accreditation of nuclear-related programs. The committee is composed of 21 members representing academia and industry. The ABET consists of 19 participating bodies, primarily professional societies, and 4 affiliate bodies. Representation on ABET is determined by the size of the professional society and the number of programs accredited. The ANS, as a participating body, has one member on the ABET board, two members on the Engineering Accreditation Commission, and one on the Technology Accreditation Commission. The ABET board sets ABET policy and the commissions are responsible for accreditation visits

  2. Nuclear Engineering Academic Programs Survey, 2004

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education

    2005-01-01

    This annual report details the number of nuclear engineering bachelor's, master's, and doctoral degrees awarded at a sampling of academic programs from 1998-2004. It also looks at nuclear engineering degrees by curriculum and the number of students enrolled in nuclear engineering degree programs at 31 U.S. universities in 2004

  3. The University of Utah Nuclear Engineering Program

    International Nuclear Information System (INIS)

    Jevremovic, T.; McDonald, L. IV; Schow, R.

    2016-01-01

    As of 2014, the University of Utah Nuclear Engineering Program (UNEP) manages and maintains over 7,000 ft 2 (~650 m 2 ) nuclear engineering facilities that includes 100 kW TRIGA Mark I and numerous laboratories such as radiochemistry, microscopy, nuclear forensics, nuclear medicine, radiation detection and instrumentation laboratories. The UNEP offers prestigious educational and training programs in the field of faculty reserach: reactor physics, reactor design and operation, advanced numerical modeling and visualizations in radiation transport, radiochemistry, nuclear forensics, radiation detection and detector designs, signal processing, nuclear medicine, nuclear space and nuclear robotic’s engineering and radiological sciences. With the state-of-the-art nuclear instrumentation and state-of-the-art numerical modeling tools, reserach reactor and modernized educational and training programs, we positioned ourselves in the last five years as the fastest growing national nuclear engineering program attracting the students from many disciplines such as but not limited to: chemical engineering, civil engineering, environmental engineering, chemistry, physics, astronomy, medical sciences, and others. From 2012, we uniquely developed and implemented the nuclear power plants’ safety culture paradigm that we use for day-to-day operation, management and maintenance of our facilities, as well as train all our students at undergraduate and graduate levels of studies. We developed also a new distance-learning approaches in sharing knowledge about experiential learning based on no-cost internet-tools combined with the use of mobile technologies. (author)

  4. Nuclear Engineering Academic Programs Survey, 2003

    International Nuclear Information System (INIS)

    Science and Engineering Education, Oak Ridge Institute for Science and Education

    2004-01-01

    The survey includes degrees granted between September 1, 2002 and August 31, 2003. Thirty-three academic programs reported having nuclear engineering programs during the survey time period and all responded (100% response rate). Three of the programs included in last year's report were discontinued or out-of-scope in 2003. One new program has been added to the list. This year the survey data include U.S. citizenship, gender, and race/ethnicity by degree level

  5. Nuclear engine system simulation (NESS) program update

    International Nuclear Information System (INIS)

    Scheil, C.M.; Pelaccio, D.G.; Petrosky, L.J.

    1993-01-01

    The second phase of development of a Nuclear Thermal Propulsion (NTP) engine system design analysis code has been completed. The standalone, versatile Nuclear Engine System Simulation (NESS) code provides an accurate, detailed assessment of engine system operating performance, weight, and sizes. The critical information is required to support ongoing and future engine system and stage design study efforts. This recent development effort included incorporation of an updated solid-core nuclear thermal reactor model that yields a reduced core weight and higher fuel power density when compared to a NERVA type reactor. NESS can now analyze expander, gas generator, and bleed cycles, along with multi-redundant propellant pump feed systems. Performance and weight of efficient multi-stage axial turbopump can now be determined, in addition to the traditional centrifugal pump

  6. Establishing Requirements for Nuclear Engineering Educational Programs

    International Nuclear Information System (INIS)

    Geraskin, N.I.; Kosilov, A.N.; Sbaffoni, M.M.

    2014-01-01

    Conclusions: » There is no single approach in curricula development. » New programmes must fit into national requirements. » Because of the strong international interdependency of all nations using nuclear energy, it is critically important that a competent staff is engaged at all nuclear power plants in every country. » International approach for benchmarking university programs is to be in place with a direct benefit to the countries with new nuclear power projects

  7. Virginia power nuclear power station engineer training program

    International Nuclear Information System (INIS)

    Williams, T.M.; Haberstroh-Timpano, S.

    1987-01-01

    In response to the Institute of Nuclear Power Operations (INPO) accreditation requirements for technical staff and manager, Virginia Power developed the Nuclear Power Station Engineer Training Programs (NPSETP). The NPSETP is directed toward enhancing the specific knowledge and skills of company engineers, especially newly hired engineers. The specific goals of the program are to promote safe and reliable plant operation by providing engineers and appropriate engineering technicians with (1) station-specific basic skills; (2) station-specific specialized skills in the areas of surveillance and test, plant engineering, nuclear safety, and in-service inspection. The training is designed to develop, maintain, and document through demonstration the required knowledge and skills of the engineers in the identified groups at North Anna and Surry Power Stations. The program responds to American National Standards Institute, INPO, and US Nuclear Regulatory Commission standards

  8. A comprehensive program of nuclear engineering and science education

    International Nuclear Information System (INIS)

    Bereznai, G.; Lewis, B.

    2014-01-01

    The University of Ontario Institute of Technology offers undergraduate degrees in nuclear engineering, nuclear power, health physics and radiation science, graduate degrees (masters as well as doctorate) in nuclear engineering, and graduate diplomas that encompass a wide range of nuclear engineering and technology topics. Professional development programs tailored to specific utility needs are also offered, and the sharing of course material between the professional development and university education courses has strengthened both approaches to ensuring the high qualification levels required of professionals in the nuclear industry. (author)

  9. Reactor use in nuclear engineering programs

    International Nuclear Information System (INIS)

    Murray, R.L.

    1975-01-01

    Nuclear reactors for dual use in training and research were established at about 50 universities in the period since 1950, with assistance by the U. S. Atomic Energy Commission and the National Science Foundation. Most of the reactors are in active use for a variety of educational functions--laboratory teaching of undergraduates and graduate students, graduate research, orientation of visitors, and nuclear power plant reactor operator training, along with service to the technical community. As expected, the higher power reactors enjoy a larger average weekly use. Among special programs are reactor sharing and high-school teachers' workshops

  10. Matching grant program for university nuclear engineering education

    International Nuclear Information System (INIS)

    Bajorek, Stephen M.

    2002-01-01

    The grant augmented funds from Westinghouse Electric Co. to enhance the Nuclear Engineering program at KSU. The program was designed to provide educational opportunities and to train engineers for careers in the nuclear industry. It provided funding and access to Westinghouse proprietary design codes for graduate and undergraduate studies on topics of current industrial importance. Students had the opportunity to use some of the most advanced nuclear design tools in the industry and to work on actual design problems. The WCOBRA/TRAC code was used to simulate loss of coolant accidents (LOCAs)

  11. Nuclear Explosion Monitoring Research and Engineering Program - Strategic Plan

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A. [DOE/NNSA

    2004-09-01

    The Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Nuclear Explosion Monitoring Research and Engineering (NEM R&E) Program is dedicated to providing knowledge, technical expertise, and products to US agencies responsible for monitoring nuclear explosions in all environments and is successful in turning scientific breakthroughs into tools for use by operational monitoring agencies. To effectively address the rapidly evolving state of affairs, the NNSA NEM R&E program is structured around three program elements described within this strategic plan: Integration of New Monitoring Assets, Advanced Event Characterization, and Next-Generation Monitoring Systems. How the Program fits into the National effort and historical accomplishments are also addressed.

  12. Introducing Knowledge Management in Study Program of Nuclear Engineering

    International Nuclear Information System (INIS)

    Pleslic, S.

    2012-01-01

    to introduce concept of knowledge management in study program of nuclear engineering to prepare future nuclear professionals on adequate actions.(author).

  13. Nuclear Engineering Academic Programs Survey, 2002 Data

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education

    2003-01-01

    The survey includes degrees granted between July 1, 2001 and June 30, 2002. Enrollment information refers to the fall term 2002. Thirty-five academic programs were in the survey universe and all responded (100% response rate). One of the 35 programs reported that it was discontinued after the 2001-2002 academic year. Also, two programs were discontinued after the previous academic year (2000-2001) and were not included in 2002 survey

  14. Developing engineering capabilities as a support to a nuclear program

    International Nuclear Information System (INIS)

    Rodriguez, A.G.

    1986-04-01

    The performance of a nuclear program needs a quite substantial and diversified volume of technological resources. Its integrated management is one of the basic aspects to be settled. In this regard, the creation of strong engineering organizations with the ability to develop management of the project technical activities as a whole has had success in various countries. These organizations should be provided with suitable means to rapidly assimilate the technology and should serve as a channel and support to local industry in general. The development of a nuclear program also requires the collaboration of other institutions, such as universities and research and development centers. In this sense, engineer and technician training necessities are important both in number and technological qualification, as is the availability of capacities in such different areas as simulation and advanced calculation, geology and soil mechanics, materials, fabrication processes, test laboratories, etc. The volume of technological activities to be developed in relation to a stable, although not necessarily large, nuclear program justifies in itself the assigning of important resources to all the above mentioned activities. However, it should be noted that it has been proved that the nuclear industry is completely pervious as regards other fields of activity. In fact, the more stringent quality requirements are quickly transmitted to other industrial processes, and the engineers trained in this area undergo a far from contemptible turnover towards non-nuclear activities. The basic research area in the nuclear field is not in itself a requirement that has to be in parallel with the development of a nuclear program. However, on medium and long-term bases, it may be interesting for a well balanced commercial program that research activities be established realistically and sensibly, even though short-term practical applications are not necessarily derived from this

  15. Human factors engineering plan for reviewing nuclear plant modernization programs

    International Nuclear Information System (INIS)

    O'Hara, John; Higgins, James

    2004-12-01

    The Swedish Nuclear Power Inspectorate reviews the human factors engineering (HFE) aspects of nuclear power plants (NPPs) involved in the modernization of the plant systems and control rooms. The purpose of a HFE review is to help ensure personnel and public safety by verifying that accepted HFE practices and guidelines are incorporated into the program and nuclear power plant design. Such a review helps to ensure the HFE aspects of an NPP are developed, designed, and evaluated on the basis of a structured top-down system analysis using accepted HFE principles. The review addresses eleven HFE elements: HFE Program Management, Operating Experience Review, Functional Requirements Analysis and Allocation, Task Analysis, Staffing, Human Reliability Analysis, Human-System Interface Design, Procedure Development, Training Program Development, Human Factors Verification and Validation, and Design Implementation

  16. Human factors engineering plan for reviewing nuclear plant modernization programs

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, John; Higgins, James [Brookhaven National Laboratory, Upton, NY (United States)

    2004-12-01

    The Swedish Nuclear Power Inspectorate reviews the human factors engineering (HFE) aspects of nuclear power plants (NPPs) involved in the modernization of the plant systems and control rooms. The purpose of a HFE review is to help ensure personnel and public safety by verifying that accepted HFE practices and guidelines are incorporated into the program and nuclear power plant design. Such a review helps to ensure the HFE aspects of an NPP are developed, designed, and evaluated on the basis of a structured top-down system analysis using accepted HFE principles. The review addresses eleven HFE elements: HFE Program Management, Operating Experience Review, Functional Requirements Analysis and Allocation, Task Analysis, Staffing, Human Reliability Analysis, Human-System Interface Design, Procedure Development, Training Program Development, Human Factors Verification and Validation, and Design Implementation.

  17. Broadening of nuclear engineering programs: An engineering physics approach at Rensselaer

    International Nuclear Information System (INIS)

    Malaviya, B.K.

    1990-01-01

    With the maturing of nuclear engineering as an academic discipline and the uncertainty surrounding the nuclear industry, attention is being increasingly turned to ways in which the base of traditional nuclear engineering programs in universities can be broadened to make them more attractively useful to a wider class of potential students and employers while maintaining the strengths in mainstream areas of nuclear technology. An approach that seems to provide a natural evolution combining the existing programmatic strengths, infrastructure, and resources with the trending needs of a broad segment of diversified industries is the development and initiation of an engineering physics degree program as an adjunct to an established nuclear engineering curriculum. In line with these developments, a new comprehensive academic program offering baccalaureate, master's, and doctoral degrees in engineering physics has been developed and formally instituted at Rensselaer Polytechnic Institute (RPI). It provides a valuable opportunity for students to pursue education and research that cuts across traditional disciplinary lines, leading to a wide variety of career opportunities in industry, government, national research and defense laboratories, and academia

  18. Nuclear Power Engineering Education Program, University of Illinois

    International Nuclear Information System (INIS)

    Jones, B.G.

    1993-01-01

    The DOE/CECo Nuclear Power Engineering Education Program at the University of Illinois in its first year has significantly impacted the quality of the power education which our students receive. It has contributed to: the recently completed upgrade of the console of our Advanced TRIGA reactor which increases the reactor's utility for training, the procurement of new equipment to upgrade and refurbish several of the undergraduate laboratory set-ups, and the procurement of computational workstations in support of the instructional computing laboratory. In addition, smaller amounts of funds were used for the recruitment and retention of top quality graduate students, the support of faculty to visit other institutions to attract top students into the discipline, and to provide funds for faculty to participate in short courses to improve their skills and background in the power area. These items and activities have helped elevate in the student's perspective the role of nuclear power in the discipline. We feel this is having a favorable impact on student career selection and on ensuring the continued supply of well educated nuclear engineering graduates

  19. Final report to DOE: Matching Grant Program for the Penn State University Nuclear Engineering Program

    International Nuclear Information System (INIS)

    Jack S. Brenizer, Jr.

    2003-01-01

    The DOE/Industry Matching Grant Program is designed to encourage collaborative support for nuclear engineering education as well as research between the nation's nuclear industry and the U.S. Department of Energy (DOE). Despite a serious decline in student enrollments in the 1980s and 1990s, the discipline of nuclear engineering remained important to the advancement of the mission goals of DOE. The program is designed to ensure that academic programs in nuclear engineering are maintained and enhanced in universities throughout the U.S. At Penn State, the Matching Grant Program played a critical role in the survival of the Nuclear Engineering degree programs. Funds were used in a variety of ways to support both undergraduate and graduate students directly. Some of these included providing seed funding for new graduate research initiatives, funding the development of new course materials, supporting new teaching facilities, maintenance and purchase of teaching laboratory equipment, and providing undergraduate scholarships, graduate fellowships, and wage payroll positions for students

  20. Development of Nuclear Engineering Educational Program at Ibaraki University with Regional Collaboration

    Science.gov (United States)

    Matsumura, Kunihito; Kaminaga, Fumito; Kanto, Yasuhiro; Tanaka, Nobuatsu; Saigusa, Mikio; Kikuchi, Kenji; Kurumada, Akira

    The College of Engineering, Ibaraki University is located at the Hitachi city, in the north part of Ibaraki prefecture. Hitachi and Tokai areas are well known as concentration of advanced technology center of nuclear power research organizations. By considering these regional advantages, we developed a new nuclear engineering educational program for students in the Collage of Engineering and The Graduate School of Science and Engineering of Ibaraki University. The program is consisted of the fundamental lectures of nuclear engineering and nuclear engineering experiments. In addition, several observation learning programs by visiting cooperative organizations are also included in the curriculum. In this paper, we report about the progress of the new educational program for nuclear engineering in Ibaraki University.

  1. Lessons Learned on University Education Programs of Chemical Engineering Principles for Nuclear Plant Operations - 13588

    International Nuclear Information System (INIS)

    Ryu, Jun-hyung

    2013-01-01

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a huge opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)

  2. Formal training program for nuclear material custodians at Hanford Engineering Development Laboratory

    International Nuclear Information System (INIS)

    Scott, D.D.

    1979-01-01

    Hanford Engineering Development Laboratory (HEDL) has established a formal training program for nuclear material (NM) custodians. The program, designed to familiarize the custodian with the fundamental concepts of proper nuclear materials control and accountability, is conducted on a semiannual basis. The program is prepared and presented by the Safeguards and Materials Management Section of HEDL and covers 14 subjects on accountability, documentation, transportation, custodian responsibilities, and the safeguarding of nuclear material

  3. Status of University of Cincinnati reactor-site nuclear engineering graduate programs

    International Nuclear Information System (INIS)

    Anno, J.N.; Christenson, J.M.; Eckart, L.E.

    1993-01-01

    The University of Cincinnati (UC) nuclear engineering program faculty has now had 12 yr of experience in delivering reactor-site educational programs to nuclear power plant technical personnel. Currently, with the sponsorship of the Toledo-Edison Company (TED), we are conducting a multiyear on-site graduate program with more than 30 participants at the Davis-Besse nuclear power plant. The program enables TED employees with the proper academic background to earn a master of science (MS) degree in nuclear engineering (mechanical engineering option). This paper presents a brief history of tile evolution of UC reactor-site educational programs together with a description of the progress of the current program

  4. Non-linear nuclear engineering models as genetic programming application

    International Nuclear Information System (INIS)

    Domingos, Roberto P.; Schirru, Roberto; Martinez, Aquilino S.

    1997-01-01

    This work presents a Genetic Programming paradigm and a nuclear application. A field of Artificial Intelligence, based on the concepts of Species Evolution and Natural Selection, can be understood as a self-programming process where the computer is the main agent responsible for the discovery of a program able to solve a given problem. In the present case, the problem was to find a mathematical expression in symbolic form, able to express the existent relation between equivalent ratio of a fuel cell, the enrichment of fuel elements and the multiplication factor. Such expression would avoid repeatedly reactor physics codes execution for core optimization. The results were compared with those obtained by different techniques such as Neural Networks and Linear Multiple Regression. Genetic Programming has shown to present a performance as good as, and under some features superior to Neural Network and Linear Multiple Regression. (author). 10 refs., 8 figs., 1 tabs

  5. A Program for Cultivating Nuclear Talent at Engineering Educational Institute in a Remote Area from Nuclear Power Plants

    Science.gov (United States)

    Takahashi, Tsuyoshi

    Recently, in Japan, the number of students who hope for finding employment at the nuclear power company has decreased as students‧ concern for the nuclear power industry decreases. To improve the situation, Ministry of Education, Culture, Sports, Science and Technology launched the program of cultivating talent for nuclear power which supports research and education of nuclear power in the academic year of 2007. Supported by the program, Kushiro College of Technology conducted several activities concerning nuclear power for about a year. The students came to be interested in nuclear engineering through these activities and its results.

  6. Nuclear engineering, health physics, and radioactive waste management fellowship program: Summary of program activities: Nuclear engineering and health physics fellowship, 1985-1986

    International Nuclear Information System (INIS)

    1986-01-01

    Progress is reported in the nuclear engineering and health physics elements of the fellowship program. Statistics are given on numbers of student applications and new appointments, the degree areas of applicants, GPA and GRE score averages of the fellows, and employment of completed fellows

  7. Radwaste assessment program for nuclear station modifications by design engineering

    International Nuclear Information System (INIS)

    Eble, R.G.

    1988-01-01

    Radwaste burial for Duke Power Company's (DPC's) seven nuclear units has become a complicated and costly process. Burial costs are based on overall volume, surcharges for radioactivity content and weight of containers, truck and cask rental, driver fees, and state fees and taxes. Frequently, radwaste costs can be as high as $500 per drum. Additionally, DPC is limited on the total burial space allocated for each plant each year. The thrust of this program is to reduce radwaste volumes needing burial at either Barnwell, South Carolina, or Richland, Washington. A limited number of options are available at our sites: (a) minimization of radwaste volume production, (b) segregation of contamination and noncontaminated trash, (c) decontamination of small hardware, (d) volume reduction of compatible trash, (e) incineration of combustible trash (available at Oconee in near future), and (f) burial of below-regulatory-concern very low level waste on site. Frequently, costs can be reduced by contracting services outside the company, i.e., supercompaction, decontamination, etc. Information about radwaste volumes, activities, and weight, however, must be provided to the nuclear production department (NPD) radwaste group early in the nuclear station modification (NSM) process to determine the most cost-effective method of processing radwaste. In addition, NSM radwaste costs are needed for the NPD NSM project budget. Due to the advanced planning scope of this budget, NSM construction costs must be estimated during the design-phase proposal

  8. An historical perspective of the NERVA nuclear rocket engine technology program. Final Report

    International Nuclear Information System (INIS)

    Robbins, W.H.; Finger, H.B.

    1991-07-01

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments

  9. Results in Developing an Engineering Degree Program in Safeguards and Security of Nuclear Materials at Moscow Engineering Physics Institute

    International Nuclear Information System (INIS)

    Kryuchkov, Eduard F.; Geraskin, Nikolay I.; Killinger, Mark H.; Goodey, Kent O.; Butler, Gilbert W.; Duncan, Cristen L.

    2007-01-01

    The world's first master's degree program in nuclear safeguards and security, established at Moscow Engineering Physics Institute (MEPhI), has now graduated nine classes of students. Most of the graduates have gone on to work at government agencies, research organizations, or obtain their PhD. In order to meet the demand for safeguards and security specialists at nuclear facilities, MEPhI established a 5-1/2 year engineering degree program that provides more hands-on training desired by facilities. In February 2004, the first students began their studies in the new discipline Nuclear Material Safeguards and Nonproliferation. This class, as well as other subsequent classes, included students who started the program in their third year of studies, as the first 2-1/2 years consists of general engineering curriculum. Fourteen students made up the first graduating class, receiving their engineering degrees in February 2007. The topics addressed in this paper include specific features of the program caused by peculiarities of Russian education legislation and government quality control of academic education. This paper summarizes the main joint actions undertaken by MEPhI and the US National Laboratories in conjunction with the U.S. Department of Energy, to develop the engineering degree program. Also discussed are the program's specific training requirements, student internships, and job placement. The paper concludes with recommendations from a recent international seminar on nonproliferation education and training

  10. Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide. Final Report

    International Nuclear Information System (INIS)

    Pelaccio, D.G.; Scheil, C.M.; Petrosky, L.J.

    1993-03-01

    A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner

  11. Knowledge Management Course for Master Program in Nuclear Engineering

    International Nuclear Information System (INIS)

    Geraskin, N.I.; Kosilov, A.N.; Kulikov, E.G.

    2014-01-01

    Background for NKM Course: • A basic level of nuclear knowledge is a part of the general human culture. • An intermediate level of nuclear knowledge is a part of general scientific-technical culture and is taught at university. • An advanced level of nuclear knowledge has been accumulated by many experienced workers in both power and non-power applications. • KM in the last 20 years has established itself as a key strategic approach for management of intellectual assets and knowledge that can improve efficiency and safety, increase innovation and help preserve and enhance current nuclear knowledge. • Considering the critical importance of nuclear knowledge for power generation, medicine, agriculture, it is timely to introduce the concept of managing knowledge at the university level

  12. Seminar Neutronika-2012. Neutron-physical problems of nuclear-power engineering. Program and abstracts

    International Nuclear Information System (INIS)

    2012-01-01

    On October, 30 - November, 2 in State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky a seminar Neutron-physical problems of nuclear power engineering - Neutronika-2012 took place. On the seminar the following problems were discussed: justification of neutron-physical characteristics of reactor facilities and innovation projects; constant support of neutron-physical calculations of nuclear power installations; numerical simulation during solving reactor physics problems; simulation of neutron-physical processes in reactor facilities by Monte Carlo method; development and verification of programs for reactor facilities neutron-physical calculations; algorithms and programs for solving nonstationary problems of neutron-physical calculation of nuclear reactors; analysis of integral and reactor experiments, experimental database; justification of nuclear and radiation safety of fuel cycle [ru

  13. NASA universities advanced space design program, focus on nuclear engineering

    International Nuclear Information System (INIS)

    Lyon, W.F. III; George, J.A.; Alred, J.W.; Peddicord, K.L.

    1987-01-01

    In January 1985, the National Aeronautics and Space Administration (NASA), in affiliation with the Universities Space Research Association (USRA), inaugurated the NASA Universities Advanced Space Design Program. The purpose of the program was to encourage participating universities to utilize design projects for the senior and graduate level design courses that would focus on topics relevant to the nation's space program. The activities and projects being carried out under the NASA Universities Advanced Space Design Program are excellent experiences for the participants. This program is a well-conceived, well-planned effort to achieve the maximum benefit out of not only the university design experience but also of the subsequent summer programs. The students in the university design classes have the opportunity to investigate dramatic and new concepts, which at the same time have a place in a program of national importance. This program could serve as a very useful model for the development of university interaction with other federal agencies

  14. International Training Program on Nuclear Engineering at Kinki University

    International Nuclear Information System (INIS)

    Hohara, Sin-ya; Wakabayashi, Genichiro; Yamanishi, Hirokuni; Itoh, Tetsuo

    2014-01-01

    Outline of the Training Program: • This training program is a 3-years program since 2013. • This program is conducted with 5 universities’ cooperation: Kyushu Univ., Nagoya Univ., Kyung Hee Univ., Kyoto Univ. and Kinki Univ.; • Education is provided in 3 experimental fields: Kinki Univ. Reactor: UTR-KINKI, Kyung Hee Univ. Reactor: AGN-201K, Reconstruction Support Test Field in Fukushima: RSTF; • The language used in the program is English which is not mother tongue for neither Japanese nor Korean students

  15. Occupational radioprotection program at Nuclear Engineering Institute -IEN: results obtained in 1991

    International Nuclear Information System (INIS)

    Fajardo, P.W.; Pastura, V.F.S.; Soares, M.L.; LeRoy, C.L.; Teixeira, M.V.; Santos, I.H.T.; Pujol Filho, S.V.

    1992-01-01

    The results of occupational radioprotection program at Nuclear Engineering Institute-IEN- in 1991 are presented. The personnel monitoring, the routine monitoring of limited areas, the operational monitoring during the operation and the cyclotron CV-28 maintenance, the radioisotope processing and Argonauta Reactor operation, the control of radioprotection equipment and the control of radiation sources are included. (C.G.C.)

  16. Nuclear propulsion systems engineering

    International Nuclear Information System (INIS)

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts

  17. UMCP-BG and E collaboration in nuclear power engineering in the framework of DOE-Utility Nuclear Power Engineering Education Matching Grant Program

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, Lothar PhD

    2000-03-01

    The DOE-Utility Nuclear Power Engineering Education Matching Grant Program has been established to support the education of students in Nuclear Engineering Programs to maintain a knowledgeable workforce in the United States in order to keep nuclear power as a viable component in a mix of energy sources for the country. The involvement of the utility industry ensures that this grant program satisfies the needs and requirements of local nuclear energy producers and at the same time establishes a strong linkage between education and day-to-day nuclear power generation. As of 1997, seventeen pairs of university-utility partners existed. UMCP was never a member of that group of universities, but applied for the first time with a proposal to Baltimore Gas and Electric Company in January 1999 [1]. This proposal was generously granted by BG&E [2,3] in the form of a gift in the amount of $25,000 from BG&E's Corporate Contribution Program. Upon the arrival of a newly appointed Director of Administration in the Department of Materials and Nuclear Engineering, the BG&E check was deposited into the University's Maryland Foundation Fund. The receipt of the letter and the check enabled UMCP to apply for DOE's matching funds in the same amount by a proposal.

  18. Program for educating nuclear engineers in Japan. Partnership with industry, government and academe begins

    International Nuclear Information System (INIS)

    Meshii, Toshiyuki

    2007-01-01

    Since the beginning of the 21st century, educating the next generation of nuclear engineers has been of interest to groups who are concerned with the recent decline in the number of nuclear engineers in universities and industries. Discussions and proposals have been summarized in independent reports by industry (JAIF; Japan Atomic Industrial Forum), government (Science Council of Japan) and the academe (AESJ; Atomic Energy Society of Japan). In June 2005 a Committee on Education (CE) was established within AESJ with the intention of coordinating the groups interested in nuclear education in Japan. The birth of CE was timely, because the importance of nuclear education was emphasized in 'Framework for Nuclear Energy Policy (Oct., 2005)' which was adopted by the Atomic Energy Commission. The Nuclear Energy Subcommittee of the METI (Ministry of Economy, Trade and Industry) Advisory Committee deliberated concrete actions for achieving the basic goals of the Framework for Nuclear Energy Policy and their recommendations were drawn up as a 'Nuclear Energy National Plan'. This was the MEXT (Ministry of Education, Culture, Sports, Science and Technology) and METI action plan to create nuclear energy training programs for universities, etc. A task group, consisting of members from industry, government and academe was organized within JAIF to give advice to these training programs. The author of this paper (and chairman of CE) participated in and made proposals to the task group as a representative of the academe. In this paper, the proposal made by CE and the outline of the final program will be reported. Furthermore, the importance of the partnership between industry, government and academe will be emphasized. (author)

  19. VPI-NECM, Nuclear Engineering Program Collection for College Training

    International Nuclear Information System (INIS)

    Honomichl, Jiri; Kulikowska, Teresa; Szczesna, Barbara

    1991-01-01

    1 - Description of problem or function: The VPI Modules consist of 6 independent programs designed to calculate: module FARCON - neutron slowing down and epithermal group constants, module SLOCON - thermal neutron spectrum and group constants, module DISFAC - slow neutron disadvantage factors, module ODOG - solution of a one group neutron diffusion equation, module ODMUG - three group critically problem, module FUELBURN - fuel burnup in slow neutron fission reactors. 2 - Method of solution: Module FARCON solves the diffusion equation for a homogeneous medium composed of N isotopes, in 33 groups in fast and resonance energy region. The solution in the thermal energy region carried out by module SLOCON is based on the Wigner-Wilkins approximation and applies the Runge-Kutta method. The burnup calculations are carried out in 3 energy groups. Only Xe-135 and Sm-149 are treated directly. All the other fission products are represented by 2 pseudo isotopes. Module ODOG solves the finite difference diffusion equation by a direct method. Module ODMUG uses the Chebyshev acceleration of outer iterations. It gives a possibility to calculate a critical boron concentration. 3 - Restrictions on the complexity of the problem: It is assumed that the elementary reactor cell consists of the fuel rod surrounded by water. The library data are limited to isotopes typical for water power reactors. The reactor can be treated in one dimension only, i.e. as a slab, sphere or cylinder with one-dimensional symmetry

  20. Developments in the Nuclear Safeguards and Security Engineering Degree Program at Tomsk Polytechnic University

    International Nuclear Information System (INIS)

    Boiko, Vladimir I.; Demyanyuk, Dmitry G.; Silaev, Maxim E.; Duncan, Cristen L.; Heinberg, Cynthia L.; Killinger, Mark H.; Goodey, Kent O.; Butler, Gilbert W.

    2009-01-01

    Over the last six years, Tomsk Polytechnic University (TPU) has developed a 5 1/2 year engineering degree program in the field of Material Protection Control and Accounting (MPC and A). In 2009 the first students graduated with this new degree. There were 25 job offers from nuclear fuel cycle enterprises of Russia and Kazakhstan for 17 graduates of the program. Due to the rather wide selection of workplaces, all graduates have obtained positions at nuclear enterprises. The program was developed within the Applied Physics and Engineering Department (APED). The laboratory and methodological base has been created taking into consideration the experience of the similar program at the Moscow Engineering Physics Institute (MEPhI). However, the TPU program has some distinguishing features such as the inclusion of special courses pertaining to fuel enrichment and reprocessing. During the last two years, three MPC and A laboratories have been established at APED. This was made possible due to several factors such as establishment of the State innovative educational program at TPU, assistance of the U.S. Department of Energy through Pacific Northwest National Laboratory and Los Alamos National Laboratory, and the financial support of the Swedish Radiation Safety Authority and some Russian private companies. All three of the MPC and A laboratories are part of the Innovative Educational Center 'Nuclear Technologies and Non-Proliferation,' which deals with many topics including research activities, development of new curricula for experts training and retraining, and training of master's students. In 2008, TPU developed a relationship with the International Atomic Energy Agency (IAEA), which was familiarized with APED's current resources and activities. The IAEA has shown interest in creation of a master's degree educational program in the field of nuclear security at TPU. A future objective is to acquaint nuclear fuel cycle enterprises with new APED capabilities and involve

  1. International Cooperation Programs Of The Department Of Nuclear And Quantum Engineering (NQe) At KAIST For Nuclear Program Developing Countries In Asia

    International Nuclear Information System (INIS)

    Poong Huyn Seong; Ki SoonYum

    2008-01-01

    NQe of KAIST has developed and conducted a few international cooperation programs for Asian countries which are actively developing their nuclear programs. These include inviting several students from these countries annually for short term period such as one semester and have them experience nuclear education programs at KAIST by taking NQe courses, attending Korean Nuclear Society (KNS) meeting, and visiting some nuclear related organizations such as nuclear power plants and Doosan Heavy Industry Machine shops in Korea. These also include visiting lectures conducted by KAIST NQe professors at some universities in the nuclear program developing countries. Both of above two programs have been performed mainly for Vietnam so far but now are becoming expanded. The last program of these international cooperation activities at NQe for Nuclear Program Developing countries in Asia is the RCA/KAIST master degree program which is open to all 17 RCA countries. Thus far, we have had about 18 students from 9 different countries. NQe is looking for some more international cooperation programs which are beneficial both for Korea and for other countries right now. NQe is starting a joint summer school program between KAIST and Shanghai Jiatong University in this sense. Also, some kind of cooperation between NQe at KAIST and Department of Engineering Physics at Tsinghua University in China is also being sought now. (author)

  2. Engineering opportunities in nuclear engineering

    International Nuclear Information System (INIS)

    Walton, D.G.

    1980-01-01

    The pattern of education and training of Nuclear Engineers in the UK is outlined under the headings; degree courses for professional engineers, postgraduate courses, education of technician engineers. Universities which offer specific courses are stated and useful addresses listed. (UK)

  3. Research Programs in the Field of Nuclear Power Engineering and Technologies in the Republic of Kazakhstan

    International Nuclear Information System (INIS)

    Cherepnin, Yu. S.; Takibaev, Zh. S.

    2000-01-01

    In 1991 the Semipalatinsk Test Site (STS) was closed under the decree of President of the Republic of Kazakhstan, N.A. Nazarbayev. Later, the National Nuclear Center of the Republic of Kazakhstan (NNC RK) was established under President's decree 779 dated May 15 1992. A range of NNC RK activity was specified in the decree: ' To create National Nuclear Center of the Republic of Kazakhstan on the basis of the former Semipalatinsk Test Site and appropriate scientific organizations and facilities situated in the Republic of Kazakhstan with a view to conduct work on radiation safety and ecology, investigation of problems related to utilization and radioactive waste disposal, development work in the field of nuclear technology and nuclear power engineering'. Tasks outlined in this decree, later on, became the work program of NNC RK

  4. Nuclear Engine System Simulation (NESS). Version 2.0: Program user's guide. Final Report

    International Nuclear Information System (INIS)

    Pelaccio, D.G.; Scheil, C.M.; Petrosky, L.

    1993-03-01

    This Program User's Guide discusses the Nuclear Thermal Propulsion (NTP) engine system design features and capabilities modeled in the Nuclear Engine System Simulation (NESS): Version 2.0 program (referred to as NESS throughout the remainder of this document), as well as its operation. NESS was upgraded to include many new modeling capabilities not available in the original version delivered to NASA LeRC in Dec. 1991, NESS's new features include the following: (1) an improved input format; (2) an advanced solid-core NERVA-type reactor system model (ENABLER 2); (3) a bleed-cycle engine system option; (4) an axial-turbopump design option; (5) an automated pump-out turbopump assembly sizing option; (6) an off-design gas generator engine cycle design option; (7) updated hydrogen properties; (8) an improved output formnd (9) personal computer operation capability. Sample design cases are presented in the user's guide that demonstrate many of the new features associated with this upgraded version of NESS, as well as design modeling features associated with the original version of NESS

  5. History of nuclear engineering curricula

    International Nuclear Information System (INIS)

    Murphy, G.

    1975-01-01

    With the realization that nuclear energy had a vast potential for peacetime development, universities throughout the country began to develop courses in nuclear energy. A pioneering educational effort was necessary because there was an inadequate number of trained faculty, no established curricula, no textbooks, and very little suitable equipment. Nevertheless, by the early 1950's, several programs in nuclear science and engineering were beginning to provide instruction to potential nuclear engineers. At that time, the American Society for Engineering Education (ASEE) established a nuclear committee to cooperate with the U. S. Atomic Energy Commission (AEC) in nuclear education matters. With the financial support of the AEC, textbook material was developed, faculty training programs were instituted, and funds were made available for equipment. Because of the large interest shown in the field, many colleges and universities began to develop nuclear engineering curricula. After a few years, the need arose for general guidelines in curricular development. This led to the development of a Committee on Objective Criteria in Nuclear Engineering Education in which ASEE and the American Nuclear Society cooperated with the support of AEC. The committee report emphasized basic science, nuclear energy concepts, and nuclear technology, which have continued to be the significant components of a nuclear engineering curriculum. The last ten years have brought increased emphasis on BS programs, the introduction of extensive computer-based instruction, and an increasing emphasis on the engineering aspects of nuclear reactor power systems

  6. Systems engineering approach to U.S. Department of Energy's commercial nuclear waste transportation program

    International Nuclear Information System (INIS)

    Pardue, W.M.

    1987-01-01

    The U.S Department of Energy (DOE) has been given the responsibility of developing a program to transport commercially produced spent nuclear fuel and high-level radioactive wastes to disposal sites or storage facilities safely and cost-effectively. To accomplish this task it is desirable to plan, perform, and document all technical activities based on systems engineering principles. This paper presents an overview of the systems engineering approach being developed by Battelle for consideration by DOE, specifically the early identification of the required technical activities and approaches to technical management and decision making. The program should support the development of an integrated, well-documented transportation system acceptable to regulatory agencies and the public

  7. The Utah Nuclear Engineering Program and DevonWay are Developing One and Unique Approach to PLiM for Securing the Nation's Nuclear Future

    International Nuclear Information System (INIS)

    Jevremovic, Tatjana; Choe, Dongok; Yang, Haori; White, Sally; Kelly, Mike

    2012-01-01

    The safety culture involving a comprehensive training of the employed engineers at the power plant facilities is neither a simple nor a straightforward task. With aging management and operators, impact of the Fukushima nuclear event, unforeseen and timely unpredictable effects of nuclear memories (Three Mile Island, Chernobyl, Second World War) as evoked every time we have worldwide challenges or discussions of where the nuclear technology will/would further develop, we face a fearful question - is our educational and training approach the right one; is it going to assure continuous and secured practices in providing safe operation of our nuclear power plants?... We at the University of Utah with our just recently revitalized Nuclear Engineering Program, find that the root of securing the safety culture and providing its sustainability in our existing and future nuclear power plants, lies in very early educational practices. We believe that every program in nuclear engineering education shall include training in nuclear safety. That training shall certainly include industrial based practices and involve experts from the companies that develop and contribute to nuclear power safety to add to class practices at the University teaching settings. Working with DevonWay, a leading company in developing software to improve the safety cultures at nuclear power plants in the country, we have implemented the 'Track and Trace' software into our nuclear engineering program, emphasizing high quality training of our undergraduate and graduate students, and promoting a higher level safety culture practices at our nuclear engineering facilities. (author)

  8. Choosing nuclear engineering: A survey of nuclear engineering undergraduates

    International Nuclear Information System (INIS)

    Shillenn, J.K.; Klevans, E.H.

    1988-01-01

    Maintaining a reliable pool of qualified nuclear engineering graduates depends on the ability of nuclear engineering undergraduate programs to recruit students. With the prospect of declining enrollments in nuclear engineering it is important for nuclear engineering programs to know what factors influence students to choose nuclear engineering as an undergraduate major and why they choose a particular undergraduate program. This type of information can be very important to nuclear engineering programs that develop recruiting strategies. To provide some insight into this area, a questionnaire was designed and given to undergraduate nuclear engineering students at Pennsylvania State University. The purpose of the survey was to provide information on the reasons that students picked nuclear engineering as a career and chose to attend Penn State. The questionnaire was given to 27 students in their junior year during the spring semester of 1987 and again to 35 junior students during the spring semester of 1988. There was little difference except as noted between the two groups on their responses to the questionnaire. A partial listing of the survey results is provided

  9. Summary of entire research achievements of creative engineering research program on nuclear fuel cycle

    International Nuclear Information System (INIS)

    Takenaka, Shingo; Ikegami, Tetsuo

    2008-03-01

    Creative Engineering Research Program on Nuclear Fuel Cycle (former In-house Innovative Research Encouraging Program) was implemented from FY 2001 to FY 2007 in order to support such in-house researches that create innovative new concepts and aim technical break-through. Totally 37 applications have been received and 14 research themes have been accepted and been performed in this program. As for the research achievements of the 14 research themes, first author papers accepted by scientific journals and by science councils were 47 and 32, respectively, and oral presentations at scientific societies were 99. Furthermore, interpretive articles for scientific journals, requested lectures, patents, and prize winnings were 13, 30, 8, and 3, respectively. Consequently, it can be evaluated that the research achievements resulted from this program are generally in high level and that the expectations, at the starting point of this program, to activate the innovative research activities have been accomplished. In this report, the final reports of the 14 research themes together with the outline of this program are included. (author)

  10. Final Technical Report; NUCLEAR ENGINEERING RECRUITMENT EFFORT

    Energy Technology Data Exchange (ETDEWEB)

    Kerrick, Sharon S.; Vincent, Charles D.

    2007-07-02

    This report provides the summary of a project whose purpose was to support the costs of developing a nuclear engineering awareness program, an instruction program for teachers to integrate lessons on nuclear science and technology into their existing curricula, and web sites for the exchange of nuclear engineering career information and classroom materials. The specific objectives of the program were as follows: OBJECTIVE 1: INCREASE AWARENESS AND INTEREST OF NUCLEAR ENGINEERING; OBJECTIVE 2: INSTRUCT TEACHERS ON NUCLEAR TOPICS; OBJECTIVE 3: NUCLEAR EDUCATION PROGRAMS WEB-SITE; OBJECTIVE 4: SUPPORT TO UNIVERSITY/INDUSTRY MATCHING GRANTS AND REACTOR SHARING; OBJECTIVE 5: PILOT PROJECT; OBJECTIVE 6: NUCLEAR ENGINEERING ENROLLMENT SURVEY AT UNIVERSITIES

  11. Nuclear chemical engineering

    International Nuclear Information System (INIS)

    Lee, Geon Jae; Shin, Young Jun

    1989-08-01

    The contents of this book are introduction of chemical engineering and related chemistry on an atomic reactor, foundation of the chemistry nuclear chemical engineering, theory on nuclear engineering, the cycle of uranium and nuclear fuel, a product of nuclear division, nuclear reprocessing, management of spent fuel separation of radioisotope, materials of an atomic reactor, technology and chemistry related water in atomic reactors and utilization of radioisotope and radiation. This book has the exercises and reference books for the each chapter.

  12. ATMEA1 Nuclear Power Plant. Overview of the HF engineering program

    International Nuclear Information System (INIS)

    Rivere, Cyril; Mashio, Kenji; Martinez-Pellegrini, Diego

    2015-01-01

    ATMEA, a joint-venture between AREVA and Mitsubishi Heavy Industries has developed the ATMEA1 Pressurized Water Reactor (PWR) Nuclear Island (NI), leveraging both of its shareholders’ proficient technologies, innovations and experiences. The scope of the ATMEA1 PWR development covers the complete scope of engineering works necessary to develop a standard product. As a recently emergent discipline in the field of nuclear plant engineering, Human Factor Engineering (HFE) is one of the challenges which has to be integrated within new plant development process. At early design stages of ATMEA1 development, ATMEA has defined and implemented an extensive NUREG-based HFE program, encompassing HFE Preliminary Analyses, Human-Systems Interfaces (HSI) Design and Verification and Validation (V and V) activities. The HFE Preliminary Analyses are defined through Operating Experience Review (OER), Functional Requirement Analysis and Function Allocation (FRA/FA) and Task Analysis (TA). Human-System Interface (HSI) Design and related V and V activities are based on Control Center, Control Rooms and Human-Machine Interfaces (HMIs). All these steps are implemented within the ATMEA Project through a structured generic documentation basis by a HFE team composed of HF specialists from both AREVA and MHI and managed by ATMEA. ATMEA1 development project aims to develop flexible and robust design and process which can be easily adapted to be compliant to any regulations over the world. U.S. regulatory guidelines related to HFE (e.g. ref. [1] and ref. [2]) were applied as a basis for this project. This paper presents the overall ATMEA1 HFE program content and the related process used to favor its implementation within the Project; through the collaboration between MHI and AREVA under ATMEA lead. A special focus is made on the HFE team composition, roles and responsibilities, the management of interfaces with the relevant engineering disciplines and the tools used to support the HFE

  13. Research and education on innovative nuclear engineering in 21. century COE program in Japan (COE-INES)

    International Nuclear Information System (INIS)

    Hiroshi Sekimoto

    2004-01-01

    -In the year 2002 and 2003 the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) started the 'Priority Assistance for the Formation of Worldwide Renowned Centers of Research - The 21. Century Center of Excellence (COE) Program'. A program proposed by Tokyo Institute of Technology (TITech) 'Innovative Nuclear Energy Systems for Sustainable Development of the World (COE-INES)' was selected as the only one program in nuclear engineering. Here the innovative nuclear energy systems include innovative nuclear reactors and innovative separation and transmutation technologies. This program is planned to continue for 5 years, and the monetary support for the first year (2003-4) is already fixed to be 196 M yens. International collaboration will be promoted for research and education on innovative nuclear energy systems. Several international meetings and intensive personnel exchanges will be performed. (author)

  14. Separation review program for reactor protection system and engineered safeguard systems in a nuclear power plant

    International Nuclear Information System (INIS)

    Lamb, F.J.; Walrod, B.E.

    1980-01-01

    This review program is utilized during the design of a nuclear power plant to insure separation between interdiscipline design for the Reactor Protection System (RPS) and Engineered Safeguard Systems (ESS). Color coded transparent drawings of the RPS and ESS are produced by each discipline. The separation is then reviewed by overlaying drawings of different disciplines on a light table. When this inspection shows that RPS or ESS elements have less than the established minimum separation, an analysis is performed to determine what, if any, design revision is necessary to insure proper separation. ''Hazard'' drawings are also made for determination of each type of potential hazard in each area of the plant. The review is a continuing process as the design progresses and is revised by any discipline. 5 refs

  15. Nuclear engineering enrollments and degrees, 1994: Appendixes

    International Nuclear Information System (INIS)

    1995-05-01

    This survey is designed to include those programs sponsored by the Department of Energy. The survey is designed to include those programs offering a major in nuclear engineering or course work equivalent to a major in other engineering disciplines that prepare the graduates to perform as nuclear engineers. This survey provides data on nuclear engineering enrollments and degrees for use in labor market analyses, information on education programs for students, and information on new graduates to employers, government agencies, academia and professional societies

  16. Program plan for US Department of Energy support for nuclear engineering education

    International Nuclear Information System (INIS)

    Perkins, L.

    1992-01-01

    This document describes the plan developed to address the growing concern for the continued deterioration of nuclear engineering education in the United States and its ability to meet the manpower demands for this Nation's work force requiring nuclear related talent in the foreseeable future

  17. Strengthening the fission reactor nuclear science and engineering program at UCLA. Final technical report

    International Nuclear Information System (INIS)

    Okrent, D.

    1997-01-01

    This is the final report on DOE Award No. DE-FG03-92ER75838 A000, a three year matching grant program with Pacific Gas and Electric Company (PG and E) to support strengthening of the fission reactor nuclear science and engineering program at UCLA. The program began on September 30, 1992. The program has enabled UCLA to use its strong existing background to train students in technological problems which simultaneously are of interest to the industry and of specific interest to PG and E. The program included undergraduate scholarships, graduate traineeships and distinguished lecturers. Four topics were selected for research the first year, with the benefit of active collaboration with personnel from PG and E. These topics remained the same during the second year of this program. During the third year, two topics ended with the departure o the students involved (reflux cooling in a PWR during a shutdown and erosion/corrosion of carbon steel piping). Two new topics (long-term risk and fuel relocation within the reactor vessel) were added; hence, the topics during the third year award were the following: reflux condensation and the effect of non-condensable gases; erosion/corrosion of carbon steel piping; use of artificial intelligence in severe accident diagnosis for PWRs (diagnosis of plant status during a PWR station blackout scenario); the influence on risk of organization and management quality; considerations of long term risk from the disposal of hazardous wastes; and a probabilistic treatment of fuel motion and fuel relocation within the reactor vessel during a severe core damage accident

  18. Argentine nuclear program

    International Nuclear Information System (INIS)

    Leibovich, H.; Takacs, E.A.

