WorldWideScience

Sample records for nuclear emergency plan

  1. The nuclear emergency plans

    International Nuclear Information System (INIS)

    Fuertes Menendez, M. J.; Gasco Leonarte, L.; Granada Ferrero, M. J.

    2007-01-01

    Planning of the response to emergencies in nuclear plants is regulated by the Basic Nuclear Emergency Plan (PLABEN). This basic Plan is the guidelines for drawing up, implementing and maintaining the effectiveness of the nuclear power plant exterior nuclear emergency plans. The five exterior emergency plans approved as per PLABEN (PENGUA, PENCA, PENBU, PENTA and PENVA) place special emphasis on the preventive issues of emergency planning, such as implementation of advance information programs to the population, as well as on training exercises and drills. (Author)

  2. Planning for nuclear emergencies

    International Nuclear Information System (INIS)

    Lakey, J.R.A.

    1989-01-01

    This paper aims to stimulate discussions between nuclear engineers and the radiological protection professions in order to facilitate planning for nuclear emergencies. A brief review is given of the response to nuclear accidents. Studying accidents can lead to prevention, but some effort must be put into emergency response. Such issues as decontamination and decommissioning, socio-economic consequences, education and training for nuclear personnel and exercises and drills, are raised. (UK)

  3. Nuclear emergency planning in Norway

    International Nuclear Information System (INIS)

    Baarli, J.

    1986-01-01

    The nuclear emergency planning in Norway is forming a part of the Search and Rescue Service of the country. Due to the fact that Norway do not have any nucleat power reactor, the nuclear emergency planning has not been given high priority. The problems however are a part of the activity of the National Institute of Radiation Hygiene, and the emergency preparedness is at the present time to a large extent based on the availability of professional health physicists and their knowledge, rather than established practices

  4. Effective nuclear and radiation emergency planning

    International Nuclear Information System (INIS)

    Grlicarev, I.

    2000-01-01

    The paper describes how to develop a balanced emergency plan, which realistically reflect the interfaces with various emergency organizations. The use of resources should be optimized with focusing on the most likely accidents. The pitfalls of writing an emergency plan without ''big picture'' in mind should be avoided. It is absolutely essential to have a clear definition of responsibilities and to have proper understanding of the tasks in between all counterparts in the emergency preparedness. Special attention should be paid to off-site part of the nuclear emergency preparedness, because the people involved in it usually receive less training than the on-site personnel and they are not specialized for nuclear emergencies but deal with all sorts of emergencies. (author)

  5. CEGB nuclear power stations basic emergency plan

    International Nuclear Information System (INIS)

    1978-03-01

    The introduction states that this is a typical emergency plan for a nuclear power station employing about 500 people, having two reactors and a total electrical output of 500 Megawatts in an intensively farmed rural area. The document has the following headings: definitions ('site incident', etc); functions of the site emergency organization; conditions for taking emergency action; persons empowered to declare or cancel a site incident or an emergency; emergency actions by staff; control centres; communication; collaboration with other bodies; warnings; transport; house rules; public information centre. (U.K.)

  6. Emergency planning and preparedness for nuclear facilities

    International Nuclear Information System (INIS)

    1986-01-01

    In order to review the advances made over the past seven years in the area of emergency planning and preparedness supporting nuclear facilities and consider developments which are on the horizon, the IAEA at the invitation of the Government of Italy, organized this International Symposium in co-operation with the Italian Commission for Nuclear and Alternative Energy Sources, Directorate of Nuclear Safety and Health Protection (ENEA-DISP). There were over 250 designated participants and some 70 observers from 37 Member States and four international organizations in attendance at the Symposium. The Symposium presentations were divided into sessions devoted to the following topics: emergency planning (20 papers), accident assessment (30 papers), protective measures and recovery operations (10 papers) and emergency preparedness (16 papers). A separate abstract was prepared for each of these papers

  7. National emergency plan for nuclear accidents

    International Nuclear Information System (INIS)

    1992-10-01

    The national emergency plan for nuclear accidents is a plan of action designed to provide a response to accidents involving the release or potential release of radioactive substances into the environment, which could give rise to radiation exposure to the public. The plan outlines the measures which are in place to assess and mitigate the effects of nuclear accidents which might pose a radiological hazard in ireland. It shows how accident management will operate, how technical information and monitoring data will be collected, how public information will be provided and what measures may be taken for the protection of the public in the short and long term. The plan can be integrated with the Department of Defence arrangements for wartime emergencies

  8. Province of Ontario nuclear emergency plan. Pt. 1

    International Nuclear Information System (INIS)

    1986-06-01

    The Province of Ontario Nuclear Emergency Plan has been developed pursuant to Section 8 of the Emergency Plans Act, 1983. This plan replaces the Province of Ontario Nuclear Contingency Off-Site Plan (June 1980) which is no longer applicable. The wastes plan includes planning, preparation, emergency organization and operational responsibilities and policy

  9. Training to the Nuclear emergency plans

    International Nuclear Information System (INIS)

    Vera Navascues, I.

    2003-01-01

    In 1994 the Civil Protection Directorate outlined a formation plan related to the Nuclear emergency plans with the purpose of guaranteeing for the communities involved in this material a basic and homogeneous formation. In the preparation of this Plan the following phases had been developed: 1. Study of formative needs of the different participant communities involved in nuclear plans. This has been done throw the information collected by: nuclear emergency plans and procedures that develop them, questionnaires, observation list, exercise, drills, etc. 2. With all the needs detected and in function of them was designed the objectives to teach in relation with the knowledge and the abilities that the formation can give to the participants. 3. Definition of thematic areas related with the different matters to teach, derived from the different objectives. 4. Organization: The development of the formative activities through a specific material with orientations for the professors (content of material to impart, didactic resources, etc.) and a short summary of the Didactic Units imparted to the students. The methodology is based in short theoretical classes and in the active implication through practice activities exercises and drills to train its functions and the coordination of the different implied organizations. 5. Evaluation: the implantation of the formation plan contributes new formative needs. (Author)

  10. Plan for national nuclear emergency preparedness

    International Nuclear Information System (INIS)

    1992-06-01

    The responsibility for Denmark's preparedness for nuclear emergencies lies with the Ministry of the Interior and the Civil Defense administration. The latter is particularly responsible for the presented plan which clarifies the organization and the measures to be taken in order to protect the public where, in the event of such an emergency, it could be in danger of radiation from radioactive materials. The main specifications of the plan, the activation of which covers the whole country, are that daily monitoring should be carried out so that warnings of nuclear accidents can be immediately conveyed to the relevant parties and that immediate action can be taken. These actions should result in the best possible protection against nuclear radiation so that acute and chronic damage to the health of members of the public can be restricted. The public, and relevant authorities should be informed of the situation and it should be attempted to regulate the reactions of individuals and of the society in general in such a way that damage to health, or social and economical conditions, can be restricted as much as possible. Denmark has not itself any atomic power plants, but some are located in neighbour countries and there are other sources such as nuclear research reactors, passing nuclear-driven ships etc. The detailed plan also covers possible sources of radiation, the nature of related damage to health, international cooperation, legal aspects, and a very detailed description of the overall administration and of the responsibilities of the organizations involved. (AB)

  11. Emergency planning and preparedness for nuclear facilities

    International Nuclear Information System (INIS)

    Koelzer, W.

    1988-01-01

    Nuclear installations are designed, constructed and operated in such a way that the probability for an incident or accident is very low and the probability for a severe accident with catastrophic consequences is extremely small. These accidents represent the residual risk of the nuclear installation, and this residual risk can be decreased on one hand by a better design, construction and operation and on the other hand by planning and taking emergency measures inside the facility and in the environment of the facility. By way of introduction and definition it may be indicated to define some terms pertaining to the subject in order to make for more uniform understanding. (orig./DG)

  12. Major issues on establishing an emergency plan in nuclear facilities

    International Nuclear Information System (INIS)

    Chen, Zhu-zhou

    1988-03-01

    Several major issues on emergency planning and preparation in nuclear facilities were discussed -- such as the importance of emergency planning and preparation, basic principles of intervention and implementation of emergency plan and emergency training and drills to insure the effectiveness of the emergency plan. It is emphasized that the major key point of emergency planning and response is to avoid the occurrence of serious nonrandom effect. 12 refs., 3 tabs

  13. Planning and implementing nuclear emergency response facilities

    International Nuclear Information System (INIS)

    Williams, D.H.

    1983-01-01

    After Three Mile Island, Arkansas Nuclear One produced a planning document called TMI-2 Response Program. Phase I of the program defined action plans in nine areas: safety assessment, training, organization, public information, communication, security, fiscal-governmental, technical and logistical support. Under safety assessment, the staff was made even better prepared to handle radioactive material. Under training, on site simulators for each unit at ANO were installed. The other seven topics interface closely with each other. An emergency control center is diagrammed. A habitable technical support system was created. A media center, with a large media area, and an auditorium, was built. Electric door strike systems increased security. Phone networks independently run via microwave were installed. Until Three Mile Island, logistical problems were guesswork. That incident afforded an opportunity to better identify and prepare for these problems

  14. New Basic Nuclear Emergency Plan (Plaben)

    International Nuclear Information System (INIS)

    Calvin, M.; Gil, E.; Martin, M.; Ramon, J.; Serrano, I.

    2004-01-01

    Ever since Plaben came into force in 1989, the national civil protection system has experienced a large evolution among other reasons due to the Autonomous Community governments assuming authority in this matter. In parallel, the regulation and international practice in matters of planning and nuclear emergency response has evolved as a consequence of the lessons learned following the long-term Chernobyl accident. Both circumstance recommended that Plaben be revised in order to adopt it to this new environment. The New Plaben was approved in June of this year and from that moment implantation has begun. Described in the article is the New Plaben, the modifications that respect the former the role that the CSN played in is revision and the main activities required to put it into practice. (Author)

  15. Developments in emergency planning within Scottish nuclear

    International Nuclear Information System (INIS)

    Simpson, A.

    2000-01-01

    Scottish Nuclear has recently completed a major program of improvements to its nuclear emergency facilities. The improvements include the construction of a purpose built Off-Site Emergency Centre for each of its two power stations and the development of a computer based information management system to facilitate the rapid distribution of information on an emergency to local, regional and national agencies. A computer code has also been developed to allow the rapid assessment of the effects of any accidental release on the local population. The improvements to the emergency facilities have been coupled with changes in local and national arrangements for dealing with a civil nuclear emergency. The use of airborne surveying techniques for rapidly determining levels of deposited activity following an accident is also being examined and preliminary airborne surveys have been carried out. (author)

  16. Planning and preparedness for radiological emergencies at nuclear power stations

    International Nuclear Information System (INIS)

    Thomson, R.; Muzzarelli, J.

    1996-01-01

    The Radiological Emergency Preparedness (REP) Program was created after the March 1979 accident at the Three Mile Island nuclear power station. The Federal Emergency Management Agency (FEMA) assists state and local governments in reviewing and evaluating state and local REP plans and preparedness for accidents at nuclear power plants, in partnership with the US Nuclear Regulatory Commission (NRC), which evaluates safety and emergency preparedness at the power stations themselves. Argonne National Laboratory provides support and technical assistance to FEMA in evaluating nuclear power plant emergency response exercises, radiological emergency plans, and preparedness

  17. 76 FR 75771 - Emergency Planning Guidance for Nuclear Power Plants

    Science.gov (United States)

    2011-12-05

    ... Guidance for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Issuance of NUREG... Support of Nuclear Power Plants;'' NSIR/DPR-ISG-01, ``Interim Staff Guidance Emergency Planning for Nuclear Power Plants;'' and NUREG/CR-7002, ``Criteria for Development of Evacuation Time Estimate Studies...

  18. Comparison of nuclear plant emergency plans of PBNCC members

    International Nuclear Information System (INIS)

    Kato, W.Y.; Hopwood, J.M.

    1987-01-01

    The Nuclear Safety Working Group (NSWG) of the Pacific Basin Nuclear Cooperation Committee initiated cooperation among Pacific Basin areas based primarily around emergency planning. The NSWG conducted a review of the emergency response plans of members. This paper briefly reviews and makes a comparison of the emergency response plans, with particular attention on the response organization, the planning zone, and the protective action guidelines for emergencies. Although all areas have adopted the same basic elements of emergency planning and are similar, there are also variances due to different governmental structures, population densities, and available resources. It is found that the most significant difference is in the size of the emergency planning zone. The paper concludes with a discussion on possible future cooperative activities of the working group. (author)

  19. Brief on nuclear emergency planning and preparedness in Ontario

    International Nuclear Information System (INIS)

    1987-01-01

    Ontario has an excellent conceptual plan to ensure the safety of its inhabitants in the event of a nuclear accident anywhere in the world. This plan still needs to be translated into tangible preparedness to deal with such an emergency. The province is confident that, with the assistance of Ontario Hydro, a high level of nuclear emergency preparedness will soon be established for the people of the province

  20. Applying radiological emergency planning experience to hazardous materials emergency planning within the nuclear industry

    International Nuclear Information System (INIS)

    Foltman, A.; Newsom, D.; Lerner, K.

    1988-01-01

    The nuclear industry has extensive radiological emergency planning (REP) experience that is directly applicable to hazardous materials emergency planning. Recently, the Feed Materials Production Center near Cincinnati, Ohio, successfully demonstrated such application. The REP experience includes conceptual bases and standards for developing plans that have been tested in hundreds of full-scale exercises. The exercise program itself is also well developed. Systematic consideration of the differences between chemical and radiological hazards shows that relatively minor changes to the REP bases and standards are necessary. Conduct of full-scale, REP-type exercises serves to test the plans, provide training, and engender confidence and credibility

  1. Research on evacuation planning as nuclear emergency preparedness

    International Nuclear Information System (INIS)

    Yamamoto, Kazuya

    2007-10-01

    The International Atomic Energy Agency (IAEA) has introduced new concepts of precautionary action zone (PAZ) and urgent protective action planning zone (UPZ) in 'Preparedness and Response for a Nuclear or Radiological Emergency' (GS-R-2 (2002)), in order to reduce substantially the risk of severe deterministic health effects. Open literature based research was made to reveal problems on evacuation planning and the preparedness for nuclear emergency arising from introduction of PAZ into Japan that has applied the emergency planning zone (EPZ) concept currently. In regard to application of PAZ, it should be noted that the requirements for preparedness and response for a nuclear or radiological emergency are not only dimensional but also timely. The principal issue is implementation of evacuation of precautionary decided area within several hours. The logic of evacuation planning for a nuclear emergency and the methods of advance public education and information in the U.S. is effective for even prompt evacuation to the outside of the EPZ. As concerns evacuation planning for a nuclear emergency in Japan, several important issues to be considered were found, that is, selection of public reception centers which are outside area of the EPZ, an unique reception center assigned to each emergency response planning area, public education and information of practical details about the evacuation plan in advance, and necessity of the evacuation time estimates. To establish a practical evacuation planning guide for nuclear emergencies, further researches on application of traffic simulation technology to evacuation time estimates and on knowledge of actual evacuation experience in natural disasters and chemical plant accidents are required. (author)

  2. Emergency preparedness and response plan for nuclear facilities in Indonesia

    International Nuclear Information System (INIS)

    Nur Rahmah Hidayati; Pande Made Udiyani

    2009-01-01

    All nuclear facilities in Indonesia are owned and operated by the National Nuclear Energy Agency (BATAN). The programs and activities of emergency planning and preparedness in Indonesia are based on the existing nuclear facilities, i.e. research reactors, research reactor fuel fabrication plant, radioactive waste treatment installation and radioisotopes production installation. The assessment is conducted to learn of status of emergency preparedness and response plan for nuclear facilities in Indonesia and to support the preparation of future Nuclear Power Plant. The assessment is conducted by comparing the emergency preparedness and response system in Indonesia to the system in other countries such as Japan and Republic of Korea, since the countries have many Nuclear Power Plants and other nuclear facilities. As a result, emergency preparedness response plan for existing nuclear facility in Indonesia has been implemented in many activities such as environmental monitoring program, facility monitoring equipment, and the continuous exercise of emergency preparedness and response. However, the implementation need law enforcement for imposing the responsibility of the coordinators in National Emergency Preparedness Plan. It also needs some additional technical support systems which refer to the system in Japan or Republic of Korea. The systems must be completed with some real time monitors which will support the emergency preparedness and response organization. The system should be built in NPP site before the first NPP will be operated. The system should be connected to an Off Site Emergency Center under coordination of BAPETEN as the regulatory body which has responsibility to control of nuclear energy in Indonesia. (Author)

  3. Nuclear emergency planning and response in the Netherlands after Chernobyl

    International Nuclear Information System (INIS)

    Bergman, L.J.W.M.; Kerkhoven, I.P.

    1989-01-01

    After Chernobyl an extensive project on nuclear emergency planning and response was started in the Netherlands. The objective of this project was to develop a (governmental) structure to cope with accidents with radioactive materials, that can threaten the Dutch community and neighbouring countries. The project has resulted in a new organizational structure for nuclear emergency response, that differs on major points from the existing plans and procedures. In this paper an outline of the new structure is given. Emphasis is placed on accidents with nuclear power plants

  4. Critical examination of emergency plans for nuclear accidents

    International Nuclear Information System (INIS)

    Catsaros, Nicolas.

    1986-08-01

    An analysis of emergency plans of various countries for nuclear installations on- and off-site emergency preparedness is presented. The analysis is focused on the off-site organization and countermeasures to protect public health and safety. A critical examination of the different approaches is performed and recommendations for effectiveness improvement and optimization are formulated. (author)

  5. Province of Ontario nuclear emergency plan part V - Chalk River

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-10-01

    The aim of Part 5 of the Provincial Nuclear Emergency Plan is to describe the measures that shall be undertaken to deal with a nuclear emergency caused by the Chalk River Laboratories. This plan deals mainly with actions at the Provincial level and shall by supplemented by the appropriate Municipal Plan. The Townships of Rolph, Buchanan, Wylie, and McKay, the Town of Deep River and the Village of Chalk River are the designated municipalities with respect to CRL. 2 tabs., 5 figs.