    1983-01-01

    The paper describes Argentina's nuclear program, detailing its objectives, the schedule of construction of nuclear plants and local production of required equipment. The technologies adopted so far, the local industrial and engineering participation, the preliminary study for the construction of the next power station and Argentina's nonproliferation nuclear policy are analyzed. Argentina's point of view on Canadian nonproliferation policy and CANDU reactor export is discussed

  19. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  20. Dictionary of nuclear engineering

    International Nuclear Information System (INIS)

    Sube, R.

    1985-01-01

    This dictionary covers nuclear engineering defined in its general sense as applied nuclear physics: industrial and other applications of nuclear power, isotopes and ionizing radiation, nuclear materials, nuclear facilities and nuclear weapons together with their scientific and technological fundamentals. During the compilation of terms, great attention was only given to generally valid basic expressions and to special terms where these occurred in all four languages. A great number of textbooks and monographs, as well as specialist journals covering many years, have been evaluated. Detailed attention has been paid to standards. Of importance in nuclear engineering are the international standards of the International Atomic Energy Organization (including the terminology employed by the International Nuclear Information System INIS), the International Organization of Standardization, the Council for Mutual Economic Assistance, the World Energy Conference, the International Electrical Engineering Commission, and also a great many national standards which, unfortunately, frequently deviate from one another as regards definition and, in particular, designation. (orig.)

  1. Nuclear ship engineering simulator

    International Nuclear Information System (INIS)

    Itoh, Yasuyoshi; Kusunoki, Tsuyoshi; Hashidate, Koji

    1991-01-01

    The nuclear ship engineering simulator, which analyzes overall system response of nuclear ship numerically, is now being developed by JAERI as an advanced design tool with the latest computer technology in software and hardware. The development of the nuclear ship engineering simulator aims at grasping characteristics of a reactor plant under the situation generated by the combination of ocean, a ship hull and a reactor. The data from various tests with the nuclear ship 'MUTSU' will be used for this simulator to modulate and verify its functions of reproducing realistic response of nuclear ship, and then the simulator will be utilized for the research and development of advanced marine reactors. (author)

  2. Facts in nuclear engineering

    International Nuclear Information System (INIS)

    Buenemann, D.

    1979-07-01

    This compilation of facts has been published on behalf of Kerntechnische Gesellschaft (Society for Nuclear Engineering), as a basis for the discussion between promoters and opponents of nuclear power. It intends to make the nuclear discussion less emotional by providing relevant data material. (orig./HP) [de

  3. Infrastructures Development Strategy in Energy Engineering Education and Research: a Bonus to Introduce a Safe and Secure Nuclear Power Program

    Energy Technology Data Exchange (ETDEWEB)

    Bouhelal, Oum Keltoum [National School of Mineral Industry, ENIM, BP 753, Agdal, 10000 Rabat (Morocco)

    2008-07-01

    In the area of Energy Engineering, high education programs including nuclear activities are currently running in collaboration with the employment sector to provide skills oriented profiles; the available packages are thus characterized by a limited size and a low impact in enhancing power technology teaching and industrial partnerships. However, ongoing nuclear applications activities are undertaken through strong legal and institutional infrastructures as Morocco has joined a large number of international conventions and agreements trusted by the IAEA. The introduction of nuclear power is subject to a close attention today to investigate if it is an alternative solution to meet the increasing energy needs. For a country not much industrialized and characterized by a medium electricity grid, the decision on the recourse to nuclear power needs to carry up early a training, R and D federative program on behalf of the engineering sector and the international cooperation. As the challenges associated to develop a successful nuclear power program requires an important effort directed toward increasing capacity, new education and training programs in the field of Energy Sciences and Engineering are presently targeted in several high education institutions prior to the goals of the education and research national reform. The preparation of a new master and engineer diploma at ENIM 'Power Systems Engineering and Management' is in process: the curricula introduces innovative concepts bringing together academic teachers, researchers and stakeholders to establish new discipline-based teaching and learning tools: what is mainly focused is to increase competency profile in consultation with the industry sector and to attract high quality students to ensure availability of human resources at the right time in the field of power technology utilization including nuclear power. A coordinated approach joining national and international partnership to implement oriented R

  4. Infrastructures Development Strategy in Energy Engineering Education and Research: a Bonus to Introduce a Safe and Secure Nuclear Power Program

    International Nuclear Information System (INIS)

    Bouhelal, Oum Keltoum

    2008-01-01

    In the area of Energy Engineering, high education programs including nuclear activities are currently running in collaboration with the employment sector to provide skills oriented profiles; the available packages are thus characterized by a limited size and a low impact in enhancing power technology teaching and industrial partnerships. However, ongoing nuclear applications activities are undertaken through strong legal and institutional infrastructures as Morocco has joined a large number of international conventions and agreements trusted by the IAEA. The introduction of nuclear power is subject to a close attention today to investigate if it is an alternative solution to meet the increasing energy needs. For a country not much industrialized and characterized by a medium electricity grid, the decision on the recourse to nuclear power needs to carry up early a training, R and D federative program on behalf of the engineering sector and the international cooperation. As the challenges associated to develop a successful nuclear power program requires an important effort directed toward increasing capacity, new education and training programs in the field of Energy Sciences and Engineering are presently targeted in several high education institutions prior to the goals of the education and research national reform. The preparation of a new master and engineer diploma at ENIM 'Power Systems Engineering and Management' is in process: the curricula introduces innovative concepts bringing together academic teachers, researchers and stakeholders to establish new discipline-based teaching and learning tools: what is mainly focused is to increase competency profile in consultation with the industry sector and to attract high quality students to ensure availability of human resources at the right time in the field of power technology utilization including nuclear power. A coordinated approach joining national and international partnership to implement oriented R and D

  5. Nuclear engineering vocabulary

    International Nuclear Information System (INIS)

    Dumont, X.; Andrieux, C.

    2001-01-01

    The members of the CSTNIN - the Special Commission for Nuclear Engineering Terminology and Neology - have just produced a Nuclear Engineering Vocabulary, published by SFEN. A 120-page document which, to date, includes 400 nuclear engineering terms or expressions. For each term or expression, this Glossary gives: the primary and secondary subject field in which it is applied, a possible abbreviation, its definition, a synonym if appropriate, any relevant comments, any associated word(s), the English equivalent, its status on the date of publication of the Glossary. (author)

  6. Advanced light water reactor program at ABB-Combustion Engineering Nuclear Power

    International Nuclear Information System (INIS)

    Cahn, H.

    1990-01-01

    To meet the needs of Electric Utilities ordering nuclear power plants in the 1990s, ABB-Combustion Engineering is developing two designs which will meet EPRI consensus requirements and new licensing issues. The System 80 Plus design is an evolutionary pressurized water reactor plant modelled after the successful System 80 design in operation in Palo Verde and under construction in Korea. System Plus is currently under review by the US Nuclear Regulatory Commission with final design approval expected in 1991 and design certification in 1992. The Safe Integral Reactor (SIR) plant is a smaller facility with passive safety features and modular construction intended for design certification in the late 1990s. (author)

  7. System engineering in the Nuclear Regulatory Commission licensing process: Program architecture process and structure

    International Nuclear Information System (INIS)

    Romine, D.T.

    1989-01-01

    In October 1987, the U.S. Nuclear Regulatory Commission (NRC) established the Center for Nuclear Waste Regulatory Analyses at Southwest Research Institute in San Antonio, Texas. The overall mission of the center is to provide a sustained level of high-quality research and technical assistance in support of NRC regulatory responsibilities under the Nuclear Waste Policy Act (NWPA). A key part of that mission is to assist the NRC in the development of the program architecture - the systems approach to regulatory analysis for the NRC high-level waste repository licensing process - and the development and implementation of the computer-based Program Architecture Support System (PASS). This paper describes the concept of program architecture, summarizes the process and basic structure of the PASS relational data base, and describes the applications of the system

  8. Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Bryant, J.W.; Nenni, J.A.

    2003-01-01

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, ''Radioactive Waste Management Manual.'' Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities

  9. Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Jeffrey Bryant

    2008-01-01

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities

  10. BS degree in nuclear engineering or a nuclear option

    International Nuclear Information System (INIS)

    Williams on, T.G.

    1988-01-01

    Many nuclear engineering educators are concerned about the health of nuclear engineering academic departments. As part of a review of the BS nuclear engineering degree program at the University of Virginia, the authors surveyed several local utilities with operating nuclear plants about their needs for nuclear engineering graduates. The perception of many of the utility executives about a nuclear engineering degree and about a nuclear option in another engineering curriculum does not agree with the way the authors view these two degrees. The responses to two of the survey questions were of particular interest: (1) does your company have a preference between nuclear engineering graduates and graduates in other fields with a nuclear option? (2) what do you consider to be a minimum level of education in nuclear engineering for a nuclear option in mechanical engineering? All of the four utilities that were surveyed stated a preference for mechanical or electrical engineers with a nuclear option, although two indicated that there are certain jobs for which a nuclear engineering graduate is desired

  11. Introduction to nuclear engineering

    International Nuclear Information System (INIS)

    Gylys, J.

    1997-01-01

    The textbook, which is the first book in Lithuanian on this subject generalises information on key aspects of nuclear engineering. Specialists in nuclear power for Ignalina NPP and for the infrastructure of nuclear energy sector of Lithuania are prepared at Kaunas University of Technology. The textbooks the students and lecturers have been using to-date were mostly in other languages than Lithuanian and they have not been adapted for teaching in Lithuania's higher educational establishments. This textbook is useful also to anyone who is interested in the issues and future prospects of nuclear power. It contains the chapters on nuclear reactions, theory of nuclear reactors, nuclear reactors kinetics, neutronic analysis, thermalhydraulic calculations of nuclear reactors operation and description of the construction of Ignalina NPP. (author)

  12. Introduction to nuclear engineering

    International Nuclear Information System (INIS)

    Bouchard, J.; Deffain, J.P.; Gouchet, A.

    2007-01-01

    This book is an introductory course to the technology of nuclear reactors, it is based on lectures given to students engaged in nuclear engineering curricula. A brief historical account of nuclear power is given in which Three Miles Island and Chernobyl accidents appear to be the main milestones because of their big impacts on the way to apprehend the safety in the design of a reactor for the first and on the public controversy of nuclear energy for the second. All the concepts and knowledge required to understand the design of a reactor and how it operates, are described: radioactivity, nuclear safety, irradiation effects on materials, uranium enrichment, reactor kinetics, fission products poisoning,... This book is made up of 4 parts: 1) nuclear power, 2) types of power nuclear reactors (PWR, BWR and fast reactors), 3) the fuel cycle, and 4) neutronics basics. (A.C.)

  13. European master degree in nuclear engineering

    International Nuclear Information System (INIS)

    Ghitescu, Petre; Prisecaru, Ilie

    2003-01-01

    In order to preserve and to improve the quality of nuclear engineering education and training in Europe, as well to ensure the safe and economic operation of nuclear power plants, the European Nuclear Engineering Network Program (ENEN) started in 2002. It is a program aiming to establish and maintain a set of criteria for specific curricula of nuclear engineering education, in particular, for an European Master Degree in Nuclear Engineering (EMNE). The ENEN program is financed by the FP5 and has the wide support of IAEA, OECD and EU Commission departments dealing with the nuclear engineering knowledge management. The promising results up to now determined the creation of the Asian Nuclear Engineering Network (ANEN) in July 2003 and of the World Nuclear University (WNU) starting in September 2003. The paper presents the future structure of EMNE which will allow the harmonization of the curricula of the universities of Europe until the Bologna Convention will be fully accepted and operational in all European countries. The ENEN program has taken into consideration the curricula of 22 universities and research centres from 15 different European countries and proposed a feasible scheme which allows the undergraduates with a weak to strong nuclear background to continue their graduate education in the nuclear engineering field towards EMNE. As one of the contractors of this program, University 'Politehnica' of Bucharest brings its contribution and actively takes part in all activities establishing the EMNE. (author)

  14. US nuclear engineering education: Status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This study, conducted under the auspices of the Energy Engineering Board of the National Research Council, examines the status of and outlook for nuclear engineering education in the United States. The study resulted from a widely felt concern about the downward trends in student enrollments in nuclear engineering, in both graduate and undergraduate programs. Concerns have also been expressed about the declining number of US university nuclear engineering departments and programs, the aging of their faculties, the appropriateness of their curricula and research funding for industry and government needs, the availability of scholarships and research funding, and the increasing ratio of foreign to US graduate students. A fundamental issue is whether the supply of nuclear engineering graduates will be adequate for the future. Although such issues are more general, pertaining to all areas of US science and engineering education, they are especially acute for nuclear engineering education. 30 refs., 12 figs., 20 tabs.

  15. US Nuclear Engineering Education: Status and prospects

    International Nuclear Information System (INIS)

    1990-01-01

    This study, conducted under the auspices of the Energy Engineering Board of the National Research Council, examines the status of and outlook for nuclear engineering education in the United States. The study, as described in this report resulted from a widely felt concern about the downward trends in student enrollments in nuclear engineering, in both graduate and undergraduate programs. Concerns have also been expressed about the declining number of US university nuclear engineering departments and programs, the ageing of their faculties, the appropriateness of their curricula and research funding for industry and government needs, the availability of scholarships and research funding, and the increasing ratio of foreign to US graduate students. A fundamental issue is whether the supply of nuclear engineering graduates will be adequate for the future. Although such issues are more general, pertaining to all areas of US science and engineering education, they are especially acute for nuclear engineering education. 30 refs., 24 figs., 49 tabs

  16. Nuclear engineering vocabulary

    International Nuclear Information System (INIS)

    2006-01-01

    The terms, expressions and definitions presented in this booklet come from the works carried out by the French specialized commission of nuclear engineering terminology and neology. This selection of terms cannot be found, in general, in classical dictionaries, or can be found but with a different meaning than the one used in nuclear engineering. All terms and expressions contained in this booklet have been already published in different issues of the Official Journal of the French Republic. This publication makes their use mandatory in replacement of foreign language equivalents inside all government services and public buildings. (J.S.)

  17. A nuclear power plant system engineering workstation

    International Nuclear Information System (INIS)

    Mason, J.H.; Crosby, J.W.

    1989-01-01

    System engineers offer an approach for effective technical support for operation and maintenance of nuclear power plants. System engineer groups are being set up by most utilities in the United States. Institute of Nuclear Power operations (INPO) and U.S. Nuclear Regulatory Commission (NRC) have endorsed the concept. The INPO Good Practice and a survey of system engineer programs in the southeastern United States provide descriptions of system engineering programs. The purpose of this paper is to describe a process for developing a design for a department-level information network of workstations for system engineering groups. The process includes the following: (1) application of a formal information engineering methodology, (2) analysis of system engineer functions and activities; (3) use of Electric Power Research Institute (EPRI) Plant Information Network (PIN) data; (4) application of the Information Engineering Workbench. The resulting design for this system engineer workstation can provide a reference for design of plant-specific systems

  18. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report

    International Nuclear Information System (INIS)

    Herbst, A.K.; McCray, J.A.; Rogers, A.Z.; Simmons, R.F.; Palethrope, S.J.

    1999-01-01

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels

  19. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  20. Academic nuclear engineering education - the Dutch way

    International Nuclear Information System (INIS)

    Wallerbos, E.J.M.; Geemert, R. van

    1997-01-01

    The academic nuclear engineering educational program in the Netherlands aims not only to give students a thorough knowledge of reactor physics but also to train them in practical skills and presentation techniques. These three aspects are important to become a successful nuclear engineer. (author)

  1. Current status of nuclear engineering education

    International Nuclear Information System (INIS)

    Palladino, N.J.

    1975-01-01

    The 65 colleges and universities offering undergraduate degrees in nuclear engineering and the 15 schools offering strong nuclear engineering options are, in general, doing a good job to meet the current spectrum of job opportunities. But, nuclear engineering programs are not producing enough graduates to meet growing demands. They currently receive little aid and support from their customers --industry and government--in the form of scholarships, grants, faculty research support, student thesis and project support, or student summer jobs. There is not enough interaction between industry and universities. Most nuclear engineering programs are geared too closely to the technology of the present family of reactors and too little to the future breeder reactors and controlled thermonuclear reactors. In addition, nuclear engineering programs attract too few women and members of minority ethnic groups. Further study of the reasons for this fact is needed so that effective corrective action can be taken. Faculty in nuclear engineering programs should assume greater initiative to provide attractive and objective nuclear energy electives for technical and nontechnical students in other disciplines to improve their technical understanding of the safety and environmental issues involved. More aggressive and persistent efforts must be made by nuclear engineering schools to obtain industry support and involvement in their programs

  2. Welding in nuclear engineering

    International Nuclear Information System (INIS)

    1982-01-01

    The 3rd international conference 'Welding in nuclear engineering', organized in 1978 by the Deutscher Verband fuer Schweisstechnik e.V., was, like the two foregoing conferences in 1970 and 1974, an absolute success. The noteworthy echo to this meeting in the international technical world - the number of 650 participants from 26 countries is self-evidence - and this fact, was for the Deutscher Verband fuer Schweisstechnik e.V. occasion and at the same time an obligation now to follow in the same way, the meeting that was started 12 years ago, by organizing the international conference 'Welding in nuclear engineering'. The conference this year offers in addition to the two plenary session lectures, 34 short reports and a further 28 single contributions in the form of two poster-sessions. Unfortunately, it was again not possible to accept all the papers submitted because the conference was limited to 2 days only. Nevertheless, the papers will offer a representative cross-section through the total range of welding engineering. In particular, the poster session, which take place for the first time within the scope of a meeting organized by the Working Group 'Welding in Nuclear Engineering', should contribute to the aim that this time again the discussions will form the main point of the conference. (orig./RW) [de

  3. Nuclear rocket engine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, Anatoly

    2013-07-01

    Covers a new technology of nuclear reactors and the related materials aspects. Integrates physics, materials science and engineering Serves as a basic book for nuclear engineers and nuclear physicists. The development of a nuclear rocket engine reactor (NRER) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  4. Nuclear Medicine Engineering

    International Nuclear Information System (INIS)

    Mateescu, Gheorghe; Craciunescu, Teddy

    2000-01-01

    'An image is more valuable than a thousand words' - this is the thought that underlies the authors' vision about the field of nuclear medicine. The monograph starts with a review of some theoretical and engineering notions that grounds the field of nuclear medicine: nuclear radiation, interaction of radiation with matter, radiation detection and measurement, numerical analysis. Products and methods needed for the implementation of diagnostic and research procedures in nuclear medicine are presented: radioisotopes and radiopharmaceuticals, equipment for in-vitro (radioimmunoassay, liquid scintillation counting) and in-vivo investigations (thyroid uptake, renography, dynamic studies, imaging). A special attention is focused on medical imaging theory and practice as a source of clinical information (morphological and functional). The large variety of parameters, components, biological structures and specific properties of live matter determines the practical use of three-dimensional tomographic techniques based on diverse physical principles: single-photon emission, positron emission, X-rays transmission, nuclear magnetic resonance, ultrasounds transmission and reflection, electrical impedance measurement. The fundamental reconstruction algorithms i.e., algorithms based on the projection theorem and Fourier filtering, algebraic reconstruction techniques and the algorithms based on statistical principles: maximum entropy, maximum likelihood, Monte Carlo algorithms, are depicted in details. A method based on the use of the measured point spread function is suggested. Some classical but often used techniques like linear scintigraphy and Anger gamma camera imaging are also presented together with some image enhancement techniques like Wiener filtering and blind deconvolution. The topic of the book is illustrated with some clinical samples obtained with nuclear medicine devices developed in the Nuclear Medicine Laboratory of the National Institute of Nuclear Physics and

  5. Final Technical Report and management: NUCLEAR ENGINEERING RECRUITMENT EFFORT

    International Nuclear Information System (INIS)

    Kerrick, Sharon S.; Vincent, Charles D.

    2007-01-01

    This report provides the summary of a project whose purpose was to support the costs of developing a nuclear engineering awareness program, an instruction program for teachers to integrate lessons on nuclear science and technology into their existing curricula, and web sites for the exchange of nuclear engineering career information and classroom materials. The specific objectives of the program were as follows: Objective 1--Increase awareness and interest of nuclear engineering; Objective 2--Instruct Teachers on nuclear topics; Objective 3--Nuclear education programs web-site; Objective 4--Support to university/industry matching grants and reactor sharing; Objective 5--Pilot project; and Objective 6--Nuclear engineering enrollment survey at universities

  6. Neutrons and Nuclear Engineering

    International Nuclear Information System (INIS)

    Ekkebus, Allen E.

    2007-01-01

    Oak Ridge National Laboratory hosted two workshops in April 2007 relevant to nuclear engineering education. In the Neutron Stress, Texture, and Phase Transformation for Industry workshop (http://neutrons.ornl.gov/workshops/nst2/), several invited speakers gave examples of neutron stress mapping for nuclear engineering applications. These included John Root of National Research Council of Canada, Mike Fitzpatrick of the UK's Open University, and Yan Gao of GE Global Research on their experiences with industrial and academic uses of neutron diffraction. Xun-Li Wang and Camden Hubbard described the new instruments at ORNL that can be used for such studies. This was preceded by the Neutrons for Materials Science and Engineering educational symposium (http://neutrons.ornl.gov/workshops/edsym2007). It was directed to the broad materials science and engineering community based in universities, industry and laboratories who wish to learn what the neutron sources in the US can provide for enhancing the understanding of materials behavior, processing and joining. Of particular interest was the presentation of Donald Brown of Los Alamos about using 'Neutron diffraction measurements of strain and texture to study mechanical behavior of structural materials.' At both workshops, the ORNL neutron scattering instruments relevant to nuclear engineering studies were described. The Neutron Residual Stress Mapping Facility (NRSF2) is currently in operation at the High Flux Isotope Reactor; the VULCAN Engineering Materials Diffractometer will begin commissioning in 2008 at the Spallation Neutron Source. For characteristics of these instruments, as well as details of other workshops, meetings, capabilities, and research proposal submissions, please visit http://neutrons.ornl.gov. To submit user proposals for time on NRSF2 contact Hubbard at hubbardcratornl.gov

  7. Thermal hydraulics in undergraduate nuclear engineering education

    International Nuclear Information System (INIS)

    Theofanous, T.G.

    1986-01-01

    The intense safety-related research efforts of the seventies in reactor thermal hydraulics have brought about the recognition of the subject as one of the cornerstones of nuclear engineering. Many nuclear engineering departments responded by building up research programs in this area, and mostly as a consequence, educational programs, too. Whether thermal hydraulics has fully permeated the conscience of nuclear engineering, however, remains yet to be seen. The lean years that lie immediately ahead will provide the test. The purpose of this presentation is to discuss the author's own educational activity in undergraduate nuclear engineering education over the past 10 yr or so. All this activity took place at Purdue's School of Nuclear Engineering. He was well satisfied with the results and expects to implement something similar at the University of California in Santa Barbara in the near future

  8. Metallurgy for nuclear engineering

    International Nuclear Information System (INIS)

    Kozlov, A.F.

    1986-01-01

    Principal ways of development in metallurgy and metallurgical equipment on nuclear engineering plants are discussed. A great attention is paid to changing welded structures for casted and forged ones. These measures give the possibility to increase reliability of NPP components and decrease labour content. The following processing procedures have been introduced: vacuum carbon reduction providing small amount of nonmetallic inclusions in reactor vessel steel; manufacturing steel large-size castings (360 and 420 t) for WWER vessels; rolling at plate mill 5000 etc

  9. Nuclear Engineering Enrollments and Degrees Survey, 2005 Data

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education

    2006-01-01

    This annual report details the number of nuclear engineering bachelor's, master's, and doctoral degrees awarded at a sampling of academic programs from 1998-2005. it also looks at nuclear engineering degrees by curriculum and the number of students enrolled in nuclear engineering degree programs at 30 U.S. universities in 2005

  10. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  11. The changing face of nuclear engineering education

    International Nuclear Information System (INIS)

    Poston, J.W.

    1991-01-01

    Nuclear engineering education in the US is in a near-crisis situation. Most academic programs are small with limited enrollments and faculty. Some of these programs are being absorbed into larger academic units, while others are being terminated. The number of identifiable academic programs has dropped dramatically over the last several years, and there is genuine concern that this downward trend will continue. The recent report by the National Academy of Sciences highlights the problems, needs, and prospects for nuclear engineering education in this country. At the same time, some programs appear to be relatively healthy and somewhat secure. A closer look at these programs indicates that there has been an evolution in the approach taken by these survivors toward both their academic and research programs. This paper discusses the approaches taken at Texas A and M University over the last 8 to 10 years to strengthen the Department of Nuclear Engineering

  12. Programming Google App Engine

    CERN Document Server

    Sanderson, Dan

    2010-01-01

    As one of today's cloud computing services, Google App Engine does more than provide access to a large system of servers. It also offers you a simple model for building applications that scale automatically to accommodate millions of users. With Programming Google App Engine, you'll get expert practical guidance that will help you make the best use of this powerful platform. Google engineer Dan Sanderson shows you how to design your applications for scalability, including ways to perform common development tasks using App Engine's APIs and scalable services. You'll learn about App Engine's a

  13. Nuclear industry prepares fore shortage of engineers

    International Nuclear Information System (INIS)

    Gauker, Lynn.

    1991-01-01

    It is predicted that the Canadian nuclear industry will experience a shortage of qualified personnel within the next five to ten years. The reasons for this prediction are as follows: enrollment in engineering courses, particularly five courses in nuclear engineering has been declining; immigration can no longer be expected to fill the gap; the workforce is aging. Solutions may include promotional campaigns, student employment programs, and educating workers to a professional level

  14. Nuclear engineering in the linelight

    International Nuclear Information System (INIS)

    Blumentritt, G.; Schwaar, L.

    1979-01-01

    An insight is given into the state of art of nuclear engineering considering only essential problems. The subject is covered under the following headings: (1) the way to nuclear fission, (2) detectors for nuclear radiation, (3) measuring systems for nuclear radiation, (4) radioisotopes in industry, (5) aids in medicine, (6) radiation absorption and its utilization, (7) use of radioisotopes in research, (8) the chain reaction in a nuclear reactor, (9) power from nuclear power plants, (10) pressurized water reactors (PWR), (11) high-temperature reactors (HTGR), (12) fast breeder reactors (FBR), (13) nuclear energetics - a new branch of industry, (14) nuclear explosions, (15) nuclear research at Rossendorf, and (16) the energy of the future. An appendix includes definitions of terms used in nuclear engineering. The book is written for a wide circle of readers who are interested in the peaceful uses of nuclear energy

  15. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    Volume 1 to the Department of Energy's Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site

  16. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  17. Risks in nuclear engineering

    International Nuclear Information System (INIS)

    Lindackers, K.H.

    1982-01-01

    The German nuclear power plant risk assessment study has not contributed to a higher degree of acceptance of light-water reactors among the general public. One reason is the fact that its predictions are much too inaccurate, and the consequences from severe accidents, regardless of their possibly extremely small likelihood, speak for themselves. The work still to be done in Phase B of the risk analysis will only be useful, if the safety factors in risk assessments can be drastically increased. The results of the risk analysis cannot be used in legislation or the administration of justice, because they are too incomplete and inaccurate. Scientific findings in risk analysis show that new designs and new components complicate objective judgement of changes in reactor safety engineering considerably. Every change in the required precautionary safety measures must be carefully considered, and if need be tested under the appropriate conditions. (orig./HSCH) [de

  18. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1993-01-01

    The role of an on-site irradiation facility in nuclear science and engineering education is examined. Using the example of a university research reactor, the use of such devices in laboratory instruction, public outreach programs, special instructional programs, research, etc. is discussed. Examples from the Oregon State University curriculum in nuclear chemistry, nuclear engineering and radiation health are given. (author) 1 tab

  19. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  20. Quiet engine program flight engine design study

    Science.gov (United States)

    Klapproth, J. F.; Neitzel, R. E.; Seeley, C. T.

    1974-01-01

    The results are presented of a preliminary flight engine design study based on the Quiet Engine Program high-bypass, low-noise turbofan engines. Engine configurations, weight, noise characteristics, and performance over a range of flight conditions typical of a subsonic transport aircraft were considered. High and low tip speed engines in various acoustically treated nacelle configurations were included.

  1. Heavy Truck Engine Program

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Christopher

    2009-01-08

    The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient

  2. Nuclear operations summary Engineering organization for Plowshare nuclear operations

    Energy Technology Data Exchange (ETDEWEB)

    Broadman, Gene A [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    The availability of nuclear explosives for peaceful projects has given the engineer a new dimension in his thinking. He can now seek methods of adapting Plowshare to a variety of industrial applications. The full potential of the Plowshare Program can only be attained when industry begins to use nuclear explosives on a regular basis, for economically sound projects. It is the purpose of this paper to help the engineer familiarize himself with Plowshare technology to hasten the day when 'Plowsharee goes commercial'. An engineering project utilizing nuclear exposives ordinarily involves three main phases: Phase I (a) The theoretical and empirical analysis of effects. (b) Projected economic and/or scientific evaluation. (c) A safety analysis. Phase II (a) Field construction. (b) Safe detonation of the nuclear explosive. (c) Data acquisition. Phase III The evaluation and/or exploitation of the results. This paper will be restricted to Phase II, referred to collectively as the 'nuclear operation'.

  3. Nuclear Engineering Enrollments and Degrees Survey, 2008 Data

    International Nuclear Information System (INIS)

    2009-01-01

    The survey includes degrees granted between September 1, 2007, and August 31, 2008, and fall 2008 enrollments. Thirty-one academic programs reported having nuclear engineering programs during 2008, and data was provided by all thirty-one programs

  4. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement

    International Nuclear Information System (INIS)

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel

  5. Ontario Hydro's nuclear program

    International Nuclear Information System (INIS)

    McCredie, J.

    1984-01-01

    This report briefly describes Ontario Hydro's nuclear program, examining the design and construction status, and the future from Ontario Hydro's perspective. Ontario Hydro relies heavily on nuclear power. Nuclear fuel was responsible for approximately 34% of Ontario Hydro's energy production in 1983. The nuclear proportion was supplied by twelve operating units located: NPD, Douglas Point, Pickering A and B. It is expected that by approximately 1992, 65% of the total energy needs will be generated through nuclear power

  6. Nuclear engineering enrollments and degrees, 1981

    International Nuclear Information System (INIS)

    Little, J.R.; Shirley, D.L.

    1982-05-01

    This report presents data on the number of students enrolled and the degrees awarded in academic year 1980-81 from 73 US institutions offering degree programs in nuclear engineering or nuclear options within other engineering fields. Presented here are historical data for the last decade, which provide information such as trends by degree level, foreign national student participation, female and minority student participation, and placement of graduates. Also included is a listing of the universities by type of program and number of students

  7. Towards the European Nuclear Engineering Education Network

    International Nuclear Information System (INIS)

    Mavko, B.; Giot, M.; Sehgal, B.R.; Goethem, G. Van

    2003-01-01

    Current priorities of the scientific community regarding basic research lie elsewhere than in nuclear sciences. The situation today is significantly different than it was three to four decades ago when much of the present competence base in nuclear sciences was in fact generated. In addition, many of the highly competent engineers and scientists, who helped create the present nuclear industry, and its regulatory structure, are approaching retirement. To preserve nuclear knowledge and expertise through the higher nuclear engineering education in the 5 th framework program of the European Commission the project ENEN (European Nuclear Engineering Education Network) was launched, since the need to keep the university curricula in nuclear sciences and technology alive has been clearly recognized at European level. As the follow up of this project an international nuclear engineering education consortium of universities with partners from the nuclear sector is presently in process of being established This association called ENEN has as founding members: 14 universities and 8 research institutes from 17 European countries. (author)

  8. IAEA nuclear security program

    Energy Technology Data Exchange (ETDEWEB)

    Ek, D. [International Atomic Energy Agency, Vienna (Austria)

    2006-07-01

    Although nuclear security is a State responsibility, it is nevertheless an international concern, as the consequences of a nuclear security incident would have worldwide impact. These concerns have resulted in the development of numerous international instruments on nuclear security since the terrorist events in the USA on September 11, 2001. The IAEA Office of Nuclear Security has been charged to assist Member States to improvement their nuclear security and to meet the intent of these international obligations in order to ensure a cohesive thread of nuclear security protects the global community. The programs underway and planned by the Office of Nuclear Security will be discussed in this paper. (author)

  9. IAEA nuclear security program

    International Nuclear Information System (INIS)

    Ek, D.

    2006-01-01

    Although nuclear security is a State responsibility, it is nevertheless an international concern, as the consequences of a nuclear security incident would have worldwide impact. These concerns have resulted in the development of numerous international instruments on nuclear security since the terrorist events in the USA on September 11, 2001. The IAEA Office of Nuclear Security has been charged to assist Member States to improvement their nuclear security and to meet the intent of these international obligations in order to ensure a cohesive thread of nuclear security protects the global community. The programs underway and planned by the Office of Nuclear Security will be discussed in this paper. (author)

  10. Nuclear engineering education initiative at Ibaraki University

    International Nuclear Information System (INIS)

    Matsumura, Kunihito; Kanto, Yasuhiro; Tanaka, Nobuatsu; Saigusa, Mikio; Kurumada, Akira; Kikuchi, Kenji

    2015-01-01

    With the help of a grant from the Ministry of Education, Culture, Sports, Science and Technology, Ibaraki University has been engaging for six years in the development and preparation of educational environment on nuclear engineering for each of graduate and undergraduate. Core faculty conducts general services including the design and implementation of curriculum, operational improvement, and implementation of lectures. 'Beginner-friendly introduction for nuclear power education' is provided at the Faculty of Engineering, and 'nuclear engineering education program' at the Graduate School of Science and Engineering. All the students who have interest or concern in the accidents at nuclear power plants or the future of nuclear power engineering have opportunities to learn actively. This university participates in the alliance or association with other universities, builds industry - government - academia cooperation with neighboring institutions such as the Japan Atomic Energy Agency, and makes efforts to promote the learning and development of applied skills related to nuclear engineering through training and study tours at each facility. For example, it established the Frontier Applied Atomic Science Center to analyze the structure and function of materials using the strong neutron source of J-PARC. As the efforts after the earthquake accident, it carried out a radiation survey work in Fukushima Prefecture. In addition, it proposed and practiced the projects such as 'development of methods for the evaluation of transfer/fixation properties and decontamination of radioactive substances,' and 'structure analysis of radioactive substances remaining in soil, litter, and polluted water and its application to the decontamination.' (A.O.)

  11. Fluidization in nuclear engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sathiyamoorthy, D; Venugopalan, Ramani; Vijay, P L [Metallurgy Division, Bhabha Atomic Research Centre, Mumbai (India); Varadarajan, T G [Heavy Water Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Fluidization technique has not been fully exploited in nuclear industries mainly due to lack of open literature or unawareness of its applications. Hence in this paper a detailed range of applications of fluidization in uranium extraction, nuclear fuel material preparation, fuel reprocessing and waste disposal is highlighted. A fluidized bed nuclear reactor concept is also presented. The need of fluidization for process improvement and modernization in nuclear programmes is stressed. (author). 40 refs., 3 figs.

  12. Congressional perspective on the prospects for tomorrow's nuclear engineers

    International Nuclear Information System (INIS)

    Lloyd, M.

    1986-01-01

    This paper reviews in some detail the nature of the directions in the federally supported nuclear energy research program and discusses the potential opportunities in nuclear engineering education to make contributions to the nation's nuclear power research efforts. The potential impacts of deficit reduction measures on the budgets for nuclear fission programs are also described and the subcommittee priorities for the DOE nuclear fission program within the budget framework are discussed

  13. Vinca nuclear decommissioning program

    International Nuclear Information System (INIS)

    Pesic, M.; Subotic, K.; Sotic, O.; Plecas, I.; Ljubenov, V.; Peric, A.

    2002-01-01

    In this paper a preliminary program for the nuclear decommissioning in The Vinca Institute of Nuclear Sciences is presented. Proposed Projects and Activities, planned to be done in the next 10 years within the frames of the Program, should improve nuclear and radiation safety and should solve the main problems that have arisen in the previous period. Project of removal of irradiated spent nuclear fuel from the RA reactor, as a first step in all possible decommissioning strategies and the main activity in the first two-three years of the Program realization, is considered in more details. (author)

  14. Introduction to nuclear facilities engineering

    International Nuclear Information System (INIS)

    Sapy, Georges

    2012-06-01

    Engineering, or 'engineer's art', aims at transforming simple principle schemes into operational facilities often complex especially when they concern the nuclear industry. This transformation requires various knowledge and skills: in nuclear sciences and technologies (nuclear physics, neutronics, thermal-hydraulics, material properties, radiation protection..), as well as in non-nuclear sciences and technologies (civil engineering, mechanics, electricity, computer sciences, instrumentation and control..), and in the regulatory, legal, contractual and financial domains. This book explains how this huge body of knowledge and skills must be organized and coordinated to create a reliable, exploitable, available, profitable and long-lasting facility, together with respecting extremely high safety, quality, and environmental impact requirements. Each aspect of the problem is approached through the commented presentation of nuclear engineering macro-processes: legal procedures and administrative authorizations, nuclear safety/radiation protection/security approach, design and detailed studies, purchase of equipments, on-site construction, bringing into operation, financing, legal, contractual and logistic aspects, all under the global control of a project management. The 'hyper-complexness' of such an approach leads to hard points and unexpected events. The author identifies the most common ones and proposes some possible solutions to avoid, mitigate or deal with them. In a more general way, he proposes some thoughts about the performance factors of a nuclear engineering process

  15. Impact of quality concepts on nuclear engineering accreditation

    International Nuclear Information System (INIS)

    Woodall, D.M.

    1993-01-01

    This paper is an update of the accreditation process for nuclear engineering education at the undergraduate and graduate level in U.S. universities and colleges. The Engineering Accreditation Commission (EAC) of the Accreditation Board for Engineering and Technology (ABET) has made a number of major changes in the process for engineering accreditation in recent years. This paper identifies those changes that have taken place, discusses the rationale for those changes, and encourages U.S. universities with nuclear engineering programs to respond

  16. Midwest Nuclear Science and Engineering Consortium

    International Nuclear Information System (INIS)

    Volkert, Wynn; Kumar, Arvind; Becker, Bryan; Schwinke, Victor; Gonzalez, Angel; McGregor, Douglas

    2010-01-01

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  17. Midwest Nuclear Science and Engineering Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Wynn Volkert; Dr. Arvind Kumar; Dr. Bryan Becker; Dr. Victor Schwinke; Dr. Angel Gonzalez; Dr. DOuglas McGregor

    2010-12-08

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  18. ENEN - European nuclear engineering network

    International Nuclear Information System (INIS)

    Comsa, Olivia; Paraschiva, M.V.; Banutoiu, Maria

    2002-01-01

    The paper presents the main objectives and expected results of European Project FP5 - ENEN - 'European Nuclear Engineering Network'. The underlying objective of the work is safeguarding the nuclear knowledge and expertise through the preservation of higher nuclear engineering education. Co-operation between universities and universities and research centres, will entail a better use of dwindling teaching capacity, scientific equipment and research infrastructure. 'Today, the priorities of the scientific community regarding basic research lie elsewhere than in nuclear sciences. Taken together, these circumstances create a significantly different situation from three to four decades ago when much of the present competence base was in fact generated. In addition, many of the highly competent engineers and scientists, who helped create the present nuclear industry, and its regulatory structure, are approaching retirement age. These competence issues need to be addressed at Community level and a well designed Community research and training programme should play a role that is more important than ever before. This is an area where the concept of an European research area should be further explored'. The outcome from this project should be a clear road map for the way ahead in nuclear engineering education in Europe. The underlying objective of the concerted action is the preservation of nuclear knowledge and expertise through the preservation of higher nuclear engineering education. 'Many diverse technologies, currently serving nations world-wide, would be affected by an inadequate number of future nuclear scientists and engineers. Nuclear technology is widespread and multidisciplinary: nuclear and reactor physics, thermal hydraulics and mechanics, material science, chemistry, health science, information technology and a variety of other areas. Yet the advancement of this technology, with all its associated benefits, will be threatened if not curtailed unless the

  19. Undergraduate education in nuclear engineering in the USA

    International Nuclear Information System (INIS)

    Martin, W.R.

    1993-01-01

    The discipline of nuclear engineering is described, giving some historical background to explain the structure of the curricula commonly found in nuclear engineering programs in the U.S. Typical curricula are described, along with a specific example given by the University of Michigan undergraduate program in nuclear engineering. The National Academy of Sciences report on U.S. nuclear engineering education is summarized, and the major findings are presented, including data on the number of programs, number of degrees, and enrollment trends. Some discussion is made of manpower trends and the degree to which nuclear programs can supply nuclear engineers to meet the anticipated demands of the current decade and into the next century. (author) 12 refs.; 2 figs.; 4 tabs

  20. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  1. Brief 74 Nuclear Engineering Enrollments and Degrees Survey, 2014 Data

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-15

    The 2014 survey includes degrees granted between September 1, 2013 and August 31, 2014, and enrollments for fall 2014. There are three academic programs new to this year's survey. Thirty-five academic programs reported having nuclear engineering programs during 2014, and data were provided by all thirty-five. The enrollments and degrees data include students majoring in nuclear engineering or in an option program equivalent to a major. Two nuclear engineering programs have indicated that health physics option enrollments and degrees are also reported in the health physics enrollments and degrees survey.

  2. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures

  3. Nuclear Reactor Engineering Analysis Laboratory

    International Nuclear Information System (INIS)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-01-01

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels

  4. Argonne Nuclear Data Program

    Energy Technology Data Exchange (ETDEWEB)

    Kondev, F. [US Nuclear Data Program, U.S. DOE/SC (United States)

    2013-08-15

    Nuclear Data Compilations and Evaluations: - Nuclear structure and decay data compilations and evaluations for the International NSDD network (ENSDF and XUNDL); - AME12 and NuBase12 - in collaboration with G. Audi and M. MacCormick, CSNSM (Orsay), M. Wang, IMP (Lanzhou) and B. Pfeiffer, GSI (Darmstadt) - presentation by M. Wang; - DDEP coordinator - completed; - Horizontal nuclear data evaluation activities -IAEA CRP's, Isomers, Medical Isotopes; Complementary ND research Activities: - CARIBU, FRIB and other RIB facilities, Gretina, IAEA-CRP - emphasis on nuclear structure physics and astrophysics, and their intersection with applied nuclear physics programs.

  5. Brief 66 Nuclear Engineering Enrollments and Degrees Survey, 2009 Data

    International Nuclear Information System (INIS)

    Blair, Larry M.

    2010-01-01

    The survey includes degrees granted between September 1, 2008 and August 31, 2009, and fall 2009 enrollments. Thirty-two academic programs reported having nuclear engineering programs during 2009, and data was obtained from all thirty-two.

  6. Nuclear Engineering Enrollments and Degrees Survey, 2007 Data

    International Nuclear Information System (INIS)

    Analysis and Evaluation, Science Education Programs

    2008-01-01

    The survey includes degrees granted between September 1, 2006, and August 1, 2007, and fall 2007 enrollments. Thirty-one academic programs reported having nuclear engineering programs during 2007, and data was obtained for all thirty-one

  7. Nuclear plant aging research program

    International Nuclear Information System (INIS)

    Eissenberg, D.M.

    1987-01-01

    The U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, has established the Nuclear Plant Aging Research (NPAR) program in its Division of Engineering Technology. Principal contractors for this program include Oak Ridge National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, and Pacific Northwest Laboratory. The program goals are: to identify and characterize time-dependent degradation (aging) of nuclear plant safety-related electrical and mechanical components which could lead to loss of safety function; to identify and recommend methods for detecting and trending aging effects prior to loss of safety function so that timely maintenance can be implemented; and to recommend maintenance practices for mitigating the effects of aging. Research activities include prioritization of system and component aging in nuclear plants, characterization of aging degradation of specific components including identification of functional indicators useful for trending degradation, and testing of practical methods and devices for measuring the functional indicators. Aging assessments have been completed on electric motors, snubbers, motor-operated valves, and check valves. Testing of trending methods and devices for motor-operated valves and check valves is in progress

  8. Aerospace engineering educational program

    Science.gov (United States)

    Craft, William; Klett, David; Lai, Steven

    1992-01-01

    The principle goal of the educational component of NASA CORE is the creation of aerospace engineering options in the mechanical engineering program at both the undergraduate and graduate levels. To accomplish this goal, a concerted effort during the past year has resulted in detailed plans for the initiation of aerospace options in both the BSME and MSME programs in the fall of 1993. All proposed new courses and the BSME aerospace option curriculum must undergo a lengthy approval process involving two cirriculum oversight committees (School of Engineering and University level) and three levels of general faculty approval. Assuming approval is obtained from all levels, the options will officially take effect in Fall '93. In anticipation of this, certain courses in the proposed curriculum are being offered during the current academic year under special topics headings so that current junior level students may graduate in May '94 under the BSME aerospace option. The proposed undergraduate aerospace option curriculum (along with the regular mechanical engineering curriculum for reference) is attached at the end of this report, and course outlines for the new courses are included in the appendix.

  9. Nuclear industry will be short of engineers

    International Nuclear Information System (INIS)

    Yates, M.

    1990-01-01

    This article discusses the potential shortage of nuclear engineers due to reduction of educational and training facilities and difficulty in attracting minorities into nuclear engineering. The article reports on recommendations from the National Research Council Nuclear Education Study Committee on attracting minorities to nuclear engineering, increasing DOE fellowships, funding for research and development, involvement of utilities and vendors, and support of the American Nuclear Society's advocacy of nuclear engineering education

  10. Nuclear engineering education in italian universities

    International Nuclear Information System (INIS)

    Dulla, S.; Panella, B.; Ravetto, P.

    2011-01-01

    The paper illustrates the evolution and the present situation of the university-level nuclear engineering education in Italy. The problems connected with the need of qualified faculty in view of a dramatic increase of students is pointed out. A short description of the programs at present available at Italian universities is also presented, together with some statistics referred to Politecnico di Torino. The mathematical and computation content of each programs is also analyzed. (author)

  11. Environmental and waste disposal options in nuclear engineering curricula

    International Nuclear Information System (INIS)

    Elleman, T.S.; Gilligan, J.G.

    1991-01-01

    The strong national emphasis on waste and environmental issues has prompted increasing interest among nuclear engineering students in study options that will prepare them for careers in these areas. Student interest appears to focus principally on health physics, radioactive waste disposal, and environmental interactions with radionuclides. One motivation for this interest appears to be the growing national programs in environmental restoration and waste remediation that have produced fellowship support for nuclear engineering students as well as employment opportunities. Also, the recent National Academy of sciences study on nuclear engineering education specifically emphasized the importance of expanding nuclear engineering curricula and research programs to include a greater emphasis on radioactive waste and environmental issues. The North Carolina State University (NCSU) Department of Nuclear Engineering is attempting to respond to these needs through the development of course options that will allow students to acquire background in environmental subjects as a complement to the traditional nuclear engineering education

  12. Chemical engineering side of nuclear fusion power

    International Nuclear Information System (INIS)

    Johnson, E.F.

    1976-10-01

    It is widely recognized that chemical engineering has important roles to play in the development of national and world wide energy resources through optimal utilization of fossil fuel reserves. It is much less appreciated that there are crucial chemical engineering problems in the development of energy production from other sources. In particular the successful development of nuclear fusion power generating systems will require the solution of many problems that are uniquely suited to chemical engineers. This article presents a brief overview of the fusion development program and an identification of the major technological problems remaining to be solved

  13. National nuclear scientific program

    International Nuclear Information System (INIS)

    Plecas, I.; Matausek, M.V.; Neskovic, N.

    2001-01-01

    National scientific program of the Vinca Institute Nuclear Reactors And Radioactive Waste comprises research and development in the following fields: application of energy of nuclear fission, application of neutron beams, analyses of nuclear safety and radiation protection. In the first phase preparatory activities, conceptual design and design of certain processes and facilities should be accomplished. In the second phase realization of the projects is expected. (author)

  14. Nuclear physics program plan

    International Nuclear Information System (INIS)

    1985-11-01

    The nuclear physics program objectives, resources, applications and implications of scientific opportunities are presented. The scope of projected research is discussed in conjunction with accelerator facilities and manpower. 25 figs., 2 tabs

  15. Iran's Nuclear Program: Status

    National Research Council Canada - National Science Library

    Kerr, Paul K

    2008-01-01

    .... Indeed, the UN Security Council has responded to Iran's refusal to suspend work on its uranium enrichment and heavy-water nuclear reactor programs by adopting several resolutions, most recently...

  16. Iran's Nuclear Program: Status

    National Research Council Canada - National Science Library

    Kerr, Paul K

    2008-01-01

    .... Indeed, the UN Security Council has responded to Iran's refusal to suspend work on its uranium enrichment and heavy-water nuclear reactor programs by adopting several resolutions which imposed sanctions on Tehran...