  6. Province of Ontario nuclear emergency plan part V - Chalk River

    International Nuclear Information System (INIS)

    1991-10-01

    The aim of Part 5 of the Provincial Nuclear Emergency Plan is to describe the measures that shall be undertaken to deal with a nuclear emergency caused by the Chalk River Laboratories. This plan deals mainly with actions at the Provincial level and shall by supplemented by the appropriate Municipal Plan. The Townships of Rolph, Buchanan, Wylie, and McKay, the Town of Deep River and the Village of Chalk River are the designated municipalities with respect to CRL. 2 tabs., 5 figs

  7. Emergency planning and preparedness of the Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Luong, B.V.

    2001-01-01

    The effectiveness of measures taken in case of accident or emergency to protect the site personnel, the general public and the environment will depend heavily on the adequacy of the emergency plan prepared in advance. For this reason, an emergency plan of the operating organization shall cover all activities planned to be carried out in the event of an emergency, allow for determining the level of the emergency and corresponding level of response according to the severity of the accident condition, and be based on the accidents analysed in the SAR as well as those additionally postulated for emergency planning purposes. The purpose of this paper is to present the practice of the emergency planning and preparedness in the Dalat Nuclear Research Institute (DNRI) for responding to accidents/incidents that may occur at the DNRI. The DNRI emergency plan and emergency procedures developed by the DNRI will be discussed. The information in the DNRI emergency plan such as the emergency organization, classification and identification of emergencies; intervention measures; the co-ordination with off-site organizations; and emergency training and drills will be described in detail. The emergency procedures in the form of documents and instructions for responding to accidents/incidents such as accidents in the reactor, accidents out of the reactor but with significant radioactive contamination, and fire and explosion accidents will be mentioned briefly. As analysed in the Safety Analysis Report for the DNRI, only the in-site actions are presented in the paper and no off-site emergency measures are required. (author)

  8. Emergency planning and preparedness for a nuclear accident

    International Nuclear Information System (INIS)

    Rahe, E.P.

    1985-01-01

    Based on current regulations, FEMA approves each site-specific plan of state and local governments for each power reactor site after 1) formal review offsite preparedness, 2) holding a public meeting at which the preparedness status has been reviewed, and 3) a satisfactory joint exercise has been conducted with both utility and local participation. Annually, each state, within any position of the 10-mile emergency planning zone, must conduct a joint exercise with the utility to demonstrate its preparedness for a nuclear accident. While it is unlikely that these extreme measures will be needed as a result of an accident at a nuclear power station, the fact that these plans have been well thought out and implemented have already proven their benefit to society. The preparedness for a nuclear accident can be of great advantage in other types of emergencies. For example, on December 11, 1982, a non-nuclear chemical storage tank exploded at a Union Carbide plant in Louisiana shortly after midnight. More than 20,000 people were evacuated from their homes. They were evacuated under the emergency response plan formulated for use in the event of a nuclear accident at the nearby Waterford Nuclear plants. Clearly, this illustrates how a plan conceived for one purpose is appropriate to handle other types of accidents that occur in a modern industrial society

  9. Emergency plans for civil nuclear installations in the United Kingdom

    International Nuclear Information System (INIS)

    Gronow, W.S.

    1984-01-01

    The operators of nuclear installations in the United Kingdom have plans to deal with accidents or emergencies at their nuclear sites. These plans provide for any necessary action, both on and off the nuclear site, to protect members of the public and are regularly exercised. The off-site actions involve the emergency services and other authorities which may be called upon to implement measures to protect the public in any civil emergency. In a recent review of these plans by Government Departments and agencies and the nuclear site operators, a number of possible improvements were identified. These improvements are concerned mainly with the provisions made for liaison with local and national authorities and for public information and have been incorporated into existing plans. An outline is given of the most likely consequences of an accidental release of radioactive material and the scope of emergency plans. Details are also provided on the responsibilities and functions of the operator and other organizations with duties under the plans and the arrangements made for public information. (author)

  10. Nuclear emergency planning in Spain. The PLABEN review project

    International Nuclear Information System (INIS)

    Lentijo Lentijo, J. C.; Vila Pena, M.

    2002-01-01

    The international rules and recommendations for nuclear emergency planning and the Spanish experience gained in the management of event with radiological risk have noticed that is necessary to review the planning radiological bases for emergencies in nuclear power plants and to define the planning radiological bases for radiological emergencies that could happen in radioactive facilities or in activities out of the regulatory framework. The paper focuses on CSN actions concerning the Plaben review project related to define the new radiological principles taking into account the current international recommendations for interventions, make a proposal about the organisation and operation of the provincial radiological action group and the national support level for radiological emergency response. (Author) 7 refs

  11. Preparation of site emergency preparedness plans for nuclear installations

    International Nuclear Information System (INIS)

    1999-10-01

    Safety of public, occupational workers and the protection of environment should be assured while activities for economic and social progress are pursued. These activities include the establishment and utilisation of nuclear facilities and use of radioactive sources. This safety guidelines is issued as a lead document to facilitate preparation of specific site manuals by the responsible organisation for emergency response plans at each site to ensure their preparedness to meet any eventuality due to site emergency in order to mitigate its consequences on the health and safety of site personnel. It takes cognizance of an earlier AERB publications on the subject: Safety manual on site emergency plan on nuclear installations. AERB/SM/NISD-1, 1986 and also takes into consideration the urgent need for promoting public awareness and drawing up revised emergency response plans, which has come about in a significant manner after the accidents at Chernobyl and Bhopal

  12. Planning of emergency medical treatment in nuclear power plant

    International Nuclear Information System (INIS)

    Kusama, Tomoko

    1989-01-01

    Medical staffs and health physicists have shown deep concerning at the emergency plans of nuclear power plants after the TMI nuclear accident. The most important and basic countermeasure for accidents was preparing appropriate and concrete organization and plans for treatment. We have planed emergency medical treatment for radiation workers in a nuclear power plant institute. The emergency medical treatment at institute consisted of two stages, that is on-site emergency treatment at facility medical service. In first step of planning in each stage, we selected and treatment at facility medical service. In first step of planning in each stage, we selected and analyzed all possible accidents in the institute and discussed on practical treatments for some possible accidents. The manuals of concrete procedure of emergency treatment for some accidents were prepared following discussion and facilities and equipment for medical treatment and decontamination were provided. All workers in the institute had periodical training and drilling of on-site emergency treatment and mastered technique of first aid. Decontamination and operation rooms were provided in the facillity medical service. The main functions at the facility medical service have been carried out by industrial nurses. Industrial nurses have been in close co-operation with radiation safety officers and medical doctors in regional hospital. (author)

  13. Nuclear emergency plans in France. Strengths and weaknesses. Report 2016

    International Nuclear Information System (INIS)

    Boilley, David; Josset, Mylene

    2016-01-01

    This report first presents nuclear emergency plans in France (specific intervention plans, action at the municipal level, creation of a national plan, planning of the post-accidental phase, integration of the international and cross-border dimension. Then, it analyses strengths and weaknesses of these plans. It outlines the necessity to take the most severe accident scenarios into account (issue of selection of reference accidents, necessity of reviewing emergency planning areas, and assessment of the number of inhabitants about French nuclear installations). It proposes a review of measures of protection of populations (information, sheltering, iodine-based prophylaxis, evacuation, food control and restrictions, protection of human resources, cross-border problems). It discusses how to put an end to the emergency situation, and the assessment and collaboration on emergency plans. The next part proposes an analysis of noticed strengths and weaknesses in some PPIs (specific intervention plans) in terms of text accessibility, of description of the site and of its environment, of intervention area, of operational measures, and of preparation to the post-accidental phase

  14. Incorporation of IAEA recommendations in the Spanish nuclear emergency plan

    International Nuclear Information System (INIS)

    Carrillo, D.; Diaz de la Cruz, F.; Murtra, J.; Ruiz del Arbol, E.

    1986-01-01

    This paper describes the way in which the Spanish authorities have incorporated the IAEA recommendations on the planning of action to be taken in the event of a nuclear accident, taking into account the national organization's own approach to the problem of dealing with a radiation emergency. First, the criteria and principles applied in devising the emergency plans are described. The criteria are concerned with the radiation problem as such and the principles take into account the sum total of problems associated with an emergency. Organizational and operational aspects of the plan are then discussed. The extent to which these arrangements are brought into play is determined by the type of abnormal event which occurs in the facility; since the evolution of this event cannot be exactly predicted, there must be enough flexibility in the operational plan so that it can be adapted rapidly and effectively to the circumstances. Another section deals with protection measures as a function of intervention (or reference) levels. Although non-radiological considerations may affect the measures adopted, a knowledge of the risks associated with the various intervention levels gives the authority a better understanding of the situation. The Nuclear Safety Board has had to inform the civil protection authorities of the distances at which specific protection measures should be taken. Considerations and hypotheses are described which, when applied, lead to general evacuation for distances of up to 3 km from the plant, partial evacuation for up to 5 km, containment and prophylactic measures up to 10 km and water and food monitoring up to 30 km. Finally, details are given of the Training and Information Plan which is being applied at present in Spain. (author)

  15. Guidance for emergency planning in nuclear power plants

    International Nuclear Information System (INIS)

    Magnusson, Tommy; Ekdahl, Maria

    2008-06-01

    Ringhals has been a model for this study, but the purpose has been to make the report applicable at all nuclear power plants in Sweden. The work has been done in close co-operation with the Swedish nuclear power plants and Rescue Services in the nuclear power municipalities Oesthammar, Oskarshamn, and Varberg. The internal fire brigade at the nuclear power plants has also been involved. A document will also be published as a further guidance at efforts of the type fires, which are mentioned in the enclosed document. After a fire in a switchgear room in 2005 the need of making the existing effort planning more effective at nuclear power plants was observed. The idea with the planning is to plan the effort in order to give the operational and emergency staff a good and actual support to come to a decision and to start the mission without delay. The risk information is showed by planning layouts, symbols and drawings as basis, give risk information and effort information. The effort information shows outer arrangements, manual action points, fire installations, passive fire safety etc. The risk information is shown by risk symbols. Their purpose is to give a fast overview of the existing risks. Reactor safety effects is the ruling influence if an effort has to be done in order to secure safety for a third person. In order to make an effort in an area personal risks for rescue staff, such as electricity risks, radiological risks, chemicals and gas bottles with compressed gases, has to be eliminated. For complicated missions detailed instructions are needed in order to handle specific risks. In a group discussion different people with pertinent knowledge has to value which problematic efforts need detailed instruction. Missions that have to be analyzed in a work group as above are: fire may affect the reactor safety, fire that may threaten the structural integrity, chemical discharge with big consequence on environment/third person and handling of gas system (compressed

  16. Nuclear emergency response planning based on participatory decision analytic approaches

    International Nuclear Information System (INIS)

    Sinkko, K.

    2004-10-01

    This work was undertaken in order to develop methods and techniques for evaluating systematically and comprehensively protective action strategies in the case of a nuclear or radiation emergency. This was done in a way that the concerns and issues of all key players related to decisions on protective actions could be aggregated into decision- making transparently and in an equal manner. An approach called facilitated workshop, based on the theory of Decision Analysis, was tailored and tested in the planning of actions to be taken. The work builds on case studies in which it was assumed that a hypothetical accident in a nuclear power plant had led to a release of considerable amounts of radionuclides and therefore different types of protective actions should be considered. Altogether six workshops were organised in which all key players were represented, i.e., the authorities, expert organisations, industry and agricultural producers. The participants were those responsible for preparing advice or presenting matters for those responsible for the formal decision-making. Many preparatory meetings were held with various experts to prepare information for the workshops. It was considered essential that the set-up strictly follow the decision- making process to which the key players are accustomed. Key players or stakeholders comprise responsible administrators and organisations, politicians as well as representatives of the citizens affected and other persons who will and are likely to take part in decision-making in nuclear emergencies. The realistic nature and the disciplined process of a facilitated workshop and commitment to decision-making yielded up insight in many radiation protection issues. The objectives and attributes which are considered in a decision on protective actions were discussed in many occasions and were defined for different accident scenario to come. In the workshops intervention levels were derived according justification and optimisation

  17. Nuclear accident/radiological emergency assistance plan. NAREAP - edition 2000. Emergency preparedness and response

    International Nuclear Information System (INIS)

    2000-01-01

    The purpose of the Nuclear Accident/Radiological Emergency Assistance Plan (NAREAP) is to describe the framework for systematic, integrated, co-ordinated, and effective preparedness and response for a nuclear accident or radiological emergency involving facilities or practices that may give rise to a threat to health, the environment or property. The purpose of the NAREAP is: to define the emergency response objectives of the Agency's staff in a nuclear accident or a radiological emergency; to assign responsibilities for performing the tasks and authorities for making the decisions that comprise the Agency staff's response to a nuclear accident or radiological emergency; to guide the Agency managers who must ensure that all necessary tasks are given the necessary support in discharging the Agency staff responsibilities and fulfilling its obligations in response to an emergency; to ensure that the development and maintenance of detailed and coherent response procedures are well founded; to act as a point of reference for individual Agency staff members on their responsibilities (as an individual or a team member) throughout a response; to identify interrelationships with other international intergovernmental Organizations; and to serve as a training aid to maintain readiness of personnel. The NAREAP refers to the arrangements of the International Atomic Energy Agency and of the United Nations Security and Safety Section at the Vienna International Centre (UNSSS-VIC) that may be necessary for the IAEA to respond to a nuclear accident or radiological emergency, as defined in the Early Notification and Assistance Conventions. It covers response arrangements for any situation that may have actual, potential or perceived radiological consequences and that could require a response from the IAEA, as well as the arrangements for developing, maintaining and exercising preparedness. The implementing procedures themselves are not included in the NAREAP, but they are required

  18. New aspects in the radiological emergency plan outside the Nuclear power plant of Laguna Verde

    International Nuclear Information System (INIS)

    Alva L, S.

    1991-01-01

    The Mexican government through the National Commission of Nuclear Safety and Safeguards has imposed to the Federal Commission of Electricity to fulfill the requirement of having a functional Emergency Plan and under the limits that the regulator organisms in the world have proposed. The PERE (Plan of External Radiological Emergency) it has been created for the Nuclear Power station of Laguna Verde, Mexico

  19. Contingency planning for nuclear emergencies in Hong Kong

    International Nuclear Information System (INIS)

    Wong, M. C.

    2002-01-01

    Two nuclear power stations on the coast of southern China are situated some 50 kilometers to the northeast of Hong Kong. Although the stations are far away from Hong Kong, the construction and operation of the nuclear power stations have generated public anxiety locally, in particular, after the Chernobyl accident in 1986. A comprehensive contingency plan which takes into account such concerns of the public has been implemented in Hong Kong. This plan not only aims to ensure a quick and timely response to mitigate the health impact of any accidental release but also targets to re-assure the public that the territory is not contaminated when appropriate. This paper describes the principal elements of the nuclear contingency plan in Hong Kong, namely, an extensive environmental radiation monitoring programme and a proactive public communication programme

  20. System model for evaluation of an emergency response plan for a nuclear power plant based on an assessment of nuclear emergency exercises

    International Nuclear Information System (INIS)

    Silva, Marcos Vinicius C.; Medeiros, Jose A.C.C.

    2011-01-01

    Nuclear power plants are designed and built with systems dedicated to provide a high degree of protection to its workers, the population living in their neighborhoods and the environment. Among the requirements for ensuring safety there are the existence of the nuclear emergency plan. Due to the relationship between the actions contemplated in the emergency plan and the nuclear emergency exercise, it becomes possible to assess the quality of the nuclear emergency plan, by means of emergency exercise evaluation, The techniques used in this work aim at improving the evaluation method of a nuclear emergency exercise through the use of performance indicators in the evaluation of the structures, actions and procedures involved. The proposed model enables comparisons between different moments of an emergency plan directed to a nuclear power plant as well as comparisons between plans dedicated to different facilities. (author)

  1. System model for evaluation of an emergency response plan for a nuclear power plant based on an assessment of nuclear emergency exercises

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcos Vinicius C.; Medeiros, Jose A.C.C. [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear

    2011-07-01

    Nuclear power plants are designed and built with systems dedicated to provide a high degree of protection to its workers, the population living in their neighborhoods and the environment. Among the requirements for ensuring safety there are the existence of the nuclear emergency plan. Due to the relationship between the actions contemplated in the emergency plan and the nuclear emergency exercise, it becomes possible to assess the quality of the nuclear emergency plan, by means of emergency exercise evaluation, The techniques used in this work aim at improving the evaluation method of a nuclear emergency exercise through the use of performance indicators in the evaluation of the structures, actions and procedures involved. The proposed model enables comparisons between different moments of an emergency plan directed to a nuclear power plant as well as comparisons between plans dedicated to different facilities. (author)

  2. Nuclear emergencies

    International Nuclear Information System (INIS)

    1991-01-01

    This leaflet, which is in the form of a fold-up chart, has panels of text which summarize the emergencies that could arise and the countermeasures and emergency plans that have been prepared should nuclear accident occur or affect the United Kingdom. The levels of radiation doses at which various measures would be introduced are outlined. The detection and monitoring programmes that would operate is illustrated. The role of NRPB and the responsible government departments are set out together with an explanation of how the National Arrangements for Incidents involving Radioactivity would be coordinated. (UK)

  3. Change in perception of people towards a nuclear emergency plan for a nuclear power station after being presented

    International Nuclear Information System (INIS)

    Kouzen, Hideharu

    2017-01-01

    We conducted a group interview survey for 24 persons living in urban areas of the Kansai region to understand the change in their perception of information about nuclear emergency plans for nuclear power stations. The participants were given descriptions about a nuclear emergency plan based on plans that had been prepared by the national government and local government. Before hearing the explanation about the nuclear emergency plan, we found that only a few participants were concerned about it, but no one knew the detailed contents. For the question 'Do you think the nuclear emergency plan is being improved after the Fukushima Daiichi Nuclear Power Plant accident?', we found 6 persons among the 24 held opinions saying that the plan was 'improved' or 'somewhat improved'. However, after hearing the explanation and a brief Q and A session about it, 18 persons held opinions saying the plan was 'improved' or 'somewhat improved'. As the reason for such answers, the most common opinion shared by 13 persons was that 'a nuclear emergency plan is being made'. There is a possibility that urban residents had not known the facts about specific disaster prevention plans for each nuclear power station that have been formulated. (author)

  4. On-site emergency intervention plan for nuclear accident situation at SCN-Pitesti TRIGA Reactor

    International Nuclear Information System (INIS)

    Margeanu, S.; Oprea, I.

    2008-01-01

    A 14 MW TRIGA research reactor is operated on the Institute for Nuclear Research site. In the event of a nuclear accident or radiological emergency that may affect the public the effectiveness of protective actions depends on the adequacy of intervention plans prepared in advance. Considerable planning is necessary to reduce to manageable levels the types of decisions leading to effective responses to protect the public in such an event. The essential structures of our on-site, off-site and county emergency intervention plan and the correlation between emergency intervention plans are presented. (authors)

  5. The nuclear medicine department in the emergency management plan: a referent structure for the nuclear and radiological risks

    International Nuclear Information System (INIS)

    Barat, J.L.; Ducassou, D.; Lesgourgues, P.; Zamaron, S.; Boulard, G.