  17. Current challenges for education of nuclear engineers. Beyond nuclear basics

    International Nuclear Information System (INIS)

    Schoenfelder, Christian

    2014-01-01

    In past decades, curricula for the education of nuclear engineers (either as a major or minor subject) have been well established all over the world. However, from the point of view of a nuclear supplier, recent experiences in large and complex new build as well as modernization projects have shown that important competences required in these projects were not addressed during the education of young graduates. Consequently, in the past nuclear industry has been obliged to either accept long periods for job familiarization, or to develop and implement various dedicated internal training measures. Although the topics normally addressed in nuclear engineering education (like neutron and reactor physics, nuclear materials or thermohydraulics and the associated calculation methods) build up important competences, this paper shows that the current status of nuclear applications requires adaptations of educational curricula. As a conclusion, when academic nuclear engineering curricula start taking into account current competence needs in nuclear industry, it will be for the benefit of the current and future generation of nuclear engineers. They will be better prepared for their future job positions and career perspectives, especially on an international level. The recommendations presented should not only be of importance for the nuclear fission field, but also for the fusion community. Here, the Horizon 2020 Roadmap to Fusion as published in 2012 now is focusing on ITER and on a longer-term development of fusion technology for a future demonstration reactor DEMO. The very challenging work program is leading to a strong need for exactly those skills that are described in this article.

  18. Current challenges for education of nuclear engineers. Beyond nuclear basics

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, Christian [AREVA GmbH, Offenbach (Germany). Training Center

    2014-07-15

    In past decades, curricula for the education of nuclear engineers (either as a major or minor subject) have been well established all over the world. However, from the point of view of a nuclear supplier, recent experiences in large and complex new build as well as modernization projects have shown that important competences required in these projects were not addressed during the education of young graduates. Consequently, in the past nuclear industry has been obliged to either accept long periods for job familiarization, or to develop and implement various dedicated internal training measures. Although the topics normally addressed in nuclear engineering education (like neutron and reactor physics, nuclear materials or thermohydraulics and the associated calculation methods) build up important competences, this paper shows that the current status of nuclear applications requires adaptations of educational curricula. As a conclusion, when academic nuclear engineering curricula start taking into account current competence needs in nuclear industry, it will be for the benefit of the current and future generation of nuclear engineers. They will be better prepared for their future job positions and career perspectives, especially on an international level. The recommendations presented should not only be of importance for the nuclear fission field, but also for the fusion community. Here, the Horizon 2020 Roadmap to Fusion as published in 2012 now is focusing on ITER and on a longer-term development of fusion technology for a future demonstration reactor DEMO. The very challenging work program is leading to a strong need for exactly those skills that are described in this article.

  19. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    The US Department of Energy (DOE) is currently deciding the direction of its environmental restoration and waste management programs at the Idaho National Engineering Laboratory (INEL) for the next 10 years. Pertinent to this decision is establishing policies for the environmentally sensitive and safe transport, storage, and management of spent nuclear fuels. To develop these policies, it is necessary to revisit or examine the available options. As a part of the DOE complex, the Hanford Site not only has a large portion of the nationwide DOE-owned inventory of spent nuclear fuel, but also is a participant in the DOE decision for management and ultimate disposition of spent nuclear fuel. Efforts in this process at Hanford include assessment of several options for stabilizing, transporting, and storing all or portions of DOE-owned spent nuclear fuel at the Hanford Site. Such storage and management of spent nuclear fuel will be in a safe and suitable manner until a final decision is made for ultimate disposition of spent nuclear fuel. Five alternatives involving the Hanford Site are being considered for management of the spent nuclear fuel inventory: (1) the No Action Alternative, (2) the Decentralization Alternative, (3) the 1992/1993 Planning Basis Alternative, (4) the Regionalization Alternative, and (5) the Centralization Alternative. AU alternatives will be carefully designed to avoid environmental degradation and to provide protection to human health and safety at the Hanford Site and surrounding region

  20. Training in nuclear engineering companies

    International Nuclear Information System (INIS)

    Perezagua, R. L.

    2013-01-01

    The importance of training is growing in all business areas and fields and especially in hi-tech companies like engineering firms. Nuclear projects are highly multidisciplinary and, even in the initial awarding and pre-construction phases, need to be staffed with personnel that is well-prepared and highly-qualified in areas that, in most cases, are not covered by university studies. This article examines the variables that influence the design of specific training for nuclear projects in engineering firms, along with new training technologies (e-learning) and new regulatory aspects (IS-12). (Author)

  1. Nuclear Reactor Sharing Program

    International Nuclear Information System (INIS)

    1994-01-01

    The Ohio State University Research Reactor (OSURR) is licensed to operate at a maximum power level of 500 kW. A pool-type reactor using flat-plate, low enriched fuel elements, the OSURR provides several experimental facilities including two 6-inch i.d. beam ports, a graphite thermal column, several graphite-isotope-irradiation elements, a pneumatic transfer system (Rabbit), various dry tubes, and a Central Irradiation Facility (CIF). The core arrangement and accessibility facilitates research programs involving material activation or core parameter studies. The OSURR control room is large enough to accommodate laboratory groups which can use control instrumentation for monitoring of experiments. The control instrumentation is relatively simple, without a large amount of duplication. This facilitates opportunities for hands-on experience in reactor operation by nuclear engineering students making reactor parameter measurements. For neutron activation analysis and analyses of natural environmental radioactivity, the NRL maintains the gamma ray spectroscopy system (GRSS). It is comprised of two PC-based 8192-channel multichannel analyzers (MCAs) with all the required software for quantitative analysis. A 3 double-prime x 3 double-prime NaI(Tl), a 14 percent Ge(Li), and a High Purity Germanium detector are currently available for use with the spectroscopy system

  2. Development of human factors engineering guide for nuclear power project

    International Nuclear Information System (INIS)

    Wu Dangshi; Sheng Jufang

    1997-01-01

    'THE PRACTICAL GUIDE FOR APPLICATION OF HUMAN FACTORS ENGINEERING TO NUCLEAR POWER PROJECT (First Draft, in Chinese)', which was developed under a research program sponsored by National Nuclear Safety Administration (NNSA) is described briefly. It is hoped that more conscious, more systematical and more comprehensive application of Human Factors Engineering to the nuclear power projects from the preliminary feasibility studies up to the commercial operation will benefit the safe, efficient and economical operations of nuclear power plants in China

  3. The future of nuclear engineering

    International Nuclear Information System (INIS)

    Beeden, Jeffrey

    2003-01-01

    Today, nuclear power refers to the splitting of large uranium atoms into smaller atoms with a net release of energy. Tomorrow, nuclear power will refer to the combining of hydrogen into larger atoms with a net release of energy. Nuclear power's future is fusion. The Mechanical Engineers of tomorrow will need to be familiar with the process of creating and harnessing the energy from a fusion reaction. During the oil shortage in the 1970's, America scrambled to initiate alternative methods of producing power. Nuclear fusion was one of them. As time passes, the solution to the world's energy crisis presses the countries of the world to find alternative forms of energy; nuclear fusion may contain the answer. In the near future, the field of fusion will open up and a new wave of engineers will flood into this field. Mechanical engineers will lead the way with advances in materials, computational fluid dynamics, finite element analysis for thermal and structural systems, and heat transfer designs to optimize nuclear fusion reactors and power plants. All this effort is in anticipation of creating a sustained fusion reaction that can generate enough heat to transfer to steam in order to generate electric power to sustain the fusion reaction and introduce power to the grid. (author)

  4. An alternative nuclear program

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1981-01-01

    An analysis of the development of nuclear energy in Brazil is made since its beginning, showing the fundamental policy changes introduced in the end of the 60's with the purchase of the Angra dos Reis I reactor. This decision discouraged the existing efforts of an autonomous development in nuclear energy. The reaction to this policy led to the Nuclear Deal with Germany, which although incorporating some positive aspects is nor capable to lead to nuclear independence. The presently existing options are discussed, as well as the transformation of the Nuclear Program in a R and D Program based only in the reactors I, II and III, located in Angra dos Reis. (Author) [pt

  5. Alternative Nuclear Program

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1982-01-01

    An analysis of the development of nuclear energy in Brazil is made since its beginning, showing the fundamental policy changes introduced in the end of the 60's with the purchase of the Angra dos Reis I reactor. This decision discouraged the existing efforts of an autonomous development in nuclear energy. The reaction to this policy led to the Nuclear Deal with Germany, which although incorporating some positive aspects is not capable to lead to nuclear independence. The presently existing options are discussed, as well as the transformation of the Nuclear Program in a R and D Program based only in the reactors I, II and III, located in Angra dos Reis. (Author) [pt

  6. The Development, Content, Design, and Conduct of the 2011 Piloted US DOE Nuclear Criticality Safety Program Criticality Safety Engineering Training and Education Project

    International Nuclear Information System (INIS)

    Hopper, Calvin Mitchell

    2011-01-01

    In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT and SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safety engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT and SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National

  7. The mathematics of nuclear engineering

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1982-01-01

    The mathematics of nuclear engineering is considered with especial reference to the problems of; the representation of the transformation of matter at the nuclear level by radioactive decay and neutron transmutation, the problem of the distribution of neutrons and other particles as a transport theory problem including some of the approximation methods used in this problem, particularly diffusion theory with particular emphasis on steady-state problems, time-dependent reactor kinetic and control, and the longer term changes involved with the nuclear fuel cycle both within and without the reactor itself. (U.K.)

  8. India's nuclear program

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    India made an early commitment to being as self-sufficient as possible in nuclear energy and has largely achieved that goal. The country operates eight nuclear reactors with a total capacity of 1,304 MWe, and it remains committed to an aggressive growth plan for its nuclear industry, with six reactors currently under construction, and as many as twelve more planned. India also operates several heavy water production facilities, fabrication facilities, reprocessing works, and uranium mines and mills. Due to India's decision not to sign the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), the country has had to develop nearly all of its nuclear industry and infrastructure domestically. Overall, India's nuclear power program is self-contained and well integrated, with plans to expand to provide up to ten percent of the country's electrical generating capacity

  9. Automotive Stirling Engine Development Program

    Science.gov (United States)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Antonelli, M. (Editor)

    1983-01-01

    Mod I engine testing and test results, the test of a Mod I engine in the United States, Mod I engine characterization and analysis, Mod I Transient Test Bed fuel economy, Mod I-A engine performance are discussed. Stirling engine reference engine manufacturing and reduced size studies, components and subsystems, and the study and test of low-cost casting alloys are also covered. The overall program philosophy is outlined, and data and results are presented.

  10. Romanian nuclear fuel program

    International Nuclear Information System (INIS)

    Budan, O.

    1999-01-01

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified and authorised CANDU-6 fuel supplier. The re-loading of the Cernavoda NGS Unit 1 started in the middle

  11. Introduction to nuclear test engineering

    International Nuclear Information System (INIS)

    O'Neal, W.C.; Paquette, D.L.

    1982-01-01

    The basic information in this report is from a vu-graph presentation prepared to acquaint new or prospective employees with the Nuclear Test Engineering Division (NTED). Additional information has been added here to enhance a reader's understanding when reviewing the material after hearing the presentation, or in lieu of attending a presentation

  12. Nuclear engineering terms and definitions

    International Nuclear Information System (INIS)

    1981-01-01

    The most important nuclear engineering's terms and definitions are given in this standard. The definitions take into account the Austrian Regulations for Radiation Protection, for and pertinent ISO and DIN-Standards as also the OENORM A7006 and OENORM A6601. (M.T.)

  13. Waste management in the nuclear engineering curriculum

    International Nuclear Information System (INIS)

    Tulenko, J.S.

    1989-01-01

    One of the most significant challenges facing the nuclear industry is to successfully close the nuclear fuel cycle and effectively demonstrate to the public that nuclear wastes do not present a health risk. This issue is currently viewed by many as the most important issue affecting public acceptance of nuclear power, and it is imperative that nuclear engineers be able to effectively address the question of nuclear waste from both a generation and disposal standpoint. To address the issue, the area of nuclear waste management has been made one of the fields of specialized study in the Department of Nuclear Engineering Sciences at the University of Florida. The study of radioactive waste management at the University of Florida is designed both for background for the general nuclear engineering student and for those wishing to specialize in it as a multidiscipline study area involving the Departments of Nuclear Engineering Sciences, Environmental Sciences, Material Science and Engineering, Geology, Civil Engineering, and Industrial Engineering

  14. Reservoir Engineering Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.H.; Schwarz, W.J.

    1977-12-14

    The Reservoir Engineering Management Program being conducted at Lawrence Berkeley Laboratory includes two major tasks: 1) the continuation of support to geothermal reservoir engineering related work, started under the NSF-RANN program and transferred to ERDA at the time of its formation; 2) the development and subsequent implementation of a broad plan for support of research in topics related to the exploitation of geothermal reservoirs. This plan is now known as the GREMP plan. Both the NSF-RANN legacies and GREMP are in direct support of the DOE/DGE mission in general and the goals of the Resource and Technology/Resource Exploitation and Assessment Branch in particular. These goals are to determine the magnitude and distribution of geothermal resources and reduce risk in their exploitation through improved understanding of generically different reservoir types. These goals are to be accomplished by: 1) the creation of a large data base about geothermal reservoirs, 2) improved tools and methods for gathering data on geothermal reservoirs, and 3) modeling of reservoirs and utilization options. The NSF legacies are more research and training oriented, and the GREMP is geared primarily to the practical development of the geothermal reservoirs. 2 tabs., 3 figs.

  15. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Bryant, J.W.; Nenni, J.A.; Yoder, T.S.

    2003-01-01

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility

  16. Career Development in Nuclear Engineering

    International Nuclear Information System (INIS)

    Sibbens, G.

    2015-01-01

    In the eighties it was not common for girls to study engineering. But a few young girls have always been fascinated by science and technical applications and dared to go for a gender untypical education. What are these female engineers doing today? This paper describes the career development of a woman, who completed her Master of Science in Nuclear Engineering, found first a job in an international company as cooperator in the research group of radiation physics and later as head of technical support and quality assurance of medical systems and then succeeded in a competition to be recruited at the European Commission (EC). There she started as an assistant for the primary standardisation of radionuclides and high-resolution alpha-particle spectrometry including the preparation of radioactive sources in the radionuclide metrology sector at the Institute for Reference Materials and Measurements of the European Commission’s Joint Research Centre and consequently published her work in scientific journals. Today, 29 years later, I am the laboratory responsible for the preparation and characterisation of nuclear targets at EC-JRC-IRMM, leading a team that has unique know-how in the preparation of thin film deposits (called targets) tailor-made for nuclear physics measurements at the EC–JRC–IRMM and international accelerator sites. High quality measurements of nuclear data and materials are being asked for in the context of nuclear safety, minimisation of high level nuclear waste and safeguards and security. The different steps of my career development and the repeated process of managing learning, work, family and leisure are presented. The career path across different jobs and responsibilities and the career progress via a certification training programme are also explained to encourage the next generation of female professionals to continue playing a vital role in nuclear science and technology. (author)

  17. The Chinese nuclear program

    International Nuclear Information System (INIS)

    Prenez, J.C.; Bettoun, G.

    2009-01-01

    This series of slides presents the organization of the Chinese nuclear industry and its perspectives for the 2 next decades. The presentation is divided into 5 parts. Part one: the energy sector in China. Due to the economic development of the country this sector is flourishing and reaches an average growth rate of 9% per year. More than fifty per cent of the power plants being built in the world, are located in China. The electricity production stems by far from fossil energies (>80%) but this part is expected to decrease to reach 70% in 2020. Part 2: the Chinese nuclear program. This program is dual: the massive deployment of chinese improved reactors of second generation (the construction of 6 CPR1000 reactors will be launched each year) and the import and assimilation of reactors of the third generation: 4 AP1000 and 2 EPR are being built. Part 3: the organization of the Chinese nuclear sector. The main actors are CNNC (China National Nuclear Corporation), CGNPC (China Guangdong Nuclear Power Corporation), CPI (China Power Investment Corporation), SNPTC (State Nuclear Power Technology Corporation). The main 5 Chinese suppliers are also presented. Part 4: The role of EDF. Today's EDF role is multiple: to be active in the Chinese nuclear program, to go beyond technical assistance to reach partnership, to invest in Chinese power plants, to promote cooperation between French and Chinese actors of the nuclear industry. A lot of joint ventures have been created. Part 5: the Taishan project. Taishan is a coastal site near Macao in the Guangdong province in which 2 EPR are being built, the first concrete was cast in october 2009, 52 months of construction are scheduled and the first unit will be commissioned in end 2013 while the second commissioning is planned for end 2014. (A.C.)

  18. Non-linear nuclear engineering models as genetic programming application; Modelos nao-lineares de engenharia nuclear como aplicacao de programacao genetica

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Roberto P.; Schirru, Roberto; Martinez, Aquilino S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1997-12-01

    This work presents a Genetic Programming paradigm and a nuclear application. A field of Artificial Intelligence, based on the concepts of Species Evolution and Natural Selection, can be understood as a self-programming process where the computer is the main agent responsible for the discovery of a program able to solve a given problem. In the present case, the problem was to find a mathematical expression in symbolic form, able to express the existent relation between equivalent ratio of a fuel cell, the enrichment of fuel elements and the multiplication factor. Such expression would avoid repeatedly reactor physics codes execution for core optimization. The results were compared with those obtained by different techniques such as Neural Networks and Linear Multiple Regression. Genetic Programming has shown to present a performance as good as, and under some features superior to Neural Network and Linear Multiple Regression. (author). 10 refs., 8 figs., 1 tabs.

  19. Nuclear program review

    International Nuclear Information System (INIS)

    Brito, S.; Rosa, L.P.; Carvalho, Joaquim de; Simon, D.N.

    1985-01-01

    A review of the Brazilian Nuclear Program based in Brazilian energy perspectives, in world-wide technology evolution and in international and national economic context is done. The objetive is look for subsidies for new decisions related to the future of program, taking in account the acquired experience and new data created by evolution of internal and external political and technological conjuncture. (M.C.K.) [pt

  20. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1990-01-01

    The research and teaching operations of the Nuclear Chemistry Division of the Dept. of Chemistry and the Dept. of Nuclear Engineering are housed at the Oregon State University Radiation Center. This facility which includes a 1.1 MW TRIGA reactor was used for 53 classes from a number of different academic departments last year. About one-half of these classes used the reactor and ∼25% of the reactor's 45 hour week was devoted to teaching. Descriptions will be given of reactor-oriented instructional programs in nuclear engineering, radiation health and nuclear chemistry. In nuclear chemistry, classes in (a) nuclear chemistry for nuclear engineers, (b) radiotracer methods, (c) elementary and advanced activation analysis, and (d) advanced nuclear instrumentation will be described in detail. The use of the facility to promote general nuclear literacy among college students, high school and grade school students and the general population will also be covered

  1. Ontario Hydro's nuclear program

    International Nuclear Information System (INIS)

    Jackson, H.A.

    1982-06-01

    In 1981 Ontario Hydro generated over 100 billion KWh of electrical energy. Approximately one third of this was from nuclear units. There are ten CANDU units (5 250 MW) currently in operation, and another twelve (8 600 MW) are under construction. The presently committed nuclear expansion program is estimated to involve expenditures of 16 billion dollars over the next 10 years. About 10 000 people are employed in the nuclear design and construction program. All projects are generally on schedule, with the stations coming into service during the following time periods: Pickering B, 1983-85; Bruce B, 1984-87; Darlington, 1988-90. The status of each project is reviewed. Planning is underway for some retubing projects, as early as 1985 for Pickering A

  2. Education and training in nuclear science/engineering in Taiwan

    International Nuclear Information System (INIS)

    Chung, C.

    1994-01-01

    The present status of nuclear education and training in Taiwan is reviewed. The nuclear science/engineering program has been established in Taiwan under the College of Nuclear Science at the National Tsing Hua University since 1956; it remains the only program among 123 universities and colleges in Taiwan where education and training in nuclear fields are offered. The program, with 52 faculty members, offers advanced studies leading to BSc, MSc, and PhD degrees. Lectures and lab classes are given to 600 students currently registered in the program. Career placement program geared for the 200 graduate and 400 undergraduate students is to orientate them into the local nuclear power utilities as well as agricultural, medical, industrial, academic and governmental sectors where nuclear scientists and engineers at all levels are needed. 8 refs., 1 fig

  3. Nuclear engineering education in the United States: a status report

    International Nuclear Information System (INIS)

    Miller, D.W.; Spinrad, B.I.

    1986-01-01

    The executive summary of the White Paper entitled The Revitalization of Nuclear Energy Education in the United States is the major component of this paper. The White Paper was completed under the auspices of the Nuclear Engineering Department Heads Organization (NEDHO). The presentation highlights events and program changes that have occurred in 1985-1986 following publication of the NEDHO White Paper. Many of these events provide optimism for the revitalization of nuclear engineering education

  4. European Master of Science in Nuclear Engineering

    International Nuclear Information System (INIS)

    Moons, Frans; Safieh, Joseph; Giot, Michel; Mavko, Borut; Sehgal, Bal Raj; Schaefer, Anselm; Goethem, Georges van; D'Haeseleer, William

    2005-01-01

    architecture for higher education defining bachelors and masters degrees. The basic goal is to guarantee a high quality nuclear education in Europe by means of stimulating student and instructor exchange, through mutual checks of the quality of the programs offered, by close collaboration with renowned nuclear-research groups at universities and laboratories. The concept for a nuclear master program consists of a solid basket of recommended basic nuclear science and engineering courses, but also contains advanced courses as well as practical training. Some of the advanced courses also serve as part of the curricula for doctoral programs. A second important issue identified is Continued Professional Development. The design of corresponding training courses has to respond to the needs of industry and regulatory bodies, and a specific organisation has to be set up to manage the quality assessment and accreditation of the Continued Professional Development programs. In order to achieve the important objectives and practical goals described above, the ENEN Association, a non-profit association under French law, was formed. This international association can be considered as a step towards the creation of a virtual European Nuclear University symbolising the active collaboration between various national institutions pursuing nuclear education. Based on the concepts and strategy explained above, and with the full cooperation of the participating institutions, it may be stated that the intellectual erosion in the nuclear field can be reversed, and that high quality European education in nuclear sciences and technology can be guaranteed

  5. Nuclear engineering dictionary. Woerterbuch Kerntechnik

    Energy Technology Data Exchange (ETDEWEB)

    Sube, R

    1985-01-01

    This dictionary treats the subject field of nuclear engineering as a field of applied nuclear physics: Industrial and other applications of nuclear energy, isotopes and ionizing radiation, and their, scientific-technical bases. Emphasis is placed on the terminology of the nuclear fuel cycle. Other applications of nuclear energy include military applications, nuclear fusion technology, and plasma physics, as well as methods and equipment of isotope and radiation technology, without the aspects of biological applications. High-energy physics is also excluded. The terminology presented primarily covers general and basic concepts, special terms have been included as far as available and ascertainable in all four languages. For selection of terms, numerous textbooks and monographies have been searched and compared, as well as various subject-related journals which have been regularly scanned for years. Standards have been a main source of information, as e.g. the international standards of the IAEA (including the INIS terminology), of the ISO, of the COMECON, and of the World Energy Conference and the IEC. Numerous national standards have been evaluated in search for definitions and designations. Users will appreciate the introduction of subject-field codes indicating the main field of usage of a term. Explanations and other hints are numerous and extensive in order to clearly define the terms chosen from other, similar terms, and in order to show homonyms.

  6. Computational intelligence in nuclear engineering

    International Nuclear Information System (INIS)

    Uhrig, Robert E.; Hines, J. Wesley

    2005-01-01

    Approaches to several recent issues in the operation of nuclear power plants using computational intelligence are discussed. These issues include 1) noise analysis techniques, 2) on-line monitoring and sensor validation, 3) regularization of ill-posed surveillance and diagnostic measurements, 4) transient identification, 5) artificial intelligence-based core monitoring and diagnostic system, 6) continuous efficiency improvement of nuclear power plants, and 7) autonomous anticipatory control and intelligent-agents. Several Changes to the focus of Computational Intelligence in Nuclear Engineering have occurred in the past few years. With earlier activities focusing on the development of condition monitoring and diagnostic techniques for current nuclear power plants, recent activities have focused on the implementation of those methods and the development of methods for next generation plants and space reactors. These advanced techniques are expected to become increasingly important as current generation nuclear power plants have their licenses extended to 60 years and next generation reactors are being designed to operate for extended fuel cycles (up to 25 years), with less operator oversight, and especially for nuclear plants operating in severe environments such as space or ice-bound locations

  7. Nuclear thermal propulsion engine cost trade studies

    International Nuclear Information System (INIS)

    Paschall, R.K.

    1993-01-01

    The NASA transportation strategy for the Mars Exploration architecture includes the use of nuclear thermal propulsion as the primary propulsion system for Mars transits. It is anticipated that the outgrowth of the NERVA/ROVER programs will be a nuclear thermal propulsion (NTP) system capable of providing the propulsion for missions to Mars. The specific impulse (Isp) for such a system is expected to be in the 870 s range. Trade studies were conducted to investigate whether or not it may be cost effective to invest in a higher performance (Isp>870 s) engine for nuclear thermal propulsion for missions to Mars. The basic cost trades revolved around the amount of mass that must be transported to low-earth orbit prior to each Mars flight and the cost to launch that mass. The mass required depended on the assumptions made for Mars missions scenarios including piloted/cargo flights, number of Mars missions, and transit time to Mars. Cost parameters included launch cost, program schedule for development and operations, and net discount rate. The results were very dependent on the assumptions that were made. Under some assumptions, higher performance engines showed cost savings in the billions of dollars; under other assumptions, the additional cost to develop higher performance engines was not justified

  8. Canadian Nuclear Safety Commission's intern program

    International Nuclear Information System (INIS)

    Gilmour, P.E.

    2002-01-01

    The Intern Program was introduced at the Canadian Nuclear Safety Commission, Canada's Nuclear Regulator in response to the current competitive market for engineers and scientists and the CNSC's aging workforce. It is an entry level staff development program designed to recruit and train new engineering and science graduates to eventually regulate Canada's nuclear industry. The program provides meaningful work experience and exposes the interns to the general work activities of the Commission. It also provides them with a broad awareness of the regulatory issues in which the CNSC is involved. The intern program is a two-year program focusing on the operational areas and, more specifically, on the generalist functions of project officers. (author)

  9. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    1986-01-01

    The Guidebook contains detailed information on curricula which would provide the professional technical education qualifications which have been established for nuclear power programme personnel. The core of the Guidebook consists of model curricula in engineering and science, including relevant practical work. Curricula are provided for specialization, undergraduate, and postgraduate programmes in nuclear-oriented mechanical, chemical, electrical, and electronics engineering, as well as nuclear engineering and radiation health physics. Basic nuclear science and engineering laboratory work is presented together with a list of basic experiments and the nuclear equipment needed to perform them. Useful measures for implementing and improving engineering and science education and training capabilities for nuclear power personnel are presented. Valuable information on the national experiences of IAEA Member States in engineering and science education for nuclear power, as well as examples of such education from various Member States, have been included

  10. Expertise preservation in nuclear technology - the new master course ''nuclear safety engineering'' at the RWTH Aachen

    International Nuclear Information System (INIS)

    Backus, Sabine; Heuters, Michael

    2011-01-01

    The energy concept of the German federal Government in 2010 emphasizes the importance of nuclear energy within the energy policy. The lifetime extension of German nuclear power plants and the long-term safety of radioactive waste storage is the new challenge with respect to the expertise preservation in Germany. The owners of nuclear utilities have started to assist new research programs in the field of nuclear engineering at the German universities. RWE Power and ThyssenKrupp have signed a cooperation contract in 2007 with the RWTH Aachen. The companies bear the expenses for professorships ''nuclear fuel cycle'', ''simulation in nuclear engineering'' and ''reactor safety and engineering''. An elongation of the contract is planned. A master course ''nuclear safety engineering'' over 4 semesters covers the complete fuel cycle. The authors discuss issues concerning the information of students, experiences with the expectations of students concerning their future employment, acceptance of nuclear energy and related topics.

  11. Unique nuclear thermal rocket engine

    International Nuclear Information System (INIS)

    Culver, D.W.; Rochow, R.

    1993-06-01

    In January, 1992, a new, advanced nuclear thermal rocket engine (NTRE) concept intended for manned missions to the moon and to Mars was introduced (Culver, 1992). This NTRE promises to be both shorter and lighter in weight than conventionally designed engines, because its forward flowing reactor is located within an expansion-deflection rocket nozzle. The concept has matured during the year, and this paper discusses a nearer term version that resolves four open issues identified in the initial concept: (1) the reactor design and cooling scheme simplification while retaining a high pressure power balance option; (2) elimination need for a new, uncooled nozzle throat material suitable for long life application; (3) a practical provision for reactor power control; and (4) use of near-term, long-life turbopumps

  12. Reconstruction of nuclear engineering education in universities

    International Nuclear Information System (INIS)

    Kitamura, Masaharu; Tomota, Yo; Tanaka, Shunichi

    2005-01-01

    Nuclear engineering has become the area gradually loosing appeal to the young for these twenty years taking all the circumstances into consideration. However nuclear power is predicted to be primary energy of greatest importance even in the future and this needs highly motivated and excellent personnel in nuclear industry and society so as to develop and maintain nuclear power to a high degree. Under these circumstances discussions on how should be nuclear engineering research and education in the new era were presented from various viewpoints and they led to the direction of reconstruction of nuclear engineering education in universities and relevant organizations to train and ensure personnel. (T. Tanaka)

  13. The Korean nuclear power program

    International Nuclear Information System (INIS)

    Choi, Chang Tong

    1996-01-01

    Although the world nuclear power industry may appear to be in decline, continued nuclear power demand in Korea indicates future opportunities for growth and prosperity in this country. Korea has one of the world's most vigorous nuclear power programs. Korea has been an active promoter of nuclear power generation since 1978, when the country introduced nuclear power as a source of electricity. Korea now takes pride in the outstanding performance of its nuclear power plants, and has established a grand nuclear power scheme. This paper is aimed at introducing the nuclear power program of Korea, including technological development, international cooperation, and CANDU status in Korea. (author). 2 tabs

  14. National nuclear program

    International Nuclear Information System (INIS)

    Costa A, D.

    1980-01-01

    The basic concepts of the Nuclear program that Mexico plans are presented, to develop pointing out that it constitutes an outstanding event within the history of the country, that will result in an equilibrated profit of the resources of oil exploitation consolidating each step of its technical evolution; all of this represents a challenge since it establishes a qualitative transformation in the very roots of the National economy. Being certain that oil is a non renovable natural resource, the author points out that Mexican Government has emphasized the promotion of the research of alternate resource of energy in the future. According to this panorama, the quidelines that Mexico must undertake regarding production, distribution and consumption of nuclear energy, will point primarily to a global program, which will avoid the imports of equipment and technicians, to achieve maximum advantages for the Country. It stresses the fact that this program cannot start from zero; since first, Mexico, has to import foreign technology, which once assimilated, will give to the Mexican technicians the starting point to establish the proper solution to the foreseen objectives. Therefore, any kind of International cooperation must tend to accelerate the nuclear development and to obtain the transference to technology, within a frame of respect to Mexican sovereignity. The conclusion is that the task at which Mexico aims must be based on the existing human potentiality and on the one that will be prepared in the future, and also on the knowledge and adequate exploitation of the uranium reserves, having the ININ a prominent role of creating the necessary human infrastructure, the development of a Mexican nuclear energy can be achieved in a medium term. (author)

  15. 4+ Dimensional nuclear systems engineering

    International Nuclear Information System (INIS)

    Suh, Kune Y.

    2009-01-01

    Nuclear power plants (NPPs) require massive quantity of data during the design, construction, operation, maintenance and decommissioning stages because of their special features like size, cost, radioactivity, and so forth. The system engineering thus calls for a fully integrated way of managing the information flow spanning their life cycle. This paper proposes digital systems engineering anchored in three dimensional (3D) computer aided design (CAD) models. The signature in the proposal lies with the four plus dimensional (4 + D) Technology TM , a critical know how for digital management. ESSE (Engineering Super Simulation Emulation) features a 4 + D Technology TM for nuclear energy systems engineering. The technology proposed in the 3D space and time plus cost coordinates, i.e. 4 + D, is the backbone of digital engineering in the nuclear systems design and management. Dased on an integrated 3D configuration management system, ESSE consists of solutions JANUS (Junctional Analysis Neodynamic Unit SoftPower), EURUS (Engineering Utilities Research Unit SoftPower), NOTUS (Neosystemic Optimization Technical Unit SoftPower), VENUS (Virtual Engineering Neocybernetic Unit SoftPower) and INUUS (Informative Neographic Utilities Unit SoftPower). NOTUS contributes to reducing the construction cost of the NPPs by optimizing the component manufacturing procedure and the plant construction process. Planning and scheduling construction projects can thus benefit greatly by integrating traditional management techniques with digital process simulation visualization. The 3D visualization of construction processes and the resulting products intrinsically afford most of the advantages realized by incorporating a purely schedule level detail based the 4 + D system. Problems with equipment positioning and manpower congestion in certain areas can be visualized prior to the actual operation, thus preventing accidents and safety problems such as collision between two machines and losses in

  16. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Rummery, T.E.; Rosinger, E.L.J.

    1983-05-01

    The Canadian Nuclear Fuel Waste Management Program is now well established. This report outlines the generic research and technological development underway in this program to assess the concept of immobilization and subsequent disposal of nuclear fuel waste deep in a stable plutonic rock in the Canadian Shield. The program participants, funding, schedule and associated external review processes are briefly outlined. The major scientific and engineering components of the program, namely, immobilization studies, geoscience research and environmental and safety assessment, are described in more detail

  17. Nuclear Technology Programs

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product 99 Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  18. Nuclear Technology Programs

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. (ed.)

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  19. Nuclear technology programs

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  20. Finally, nuclear engineering textbooks with a Canadian flavour!

    International Nuclear Information System (INIS)

    Bonin, H.W.

    2002-01-01

    The need for nuclear engineering textbooks more appropriate to the Canadian nuclear industry context and the CANDU nuclear reactor program has long been felt not only among the universities offering nuclear engineering programs at the graduate level, but also within the Canadian nuclear industry itself. Coverage of the CANDU reactor system in the textbooks presently supporting teaching is limited to a brief description of the concept. Course instructors usually complement these textbooks with course notes written from their personal experience from past employment within the nuclear industry and from their research interests In the last ten years, the Canadian nuclear industry has been involved on an increasing basis with the issue of the technology transfer to foreign countries which have purchased CANDU reactors or have been in the process of purchasing one or several CANDUs. For some of these countries, the 'turn key' approach is required, in which the Canadian nuclear industry looks after everything up to the commissioning of the nuclear power plant, including the education and training of local nuclear engineers and plant personnel. Atomic Energy of Canada Limited (AECL) in particular has dispatched some personnel tasked to prepare and give short courses on some specific aspects of CANDU design and operation, but a lack of consistency was observed as different persons prepared and gave the courses rather independently. To address the many problems tied with nuclear engineering education, the CANTEACH program was set up involving major partners of the Canadian nuclear industry. Parts of the activities foreseen by CANTEACH consist in the writing of nuclear engineering textbooks and associated computer-based pedagogical material. The present paper discusses the main parts of two textbooks being produced, one in reactor physics at steady state and the other on nuclear fuel management. (author)

  1. Estimates of the radiation environment for a nuclear rocket engine

    International Nuclear Information System (INIS)

    Courtney, J.C.; Manohara, H.M.; Williams, M.L.

    1992-01-01

    Ambitious missions in deep space, such as manned expeditions to Mars, require nuclear propulsion if they are to be accomplished in a reasonable length of time. Current technology is adequate to support the use of nuclear fission as a source of energy for propulsion; however, problems associated with neutrons and gammas leaking from the rocket engine must be addressed. Before manned or unmanned space flights are attempted, an extensive ground test program on the rocket engine must be completed. This paper compares estimated radiation levels and nuclear heating rates in and around the rocket engine for both a ground test and space environments

  2. A brief history of graduate distance education in nuclear engineering at Penn State Univ

    International Nuclear Information System (INIS)

    Hochreiter, L. E.; Zimmerman, D. L.; Brenizer Jr, J. S.; Stark, M. A.

    2006-01-01

    The Pennsylvania State University Nuclear Engineering Distance Education Program has a twenty year history of providing graduate level distance education in Nuclear Engineering. The Distance Education Program was initiated as a specific program which was developed for the Westinghouse Energy Systems Divisions in Pittsburgh. In 1983, Carnegie-Mellon University (CMU) decided to terminate its small Nuclear Engineering Program. Up until that time, Westinghouse employees could enroll at CMU for graduate classes in Nuclear Engineering as well as other engineering disciplines and could obtain a masters degree or if desired, could continue for a Ph.D. degree. (authors)

  3. Waste management in Canadian nuclear programs

    International Nuclear Information System (INIS)

    Dyne, P.J.

    1975-08-01

    The report describes the wide-ranging program of engineering developments and applications to provide the Canadian nuclear industry with the knowledge and expertise it needs to conduct its waste management program. The need for interim dry storage of spent fuel, and the storage and ultimate disposal of waste from fuel reprocessing are examined. The role of geologic storage in AECL's current waste management program is also considered. (R.A.)

  4. The reactor engineer program: creating a new workforce

    International Nuclear Information System (INIS)

    Summers, R.

    1993-01-01

    As the number of nuclear engineering schools continues to shrink across the U.S., talented professional engineers for the nuclear energy community must increasingly be found elsewhere. To meet its needs, therefore, the Office of Nuclear Reactor Regulation (NRR) established an Intern Program to bring new talent into the NRC. The two-year program includes 17 weeks of technical training, and 4 or 5 rotational assignments, including at least 4 months at a commercial nuclear power plant site. The key to the success of the program is the full support of NRR high-level management

  5. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement

  6. The Brazilian Nuclear Energy Program

    International Nuclear Information System (INIS)

    Carvalho, H.G. de

    1980-01-01

    A survey is initially of the international-and national situation regarding energetic resources. The Brazilian Nuclear Energy Policy and the Brazilian Nuclear Program are dealt with, as well as the Nuclear Cooperation agreement signed with the Federal Republic of Germany. The situation of Brazil regarding Uranium and the main activities of the Brazilian Nuclear Energy Commission are also discussed [pt

  7. Integrated engineering system for nuclear facilities building

    International Nuclear Information System (INIS)

    Tomura, H.; Miyamoto, A.; Futami, F.; Yasuda, S.; Ohtomo, T.

    1995-01-01

    In the construction of buildings for nuclear facilities in Japan, construction companies are generally in charge of the building engineering work, coordinating with plant engineering. An integrated system for buildings (PROMOTE: PROductive MOdeling system for Total nuclear Engineering) described here is a building engineering system including the entire life cycle of buildings for nuclear facilities. A Three-dimensional (3D) building model (PRO-model) is to be in the core of the system (PROMOTE). Data sharing in the PROMOTE is also done with plant engineering systems. By providing these basic technical foundations, PROMOTE is oriented toward offering rational, highquality engineering for the projects. The aim of the system is to provide a technical foundation in building engineering. This paper discusses the characteristics of buildings for nuclear facilities and the outline of the PROMOTE. (author)

  8. Human resources in nuclear power program

    International Nuclear Information System (INIS)

    Machi, Sueo

    2008-01-01

    Nuclear power utilization within 2020 horizon is expanding in Asia, particularly in Japan, China, India, Republic of Korea, Vietnam and Indonesia. The nuclear energy policy iof Japan sees the increase of nuclear power contribution for energy security and to control CO 2 emission with the contribution ratio through the 21 st century kept at the current level of 30-40% or even higher. Japan expects its first reprocessing plant to be operational in 2007 and its first commercial fast breeder reactor operational in 2050. Starting with her experience with the operation of its first research reactor in 1957, a power demonstration reactor from USA in 1963; the first commercial 166 MW power plant from UK in 1966 and then its first commercial 375 MW light water reactor from USA in 1970, Japan developed her own nuclear reactor technology. Today, Japan has 55 operating nuclear power plants (NPPs) totaling 49 GW which supply 30% of its electricity needs. There are two NPPs under construction and 11 additional NPPs to be completed by 2017. Japan's experience showed that engineers in the nuclear, mechanical, electrical, material and chemical fields are needed to man their nuclear power plant. For the period 1958 to about 1970, there was a rapid increase in the number of students enrolled for their bachelor of science majoring in nuclear science and technology but this number of enrollees leveled off beyond 1970 up to 2002. For those pursuing their masters of science degree in this field, there was a steady but moderate rise in the number of students from 1958 to 2002. The population of students in the Ph.D program in nuclear science and technology had the lowest number of enrollees and lowest level of increase from 1958 to 2002. The courses offered at the university for nuclear power are nuclear reactor physics and engineering, nuclear reactor safety engineering and radiation safety. Prior to graduation, the students undergo training at a nuclear research institute, nuclear power

  9. Preliminary Hanford technical input for the Department of Energy programmatic spent nuclear fuel management and Idaho National Engineering Laboratory environmental restoration and waste management programs environmental impact statement

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1995-03-01

    The US Department of Energy (DOE) is currently evaluating its programmatic options for the safe management of its diverse spent nuclear fuel (SNF) inventory in the Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Environmental Impact Statement (SNF and INEL EIS). In the SNF and INEL EIS, the DOE is assessing five alternatives for SNF management, which consider at which of the DOE sites each of the various SNF types should be managed until ultimate disposition. The range of SNF inventories considered for management at the Hanford Site in the SNF and INEL EIS include the current Hanford Site inventory, only the current Hanford Site defense production SNF inventory, the DOE complex-wide SNF inventory, or none at all. Site-specific SNF management decisions will be evaluated in separate National Environmental Policy Act evaluations. Appendixes A and B include information on (1) additional facilities required to accommodate inventories of SNF within each management alternative, (2) existing and new SNF management facility descriptions, (3) facility costs for construction and operation, (4) facility workforce requirements for construction and operation, and (5) facility discharges. The information was extrapolated from existing analyses to the extent possible. New facility costs, manpower requirements, and similar information are based on rough-order-of-magnitude estimates

  10. Summary of aerospace and nuclear engineering activities

    Science.gov (United States)

    1988-01-01

    The Texas A&M Nuclear and Aerospace engineering departments have worked on five different projects for the NASA/USRA Advanced Design Program during the 1987/88 year. The aerospace department worked on two types of lunar tunnelers that would create habitable space. The first design used a heated cone to melt the lunar regolith, and the second used a conventional drill to bore its way through the crust. Both used a dump truck to get rid of waste heat from the reactor as well as excess regolith from the tunneling operation. The nuclear engineering department worked on three separate projects. The NEPTUNE system is a manned, outer-planetary explorer designed with Jupiter exploration as the baseline mission. The lifetime requirement for both reactor and power-conversion systems was twenty years. The second project undertaken for the power supply was a Mars Sample Return Mission power supply. This was designed to produce 2 kW of electrical power for seven years. The design consisted of a General Purpose Heat Source (GPHS) utilizing a Stirling engine as the power conversion unit. A mass optimization was performed to aid in overall design. The last design was a reactor to provide power for propulsion to Mars and power on the surface. The requirements of 300 kW of electrical power output and a mass of less than 10,000 Rg were set. This allowed the reactor and power conversion unit to fit within the Space Shuttle cargo bay.

  11. A nuclear engineering curriculum for Asia-Pacific

    International Nuclear Information System (INIS)

    Bereznai, G.; Sumitra, T.; Chankow, N.; Chanyotha, S.

    1996-01-01

    This paper describes the nuclear engineering education and professional development curricula that are being developed at Chulalongkorn University in Bangkok, Thailand. The program was initiated in response to the Thai Government's policy to keep the option of nuclear electric generation available as the country responds to the rapid growth of industrialization and increased standard of living, and the accompanying increase in electricity consumption. The program has three main thrusts: university education, professional development, and public education. Although this paper concentrates on the university curriculum, it is shown how the university program is integrated with the development of industry professionals. The Nuclear Engineering Curricula being developed and implemented at Chulalongkorn University will offer programs at the Bachelor, Master and Doctorate levels. The curricula are designed to provide comprehensive education and training for engineers and scientists planning careers in the peaceful use of nuclear energy, with emphasis on the applications to industry and for nuclear electric generation. The Project of Human Resource Development in the Nuclear Engineering field is the result of a cooperative effort between agencies of the Thai and Canadian Governments, including the Electricity Generating Authority of Thailand, the Office of Atomic Energy for Peace, Chulalongkorn University and several other Thai Universities; Atomic Energy of Canada Limited, the Canadian International Development Agency, several Canadian Universities as well as members of the Canadian Nuclear Industry. (author)

  12. Civil Engineering Technology Program Guide.

    Science.gov (United States)

    Georgia Univ., Athens. Dept. of Vocational Education.

    This program guide presents civil engineering technology curriculum for technical institutes in Georgia. The general information section contains the following: purpose and objectives; program description, including admissions, typical job titles, and accreditation and certification; and curriculum model, including standard curriculum sequence and…

  13. China's nuclear programs and policies

    International Nuclear Information System (INIS)

    Wang, C.

    1983-01-01

    Economics and the futility of arms competition with the US and USSR has forced China to shift its nuclear effort to peaceful uses, although its current nuclear-deterrent warrants including China in arms negotiations. China's nuclear program began during the 1950s with an emphasis on weaponry and some development in space technology. Proponents of nuclear power now appear to have refuted the earlier arguments that nuclear-plant construction would be too slow, too dangerous and polluting, and too expensive and the idea that hydro resources would be adequate. The current leadership supports a serious nuclear-power-plant construction program. 6 references

  14. Lifecycle management for nuclear engineering project documents

    International Nuclear Information System (INIS)

    Zhang Li; Zhang Ming; Zhang Ling

    2010-01-01

    The nuclear engineering project documents with great quantity and various types of data, in which the relationships of each document are complex, the edition of document update frequently, are managed difficultly. While the safety of project even the nuclear safety is threatened seriously by the false documents and mistakes. In order to ensure the integrality, veracity and validity of project documents, the lifecycle theory of document is applied to build documents center, record center, structure and database of document lifecycle management system. And the lifecycle management is used to the documents of nuclear engineering projects from the production to pigeonhole, to satisfy the quality requirement of nuclear engineering projects. (authors)

  15. Nuclear industry - challenges in chemical engineering

    International Nuclear Information System (INIS)

    Sen, S.; Sunder Rajan, N.S.; Balu, K.; Garg, R.K.; Murthy, L.G.K.; Ramani, M.P.S.; Rao, M.K.; Sadhukhan, H.K.; Venkat Raj, V.

    1978-01-01

    As chemical engineering processes and operations are closely involved in many areas of nuclear industry, the chemical engineer has a vital role to play in its growth and development. An account of the major achievements of the Indian chemical engineers in this field is given with view of impressing upon the faculty members of the Indian universities the need for taking appropriate steps to prepare chemical engineers suitable for nuclear industry. Some of the major achievements of the Indian chemical engineers in this field are : (1) separation of useful minerals from beach sand, (2) preparation of thorium nitrate of nuclear purity from monazite, (3) processing of zircon sand to obtain nuclear grade zirconium and its separation from hafnium to obtain zirconium metal sponge, (4) recovery of uranium from copper tailings, (5) economic recovery of nuclear grade uranium from low grade uranium ores found in India, (6) fuel reprocessing, (7) chemical processing of both low and high level radioactive wastes. (M.G.B.)

  16. First Wall, Blanket, Shield Engineering Technology Program

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1982-01-01

    The First Wall/Blanket/Shield Engineering Technology Program sponsored by the Office of Fusion Energy of DOE has the overall objective of providing engineering data that will define performance parameters for nuclear systems in advanced fusion reactors. The program comprises testing and the development of computational tools in four areas: (1) thermomechanical and thermal-hydraulic performance of first-wall component facsimiles with emphasis on surface heat loads; (2) thermomechanical and thermal-hydraulic performance of blanket and shield component facsimiles with emphasis on bulk heating; (3) electromagnetic effects in first wall, blanket, and shield component facsimiles with emphasis on transient field penetration and eddy-current effects; (4) assembly, maintenance and repair with emphasis on remote-handling techniques. This paper will focus on elements 2 and 4 above and, in keeping with the conference participation from both fusion and fission programs, will emphasize potential interfaces between fusion technology and experience in the fission industry

  17. Program For Engineering Electrical Connections

    Science.gov (United States)

    Billitti, Joseph W.

    1990-01-01

    DFACS is interactive multiuser computer-aided-engineering software tool for system-level electrical integration and cabling engineering. Purpose of program to provide engineering community with centralized data base for putting in and gaining access to data on functional definition of system, details of end-circuit pinouts in systems and subsystems, and data on wiring harnesses. Objective, to provide instantaneous single point of interchange of information, thus avoiding error-prone, time-consuming, and costly shuttling of data along multiple paths. Designed to operate on DEC VAX mini or micro computer using Version 5.0/03 of INGRES.