    2006-01-01

    Each french public or private hospital has to establish guidelines for an immediate response to mass casualties (Emergency Management Plan or 'White' Plan). For a nuclear accident or terrorist attack, the staff of the Nuclear Medicine Department may be adequately prepared and equipped. This paper presents the nuclear and radiological risks section of the final draft of the White Plan developed at Bordeaux University Hospital. (author)

  6. Involvement of the Public Health Authority in emergency planning and preparedness for nuclear facilities in Hungary

    International Nuclear Information System (INIS)

    Sztanyik, L.B.

    1986-01-01

    It is required by the Hungarian Atomic Energy Act and its enacting clause of 1980 that facilities established for the application of atomic energy be designed, constructed and operated in such a manner that abnormal operational occurrences can be avoided and unplanned exposures to radiation and radioactive substances can be prevented. The primary responsibility for planning and implementing emergency actions rests with the management of the operating organization. Thus one of the prerequisites of licensing the first nuclear power plant in Hungary was the preparation and submission for approval of an emergency plan by the operating organization. In addition to this, the council of the county where the power plant is located has also been obliged to prepare a complementary emergency plan, in co-operation with other regional and national authorities, for the prevention of consequences from an emergency that may extend beyond the site boundary of the plant. In preparing the complementary plan, the emergency plan of the facility had to be taken into account. Unlike most national authorities involved in nuclear matters, the Public Health Authority is involved in the preparation of plans for every kind of emergency in a nuclear facility, including even those whose consequences can probably be confined to the plant site. The paper discusses in detail the role and responsibility of the Public Health Authority in emergency planning and preparedness for nuclear facilities. (author)

  7. Planning countermeasures on pasture-milk pathway in nuclear emergency

    International Nuclear Information System (INIS)

    Eged, K.; Kanyar, B.; Kis, Z.

    1998-01-01

    The pasture → milk → human exposure pathway was modelled with respect to the countermeasures in a nuclear emergency situation. The measures included feed and milk substitution by non-contaminated material, and cost-benefit analysis and uncertainty analysis was performed. Comparison of the maximum benefit of the two kinds of intervention suggests that feed substitution is superior to milk substitution. The duration of the pasture substitution depends strongly on the initial concentration of iodine-131 in the pasture. For relatively low values of activity concentration, the optimum date of withdrawing the intervention increases linearly with the logarithm of the initial radionuclide concentration in the pasture, the maximum value, however, takes nearly 40 days. For milk or feed substitution, the effect of the excess cost of early intervention reduces the maximum value of the cost-benefit function. (P.A.)

  8. Method for Developing a Communication Strategy and Plan for a Nuclear or Radiological Emergency

    International Nuclear Information System (INIS)

    2016-01-01

    The aim of this publication is to provide a practical resource for emergency planning in the area of public communication in the development of a radiation emergency communication plan (RECP). The term 'public communication' is defined as any activity that communicates information to the public and the media during a nuclear or radiological emergency. To avoid confusion, the term public communication has been used in this publication rather than public information, which may be used in other IAEA publications and documents to ensure consistency with the terminology used in describing the command and control system. This publication also aims to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(11) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research with regard to the response to nuclear or radiological emergencies. This publication is intended to provide guidance to national and local authorities on developing an RECP which incorporates the specific functions, arrangements and capabilities that will be required for public communication during a nuclear or radiological emergency. The two main features of this publication are the template provided to develop an RECP and detailed guidance on developing a communication strategy for emergency preparedness and response to nuclear or radiological emergencies. The template is consistent with the outline of the national radiation emergency plan proposed in Method for Developing Arrangements for Response to a Nuclear or Radiological Emergency (EPR-Method 2003). This publication is part of the IAEA

  9. Relation between source term and emergency planning for nuclear power plants

    International Nuclear Information System (INIS)

    Shi Zhongqi; Yang Ling

    1992-01-01

    Some background information of the severe accidents and source terms related to the nuclear power plant emergency planning are presented. The new source term information in NUREG-0956 and NUREG-1150, and possible changes in emergency planning requirements in U.S.A. are briefly provided. It is suggested that a principle is used in selecting source terms for establishing the emergency planning policy and a method is used in determining the Emergency Planning Zone (EPZ) size in China. Based on the research results of (1) EPZ size of PWR nuclear power plants being built in China, and (2) impact of reactor size and selected source terms on the EPZ size, it is concluded that the suggested principle and the method are suitable and feasible for PWR nuclear power plants in China

  10. An investigation on technical bases of emergency plan zone determination of Qinshan Nuclear Power Base

    International Nuclear Information System (INIS)

    Duan Xuyi

    2000-01-01

    According to the general principal and the basic method of determination of emergency zone and safety criteria and in the light of the environmental and accidental release characteristic of Qinshan Nuclear Power Base, the expectation dose of assumed accident of each plant was compared and analyzed. In consideration of the impact factor of the size of emergency plan zone and referring to the information of emergency plan zone determination of other country in the world, the suggestions of determination method of emergency plan zone are proposed

  11. Prototyping and validating requirements of radiation and nuclear emergency plan simulator

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, AHA., E-mail: amyhamijah@nm.gov.my [Malaysian Nuclear Agency (NM), Bangi, 43000 Kajang, Selangor (Malaysia); Faculty of Computing, Universiti Teknologi Malaysia (UTM), Skudai, 81310 Johor Bahru, Johor (Malaysia); Rozan, MZA.; Ibrahim, R.; Deris, S.; Selamat, A. [Faculty of Computing, Universiti Teknologi Malaysia (UTM), Skudai, 81310 Johor Bahru, Johor (Malaysia)

    2015-04-29

    Organizational incapability in developing unrealistic, impractical, inadequate and ambiguous mechanisms of radiological and nuclear emergency preparedness and response plan (EPR) causing emergency plan disorder and severe disasters. These situations resulting from 65.6% of poor definition and unidentified roles and duties of the disaster coordinator. Those unexpected conditions brought huge aftermath to the first responders, operators, workers, patients and community at large. Hence, in this report, we discuss prototyping and validating of Malaysia radiation and nuclear emergency preparedness and response plan simulation model (EPRM). A prototyping technique was required to formalize the simulation model requirements. Prototyping as systems requirements validation was carried on to endorse the correctness of the model itself against the stakeholder’s intensions in resolving those organizational incapability. We have made assumptions for the proposed emergency preparedness and response model (EPRM) through the simulation software. Those assumptions provided a twofold of expected mechanisms, planning and handling of the respective emergency plan as well as in bringing off the hazard involved. This model called RANEPF (Radiation and Nuclear Emergency Planning Framework) simulator demonstrated the training emergency response perquisites rather than the intervention principles alone. The demonstrations involved the determination of the casualties’ absorbed dose range screening and the coordination of the capacity planning of the expected trauma triage. Through user-centred design and sociotechnical approach, RANEPF simulator was strategized and simplified, though certainly it is equally complex.

  12. Prototyping and validating requirements of radiation and nuclear emergency plan simulator

    International Nuclear Information System (INIS)

    Hamid, AHA.; Rozan, MZA.; Ibrahim, R.; Deris, S.; Selamat, A.

    2015-01-01

    Organizational incapability in developing unrealistic, impractical, inadequate and ambiguous mechanisms of radiological and nuclear emergency preparedness and response plan (EPR) causing emergency plan disorder and severe disasters. These situations resulting from 65.6% of poor definition and unidentified roles and duties of the disaster coordinator. Those unexpected conditions brought huge aftermath to the first responders, operators, workers, patients and community at large. Hence, in this report, we discuss prototyping and validating of Malaysia radiation and nuclear emergency preparedness and response plan simulation model (EPRM). A prototyping technique was required to formalize the simulation model requirements. Prototyping as systems requirements validation was carried on to endorse the correctness of the model itself against the stakeholder’s intensions in resolving those organizational incapability. We have made assumptions for the proposed emergency preparedness and response model (EPRM) through the simulation software. Those assumptions provided a twofold of expected mechanisms, planning and handling of the respective emergency plan as well as in bringing off the hazard involved. This model called RANEPF (Radiation and Nuclear Emergency Planning Framework) simulator demonstrated the training emergency response perquisites rather than the intervention principles alone. The demonstrations involved the determination of the casualties’ absorbed dose range screening and the coordination of the capacity planning of the expected trauma triage. Through user-centred design and sociotechnical approach, RANEPF simulator was strategized and simplified, though certainly it is equally complex

  13. Prototyping and validating requirements of radiation and nuclear emergency plan simulator

    Science.gov (United States)

    Hamid, AHA.; Rozan, MZA.; Ibrahim, R.; Deris, S.; Selamat, A.

    2015-04-01

    Organizational incapability in developing unrealistic, impractical, inadequate and ambiguous mechanisms of radiological and nuclear emergency preparedness and response plan (EPR) causing emergency plan disorder and severe disasters. These situations resulting from 65.6% of poor definition and unidentified roles and duties of the disaster coordinator. Those unexpected conditions brought huge aftermath to the first responders, operators, workers, patients and community at large. Hence, in this report, we discuss prototyping and validating of Malaysia radiation and nuclear emergency preparedness and response plan simulation model (EPRM). A prototyping technique was required to formalize the simulation model requirements. Prototyping as systems requirements validation was carried on to endorse the correctness of the model itself against the stakeholder's intensions in resolving those organizational incapability. We have made assumptions for the proposed emergency preparedness and response model (EPRM) through the simulation software. Those assumptions provided a twofold of expected mechanisms, planning and handling of the respective emergency plan as well as in bringing off the hazard involved. This model called RANEPF (Radiation and Nuclear Emergency Planning Framework) simulator demonstrated the training emergency response perquisites rather than the intervention principles alone. The demonstrations involved the determination of the casualties' absorbed dose range screening and the coordination of the capacity planning of the expected trauma triage. Through user-centred design and sociotechnical approach, RANEPF simulator was strategized and simplified, though certainly it is equally complex.

  14. Evacuation route planning during nuclear emergency using genetic algorithm

    International Nuclear Information System (INIS)

    Suman, Vitisha; Sarkar, P.K.

    2012-01-01

    In nuclear industry the routing in case of any emergency is a cause of concern and of great importance. Even the smallest of time saved in the affected region saves a huge amount of otherwise received dose. Genetic algorithm an optimization technique has great ability to search for the optimal path from the affected region to a destination station in a spatially addressed problem. Usually heuristic algorithms are used to carry out these types of search strategy, but due to the lack of global sampling in the feasible solution space, these algorithms have considerable possibility of being trapped into local optima. Routing problems mainly are search problems for finding the shortest distance within a time limit to cover the required number of stations taking care of the traffics, road quality, population size etc. Lack of any formal mechanisms to help decision-makers explore the solution space of their problem and thereby challenges their assumptions about the number and range of options available. The Genetic Algorithm provides a way to optimize a multi-parameter constrained problem with an ease. Here use of Genetic Algorithm to generate a range of options available and to search a solution space and selectively focus on promising combinations of criteria makes them ideally suited to such complex spatial decision problems. The emergency response and routing can be made efficient, in accessing the closest facilities and determining the shortest route using genetic algorithm. The accuracy and care in creating database can be used to improve the result of the final output. The Genetic algorithm can be used to improve the accuracy of result on the basis of distance where other algorithm cannot be obtained. The search space can be utilized to its great extend

  15. Chemical and nuclear emergencies: Interchanging lessons learned from planning and accident experience

    International Nuclear Information System (INIS)

    Adler, V.; Sorensen, J.H.; Rogers, G.O.

    1989-01-01

    Because the goal of emergency preparedness for both chemical and nuclear hazards is to reduce human exposure to hazardous materials, this paper examines the interchange of lessons learned from emergency planning and accident experience in both industries. While the concerns are slightly different, sufficient similarity is found for each to draw implications from the others experience. Principally the chemical industry can learn from the dominant planning experience associated with nuclear power plants, while the nuclear industry can chiefly learn from the chemical industry's accident experience. 23 refs

  16. Legislative framework on establishing emergency response plan in the case of a nuclear accident

    International Nuclear Information System (INIS)

    Novosel, N.; Valcic, I.; Biscan, R.

    2000-01-01

    To give an overview of the legislative framework, which defined emergency planning in Croatia in the case of a nuclear accident, it's necessary to look at all international recommendations and obligations and the national legislation, acts and regulations. It has to be emphasized that Croatia signed three international conventions in this field, and by that took over some responsibilities and obligations. Beside that, it is also in Croatian interest to follow the recommendations of international institutions such as International Atomic Energy Agency (IAEA standards and technical documents). On the other hand, national legislation in this field consists of several laws, which cover nuclear safety measures, governmental organization, natural disasters and acts (decree, decisions) of responsible authority for emergency planning in the case of a nuclear accident (Ministry of Economy). This paper presents an overview of the international and Croatian legislation which influenced the emergency planning in the case of a nuclear accident. (author)

  17. Framing an Nuclear Emergency Plan using Qualitative Regression Analysis

    International Nuclear Information System (INIS)

    Amy Hamijah Abdul Hamid; Ibrahim, M.Z.A.; Deris, S.R.

    2014-01-01

    Since the arising on safety maintenance issues due to post-Fukushima disaster, as well as, lack of literatures on disaster scenario investigation and theory development. This study is dealing with the initiation difficulty on the research purpose which is related to content and problem setting of the phenomenon. Therefore, the research design of this study refers to inductive approach which is interpreted and codified qualitatively according to primary findings and written reports. These data need to be classified inductively into thematic analysis as to develop conceptual framework related to several theoretical lenses. Moreover, the framing of the expected framework of the respective emergency plan as the improvised business process models are abundant of unstructured data abstraction and simplification. The structural methods of Qualitative Regression Analysis (QRA) and Work System snapshot applied to form the data into the proposed model conceptualization using rigorous analyses. These methods were helpful in organising and summarizing the snapshot into an ' as-is ' work system that being recommended as ' to-be' w ork system towards business process modelling. We conclude that these methods are useful to develop comprehensive and structured research framework for future enhancement in business process simulation. (author)

  18. New fire and security rules change USA nuclear power plant emergency plans

    International Nuclear Information System (INIS)

    Garrou, A.L.

    1978-01-01

    New safety and security rules for nuclear power plants have resulted from the Energy Reorganisation Act and also from a review following the Browns Ferry fire. The content of the emergency plan which covers personnel, plant, site, as well as a general emergency, is outlined. New fire protection rules, the plan for security, local and state government assistance are also discussed, with a brief reference to the impact of the new rules on continuity of operations. (author)

  19. 27 September 1991-Royal Order establishing an emergency plan for nuclear risks on Belgian territory

    International Nuclear Information System (INIS)

    1992-01-01

    This emergency plan is to serve as guidance for the protection measures to be taken whenever necessary. It establishes the duties of the different services and bodies, in accordance with their responsibilities under the national laws and regulations. The plan, which describes the general organisation, must be supplemented by intervention plans at the different action levels: by the provincial authorities, the communal authorities and the various services and institutions concerned. This plan mainly concerns large nuclear installations and transport of nuclear fuels and radioactive materials; however, lower risks from other activities are also covered. (NEA)

  20. Handbook for the planning, co-ordination and evaluation of emergency exercises in nuclear power plants

    International Nuclear Information System (INIS)

    Schmidtborn, I.; Bath, N.

    1999-01-01

    The efficiency of the on-site emergency organization in German nuclear power plants is tested regularly through emergency exercises. To achieve federal harmonization on a high level of quality a handbook for the planning, co-ordination and evaluation of such exercises has been developed in the frame of the regulatory investigation programme. In this handbook requirements are set out for emergency training. Key elements are a modular structure, rules to be observed and guidance for post-exercise evaluation. (orig.) [de

  1. Medical emergency planning in case of severe nuclear power plant accidents

    International Nuclear Information System (INIS)

    Ohlenschlaeger, L.

    1980-01-01

    This paper is an attempt to discuss a three-step-plan on medical emergency planning in case of severe accidents at nuclear power plants on the basis of own experiences in the regional area as well as on the basis of recommendations of the Federal Minister of the Interior. The medical considerations take account of the severity and extension of an accident whereby the current definitions used in nuclear engineering for accident situations are taken as basis. A comparison between obligatory and actual state is made on the possibilities of medical emergency planning, taking all capacities of staff, facilities, and equipment available in the Federal Republic of Germany into account. To assure a useful and quick utilization of the existing infra-structure as well as nation-wide uniform training of physicians and medical assistants in the field of medical emergency in case of a nuclear catastrophe, a federal law for health protection is regarded urgently necessary. (orig.) [de

  2. Preparation of off-site emergency preparedness plans for nuclear installations

    International Nuclear Information System (INIS)

    1999-10-01

    Safety of public, occupational workers and the protection of environment should be assured while activities for economic and social progress are pursued. These activities include the establishment and utilisation of nuclear facilities and use of radioactive sources. This document is issued as a lead document to facilitate preparation of specific site manuals by the Responsible Organisation for emergency response plans at each site to ensure their preparedness to meet any eventuality due to site emergency in order to mitigate its consequences on the health and safety of site personnel. It takes cognizance of an earlier AERB publication on the subject: Safety Manual on Off-Site Emergency Plan for Nuclear Installations, AERB/SM/NISD-2, 1988 and also takes into consideration the urgent need for promoting public awareness and drawing up revised emergency response plans, which has come out in a significant manner after the accidents at Chernobyl and Bhopal

  3. Report to Congress on status of emergency response planning for nuclear power plants

    International Nuclear Information System (INIS)

    1981-03-01

    This report responds to a request (Public Law 96-295, Section 109) for the Nuclear Regulatory Commission (NRC) to report to Congress on the status of emergency response planning in support of nuclear power reactors. The report includes information on the status of this planning as well as on the Commission actions relating to emergency preparedness. These actions include a summary of the new regulatory requirements and the preliminary results of two comprehensive Evacuation Time Estimate studies; one requested by the NRC including 50 nuclear power plant sites and one conducted by the Federal Emergency Management Agency (FEMA) for 12 high population density sites. FEMA provided the information in this report on the status of State and local planning, including projected schedules for joint State/county/licensee emergency preparedness exercises. Included as Appendicies are the NRC Emergency Planning Final Regulations, 10 CFR Part 50 (45 FR 55402), the FEMA Proposed Rule, 'Review and Approval of State and Local Radiological Emergency Plans and Preparedness', 44 CFR Part 350 (45 FR 42341) and the NRC/FEMA Memorandums of Understanding

  4. An Assessment for Emergency Preparedness Plan in Hanul Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sunghyun; Jae, Moosung [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    The purpose of emergency preparedness aims to protect the accident and mitigate the radiation damage of public by setting emergency preparedness plan. In order to perform successfully the emergency preparedness plan, it should be optimized through a quantitative analysis. There are so many variables to analyze it quantitatively. It is mission to classify a realistic and suitable variables among these variables. The realistic variables is converted to the decision node in decision tree which is helpful to decide what evacuation or sheltering is effective to mitigate public damage. Base on it, it's idealistic method to analyze offsite consequences for each end points in the decision tree. In this study, we selected the reference plant which already has the emergency preparedness plan. Among the plan, we implemented offsite consequence analysis for a specific plan by using MACCS 2 code. In this study, target group is people who gathered in place 1 have sheltered and evacuated along the pathway. the offsite consequences analysis result of the group are 1.17·10-9 (early fatality), 1.77·10-7 (late fatality). Various cases need to be quantified for make an optimized decision. In the future, we will perform the verification and modification of decision node. After The assessment of emergency preparedness plan for Hanul nuclear power plant unit 5, 6 might be contribute to establish the optimized decision making of emergency prepared plan.