  18. Technical specification optimization program - engineered safety features

    International Nuclear Information System (INIS)

    Andre, G.R.; Jansen, R.L.

    1986-01-01

    The Westinghouse Technical Specification Program (TOP) was designed to evaluate on a quantitative basis revisions to Nuclear Power Plant Technical Specifications. The revisions are directed at simplifying plant operation, and reducing unnecessary transients, shutdowns, and manpower requirements. In conjunction with the Westinghouse Owners Group, Westinghouse initiated a program to develop a methodology to justify Technical Specification revisions; particularly revisions related to testing and maintenance requirements on plant operation for instrumentation systems. The methodology was originally developed and applied to the reactor trip features of the reactor protection system (RPS). The current study further refined the methodology and applied it to the engineered safety features of the RPS

  19. Engineered barrier development for a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Smith, M.J.

    1980-05-01

    The BWIP Engineered Barrier Program has been developed to provide an integrated approach to the development of site-specific Engineered Barrier assemblages for a repository located in basalt. The goal of this program is to specify engineered and natural barriers which will ensure that nuclear and non-radioactive hazardous materials emplaced in a repository in basalt do not exceed acceptable rates of release to the biosphere. A wide range of analytical and experimental activities related to the basalt repository environment, waste package environment, waste/barrier/rock interactions, and barrier performance assessment provide the basis for selection of systems capable of meeting licensing requirements. Work has concentrated on specifying and testing natural and man-made materials which can be used to plug boreholes in basalt and which can be used as multiple barriers to surround nuclear waste forms and containers. The Engineered Barriers Program is divided into two major activities: multiple barrier studies and borehole plugging. 8 figures, 4 tables

  20. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Rummery, T.E.; Rosinger, E.L.J.

    1984-12-01

    The Canadian Nuclear Fuel Waste Management Program is in the fourth year of a ten-year generic research and development phase. The objective of this phase of the program is to assess the basic safety and environmental aspects of the concept of isolating immobilized fuel waste by deep underground disposal in plutonic rock. The major scientific and engineering components of the program, namely immobilization studies, geoscience research, and environmental and safety assessment, are described. Program funding, scheduling and associated external review processes are briefly outlined

  1. Software engineers and nuclear engineers: teaming up to do testing

    International Nuclear Information System (INIS)

    Kelly, D.; Cote, N.; Shepard, T.

    2007-01-01

    The software engineering community has traditionally paid little attention to the specific needs of engineers and scientists who develop their own software. Recently there has been increased recognition that specific software engineering techniques need to be found for this group of developers. In this case study, a software engineering group teamed with a nuclear engineering group to develop a software testing strategy. This work examines the types of testing that proved to be useful and examines what each discipline brings to the table to improve the quality of the software product. (author)

  2. Nuclear reactor engineering: Reactor systems engineering. Fourth edition, Volume Two

    International Nuclear Information System (INIS)

    Glasstone, S.; Sesonske, A.

    1994-01-01

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in the design and operation of nuclear power plants. Extensively updated, the fourth edition includes new materials on reactor safety and risk analysis, regulation, fuel management, waste management and operational aspects of nuclear power. This volume contains the following: the systems concept, design decisions, and information tools; energy transport; reactor fuel management and energy cost considerations; environmental effects of nuclear power and waste management; nuclear reactor safety and regulation; power reactor systems; plant operations; and advanced plants and the future

  3. Center for Alternative Fuels Research Program | College of Engineering &

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  4. Nuclear engineering in the National Polytechnic Institute

    International Nuclear Information System (INIS)

    Del Valle G, E.

    2008-12-01

    In the National Polytechnic Institute the bachelor degree in physics and mathematics, consists of 48 subjects in the common trunk. For the nuclear engineering option, from the fifth semester undergoing 9 specific areas within the Nuclear Engineering Department : introduction to nuclear engineering, power cycles thermodynamics, heat transfer, two courses of nuclear reactors theory, two of nuclear engineering, one course of laboratory and other of radiation protection. There is also a master in nuclear engineering aims train human resources in the area of power and research nuclear reactors to meet the needs of the nuclear industry in Mexico, as well as train highly qualified personnel in branches where are used equipment involving radiation and radioisotopes tale as Medicine, Agriculture and Industry. Among its compulsory subjects are: radiation interaction with the matter, measurements laboratory, reactor physics I and II, reactor engineering, reactor laboratory and thesis seminar. Optional, are: engineering of the radiation protection, computers in the nuclear engineering, nuclear systems dynamics, power plants safety, flow in two phases, reliability and risk analysis, nuclear power systems design, neutron transport theory. Many graduates of this degree have been and are involved in various phases of the nuclear project of Laguna Verde. The Nuclear Engineering Department has a subcritical nuclear reactor of light water and natural uranium and one isotopic source of Pu-Be neutrons of 5 Ci. It also has a multichannel analyzers, calibrated sources of alpha, beta and gamma radiation, a gamma spectrometer of high resolution and low background, a specialized library and one data processing center. In relation particularly to radiation protection, it is clear that there is a lack of specialists, as reflected in radiological control problems in areas such as medicine and industry. Given this situation, it is perceived to be required post-graduate studies at Master and Ph

  5. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement

    International Nuclear Information System (INIS)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes

  6. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes

  7. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  8. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes

  9. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  10. Master's degree in nuclear engineering by videotaped courses

    International Nuclear Information System (INIS)

    Corradini, M.L.; Vogelsang, W.F.

    1991-01-01

    In 1986, a group of northern midwest utilities met with faculty from the nuclear engineering department at the University of Wisconsin (UW) to discuss the possibility of offering graduate courses by videotape for academic credit and earning a master's degree. Four years later, two utility employees from Northern States Power (NSP) and Wisconsin Electric Power Companies (WEPCO) graduated from the University of Wisconsin with master's degrees earned entirely by taking videotape graduate courses at their individual nuclear power plant sites. Within these 4 years, more than a dozen videotaped graduate courses were developed by the faculty of the department in a formalized master's degree program in nuclear engineering and engineering physics. This paper outlines the program's development and its current features

  11. Education of nuclear engineering in Japan

    International Nuclear Information System (INIS)

    Ozawa, Yasutomo; Yamamuro, Nobuhiro

    1979-01-01

    The research Committee of Nuclear Engineering Education has two working groups. One group has carried out surveyes on the curriculums of nuclear engineering course of universities in Japan and the activities of graduates in the industrial worlds. The other group conducted an investigation on the present status of energy education in senior high schools. This is an interim report on the activity of the research committee. (author)

  12. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    International Nuclear Information System (INIS)

    Allen, G.C.; Beck, D.F.; Harmon, C.D.; Shipers, L.R.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program. 2 refs

  13. To MARS and Beyond with Nuclear Power - Design Concept of Korea Advanced Nuclear Thermal Engine Rocket

    International Nuclear Information System (INIS)

    Nam, Seung Hyun; Chang, Soon Heung

    2013-01-01

    The President Park of ROK has also expressed support for space program promotion, praising the success of NARO as evidence of a positive outlook. These events hint a strong signal that ROK's space program will be accelerated by the national eager desire. In this national eager desire for space program, the policymakers and the aerospace engineers need to pay attention to the advanced nuclear technology of ROK that is set to a major world nuclear energy country, even exporting the technology. The space nuclear application is a very much attractive option because its energy density is the most enormous among available energy sources in space. This paper presents the design concept of Korea Advanced Nuclear Thermal Engine Rocket (KANuTER) that is one of the advanced nuclear thermal rocket engine developing in Korea Advanced Institute of Science and Technology (KAIST) for space application. Solar system exploration relying on CRs suffers from long trip time and high cost. In this regard, nuclear propulsion is a very attractive option for that because of higher performance and already demonstrated technology. Although ROK was a late entrant into elite global space club, its prospect as a space racer is very bright because of the national eager desire and its advanced technology. Especially it is greatly meaningful that ROK has potential capability to launch its nuclear technology into space as a global nuclear energy leader and a soaring space adventurer. In this regard, KANuTER will be a kind of bridgehead for Korean space nuclear application

  14. To MARS and Beyond with Nuclear Power - Design Concept of Korea Advanced Nuclear Thermal Engine Rocket

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The President Park of ROK has also expressed support for space program promotion, praising the success of NARO as evidence of a positive outlook. These events hint a strong signal that ROK's space program will be accelerated by the national eager desire. In this national eager desire for space program, the policymakers and the aerospace engineers need to pay attention to the advanced nuclear technology of ROK that is set to a major world nuclear energy country, even exporting the technology. The space nuclear application is a very much attractive option because its energy density is the most enormous among available energy sources in space. This paper presents the design concept of Korea Advanced Nuclear Thermal Engine Rocket (KANuTER) that is one of the advanced nuclear thermal rocket engine developing in Korea Advanced Institute of Science and Technology (KAIST) for space application. Solar system exploration relying on CRs suffers from long trip time and high cost. In this regard, nuclear propulsion is a very attractive option for that because of higher performance and already demonstrated technology. Although ROK was a late entrant into elite global space club, its prospect as a space racer is very bright because of the national eager desire and its advanced technology. Especially it is greatly meaningful that ROK has potential capability to launch its nuclear technology into space as a global nuclear energy leader and a soaring space adventurer. In this regard, KANuTER will be a kind of bridgehead for Korean space nuclear application.

  15. Nuclear electric propulsion mission engineering study. Volume 2: Final report

    Science.gov (United States)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.

  16. Engineering development in nuclear power plant construction

    International Nuclear Information System (INIS)

    Guenther, P.

    1979-01-01

    Proceeding from the up-to-now experience in the erection of nuclear power stations, especially of the first and second unit of the Greifswald nuclear power plant, the following essential aspects of the development of constructional engineering are discussed: (1) constructional features and criteria, (2) organizational management, (3) current status and problems in prelimary operations, and (4) possibilities of further expenditure reductions in constructing nuclear power stations

  17. Nuclear engineering education in the United States

    International Nuclear Information System (INIS)

    Williamson, T.G.

    1982-01-01

    In discussing nuclear engineering education in the United States it is shown that the most critical issue facing the nuclear engineering education community today is enrolment in a time of increasing demand for graduate engineers. Related to the issue of enrolment is support for graduate students, whether it be fellowships, traineeships, or research assistantships. Other issues are those of maintaining a vital faculty in the face of a competitive job market, of maintaining research facilities and developing new ones, and of determining the directions of educational efforts in the future. (U.K.)

  18. Nuclear Security Education Program at the Pennsylvania State University

    Energy Technology Data Exchange (ETDEWEB)

    Uenlue, Kenan [The Pennsylvania State University, Radiation Science and Engineering Center, University Park, PA 16802-2304 (United States); The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304 (United States); Jovanovic, Igor [The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304 (United States)

    2015-07-01

    The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basis of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale

  19. Nuclear Security Education Program at the Pennsylvania State University

    International Nuclear Information System (INIS)

    Uenlue, Kenan; Jovanovic, Igor

    2015-01-01

    The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basis of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale

  20. Labor market trends for nuclear engineers through 2000

    International Nuclear Information System (INIS)

    Seltzer, N.; Blair, L.M.; Baker, J.G.

    1995-01-01

    Throughout most of the 1980s, both private organizations and government agencies were concerned about the availability of an adequate supply of qualified nuclear engineers. This concern was primarily the result of a number of nuclear engineering academic programs being eliminated coupled with a continuous decline in graduate and undergraduate enrollments and degrees. By the early 1990s, the number of degrees and available supply had declined to new lows, but cutbacks in funding for the nuclear weapons program and nuclear energy R ampersand D, and in hiring by the electric utility industry, offset in large measure the declining supply. Recently, concerns about environment and waste management and about nuclear safety have again generated questions about the adequacy of supply of qualified personnel for nuclear energy activities. This report briefly examines the nuclear engineering labor market. Trends in employment, new graduates, job openings, and salaries are reviewed as a basis for understanding the current labor market. This review is then used as a basis for assessing future employment needs and new graduate supply to provide an outlook for future labor market conditions through 2000

  1. The engineering function in Scottish Nuclear

    International Nuclear Information System (INIS)

    Grant, J.

    1991-01-01

    The work of the Engineering and Development Division of Scottish Nuclear is described in this article. This company, formed since the privatization of electricity generation in the United Kingdom, owns and operates the two Hunterston Magnox reactors and the Torness Advanced Gass Cooled Reactors. Principle responsibilities such as maintaining safety standards, formulating policy for radioactive waste disposal and decommissioning and optimally controlling the nuclear generation cycle are outlined. Objectives for the next five years are identified and explained separately. The experience, knowledge and expertise of engineering staff is stressed as being of key importance to the future success of Scottish Nuclear. (UK)

  2. Mobile filters in nuclear engineering

    International Nuclear Information System (INIS)

    Meuter, R.

    1979-01-01

    The need for filters with high efficiencies which may be used at any place originated in nuclear power plants. Filters of this type, called Filtermobil, have been developed by Sulzer. They have been used successfully in nuclear plants for several years. (orig.) [de

  3. Proceedings of the Scientific Meeting in Nuclear Instrumentation Engineering

    International Nuclear Information System (INIS)

    Achmad Suntoro; Rony Djokorayono; Ferry Sujatno; Utaja

    2010-11-01

    The Proceeding of the Scientific Meeting in Nuclear Instrumentation Engineering held on Nov, 30, 2010 by the Centre for Nuclear Instrumentation Engineering - National Nuclear Energy Agency. The Proceedings of the Scientific Contains 40 papers Consist of Nuclear Instrumentation Engineering for Industry, Environment, and Nuclear Facilities. (PPIKSN)

  4. Nuclear corrosion science and engineering

    CERN Document Server

    2012-01-01

    Understanding corrosion mechanisms, the systems and materials they affect, and the methods necessary for accurately measuring their incidence is of critical importance to the nuclear industry for the safe, economic and competitive running of its plants. This book reviews the fundamentals of nuclear corrosion. Corrosion of nuclear materials, i.e. the interaction between these materials and their environments, is a major issue for plant safety as well as for operation and economic competitiveness. Understanding these corrosion mechanisms, the systems and materials they affect, and the methods to accurately measure their incidence is of critical importance to the nuclear industry. Combining assessment techniques and analytical models into this understanding allows operators to predict the service life of corrosion-affected nuclear plant materials, and to apply the most appropriate maintenance and mitigation options to ensure safe long term operation. This book critically reviews the fundamental corrosion mechani...

  5. Revalidation program for nuclear standby diesel generators

    International Nuclear Information System (INIS)

    Muschick, R.P.

    1985-01-01

    This paper describes the program which Duke Power Company carried out to revalidate the diesel engines used in diesel generators for nuclear standby service at Unit 1 of the Catawba Nuclear Station. The diesels operated satisfactorily during the tests, and only relatively minor conditions were noted during the test and inspections, with one exception. This exception was that cracks were detected in the piston skirts. The piston skirts have been replaced with improved design skirts. The diesels have been fully revalidated for their intended service, and have been declared operable

  6. Reactor physics computations for nuclear engineering undergraduates

    International Nuclear Information System (INIS)

    Huria, H.C.

    1989-01-01

    The undergraduate program in nuclear engineering at the University of Cincinnati provides three-quarters of nuclear reactor theory that concentrate on physical principles, with calculations limited to those that can be conveniently completed on programmable calculators. An additional one-quarter course is designed to introduce the student to realistic core physics calculational methods, which necessarily requires a computer. Such calculations can be conveniently demonstrated and completed with the modern microcomputer. The one-quarter reactor computations course includes a one-group, one-dimensional diffusion code to introduce the concepts of inner and outer iterations, a cell spectrum code based on integral transport theory to generate cell-homogenized few-group cross sections, and a multigroup diffusion code to determine multiplication factors and power distributions in one-dimensional systems. Problem assignments include the determination of multiplication factors and flux distributions for typical pressurized water reactor (PWR) cores under various operating conditions, such as cold clean, hot clean, hot clean at full power, hot full power with xenon and samarium, and a boron concentration search. Moderator and Doppler coefficients can also be evaluated and examined

  7. Reliability engineering for nuclear and other high technology systems

    International Nuclear Information System (INIS)

    Lakner, A.A.; Anderson, R.T.

    1985-01-01

    This book is written for the reliability instructor, program manager, system engineer, design engineer, reliability engineer, nuclear regulator, probability risk assessment (PRA) analyst, general manager and others who are involved in system hardware acquisition, design and operation and are concerned with plant safety and operational cost-effectiveness. It provides criteria, guidelines and comprehensive engineering data affecting reliability; it covers the key aspects of system reliability as it relates to conceptual planning, cost tradeoff decisions, specification, contractor selection, design, test and plant acceptance and operation. It treats reliability as an integrated methodology, explicitly describing life cycle management techniques as well as the basic elements of a total hardware development program, including: reliability parameters and design improvement attributes, reliability testing, reliability engineering and control. It describes how these elements can be defined during procurement, and implemented during design and development to yield reliable equipment. (author)

  8. The midwest workshop on preparing nuclear engineering professionals

    International Nuclear Information System (INIS)

    Danofsky, R.A.; Rohach, A.F.; Spinrad, B.I.; Nodean, W.C.

    1988-01-01

    Personnel training and education are activities of major importance for nuclear utilities and represent fruitful areas for possible cooperation between utilities and educational institutions. Utility personnel have a need for continuing education through advanced and undergraduate degree programs and special courses. Nuclear engineering departments are in a position to meet at least some of these needs. The purpose of the workshop described in this paper was to explore ways to increase the dialogue between utilities and universities and to bring faculty and utility personnel together to discuss the educational needs of nuclear utilities. The workshop was held May 25-27, 1988, at Iowa State University. Planning for the workshop was coordinated by a steering committee with representation from the Department of Nuclear Engineering at Iowa State University, Iowa Electric Light and Power Company (IEL ampersand P), and Kirkwood Community College at Cedar Rapids, Iowa. Participants represented nuclear utilities, nuclear engineering departments, 2- and 4-yr colleges, a nuclear training organization, and the Institute of Nuclear Power Operations

  9. IEEE [Institute of Electrical and Electronics Engineers] standards and nuclear software quality engineering

    International Nuclear Information System (INIS)

    Daughtrey, T.

    1988-01-01

    Significant new nuclear-specific software standards have recently been adopted under the sponsorship of the American Nuclear Society and the American Society of Mechanical Engineers. The interest of the US Nuclear Regulatory Commission has also been expressed through their issuance of NUREG/CR-4640. These efforts all indicate a growing awareness of the need for thorough, referenceable expressions of the way to build in and evaluate quality in nuclear software. A broader professional perspective can be seen in the growing number of software engineering standards sponsored by the Institute of Electrical and Electronics Engineers (IEEE) Computer Society. This family of standards represents a systematic effort to capture professional consensus on quality practices throughout the software development life cycle. The only omission-the implementation phase-is treated by accepted American National Standards Institute or de facto standards for programming languages

  10. Radiation hazards of nuclear engineering

    International Nuclear Information System (INIS)

    Oster, H.

    1981-01-01

    The basic mechanisms and principles of nuclear power plants are discussed, since their knowledge is mandatory for the understanding of the true risk associated with nuclear technology. Differences between predictable and catastrophic accidents are compared, terms which have been frequently confused to the extent that the public has become unjustifiably and irresponsibly alarmed. A description of the jobs and their responsibilities is also given. Known accidents are reported and the role of the physician in the care of accidents and the scheduling of emergency situations is described. Finally, the usefullness, necessity and risk associated with nuclear power are discussed. (orig.) [de

  11. US nuclear power programs

    International Nuclear Information System (INIS)

    McGolf, D.J.

    1994-01-01

    In the United States, coal provided 56 percent of the electricity generated in 1992. Nuclear energy was the next largest contributor, supplying 22 percent. Natural gas provided 9 percent, while hydro-electric and renewables together supplied another 9 percent. Currently, the 109 nuclear power plants in the U.S. have an overall generating capacity of 99,000 MWe. To improve efficiency, safety, and performance, the lessons of 30 years of experience with nuclear powerplants are being incorporated into design criteria for the next generation of U.S. plants. The new Advanced Light Water Reactor plants will feature simpler designs, which will enable more cost-effective construction and maintenance. To enhance safety, design margins are being increased, and human factors are being considered and incorporated into the designs

  12. US nuclear power programs

    Energy Technology Data Exchange (ETDEWEB)

    McGolf, D J

    1994-12-31

    In the United States, coal provided 56 percent of the electricity generated in 1992. Nuclear energy was the next largest contributor, supplying 22 percent. Natural gas provided 9 percent, while hydro-electric and renewables together supplied another 9 percent. Currently, the 109 nuclear power plants in the U.S. have an overall generating capacity of 99,000 MWe. To improve efficiency, safety, and performance, the lessons of 30 years of experience with nuclear powerplants are being incorporated into design criteria for the next generation of U.S. plants. The new Advanced Light Water Reactor plants will feature simpler designs, which will enable more cost-effective construction and maintenance. To enhance safety, design margins are being increased, and human factors are being considered and incorporated into the designs.

  13. Arctic Nuclear Waste Assessment Program

    International Nuclear Information System (INIS)

    Edson, R.

    1995-01-01

    The Arctic Nuclear Waste Assessment Program (ANWAP) was initiated in 1993 as a result of US congressional concern over the disposal of nuclear materials by the former Soviet Union into the Arctic marine environment. The program is comprised of appr. 70 different projects. To date appr. ten percent of the funds has gone to Russian institutions for research and logistical support. The collaboration also include the IAEA International Arctic Seas Assessment Program. The major conclusion from the research to date is that the largest signals for region-wide radionuclide contamination in the Arctic marine environment appear to arise from the following: 1) atmospheric testing of nuclear weapons, a practice that has been discontinued; 2) nuclear fuel reprocessing wastes carried in the Arctic from reprocessing facilities in Western Europe, and 3) accidents such as Chernobyl and the 1957 explosion at Chelyabinsk-65

  14. Thai Nuclear Power Program

    International Nuclear Information System (INIS)

    Namwong, Ratanachai

    2011-01-01

    The Electricity Generating Authority of Thailand (EGAT), the main power producer in Thailand, was first interested in nuclear power as an electricity option in 1967 when the electricity demand increased considerably for the first time as a result of the economic and industrial growth. Its viability had been assessed several times during the early seventies in relation to the changing factors. Finally in the late 1970s, the proceeding with nuclear option was suspended for a variety of reasons, for instance, public opposition, economic repercussion and the uncovering of the indigenous petroleum resources. Nonetheless, EGAT continued to maintain a core of nuclear expertise. During 1980s, faced with dwindling indigenous fossil fuel resources and restrictions on the use of further hydro as an energy source, EGAT had essentially reconsidered introducing nuclear power plants to provide a significant fraction to the long term future electricity demand. The studies on feasibility, siting and environmental impacts were conducted. However, the project was never implemented due to economics crisis in 1999 and strong opposition by environmentalists and activists groups. The 1986 Chernobyl disaster was an important cause. After a long dormant period, the nuclear power is now reviewed as one part of the solution for future energy supply in the country. Thailand currently relies on natural gas for 70 percent of its electricity, with the rest coming from oil, coal and hydro-power. One-third of the natural gas consumed in Thailand is imported, mainly from neighbouring Myanmar. According to Power Development Plan (PDP) 2007 rev.2, the total installed electricity capacity will increase from 28,530.3 MW in 2007 to 44,281 MW by the end of plan in 2021. Significantly increasing energy demand, concerns over climate change and dependence on overseas supplies of fossil fuels, all turn out in a favor of nuclear power. Under the current PDP (as revised in 2009), two 1,000- megawatt nuclear

  15. JAERI Nuclear Engineering School and technology transfer

    International Nuclear Information System (INIS)

    Nishimura, Kazuaki; Kawaguchi, Chiyoji

    1978-01-01

    A method is introduced to evaluate the degree of nuclear technology transfer; that is, the output powers of Japanese nuclear reactors constructed in these 20 years are chronologically plotted in a semi-log figure. All reactors plotted are classified into imported and domestic ones according to a value of domestication factor. A space between two historical trajectories of reactor construction may be interpreted as one of the measures indicating the degree of nuclear technology transfer. In connection with this method, historical change of educational and training courses in Nuclear Engineering School of Japan Atomic Energy Research Institute is reviewed in this report. (author)

  16. A nuclear engineer's ethical responsibility to society

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    1989-01-01

    Chernobyl notwithstanding, this paper seeks to illustrate why, on numerous fronts, nuclear technology provides the safest, cleanest and most effective method of base-load power generation. In particular it seeks to demonstrate that, despite the strident rhetoric and media exposure given to the anti-nuclear lobby, the technology is fundamental to the quality of life and the equitable sharing of energy by the year 2000. Therefore, the safety and technological superiority of the nuclear fuel cycle together with its high technology peripheral benefits both societal and fiscal are viewed as an ever increasing challenge and motivation which constitutes a major part of the nuclear engineer's ethical responsibility to society

  17. Civil engineering challenge with nuclear waste

    International Nuclear Information System (INIS)

    Day, D.

    1985-01-01

    The civil engineer can help to solve the problems in disposing of nuclear waste in a deep geologic formation. The site for a nuclear waste repository must be carefully selected so that the geology provides the natural barrier between the waste and the accessible environment specified by the NRC and the EPA. This engineer is familiar with the needed structure and conditions of the host and surrounding rocks, and also the hydraulic mechanisms for limiting the migration of water in the rocks. To dispose of the nuclear waste underground requires stable and long-lasting shafts and tunnels such as civil engineers have designed and constructed for many other uses. The planning, design and construction of the ground surface facilities for a nuclear waste repository involves civil engineering in many ways. The transporation of heavy, metal shielded casks requires special attention to the system of highways and railroads accessing the repository. Structures for handling the shipping casks and transferring the waste onsite and into the deep geologic formation need special considerations. The structures must provide the NRC required containment, including hot cells for remote handling. Therefore, structural design strives for buildings, ventilation structures, shaft headframes, etc., to be earthquake and tornado-proof. These important design bases and considerations for the civil engineer working on a nuclear waste repository are discussed in this paper

  18. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    Mautner-Markhof, F.

    1988-01-01

    Experience has shown that one of the critical conditions for the successful introduction of a nuclear power programme is the availability of sufficient numbers of personnel having the required education and experience qualifications. For this reason, the introduction of nuclear power should be preceded by a thorough assessment of the relevant capabilities of the industrial and education/training infrastructures of the country involved. The IAEA assists its Member States in a variety of ways in the development of infrastructures and capabilities for engineering and science education for nuclear power. Types of assistance provided by the IAEA to Member States include: Providing information in connection with the establishment or upgrading of academic and non-academic engineering and science education programmes for nuclear power (on the basis of curricula recommended in the Agency's Guidebook on engineering and science education for nuclear power); Expert assistance in setting up or upgrading laboratories and other teaching facilities; Assessing the capabilities and interest of Member States and their institutions/organizations for technical co-operation among countries, especially developing ones, in engineering and science education, as well as its feasibility and usefulness; Preparing and conducting nuclear specialization courses (e.g. on radiation protection) in various Member States

  19. Programs for nuclear data analysis

    International Nuclear Information System (INIS)

    Bell, R.A.I.

    1975-01-01

    The following report details a number of programs and subroutines which are useful for analysis of data from nuclear physics experiments. Most of them are available from pool pack 005 on the IBM1800 computer. All of these programs are stored there as core loads, and the subroutines and functions in relocatable format. The nature and location of other programs are specified as appropriate. (author)

  20. Nuclear wastes: research programs

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    The management of long-living and high level radioactive wastes in France belongs to the framework of the December 30, 1991 law which defines three ways of research: the separation and transmutation of radionuclides, their reversible storage or disposal in deep geologic formations, and their processing and surface storage during long duration. Research works are done in partnership between public research and industrial organizations in many French and foreign laboratories. Twelve years after its enforcement, the impact of this law has overstepped the simple research framework and has led to a deep reflection of the society about the use of nuclear energy. This short paper presents the main results obtained so far in the three research ways, the general energy policy of the French government, the industrial progresses made in the framework of the 1991 law and the international context of the management of nuclear wastes. (J.S.)

  1. Romanian nuclear power program - status and trends

    International Nuclear Information System (INIS)

    Chirica, T.; Condu, M.; Bilegan, I.C.; Glodeanu, F.; Popescu, D.

    1997-01-01

    The paper presents the status and the forecast for the Romanian Nuclear Power Program, as a component of the national strategy of power sector in Romania. The successful commissioning and operation of Cernavoda NPP - Unit 1 consolidated the opinion to go further for completion of Unit 2 to 5 on Cernavoda site. The focus is now on Unit 2, planned to be commissioned in 2001, and on the related projects for radioactive waste treatment and disposal. The Romanian national infrastructure supporting this program is also presented, including the research and development facilities. Romanian nuclear industry represents today one of the most advanced sector in engineering and technology and has the ability to meet the requirements of international codes and standards, proving also excellent quality assurance skills. Romanian nuclear industry has also the capability to compete on third market, for nuclear projects, together with the traditional suppliers. The conclusion of the paper is that for Romania, the nuclear energy is the best solution for future development of power sector, is safe, economic, and ethical. Nuclear sector created in Romania new jobs and activities contributing to the progress of Romanian society. (authors)

  2. Romanian nuclear power program - status and trends

    International Nuclear Information System (INIS)

    Chirica, T.; Condu, M.; Stiopol, M.; Bilegan, I. C.; Glodeanu, F.; Popescu, D.

    1997-01-01

    This paper presents the status and the forecast for the Romanian Nuclear Power Program, as a component of the national strategy of power sector in Romania. The successful commissioning and operation of Cernavoda NPP - Unit 1 consolidated the opinion to go further for completion of Unit 2 to 5 on Cernavoda site. The focus is now on Unit 2, planed to be commissioned in 2001, and on the related projects for radioactive waste treatment and disposal. The Romanian national infrastructure supporting this program is also presented, including the research and development facilities. Romanian nuclear industry represent today one of the most advanced sector in engineering and technology and has the ability to meet the requirements of international codes and standards, proving also excellent quality assurance skills. Romanian nuclear industry has also the capability to compete on third markets, for nuclear projects, together with the traditional suppliers. The conclusion of the paper is that for Romania the nuclear energy is the best solution for future development of power sector, is safe, economic and ethical. Nuclear sector created in Romania new jobs and activities, contributing to the progress of Romanian society. (author). 5 refs

  3. European Master of Science in Nuclear Engineering

    International Nuclear Information System (INIS)

    Moons, F.; Safieh, J.; Giot, M.; Mavko, B.; Sehgal, B.R.; Schaefer, A.; Goethem, G. van; D'haeseleer, W.

    2004-01-01

    The need to preserve, enhance or strengthen nuclear knowledge is worldwide recognised since a couple of years. It appears that within the European university education and training network, nuclear engineering is presently sufficiently covered, although somewhat fragmented. To take up the challenges of offering top quality, new, attractive and relevant curricula, higher education institutions should cooperate with industry, regulatory bodies and research centres, and more appropriate funding a.o. from public and private is to be re-established. More, European nuclear education and training should benefit from links with international organisations like IAEA, OECD-NEA and others, and should include world-wide cooperation with academic institutions and research centres. The European master in nuclear engineering guarantees a high quality nuclear education in Europe by means of stimulating student and instructor exchange, through mutual checks of the quality of the programmes offered, by close collaboration with renowned nuclear-research groups at universities and laboratories. The concept for a nuclear master programme consists of a solid basket of recommended basic nuclear science and engineering courses, but also contains advanced courses as well as practical training. Some of the advanced courses also serve as part of the curricula for doctoral programmes. A second important issue identified is Continued Professional Development. In order to achieve the objectives and practical goals described above, the ENEN association was formed. This international, non-profit association is be considered as a step towards a virtual European Nuclear University symbolising the active collaboration between various national institutions pursuing nuclear education. (author)

  4. Sloan foundation nuclear education program

    International Nuclear Information System (INIS)

    Kursunoglu, B.N.

    1992-01-01

    The Alfred P. Sloan Foundation realized the time had come for a real and significant contribution to the enlightenment of university students concerning nuclear matters. The Sloan Foundation chose to educate the youth of four-year colleges and universities with a curriculum established with the resource information sieved from three workshops for professors in these institutions. The three workshops were organized by groups at Harvard-MIT (two-week Summer Program on Nuclear Weapons and Arms Control), the University of California, San Diego (two-week Summer Seminar on Global Security and Arms Control), and the University of Miami (one-week Winter Workshop on Enlightenment: The Best Security in a Nuclear-Armed World). In this report the author focuses on a unified presentation of the basic facts, aims, and results of the Sloan Foundation Nuclear Education Program based on three workshops directed by Jack Ruina (MIT), Herbert York (USCD), and Behram Kursunoglu (UM) and offered from 1983-1990

  5. Exporting nuclear engineering and the industry's viewpoint

    International Nuclear Information System (INIS)

    Barthelt, K.

    1986-01-01

    Nuclear energy offers all possibilities to reduce the energy problems in the world which arise with the world-wide increasing population and the energy demand connected with it. The Federal Republic of Germany lives on the exports of refined technical methods which also include nuclear engineering. The exports of nuclear engineering should lead to a technology transfer with guidance and training on an equal basis between the industrial and developing countries. The preconditions of exporting nuclear-technical systems are a well-functioning domestic market and a certain support by the government, especially with regard to giving guarantees for the special exports risks of these big projects. On the other hand, exports are also needed in order to be able to continue providing high-level technology for the domestic market. (UA) [de

  6. The world nuclear power engineering. 1998 year

    International Nuclear Information System (INIS)

    Preobrazhenskaya, L.B.

    2000-01-01

    The purpose of this article consists in the analysis of the state and prospects of the world nuclear power engineering development. The data on the ratio and value of electrical energy obtained at the NPPs in the world in 1998, the specific capital expenditures on the NPPs construction by 2005, the forecast for the capacity of all NPPs by 2020 are presented. The progress in developing nuclear power engineering conditioned by improvement of the NPPs operation, optimization of their life-cycle and developing of new NPPs projects is noted [ru

  7. Social engineering awareness in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman bin Aslan; Mohamad Safuan bin Sulaiman; Abdul Muin bin Abdul Rahman

    2010-01-01

    Social engineering is the best tools to infiltrate an organization weakness. It can go bypass the best fire wall or Intrusion Detection System (IDS) the organization ever had, effectively. Nuclear Malaysia staffs should aware of this technique as information protection it is not only depends on paper and computer. This paper consist a few test cases including e mail, dump ster diving, phishing, malicious web content, and impersonation to acknowledge all Nuclear Malaysia staffs about the method, effect and prevention of social engineering. (author)

  8. Education in nuclear engineering in Slovakia

    International Nuclear Information System (INIS)

    Slugen, V.

    2005-01-01

    Slovak University of Technology is the largest and also the oldest university of technology in Slovakia. Surely more than 50% of high-educated technicians who work nowadays in nuclear industry have graduated from this university. The Department of Nuclear Physics and Technology of the Faculty of Electrical Engineering and Information Technology as a one of seven faculties of this University feels responsibility for proper engineering education and training for Slovak NPP operating staff. The education process is realised via undergraduate (Bc.), graduate (MSc.) and postgraduate (PhD..) study as well as via specialised training courses in a frame of continuous education system. (author)

  9. Soviet Union's Nuclear Power Program

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Glasnost has dramatically increased the availability of information about the Soviet Union's nuclear industry. In the future, even more information is likely to become known as Soviet participation in international forums increases. Not only is much more general information now available, but up-to-date details are regularly provided, including information such as the Soviet nuclear industry's strategic direction and goals, recent reactor design changes, safety inspection results, and reports of public opposition and protest. This article summarizes the current status of the Soviet nuclear power program, reconciling the often conflicting reports from various public sources

  10. Teaching WWERs at Hacettepe University Nuclear Engineering Department in Turkey

    International Nuclear Information System (INIS)

    Ergun, S.

    2011-01-01

    In this study, the challenges faced in the teaching WWER design for the reactor engineering course, which is taught in the Hcettepe University Nuclear Engineering Department are discussed. Since the course is designated taking a western reactor design into account, the computer programs and class projects prepared for the course include models and correlations suitable for these designs. The attempts for modifying the course and developing codes or programs for the course become a challenge especially in finding proper information sources on design in English. From finding proper material properties to exploring the design ideas, teaching WWER designs and using analysis tools for better teaching are very important to modify the reactor engineering course. With the study presented here, the reactor engineering course taught is described, the teaching tools are listed and attempts of modifying the course to teach and analyze WWER designs are explained

  11. Engineering Phase 2 and Phase 3 certification programs -- PUREX deactivation

    International Nuclear Information System (INIS)

    Walser, R.L.

    1994-01-01

    This document describes the training programs required to become a Phase 2 and Phase 3 certified engineer at PUREX during deactivation. With the change in mission, the PUREX engineering/certification training program is being revamped as discussed below. The revised program will be administered by PUREX Technical Training using existing courses and training materials. The program will comply with the requirements of the Department of Energy (DOE) order 5480.20A, ''Personnel Selection, Qualification, Training, and Staffing Requirements at DOE Reactor and Non-Reactor Nuclear Facilities.''

  12. Engineering Phase 2 and Phase 3 certification programs -- PUREX deactivation

    Energy Technology Data Exchange (ETDEWEB)

    Walser, R.L.

    1994-12-13

    This document describes the training programs required to become a Phase 2 and Phase 3 certified engineer at PUREX during deactivation. With the change in mission, the PUREX engineering/certification training program is being revamped as discussed below. The revised program will be administered by PUREX Technical Training using existing courses and training materials. The program will comply with the requirements of the Department of Energy (DOE) order 5480.20A, ``Personnel Selection, Qualification, Training, and Staffing Requirements at DOE Reactor and Non-Reactor Nuclear Facilities.``

  13. A Rational Method for Ranking Engineering Programs.

    Science.gov (United States)

    Glower, Donald D.

    1980-01-01

    Compares two methods for ranking academic programs, the opinion poll v examination of career successes of the program's alumni. For the latter, "Who's Who in Engineering" and levels of research funding provided data. Tables display resulting data and compare rankings by the two methods for chemical engineering and civil engineering. (CS)

  14. Nuclear thermal rocket engine operation and control

    International Nuclear Information System (INIS)

    Gunn, S.V.; Savoie, M.T.; Hundal, R.

    1993-06-01

    The operation of a typical Rover/Nerva-derived nuclear thermal rocket (NTR) engine is characterized and the control requirements of the NTR are defined. A rationale for the selection of a candidate diverse redundant NTR engine control system is presented and the projected component operating requirements are related to the state of the art of candidate components and subsystems. The projected operational capabilities of the candidate system are delineated for the startup, full-thrust, shutdown, and decay heat removal phases of the engine operation. 9 refs

  15. LXII International conference NUCLEUS 2012. Fundamental problems of nuclear physics, atomic power engineering and nuclear technologies (LXII Meeting on nuclear spectroscopy and nuclear structure). Book of abstracts

    International Nuclear Information System (INIS)

    Vlasnikov, A.K.

    2012-01-01

    The scientific program of the conference covers almost all problems in nuclear physics and its applications. The recent results of experimental investigations of atomic nuclei properties and nuclear reaction mechanisms are presented. The theoretical problems of atomic nuclei and fundamental interactions as well as nuclear reactions are discussed. The new techniques and methods of nuclear physical experiments are considered. The particular attention is given to fundamental problems of nuclear power and qualitative training of russian and foreign specialist in field of nuclear physics and atomic power engineering [ru

  16. Educating nuclear engineers at German universities

    International Nuclear Information System (INIS)

    Knorr, J.

    1995-01-01

    Nuclear technology is a relatively young university discipline. Yet, as a consequence of the declining public acceptance of the peaceful use of nuclear power, its very existence is already being threatened at many universities. However, if Germany needs nuclear power, which undoubtedly is the case, highly qualified, committed experts are required above all. Nuclear technology develops internationally. Consequently, also university education must meet international standards. Generally, university education has been found to be the most effective way of increasing the number of scientific and engineering personnel. Nuclear techniques have meanwhile found acceptance in many other scientific disciplines, thus advancing those branches of science. Teaching needs research; like research in nucelar technology at the national research centers, also the universities are suffering massive financial disadvantages. Research is possible only if outside funds are solicited, which increase dependency and decreases basic research. (orig.) [de

  17. Exporting nuclear engineering and the government's viewpoint

    International Nuclear Information System (INIS)

    Schill, H.

    1986-01-01

    The reasons for the government's positive attitude to nuclear engineering exports are explained, especially with regard to them being a compensation of the decreasing domestic demand. The federal government considers such exports to be necessary and correct for economical and energy-political reasons. Their contribution reaches from accompanying measures to the provision of state guarantees of export financing activities. (UA) [de

  18. Current situation of nuclear engineering education

    International Nuclear Information System (INIS)

    Queral, C.; Minguez, E.

    2001-01-01

    The last few years have seen a growing concern with the decreasing number of suitably qualified engineers and university graduates in the field of Nuclear Technology. The gap between supply and demand is now a fact in several countries, and for the reason the international community has prepared several reports on the issue that are summarized here. (Author) 4 refs

  19. Abbreviations of nuclear power plant engineering

    International Nuclear Information System (INIS)

    Freyberger, G.H.

    1979-01-01

    The edition of this English and German list of abbreviations comprises about 5200 entries in English and about 1400 entries in German as well as the most important American, English, German and other foreign Utilities and component manufacturers frequently quoted in nuclear engineering literature and documentation. (orig./HP) [de

  20. Contributions of university nuclear engineering departments to the national research agenda

    International Nuclear Information System (INIS)

    Peddicord, K.L.

    1991-01-01

    The history and character of university nuclear engineering departments have enabled them to play unique roles in higher education and to make valuable contributions in numerous important research fields. Nuclear engineering programs have several distinguishing and noteworthy characteristics. These characteristics include quality, diversity, and effectiveness. However, the continued viability of these programs is in question, and the importance of these programs may only be recognized after the capability has been lost. To recover this capability may well prove to be an impossibility

  1. Maintenance engineering of lifetime management programs

    International Nuclear Information System (INIS)

    Hervia Ruperez, F.

    1997-01-01

    The complexity of nuclear power plants obliges to stablish the adecuated management of its lifetime. This article describes the methodologies and the improvement the evaluation of lifetime programs and specially in Garona and Vandellos II Nuclear Power Plants. (Author)

  2. Nuclear Targeting Terms for Engineers and Scientists

    Energy Technology Data Exchange (ETDEWEB)

    St Ledger, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-01

    The Department of Defense has a methodology for targeting nuclear weapons, and a jargon that is used to communicate between the analysts, planners, aircrews, and missile crews. The typical engineer or scientist in the Department of Energy may not have been exposed to the nuclear weapons targeting terms and methods. This report provides an introduction to the terms and methodologies used for nuclear targeting. Its purpose is to prepare engineers and scientists to participate in wargames, exercises, and discussions with the Department of Defense. Terms such as Circular Error Probable, probability of hit and damage, damage expectancy, and the physical vulnerability system are discussed. Methods for compounding damage from multiple weapons applied to one target are presented.

  3. Gasoline Engine Mechanics. Florida Vocational Program Guide.

    Science.gov (United States)

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This vocational program guide is intended to assist in the organization, operation, and evaluation of a program in gasoline engine mechanics in school districts, area vocational centers, and community colleges. The following topics are covered: job duties of small-engine mechanics; program content (curriculum framework and student performance…

  4. Passive Nuclear Plants Program (UPDATE)

    International Nuclear Information System (INIS)

    Chimeno, M. A.

    1998-01-01

    The light water passive plants program (PCNP), today Advanced Nuclear Power Plants Program (PCNA), was constituted in order to reach the goals of the Spanish Electrical Sector in the field of advanced nuclear power plants, optimize the efforts of all Spanish initiatives, and increase joint presence in international projects. The last update of this program, featured in revision 5th of the Program Report, reflects the consolidation of the Spanish sector's presence in International programs of the advanced power plants on the basis of the practically concluded American ALWR program. Since the beginning of the program , the PCNP relies on financing from the Electrical sector, Ocide, SEPI-Endesa, Westinghouse, General Electric, as well as from the industrial cooperators, Initec, UTE (Initec- Empresarios Agrupados), Ciemat, Enusa, Ensa and Tecnatom. The program is made up of the following projects, already concluded: - EPRI's Advanced Light Water Plants Certification Project - Westinghouse's AP600 Project - General Electric's SBWR Project (presently paralyzed) and ABWR project Currently, the following project are under development, at different degrees of advance: - EPP project (European Passive Plant) - EBWR project (European Advanced Boiling Water Reactor)

  5. Nuclear Plant Analyzer development at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Laats, E.T.

    1986-10-01

    The Nuclear Plant Analyzer (NPA) is a state-of-the-art safety analysis and engineering tool being used to address key nuclear power plant safety issues. Under the sponsorship of the US Nuclear Regulatory Commission (NRC), the NPA has been developed to integrate the NRC's computerized reactor behavior simulation codes such as RELAP5, TRAC-BWR and TRAC-PWR, with well-developed computer color graphics programs and large repositories of reactor design and experimental data. An important feature of the NPA is the capability to allow an analyst to redirect a RELAP5 or TRAC calculation as it progresses through its simulated scenario. The analyst can have the same power plant control capabilities as the operator of an actual plant. The NPA resides on the dual Control Data Corporation Cyber 176 mainframe computers at the Idaho National Engineering Laboratory and Cray-1S computers at the Los Alamos National Laboratory (LANL) and Kirtland Air Force Weapons Laboratory (KAFWL)

  6. Nuclear engineering. Stable industry for bright minds

    International Nuclear Information System (INIS)

    Geisler, Maja

    2009-01-01

    The Deutsches Atomforum (DAtF) invited 35 students and graduate students for 'colloquies for professional orientation' to Luenen on March 8-11, 2009. Another 39 students were guests in Speyer between March 15 and 18 this year. Participants included graduates in physics, chemistry, radiation protection, and mechanical engineering as well as students of process engineering, electrical engineering and environmental technology. The colloquies for professional orientation are a service provided by the Informationskreis Kernenergie (IK) to member firms of DAtF. At the same time, the IK in this way fulfils its duty to promote young scientists and engineers within the framework of the DAtF's basic public relations activities. After all, nuclear technology in Germany is not about to end its life. Firms with international activities are in urgent need of highly qualified young staff members. Personnel is needed for a variety of activities ranging from nuclear power plant construction to fuel fabrication to waste management and the demolition and disposal of nuclear power plants. All these areas are in need of new qualified staff. Some 750 students so far have attended the DAtF colloquies for professional orientation since 2002. Many participants were hired by industries straight away or were given opportunities as trainees or students preparing their diploma theses in the nuclear industry. These contacts with the nuclear industry should not remain a one-off experience for the students. For this reason, the IK invites the participants in colloquies again this year to attend the Annual Meeting on Nuclear Technology in Dresden on May 12-14, 2009. (orig.)

  7. Human modeling in nuclear engineering

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Furuta, Kazuo.

    1994-01-01

    Review on progress of research and development on human modeling methods is made from the viewpoint of its importance on total man-machine system reliability surrounding nuclear power plant operation. Basic notions on three different approaches of human modeling (behavioristics, cognitives and sociologistics) are firstly introduced, followed by the explanation of fundamental scheme to understand human cognitives at man-machine interface and the mechanisms of human error and its classification. Then, general methodologies on human cognitive model by AI are explained with the brief summary of various R and D activities now prevailing in the human modeling communities around the world. A new method of dealing with group human reliability is also introduced which is based on sociologistic mathematical model. Lastly, problems on human model validation are discussed, followed by the introduction of new experimental method to estimate human cognitive state by psycho-physiological measurement, which is a new methodology plausible for human model validation. (author)

  8. Tomorrow's engineers through teacher/student programs at Penn State

    International Nuclear Information System (INIS)

    Davidson, C.

    1992-01-01

    Interest in math and science increases when the problems and topics are current and socially relevant. A course that integrates various sciences requires a solid foundation in mathematics and an understanding that real life consists of an interaction of the basic sciences. One topical area that requires the understanding of math and science and affects our society is radiation. Although nuclear issues are prevalent in the news, very few secondary science educators receive much formal training in radiation and nuclear science. A strong push for educational programs on this topic by the U.S. Atomic Energy Commission and state departments of education began in the late 1960s and early 1970s. Through this effort, Pennsylvania State University (Penn State) developed the Nuclear Concepts Institute for secondary science teachers and has continued its involvement with educational programs in nuclear science for teachers and students. From discussions with teachers and students along with formal and informal surveys, the programs have had a positive impact on teachers' interest in learning more about nuclear science and on students' choices to enter nuclear engineering or a related field. The paper discusses the Nuclear Concepts Program; formation of the American Nuclear Science Teachers Association (ANSTA); ANSTA projects; other Penn State educational programs; and impact of education programs

  9. Labor supply of engineers and scientists for nuclear electric utilities, 1987-1992

    International Nuclear Information System (INIS)

    Blair, L.M.

    1988-01-01

    An assessment of the adequacy of the supply of health physicists, nuclear engineers, and other engineers for the nuclear electric utility industry is based on job openings for scientists and engineers in broader nuclear-power-related fields, which include engineering and design, manufacturing, fabrication, supporting services, and government. In assessing the likely adequacy of labor supplies for commercial nuclear power job openings over the next 5 yr, consideration has been given to competing sources of labor demands, including nuclear energy research and development activities, nuclear defense, and the total US economy, and to the likely supply of new graduates. In particular, over the last 3 yr, the number of degrees awarded and enrollments in nuclear engineering programs have declined 12 and 14%, respectively, and in health physics programs, 5 and 14%, respectively. For health physics and nuclear engineers, tight labor market conditions (i.e. labor supplies and demand balanced at relatively high salaries) are expected over the next 5 yr because of declining enrollments and slowly growing employment levels plus job replacement needs. The commercial nuclear power field is expected to face tight labor markets for electrical and materials engineers because of strong competing demands in the economy. Other engineering occupations are likely to have adequate supplies for the nuclear power field but at salaries that continue to be relatively higher than salaries for other professional occupations

  10. 2009 UK/US Nuclear Engineering Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Richard Rankin

    2009-04-01

    This report summarizes the 2009 UK/US Nuclear Engineering Workshop held April 20-21, 2010, in Washington, D.C. to discuss opportunities for nuclear engineering collaboration between researchers in the United States and the United Kingdom.

  11. Human factors engineering program review model

    International Nuclear Information System (INIS)

    1994-07-01

    The staff of the Nuclear Regulatory Commission is performing nuclear power plant design certification reviews based on a design process plan that describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification and an acceptable implemented design. There are two principal reasons for this approach. First, the initial design certification applications submitted for staff review did not include detailed design information. Second, since human performance literature and industry experiences have shown that many significant human factors issues arise early in the design process, review of the design process activities and results is important to the evaluation of an overall design. However, current regulations and guidance documents do not address the criteria for design process review. Therefore, the HFE Program Review Model (HFE PRM) was developed as a basis for performing design certification reviews that include design process evaluations as well as review of the final design. A central tenet of the HFE PRM is that the HFE aspects of the plant should be developed, designed, and evaluated on the basis of a structured top-down system analysis using accepted HFE principles. The HFE PRM consists of ten component elements. Each element in divided into four sections: Background, Objective, Applicant Submittals, and Review Criteria. This report describes the development of the HFE PRM and gives a detailed description of each HFE review element

  12. Impact evaluation of the nuclear training program of the Philippine Nuclear Research Institute

    International Nuclear Information System (INIS)

    Relunia, Estrella D.

    2000-01-01

    This study attempted to determine the factors that influenced the impact of the institute's training program in nuclear science and technology to the institution where the trainee works and to the trainee himself and this study involved engineers, scientists, teachers, medical doctor, technologist and professionals who have successfully completed the PNRI nuclear science and technology training courses

  13. Quality assurance system in nuclear engineering

    International Nuclear Information System (INIS)

    Adams, H.W.; Hoensch, V.

    1985-01-01

    Due to the close connection between the German Atomic Energy Law and the nuclear control regulations, quality systems in nuclear engineering have taken on a special form. Quality assurance systems as a stipulated organisation of structure and procedure to assure quality have implications for the organisation of the electric supply company at the planning, erection and commissioning stage and for the organisation of the nuclear power station facility. To supervise the application and effectiveness of the stipulated organisation of structure and procedure internally and externally among contractors, special organisation units have been set up at the plant suppliers, manufactures, electric supply companies and nuclear power station facilities, which in the electric supply field go by the name of Quality Assurance Supervision. (orig.) [de

  14. NUKEM. Innovative solutions for nuclear engineering

    International Nuclear Information System (INIS)

    Scheffler, Beate

    2011-01-01

    Management of radioactive waste, handling spent fuel elements, decommissioning of nuclear facilities, and engineering and consulting activities are services associated with the name of NUKEM all over the world. The company's scientists and engineers develop solution concepts combining the latest technologies with proven techniques and many years of experience. The company;s history and the services offered to the nuclear industry began more than 5 decades ago. The predecessor, NUKEM Nuklear-Chemie-Metallurgie, was founded in 1960 as one of the earliest nuclear companies in Germany. Originally, the firm produced fuel elements for a variety of reactor lines. As early as in the 1970s, logical extensions of these business activities were nuclear engineering and plant construction. In the meantime, NUKEM Technologies GmbH has developed a worldwide reputation for its activities. Numerous reference projects bear witness to optimum project management and customer satisfaction. Since 2009, NUKEM Technologies has been a wholly owned subsidiary of the Russian Atomstroyexport. NUKEM Technologies operates sales and project offices outside Germany, e.g. in Russia, China, Lithuania, France, and Bulgaria. In this way, the company is present in its target markets of Russia, Western and Eastern Europe as well as Asia, offering customers and partners fast and direct contacts. (orig.)

  15. Development of undergraduate nuclear security curriculum at College of Engineering, Universiti Tenaga Nasional

    Science.gov (United States)

    Hamid, Nasri A.; Mujaini, Madihah; Mohamed, Abdul Aziz

    2017-01-01

    The Center for Nuclear Energy (CNE), College of Engineering, Universiti Tenaga Nasional (UNITEN) has a great responsibility to undertake educational activities that promote developing human capital in the area of nuclear engineering and technology. Developing human capital in nuclear through education programs is necessary to support the implementation of nuclear power projects in Malaysia in the near future. In addition, the educational program must also meet the nuclear power industry needs and requirements. In developing a certain curriculum, the contents must comply with the university's Outcomes Based Education (OBE) philosophy. One of the important courses in the nuclear curriculum is in the area of nuclear security. Basically the nuclear security course covers the current issues of law, politics, military strategy, and technology with regard to weapons of mass destruction and related topics in international security, and review legal regulations and political relationship that determine the state of nuclear security at the moment. In addition, the course looks into all aspects of the nuclear safeguards, builds basic knowledge and understanding of nuclear non-proliferation, nuclear forensics and nuclear safeguards in general. The course also discusses tools used to combat nuclear proliferation such as treaties, institutions, multilateral arrangements and technology controls. In this paper, we elaborate the development of undergraduate nuclear security course at the College of Engineering, Universiti Tenaga Nasional. Since the course is categorized as mechanical engineering subject, it must be developed in tandem with the program educational objectives (PEO) of the Bachelor of Mechanical Engineering program. The course outcomes (CO) and transferrable skills are also identified. Furthermore, in aligning the CO with program outcomes (PO), the PO elements need to be emphasized through the CO-PO mapping. As such, all assessments and distribution of Bloom Taxonomy

  16. Power program and nuclear power

    International Nuclear Information System (INIS)

    Chernilin, Yu.F.

    1990-01-01

    Main points of the USSR power program and the role of nuclear power in fuel and power complex of the country are considered. Data on dynamics of economic indices of electric power generation at nuclear power plants during 1980-1988 and forecasts till 2000 are presented. It is shown that real cost of 1 kW/h of electric power is equal to 1.3-1.8 cop., and total reduced cost is equal to 1.8-2.4 cop

  17. Nuclear industry - challenges in chemical engineering

    International Nuclear Information System (INIS)

    Sen, S.; Sunder Rajan, N.S.; Balu, K.; Garg, R.K.; Murthy, L.G.K.; Ramani, M.P.S.; Rao, M.K.; Sadhukhan, H.K.; Venkat Raj, V.

    1978-01-01

    Chemical engineering processes and operations are closely involved in every step of the nuclear fuel cycle. Starting from mining and milling of the ore through the production of fuel and other materials and their use in nuclear reactors, fuel reprocessing, fissile material recycle and treatment and disposal of fission product wastes, each step presents a challenge to the chemical engineer to evolve and innovate processes and techniques for more efficient utilization of the energy in the atom. The requirement of high recovery of the desired components at high purity levels is in itself a challenge. ''Nuclear Grade'' specifications for materials put a requirement which very few industries can satisfy. Recovery of uranium and thorium from low grade ores, of heavy water from raw water, etc. are examples. Economical and large scale separation of isotopes particularly those of heavy elements is a task for which processess are under various stages of development. Further design of chemical plants such as fuel reprocessing plants and high level waste treatment plants, which are to be operated and maintained remotely due to the high levels of radio-activity call for engineering skills which are being continually evolved. In the reactor, analysis of the fluid mechanics and optimum design of heat removal system are other examples where a chemical engineer can play a useful role. In addition to the above, the activities in the nuclear industry cover a very wide range of chemical engineering applications, such as desalination and other energy intensive processes, radioisotope and radiation applications in industry, medicine and agriculture. (auth.)

  18. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    Science.gov (United States)

    Hamid, Nasri A.; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri

    2015-04-01

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO2 emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes

  19. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    International Nuclear Information System (INIS)

    Hamid, Nasri A.; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri

    2015-01-01

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO 2 emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes

  20. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, Nasri A., E-mail: Nasri@uniten.edu.my; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri [Nuclear Energy Center, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO{sub 2} emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper

  1. Major accomplishments of America's nuclear rocket program (ROVER)

    International Nuclear Information System (INIS)

    Finseth, J.L.

    1991-01-01

    The United States embarked on a program to develop nuclear rocket engines in 1955. This program was known as project Rover. Initially nuclear rockets were considered as a potential backup for intercontinental ballistic missile propulsion but later proposed applications included both a lunar second stage as well as use in manned-Mars flights. Under the Rover program, 19 different reactors were built and tested during the period of 1959-1969. Additionally, several cold flow (non-fuelled) reactors were tested as well as a nuclear fuels test cell. The Rover program was terminated in 1973, due to budget constraints and an evolving political climate. The Rover program would have led to the development of a flight engine had the program continued through a logical continuation. The Rover program was responsible for a number of technological achievements. The successful operation of nuclear rocket engines on a system level represents the pinnacle of accomplishment. This paper will discuss the engine test program as well as several subsystems

  2. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1996

    International Nuclear Information System (INIS)

    1997-08-01

    This report summarizes research and educational activities, operation status of the research facilities of the Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo on fiscal year 1996. This facility has four major research facilities such as fast neutron source reactor 'Yayoi', electron Linac, fundamental experiment facility for nuclear fusion reactor blanket design and high fluence irradiation facility(HIT). Education and research activities are conducted in a wide fields of nuclear engineering using these facilities. The former two facilities are available for various studies by universities all over Japan, facility for nuclear fusion reactor blanket design is utilized for research within the Faculty of Engineering and HIT is used for the research within the University of Tokyo. The facility established a plan to reorganized into a nation wide research collaboration center in fiscal year 1995 and after further discussion of a future program it is decided to hold 'Nuclear energy symposium' periodically after fiscal year 1997 as a part of the activity for appealing the research results to the public. (G.K.)

  3. Application of nuclear photon engines for deep-space exploration

    International Nuclear Information System (INIS)

    Gulevich, Andrey V.; Ivanov, Eugeny A.; Kukharchuk, Oleg F.; Poupko, Victor Ya.; Zrodnikov, Anatoly V.

    2001-01-01

    Conception of using the nuclear photon rocket engines for deep space exploration is proposed. Some analytical estimations have been made to illustrate the possibility to travel to 100-10000 AU using a small thrust photon engine. Concepts of high temperature nuclear reactors for the nuclear photon engines are also discussed

  4. Master of engineering program for Westinghouse Electric Corporation

    International Nuclear Information System (INIS)

    Klevans, E.H.; Diethorn, W.S.

    1991-01-01

    In August of 1985, Westinghouse Corporation, via a grant to the nuclear engineering department at Pennsylvania State University, provided its professional employees the opportunity to earn a master of engineering (M. Eng.) degree in nuclear engineering in a program of evening study in the Pittsburgh area. Faculty members from the nuclear engineering department, which is 135 miles from Westinghouse, and adjunct faculty from the professional ranks of Westinghouse provided the instruction at the Westinghouse training center facility in Monroeville, Pennsylvania, A 3-yr 30-credit program was originally planned, but this was extended to a fourth year to accommodate the actual student progress toward the degree. A fifth year was added for students to complete their engineering paper. There have been benefits to both Westinghouse and Penn State from this program. Advanced education for its employees has met a Westinghouse need. For Penn State, there has been an increase in interaction with Westinghouse personnel, and this has now led to cooperative research programs with them

  5. Universities and national laboratory roles in nuclear engineering

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1991-01-01

    Nuclear Engineering Education is being significantly challenged in the United States. The decline in enrollment generally and the reduction of the number of nuclear engineering departments has been well documented. These declines parallel a lack of new construction for nuclear power plants and a decline in research and development to support new plant design. Precisely at a time when innovation is is needed to deal with many issues facing nuclear power, the number of qualified people to do so is being reduced. It is important that the University and National Laboratory Communities cooperate to address these issues. The Universities must increasingly identify challenges facing nuclear power that demand innovative solutions and pursue them. To be drawn into the technology the best students must see a future, a need and identify challenges that they can meet. The University community can provide that vision with help from the National Laboratories. It has been a major goal within the reactor development program at Argonne National Laboratory to establish the kind of program that can help accomplish this

  6. A Program on Biochemical and Biomedical Engineering.

    Science.gov (United States)

    San, Ka-Yiu; McIntire, Larry V.

    1989-01-01

    Presents an introduction to the Biochemical and Biomedical Engineering program at Rice University. Describes the development of the academic and enhancement programs, including organizational structure and research project titles. (YP)

  7. Nuclear engineering education in the United States

    International Nuclear Information System (INIS)

    Williamson, T.G.

    1982-01-01

    The critical issue facing the nuclear engineering education community today is first and foremost enrollment in a time of increasing demand for graduate engineers. Related to the issue of enrollment is support for graduate students, whether it be fellowships, traineeships, or research assistantships. Other issues are those of maintaining a vital faculty in the face of competitive job market, of maintaining research facilities and developing new ones, and last and certainly not least that of determining the directions of our educational efforts in the future. These issues are examined in the paper. (author)

  8. Civil engineering firms and the nuclear programme

    International Nuclear Information System (INIS)

    Giral, J.L.

    1988-01-01

    Pointing out that the realization of the electronuclear programme accounted for just under 5 % of the annual turnover of civil engineering firms from 1975 to 1987, the author lists the main types of work entrusted to these firms for the bulding of the power stations: electrical work, structural work (civil engineering, metal structures. He then describes the two main problems which the profession has to face in the nuclear field: the management of final contract stages and adaptation to the slowing down in the rate of commitment of power plants [fr

  9. Piping engineering for nuclear power plant

    International Nuclear Information System (INIS)

    Curto, N.; Schmidt, H.; Muller, R.

    1988-01-01

    In order to develop piping engineering, an adequate dimensioning and correct selection of materials must be secured. A correct selection of materials together with calculations and stress analysis must be carried out with a view to minimizing or avoiding possible failures or damages in piping assembling, which could be caused by internal pressure, weight, temperature, oscillation, etc. The piping project for a nuclear power plant is divided into the following three phases. Phase I: Basic piping design. Phase II: Final piping design. Phase III: Detail engineering. (Author)

  10. Terminology standardisation in the nuclear engineering field

    International Nuclear Information System (INIS)

    Kraut, A.

    1987-01-01

    Terminological standardisation is made for the purpose of unambiguous understanding, at least among experts in a given field of knowledge. The author explains a number of criteria and aspects to be taken into account in the process of standardisation by referring to the work of the Terminology Committee on Nuclear Engineering. He discusses the word formation in a technical language and the features of standardised terminology. Accepted terminology is a main factor in all procedures concerning design, testing, and approval and licensing of nuclear facilities, and also is of importance in terms of economics. (HP) [de

  11. Reactor physics for non-nuclear engineers

    International Nuclear Information System (INIS)

    Lewis, E.E.

    2011-01-01

    A one-term undergraduate course in reactor physics is described. The instructional format is strongly influenced by its intended audience of non-nuclear engineering students. In contrast to legacy treatments of the subject, the course focuses on the physics of nuclear power reactors with no attempt to include instruction in numerical methods. The multi-physics of power reactors is emphasized highlighting the close interactions between neutronic and thermal phenomena in design and analysis. Consequently, the material's sequencing also differs from traditional treatments, for example treating kinetics before the neutron diffusion is introduced. (author)

  12. Some radiation chemical aspects of nuclear engineering

    International Nuclear Information System (INIS)

    Pikaev, A.K.; Kabakchi, S.A.; Egorov, G.F.

    1988-01-01

    Some radiation chemical aspects of nuclear engineering are discussed (predominantly on the base of the works performed in the Soviet Union). The data on the influence of temperature within the range of 0-300 0 C on the yields of water radiolysis products are considered. The results obtained from the study of reactivity of actinide ions towards inorganic free radicals in acid aqueous solutions are summarized. The information on composition and properties of the products of radiolytic transformations of different extragents and diluents and on their influence on the behaviour of extraction systems during processing of irradiated nuclear fuel is presented. (author)

  13. Nuclear engineering technology's role in providing a multitalented workforce

    International Nuclear Information System (INIS)

    Sherrard, J.R.; Pascal, D.D. Jr.

    1996-01-01

    In today's very competitive economic climate, all businesses are reassessing every aspect of their operations to remain economically viable. One of the most costly factors remaining is personnel costs. Substantial downsizing and restructuring have been a universal result. Nuclear utilities have had to undertake these same actions, primarily to remain competitive in the near term with inexpensive fossil-fuel-fired plants. In assessing personnel needs, nuclear utilities have determined that their nuclear operations employee of the future will be a multitalented individual with a diverse, quality education. Industry can no longer afford to have numerous specialists but instead needs fewer generalists. The success of a nuclear engineering associates degree program at Three Rivers Community College is discussed

  14. Approaches to nontraditional delivery of nuclear engineering education

    International Nuclear Information System (INIS)

    Malaviya, B.K.

    1991-01-01

    At Rensselaer Polytechnic Institute, the faculty of the nuclear engineering and engineering physics department have, over the years, been involved in a variety of such approaches in response to the changing needs of nuclear industry personnel. A number of different types of short course and workshop programs have been developed and implemented both on and off campus in such areas as basic nuclear technology, reactor design computer codes and applications, nuclear power plant design and maintenance, reactor operations, health physics, modern developments in boiling heat transfer and two-phase flow, and probabilistic risk assessment. Customized coursed tailored to meet the particular needs of personnel in specialized areas can also be offered on specific industrial site locations, generally resulting in substantial savings of time as well as costs associated with tuition, travel, lodging. The Rensselaer Satellite Video Program (RSVP) brings the latest technological aids to the nontraditional delivery of courses and provides the facilities and opportunities for off-campus students and professional personnel to participate in regular academic programs and courses without leaving their industrial sites

  15. QA programs in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingson, A.C.

    1976-01-01

    As an overview of quality assurance programs in nuclear power plants, the energy picture as it appears today is reviewed. Nuclear power plants and their operations are described and an attempt is made to place in proper perspective the alleged ''threats'' inherent in nuclear power. Finally, the quality assurance programs being used in the nuclear industry are described

  16. Turkish nuclear program: a frustrated ambition

    International Nuclear Information System (INIS)

    Cognet, G.

    2016-01-01

    Turkey has launched an ambitious program for the construction of 3 plants involving a total of 12 reactors. Only the Akkuyu and the Sinop projects have been materialized by 2 international agreements. The Akkuyu project will benefit from Russian technology and financing while the Sinop project will rely on a Franco-Japanese technology: the ATMEA reactor. In the eighties there were previous projects on the same sites but they failed due to the lack of financing. Today's economic policy of the Turkish government relies on the construction of big infrastructures in the sectors of transport, defense and energy and nuclear plants are an integral part of it. Turkey's nuclear programme faces various challenges of different types: the seismic risk is very high, the regulation body is consistent for research reactors but not for power plants, there is a lack of trained people in nuclear sciences and engineering, contracts stipulate that local company should be involved in the construction but the industrial sector lacks enterprises that have been certified for working in the nuclear sector, nuclear controversy is emerging in Turkey and diplomatic difficulties with Russia concerning Syria conflict jeopardizes the project. (A.C.)

  17. Development of nuclear rocket engine technology

    International Nuclear Information System (INIS)

    Gunn, S.V.

    1989-01-01

    Research sponsored by the Atomic Energy Commission, the USAF, and NASA (later on) in the area of nuclear rocket propulsion is discussed. It was found that a graphite reactor, loaded with highly concentrated Uranium 235, can be used to heat high pressure liquid hydrogen to temperatures of about 4500 R, and to expand the hydrogen through a high expansion ratio rocket nozzle assembly. The results of 20 reactor tests conducted at the Nevada Test Site between July 1959 and June 1969 are analyzed. On the basis of these results, the feasibility of solid graphite reactor/nuclear rocket engines is revealed. It is maintained that this technology will support future space propulsion requirements, using liquid hydrogen as the propellant, for thrust requirements ranging from 25,000 lbs to 250,000 lbs, with vacuum specific impulses of at least 850 sec and with full engine throttle capability. 12 refs

  18. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities

  19. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part B

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities.

  20. Welding problems in nuclear power engineering

    International Nuclear Information System (INIS)

    Zubchenko, A.S.

    1986-01-01

    The problems of welding industry in nuclear power plant engineering, mainly related to the improvement of molten bath protection, are considered. Development of new materials for welding electrodes, for cladding and welding fluxes, is pointed out. Production of the following equipment is brought to a commercial level: welding heads and welding machines for branch pipe welding, anticorrosion cladding, zonal thermal treatment, electron beam welding facilities for the welding and maintenance of turbineblades, equipment for nondestructive testing of welded joints

  1. Evolvement of nuclear criticality safety programs

    International Nuclear Information System (INIS)

    Ketzlach, N.

    1992-01-01

    Nuclear criticality safety (NCS) has developed from a discipline requiring the services of personnel with only a background in reactor physics to that involving reactor physics, process engineering, and design as well as administration of the program to ensure all its requirements are implemented. When Oak Ridge National Laboratory (ORNL) was designed and constructed, the physicists at Los Alamos National Laboratory (LANL) were performing the criticality analyses. A physicist who had no chemical process or engineering experience was brought in from LANL to determine whether the facility would be safe. It was only because of his understanding of the reactor physics principles, scientific intuition, and some luck that the design and construction of the facility led to a safe plant. It took a number of years of experience with facility operations and the dedication of personnel for NCS to reach its present status as a recognized discipline

  2. New nuclear build programs status and prospects

    International Nuclear Information System (INIS)

    Tankosic, D.; Sabinov, S.

    2010-01-01

    Presentation topics: Reactor technology update OECD OEMs development; Nuclear power sector development projections - global nuclear capacity projections to 2050 (NEA low , high and phase-out scenarios); new nuclear constructions Worley Parsons support to new nuclear Programs around the world; Drivers towards increased nuclear capacity - increased demand of generating capacities; climate change concerns; Security of supply; Economics; Robust to fuel price increases

  3. New trends in nuclear power engineering development

    International Nuclear Information System (INIS)

    Krasin, A.K.

    1974-01-01

    The specific features are considered of three designs of nuclear power plants with fast reactors: three-circuit nuclear power plant with liquid sodium as primary and secondary coolant, in the third circuit water vapor being used as turbine working medium, dual cycle nuclear power plant with pressurized helium as primary coolant and water vapor as turbine working medium, direct cycle nuclear power plant with a dissociating gas (nitrogen tetroxide N 2 O 4 ) as reactor coolant and turbine working medium. The version of the direct cycle nuclear power plant with dissociating N 2 O 4 was proposed and being developed by the Institute of Nuclear Engineering of the Academy of Sciencies of the BSSR. The thermal and physical properties of the dissociating gas allow a high-power-density reactor core to be used with a hard neutron spectra resulting in a high breeding ratio and a short doubling time. The pressure range from 150 to 170 bar was proven for this coolant under laboratory conditions and structural materials were chosen that ensure all the components of the direct cycle nuclear power plant to be workable. At present it is difficult to say which of the three versions is the most advantageous. The further development of a full-scale prototypes of a commercial nuclear power plant with a fast reactor and investigation of their technical and economic parameters remain the problems of utmost importance. A possible use of nuclear reactors is shortly considered for process heat production, in ferrous metallurgy, for hydrogen and new isotope production, and for radiation chemistry as well

  4. Automotive Stirling engine development program: A success

    Science.gov (United States)

    Tabata, W. K.

    1987-01-01

    The original 5-yr Automotive Stirling Engine Development Program has been extended to 10 years due to reduced annual funding levels. With an estimated completion date of April 1988, the technical achievements and the prospectives of meeting the original program objectives are reviewed. Various other applications of this developed Stirling engine technology are also discussed.

  5. A new educational program on biomedical engineering

    NARCIS (Netherlands)

    van Alste, Jan A.

    2000-01-01

    At the University of Twente together with the Free University of Amsterdam a new educational program on Biomedical Engineering will be developed. The academic program with a five-year duration will start in September 2001. After a general, broad education in Biomedical Engineering in the first three

  6. Symposium on engineering with nuclear explosives. Proceedings. Volume 2

    International Nuclear Information System (INIS)

    1970-05-01

    This symposium on 'Engineering with Nuclear Explosives' reports to the Plowshare community, both national and international, the progress achieved since April 1964, the date of the Third Plowshare Symposium. In structuring the technical presentations, contributions of broadest interest were placed at the beginning, thus forming a common base of current information and applied science understanding developed in support of Plowshare technology. Sessions of speciality or pertaining to specific areas of application and engineering follow logically in the program. The Plenary Session reviewed the current status of the Plowshare Program from the technical, government, and industrial points of view. The 112 papers presented at 15 technical sessions covered all technical aspects of the Plowshare Program. The conference summary reviewed principal themes, areas of significant advance, and subjects requiring further attention that emerged during the technical conference. This proceedings is the record of the symposium

  7. Symposium on engineering with nuclear explosives. Proceedings. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1970-05-01

    This symposium on 'Engineering with Nuclear Explosives' reports to the Plowshare community, both national and international, the progress achieved since April 1964, the date of the Third Plowshare Symposium. In structuring the technical presentations, contributions of broadest interest were placed at the beginning, thus forming a common base of current information and applied science understanding developed in support of Plowshare technology. Sessions of speciality or pertaining to specific areas of application and engineering follow logically in the program. The Plenary Session reviewed the current status of the Plowshare Program from the technical, government, and industrial points of view. The 112 papers presented at 15 technical sessions covered all technical aspects of the Plowshare Program. The conference summary reviewed principal themes, areas of significant advance, and subjects requiring further attention that emerged during the technical conference. These proceedings are the record of the symposium.

  8. Symposium on engineering with nuclear explosives. Proceedings. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1970-05-15

    This symposium on 'Engineering with Nuclear Explosives' reports to the Plowshare community, both national and international, the progress achieved since April 1964, the date of the Third Plowshare Symposium. In structuring the technical presentations, contributions of broadest interest were placed at the beginning, thus forming a common base of current information and applied science understanding developed in support of Plowshare technology. Sessions of speciality or pertaining to specific areas of application and engineering follow logically in the program. The Plenary Session reviewed the current status of the Plowshare Program from the technical, government, and industrial points of view. The 112 papers presented at 15 technical sessions covered all technical aspects of the Plowshare Program. The conference summary reviewed principal themes, areas of significant advance, and subjects requiring further attention that emerged during the technical conference. This proceedings is the record of the symposium.

  9. Symposium on engineering with nuclear explosives. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    1970-05-01

    This symposium on 'Engineering with Nuclear Explosives' reports to the Plowshare community, both national and international, the progress achieved since April 1964, the date of the Third Plowshare Symposium. In structuring the technical presentations, contributions of broadest interest were placed at the beginning, thus forming a common base of current information and applied science understanding developed in support of Plowshare technology. Sessions of speciality or pertaining to specific areas of application and engineering follow logically in the program. The Plenary Session reviewed the current status of the Plowshare Program from the technical, government, and industrial points of view. The 112 papers presented at 15 technical sessions covered all technical aspects of the Plowshare Program. The conference summary reviewed principal themes, areas of significant advance, and subjects requiring further attention that emerged during the technical conference. These proceedings are the record of the symposium

  10. Building an integrated nuclear engineering and nuclear science human resources pipeline at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sneed, A.; Sikorski, B.; Lineberry, M.; Jolly, J.

    2004-01-01

    world-class engineers and scientists. The INEEL Education Initiatives Department, housed in the Human Resources (HR) Directorate believes a highly integrated systematic approach from university to laboratory is necessary to the effectiveness of the pipeline. Currently, a refocusing of INEEL educational programs including scholarships, fellowships, internships, faculty exchange, and educational outreach programs is being conducted under the direction of the Education Director and a executive level Education Advisory Council. Additionally a mentoring program is under development to facilitate the integration and transfer of knowledge from senior researchers to incoming graduates. While internal alignment efforts are underway, external alignment efforts must now be planned and developed. Anxious to learn from the experiences of others, INEEL's HR Directorate, the INSE, ANL-W, UI, and ISU will conduct a review of national and international best practices and case studies found in academic and industry literature to identify programs and approaches that might be applied to the INL and the subsequent opportunities and issues that they might represent. It is proposed that the results of this collaborative study be shared with the IAEA in paper and presentation format at the International conference on nuclear knowledge management: Strategies, information management and human resource development. A brief outline of the proposed paper and presentation follows: I. Introduction: a. Brief discussion of the historical role of the US DOE and national laboratory role in nuclear energy research and education. b. Brief discussion of the current state of US nuclear energy education. c. Explanation of the expected role of the INL in revitalizing nuclear engineering and nuclear science education in the US. II. Current collaborative efforts to build components of an HR pipeline from education through full integration into the research environment and transfer on knowledge from senior

  11. Infiltration of quality concepts in nuclear engineering education

    International Nuclear Information System (INIS)

    Woodall, D.M.

    1993-01-01

    The principles of total quality management (TQM) have been applied increasingly in the nuclear power industry over the last decade. The involvement of industrial professionals on the advisory boards of engineering colleges and departments has increasingly led in recent years to the recommendation that TQM be applied as appropriate to engineering education. This paper describes the concepts of TQM in their application to engineering education, specifically in the nuclear engineering area. A summary of the concerns expressed by nuclear engineering academics, as well as the record of successful implementation of TQM in the nuclear engineering education environment is provided in this paper

  12. Nuclear Plant Aging Research (NPAR) program plan

    International Nuclear Information System (INIS)

    1991-06-01

    A comprehensive Nuclear Plant Aging Research (NPAR) Program was implemented by the US NRC office of Nuclear Regulatory Research in 1985 to identify and resolve technical safety issues related to the aging of systems, structures, and components in operating nuclear power plants. This is Revision 2 to the Nuclear Plant Aging Research Program Plant. This planes defines the goals of the program the current status of research, and summarizes utilization of the research results in the regulatory process. The plan also describes major milestones and schedules for coordinating research within the agency and with organizations and institutions outside the agency, both domestic and foreign. Currently the NPAR Program comprises seven major areas: (1) hardware-oriented engineering research involving components and structures; (2) system-oriented aging interaction studies; (3) development of technical bases for license renewal rulemaking; (4) determining risk significance of aging phenomena; (5) development of technical bases for resolving generic safety issues; (6) recommendations for field inspection and maintenance addressing aging concerns; (7) and residual lifetime evaluations of major LWR components and structures. The NPAR technical database comprises approximately 100 NUREG/CR reports by June 1991, plus numerous published papers and proceedings that offer regulators and industry important insights to aging characteristics and aging management of safety-related equipment. Regulatory applications include revisions to and development of regulatory guides and technical specifications; support to resolve generic safety issues; development of codes and standards; evaluation of diagnostic techniques; (e.g., for cables and valves); and technical support for development of the license renewal rule. 80 refs., 25 figs., 10 tabs

  13. Developing engineering analysis capabilities at a nuclear utility

    International Nuclear Information System (INIS)

    Miller, J.S.

    1992-01-01

    When a nuclear plant is originally designed and constructed, a large staff of analytical and design personnel is used by the architectural and engineering (A/E) firm(s) and the nuclear steam supply system (NSSS) engineering firm(s) to provide the technical specifications needed for the plant to function and satisfy US Nuclear Regulatory Commission (NRC) requirements. During this design process, thousands of calculations are performed, some using large sophisticated computer programs. Once the plant is operational, the utility assumes the large responsibility for plant design. Utility personnel must understand the fundamentals of operating the plant, the technical information in the updated safety analysis report, all calculations used to design the plant, and the input for all design specification documents. Without this knowledge, utility personnel cannot successfully perform modifications or new analyses required by the NRC, such as probabilistic risk assessment (PRA) and motor-operated valve programs, and maintain the safe and reliable operation of the plant. Therefore, it is very important to have on-site personnel who understand how the calculations are performed and used in the design basis. This paper discusses the organization of the engineering analysis group, which provides technical support for River Bend Station (RBS) of Gulf States Utilities

  14. How the engineers are sinking nuclear power

    International Nuclear Information System (INIS)

    Mintz, J.

    1983-01-01

    Poor concrete work, improper welds, and construction and installation errors at nuclear power plants are blamed on budget and schedule pressures and the nuclear industry's lack of quality assurance. Nuclear Regulatory Commission Chairman Nunzio Palladino, who trained under the exacting Admiral Rickover, has ordered the industry to upgrade its quality assurance and to take safety regulations and training more seriously. The industry's response is a program that will send a team of Institute of Nuclear Power Operators (INPO) investigators to each plant under construction every 18 months to make spot checks of worker training and performance. The Electric Power Research Institute is also developing equipment to test construction quality. Both industry officials and critics remain skeptical that quality assurance will improve with more regulation

  15. Education and training in nuclear engineering and safety

    International Nuclear Information System (INIS)

    Moons, F.; Safieh, J.; Giot, M.; Mavko, B.; Sehgal, Raj B.; Schaefer, A.; Van Goethem, G.; D'haeseleer, W.

    2007-01-01

    The need to preserve, enhance or strengthen nuclear knowledge is worldwide recognized since a couple of years. Within the 5th framework program the European Commission supports the European nuclear higher education network. The ENEN contract started on Jan 1, 2002 and lasts for 24 months. The Commission support for this 'accompanying measure' amounts to EUR 197 716. Based upon a year-long extensive exchange of views between the partners of ENEN, consisting of a representative cross section of nuclear academic institutions and research laboratories of the EU-25, a coherent and practicable concept for a European Master of Science in Nuclear Engineering has emerged. The concept is compatible with the Bologna philosophy of higher education for academic education in Europe. Pursuing the sustainability of the concept, the ENEN partners organized themselves in a non-profit-making association. Within the 6th framework program, the Commission services favourably evaluated the proposal: 'Nuclear European Platform of Training and University Organisations'. The objectives of the NEPTUNO co-ordination action are to establish a fair dialogue and a strong interaction between the academic and the industrial world and to bring all nuclear education and training activities under a common strategy of the ENEN type. The present proposal schedules for 18 months and the Commission earmarked a financial contribution of EUR 830 619. (author)

  16. Hydrogen hybrid vehicle engine development: Experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Van Blarigan, P. [Sandia National Lab., Livermore, CA (United States)

    1995-09-01

    A hydrogen fueled engine is being developed specifically for the auxiliary power unit (APU) in a series type hybrid vehicle. Hydrogen is different from other internal combustion (IC) engine fuels, and hybrid vehicle IC engine requirements are different from those of other IC vehicle engines. Together these differences will allow a new engine design based on first principles that will maximize thermal efficiency while minimizing principal emissions. The experimental program is proceeding in four steps: (1) Demonstration of the emissions and the indicated thermal efficiency capability of a standard CLR research engine modified for higher compression ratios and hydrogen fueled operation. (2) Design and test a new combustion chamber geometry for an existing single cylinder research engine, in an attempt to improve on the baseline indicated thermal efficiency of the CLR engine. (3) Design and build, in conjunction with an industrial collaborator, a new full scale research engine designed to maximize brake thermal efficiency. Include a full complement of combustion diagnostics. (4) Incorporate all of the knowledge thus obtained in the design and fabrication, by an industrial collaborator, of the hydrogen fueled engine for the hybrid vehicle power train illustrator. Results of the CLR baseline engine testing are presented, as well as preliminary data from the new combustion chamber engine. The CLR data confirm the low NOx produced by lean operation. The preliminary indicated thermal efficiency data from the new combustion chamber design engine show an improvement relative to the CLR engine. Comparison with previous high compression engine results shows reasonable agreement.

  17. Targeted initiatives. Support for nuclear engineering education in the USA

    International Nuclear Information System (INIS)

    Gutteridge, John

    2001-01-01

    Recruitment and education of a new generation of nuclear engineers stands to benefit in the USA from a range of programmes involving governmental bodies, universities, and industry groups. They are part of efforts to attract more students to consider and prepare for careers in the nuclear industry, and to provide financial support for nuclear research and education. Career prospects in the nuclear field are brightening. The demand for nuclear engineers and nuclear trained personnel is on the rise as the new century opens. During the past year several studies were completed in an attempt to ascertain the problems in nuclear engineering education and define initiatives to address these problems

  18. Nuclear program of South Korea

    International Nuclear Information System (INIS)

    Brown, D.S.; James, K.R.

    1993-01-01

    Slightly larger than Portugal, South Korea comprises the lower half on the Korean Peninsula, covering approximately 38 thousand square miles. the Republic of Korea (South Korea) was established in 1948, and until 1962 the country grew slowly. However, through a series of five-year economic plans initiated by South Korean President Park Ching Hee, South Korea has since created an export-oriented economy, which now plays a major role in regional as well as global trade. South Korea has been forced to constantly upgrade its power generation structure in order to sustain the explosive growth it has experienced. Nuclear power has been a major player in this expansion and is expected to play an ever-increasing role. The country presently operates nine nuclear reactors with a total net generating capacity of 7,266 MWe. By the year 2006, the nuclear program is scheduled to grow to 27 reactors, with a net generating capacity exceeding 23 thousand MWe. Once this goal is reached, nuclear-generated power would account for more than 40 percent of the country's total installed electrical capacity

  19. Aging mitigation and improved programs for nuclear service diesel generators

    International Nuclear Information System (INIS)

    Hoopingarner, K.R.; Zaloudek, F.R.

    1989-12-01

    Recent NRC sponsored aging research work on nuclear service diesel generators has resulted in a recommendation that an improved engine management program should be adopted for aging mitigation and reliability improvement. The center of attention should be to ensure diesel-generator operational readiness. This report emphasizes a ''healthy engine concept'' and recommends parameters to be monitored to determine engine condition. The proposed program and approach recommended in this report represent balanced management where diesel generator testing, inspections, monitoring, trending, training, and maintenance all have appropriate importance. Fast-starting and fast-loading test of nuclear service diesels causes very rapid wear of certain engine components. This report documents this aging and wear mechanism and recommends ways to largely eliminate this unique aging stressor. Current periodic intrusive maintenance and engine overhaul practice have been found to be less favorable for safety assurance than engine overhauls based on monitoring and trending results or on a need to correct specific engine defects. This report recommends that the periodic overhaul requirements be re-evaluated. Diesel generator research on aging and wear is sponsored by the US Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research. The research reported in this report was conducted by Pacific Northwest Laboratory (PNL), which is operated for the Department of Energy by Battelle Memorial Institute. 23 refs., 3 figs., 8 tabs

  20. γ-ray shielding behaviors of some nuclear engineering materials

    International Nuclear Information System (INIS)

    Mann, Kulwinder Singh

    2017-01-01

    The essential requirement of a material to be used for engineering purposes at nuclear establishments is its ability to attenuate the most penetrating ionizing radiations, gamma (γ)-rays. Mostly, high-Z materials such as heavy concrete, lead, mercury, and their mixtures or alloys have been used in the construction of nuclear establishments and thus termed as nuclear engineering materials (NEM). The NEM are classified into two categories, namely opaque and transparent, depending on their behavior towards the visible spectrum of EM waves. The majority of NEM are opaque. By contrast, various types of glass, which are transparent to visible light, are necessary at certain places in the nuclear establishments. In the present study, γ-ray shielding behaviors (GSB) of six glass samples (transparent NEM) were evaluated and compared with some opaque NEM in a wide range of energy (15 keV–15 MeV) and optical thickness (OT). The study was performed by computing various γ-ray shielding parameters (GSP) such as the mass attenuation coefficient, equivalent atomic number, and buildup factor. A self-designed and validated computer-program, the buildup factor-tool, was used for various computations. It has been established that some glass samples show good GSB, thus can safely be used in the construction of nuclear establishments in conjunction with the opaque NEM as well

  1. γ-ray shielding behaviors of some nuclear engineering materials

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Kulwinder Singh [Dept. of Physics, D.A.V. College, Punjab (India)

    2017-06-15

    The essential requirement of a material to be used for engineering purposes at nuclear establishments is its ability to attenuate the most penetrating ionizing radiations, gamma (γ)-rays. Mostly, high-Z materials such as heavy concrete, lead, mercury, and their mixtures or alloys have been used in the construction of nuclear establishments and thus termed as nuclear engineering materials (NEM). The NEM are classified into two categories, namely opaque and transparent, depending on their behavior towards the visible spectrum of EM waves. The majority of NEM are opaque. By contrast, various types of glass, which are transparent to visible light, are necessary at certain places in the nuclear establishments. In the present study, γ-ray shielding behaviors (GSB) of six glass samples (transparent NEM) were evaluated and compared with some opaque NEM in a wide range of energy (15 keV–15 MeV) and optical thickness (OT). The study was performed by computing various γ-ray shielding parameters (GSP) such as the mass attenuation coefficient, equivalent atomic number, and buildup factor. A self-designed and validated computer-program, the buildup factor-tool, was used for various computations. It has been established that some glass samples show good GSB, thus can safely be used in the construction of nuclear establishments in conjunction with the opaque NEM as well.

  2. γ-Ray Shielding Behaviors of Some Nuclear Engineering Materials

    Directory of Open Access Journals (Sweden)

    Kulwinder Singh Mann

    2017-06-01

    Full Text Available The essential requirement of a material to be used for engineering purposes at nuclear establishments is its ability to attenuate the most penetrating ionizing radiations, gamma (γ-rays. Mostly, high-Z materials such as heavy concrete, lead, mercury, and their mixtures or alloys have been used in the construction of nuclear establishments and thus termed as nuclear engineering materials (NEM. The NEM are classified into two categories, namely opaque and transparent, depending on their behavior towards the visible spectrum of EM waves. The majority of NEM are opaque. By contrast, various types of glass, which are transparent to visible light, are necessary at certain places in the nuclear establishments. In the present study, γ-ray shielding behaviors (GSB of six glass samples (transparent NEM were evaluated and compared with some opaque NEM in a wide range of energy (15 keV–15 MeV and optical thickness (OT. The study was performed by computing various γ-ray shielding parameters (GSP such as the mass attenuation coefficient, equivalent atomic number, and buildup factor. A self-designed and validated computer-program, the buildup factor-tool, was used for various computations. It has been established that some glass samples show good GSB, thus can safely be used in the construction of nuclear establishments in conjunction with the opaque NEM as well.

  3. History of the Development of NERVA Nuclear Rocket Engine Technology

    International Nuclear Information System (INIS)

    David L., Black

    2000-01-01

    During the 17 yr between 1955 and 1972, the Atomic Energy Commission (AEC), the U.S. Air Force (USAF), and the National Aeronautics and Space Administration (NASA) collaborated on an effort to develop a nuclear rocket engine. Based on studies conducted in 1946, the concept selected was a fully enriched uranium-filled, graphite-moderated, beryllium-reflected reactor, cooled by a monopropellant, hydrogen. The program, known as Rover, was centered at Los Alamos Scientific Laboratory (LASL), funded jointly by the AEC and the USAF, with the intent of designing a rocket engine for long-range ballistic missiles. Other nuclear rocket concepts were studied during these years, such as cermet and gas cores, but are not reviewed herein. Even thought the program went through the termination phase in a very short time, the technology may still be fully recoverable/retrievable to the state of its prior technological readiness in a reasonably short time. Documents; drawings; and technical, purchasing, manufacturing, and materials specifications were all stored for ease of retrieval. If the U.S. space program were to discover a need/mission for this engine, its 1972 'pencils down' status could be updated for the technology developments of the past 28 yr for flight demonstration in 8 or fewer years. Depending on today's performance requirements, temperatures and pressures could be increased and weight decreased considerably

  4. ABB.-Combustion Engineering's Experience in Nuclear Power Plant Engineering and Construction in Korea

    International Nuclear Information System (INIS)

    Veris, James W.

    1992-01-01

    The Yonggwang Nuclear Project is a milestone project for the Korean Nuclear Industry. The Project has the two objectives of obtaining self-reliance in all aspects of nuclear technology and of constructing two modern nuclear power plants under the leadership of Korean companies acting as prime contractors. ABB.-Combustion Engineering 1000 MW System 80+ TM was chosen in 1987 as the NSLS design to meet these two objectives. This paper summarizers the significant experiences and lessons learned through the first four years of the Project as well as identifying implications for such future projects. The unique challenges of the project are identified and an evaluation of the experiences in the technology, self-reliance program and in the design and manufacturing processes will be made

  5. Developing safety culture in nuclear power engineering

    International Nuclear Information System (INIS)

    Tevlin, S.A.

    2000-01-01

    The new issue (no. 11) of the IAEA publications series Safety Reports, devoted to the safety culture in nuclear engineering Safety culture development in the nuclear activities. Practical recommendations to achieve success, is analyzed. A number of recommendations of international experts is presented and basic general indicators of satisfactory and insufficient safety culture in the nuclear engineering are indicated. It is shown that the safety culture has two foundations: human behavior and high quality of the control system. The necessity of creating the confidence by the management at all levels of the enterprise, development of individual initiative and responsibility of the workers, which make it possible to realize the structural hierarchic system, including technical, human and organizational constituents, is noted. Three stages are traced in the process of introducing the safety culture. At the first stage the require,emts of scientific-technical documentation and provisions of the governmental, regional and control organs are fulfilled. At the second stage the management of the organization accepts the safety as an important direction in its activities. At the third stage the organization accomplishes its work, proceeding from the position of constant safety improvement. The general model of the safety culture development is considered [ru

  6. Status of the Canadian Nuclear Fuel Waste Management Program

    International Nuclear Information System (INIS)

    Lyon, R.B.

    1985-10-01

    The Canadian Nuclear Fuel Waste Management Program is in the fifth year of a ten-year generic research and development phase. The major objective of this phase of the program is to assess the basic safety and environmental aspects of the concept of isolating immobilized fuel waste by deep underground disposal in plutonic rock. The major scientific and engineering components of the program, namely immobilization studies, geoscience research, and environmental and safety assessment, are well established

  7. Reflections on the Fukushima Daiichi nuclear accident toward social-scientific literacy and engineering resilience

    CERN Document Server

    Carson, Cathryn; Jensen, Mikael; Juraku, Kohta; Nagasaki, Shinya; Tanaka, Satoru

    2015-01-01

    This book focuses on nuclear engineering education in the post-Fukushima era. It was edited by the organizers of the summer school held in August 2011 in University of California, Berkeley, as part of a collaborative program between the University of Tokyo and UC Berkeley. Motivated by the particular relevance and importance of social-scientific approaches to various crucial aspects of nuclear technology, special emphasis was placed on integrating nuclear science and engineering with social science. The book consists of the lectures given in 2011 summer school and additional chapters that cover developments in the past three years since the accident. It provides an arena for discussions to find and create a renewed platform for engineering practices, and thus nuclear engineering education, which are essential in the post-Fukushima era for nurturing nuclear engineers who need to be both technically competent and trusted in society.