  5. The Emergency Action Plan of the Spanish Nuclear Safety Council (CSN)

    International Nuclear Information System (INIS)

    Calvin Cuarteto, M.; Camarma, J. R.; Martin Calvarro, J. M

    2007-01-01

    The Spanish Nuclear safety Council (CSN) has assigned by law among others the function to coordinate the measures of support and answer to nuclear emergency situations for all the aspects related with nuclear safety and radiological protection. Integrating and coordinating the different organisations public and private companies whose aid is necessary for the fulfilment of the functions attributed to the Regulatory Body. In order to suitable perform this function, CSN has equipped itself with an Emergency Action Plan that structures the response organization, establishes responsibility levels, incorporates basic performance procedures and includes capabilities to face the nuclear and radiological emergencies considering the external supports, resulting from the collaboration agreements with public institutions and private companies. To accomplish the above mentioned Emergency Action Plan, CSN has established and implanted a formation and training and re-training program for the organization response for emergencies and has update an operative centre (Emergency Room called Salem), equipped with infrastructures, tools and communication and operative systems that incorporate the more advanced technologies available to date. (Author)

  6. Planning and exercise experiences related to an off-site nuclear emergency in Canada: the federal component

    International Nuclear Information System (INIS)

    Eaton, R.S.

    1986-01-01

    The Canadian Government's Federal Nuclear Emergency Response Plan (off-site) (FNERP) was issued in 1984. In this plan, a nuclear emergency is defined as an emergency involving the release of radionuclides but does not include the use of nuclear weapons against North America. Because of the federal nature of Canada and its large area, special considerations are required for the plan to cover both the response to nuclear emergencies where the national government has primary responsibility and to provincial requests for assistance where the federal response becomes secondary to the provincial. The nuclear emergencies requiring the implementation of this plan are: (a) an accident in the nuclear energy cycle in Canada with off-site implications; (b) an accident in the nuclear energy cycle in another country which may affect Canada; (c) nuclear weapons testing with off-site implications which may affect Canada; and (d) nuclear-powered devices impacting on Canadian territory. Each emergency requires a separate sub-plan and usually requires different organizations to respond. Some scenarios are described. The Department of National Health and Welfare has established a Federal Nuclear Emergency Control Centre (FNECC). The FNECC participated in September 1985 in an exercise involving a nuclear reactor facility in the Province of Ontario and the experience gained from this activity is presented. The FNECC co-operates with its counterparts in the United States of America through a nuclear emergency information system and this network is also described. (author)

  7. A Preliminary Assessment of Daily Weather Conditions in Nuclear Site for Development of Effective Emergency Plan

    International Nuclear Information System (INIS)

    Han, Seok Jung; Ahn, Kwang Il

    2012-01-01

    A radiological emergency preparedness for nuclear sites is recognized as an important measure against anticipated severe accidents with environmental releases of radioactive materials. While there are many individual means in the emergency preparedness for nuclear accidents, one of most important means is to make a decision of evacuation or shelter of the public residents with the emergency plan zone (EPZ) of a nuclear site. In order to prepare an effective strategy for the evacuation as a basis of the emergency preparedness, it may need the understanding of atmospheric dispersion characteristics of radiation releases to the environment, mainly depending upon the weather conditions of a radiation releases location, i.e., a nuclear site. As a preliminary study for the development of an effective emergency plan, the basic features of the weather conditions of a specific site were investigated. A main interest of this study is to identify whether or not the site weather conditions have specific features helpful for a decision making of evacuation of the public residents

  8. Emergency planning and preparedness for nuclear facilities in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Koelzer, W.

    1988-01-01

    Because of their inventories of radioactive materials nuclear facilities represent a hazard potential which, though comparable with that posed by other large technical facilities, demands particular protective measures to be taken. As a consequence of the extreme safety provisions, made, accidents with major impacts on the environment of nuclear facilities are excluded to the best human knowledge. However, as there are distinct limits to human planning and recognition, a residual risk remains despite all these precautions. In order to reduce that risk, recommendations for emergency protection in the environment of nuclear facilities have been drafted. To the extent in which measures are required outside the specific emergency protection plans apply which contain non-object related planning preparations. The recommendation also omits potential repercussions of nuclear accidents which might require measures in the sector of preventive health protection under the Radiation Protection Provisions act or the government measures to be taken. The recommendation is applied to German nuclear installations and those foreign installations whose proximity to the border requires planning measures to be taken on German territory in the sense of this recommendation. (author) [pt

  9. Inadequacies of Belgium nuclear emergency plans: lessons from the Fukushima catastrophe have not been learned

    International Nuclear Information System (INIS)

    Boilley, David; Josset, Mylene

    2015-01-01

    After having outlined that some Belgium regional authorities made some statements showing that they did not learn lessons neither from the Chernobyl catastrophe, nor from the Fukushima accident, this report aims at examining whether Belgium is well prepared to face a severe nuclear accident occurring within its borders or in neighbouring countries, whether all hypotheses have actually been taken into account, and whether existing emergency plans are realistic. After a presentation of Belgium's situation regarding nuclear plants (Belgium plants and neighbouring French plants), the report presents the content and organisation of the nuclear emergency plan for the Belgium territory at the national, provincial and municipal levels. While outlining inadequacies and weaknesses of the Belgium plan regarding the addressed issues, it discusses the main lessons learned from the Fukushima accident in terms of emergency planning areas, of population sheltering, of iodine-based prophylaxis, of population evacuation, of food supply, of tools (measurement instruments) and human resources, and of public information. In the next parts, the report addresses and discusses trans-border issues, and the commitment of stakeholders

  10. Non-nuclear radiological emergencies. Special plan for radiological risk of the Valencian Community

    International Nuclear Information System (INIS)

    Rodríguez Rodrigo, I.; Piles Alepuz, I.; Peiró Juan, J.; Calvet Rodríguez, D.

    2015-01-01

    After the publication of the Radiological Hazard Basic Directive, Generalitat (the regional government in Valencian Community) initiated the edition of the pertinent Special Plan, with the objective to assemble the response of all the Security and Emergency Agencies, including the Armed Forces, in a radiological emergency affecting the territory of the Valencian Community, under a single hierarchy command. Being approved and homologated the Radiological Hazard Special Plan, Generalitat has undertaken the implementation process planned to finish in June 2015. Following the same process as other Plans, implementation is organized in a first informative stage, followed of a formative and training stage, and finishing with an activation exercise of the Plan. At the end of the process, is expected that every Agency will know their functions, the structure and organization in which the intervention takes place, the resources needed, and adapt their protocols to the Plan requirements. From the beginning, it has been essential working together with the Nuclear Safety Council, as is established in the agreement signed in order to collaborate in Planning, Preparedness and Response in Radiological Emergencies. [es

  11. Criteria for preparation and evaluation of radiological emergency response plans and preparedness in support of nuclear power plants. Interim report

    International Nuclear Information System (INIS)

    1980-01-01

    The purpose of this document is to provide a common reference and interim guidance source for: state and local governments and nuclear facility operators in the development of radiological emergency response plans and preparedness in support of nuclear power plants; and Nuclear Regulatory Commission (NRC), Federal Emergency Management Agency (FEMA) and other Federal agency personnel engaged in the review of state, local government, and licensee plans and preparedness

  12. Planning guidance for emergency response to a hypothetical nuclear attack on Riyadh, Saudi Arabia

    Science.gov (United States)

    Shubayr, Nasser Ali M.

    The threat of nuclear attack will remain imminent in an ever-advancing society. Saudi Arabia is not immune to this threat. This dissertation establishes planning guidance for response to a nuclear attack on Riyadh, the capital of Saudi Arabia, based on a hypothetical scenario of a nuclear detonation. A case scenario of a one-megaton thermonuclear bomb detonated at ground level over Riyadh is used to support the thesis. Previous nuclear tests and the Hiroshima and Nagasaki bombings have been used to present possible effects on Riyadh. US planning guidance and lessons learned from the Chernobyl and Fukushima nuclear plants accidents have been used to develop the emergency response guidance. The planning guidance outlines a rapid response to the nuclear detonation. Four damage zones have been identified; severe damage zone, moderate damage zone, light damage zone and dangerous fallout zone. Actions that are recommended, and those that should be avoided, have been determined for each zone. Shelter/ evacuation evaluation for blast-affected and fallout-affected areas is the basis for the recommendation that shelter in place is the best decision for the first hours to days after the attack. Guidelines for medical care response and population monitoring and decontamination are included to reduce the early and long-term effects of the attack. Recommendations to the Saudi Arabian authorities have been made to facilitate suitable preparedness and response for such an event.