  8. Romanian knowledge transfer network in nuclear physics and engineering - REFIN

    International Nuclear Information System (INIS)

    Ghitescu, Petre; Prisecaru, Ilie

    2007-01-01

    According to the requirements of the Romanian Nuclear Programme regarding the education and training of the skilled personnel for the nuclear facilities, a knowledge transfer network named REFIN (in Romanian: Retea Educationala in Fizica si Ingineria Nucleara) was developed since 2005. The knowledge target field is nuclear physics and engineering. The main objective of this network is to develop an effective, flexible and modern educational system in the nuclear physics and engineering area which could meet the requirements of all known types of nuclear facilities and therewith be redundant with the perspectives of the European Research Area (FP7, EURATOM). A global strategy was proposed in order to harmonize the curricula between the network facilities to implement pilot modern teaching programs (courses/modules), to introduce advanced learning methods (as Systematic Approach to Training, e-learning and distance-learning), to strengthen and better use the existing research infrastructures of the research institutes in network. The education and training strategy is divided into several topics: university engineering , master, post-graduate, Ph.D. degree, post-doctoral activity, training for industry, improvement. For the first time in our country, a modular scheme is used allowing staff with different technical background to participate at different levels. In this respect, the European system with transferable credits (ECTS) is used. Based on this strategy, courses in 'Radioactive Waste Management' and 'Numerical and Experimental Methods in Reactor Physics' for both MS students and for industry. This way the training activity which a student attends will allow him or her to be involved, depending on specific professional needs, into a flexible educational scheme. This scheme will ensure competence and enhancement and also the possibility of qualification development and a better mobility on labour market. This kind of activity is already in progress in the

  9. Fifty years experiences in nuclear engineering education at Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Fujii, Yasuhiko; Saito, Masaki; Aritomi, Masanori

    2008-01-01

    Nuclear engineering education has been initiated in 1957 at the graduate school of Tokyo Institute of Technology. Educational activities have been conducted for fifty years under the support of the Research Laboratory for Nuclear Reactors. In the past fifty years, about 1000 Master students and 200 Doctoral students and 200 Doctoral students graduated from our Nuclear Engineering Department at Tokyo Institute of Technology. Many of them found their jobs in nuclear industries and institutes. International course of nuclear engineering was initiated in 1994, and so far about 90 students from 15 overseas countries have graduated from our Master and Doctoral Programs. In 2003, our proposal of 'Innovative Nuclear Energy System for the Sustainable World' was adopted as the Center of Excellent Program sponsored by Ministry of Education, Science and Technology. Recently a collaborative education network has been developed among Kanazawa University, Fukui University, Ibaraki University, Okayama University, Tokyo Institute of Technology and Japan Atomic Energy Agency. (author)

  10. Engineering thermal engine rocket adventurer for space nuclear application

    International Nuclear Information System (INIS)

    Nam, Seung H.; Suh, Kune Y.; Kang, Seong G.

    2008-01-01

    The conceptual design for the first-of-a-kind engineering of Thermal Engine Rocket Adventure (TERA) is described. TERA comprising the Battery Omnibus Reactor Integral System (BORIS) as the heat resource and the Space Propulsion Reactor Integral System (SPRIS) as the propulsion system, is one of the advanced Nuclear Thermal Rocket (NTR) engine utilizing hydrogen (H 2 ) propellant being developed at present time. BORIS in this application is an open cycle high temperature gas cooled reactor that has eighteen fuel elements for propulsion and one fuel element for electricity generation and propellant pumping. Each fuel element for propulsion has its own small nozzle. The nineteen fuel elements are arranged into hexagonal prism shape in the core and surrounded by outer Be reflector. The TERA maximum power is 1,000 MW th , specific impulse 1,000 s, thrust 250,000 N, and the total mass is 550 kg including the reactor, turbo pump and auxiliaries. Each fuel element comprises the fuel assembly, moderators, pressure tube and small nozzle. The TERA fuel assembly is fabricated of 93% enriched 1.5 mm (U, Zr, Nb)C wafers in 25.3% voided Square Lattice Honeycomb (SLHC). The H 2 propellant passes through these flow channels. This study is concerned with thermohydrodynamic analysis of the fuel element for propulsion with hypothetical axial power distribution because nuclear analysis of TERA has not been performed yet. As a result, when the power distribution of INSPI's M-SLHC is applied to the fuel assembly, the local heat concentration of fuel is more serious and the pressure of the initial inlet H 2 is higher than those of constant average power distribution applied. This means the fuel assembly geometry of 1.5 mm fuel wafers and 25.3% voided SLHC needs to be changed in order to reduce thermal and mechanical shocks. (author)

  11. Human Factors Engineering Review Model for advanced nuclear power reactors

    International Nuclear Information System (INIS)

    O'Hara, J.; Higgins, J.; Goodman, C.; Galletti, G.: Eckenrode, R.

    1993-01-01

    One of the major issues to emerge from the initial design reviews under the certification process was that detailed human-systems interface (HSI) design information was not available for staff review. To address the lack of design detail issue. The Nuclear Regulatory Commission (NRC) is performing the design certification reviews based on a design process plan which describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification. Since the review of a design process is unprecedented in the nuclear industry. The criteria for review are not addressed by current regulations or guidance documents and. therefore, had to be developed. Thus, an HFE Program Review Model was developed. This paper will describe the model's rationale, scope, objectives, development, general characteristics. and application

  12. Nuclear Plant Analyzer development at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Laats, E.T.; Beelman, R.J.; Charlton, T.R.; Hampton, N.L.; Burtt, J.D.

    1985-01-01

    The Nuclear Plant Analyzer (NPA) is a state-of-the-art safety analysis and engineering tool being used to address key nuclear power plant safety issues. The NPA has been developed to integrate the NRC's computerized reactor behavior simulation codes such as RELAP5, TRAC-BWR, and TRAC-PWR, with well-developed computer graphics programs and large repositories of reactor design and experimental data. An important feature of the NAP is the capability to allow an analyst to redirect a RELAP5 or TRAC calculation as it progresses through its simulated scenario. The analyst can have the same power plant control capabilities as the operator of an actual plant. The NPA resides on the dual CDS Cyber-176 mainframe computers at the INEL and is being converted to operate on a Cray-1S computer at the LANL. The subject of this paper is the program conducted at the INEL

  13. Integrated initial training program for a CEGB operations engineer

    International Nuclear Information System (INIS)

    Tompsett, P.A.

    1987-01-01

    This paper considers the overall training programs undertaken by a newly appointed Operations Engineer at one of the Central Electricity Generating Board's (CEGB) Advanced Gas Cooled Reactor (AGR) nuclear power stations. The training program is designed to equip him with the skills and knowledge necessary for him to discharge his duties safely and effectively. In order to assist the learning process and achieve and integrated program, aspects of reactor technology and operation, initially the subject of theoretical presentations at the CEGB's Nuclear Power Training Center (NPTC) are reinforced by either simulation and/or practical experience on site. In the later stages plant-specific simulators, operated by trained tutors, are incorporated into the training program to provide the trainee with practical experience of plant operation. The trainee's performance is assessed throughout the program to provide feedback to the trainee, the trainers and station management

  14. Civil engineering in the nuclear industry

    International Nuclear Information System (INIS)

    Dexter-Smith, R.

    1991-01-01

    Civil Engineering has an important contribution to make at every stage of the nuclear fuel cycle, from the choice of site and conception of the design of a major power station or fuel plan, through modifications during modifications, during operation, to the final stages of designing and building waste management stores and repositories and the decommissioning of stations and plants. The conference papers published here -twenty four in total - cover many of these stages. All the papers are indexed separately. Two international papers are presented, one on French PWRs, the other on repository design. Four papers look at site investigations, four are concerned with earthquake engineering, four with structural analysis, three with quality assurance, three with design and four with in-service performance and decommissioning. (UK)

  15. Engineering design guidelines for nuclear criticality safety

    International Nuclear Information System (INIS)

    Waltz, W.R.

    1988-08-01

    This document provides general engineering design guidelines specific to nuclear criticality safety for a facility where the potential for a criticality accident exists. The guide is applicable to the design of new SRP/SRL facilities and to major modifications Of existing facilities. The document is intended an: A guide for persons actively engaged in the design process. A resource document for persons charged with design review for adequacy relative to criticality safety. A resource document for facility operating personnel. The guide defines six basic criticality safety design objectives and provides information to assist in accomplishing each objective. The guide in intended to supplement the design requirements relating to criticality safety contained in applicable Department of Energy (DOE) documents. The scope of the guide is limited to engineering design guidelines associated with criticality safety and does not include other areas of the design process, such as: criticality safety analytical methods and modeling, nor requirements for control of the design process

  16. Malignant pleural mesothelioma in a nuclear engineer

    International Nuclear Information System (INIS)

    Huncharek, M.

    1988-01-01

    Malignant pleural mesothelioma accounts for a large proportion of deaths among occupational cohorts exposed to asbestos. Of particular interest are recent reports of a high risk of mesothelioma among occupational groups previously thought to be at low risk for developing this neoplasm. In the present report we present a case of pleural mesothelioma associated with bystander exposure to asbestos in a nuclear engineer. To our knowledge, this is the first report of the disease occurring in a member of this occupational group after work related exposure to asbestos. (author)

  17. Nuclear reactor safety: physics and engineering aspects

    International Nuclear Information System (INIS)

    Kinchin, G.H.

    1982-01-01

    In order to carry out the sort of probabilistic analysis referred to by Farmer (Contemp. Phys.; 22:349(1981)), it is necessary to have a good understanding of the processes involved in both normal and accident conditions in a nuclear reactor. Some of these processes, for a variety of different reactor systems, are considered in sections dealing with the neutron chain reaction, the removal of heat from the reactor, material problems, reliability of protective systems and a number of specific topics of particular interest from the point of view of physics or engineering. (author)

  18. Aspects of consolidation of engineering capability related to nuclear power plants

    International Nuclear Information System (INIS)

    Mueller, A.E.F.; Gasparian, A.E.; Calvet Filho, H.J.

    1980-01-01

    A major interest of countries launching nuclear program is to consolidate an engineering capability for Nuclear Power Plants design by performing part of the engineering services locally. A decade of nuclear power plant engineering and construction has exposed Brazilian architect-engineers to this new challenge. To cope with it, technology sources were identified, agreements were made and transfer is going on between foreign and local companies. Services performed by Brazilian architect-engineers are summarized. Foreign technology must be judiciously examined before implementation in a different environment. The receiver has to be prepared to develop his own capabilities and absorb the know-how being offered, taking into consideration the local engineering experience and construction practices. Some of the problems faced are outlined herein. The performed efforts brought Brazilian architect-engineers to a consolidated level of experience. (Author) [pt

  19. National Hispanic Bilingual Engineering Program (NHBEP)

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, M.

    2000-10-31

    This report describes program goals, activities, processes, benefits for the profession of engineering and for the project participants, coordination, and impact of NHBEP throughout the three years of implementation.

  20. Application of Statistics in Engineering Technology Programs

    Science.gov (United States)

    Zhan, Wei; Fink, Rainer; Fang, Alex

    2010-01-01

    Statistics is a critical tool for robustness analysis, measurement system error analysis, test data analysis, probabilistic risk assessment, and many other fields in the engineering world. Traditionally, however, statistics is not extensively used in undergraduate engineering technology (ET) programs, resulting in a major disconnect from industry…

  1. Safety research programs sponsored by Office of Nuclear Regulatory Research

    International Nuclear Information System (INIS)

    Weiss, A.J.; Azarm, A.; Baum, J.W.

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988

  2. Quantity and quality in nuclear engineering professional skills needed by the nuclear power industry

    International Nuclear Information System (INIS)

    Slember, R.J.

    1990-01-01

    This paper examines the challenge of work force requirements in the context of the full range of issues facing the nuclear power industry. The supply of skilled managers and workers may be a more serious problem if nuclear power fades away than if it is reborn in a new generation. An even greater concern, however, is the quality of education that the industry needs in all its future professionals. Both government and industry should be helping universities adapt their curricula to the needs of the future. This means building a closer relationship with schools that educate nuclear professionals, that is, providing adequate scholarships and funding for research and development programs, offering in-kind services, and encouraging internships and other opportunities for hands-on experience. The goal should not be just state-of-the-art engineering practices, but the broad range of knowledge, issues, and skills that will be required of the nuclear leadership of the twenty-first century

  3. Do nuclear engineering educators have a special responsibility

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1977-01-01

    Each 1000 MW(e) reactor in equilibrium contains 15 x 10 9 Ci of radioactivity. To handle this material safety requires an extremely high level of expertise and commitment - in many respects, an expertise that goes beyond what is demanded of any other technology. If one grants that nuclear engineering is more demanding than other engineering because the price of failure is greater, one must ask how can we inculcate into the coming generations of nuclear engineers a full sense of the responsibility they bear in practising their profession. Clearly a first requirement is that all elements of the nuclear community -utility executives, equipment engineers, operating engineers, nuclear engineers, administrators - must recognize and accept the idea that nuclear energy is something special, and that therefore its practitioners must be special. This sense must be instilled into young nuclear engineers during their education. A special responsibility therefore devolves upon nuclear engineering educators: first, to recognize the special character of their profession, and second, to convey this sense to their students. The possibility of institutionalizing this sense of responsibility by establishing a nuclear Hippocratic Oath or special canon of ethics for nuclear engineers ought to be discussed within the nuclear community. (author)

  4. Feasibility study of a contained pulsed nuclear propulsion engine

    International Nuclear Information System (INIS)

    Parlos, A.G.; Metzger, J.D.

    1994-01-01

    The result of a feasibility analysis of a contained pulsed nuclear propulsion (CPNP) engine concept utilizing the enormously dense energy generated by small nuclear detonations is presented in this article. This concept was initially proposed and studied in the 1950s and 1960s under the program name HELIOS. The current feasibility of the concept is based upon materials technology that has advanced to a state that allows the design of pressure vessels required to contain the blast associated with small nuclear detonations. The impulsive nature of the energy source provides the means for circumventing the materials thermal barriers that are inherent in steady-state nuclear propulsion concepts. The rapid energy transfer to the propellant results in high thrust levels for times less than 1 s following the detonation. The preliminary feasibility analysis using off-the-shelf materials technology appears to indicate that the CPNP concept can have thrust-to-weight ratios on the order of 1 or greater. Though the specific impulse is not a good indicator for impulsive engines, an operating-cycle averaged specific impulse of approximately 1000 or greater seconds was calculated. 16 refs

  5. Restructuring Graduate Engineering Education: The M.Eng. Program at Cornell.

    Science.gov (United States)

    Cady, K. Bingham; And Others

    1988-01-01

    Discusses the restructuring of the graduate program to accommodate emerging fields in engineering. Notes half of the graduate degrees Cornell grants each year are M.Eng. degrees. Offers 12 specialties: aerospace, agriculture, chemical, civil, electrical, mechanical and nuclear engineering; computer science, engineering physics; geological…

  6. Finally, nuclear engineering textbooks with a Canadian flavour{exclamation_point}

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H.W. [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2002-07-01

    The need for nuclear engineering textbooks more appropriate to the Canadian nuclear industry context and the CANDU nuclear reactor program has long been felt not only among the universities offering nuclear engineering programs at the graduate level, but also within the Canadian nuclear industry itself. Coverage of the CANDU reactor system in the textbooks presently supporting teaching is limited to a brief description of the concept. Course instructors usually complement these textbooks with course notes written from their personal experience from past employment within the nuclear industry and from their research interests In the last ten years, the Canadian nuclear industry has been involved on an increasing basis with the issue of the technology transfer to foreign countries which have purchased CANDU reactors or have been in the process of purchasing one or several CANDUs. For some of these countries, the 'turn key' approach is required, in which the Canadian nuclear industry looks after everything up to the commissioning of the nuclear power plant, including the education and training of local nuclear engineers and plant personnel. Atomic Energy of Canada Limited (AECL) in particular has dispatched some personnel tasked to prepare and give short courses on some specific aspects of CANDU design and operation, but a lack of consistency was observed as different persons prepared and gave the courses rather independently. To address the many problems tied with nuclear engineering education, the CANTEACH program was set up involving major partners of the Canadian nuclear industry. Parts of the activities foreseen by CANTEACH consist in the writing of nuclear engineering textbooks and associated computer-based pedagogical material. The present paper discusses the main parts of two textbooks being produced, one in reactor physics at steady state and the other on nuclear fuel management. (author)

  7. Status of Iran's nuclear program and negotiations

    International Nuclear Information System (INIS)

    Albright, David

    2014-01-01

    Iran's nuclear program poses immense challenges to international security. Its gas centrifuge program has grown dramatically in the last several years, bringing Iran close to a point where it could produce highly enriched uranium in secret or declared gas centrifuge plants before its breakout would be discovered and stopped. To reduce the risk posed by Iran's nuclear program, the P5+1 have negotiated with Iran short term limits on the most dangerous aspects of its nuclear programs and is negotiating long-term arrangements that can provide assurance that Iran will not build nuclear weapons. These long-term arrangements need to include a far more limited and transparent Iranian nuclear program. In advance of arriving at a long-term arrangement, the IAEA will need to resolve its concerns about the alleged past and possibly on-going military dimensions of Iran's nuclear program

  8. Elements of a nuclear criticality safety program

    International Nuclear Information System (INIS)

    Hopper, C.M.

    1995-01-01

    Nuclear criticality safety programs throughout the United States are quite successful, as compared with other safety disciplines, at protecting life and property, especially when regarded as a developing safety function with no historical perspective for the cause and effect of process nuclear criticality accidents before 1943. The programs evolved through self-imposed and regulatory-imposed incentives. They are the products of conscientious individuals, supportive corporations, obliged regulators, and intervenors (political, public, and private). The maturing of nuclear criticality safety programs throughout the United States has been spasmodic, with stability provided by the volunteer standards efforts within the American Nuclear Society. This presentation provides the status, relative to current needs, for nuclear criticality safety program elements that address organization of and assignments for nuclear criticality safety program responsibilities; personnel qualifications; and analytical capabilities for the technical definition of critical, subcritical, safety and operating limits, and program quality assurance

  9. Nuclear engineering questions: power, reprocessing, waste, decontamination, fusion

    International Nuclear Information System (INIS)

    Walton, R.D. Jr.

    1979-01-01

    This volume contains papers presented at the chemical engineering symposium on nuclear questions. Specific questions addressed by the speakers included: nuclear power - why and how; commercial reprocessing - permanent death or resurrection; long-term management of commercial high-level wastes; long-term management of defense high-level waste; decontamination and decommissioning of nuclear facilities, engineering aspects of laser fusion I; and engineering aspects of laser fusion II. Individual papers have been input to the Energy Data Base previously

  10. Supply of science and engineering graduates for the United States nuclear industry

    International Nuclear Information System (INIS)

    Baker, J.G.; Blair, L.M.

    1993-01-01

    The concern in the USA about the adequacy of supply of new graduate scientists and engineers to meet technical employment needs, is particularly acute within the nuclear field because of declines in the number of education programs and number of students in nuclear engineering, health physics, and radiochemistry. The decline in the number of new graduates is assessed in comparison to current and projected future employment needs. Currently, supplies of new graduates are just meeting employment needs in nuclear engineering and are less than adequate in health physics and radiochemistry. If the number of graduates does not increase these inadequacies of supply are likely become more severe in the future. 5 figs

  11. The Nuclear Review: the Institution of Nuclear Engineers' response to the Review of Nuclear Power

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The United Kingdom Government's Nuclear Review currently underway, addresses whether and in what form nuclear power should continue to be part of the country's power generation capability. This article sets out the response of the Institution of Nuclear Engineers to the Nuclear Review. This pro-nuclear group emphasises the benefits to be gained from diversity of generation in the energy supply industry. The environmentally benign nature of nuclear power is emphasised, in terms of gaseous emissions. The industry's excellent safety record also argues in favour of nuclear power. Finally, as power demand increases globally, a health U.K. nuclear industry could generate British wealth through power exports and via the construction industry. The Institution's view on radioactive waste management is also set out. (UK)

  12. Centre for nuclear engineering University of Toronto annual report 1984

    International Nuclear Information System (INIS)

    1984-12-01

    The annual report of the Centre for Nuclear Engineering, University of Toronto covers the following subjects: message from the Dean; Chairman's message; origins of the centre; formation of the centre; new nuclear appointments; and activities of the centre, 1984

  13. Effective Software Engineering Leadership for Development Programs

    Science.gov (United States)

    Cagle West, Marsha

    2010-01-01

    Software is a critical component of systems ranging from simple consumer appliances to complex health, nuclear, and flight control systems. The development of quality, reliable, and effective software solutions requires the incorporation of effective software engineering processes and leadership. Processes, approaches, and methodologies for…

  14. Study on the evolution of nuclear engineering professions

    International Nuclear Information System (INIS)

    2008-01-01

    Based on interviews of experts belonging to different companies and institutions (EDF, AREVA, CEA, ASN, IRSN, INSTN), subcontractors, engineers and technicians of the nuclear sector, persons in charge of education, pupils and students, this study gives a synthetic vision of the general context of the needs for nuclear engineering professionals, at the world scale, in the French context, the perceived difficulties faced by this sector, the use of subcontracting, the recruitment needs, the educational profile of engineers and technicians, their revenues, their opinion about their work, the adequacy between education and employment in this sector. It gives estimated figures for engineer and technician recruitment needs for different abilities in the French nuclear engineering

  15. Education and training for nuclear scientists and engineers at NuTEC/JAEA

    International Nuclear Information System (INIS)

    Kushita, Kouhei; Sugimoto, Jun; Sakamoto, Ryuichi; Arai, Nobuyoshi; Hattori, Takamitsu; Matsuda, Kenji; Ikuta, Yuko; Sato, K.

    2009-01-01

    Because of the increasing demand of nuclear engineers in recent years, which is sometimes called as the age of nuclear Renaissance, while nuclear engineers have been decreasing and technical knowledge and expertise have not necessarily been transferred to the younger generations, human resources development (HRD) has been regarded as one of the most important issues in the nuclear field in Japan as well as in the world. Nuclear Technology and Education Center (NuTEC) at Japan Atomic Energy Agency (JAEA) have conducted comprehensive nuclear education and training activities in the past half century, which cover; 1) education and training for domestic nuclear engineers, 2) cooperation with universities, and 3) international cooperation. The main feature of NuTEC's training programs is that emphasis is placed on the laboratory exercise with well-equipped training facilities and expertise of lecturers mostly from JAEA. The wide spectrum of cooperative activities have been pursued with universities, which includes newly developed remote-education system, and also with international organizations, such as with FNCA countries and IAEA. For the nuclear education and trainings, utilization of nuclear reactors is of special importance. Examples of training programs using nuclear reactors are reported. Future plan to use nuclear reactors such as JMTR for the nuclear educations is also introduced. (author)

  16. Main factors affecting the fixing work about nuclear engineering and its discussion

    International Nuclear Information System (INIS)

    Zhang Zhihua; Liu Yaoguan; Qian Dazhi; Liu Hangang; Xu Xianqi; Deng Yue

    2010-01-01

    Main factors to the impact of the fixing work about nuclear engineering such as project design, construction, plan program, document, preparation, order, locale management, surveillance, quality assurance system and so on were presented. These factors were analyzed and discussed in this paper. Some measures and suggestions were put forward to accelerate construction fixing plan and insure good quality. We wish provide some references and help for someone engaged with construction of nuclear engineering. (authors)

  17. Quality assurance and quality control of nuclear engineering during construction phase

    International Nuclear Information System (INIS)

    Zhang Zhihua; Deng Yue; Liu Yaoguang; Xu Xianqi; Zhou Shan; Qian Dazhi; Zhang Yang

    2007-01-01

    The quality assurance (QA) and quality control (QC) is a very important work in the nuclear engineering. This paper starts with how to establish quality assurance system of nuclear engineering construction phase, then introduces several experiments and techniques such as the implementation of quality assurance program, the quality assurance and quality control of contractors, the quality surveillance and control of supervisory companies, quality assurance audit and surveillance of builders. (authors)

  18. Overview of the DOE nuclear data program

    International Nuclear Information System (INIS)

    Whetstone, S.L.

    1991-01-01

    Numerous researchers receive support from the US Department of Energy's (DOE's) nuclear data program; others work closely with it, attending coordination meetings and contributing to data activities. Since fiscal year (FY) 1988, the nuclear data program has been included in the budget of the Division of Nuclear Physics in the DOE's Office of High Energy and Nuclear Physics. The budget for nuclear data consists of two budget categories: nuclear data compilation and evaluation and nuclear data measurements, both of which are contained within the low-energy nuclear physics program. The program has become essentially the sole supporter of the National Nuclear Data Center at Brookhaven National Laboratory. The Center coordinates the production of the ENSDF data base and Nuclear Data Sheets as well as, through the Cross Section Evaluation Working Group (CSEWG138), the production of the ENDF. Two rather large accelerator facilities, completely supported by the program, the Oak Ridge Electron Linear Accelerator and the fast neutron generator at Argonne National Laboratory, form the core of the nuclear data measurement activity together with measurement programs at Los Alamos National Laboratory's LAMPF/WNR facility, and at accelerator laboratories at Ohio University, Duke University, the University of Lowell, the University of Michigan, and the Colorado School of Mines. Some history is discussed and future modernizing plans are identified

  19. Underground Nuclear Testing Program, Nevada Test Site

    International Nuclear Information System (INIS)

    1975-09-01

    The Energy Research and Development Administration (ERDA) continues to conduct an underground nuclear testing program which includes tests for nuclear weapons development and other tests for development of nuclear explosives and methods for their application for peaceful uses. ERDA also continues to provide nuclear explosive and test site support for nuclear effects tests sponsored by the Department of Defense. This Supplement extends the Environmental Statement (WASH-1526) to cover all underground nuclear tests and preparations for tests of one megaton (1 MT) or less at the Nevada Test Site (NTS) during Fiscal Year 1976. The test activities covered include numerous continuing programs, both nuclear and non-nuclear, which can best be conducted in a remote area. However, if nuclear excavation tests or tests of yields above 1 MT or tests away from NTS should be planned, these will be covered by separate environmental statements

  20. ANENT reference curricula for Master Degree in Nuclear Engineering (Draft no. 1 = version 19 Feb 2006)

    International Nuclear Information System (INIS)

    Raghunathan, V.S.; Chung, B.J.; Duan, P.V.

    2007-01-01

    Subject contents in the following areas are presented in detail: Advanced Mathematics for Nuclear Engineering; Advanced Numerical Analysis; Advanced Computer Applications; Engineering Physics; Introduction to Nuclear Engineering (Core); Radiation Detection and Measurements (Core); Radiation Safety and Shielding; Power Plant Instrumentation; Nuclear Safety; Nuclear and Reactor Physics; Health Physics; Nuclear Heat Transfer; Nuclear Power Plants Engineering; Materials Science in Nuclear Engineering; Neutron Transport Theory; Reactor Kinetics; Advanced Nuclear Heat Transfer; Nuclear Reactor Numerical Analysis; Nuclear Fuel Cycle and Non-Proliferation; Power Reactor Design (System Engineering); Advanced Nuclear Safety; Probabilistic Safety Analysis; Strategy and Infrastructure for Nuclear Power; NPP Control and Instrumentation; Nuclear Regulation; Nuclear Material Engineering; Radiation Protection and Shielding; Application of Radioisotope and Radiation Sources; Non-Destructive Testing; Nuclear Imaging; Radioactive Waste Management; Advanced Health Physics; Applied Radiation Measurements; Advanced Laser Application Engineering; Advanced Quantum Engineering; Plasma Diagnostics; Plasma Processing Analysis; Advanced Plasma Engineering; Nuclear Spectroscopy; Thermonuclear Fusion Engineering

  1. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1993-01-01

    For non-reactor nuclear facilities, the U.S. Department of Energy (DOE) does not require that nuclear criticality safety engineers demonstrate qualification for their job. It is likely, however, that more formalism will be required in the future. Current DOE requirements for those positions which do have to demonstrate qualification indicate that qualification should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis is incompletely developed in some areas

  2. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement; Volume 1, Appendix F, Nevada Test Site and Oak Ridge Reservation Spent Nuclear Fuel Management Programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    This volume addresses the interim storage of spent nuclear fuel (SNF) at two US Department of Energy sites, the Nevada Test Site (NTS) and the Oak Ridge Reservation (ORR). These sites are being considered to provide a reasonable range of alternative settings at which future SNF management activities could be conducted. These locations are not currently involved in management of large quantities of SNF; NTS has none, and ORR has only small quantities. But NTS and ORR do offer experience and infrastructure for the handling, processing and storage of radioactive materials, and they do exemplify a broad spectrum of environmental parameters. This broad spectrum of environmental parameters will provide, a perspective on whether and how such location attributes may relate to potential environmental impacts. Consideration of these two sites will permit a programmatic decision to be based upon an assessment of the feasible options without bias, to the current storage sites. This volume is divided into four parts. Part One is the volume introduction. Part Two contains chapters one through five for the NTS, as well as references contained in chapter six. Part Three contains chapters one through five for the ORR, as well as references contained in chapter six. Part Four is summary information including the list of preparers, organizations contacted, acronyms, and abbreviations for both the NTS and the ORR. A Table of Contents, List of Figures, and List of Tables are included in parts Two, Three, and Four. This approach permitted the inclusion of both sites in one volume while maintaining consistent chapter numbering.

  3. Nuclear Human Resources Development Program using Educational Core Simulator

    International Nuclear Information System (INIS)

    Choi, Yu Sun; Hong, Soon Kwan

    2015-01-01

    KHNP-CRI(Korea Hydro and Nuclear Power Co.-Central Research Institute) has redesigned the existing Core Simulator(CoSi) used as a sort of training tools for reactor engineers in operating nuclear power plant to support Nuclear Human Resources Development (NHRD) Program focusing on the nuclear department of Dalat university in Vietnam. This program has been supported by MOTIE in Korea and cooperated with KNA(Korea Nuclear Association for International Cooperation) and HYU(Hanyang University) for enhancing the nuclear human resources of potential country in consideration with Korean Nuclear Power Plant as a next candidate energy sources. KHNP-CRI has provided Edu-CoSi to Dalat University in Vietnam in order to support Nuclear Human Resources Development Program in Vietnam. Job Qualification Certificates Program in KHNP is utilized to design a training course for Vietnamese faculty and student of Dalat University. Successfully, knowhow on lecturing the ZPPT performance, training and maintaining Edu-CoSi hardware are transferred by several training courses which KHNP-CRI provides

  4. Nuclear Human Resources Development Program using Educational Core Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yu Sun; Hong, Soon Kwan [KHNP-CRI, Daejeon (Korea, Republic of)

    2015-10-15

    KHNP-CRI(Korea Hydro and Nuclear Power Co.-Central Research Institute) has redesigned the existing Core Simulator(CoSi) used as a sort of training tools for reactor engineers in operating nuclear power plant to support Nuclear Human Resources Development (NHRD) Program focusing on the nuclear department of Dalat university in Vietnam. This program has been supported by MOTIE in Korea and cooperated with KNA(Korea Nuclear Association for International Cooperation) and HYU(Hanyang University) for enhancing the nuclear human resources of potential country in consideration with Korean Nuclear Power Plant as a next candidate energy sources. KHNP-CRI has provided Edu-CoSi to Dalat University in Vietnam in order to support Nuclear Human Resources Development Program in Vietnam. Job Qualification Certificates Program in KHNP is utilized to design a training course for Vietnamese faculty and student of Dalat University. Successfully, knowhow on lecturing the ZPPT performance, training and maintaining Edu-CoSi hardware are transferred by several training courses which KHNP-CRI provides.

  5. Repository-Based Software Engineering Program: Working Program Management Plan

    Science.gov (United States)

    1993-01-01

    Repository-Based Software Engineering Program (RBSE) is a National Aeronautics and Space Administration (NASA) sponsored program dedicated to introducing and supporting common, effective approaches to software engineering practices. The process of conceiving, designing, building, and maintaining software systems by using existing software assets that are stored in a specialized operational reuse library or repository, accessible to system designers, is the foundation of the program. In addition to operating a software repository, RBSE promotes (1) software engineering technology transfer, (2) academic and instructional support of reuse programs, (3) the use of common software engineering standards and practices, (4) software reuse technology research, and (5) interoperability between reuse libraries. This Program Management Plan (PMP) is intended to communicate program goals and objectives, describe major work areas, and define a management report and control process. This process will assist the Program Manager, University of Houston at Clear Lake (UHCL) in tracking work progress and describing major program activities to NASA management. The goal of this PMP is to make managing the RBSE program a relatively easy process that improves the work of all team members. The PMP describes work areas addressed and work efforts being accomplished by the program; however, it is not intended as a complete description of the program. Its focus is on providing management tools and management processes for monitoring, evaluating, and administering the program; and it includes schedules for charting milestones and deliveries of program products. The PMP was developed by soliciting and obtaining guidance from appropriate program participants, analyzing program management guidance, and reviewing related program management documents.

  6. Nuclear program of Iran plans and development

    International Nuclear Information System (INIS)

    2016-01-01

    Described are the history of nuclear energy planning in Iran and the development of the Bushehr Nuclear Power Plant (BNPP-1) project and its impact on the competency building in national companies, nuclear safety infrastructure, training activities, public awareness and acceptance. The activities of Nuclear Engineering Department is also presented. In order to enhance technical support services to BNPP1 and also to use capabilities of other companies in the international arena and in line with safe and reliable operation of Bushehr Nuclear Power Plant, NPPD/TAVANA Company has attempted to make contact with many companies outside the country

  7. Defense programs business practices re-engineering QFD exercise

    International Nuclear Information System (INIS)

    Murray, C.; Halbleib, L.

    1996-03-01

    The end of the cold war has resulted in many changes for the Nuclear Weapons Complex (NWC). We now work in a smaller complex, with reduced resources, a smaller stockpile, and no new phase 3 weapons development programs. This new environment demands that we re-evaluate the way we design and produce nuclear weapons. The Defense Program (DP) Business Practices Re-engineering activity was initiated to improve the design and production efficiency of the DP Sector. The activity had six goals: (1) to identify DP business practices that are exercised by the Product Realization Process (PRP); (2) to determine the impact (positive, negative, or none) of these practices on defined, prioritized customer criteria; (3) to identify business practices that are candidates for elimination or re-engineering; (4) to select two or three business practices for re-engineering; (5) to re-engineer the selected business practices; and (6) to exercise the re-engineered practices on three pilot development projects. Business practices include technical and well as administrative procedures that are exercised by the PRP. A QFD exercise was performed to address (1)-(4). The customer that identified, defined, and prioritized the criteria to rate the business practices was the Block Change Advisory Group. Five criteria were identified: cycle time, flexibility, cost, product performance/quality, and best practices. Forty-nine business practices were identified and rated per the criteria. From this analysis, the group made preliminary recommendations as to which practices would be addressed in the re-engineering activity. Sixteen practices will be addressed in the re-engineering activity. These practices will then be piloted on three projects: (1) the Electronic Component Assembly (ECA)/Radar Project, (2) the B61 Mod 11, and (3) Warhead Protection Program (WPP)

  8. English Curriculum in Global Engineer Education Program

    Science.gov (United States)

    Furuya, Okitsugu; Bright, Olga; Saika, Takashi

    The educational goal of the Faculty of Global Engineering (FGE) of the Kogakuin University is to prepare the graduates to be global engineers. The requirements for the global engineer are multifold; having the basic and advanced engineering knowledge together with the international communication skills and experiences. The curriculum at the Kogakuin University has been designed and developed over the last ten years. Among others, “Communication Skills for Global Engineers (CSGE) ” and “Engineering Clinic Program (ECP) ” play essential roles, the former providing the students with the communication skills and the latter engineering design skills. An impact on the students studying together with foreign students is so strong and immeasurable. The English they learned in Japan does not work as well as they thought it would, and the attitude of the foreign students toward studying they observe is a kind of “shocking” . The student who joined ECP abroad/CSGE abroad come back to Japan as a very inspired and different person, the first step becoming a global engineer. In this paper, various aspects of the program will be discussed with the problem areas to be further improved being identified.

  9. Nuclear engineering R ampersand D at the Savannah River Site

    International Nuclear Information System (INIS)

    Strosnider, D.R.; Ferrara, W.R.

    1991-01-01

    The Westinghouse Savannah River Company (WSRC) is the prime operating contractor for the US Department of Energy at the Savannah River Site (SRS), located near Aiken, South Carolina. One division of WSRC, the Savannah River Laboratory (SRL), has the primary responsibility for research and development, which includes supporting the safe and efficient operation of the SRS production reactors. Several Sections of SRL, as well as other organization in WSRC, pursue R ampersand D and oversight activities related to nuclear engineering. The Sections listed below are described in more detail in this document: (SRL) nuclear reactor technology and scientific computations department; (SRL) safety analysis and risk management department; (WSRC) new production reactor program; and (WSRC) environment, safety, health, and quality assurance division

  10. Enhancing materials management programs in nuclear power plants

    International Nuclear Information System (INIS)

    Hassaballa, M.M.; Malak, S.M.

    1992-01-01

    Materials management programs for the nuclear utilities in the United States are continually being affected, concurrent with the gradual disappearance of qualified component and replacement parts vendors by regulatory concerns about procurement and materials management. In addition, current economic and competitive pressures are forcing utilities to seek avenues for reducing procurement costs for safety-related items. In response to these concerns, initiatives have been undertaken and engineering guidelines have been developed by the nuclear power industry-sponsored organizations, such as the Electric Power Research Institute and the Nuclear Management Resources Council. It is our experience that successful materials management programs require a multitude of engineering disciplines and experience and are composed of three major elements: strategic procurement plan, parts classification and procurement data base, and enhancement tools. This paper provides a brief description of each of the three elements

  11. HIGH SERVE '90 - nuclear engineering services

    International Nuclear Information System (INIS)

    Bauer, K.G.

    1991-01-01

    Nuclear engineering services do not start only with maintenance or repair, but already with the early detection of imminent problems long before they become problems. Services concerning the decommissioning of plants also belong to it. A selection of the extraordinary services rendered nowadays is presented in more than 20 papers in this booklet. These papers may roughly be divided into three groups of subjects: monitoring and operational management; maintenance, repair and improvements; radioactive waste treatment and management. The first group of subjects, in particular, covers papers dealing with early detection, monitoring and diagnosing systems, using highly advanced hard- and software technologies. Modernization of instrumentation and control systems and exchange of process computer systems is another task this service has to accomplish. Process computers of the past have developed into high performance process information systems. (orig./DG) [de

  12. Nuclear data needs of Indian nuclear program

    International Nuclear Information System (INIS)

    Fernando, M.P.S.

    2015-01-01

    Currently 17 Pressurised Heavy water Reactors (PHWRs), 2 Boiling water reactors (BWRs) and 1 Pressurised water reactor (PWR) are being operated for power production by Nuclear Power Corporation India Limited (NPCIL). For PHWRs, different types of fuel bundles are simulated by the integral transport theory code, CLUB using a combination of collision probability method and interface current technique and employing IAEA supplied 69 /172 group WIMS cross section library based on ENDF-BVI, BVII. Ring power factors are calculated at different burnups and are used to estimate linear heat rating. The two group neutron cross sections of different type of lattices at different core irradiations are also generated by lattice code CLUB. Wherever reactivity devices are present, supercell approach is adopted and the suitable incremental absorption cross sections are obtained using BOXER which is based on 3-D integral transport theory considering two neutron energy groups. Using the appropriate properties for normal lattices and ones affected by reactivity devices, fuel management and core follow up studies are carried out using 3-D diffusion theory based TRIVENI code. The KAPS-1 power rise transient on March 10, 2004 brought to focus the importance of accurate nuclear data for reactor physics estimation in Indian PHWRs. With IAEA supplied libraries in WIMS format we could satisfactorily resolve the rate of power increase. Stability analysis and sensitivity analysis was carried out for different incore burnup situations resulting from peak flux operation. The quantification of output uncertainties is necessary to adequately establish safety margins of nuclear facilities. The uncertainties in the integral parameters such as reactivity worth and coefficients due to cross section can be assessed using cross section covariance data produced directly from the uncertainties of measurements. Covariance data processing codes and sensitivity analysis tools have to be developed. The part

  13. Human factors engineering in nuclear plant rehabilitations

    International Nuclear Information System (INIS)

    Bernston, K.; Remisz, M.; Malcolm, S.

    2001-01-01

    There are several unique considerations when creating and maintaining a human factors program for a plant refurbishment. These consideration arise from a variety of sources, including budget and time constraints on life extension projects, working to existing plant protocols and current acceptable HFE practices, and issues relating to function and task analysis. This results in a need to streamline and carefully time HFE practices from project start up to completion. In order to perform this task adequately, a comprehensive Human Factors Engineering Program Plan should be designed and tailored to the project. Systems of planning and prioritization are essential, and the required HFE designer training needs to be established. HFE specialists need to be aware of the existing plant constraints, and he prepared to work within them when providing support. The current paper discusses these aspects in the context of major refurbishment work at CANDU stations. (author)

  14. Management plan for the Nuclear Standards Program

    International Nuclear Information System (INIS)

    1979-11-01

    This Management Plan was prepared to describe the manner in which Oak Ridge National Laboratory will provide technical management of the Nuclear Standards Program. The organizational structure that has been established within ORNL for this function is the Nuclear Standards Management Center, which includes the Nuclear Standards Office (NSO) already in existence at ORNL. This plan is intended to support the policies and practices for the development and application of technical standards in ETN projects, programs, and technology developments as set forth in a standards policy memorandum from the DOE Program Director for Nuclear Energy

  15. Emeritus Scientists, Mathematicians and Engineers (ESME) program

    Energy Technology Data Exchange (ETDEWEB)

    Sharlin, H.I.

    1992-09-01

    The Emeritus Scientists, Mathematicians and Engineers (ESME) program matches retired scientists and engineers with wide experience with elementary school children in order to fuel the children's natural curiosity about the world in which they live. The long-range goal is to encourage students to maintain the high level of mathematical and science capability that they exhibit at an early age by introducing them to the fun and excitement of the world of scientific investigation and engineering problem solving. Components of the ESME program are the emeriti, established teacher-emeriti teams that work to produce a unit of 6 class hours of demonstration or hands-on experiments, and the encounter by students with the world of science/engineering through the classroom sessions and a field trip to a nearby plant or laboratory.

  16. Westinghouse Hanford Company Engineering Indoctrination Program

    International Nuclear Information System (INIS)

    Hull, K.J.

    1991-02-01

    Westinghouse Hanford Company has recognized that a learning curve exists in its engineering design programs. A one-year training program is under way to shorten this learning curve by introducing new engineers, both recent graduates and experienced new hires, to both company standards and intuitive engineering design processes. The participants are organized into multi-disciplined teams and assigned mentor engineers who assist them in completing a team project. Weekly sessions alternate between information presentations and time to work on team design projects. The presentations include information that is applicable to the current phase of the design project as well as other items of interest, such as site tours, creative thinking, and team brainstorming techniques. 1 fig

  17. A new undergraduate course: Problems in nuclear engineering

    International Nuclear Information System (INIS)

    Larsen, Edward W.

    2011-01-01

    During the past five years, a new third-year undergraduate nuclear engineering course has been developed and taught at the University of Michigan. The course was created to correct certain deficiencies in the undergraduate nuclear engineering curriculum. Here we discuss the origins of the new course and our experience with it. (author)

  18. Spent nuclear fuel application of CORE reg-sign systems engineering software

    International Nuclear Information System (INIS)

    Grimm, R.J.

    1996-01-01

    The Department of Energy (DOE) has adopted a systems engineering approach for the successful completion of the Spent Nuclear Fuel (SNF) Program mission. The DOE has utilized systems engineering principles to develop the SNF Program guidance documents and has held several systems engineering workshops to develop the functional hierarchies of both the programmatic and technical side of the SNF Program. The sheer size and complexity of the SNF Program, however, has led to problems that the Westinghouse Savannah River Company (WSRC) is working to manage through the use of systems engineering software. WSRC began using CORE reg-sign, an off-the-shelf PC based software package, to assist the DOE in management of the SNF program. This paper details the successful use of the CORE reg-sign systems engineering software to date and the proposed future activities

  19. Spent nuclear fuel application of CORE reg-sign systems engineering software

    International Nuclear Information System (INIS)

    Grimm, R.J.

    1996-01-01

    The DOE has adopted a systems engineering approach for the successful completion of the Spent Nuclear Fuel (SNF) Program mission. The DOE has utilized systems engineering principles to develop the SNF program guidance documents and has held several systems engineering workshops to develop the functional hierarchies of both the programmatic and technical side of the SNF program. The sheer size and complexity of the SNF program has led to problems that the Westinghouse Savannah River Company (WSRC) is working to manage through the use of systems engineering software. WSRC began using CORE reg-sign, an off the shelf PC based software package, to assist DOE in management of the SNF program. This paper details the successful use of the CORE reg-sign systems engineering software to date and the proposed future activities

  20. Several aspects of the effect of nuclear power engineering and thermal power engineering on the environment

    Energy Technology Data Exchange (ETDEWEB)

    Malenchenko, A F

    1979-01-01

    A survey is made of the comparative effect of nuclear power engineering and thermal power engineering on environment and man. The most significant approaches to solution of radio-ecological problems of APS are found.

  1. Inherently safe nuclear-driven internal combustion engines

    International Nuclear Information System (INIS)

    Alesso, P.; Chow, Tze-Show; Condit, R.; Heidrich, J.; Pettibone, J.; Streit, R.

    1991-01-01

    A family of nuclear driven engines is described in which nuclear energy released by fissioning of uranium or plutonium in a prompt critical assembly is used to heat a working gas. Engine performance is modeled using a code that calculates hydrodynamics, fission energy production, and neutron transport self-consistently. Results are given demonstrating a large negative temperature coefficient that produces self-shutoff of energy production. Reduced fission product inventory and the self-shutoff provide inherent nuclear safety. It is expected that nuclear engine reactor units could be scaled from 100 MW on up. 7 refs., 3 figs

  2. Establishment of professional nuclear power architectural engineering company

    International Nuclear Information System (INIS)

    Guo Dongli; Chen Hua

    2006-01-01

    The rapid development of nuclear power industry in China requires specialized management for the nuclear power engineering projects. It is necessary to establish the nuclear power architectural engineering company to meet the increasing market needs by providing the owner with specialized nuclear engineering project management and overall contracting services. It is imperative that the purpose of establishing the corporation and enterprise core competitiveness should be clearly identified when it is established. Its organizational structure should be geared to the enterprise operation management and development to facilitate the intensified project management and control, and improve its risk-proof ability. (authors)

  3. IAEA Nuclear Security Human Resource Development Program

    International Nuclear Information System (INIS)

    Braunegger-Guelich, A.

    2009-01-01

    The IAEA is at the forefront of international efforts to strengthen the world's nuclear security framework. The current Nuclear Security Plan for 2006-2009 was approved by the IAEA Board of Governors in September 2005. This Plan has three main points of focus: needs assessment, prevention, detection and response. Its overall objective is to achieve improved worldwide security of nuclear and other radioactive material in use, storage and transport, and of their associated facilities. This will be achieved, in particular, through the provision of guidelines and recommendations, human resource development, nuclear security advisory services and assistance for the implementation of the framework in States, upon request. The presentation provides an overview of the IAEA nuclear security human resource development program that is divided into two parts: training and education. Whereas the training program focuses on filling gaps between the actual performance of personnel working in the area of nuclear security and the required competencies and skills needed to meet the international requirements and recommendations described in UN and IAEA documents relating to nuclear security, the Educational Program in Nuclear Security aims at developing nuclear security experts and specialists, at fostering a nuclear security culture and at establishing in this way sustainable knowledge in this field within a State. The presentation also elaborates on the nuclear security computer based learning component and provides insights into the use of human resource development as a tool in achieving the IAEA's long term goal of improving sustainable nuclear security in States. (author)

  4. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    International Nuclear Information System (INIS)

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-01-01

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  5. Nuclear Power Infrastructure Development Program: Korean Education Program

    International Nuclear Information System (INIS)

    Choi, Sung Yeol; Hwang, Il Soon; Kim, Si Hwan

    2009-01-01

    Many countries have decided nuclear power for next energy resources as one of the long-term energy supply options. IAEA projected nuclear power expansion up to 2030 reaching between 447 GWe and 691 GWe compared to 370 GWe and 2660 TWh at the end of 2006. Both low and high projection is accompanied with new nuclear power plant constructions respectively 178 and 357, about 11 units per year, and most new construction is in North America, the Far East, Eastern Europe, the Middle East, and Southeast Asia. During the last forty years, thirty three countries have established commercial nuclear power programs but only some of them have developed comprehensive and large scale peaceful nuclear power infrastructure. Although various cooperation and guidance program of nuclear power infrastructure, developing appropriate environment and infrastructure of nuclear power plant is still challenging problems for developing countries launching nuclear power program. With increasing the demand of safety and safeguard from international society, creating appropriate infrastructure becomes essential requirements in national nuclear power program. In the viewpoint of developing countries, without sufficient explanation and proper guidance, infrastructure could be seen only as another barrier in its nuclear power program. The importance of infrastructure development would be obscured by ostensible business and infrastructure program can result in increasing entering barriers to peaceful nuclear power application field without benefits to developing countries and international community. To avoid this situation by providing enough explanation and realistic case example and cooperate with the countries wanting to establish comprehensive nuclear power infrastructure in the peaceful applications, we are creating the education program of infrastructure development with basic guidelines of the IAEA infrastructure series and Korean experiences from least developed country to advanced country

  6. EDF's Engineering Experience and Contribution to the Nuclear Development

    International Nuclear Information System (INIS)

    Salha, Bernard; Fourest, Bernard; Arpino, Jean-Marc

    2002-01-01

    Electricite de France (EDF) is now operating 58 nuclear power units which produce 76% of the electricity generated in France. This EDF's industrial success is the result of its capacity to master and optimize its production tool, from design through operation. EDF's integrated engineering is in the heart of this process of technical expertise and economic optimization. It allows to be in interface between the needs of operators and industrials suppliers, while accumulating a significant feedback of operating experience. The will of achieving the process of frenchifying PWR technology and to implement new industrial innovations have ended up in the new NPP of 100 % french design, the N4 series and its significant innovations. EDF energy policy is to keep the nuclear option open for the future. This strategy results from the need to improve the availability and the life extension of the units in operation and to prepare the replacement of the operating reactors around 2015. This is the objective of the European Pressurized Reactor (EPR), a French-German joint project. EDF is also applying this industrial process in its international projects. For example China, which desires to implement a standardized nuclear program and to move forward the complete autonomy of its nuclear industry, has decided to adopt a similar approach to EDF's one. (authors)

  7. Design of compact nuclear power marine engineering simulator

    International Nuclear Information System (INIS)

    Gao Jinghui; Xing Hongchuan; Zhang Ronghua; Yang Yanhua; Xu Jijun

    2004-01-01

    The essentiality of compact nuclear power marine engineering simulator (NPMES) is discussed. The technology of nuclear power plant engineering simulator (NPPES) for NPMES development is introduced, and the function design, general design and model design are given in details. A compact NPMES based on the nuclear power marine of 'Mutsu' is developed. The design can help the development of NPMES, which will improve operation safety and management efficiency of marine. (authors)

  8. Nuclear engineering education: A competence based approach to curricula development

    International Nuclear Information System (INIS)

    2014-01-01

    Maintaining nuclear competencies in the nuclear industry is a one of the most critical challenges in the near future. With the development of a number of nuclear engineering educational programmes in several States, this publication provides guidance to decision makers in Member States on a competence based approach to curricula development, presenting the established practices and associated requirements for educational programmes in this field. It is a consolidation of best practices that will ensure sustainable, effective nuclear engineering programmes, contributing to the safe, efficient and economic operation of nuclear power plants. The information presented is drawn from a variety of recognized nuclear engineering programmes around the world and contributes to the main areas that are needed to ensure a viable and robust nuclear industry

  9. Nuclear reactor engineering: Reactor design basics. Fourth edition, Volume One

    International Nuclear Information System (INIS)

    Glasstone, S.; Sesonske, A.

    1994-01-01

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in design and operation of nuclear power plants. Extensively updated, the fourth edition includes new material on reactor safety and risk analysis, regulation, fuel management, waste management, and operational aspects of nuclear power. This volume contains the following: energy from nuclear fission; nuclear reactions and radiations; neutron transport; nuclear design basics; nuclear reactor kinetics and control; radiation protection and shielding; and reactor materials

  10. Experience in nuclear engineering distance education at the University of Tennessee

    International Nuclear Information System (INIS)

    Dodds, H.L.

    2011-01-01

    This paper describes the distance education programs in nuclear engineering at The University of Tennessee (UT), which includes several courses that are of interest to the mathematics and computation community such as reactor theory and design, shielding, statistics, health physics, and criticality safety. All of the courses needed for the MS degree in nuclear engineering and several of the courses needed for the PhD degree in nuclear engineering are delivered synchronously (i.e., interactive in real time) via the Internet to students located anywhere by instructors located anywhere. The paper will also describe the historical development of distance education programs at UT as well as the benefits of the programs to students and to the university. The oral presentation associated with this paper will include a short movie that demonstrates the technology used for distance delivery. (author)

  11. Training program for students and young engineers in JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, Noriyuki; Izumo, Hironobu; Hori, Naohiko; Ishitsuka, Etsuo; Suzuki, Masahide [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    The JMTR is expected to be a key infrastructure to contribute the nuclear Human Resource Development (HRD) by a research and On-Job-Training (OJT) in order to support global expansion of nuclear power industry. The training program for Asian young researchers and engineers were started from JFY 2011 in JAEA, and ten trainees from Kazakhstan and Thailand had attended in this program in JFY 2011. In addition, in the nuclear HRD initiative program sponsored by the MEXT, the training course was newly established for domestic students and young engineers from JFY 2010 to JFY 2012. In this course, basic understanding on irradiation test and post irradiation examination is aimed to achieve by overall and practical training such as the neutronic/thermal designs of irradiation capsule, post irradiation examination, measurement and evaluation of neutron fluence, etc. using the JMTR and the related facilities. The 1st training course was held with 10 trainees in JFY 2010. The 2nd and 3rd training courses were also held with 19 trainees and 16 trainees in JFY 2011. From JFY 2012, two courses will be held in every year, and 20 trainees will be accepted in each course. (author)

  12. Training program for students and young engineers in JMTR

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Izumo, Hironobu; Hori, Naohiko; Ishitsuka, Etsuo; Suzuki, Masahide

    2012-01-01

    The JMTR is expected to be a key infrastructure to contribute the nuclear Human Resource Development (HRD) by a research and On-Job-Training (OJT) in order to support global expansion of nuclear power industry. The training program for Asian young researchers and engineers were started from JFY 2011 in JAEA, and ten trainees from Kazakhstan and Thailand had attended in this program in JFY 2011. In addition, in the nuclear HRD initiative program sponsored by the MEXT, the training course was newly established for domestic students and young engineers from JFY 2010 to JFY 2012. In this course, basic understanding on irradiation test and post irradiation examination is aimed to achieve by overall and practical training such as the neutronic/thermal designs of irradiation capsule, post irradiation examination, measurement and evaluation of neutron fluence, etc. using the JMTR and the related facilities. The 1st training course was held with 10 trainees in JFY 2010. The 2nd and 3rd training courses were also held with 19 trainees and 16 trainees in JFY 2011. From JFY 2012, two courses will be held in every year, and 20 trainees will be accepted in each course. (author)

  13. The American Nuclear Society's international student exchange program

    International Nuclear Information System (INIS)

    Bornstein, I.

    1988-01-01

    The American Nuclear Society's (ANS's) International Student Exchange Program sponsors bilateral exchanges of students form graduate schools in American universities with students from graduate schools in France, the Federal Republic of Germany (FRG), and Japan. The program, now in its 12th year, was initiated in response to an inquiry to Argonne National Laboratory (ANL) from the director of the Centre d'Etudes Nucleaires de Saclay proposing to send French nuclear engineering students to the United States for summer jobs. The laboratory was asked to accept two students to work on some nuclear technology activity and ANS was invited to send American students to France on an exchange basis. To date, 200 students have taken part in the program. It has been a maturing and enriching experience for them, and many strong and enduring friendships have been fostered among the participants, many of whom will become future leaders in their countries

  14. NASA program planning on nuclear electric propulsion

    International Nuclear Information System (INIS)

    Bennett, G.L.; Miller, T.J.

    1992-03-01

    As part of the focused technology planning for future NASA space science and exploration missions, NASA has initiated a focused technology program to develop the technologies for nuclear electric propulsion and nuclear thermal propulsion. Beginning in 1990, NASA began a series of interagency planning workshops and meetings to identify key technologies and program priorities for nuclear propulsion. The high-priority, near-term technologies that must be developed to make NEP operational for space exploration include scaling thrusters to higher power, developing high-temperature power processing units, and developing high power, low-mass, long-lived nuclear reactors. 28 refs

  15. The Fessenden Honors in Engineering Program

    Science.gov (United States)

    Giazzoni, Michael

    2018-01-01

    Developing honors opportunities for students in engineering programs can be difficult, and the experience at the University of Pittsburgh is no exception. Often these students' degree requirements are so demanding that their opportunities for participating in honors experiences are severely limited. In each of the two semesters of their freshman…

  16. Qualitative knowledge engineering for nuclear applications

    International Nuclear Information System (INIS)

    Kim, Jae H.; Kim, Ko R.; Lee, Jae C.; Choi, You R.

    1998-01-01

    After the TMI nuclear power plant accident, plant safety and operational efficiency became more important areas of artificial intelligence. They need to build artificial intelligence systems which can predict and explain plant behaviors in earlier phases. We have a 3-year plan to develop hybrid modeling technology of artificial intelligence and related prototype subsystems. After concept design of autonomous power plant in the first year, basic and essential AI technologies were studied and applied to nuclear power plant subsystems, such as the underwater bubble detection subsystem and the eddy current test (ECT) subsystem this year. We developed diagnostic algorithm and experimented it on a testbed we prepared. The testbed system consists of ultrasonic sensor arrays and signal processors, which generates bubble image data and ultrasonic signal distribution data. The essential algorithm to guess the bubble image and its position was studied and developed using two different technologies: the neural network technology and the ultrasonic tomography technology. We developed diagnostic algorithms through ECT data analysis and applied it on an ECT subsystem. During the analysis of ECT data, we concentrated on structure analysis of physical data and internal data, and especially on segmentation scheme of ECT data. The diagnostic algorithm was studied and developed using two different technologies: Fourier descriptors technology and neural network technology. In order to verify the diagnostic algorithms, we have developed the prototype diagnostic programs which proved its good performance. (author). 15 refs., 5 tabs., 25 figs

  17. Iran's Nuclear Program: Recent Developments

    National Research Council Canada - National Science Library

    Squassoni, Sharon

    2006-01-01

    International Atomic Energy Agency (IAEA) inspections since 2003 have revealed almost two decades' worth of undeclared nuclear activities in Iran, including uranium enrichment and plutonium separation efforts...

  18. Iran's Nuclear Program: Recent Developments

    National Research Council Canada - National Science Library

    Squassoni, Sharon

    2007-01-01

    International Atomic Energy Agency (IAEA) inspections since 2003 have revealed two decades' worth of undeclared nuclear activities in Iran, including uranium enrichment and plutonium separation efforts...

  19. Iran's Nuclear Program: Recent Developments

    National Research Council Canada - National Science Library

    Squassoni, Sharon

    2006-01-01

    International Atomic Energy Agency (IAEA) inspections since 2003 have revealed almost two decades worth of undeclared nuclear activities in Iran, including uranium enrichment and plutonium separation efforts...

  20. Iran's Nuclear Program: Recent Developments

    National Research Council Canada - National Science Library

    Squassoni, Sharon

    2006-01-01

    International Atomic Energy Agency (IAEA) inspections since 2003 have revealed two decades worth of undeclared nuclear activities in Iran, including uranium enrichment and plutonium separation efforts...

  1. HSE Nuclear Safety Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Bagley, M.J. [Health and Safety Executive, Sheffield (United Kingdom)

    1995-12-31

    HSE funds two programmes of nuclear safety research: a programme of {approx} 2.2M of extramural research to support the Nuclear Safety Division`s regulatory activities and a programme of {approx} 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author).

  2. HSE Nuclear Safety Research Program

    International Nuclear Information System (INIS)

    Bagley, M.J.

    1995-01-01

    HSE funds two programmes of nuclear safety research: a programme of ∼ 2.2M of extramural research to support the Nuclear Safety Division's regulatory activities and a programme of ∼ 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author)

  3. Aging and service wear of diesel engines used for emergency power at nuclear power stations

    International Nuclear Information System (INIS)

    Dingee, P.A.; Johnson, A.B.

    1985-01-01

    Aging and wear problems associated with emergency standby diesel generators are under study as part of the US Nuclear Regulatory Commission Nuclear Plant Aging Research program. Aging/wear factors identified in this study to date include chemical, mechanical, electrochemical, and bacterial mechanisms. The study also examines the potential of excessive engine testing as a cause of premature wear. To date, the results of this effort are not conclusive. An assessment of current wear mitigation measures such as engine maintenance and surveillance procedures suggests the need for their further development within the nuclear industry

  4. Quality assurance program for nuclear power plants

    International Nuclear Information System (INIS)

    Gamon, T.H.

    1976-02-01

    The Topical Report presented establishes and provides the basis for the Brown and Root Quality Assurance Program for Nuclear Power Plants from which the Brown and Root Quality Assurance Manual is prepared and implemented. The Quality Assurance Program is implemented by the Brown and Root Power Division during the design, procurement, and construction phases of nuclear power plants. The Brown and Root Quality Assurance Program conforms to the requirements of Nuclear Regulatory Commission Regulation 10 CFR 50, Appendix B; to approved industry standards such as ANSI N45.2 and ''Daughter Standards''; or to equivalent alternatives as indicated in the appropriate sections of the report

  5. Quality assurance program for nuclear power plants

    International Nuclear Information System (INIS)

    Gamon, T.H.

    1976-06-01

    This topical report establishes and provides the basis for the Brown and Root Quality Assurance Program for Nuclear Power Plants from which the Brown and Root Quality Assurance Manual is prepared and implemented. The Quality Assurance Program is implemented by the Brown and Root Power Division during the design, procurement, and construction phases of nuclear power plants. The Brown and Root Quality Assurance Program conforms to the requirements of Nuclear Regulatory Commission Regulation 10 CFR 50, Appendix B; to approved industry standards such as ANSI N45.2 and ''Daughter Standards''; or to equivalent alternatives as indicated in the appropriate sections of this report

  6. Labor market trends for nuclear engineers through 2005

    International Nuclear Information System (INIS)

    Seltzer, N.; Blair, L.M.

    1996-10-01

    Between 1983 and 1989, employment of nuclear engineers in the nuclear energy field increased almost 40 percent while the annual number of nuclear engineering degrees awarded decreased by almost one-fourth. There were, on average, more job openings for new graduates than there were new graduates available to fill the jobs during the 1980s. This trend reversed in the l990s as nuclear engineering employment in the nuclear energy field decreased from 11,500 in 1991 to 9,400 in 1995. During roughly the same period, the annual number of nuclear engineering degrees increased by 11 percent. As a result, from 1990 through 1995, the number of new graduate nuclear engineers available in the labor supply far exceeded the number of job openings for new graduates in the nuclear energy field. This oversupply of new graduates was particularly acute for 1993 through 1995. During 1996--1997, a relative improvement is expected in job opportunities in the nuclear energy field for new graduates; however, a large oversupply is still expected (almost twice as many graduates available for employment as there are job openings). For 1998 through 2000, some improvement is expected in the relative number of job opportunities for new graduates in the nuclear energy field. Nuclear engineering jobs in the nuclear energy field are expected to decrease only slightly (by less than 150) during this period. Also a 10--15% decrease in the annual number of degrees and available supply of new graduates is expected. Overall, an oversupply is expected (140 graduates available per 100 job openings for new graduates in the nuclear energy field), but this is still a substantial improvement over the current period. For 2001 through 2005, if enrollments and degrees continue to decline, the labor market for new graduates is expected to be approximately balanced. This assumes, however, that the number of degrees and the available supply of new graduates will decrease by 25% from 1995 levels

  7. Nuclear safety training program (NSTP) for dismantling

    International Nuclear Information System (INIS)

    Cretskens, Pieter; Lenie, Koen; Mulier, Guido

    2014-01-01

    European Control Services (GDF Suez) has developed and is still developing specific training programs for the dismantling and decontamination of nuclear installations. The main topic in these programs is nuclear safety culture. We therefore do not focus on technical training but on developing the right human behavior to work in a 'safety culture' environment. The vision and techniques behind these programs have already been tested in different environments: for example the dismantling of the BN MOX Plant in Dessel (Belgium), Nuclear Safety Culture Training for Electrabel NPP Doel..., but also in the non-nuclear industry. The expertise to do so was found in combining the know-how of the Training and the Nuclear Department of ECS. In training, ECS is one of the main providers of education in risky tasks, like elevation and manipulation of charges, working in confined spaces... but it does also develop training on demand to improve safety in a certain topic. Radiation Protection is the core business in the Nuclear Department with a presence on most of the nuclear sites in Belgium. Combining these two domains in a nuclear safety training program, NSTP, is an important stage in a dismantling project due to specific contamination, technical and other risks. It increases the level of safety and leads to a harmonization of different working cultures. The modular training program makes it possible to evaluate constantly as well as in group or individually. (authors)

  8. The European Nucelar Engineering Network Program (ENEN)

    International Nuclear Information System (INIS)

    Villa, M.; Boeck, H.; Hajek, M.

    2002-01-01

    As of 2002 there are 439 Nuclear Power Plants (NPP) and 264 Research Reactors (RR) in operation world-wide, out of these countries, 11 countries in Europe account for 145 NPP and 18 countries in Europe for 37 RR. A large fraction of both the NPP and the RR are over 30 years old. The same age problem exists also among the qualified nuclear staff. Most of the nuclear staff joined those facilities in the 60-ties and 70-ties and are now approaching retirement age. Due to this fact a large amount of experience and competence will be lost in the next decade [1]. Therefore it is of utmost importance to improve and harmonize the nuclear educational system among European countries. Having this target in mind an EU project, the European Nuclear Engineering Network (ENEN), was submitted by 17 countries to the European Union. The proposal was accepted and the two year project started officially on January 1's't 2002. In this paper a survey on the history and the structure of ENEN is given, the targets and timetables of the individual 10 Work Packages are discussed and the results up to September 2002 are presented.(author)

  9. The European Nucelar Engineering Network Program (ENEN)

    Energy Technology Data Exchange (ETDEWEB)

    Villa, M; Boeck, H; Hajek, M [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria)

    2002-07-01

    As of 2002 there are 439 Nuclear Power Plants (NPP) and 264 Research Reactors (RR) in operation world-wide, out of these countries, 11 countries in Europe account for 145 NPP and 18 countries in Europe for 37 RR. A large fraction of both the NPP and the RR are over 30 years old. The same age problem exists also among the qualified nuclear staff. Most of the nuclear staff joined those facilities in the 60-ties and 70-ties and are now approaching retirement age. Due to this fact a large amount of experience and competence will be lost in the next decade [1]. Therefore it is of utmost importance to improve and harmonize the nuclear educational system among European countries. Having this target in mind an EU project, the European Nuclear Engineering Network (ENEN), was submitted by 17 countries to the European Union. The proposal was accepted and the two year project started officially on January 1's't 2002. In this paper a survey on the history and the structure of ENEN is given, the targets and timetables of the individual 10 Work Packages are discussed and the results up to September 2002 are presented.(author)

  10. Assessment of specialized educational programs for licensed nuclear reactor operators

    International Nuclear Information System (INIS)

    Melber, B.D.; Saari, L.M.; White, A.S.; Geisendorfer, C.L.; Huenefeld, J.C.

    1986-02-01

    This report assesses the job-relatedness of specialized educational programs for licensed nuclear reactor operators. The approach used involved systematically comparing the curriculum of specialized educational programs for college credit, to academic knowledge identified as necessary for carrying out the jobs of licenses reactor operators. A sample of eight programs, including A.S. degree, B.S. degree, and coursework programs were studied. Subject matter experts in the field of nuclear operations curriculum and training determined the extent to which individual program curricula covered the identified job-related academic knowledge. The major conclusions of the report are: There is a great deal of variation among individual programs, ranging from coverage of 15% to 65% of the job-related academic knowledge. Four schools cover at least half, and four schools cover less than one-third of this knowledge content; There is no systematic difference in the job-relatedness of the different types of specialized educational programs, A.S. degree, B.S. degree, and coursework; and Traditional B.S. degree programs in nuclear engineering cover as much job-related knowledge (about one-half of this knowledge content) as most of the specialized educational programs

  11. Space Transportation Engine Program (STEP), phase B

    Science.gov (United States)

    1990-01-01

    The Space Transportation Engine Program (STEP) Phase 2 effort includes preliminary design and activities plan preparation that will allow smooth and time transition into a Prototype Phase and then into Phases 3, 4, and 5. A Concurrent Engineering approach using Total Quality Management (TQM) techniques, is being applied to define an oxygen-hydrogen engine. The baseline from Phase 1/1' studies was used as a point of departure for trade studies and analyses. Existing STME system models are being enhanced as more detailed module/component characteristics are determined. Preliminary designs for the open expander, closed expander, and gas generator cycles were prepared, and recommendations for cycle selection made at the Design Concept Review (DCR). As a result of July '90 DCR, and information subsequently supplied to the Technical Review Team, a gas generator cycle was selected. Results of the various Advanced Development Programs (ADP's) for the Advanced Launch Systems (ALS) were contributive to this effort. An active vehicle integration effort is supplying the NASA, Air Force, and vehicle contractors with engine parameters and data, and flowing down appropriate vehicle requirements. Engine design and analysis trade studies are being documented in a data base that was developed and is being used to organize information. To date, seventy four trade studies were input to the data base.

  12. Public information and acceptance of nuclear engineering studies at the faculty of nuclear sciences and physical engineering of CTU Prague

    Energy Technology Data Exchange (ETDEWEB)

    Musilek, Ladislav; Matejka, Karel [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Brehova 7, 115 19 Prague 1 (Czech Republic)

    1993-07-01

    The Faculty of Nuclear Sciences and Physical Engineering was founded in 1955, when the nuclear program in Czechoslovakia has been launched. In approximately the same time also some nuclear research institutes were founded, as, e.g., the Institute of Nuclear Research and the Research Institute of Nuclear Instruments, etc., extensive plans of development of nuclear power production were drafted, and everybody was very enthusiastic for this new branch of science and technology. The present status of nuclear technology and the new trends in applied hard sciences have resulted in widening the profile of the Faculty, because the staff has intended to preserve it as a modern and advanced part of the University. It means that now nuclear sciences represent about one third of the programme and the structure of its responsibilities. What is the public acceptance of the Faculty nowadays? Two unfavourable trends act against the interest to enrol at the Faculty. The first one is general - a decreasing interest of the young in engineering, given probably by both higher work-load in comparison with, e.g., social sciences, and a not very high social status of engineering graduates in the former socialist society. The second trend is given by a strong antinuclear opposition and campaigns in the past few years, relatively latent between the Chernobyl accident and 1989, because the former regime had not allow any discussions about this subject, and clearly apparent after the 1989 November revolution. These antinuclear tendencies were also fuelled by the effective Greenpeace campaign in 1990, imported mostly from Austria, and, unfortunately, unfounded from the scientific point of view. How can the Faculty resist this ebb of interest? First of all this can be achieved by suitable modification of curricula towards 'computerisation' and {sup e}cologisation{sup .} Among other activities priority is given to cooperation with mass media as the press, TV etc. Direct contacts with high and

  13. Public information and acceptance of nuclear engineering studies at the faculty of nuclear sciences and physical engineering of CTU Prague

    International Nuclear Information System (INIS)

    Musilek, Ladislav; Matejka, Karel

    1993-01-01

    The Faculty of Nuclear Sciences and Physical Engineering was founded in 1955, when the nuclear program in Czechoslovakia has been launched. In approximately the same time also some nuclear research institutes were founded, as, e.g., the Institute of Nuclear Research and the Research Institute of Nuclear Instruments, etc., extensive plans of development of nuclear power production were drafted, and everybody was very enthusiastic for this new branch of science and technology. The present status of nuclear technology and the new trends in applied hard sciences have resulted in widening the profile of the Faculty, because the staff has intended to preserve it as a modern and advanced part of the University. It means that now nuclear sciences represent about one third of the programme and the structure of its responsibilities. What is the public acceptance of the Faculty nowadays? Two unfavourable trends act against the interest to enrol at the Faculty. The first one is general - a decreasing interest of the young in engineering, given probably by both higher work-load in comparison with, e.g., social sciences, and a not very high social status of engineering graduates in the former socialist society. The second trend is given by a strong antinuclear opposition and campaigns in the past few years, relatively latent between the Chernobyl accident and 1989, because the former regime had not allow any discussions about this subject, and clearly apparent after the 1989 November revolution. These antinuclear tendencies were also fuelled by the effective Greenpeace campaign in 1990, imported mostly from Austria, and, unfortunately, unfounded from the scientific point of view. How can the Faculty resist this ebb of interest? First of all this can be achieved by suitable modification of curricula towards 'computerisation' and e cologisation . Among other activities priority is given to cooperation with mass media as the press, TV etc. Direct contacts with high and grammar

  14. Program summary. Nuclear waste management and fuel cycle programs

    International Nuclear Information System (INIS)

    1982-07-01

    This Program Summary Document describes the US Department of Energy (DOE) Nuclear Waste Management and Fuel Cycle Programs. Particular emphasis is given to near-term, specifically Fiscal Year (FY) 1982, activities. The overall objective of these programs will be achieved by the demonstration of: (1) safe radioactive waste management practices for storage and disposal of high-level waste and (2) advanced technologies necessary to close the nuclear fuel cycle on a schedule which would assure a healthy future for the development of nuclear power in this country

  15. Integrating design and purchasing [in nuclear engineering] with Ingecad

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Ingecad was developed by the Ingevision division of Framatome to overcome deficiencies in traditional computer-aided design. It was developed for nuclear power project engineering around the principle of the shared management of a common database, thus making it possible to integrate several engineering disciplines. The multiuser database is managed and accessed by the different application softwares, corresponding to particular aspects of the engineering task: electrical and process control schematics; plant piping design; pressurized equipment design etc. The use of a common database ensures coherence between the different engineering disciplines, particularly between the process engineering, the plant layout design, the piping, and the instrumentation and control engineering. (author)

  16. Nuclear energy and professional engineers. Possibility of utilization of professional engineer system

    International Nuclear Information System (INIS)

    Tanaka, Shunichi; Nariai, Hideki; Madarame, Haruki; Hattori, Takuya; Kitamura, Masaharu; Fujie, Takao

    2008-01-01

    Nuclear and radiation professional engineer system started in 2004 and more than 250 persons have passed the second-step professional engineer examination, while more than 1,000 persons for the first-step examination. This special issue on possibility of utilization of professional engineer system consists of six relevant articles from experts of nuclear organizations and academia. They expect the role of professional engineer in the area of nuclear energy to enhance technology advancement and awareness of professional ethics from their respective standpoints. (T. Tanaka)

  17. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Hodong; Choi, Iljae

    2013-04-01

    The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The demonstration of pyroprocess technology which is proliferation resistance nuclear fuel cycle technology can reduce spent fuel and recycle effectively. Through this, people's trust and support on nuclear power would be obtained. Deriving the optimum nuclear fuel cycle alternative would contribute to establish a policy on back-end nuclear fuel cycle in the future, and developing the nuclear transparency-related technology would contribute to establish amendments of the ROK-U. S. Atomic Energy Agreement scheduled in 2014

  18. Towards 'green' Vinca - Vinca institute nuclear program

    International Nuclear Information System (INIS)

    Subotic, K.; Pesic, M.P.; Ljubenov, V.Lj.; Sotic, O.; Plecas, I.; Milosevic, M.J.; Peric, A.; Pavlovic, R.

    2002-01-01

    In order to solve the main nuclear and radiation safety problems in the Vinca Institute of Nuclear Sciences related to the inadequate storage conditions for the RA research reactor spent fuel, further decommissioning of the RA reactor and construction of central national radioactive waste long term storage, the 'Vinca Nuclear Decommissioning Program' is initiated during first months of 2002. A systematic and interrelated approach to the solving of the problems is proposed. Program will consist of set of Projects and Activities, planned to be done in the next 10 years. Realization of Program should improve nuclear and radiation safety and should solve problems arose in the previous period. The paper describes existing conditions related to the RA reactor and spent fuel pools, the main actions done in previous period, program goals and proposed organization structure. (author)

  19. EPRI nuclear power plant decommissioning technology program

    International Nuclear Information System (INIS)

    Kim, Karen S.; Bushart, Sean P.; Naughton, Michael; McGrath, Richard

    2011-01-01

    The Electric Power Research Institute (EPRI) is a non-profit research organization that supports the energy industry. The Nuclear Power Plant Decommissioning Technology Program conducts research and develops technology for the safe and efficient decommissioning of nuclear power plants. (author)

  20. Engine cycle design considerations for nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Pelaccio, D.G.; Scheil, C.M.; Collins, J.T.

    1993-01-01

    A top-level study was performed which addresses nuclear thermal propulsion system engine cycle options and their applicability to support future Space Exploration Initiative manned lunar and Mars missions. Technical and development issues associated with expander, gas generator, and bleed cycle near-term, solid core nuclear thermal propulsion engines are identified and examined. In addition to performance and weight the influence of the engine cycle type on key design selection parameters such as design complexity, reliability, development time, and cost are discussed. Representative engine designs are presented and compared. Their applicability and performance impact on typical near-term lunar and Mars missions are shown

  1. Review of the ISTC innovative nuclear programs (information review)

    Energy Technology Data Exchange (ETDEWEB)

    Tocheny, L. V. [ISTC - International Science and Technology Center, Moscow (Russian Federation)

    2006-07-01

    The information will be included in the review, with special attention on details of corresponding experimental programs: Novel reactor concepts, fit with GIF and INPRO: Supercritical Pressure Water aspects, Heavy metals (Lead, Lead-Bismuth) technology, HTGR critical modeling, engineering. Molten salts. Reactor data benchmarking, Accelerator Driven Systems (experimental modelling), Nuclear data measurements, Severe accident study (corium modelling, QUENCH, Chernobyl), Experimental Analysis of Hydraulically Induced Vibrations in Compact Curling Tube Steam Generators. (authors)

  2. Nuclear medicine quality assurance program in Argentina

    International Nuclear Information System (INIS)

    Levi de Cabrejas, Mariana; Arashiro, Jorge G.; Giannone, Carlos A.

    1999-01-01

    A two steps program has been implemented: the first one is the quality control of the equipment and the second one the development of standard procedures for clinical studies of patients. A training program for doctors and technicians of the nuclear medicine laboratories was carried out. Workshops on instrumentation and quality assurance in nuclear medicine have been organized in several parts of the country. A joint program of the CNEA and the University of Buenos Aires has trained medical physicists. A method has been established to evaluate the capability of the laboratories to produce high quality images and to follow up the implementation of the quality control program

  3. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Dixon, R.S.

    1984-12-01

    The Canadian Nuclear Fuel Waste Management Program involves research into the storage and transportation of used nuclear fuel, immobilization of fuel waste, and deep geological disposal of the immobilized waste. The program is now in the fourth year of a ten-year generic research and development phase. The objective of this phase of the program is to assess the safety and environmental aspects of the deep underground disposal of immobilized fuel waste in plutonic rock. The objectives of the research for each component of the program and the progress made to the end of 1983 are described in this report

  4. Review of EPRI Nuclear Human Factors Program

    International Nuclear Information System (INIS)

    Hanes, L.F.; O'Brien, J.F.

    1996-01-01

    The Electric Power Research Institute (EPRI) Human Factors Program, which is part of the EPRI Nuclear Power Group, was established in 1975. Over the years, the Program has changed emphasis based on the shifting priorities and needs of the commercial nuclear power industry. The Program has produced many important products that provide significant safety and economic benefits for EPRI member utilities. This presentation will provide a brief history of the Program and products. Current projects and products that have been released recently will be mentioned

  5. Lessons learned from Spain's nuclear program

    International Nuclear Information System (INIS)

    Garcia Rodriguez, A.

    1993-01-01

    The commercial nuclear program in Spain dates back to the beginning of the 1960s. There are currently nine units in operation, one more has been decommissioned and a further five are in different phases of construction but under nuclear moratorium since 1983. This article gives a general overview of the program, the criteria applied, what it has meant to and required of the industry and, finally, what lessons have been learned. (author) 2 figs

  6. Schedule of the nuclear program

    International Nuclear Information System (INIS)

    Heigl, F.

    1977-01-01

    The lecure tries to explain the main phases which must be passed to establish nuclear power plants, the feasibility phase, preconstruction and construction phase. Each phase consists of a lot of activities which are commented. Further the lecture tries to give some ideas of durances and dependence between the phases or activities to get a complete time schedule of the realization of a nuclear power project. (HP) [de

  7. A fusion engineering program for Canada

    International Nuclear Information System (INIS)

    Billington, I.J.

    In 1980 the National Research Council asked DSMA ATCON Ltd., in collaboration with Ontario Hydro, the University of Toronto, and McMaster University, to evaluate concepts for a national fusion engineering program, to define a facility that could be constructed in Canada to meet the program goals, and to suggest a strategy for encouraging industrial participation. The central element of the proposed fusion engineering and development program is tritium technology, with additional emphasis on the broader field of all hydrogen isotopes and their interactions with materials. The Canadian program in the initial phase would concentrate on fusion fuel systems, materials development, equipment development, and safety and the environment. A preliminary concept for the facility required has been developed, and key organizational activities identified. The total program costs should be $1 million in the first year, rising to a steady state of $5 million from the fourth year onward. The capital cost of the research facility is estimated to be $20 million spread over three years, and its operating budget around $7 million. The program as envisioned would make use of Canada's existing tritium resources and handling experience to contribute to worldwide fusion research

  8. Advanced interdisciplinary undergraduate program: light engineering

    Science.gov (United States)

    Bakholdin, Alexey; Bougrov, Vladislav; Voznesenskaya, Anna; Ezhova, Kseniia

    2016-09-01

    The undergraduate educational program "Light Engineering" of an advanced level of studies is focused on development of scientific learning outcomes and training of professionals, whose activities are in the interdisciplinary fields of Optical engineering and Technical physics. The program gives practical experience in transmission, reception, storage, processing and displaying information using opto-electronic devices, automation of optical systems design, computer image modeling, automated quality control and characterization of optical devices. The program is implemented in accordance with Educational standards of the ITMO University. The specific features of the Program is practice- and problem-based learning implemented by engaging students to perform research and projects, internships at the enterprises and in leading Russian and international research educational centers. The modular structure of the Program and a significant proportion of variable disciplines provide the concept of individual learning for each student. Learning outcomes of the program's graduates include theoretical knowledge and skills in natural science and core professional disciplines, deep knowledge of modern computer technologies, research expertise, design skills, optical and optoelectronic systems and devices.

  9. Automatic program generation: future of software engineering

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.H.

    1979-01-01

    At this moment software development is still more of an art than an engineering discipline. Each piece of software is lovingly engineered, nurtured, and presented to the world as a tribute to the writer's skill. When will this change. When will the craftsmanship be removed and the programs be turned out like so many automobiles from an assembly line. Sooner or later it will happen: economic necessities will demand it. With the advent of cheap microcomputers and ever more powerful supercomputers doubling capacity, much more software must be produced. The choices are to double the number of programers, double the efficiency of each programer, or find a way to produce the needed software automatically. Producing software automatically is the only logical choice. How will automatic programing come about. Some of the preliminary actions which need to be done and are being done are to encourage programer plagiarism of existing software through public library mechanisms, produce well understood packages such as compiler automatically, develop languages capable of producing software as output, and learn enough about the whole process of programing to be able to automate it. Clearly, the emphasis must not be on efficiency or size, since ever larger and faster hardware is coming.

  10. Revised inspection program for nuclear power plants

    International Nuclear Information System (INIS)

    1978-01-01

    The United States Nuclear Regulatory Commission (NRC) regulates nuclear power plants to assure adequate protection of the public and the environment from the dangers associated with nuclear materials. NRC fulfills this responsibility through comprehensive safety reviews of nuclear facilities, licensing of organizations that use nuclear materials, and continuing inspection. The NRC inspection program is currently conducted from the five regional offices in or near Philadelphia, Atlanta, Chicago, Dallas and San Francisco. Inspectors travel from the regional offices to nuclear power plants in various phases of construction, test and operation in order to conduct inspections. However, in June 1977 the Commission approved a revision to the inspection program that will include stationing inspectors at selected plants under construction and at all plants in operation. In addition, the revised program provides for appraising the performance of licensees on a national basis and involves more direct measurement and observation by NRC inspectors of work and tests in progress. The program also includes enhanced career management consisting of improved training and career development for inspectors and other professionals. The report was requested in the Conference Report on the NRC Authorization for Appropriations for Fiscal Year 1978. The report provides a discussion of the basis for both the current and revised inspection programs, describes these programs, and shows how the NRC inspection force will be trained and utilized. In addition, the report includes a discussion of the actions that will be taken to assure the objectivity of inspectors

  11. Engineering drawing field verification program. Revision 3

    International Nuclear Information System (INIS)

    Ulk, P.F.

    1994-01-01

    Safe, efficient operation of waste tank farm facilities is dependent in part upon the availability of accurate, up-to-date plant drawings. Accurate plant drawings are also required in support of facility upgrades and future engineering remediation projects. This supporting document establishes the procedure for performing a visual field verification of engineering drawings, the degree of visual observation being performed and documenting the results. A copy of the drawing attesting to the degree of visual observation will be paginated into the released Engineering Change Notice (ECN) documenting the field verification for future retrieval and reference. All waste tank farm essential and support drawings within the scope of this program will be converted from manual to computer aided drafting (CAD) drawings. A permanent reference to the field verification status will be placed along the right border of the CAD-converted drawing, referencing the revision level, at which the visual verification was performed and documented

  12. Reactor physics teaching and research in the Swiss nuclear engineering master

    International Nuclear Information System (INIS)

    Chawla, R.

    2012-01-01

    Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)

  13. Fuzzy systems and soft computing in nuclear engineering

    International Nuclear Information System (INIS)

    Ruan, D.

    2000-01-01

    This book is an organized edited collection of twenty-one contributed chapters covering nuclear engineering applications of fuzzy systems, neural networks, genetic algorithms and other soft computing techniques. All chapters are either updated review or original contributions by leading researchers written exclusively for this volume. The volume highlights the advantages of applying fuzzy systems and soft computing in nuclear engineering, which can be viewed as complementary to traditional methods. As a result, fuzzy sets and soft computing provide a powerful tool for solving intricate problems pertaining in nuclear engineering. Each chapter of the book is self-contained and also indicates the future research direction on this topic of applications of fuzzy systems and soft computing in nuclear engineering. (orig.)

  14. Human factor engineering applied to nuclear power plant design

    International Nuclear Information System (INIS)

    Manrique, A.; Valdivia, J.C.; Jimenez, A.

    2001-01-01

    For the design and construction of new nuclear power plants as well as for maintenance and operation of the existing ones new man-machine interface designs and modifications are been produced. For these new designs Human Factor Engineering must be applied the same as for any other traditional engineering discipline. Advantages of implementing adequate Human Factor Engineering techniques in the design of nuclear reactors have become not only a fact recognized by the majority of engineers and operators but also an explicit requirement regulated and mandatory for the new designs of the so called advanced reactors. Additionally, the big saving achieved by a nuclear power plant having an operating methodology which significantly decreases the risk of operating errors makes it necessary and almost vital its implementation. The first step for this is preparing a plan to incorporate all the Human Factor Engineering principles and developing an integral design of the Instrumentation and Control and Man-machine interface systems. (author)

  15. Green Vinca - Vinca Institute nuclear decommissioning program

    International Nuclear Information System (INIS)

    Pesic, M.; Subotic, K.; Ljubenov, V.; Sotic, O.

    2003-01-01

    Current conditions related to the nuclear and radiation safety in the Vinca Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro are the result of the previous nuclear programs in the former Yugoslavia and strong economic crisis during the previous decade. These conditions have to be improved as soon as possible. The process of establishment and initialisation of the Vinca Institute Nuclear Decommissioning (VIND) Program, known also as the 'Green Vinca' Program supported by the Government of the Republic Serbia, is described in this paper. It is supposed to solve all problems related to the accumulated spent nuclear fuel, radioactive waste and decommissioning of RA research reactor. Particularly, materials associated to the RA reactor facility and radioactive wastes from the research, industrial, medical and other applications, generated in the previous period, which are stored in the Vinca Institute, are supposed to be proper repackaged and removed from the Vinca site to some other disposal site, to be decided yet. Beside that, a research and development program in the modern nuclear technologies is proposed with the aim to preserve experts, manpower and to establish a solid ground for new researchers in field of nuclear research and development. (author)

  16. Russian center of nuclear science and education is the way of nuclear engineering skilled personnel training

    International Nuclear Information System (INIS)

    Murogov, V.M.; Sal'nikov, N.L.

    2006-01-01

    Nuclear power engineering as the key of nuclear technologies is not only the element of the power market but also the basis of the country's social-economic progress. Obninsk as the first science town in Russia is the ideal place for the creation of integrated Science-Research Center of Nuclear Science and Technologies - The Russian Center of Nuclear Science and Education (Center for conservation and development of nuclear knowledge) [ru

  17. Repository-based software engineering program

    Science.gov (United States)

    Wilson, James

    1992-01-01

    The activities performed during September 1992 in support of Tasks 01 and 02 of the Repository-Based Software Engineering Program are outlined. The recommendations and implementation strategy defined at the September 9-10 meeting of the Reuse Acquisition Action Team (RAAT) are attached along with the viewgraphs and reference information presented at the Institute for Defense Analyses brief on legal and patent issues related to software reuse.

  18. Bibliography of Connecticut Advanced Nuclear Engineering Laboratory reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-12-01

    This report, published in two volumes, is a bibliography of the reports published at the Connecticut Advanced Nuclear Engineering Laboratory (CANEL). The reports cover the period 1952 through 1965 and include the Aircraft Nuclear Propulsion program, the Advanced Liquid Metal Cooled Reactor program, the Advanced Reactor Materials program and the SNAP-50 program. The bibliography contains the report number, title, author, date published, and classification. In some cases where the writing of a report was a group effort, and in some reports containing compilations of certain types of data, the author column is not applicable. This is indicated by a {open_quotes}n.a.{close_quotes} in the author column. The following types of reports are included: PWAC`s, TIM`s, CNLM`s, FXM`s and miscellaneous reports. PWAC and TIM reports conform to the requirements of AEC Manual Chapter 3202-041 and 3202-042, respectively. Most of the technical information of interest generated by this project is documented in these reports. CNLM and FXM reports were written primarily for internal distribution. However, these reports contain enough information of technical interest to warrant their inclusion. All CNLM`s and those FXM`s considered to be of interest are included in this bibliography. The MPR`s (Monthly Progress Reports) are the most important of the miscellaneous categories of reports. The other miscellaneous categories relate primarily to equipment and reactor specifications. The Division of Technical Information Extension (DTIE) at Oak Ridge, Tennessee has been designated as the primary recipient of the reports in the CANEL library. When more than one copy of a report was available, the additional copies were delivered to the Lawrence Radiation Laboratory, Livermore, California.

  19. Bibliography of Connecticut Advanced Nuclear Engineering Laboratory reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-12-01

    This report, published in two, volumes, is a bibliography of the reports published at the Connecticut Advanced Nuclear Engineering Laboratory (CANEL). The reports cover the period 1952 through 1965 and include the Aircraft Nuclear Propulsion program, the Advanced Liquid Metal Cooled Reactor program, the Advanced Reactor Materials program and the SNAP-50 program. The bibliography contains the report number, title, author, date published, and classification. In some cases where the writing of a report was a group effort, and in some reports containing compilations of certain types of data, the author column is not applicable. This is indicated by a {open_quotes}n.a.{close_quotes} in the author column. The following types of reports are included: PWAC`s, TIM`s, CNLM`s. FXM`s and miscellaneous reports. PWAC and TIM reports conform to the requirements of AEC Manual Chapter 3202-041 and 3202-042, respectively. Most of the technical information of interest generated by this project is documented in these reports, CNLM and FXM reports were written primarily for internal distribution. However, these reports contain enough information of technical interest to warrant their inclusion. All CNLM`s and those FXM`s considered to be of interest are included in this bibliography. The MPR`s (Monthly Progress Reports) are the most important of the miscellaneous categories of reports. The other miscellaneous categories relate primarily to equipment and reactor specifications. The Division of Technical Information Extension (DTIE) at Oak Ridge, Tennessee has been designated as the primary recipient of the reports in the CANEL library. When more than one copy of a report was available, the additional copies were delivered to the Lawrence Radiation Laboratory, Livermore, California.

  20. Nuclear Criticality Safety Department Qualification Program

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-01-01

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document defines the Qualification Program to address the NCSD technical and managerial qualification as required by the Y-1 2 Training Implementation Matrix (TIM). This Qualification Program is in compliance with DOE Order 5480.20A and applicable Lockheed Martin Energy Systems, Inc. (LMES) and Y-1 2 Plant procedures. It is implemented through a combination of WES plant-wide training courses and professional nuclear criticality safety training provided within the department. This document supersedes Y/DD-694, Revision 2, 2/27/96, Qualification Program, Nuclear Criticality Safety Department There are no backfit requirements associated with revisions to this document

  1. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Bess, J.D.; Briggs, J.B.; Garcia, A.S.

    2011-01-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  2. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  3. A quality assurance program for nuclear power reactor materials tests at the Ford nuclear reactor

    International Nuclear Information System (INIS)

    Burn, R.R.

    1989-01-01

    The University of Michigan Nuclear Reactor Laboratory Quality Assurance Program has been established to assure that materials testing services provided to electric utilities produce accurate results in accordance with industry standards, sound engineering practice, and customer requirements. The program was prepared to comply with applicable requirements of 10CFR50, Appendix B, of the Code of Federal Regulations and a standard of the American National Standards Institute (ANSI), N45.2. The paper discusses the quality assurance program applicability, organization, qualification and training of personnel, material identification and control, examination and testing, measuring and test equipment, nonconforming test equipment, records, audits, and distribution

  4. University role in nuclear power program in developing countries

    International Nuclear Information System (INIS)

    Notea, A.

    1977-01-01

    The academic education in nuclear engineering should be considered as a subsystem within the general nuclear program of the country as well as within the educational structure of the university. The academic trained personnel are of major importance as future participants in decisional and planning steps of the program. Hence, the ''production'' of academic manpower in this field should be started at the earliest steps. The nuclear engineering curriculum should be planned in accordance with the objectives stated by the power program and the challenges foreseen. Obviously, the objectives in a developing country are considerably different from those of developed countries highly advanced in the nuclear power field. The paper analyzes possible objectives in a developing country which intends to implement nuclear power program. In view of these objectives curricula planning for the undergraduate and graduate levels are presented and explained. The courses for undergraduates intend to provide basic information to relatively large numbers of students from various faculties, as they are expected to join the program at various constructional stages. Major emphasise is given to graduates as they will act in the cadre of senior engineers and officials of the country. The research works for theses in developed countries may be highly technical, dealing with crumbs of huge development project carried out on national or international level. Such research works are hardly justified in countries not involved in the project. In developing countries the problems to be confronted with are mainly licensing and siting and to much less extent nuclear power technology. Hence the choice of subjects for theses should be coherent with these directions. Obviously, the subjects are bound to the department manpower and budgetary limitations. As a demonstration two fields were analysed under our local constraints and objectives. Subjects suitable for theses are pointed out. The fields dealt

  5. Status of nuclear engineering education in the United States

    International Nuclear Information System (INIS)

    Brown, G.J.

    2000-01-01

    Nuclear engineering education in the United States is reflective of the perceived health of the nuclear electric power industry within the country. Just as new commercial reactor orders have vanished and some power plants have shut down, so too have university enrollments shrunk and research reactors closed. This decline in nuclear trained specialists and the disappearance of the nuclear infrastructure is a trend that must be arrested and reversed if the United States is to have a workforce capable of caring for a nuclear power industry to not only meet future electric demand but to ensure that the over 100 existing plants, their supporting facilities and their legacy in the form of high level waste and facility clean-up are addressed. Additionally, the United States has an obligation to support and maintain its nuclear navy and other defence needs. And, lastly, if the United States is to have a meaningful role in the international use of nuclear power with regard to safety, non-proliferation and the environment, then it is imperative that the country continues to produce world-class nuclear engineers and scientists by supporting nuclear engineering education at its universities. The continued support of the federal government. and industry for university nuclear engineering and nuclear energy research and development is essential to sustain the nuclear infrastructure in the United States. Even with this support, and the continued excellent operation of the existing fleet of nuclear electric power plants, it is conceivable that nuclear engineering as an academic discipline may fall victim to poor communications and a tarnished public image. What is needed is a combination of federal and industrial support along with the creativity of the universities to expand their offerings to include more than power production. The objective is a positive message on careers in nuclear related fields, and recognition of the important role of nuclear energy in meeting the country

  6. Institute of Nuclear Engineering: report 1974-1976

    International Nuclear Information System (INIS)

    Amyot, L.

    1976-01-01

    The Institute of Nuclear Engineering is described in terms of its objectives, resources, instructional duties, and research. Basically the Institute is involved in the study of technical, economic and ecological aspects of nuclear installations, basic radioisotopic methods, and general energy problems. (E.C.B.)

  7. Annual technical report - 1987 - Nuclear Engineering Institute - Dept. of Physics

    International Nuclear Information System (INIS)

    Silva, A.G. da; Cabral, S.C.; Bastos, M.A.V.

    1987-01-01

    The research reports carried out in the Physics Department of Nuclear Engineering Institute/Brazilian CNEN, in nuclear physics, isotope production and hazards by irradiation using the CV-28 cyclotron capable to accelerate protons, deuterons, helium and alpha particles with maximum energies of 24, 14, 36 and 28 MeV, respectively, are presented. (M.C.K.) [pt

  8. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This volume addresses the interim storage of spent nuclear fuel (SNF) at two US Department of Energy sites, the Nevada Test Site (NTS) and the Oak Ridge Reservation (ORR). These sites are being considered to provide a reasonable range of alternative settings at which future SNF management activities could be conducted. These locations are not currently involved in management of large quantities of SNF; NTS has none, and ORR has only small quantities. But NTS and ORR do offer experience and infrastructure for the handling, processing and storage of radioactive materials, and they do exemplify a broad spectrum of environmental parameters. This broad spectrum of environmental parameters will provide, a perspective on whether and how such location attributes may relate to potential environmental impacts. Consideration of these two sites will permit a programmatic decision to be based upon an assessment of the feasible options without bias, to the current storage sites. This volume is divided into four parts. Part One is the volume introduction. Part Two contains chapters one through five for the NTS, as well as references contained in chapter six. Part Three contains chapters one through five for the ORR, as well as references contained in chapter six. Part Four is summary information including the list of preparers, organizations contacted, acronyms, and abbreviations for both the NTS and the ORR. A Table of Contents, List of Figures, and List of Tables are included in parts Two, Three, and Four. This approach permitted the inclusion of both sites in one volume while maintaining consistent chapter numbering

  9. Development of nuclear safety issues program

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J. C.; Yoo, S. O.; Yoon, Y. K.; Kim, H. J.; Jeong, M. J.; Noh, K. W.; Kang, D. K

    2006-12-15

    The nuclear safety issues are defined as the cases which affect the design and operation safety of nuclear power plants and also require the resolution action. The nuclear safety issues program (NSIP) which deals with the overall procedural requirements for the nuclear safety issues management process is developed, in accordance with the request of the scientific resolution researches and the establishment/application of the nuclear safety issues management system for the nuclear power plants under design, construction or operation. The NSIP consists of the following 4 steps; - Step 1 : Collection of candidates for nuclear safety issues - Step 2 : Identification of nuclear safety issues - Step 3 : Categorization and resolution of nuclear safety issues - Step 4 : Implementation, verification and closure The NSIP will be applied to the management directives of KINS related to the nuclear safety issues. Through the identification of the nuclear safety issues which may be related to the potential for accident/incidents at operating nuclear power plants either directly or indirectly, followed by performance of regulatory researches to resolve the safety issues, it will be possible to prevent occurrence of accidents/incidents as well as to cope with unexpected accidents/incidents by analyzing the root causes timely and scientifically and by establishing the proper flow-up or remedied regulatory actions. Moreover, the identification and resolution of the safety issues related to the new nuclear power plants completed at the design stage are also expected to make the new reactor licensing reviews effective and efficient as well as to make the possibility of accidents/incidents occurrence minimize. Therefore, the NSIP developed in this study is expected to contribute for the enhancement of the safety of nuclear power plants.

  10. Development of nuclear safety issues program

    International Nuclear Information System (INIS)

    Cho, J. C.; Yoo, S. O.; Yoon, Y. K.; Kim, H. J.; Jeong, M. J.; Noh, K. W.; Kang, D. K.

    2006-12-01

    The nuclear safety issues are defined as the cases which affect the design and operation safety of nuclear power plants and also require the resolution action. The nuclear safety issues program (NSIP) which deals with the overall procedural requirements for the nuclear safety issues management process is developed, in accordance with the request of the scientific resolution researches and the establishment/application of the nuclear safety issues management system for the nuclear power plants under design, construction or operation. The NSIP consists of the following 4 steps; - Step 1 : Collection of candidates for nuclear safety issues - Step 2 : Identification of nuclear safety issues - Step 3 : Categorization and resolution of nuclear safety issues - Step 4 : Implementation, verification and closure The NSIP will be applied to the management directives of KINS related to the nuclear safety issues. Through the identification of the nuclear safety issues which may be related to the potential for accident/incidents at operating nuclear power plants either directly or indirectly, followed by performance of regulatory researches to resolve the safety issues, it will be possible to prevent occurrence of accidents/incidents as well as to cope with unexpected accidents/incidents by analyzing the root causes timely and scientifically and by establishing the proper flow-up or remedied regulatory actions. Moreover, the identification and resolution of the safety issues related to the new nuclear power plants completed at the design stage are also expected to make the new reactor licensing reviews effective and efficient as well as to make the possibility of accidents/incidents occurrence minimize. Therefore, the NSIP developed in this study is expected to contribute for the enhancement of the safety of nuclear power plants

  11. Applying QA to nuclear-development programs

    International Nuclear Information System (INIS)

    Caplinger, W.H.

    1981-12-01

    The application of quality assurance (QA) principles to developmental programs is usually accomplished by tailoring or selecting appropriate requirements from large QA systems. Developmental work at Westinghouse Hanford Company (WHC) covers the complete range from basic research to in-core reactor tests. Desired requirements are selected from the 18 criteria in ANSI/ASME NQA Standard 1 by the cognizant program engineer in conjunction with the quality engineer. These referenced criteria assure that QA for the program is planned, implemented, and maintained. In addition, the WHC QA Manual provides four categories or levels of QA that are assigned to programs or components within the program. These categories are based on safety, reliability, and consequences of failure to provide a cost effective program

  12. Fundamentals of nuclear science and engineering

    CERN Document Server

    Shultis, J Kenneth

    2007-01-01

    FUNDAMENTAL CONCEPTS Modern Units The Atom Chart of Nuclides MODERN PHYSICS CONCEPTS The Special Theory of Relativity Radiation as Waves and Particles Quantum Mechanics Derivation of Some Special Relativity Results Solutions to Schrodinger's Wave Equation ATOMIC/NUCLEAR MODELS Development of the Modern Atom Model Models of the Nucleus NUCLEAR ENERGETICS Binding Energy Nucleon Separation Energy Nuclear Reactions Examples of Binary Nuclear Reactions Q-Value for a Reaction Conservation of Charge and the Calculation of Q-values Q-Value for reactions Producing Excited Nuclei RADIOACTIVITY Overview Types of Radioactive Decay Radioactive Decay Diagrams Energetics of Radioactive Decay Characteristics of Radioactive Decay Decay Dynamics Naturally Occurring Radionuclides Radiodating Radioactive Decay Data BINARY NUCLEAR REACTIONS Types of Binary Reactions Kinematics of Binary Two-Product Nuclear Reactions Reaction Threshold Energy Applications of Binary Kinematics Reactions...

  13. Development of Czechoslovak nuclear power engineering

    International Nuclear Information System (INIS)

    Keher, J.

    1985-01-01

    The output of Czechoslovak nuclear power plants is envisaged at 2200 MW by 1985, 4400 MW by 1990 and 10,280 MW by the year 2000. The operation so far is assessed of Bohunice V-1 and Bohunice V-2 power plants as is the construction of the Dukovany nuclear power plant. International cooperation in the fulfilment of the nuclear power programme is based on the General Agreement on Cooperation in the Prospective Development and Interlinkage of CMEA Power Systems to the year 1990, the Agreement on Multilateral International Specialization and Cooperation of Production and on Mutual Deliveries of Nuclear Power Plant Equipment. The most important factor in international cooperation is the Programme of Cooperation between the CSSR and the USSR. The primary target in the coming period is the Temelin nuclear power plant project and the establishment of unified control of the nuclear power complex. (M.D.)

  14. Introduction to digital instrumentation and control techniques used in nuclear engineering

    International Nuclear Information System (INIS)

    Kurilla, R.G.; Kenney, E.S.

    1988-01-01

    For the past 8 yr, the nuclear engineering department at Pennsylvania State University has been teaching a digital interfacing class at the undergraduate (senior) level. With the ever-increasing use of computers in the nuclear engineering area (such as in the use of automated data acquisition systems) and the complexity of control instrumentation, more than a cursory introduction into electronics and computer controls is needed. Because of the ever-increasing popularity, and hence importance, of IBM-PC compatible microcomputers in the engineering fields, the program has been adapted to the Intel 8086 microprocessor. Courses such as this one are helpful in ensuring the students have an adequate design and practice base as required by accrediting groups. The course, is composed of three parts: (1) machine code/assembly language, (2) interfacing, and (3) final project. Experience demonstrates that a course of this inherent complexity can successfully be taught within a nuclear engineering curriculum without extensive prerequisites. The important ingredient is to treat nuclear engineering students for exactly what they are, engineers. By having them use their creativity and adaptability, they can successfully integrate the digital interfacing techniques now routinely used in the nuclear industry

  15. Nuclear engineering career - Phase 2 Argentina. Final report

    International Nuclear Information System (INIS)

    1993-01-01

    The objective of the project was to consolidate and extend the conditions necessary for the development of nuclear technology, and to observe the problems posed by the application of the nuclear energy through the increase and improvement of the scientific and technical infrastructure. The immediate objective of the project was to complete the advancement of research and development activities in nuclear engineering at the Centro Atomico Bariloche and Instituto Balseiro

  16. The AGINAO Self-Programming Engine

    Science.gov (United States)

    Skaba, Wojciech

    2013-01-01

    The AGINAO is a project to create a human-level artificial general intelligence system (HL AGI) embodied in the Aldebaran Robotics' NAO humanoid robot. The dynamical and open-ended cognitive engine of the robot is represented by an embedded and multi-threaded control program, that is self-crafted rather than hand-crafted, and is executed on a simulated Universal Turing Machine (UTM). The actual structure of the cognitive engine emerges as a result of placing the robot in a natural preschool-like environment and running a core start-up system that executes self-programming of the cognitive layer on top of the core layer. The data from the robot's sensory devices supplies the training samples for the machine learning methods, while the commands sent to actuators enable testing hypotheses and getting a feedback. The individual self-created subroutines are supposed to reflect the patterns and concepts of the real world, while the overall program structure reflects the spatial and temporal hierarchy of the world dependencies. This paper focuses on the details of the self-programming approach, limiting the discussion of the applied cognitive architecture to a necessary minimum.

  17. Nuclear programs in India and Pakistan

    Science.gov (United States)

    Mian, Zia

    2014-05-01

    India and Pakistan launched their respective nuclear programs in the 1940s and 1950s with considerable foreign technical support, especially from the United States Atoms for Peace Program. The technology and training that was acquired served as the platform for later nuclear weapon development efforts that included nuclear weapon testing in 1974 and in 1998 by India, and also in 1998 by Pakistan - which had illicitly acquired uranium enrichment technology especially from Europe and received assistance from China. As of 2013, both India and Pakistan were continuing to produce fissile material for weapons, in the case of India also for nuclear naval fuel, and were developing a diverse array of ballistic and cruise missiles. International efforts to restrain the South Asian nuclear build-up have been largely set aside over the past decade as Pakistani support became central for the U.S. war in Afghanistan and as U.S. geopolitical and economic interests in supporting the rise of India, in part as a counter to China, led to India being exempted both from U.S non-proliferation laws and international nuclear trade guidelines. In the absence of determined international action and with Pakistan blocking the start of talks on a fissile material cutoff treaty, nuclear weapon programs in South Asia are likely to keep growing for the foreseeable future.

  18. Nuclear programs in India and Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Mian, Zia [Program on Science and Global Security, Princeton University, Princeton, New Jersey (United States)

    2014-05-09

    India and Pakistan launched their respective nuclear programs in the 1940s and 1950s with considerable foreign technical support, especially from the United States Atoms for Peace Program. The technology and training that was acquired served as the platform for later nuclear weapon development efforts that included nuclear weapon testing in 1974 and in 1998 by India, and also in 1998 by Pakistan - which had illicitly acquired uranium enrichment technology especially from Europe and received assistance from China. As of 2013, both India and Pakistan were continuing to produce fissile material for weapons, in the case of India also for nuclear naval fuel, and were developing a diverse array of ballistic and cruise missiles. International efforts to restrain the South Asian nuclear build-up have been largely set aside over the past decade as Pakistani support became central for the U.S. war in Afghanistan and as U.S. geopolitical and economic interests in supporting the rise of India, in part as a counter to China, led to India being exempted both from U.S non-proliferation laws and international nuclear trade guidelines. In the absence of determined international action and with Pakistan blocking the start of talks on a fissile material cutoff treaty, nuclear weapon programs in South Asia are likely to keep growing for the foreseeable future.

  19. Nuclear programs in India and Pakistan

    International Nuclear Information System (INIS)

    Mian, Zia

    2014-01-01

    India and Pakistan launched their respective nuclear programs in the 1940s and 1950s with considerable foreign technical support, especially from the United States Atoms for Peace Program. The technology and training that was acquired served as the platform for later nuclear weapon development efforts that included nuclear weapon testing in 1974 and in 1998 by India, and also in 1998 by Pakistan - which had illicitly acquired uranium enrichment technology especially from Europe and received assistance from China. As of 2013, both India and Pakistan were continuing to produce fissile material for weapons, in the case of India also for nuclear naval fuel, and were developing a diverse array of ballistic and cruise missiles. International efforts to restrain the South Asian nuclear build-up have been largely set aside over the past decade as Pakistani support became central for the U.S. war in Afghanistan and as U.S. geopolitical and economic interests in supporting the rise of India, in part as a counter to China, led to India being exempted both from U.S non-proliferation laws and international nuclear trade guidelines. In the absence of determined international action and with Pakistan blocking the start of talks on a fissile material cutoff treaty, nuclear weapon programs in South Asia are likely to keep growing for the foreseeable future

  20. Master on Nuclear Engineering and Applications (MINA): instrument of knowledge management in the nuclear sector

    International Nuclear Information System (INIS)

    Herranz, L. E.; Garcia Cuesta, J. C.; Falcon, S.; Casas, J. A.

    2013-01-01

    Knowledge Management in nuclear industry is indespensable to ensure excellence in performance and safety of nuclear installations. The Master on Nuclear Engineering and Applications (MINA) is a Spanish education venture which foundations and evolution have meant and adaptation to the European Education system and to the domestic and international changes occured in the nuclear environment. This paper summarizes the most relevant aspects of such transformation, its motivation and the final outcome. Finally, it discusses the potential benefit of a closer collaboration among the existing national education ventures in the frame of Nuclear Engineering. (Author)

  1. The nuclear power public education and information program in the Philippines

    International Nuclear Information System (INIS)

    Garcia, E.A.; Natera, E.S.

    1996-01-01

    The nuclear power public education and information program aims to present the beneficial uses of radiation and nuclear energy. Considering that there are pros and cons to the use of nuclear energy, the program aims to give the public an objective and balanced view of this source of energy. A decision to use or not to use nuclear energy, to be sound,must be based on an adequate and objective knowledge of the atom and nuclear energy. Executive Order 243 created the Nuclear Power Steering committee including subcommittee on Nuclear Power Public Education and Information. This subcommittee is tasked to formulate an effective nuclear power public education and information program. Said program must include training component for science teachers in the high school and college levels and shall also work for the inclusion of nuclear related subjects in all engineering curriculum. It shall coordinate with the University of the Philippines for the revival of the M.S. in Nuclear Engineering Program of the university. This paper will discuss a brief history of nuclear power public education and awareness programs and the present and projected activities of this subcommittee. (author)

  2. Master in nuclear engineering from the UPC (Master UPC-ENDESA)

    International Nuclear Information System (INIS)

    Batet, L.; Duch, M. A.; Calvino, F.; Val, L. del; Fernandez-Olano, P.

    2011-01-01

    The new Masters in Nuclear Engineering offers the UPC is the result of the confluence of wills and synergies between different units of the Universitat Politecnica de Catalunya (UPC) and Endesa. The paper describes the objectives of the proposal along with the program and the learning methodology.

  3. Round table discussion 'nuclear engineering education viewed from the industry stand point'

    International Nuclear Information System (INIS)

    1980-01-01

    With a short introduction of the present status of recruitment, on the job training programs for graduates from university are presented by several utilities and engineering constructors of nuclear power plant. Their opinions are given on the educational requirements which are considered most beneficial to the successful conduct of practical work. Comments are made by university professors and research scientists. (author)

  4. The Belgian Nuclear Higher Education Network: Your way to the European Master in Nuclear Engineering

    International Nuclear Information System (INIS)

    Moons, F.; D'haeseleer, W.; Giot, M.

    2004-01-01

    BNEN, the Belgian Nuclear Higher Education Network has been created in 2001 by five Belgian universities and the Belgian Nuclear Research Centre (SCK CEN) as a joint effort to maintain and further develop a high quality programme in nuclear engineering in Belgium. More information: http://www.sckcen.be/BNEN. (author)

  5. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1995

    International Nuclear Information System (INIS)

    1996-08-01

    This is an annual report prepared on research education action, operation state of research instruments and others in FY 1995 at Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The laboratory has four large instruments such as high speed neutron source reactor, 'Yayoi', electron linac, fundamentally experimental equipment for blanket design of nuclear fusion reactor, and heavy radiation research equipment (HIT), of which former two are used for cooperative research with universities in Japan, and the next blanket and the last HIT are also presented for cooperative researches in Faculty of Engineering and in University of Tokyo, respectively. FY 1995 was the beginning year of earnest discussion on future planning of this facility with concentrated effort. These four large research instruments are all in their active use. And, their further improvement is under preparation. In this report, the progress in FY 1995 on operation and management of the four large instruments are described at first, and on next, research actions, contents of theses for degree and graduation of students as well as research results of laboratory stuffs are summarized. These researches are constituted mainly using these large instruments in the facility, aiming at development of advanced and new field of atomic energy engineering and relates to nuclear reactor first wall engineering, nuclear reactor fuel cycle engineering, electromagnetic structure engineering, thermal-liquid engineering, mathematical information engineering, quantum beam engineering, new type reactor design and so on. (G.K.)

  6. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This is an annual report prepared on research education action, operation state of research instruments and others in FY 1995 at Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The laboratory has four large instruments such as high speed neutron source reactor, `Yayoi`, electron linac, fundamentally experimental equipment for blanket design of nuclear fusion reactor, and heavy radiation research equipment (HIT), of which former two are used for cooperative research with universities in Japan, and the next blanket and the last HIT are also presented for cooperative researches in Faculty of Engineering and in University of Tokyo, respectively. FY 1995 was the beginning year of earnest discussion on future planning of this facility with concentrated effort. These four large research instruments are all in their active use. And, their further improvement is under preparation. In this report, the progress in FY 1995 on operation and management of the four large instruments are described at first, and on next, research actions, contents of theses for degree and graduation of students as well as research results of laboratory stuffs are summarized. These researches are constituted mainly using these large instruments in the facility, aiming at development of advanced and new field of atomic energy engineering and relates to nuclear reactor first wall engineering, nuclear reactor fuel cycle engineering, electromagnetic structure engineering, thermal-liquid engineering, mathematical information engineering, quantum beam engineering, new type reactor design and so on. (G.K.)

  7. Nuclear power program and environment

    International Nuclear Information System (INIS)

    Subramanya, S.K.; Gupta, J.P.

    2012-01-01

    Access to energy is one of the basic requirements for human development. To meet these growing energy needs without creating negative side effects is a challenge. The possibility of global climate change resulting from an increase in GHG concentrations in the atmosphere due to developmental activities is a major global concern. India is passing through the process of economic growth. Although India has not created the problem of climate change, India stands ready to be a part of the solution. The largest chunk of emissions was from electricity generation amounting to 65 percent of the total CO 2 equivalent emissions from the energy sector. Nuclear energy and renewables stand as sources for electricity with minimum GHG emission. Production of electricity from any form of primary energy has some environmental effect. A balanced assessment is needed. Nuclear power is of importance to India because it has potentially unlimited resource base, does not emit GHGs and, depending on location, has potentially favourable economics versus coal. In the long term, if we are to preserve the environment, it will be necessary to tap this source to the maximum extent feasible, In nuclear power stations, all its wastes are contained. India being home to nearly a third of the entire world's thorium, the strategies for large scale deployment of nuclear energy is focused towards utilization of thorium. The electricity potential of 3-stage programme is estimated to be about 2 lakh GWe-yr. Nuclear Power Corporation of India Limited is currently operating 20 reactors and has accumulated more than 337 reactor-years of experience in safe operation. A defence-in-depth approach is at the heart of safety philosophy, where there are several lines of defence, one backing another. Radiation is relevant for nuclear, coal, oil, gas and geothermal power plants. The essential task is to prevent excessive amounts now or in the future. One of the guiding principles adopted is to ensure that radiation

  8. Reconstruction of nuclear science and engineering harmonized with human society

    International Nuclear Information System (INIS)

    2003-03-01

    At the beginning of the 21th century, the use of nuclear power has assumed very serious dimensions, because there are many problems not only safety technologies but also action of technical expert. The situation and problems of nuclear power are explained. It consists of six chapter as followings; introduction, history and R and D of nuclear power, paradigm change of nuclear science and engineering, energy science, investigation of micro world, how to research and development and education and training of special talent. The improvement plans and five proposals are stated as followings; 1) a scholar and engineer related to nuclear power have to understand ethics and build up closer connection with person in the various fields. 2) Nuclear power generation and nuclear fuel cycle are important in future, so that they have to be accepted by the society by means of opening to the public. Safety science, anti-pollution measurements, treatment and disposal of radioactive waste and development of new reactor and fusion reactor should be carried out. 3) It is necessary that the original researches of quantum beam and isotope have to step up. 4) The education of nuclear science and technology and upbringing special talent has to be reconstructed. New educational system such as 'nuclear engineering course crossing with many universities' is established. 5) Cooperation among industry, academic world and government. (S.Y.)

  9. Advances in chemical engineering in nuclear and process industries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately.

  10. Advances in chemical engineering in nuclear and process industries

    International Nuclear Information System (INIS)

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately

  11. Educational experiments of radiochemistry in the nuclear engineering school

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1995-06-01

    Educational experiments of radiochemistry are described. They were an improvement of educational experiment of burn-up measurement as well as experiments on a solvent extraction, a cation exchange behavior of 60 Co, liquid scintillation spectrometry and half-life determination of 87 Rb, and determination of 137 Cs in sea water. Two or one of the experiments were ordinarily studied, depending the occasional situations, by the students of the general course or of the nuclear engineering course in the Nuclear Engineering School, Nuclear Education Center, JAERI from 1976 to 1994. (author)

  12. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1993-01-01

    Historically, new entrants to the practice of nuclear criticality safety have learned their job primarily by on-the-job training (OJT) often by association with an experienced nuclear criticality safety engineer who probably also learned their job by OJT. Typically, the new entrant learned what he/she needed to know to solve a particular problem and accumulated experience as more problems were solved. It is likely that more formalism will be required in the future. Current US Department of Energy requirements for those positions which have to demonstrate qualification indicate that it should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis i's incompletely developed in some areas. Details of this analysis are provided in this report

  13. Teaching Radioactive Waste Management in an Undergraduate Engineering Program - 13269

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Brian M. [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada)

    2013-07-01

    The University of Ontario Institute of Technology is Ontario's newest university and the only one in Canada that offers an accredited Bachelor of Nuclear Engineering (Honours) degree. The nuclear engineering program consists of 48 full-semester courses, including one on radioactive waste management. This is a design course that challenges young engineers to develop a fundamental understanding of how to manage the storage and disposal of various types and forms of radioactive waste, and to recognize the social consequences of their practices and decisions. Students are tasked with developing a major project based on an environmental assessment of a simple conceptual design for a waste disposal facility. They use collaborative learning and self-directed exploration to gain the requisite knowledge of the waste management system. The project constitutes 70% of their mark, but is broken down into several small components that include, an environmental assessment comprehensive study report, a technical review, a facility design, and a public defense of their proposal. Many aspects of the project mirror industry team project situations, including the various levels of participation. The success of the students is correlated with their engagement in the project, the highest final examination scores achieved by students with the strongest effort in the project. (authors)

  14. Teaching Radioactive Waste Management in an Undergraduate Engineering Program - 13269

    International Nuclear Information System (INIS)

    Ikeda, Brian M.

    2013-01-01

    The University of Ontario Institute of Technology is Ontario's newest university and the only one in Canada that offers an accredited Bachelor of Nuclear Engineering (Honours) degree. The nuclear engineering program consists of 48 full-semester courses, including one on radioactive waste management. This is a design course that challenges young engineers to develop a fundamental understanding of how to manage the storage and disposal of various types and forms of radioactive waste, and to recognize the social consequences of their practices and decisions. Students are tasked with developing a major project based on an environmental assessment of a simple conceptual design for a waste disposal facility. They use collaborative learning and self-directed exploration to gain the requisite knowledge of the waste management system. The project constitutes 70% of their mark, but is broken down into several small components that include, an environmental assessment comprehensive study report, a technical review, a facility design, and a public defense of their proposal. Many aspects of the project mirror industry team project situations, including the various levels of participation. The success of the students is correlated with their engagement in the project, the highest final examination scores achieved by students with the strongest effort in the project. (authors)

  15. Chaos and fractals. Applications to nuclear engineering

    International Nuclear Information System (INIS)

    Clausse, A.; Delmastro, D.F.

    1990-01-01

    This work presents a description of the research lines carried out by the authors on chaos and fractal theories, oriented to the nuclear field. The possibilities that appear in the nuclear security branch where the information deriving from chaos and fractal techniques may help to the development of better criteria and more reliable designs, are of special importance. (Author) [es

  16. Commentary on the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Sheng, G.; Shemilt, L.W.

    1981-01-01

    A summary of the first formal review of the Technical Advisory Committee (TAC) to Atomic Energy of Canada Limited on the Nuclear Fuel Waste Management Program is presented. The Program is described briefly and the composition and role of TAC in relation to the Program is outlined. Salient points and major recommendations are presented from the First Annual Report of TAC in which geoscience aspects of the Program were emphasized. It is the view of the Committee that overall, the whole Waste Management Program is well conceived, that there are many impressive accomplishments of high quality, that detailed research objectives are becoming more clearly delineated, that there is growing clarification as to the most critical areas in which research needs to be accomplished and that the increasing participation by university and industry scientists and engineers is reassuring

  17. Federal Nuclear Energy Program: a synopsis

    International Nuclear Information System (INIS)

    1983-01-01

    This document provides an overview of the new nuclear policy objectives and initiatives and summarizes the Department of Energy programmatic strategy to realize the full nuclear potential. Analyses have been made within the context of prevailing and potential economic conditions, alternative energy options and prior nuclear performance and growth patterns. The Department's organizational structure, which was realigned in June 1982 to conform with the activities mandated by the Administration's policy, is also discussed. The individual program elements for nuclear research and development are described as they contribute to a fully integrated fuel cycle and power generation system. Federal and commercial responsibilities for developmental activity are delinated, and relationship of the programs to broad national energy objectives is specified

  18. Nuclear Engineering Education in Support of Thailand’s Nuclear Power Programme

    International Nuclear Information System (INIS)

    Chanyotha, S.; Pengvanich, P.; Nilsuwankosit, S.

    2015-01-01

    This paper aims to introduce the nuclear engineering education at the Department of Nuclear Engineering, Chulalongkon University, Bangkok Thailand. The department has been offering curriculum in nuclear engineering to support the national nuclear power programme since 1970s. It is the oldest established nuclear engineering educational programme in the South East Asia region. Nevertheless, since the nuclear power programme has been postponed several times due to various reasons, the educational programme at the department has been continuously adapted to meet the nation’s needs. Several areas of study have been introduced, including nuclear power engineering, industrial applications of radioisotope, nuclear instrumentation, radioisotope production, radiation processing, environment and safety, nuclear materials, as well as the newly created nuclear security and non-proliferation. With the renewed interest in using nuclear power in Thailand in 2007, the department has been actively assisting both the government and the electric utility in preparing human resources to support the nuclear power programme through various educational and training modules. Realizing the importance of establishing and balancing all 3 aspects of the nuclear 3S (safety, security and safeguard) in Thailand and in the Southeast Asian region. The new curriculum of nuclear security and safeguard programme has been offered since 2013. Since the establishment, the department has produced hundreds of graduates (Diploma, Master’s, and Ph.D. levels) to feed the continuously expanding Thai nuclear industry. The full paper will provide detailed information of the curriculum, the challenges and obstacles that the department has encountered, as well as the national and international linkages which have been established over the years. (author)

  19. Creation of security engineering programs by the Southwest Surety Institute

    Science.gov (United States)

    Romero, Van D.; Rogers, Bradley; Winfree, Tim; Walsh, Dan; Garcia, Mary Lynn

    1998-12-01

    The Southwest Surety Institute includes Arizona State University (ASU), Louisiana State University (LSU), New Mexico Institute of Mining and Technology (NM Tech), New Mexico State University (NMSU), and Sandia National Laboratories (SNL). The universities currently offer a full spectrum of post-secondary programs in security system design and evaluation, including an undergraduate minor, a graduate program, and continuing education programs. The programs are based on the methodology developed at Sandia National Laboratories over the past 25 years to protect critical nuclear assets. The programs combine basic concepts and principles from business, criminal justice, and technology to create an integrated performance-based approach to security system design and analysis. Existing university capabilities in criminal justice (NMSU), explosives testing and technology (NM Tech and LSU), and engineering technology (ASU) are leveraged to provide unique science-based programs that will emphasize the use of performance measures and computer analysis tools to prove the effectiveness of proposed systems in the design phase. Facility managers may then balance increased protection against the cost of implementation and risk mitigation, thereby enabling effective business decisions. Applications expected to benefit from these programs include corrections, law enforcement, counter-terrorism, critical infrastructure protection, financial and medical care fraud, industrial security, and border security.

  20. Department of Energy Nuclear Energy Standards Program

    International Nuclear Information System (INIS)

    Silver, E.G.

    1980-01-01

    The policy with respect to the development and use of standards in the Department of Energy (DOE) programs concerned with maintaining and developing the nuclear option for the civilian sector (both in the form of the currently used light water reactors and for advanced concepts including the Liquid Metal Fast Breeder Reactor), is embodied in a Nuclear Standards Policy, issued in 1978, whose perspectives and philosophy are discussed

  1. Nuclear pharmacy certificate program: distance learning

    International Nuclear Information System (INIS)

    Shaw, S.M.

    1998-01-01

    The Nuclear Pharmacy Certificate Program (NPCP) was developed to meet the need for licensed pharmacists wishing to change career paths and enter the practice of nuclear pharmacy. Additionally, the NPCP benefits employers that wish to employ a nuclear pharmacist in lieu of waiting for graduates that are available only at one time yearly from a college of pharmacy. The NPCP is not intended to replace traditional nuclear pharmacy education in academic institutions, but to offer an another option to pharmacists and potential employers. The NPCP is divided into two components. One component involves over 130 hours of instruction through videotapes and accompanying workbooks. This component is completed while working in a nuclear pharmacy and with the assistance of a nuclear pharmacist serving as a supervisor. The nuclear pharmacist is available to answer questions and to administer examinations over the videotape material. Examinations are prepared by Purdue faculty and returned for grading. Scores on exams must reflect learning to the same degree as in an academic environment. In the second component of the NPCP, the trainee attends a two-week session in the School of Pharmacy at Purdue University. the trainee must complete a significant portion of the videotape material before the on-campus session. In the on-campus component, videotape material is reinforced and expanded by laboratory exercises and lectures in dedicated, fully-equipped laboratories employed in the School of Pharmacy undergraduate program in nuclear pharmacy. Nuclear pharmacy faculty and consultants provide individualized instruction to each trainee. Assimilation of lecture and laboratory material is determined through several examinations. A comprehensive examination is administered which includes content from the videotape-workbook component of the NPCP. Certification is awarded to trainees who have completed the program and demonstrated their knowledge and competence by examination. Almost 200

  2. Progress of Nuclear Hydrogen Program in Korea

    International Nuclear Information System (INIS)

    Lee, Won Jae

    2009-01-01

    To cope with dwindling fossil fuels and climate change, it is clear that a clean alternative energy that can replace fossil fuels is required. Hydrogen is considered a promising future energy solution because it is clean, abundant and storable and has a high energy density. As other advanced countries, the Korean government had established a long-term vision for transition to the hydrogen economy in 2005. One of the major challenges in establishing a hydrogen economy is how to produce massive quantities of hydrogen in a clean, safe and economical way. Among various hydrogen production methods, the massive, safe and economic production of hydrogen by water splitting using a very high temperature gas-cooled reactor (VHTR) can provide a success path to the hydrogen economy. Particularly in Korea, where usable land is limited, the nuclear production of hydrogen is deemed a practical solution due to its high energy density. To meet the expected demand for hydrogen, the Korea Atomic Energy Institute (KAERI) launched a nuclear hydrogen program in 2004 together with Korea Institute of Energy Research (KIER) and Korea Institute of Science and Technology (KIST). Then, the nuclear hydrogen key technologies development program was launched in 2006, which aims at the development and validation of key and challenging technologies required for the realization of the nuclear hydrogen production demonstration system. In 2008, Korean Atomic Energy Commission officially approved a long-term development plan of the nuclear hydrogen system technologies as in the figure below and now the nuclear hydrogen program became the national agenda. This presentation introduces the current status of nuclear hydrogen projects in Korea and the progress of the nuclear hydrogen key technologies development. Perspectives of nuclear process heat applications are also addressed

  3. Integrating security issues in nuclear engineering curriculum in Indonesia. Classical vs policy approaches

    International Nuclear Information System (INIS)

    Putero, Susetyo Hario; Rosita, Widya; Sihana, Fnu; Ferdiansjah; Santosa, Haryono Budi; Muharini, Anung

    2015-01-01

    Recently, risk management for nuclear facilities becomes more complex due to security issue addressed by IAEA. The harmonization between safety, safeguards and security is still questionable. It also challenges to nuclear engineering curriculum in the world how to appropriately lecture the new issue. This paper would like to describe how to integrate this issue in developing nuclear engineering curriculum in Indonesia. Indonesia has still no nuclear power plant, but there are 3 research reactors laid in Indonesia. As addition, there are several hospitals and industries utilizing radioisotopes in their activities. The knowledge about nuclear security of their staffs is also not enough for handling radioactive material furthermore the security officers. Universitas Gadjah Mada (UGM) is the only university in Indonesia offering nuclear engineering program, as consequently the university should actively play the role in overcoming this issue not only in Indonesia, but also in Southeast Asia. In the other hand, students has to have proper knowledge in order to complete in the global nuclear industry. After visited several universities in USA and participated in INSEN meeting, we found that most of universities in the world anticipate this issue by giving the student courses related to policy (non-technical) study based on IAEA NSS 12. In the other hand, the rest just make nuclear security as a case study on their class. Furthermore, almost all of programs are graduate level. UGM decided to enhance several present related undergraduate courses with security topics as first step to develop the awareness of student to nuclear security. The next (curriculum 2016) is to integrate security topics into the entire of curriculum including designing a nuclear security elective course for undergraduate level. The first trial has successfully improved the student knowledge and awareness on nuclear security. (author)

  4. Minority and female training programs at the Ford Nuclear Reactor, University of Michigan

    International Nuclear Information System (INIS)

    Burn, R.R.

    1992-01-01

    Nuclear power industry operations staffs are composed predominantly of white males because most of the personnel come from the nuclear submarine and surface branches of the U.S. Navy. The purpose of the minority and female training programs sponsored by the Ford Nuclear Reactor at the University of Michigan is to provide a path for minorities and women to enter the nuclear industry as operators, technicians, and, in the long term, as graduate engineers. The training programs are aimed at high school students, preferably juniors. While the training is directed toward operation of a nuclear reactor, it is equally applicable to careers in most other technical fields. It is hoped that some of the participants will remain at the Ford Nuclear Reactor as reactor operators, enter college, and obtain college degrees, after which they will enter the nuclear industry as graduate engineers

  5. The cost of French military nuclear programs

    International Nuclear Information System (INIS)

    Barrillot, B.

    1999-02-01

    The author tries to find out the real cost of French nuclear weaponry. According to this study the total cost of the French military nuclear programs for 1960-1998 period is about 1499 milliard francs (MdF). This cost can be distributed as follows: i) fabrication of the bomb: 690 MdF; ii) display of the bomb: 727 MdF; iii) control of the bomb: 50 Mdf; iv) protection against nuclear attacks: 9 MdF; and v) dismantling of the bomb: 23 MdF. It goes without saying that these figures exceed by far those given by French authorities. (A.C.)

  6. Nuclear engineering 24/7 via distance learning: Course development and management experiences

    International Nuclear Information System (INIS)

    Maldonado, G. I.; Christenson, J.; Spitz, H.; Rutz, E.; Todd, A.

    2006-01-01

    This article summarizes a few lessons learned in our early experiences in developing, delivering and implementing a series of distance learning classes for full-time undergraduate students enrolled in the combined-degree BS Mechanical + MS Nuclear Engineering 5-year and co-op based 'MNE- ACCEND' program at the Univ. of Cincinnati. This program is in its third year since inception and currently hosts approximately 35 undergraduate students enrolled in the graduating classes of 2008, 2009, and 2010, which is when these students are expected to complete their BS Mechanical and MS Nuclear Engineering degrees. In addition, 20+ newly confirmed students are expected to enter this program in the fall quarter of 2006 to become our Class of 2011. Therefore, the successful 'follow through' of the DL component of this program continues to be increasingly crucial as this student pipeline reaches a targeted steady-state of about 10 to 15 graduates per class. (authors)

  7. Nuclear power engineering: Public understanding and public opinion

    International Nuclear Information System (INIS)

    Kryshev, A.I.; Sazykina, T.G.

    1998-01-01

    Subjective and objective reasons for the formation of public opinion about nuclear power engineering of Russia were analyzed. Some methodological errors in work with the Russian public on the problems of nuclear energy and possible methods of their correction were discussed. The social groups of the general public, which are of greatest importance in forming the attitude towards nuclear power engineering were indicated. The conclusion was reached that opinion of the ordinary population is often indicative of real drawbacks in the work of specialists in the nuclear fuel cycle. Consequently, careful surveys of public opinion about the problems of the nuclear industry should be very useful in organizing research work properly and improving the radiation safety. (author)

  8. Nuclear Power Reactor simulator - based training program

    International Nuclear Information System (INIS)

    Abdelwahab, S.A.S.

    2009-01-01

    nuclear power stations will continue playing a major role as an energy source for electric generation and heat production in the world. in this paper, a nuclear power reactor simulator- based training program will be presented . this program is designed to aid in training of the reactor operators about the principles of operation of the plant. also it could help the researchers and the designers to analyze and to estimate the performance of the nuclear reactors and facilitate further studies for selection of the proper controller and its optimization process as it is difficult and time consuming to do all experiments in the real nuclear environment.this program is written in MATLAB code as MATLAB software provides sophisticated tools comparable to those in other software such as visual basic for the creation of graphical user interface (GUI). moreover MATLAB is available for all major operating systems. the used SIMULINK reactor model for the nuclear reactor can be used to model different types by adopting appropriate parameters. the model of each component of the reactor is based on physical laws rather than the use of look up tables or curve fitting.this simulation based training program will improve acquisition and retention knowledge also trainee will learn faster and will have better attitude

  9. Gas core nuclear thermal rocket engine research and development in the former USSR

    International Nuclear Information System (INIS)

    Koehlinger, M.W.; Bennett, R.G.; Motloch, C.G.; Gurfink, M.M.

    1992-09-01

    Beginning in 1957 and continuing into the mid 1970s, the USSR conducted an extensive investigation into the use of both solid and gas core nuclear thermal rocket engines for space missions. During this time the scientific and engineering. problems associated with the development of a solid core engine were resolved. At the same time research was undertaken on a gas core engine, and some of the basic engineering problems associated with the concept were investigated. At the conclusion of the program, the basic principles of the solid core concept were established. However, a prototype solid core engine was not built because no established mission required such an engine. For the gas core concept, some of the basic physical processes involved were studied both theoretically and experimentally. However, no simple method of conducting proof-of-principle tests in a neutron flux was devised. This report focuses primarily on the development of the. gas core concept in the former USSR. A variety of gas core engine system parameters and designs are presented, along with a summary discussion of the basic physical principles and limitations involved in their design. The parallel development of the solid core concept is briefly described to provide an overall perspective of the magnitude of the nuclear thermal propulsion program and a technical comparison with the gas core concept

  10. Ergonomics in nuclear and human factors engineering

    International Nuclear Information System (INIS)

    Muench, E.; Schultheiss, G.F.

    1988-01-01

    The work situation including man-machine-relationships in nuclear power plants is described. The overview gives only a compact summary of some important ergonomic parameters, i.e. human body dimension, human load, human characteristics and human knowledge. (DG)

  11. Training within the French nuclear power program

    International Nuclear Information System (INIS)

    Jusselin, F.

    1987-01-01

    Training dispensed by the EDF Nuclear and Fossil Generation Division has contributed significantly toward successful startup and operation of French nuclear power plants. In 1986, the time-based availability of 900 MW PWRs totaled 85 %. This is just one example of how EDF training programs have benefited from 150 reactor-years of operating experience and the ensuing opportunities for perfecting and testing of training tool effectiveness. These programs have been adopted by utilities in other countries where suitable local facilities are making advantageous use of EDF training experience and methods. EDF expertise is also transferred to these countries indirectly through the simulator manufacturer

  12. The nuclear analysis program at MURR

    International Nuclear Information System (INIS)

    Glascock, M.D.

    1993-01-01

    The University of Missouri-Columbia (MU) has continually upgraded research facilities and programs at the MU research reactor (MURR) throughout its 26-yr history. The Nuclear Analysis Program (NAP) area has participated in these upgrades over the years. As one of the largest activation analysis laboratories on a university campus, the activities of the NAP are broadly representative of the diversity of applications for activation analysis and related nuclear science. This paper describes the MURR's NAP and several of the research, education, and service projects in which the laboratory is currently engaged

  13. Measurement control program for nuclear material accounting

    International Nuclear Information System (INIS)

    Brouns, R.J.; Roberts, F.P.; Merrill, J.A.; Brown, W.B.

    1980-06-01

    A measurement control program for nuclear material accounting monitors and controls the quality of the measurments of special nuclear material that are involved in material balances. The quality is monitored by collecting data from which the current precision and accuracy of measurements can be evaluated. The quality is controlled by evaluations, reviews, and other administrative measures for control of selection or design of facilities, equipment and measurement methods and the training and qualification of personnel who perform SNM measurements. This report describes the most important elements of a program by which management can monitor and control measurement quality

  14. Spanish program of advanced Nuclear Power Plants

    International Nuclear Information System (INIS)

    Marco, M.; Redon, R.

    1993-01-01

    The energy Spanish Plan is promoting some actions within the area of advanced reactors. Efforts are focussed onto the European Program of Advanced Reactors, the Program of Passive Plants (EPRI), European Fast Reactor Project and the APWR-1000 Program of INI. Electrical sector utilities and industrial partners supported by the Administration have organized an steering committee. The program of Passive Plants includes activities on Qualification, design and detailed engineering (Qualification project, SBWR project of G.E. and AP600 Project of Westinghouse. The european project on advanced plants has the following Spanish contribution: Analysis of alternative Dossier on European requisites (EUR) and Design of an European Reactor (EPR)

  15. Fusion power by magnetic confinement: plans and the associated need for nuclear engineers

    International Nuclear Information System (INIS)

    Hirsch, R.L.; Beard, D.S.

    1975-01-01

    An essential ingredient in the fusion development plan will be the training of appropriate scientific and technical manpower. In examining the need for fusion-trained nuclear engineers, it is projected that an additional 120 to 250 engineers at the MS and PhD levels will be needed between now and 1980. To be most effective, these graduates must not only be trained in the ''classic'' physical, nuclear, mechanical, and electrical sciences, but they will need specialized training in fusion plasma physics and fusion materials science. To help develop the appropriate educational programs, close cooperation between U. S. Energy Research and Development Administration (ERDA) headquarters, ERDA laboratories, private industry, and the universities will be essential. An emerging need for a carefully structured ''fusion technology'' option in nuclear engineering departments is plainly evident and is already beginning to be developed at leading institutions

  16. Evolutionary computing in Nuclear Engineering Institute/CNEN-Brazil

    International Nuclear Information System (INIS)

    Pereira, Claudio M.N.A.; Lapa, Celso M.F.; Lapa, Nelbia da Silva; Mol, Antonio C.

    2000-01-01

    This paper aims to discuss the importance of evolutionary computation (CE) for nuclear engineering and the development of this area in the Instituto de Engenharia Nuclear (IEN) at the last years. Are describe, briefly, the applications realized in this institute by the technical group of CE. For example: nuclear reactor core design optimization, preventive maintenance scheduling optimizing and nuclear reactor transient identifications. It is also shown a novel computational tool to implementation of genetic algorithm that was development in this institute and applied in those works. Some results were presents and the gains obtained with the evolutionary computation were discussing. (author)

  17. DHS National Technical Nuclear Forensics Program FY 10 Summary Report: Graduate Mentoring Assistance Program (GMAP)

    International Nuclear Information System (INIS)

    Finck, Martha R.

    2011-01-01

    This program provides practical training to DHS graduate fellows in the DOE laboratory complex. It involves coordinating students, their thesis advisors, and their laboratory project mentors in establishing a meaningful program of research which contributes to the graduate student's formation as a member of the nuclear forensics community. The summary report details the student/mentor experience and future plans after the first summer practicum. This program provides practical training to DHS graduate fellows in the DOE laboratory complex. It involves coordinating students, their thesis advisors, and their laboratory project mentors in establishing a meaningful program of research which contributes to the graduate student's formation as a member of the nuclear forensics community. This final written report includes information concerning the overall mentoring experience, including benefits (to the lab, the mentors, and the students), challenges, student research contributions, and lab mentor interactions with students home universities. Idaho National Laboratory hosted two DHS Nuclear Forensics graduate Fellows (nuclear engineering) in summer 2011. Two more Fellows (radiochemistry) are expected to conduct research at the INL under this program starting in 2012. An undergraduate Fellow (nuclear engineering) who worked in summer 2011 at the laboratory is keenly interested in applying for the NF Graduate Fellowship this winter with the aim of returning to INL. In summary, this program appears to have great potential for success in supporting graduate level students who pursue careers in nuclear forensics. This relatively specialized field may not have been an obvious choice for some who have already shown talent in the traditional areas of chemistry or nuclear engineering. The active recruiting for this scholarship program for candidates at universities across the U.S. brings needed visibility to this field. Not only does this program offer critical practical training

  18. Development of EDG Engine Condition Diagnosis Logic in Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Byoung Oh; Choi, Kwang Hee; Lee, Sang Guk

    2012-01-01

    Through benchmarking using the excellent record of the nuclear power plants under operation in the United States and Europe and with the continuous development of nuclear-related technology, the Korea Hydro and Nuclear Power Co., LTD (KHNP) reached an average planned preventive maintenance period of 29.6 days in 2009. In addition, KHNP plans to reduce the planned preventive maintenance period at Korea standard nuclear plants (KSNPs) from 29.6 days to less than 21 days by 2014 through a combination of domestic research and development (R and D) and the introduction of the technical know-how applied in the very best overseas nuclear power plants (NPPs). Accordingly, it is necessary to reduce the inspection and maintenance periods of an emergency diesel generator (EDG), which are currently set in the planned preventive maintenance period. If the condition-based predictive maintenance (CBM) technology is applied to EDG engines, the maintenance period of an EDG will be shortened because engine maintenance is accomplished according to the engine condition under this plan. In this study, in the series of CBM program developments which will be applied to EDG engines, the development results of condition diagnosis logic to be applied to EDG engines for exiting domestic NPPs are introduced

  19. Development and analysis of startup strategies for particle bed nuclear rocket engine

    Science.gov (United States)

    Suzuki, David E.

    1993-06-01

    The particle bed reactor (PBR) nuclear thermal propulsion rocket engine concept is the focus of the Air Force's Space Nuclear Thermal Propulsion program. While much progress has been made in developing the concept, several technical issues remain. Perhaps foremost among these concerns is the issue of flow stability through the porous, heated bed of fuel particles. There are two complementary technical issues associated with this concern: the identification of the flow stability boundary and the design of the engine controller to maintain stable operation. This thesis examines a portion of the latter issue which has yet to be addressed in detail. Specifically, it develops and analyzes general engine system startup strategies which maintain stable flow through the PBR fuel elements while reaching the design conditions as quickly as possible. The PBR engine studies are conducted using a computer model of a representative particle bed reactor and engine system. The computer program utilized is an augmented version of SAFSIM, an existing nuclear thermal propulsion modeling code; the augmentation, dubbed SAFSIM+, was developed by the author and provides a more complete engine system modeling tool.

  20. Development of Capacity Building Training Programs for Nuclear R and D Personnel

    International Nuclear Information System (INIS)

    Lee, Eui Jin; Nam, Youngmi; Hwang, Hyeseon; Jang, Eunsook; Song, Eun Ju

    2016-01-01

    The Nuclear Training and Education Center of the Korea Atomic Energy Research Institute has been operating technical training courses on nuclear engineering, engineering mathematics, management leadership training, out sourced practical training, legal education, etc. Strengthening nuclear R and D capacity is essential for the long-term mission and goals of the institute. Therefore, it requires a comprehensive training program to strengthen the unique capability of the institute that reflects diversity and differentiation. In this regard, the capacity building training program has developed on a modular basis, and the developed training program should be tailored to operate according to the institute needs. The capacity building training program for nuclear R and D personnel was developed to reflect the technology strengths of the institute. The developed training program will be developed into a leading branded education of the institute in the future