  13. Nuclear emergency planning and response in the Netherlands: Experiences obtained from large scale exercises

    International Nuclear Information System (INIS)

    Smetsers, R.C.G.M.; Pruppers, M.J.M.; Sonderen, J.F. van

    2000-01-01

    In 1986 the Chernobyl accident led the Dutch Government to a reconsideration of their possibilities for managing nuclear emergencies. It was decided to improve both the national emergency management organization and the infrastructure for collecting and presenting technical information. The first improvement resulted in the National Plan for Nuclear Emergency Planning and Response (EPR) and the second in a series of technical facilities for the assessment of radiation doses. Since 1990, following the implementation of the EPR and most of the technical facilities, several emergency exercises have taken place to test the effectiveness of organization and infrastructure. Special emphasis has been given to the early phase of the simulated accidents. This paper summarises the experiences obtained from these exercises. Major obstacles appear to be: (1) keeping all participants properly informed during the process, (2) the difference in working attitude of technical experts and decision-makers, (3) premature orders for countermeasures and (4) the (too) large number of people involved in the decision-making process. From these experiences requirements for instruments can be deduced. Such instruments include predictive models, to be used for dose assessment in the early phase of an accident which, apart from being fast, should yield uncomplicated results suitable for decision-makers. Refinements of models, such as taking into account the specific nature of the (urban) environment, are not needed until the recovery phase of a nuclear accident. (author)

  14. Basis for nuclear emergency planning and preparedness in Denmark. The farfield perspective

    International Nuclear Information System (INIS)

    Walmod-Larsen, O.; Thorlaksen, B.; Ulbak, K.

    1989-01-01

    The basis for the Danish Nuclear Emergency Planning and Preparedness is described. Based on calculated scenarios of hypothetical core-melt accidents at foreign nuclear power plants close to the Danish border, requirements for a farfield (medium-field) preparedness organization are set up. Early alert and adequate information to the public are essential to credibility. Sheltering is the main protective measure against external radiation and inhalation during plume passage. Rapid monitoring of radiation levels and control of foodstuffs are provided for. Evacuation before passage of the plume is not foreseen, but temporary relocation from hot spots caused by local precipitation could be considered even in the farfield region

  15. On-site emergency intervention plan for nuclear accident situation at INR-Pitesti TRIGA reactor

    International Nuclear Information System (INIS)

    Oprea, I.; Margenu, S.; Preda, M.

    2001-01-01

    A nuclear incident is defined as a series of events leading to release of radioactive materials into the environment of sufficient concentration to make necessary protective actions. The decision to initiate a protective action is a complex process. The benefits of taking the action is weighed against the involved risk and constraints. In addition the decision will be made under difficult emergency conditions, probably with little detailed information available. Therefore, considerable planing is necessary to reduce to manageable levels the types of decisions leading to effective responses to protect the public in the event of a nuclear incident. The sequence of events for developing emergency plans and responding to nuclear incidents will vary according to individual circumstances, because the international recommendations and site-specific emergency plans cannot provide detailed guidance for all accident scenarios and variations in local conditions. Flexibility must be maintained in emergency response to reflect the actual circumstances encountered (e.g. source term characteristics, the large number of possible weather conditions and environmental situation such as time of the day, season of the year, land use and soil types, population distribution and economic structures, uncertainties in the availability of technical and administrative support and the behaviour of the population). This further complicates the decision-making process, especially under accident conditions where there are time pressures and psychological stress. Therefore one the most important problems in the case of a nuclear emergency is quantifying all these very different types of off-site consequences. Last years, and in particular since the Chernobyl accident, there has been a considerable increase in the resources allocated to development of computerised systems which allow for predicting the radiological impact of accidents and to provide information in a manageable and effective form to

  16. Emergency planning and response: An independent safety assessment of Department of Energy nuclear reactor facilities

    International Nuclear Information System (INIS)

    Knuth, D.; Boyd, R.

    1981-02-01

    The Department of Energy (DOE) has formed a Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee to assess the implications of the recommendations contained in the President's Commission Report on the Three Mile Island (TMI) Accident (the Kemeny Commission report) that are applicable to DOE's nuclear reactor operations. Thirteen DOE nuclear reactors have been reviewed. The assessments of the 13 facilities are based on information provided by the individual operator organizations and/or cognizant DOE Field Offices. Additional clarifying information was supplied in some, but not all, instances. This report indicates how these 13 reactor facilities measure up in light of the Kemeny and other TMI-related studies and recommendations, particularly those that have resulted in upgraded Nuclear Regulatory Commission (NRC) requirements in the area of emergency planning and response

  17. On-site and off-site emergency planning at Cekmece Nuclear Research and Training Centre

    International Nuclear Information System (INIS)

    Soyberk, O.A.

    1986-01-01

    An emergency plan was prepared for minimizing the consequences of any unforeseen radiation accident in Cekmece Nuclear Research and Training Centre (CNAEM) in Istanbul, Turkey. CNAEM is situated near Kucukcekmece Lake, which is about 30 km to the west of Istanbul. It includes two pool-type research reactors of 1 MW(th) and 5 MW(th). The population in the nearest inhabited areas varies from 1000 to 50,000. Accidents are classified, according to their severity, into three categories at CNAEM: (a) local emergency, (b) on-site emergency, (c) off-site emergency. During local emergency situations evacuation is not necessary. An on-site emergency situation requires the evacuation of personnel from the plant. Personnel hearing the emergency alarm should move directly to the preselected place as soon as possible. An off-site emergency is any accident that leads to widespread contamination outside the boundary. In this situation the Turkish Atomic Energy Authority and governmental authorities are notified immediately. The emergency organization group consists of: (a) Plant Superintendent, (b) Emergency Director, (c) Reactor Supervisor, (d) Senior Health Physicist, (e) Reactor Shift Operator, (f) Health Physicists. The administration building will be used as the Emergency Control Centre. The emergency teams working under the direction of the Emergency Director consist of: (a) Health Physics, (b) Fire and Rescue, (c) First Aid and Decontamination, (d) Transportation, (e) Security and Patrol. The emergency situation is evaluated in three phases at CNAEM. The first phase is the first few hours after the beginning of the accident. The second phase is between 8-10 hours or more following the first phase. The third phase is the recovery phase. The integrated doses over periods of two hours and two days are calculated according to the situation of the core, i.e. total or partial melting, and weather conditions. The results of the calculated parameters can be adapted to possible

  18. Indian Point Nuclear Power Station: verification analysis of County Radiological Emergency-Response Plans

    International Nuclear Information System (INIS)

    Nagle, J.; Whitfield, R.

    1983-05-01

    This report was developed as a management tool for use by the Federal Emergency Management Agency (FEMA) Region II staff. The analysis summarized in this report was undertaken to verify the extent to which procedures, training programs, and resources set forth in the County Radiological Emergency Response Plans (CRERPs) for Orange, Putnam, and Westchester counties in New York had been realized prior to the March 9, 1983, exercise of the Indian Point Nuclear Power Station near Buchanan, New York. To this end, a telephone survey of county emergency response organizations was conducted between January 19 and February 22, 1983. This report presents the results of responses obtained from this survey of county emergency response organizations

  19. Emergency planning requirements and short-term countermeasures for commercial nuclear power plants in the United States

    International Nuclear Information System (INIS)

    Kantor, F.; Hogan, R.; Mohseni, A.

    1995-01-01

    Since the accident at the Three Mile Island Unit, the United States Nuclear Regulatory's Commission (NRC's) emergency planning regulations are now considered and an important part of the regulatory framework for protecting the public health and safety. Many aspects of the countermeasures are presented: Emergency Planning Zones (EPZ), off-Site emergency planning and preparedness, responsibilities of nuclear power plants operators and states and local government. Finally, protective action recommendations are given as well as the federal response to an emergency. The authors noted that the use of potassium iodide is not considered as an effective countermeasure for the public protection in the US. (TEC). 1 fig

  20. Learning, innovation and communication: evolving dynamics of a nuclear emergency plan

    International Nuclear Information System (INIS)

    Quadros, Andre Luiz Lopes

    2014-01-01

    The technological development inherent to modern societies has placed human beings in situations of choice from a wide variety of possible risks. As a way to protect people and the environment, actions need to be developed in order to reduce possible consequences of the materialisation of these risks. The thermonuclear power generation demand planning in order to prepare answers to possible emergency situations, as even being considered of low probability of occurrence, when they happen have a significant impact on populations and regions of its surroundings. Considering the relevance of this issue, this thesis aimed to identify and analyze the dynamics of preparedness and response to emergency situations in a Nuclear Power Plant, trying to understand its evolution over the time and systematizing it, considering the actors involved, processes of organizational learning, innovation and risk communication, considered as crucial for the development and improvement of emergency plans. Concerning preparedness and response to possible emergency situations in this nuclear plant, it was possible not only to confirm the importance of the three processes studied, but also observe that they can be treated and evaluated in an integrated and systematic way. So, it was presented a model that aims to facilitate the understanding of this perspective and enhance the importance of participation and cooperation between all stakeholders (organizations and the local population) within a socio-participatory perspective. To this end, this exploratory research sought for evidences in documents, participation in planning meetings, direct observation of the general exercises of the CNAAA External Emergency Plan of 2013, interviews with some of the actors involved and through the application of a questionnaire among the population of the Praia Vermelha, in Angra dos Reis, Rio de Janeiro. (author)

  1. Guidance Manual for preparing Nuclear and Radiological Emergency Preparedness and Response Plan

    Energy Technology Data Exchange (ETDEWEB)

    Muhammed, Kabiru [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Seung-Young [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-10-15

    The Nuclear and Radiological Emergency Preparedness and Response Plan(NREPRP) describes the capabilities, responsibilities and authorities of government agencies and a conceptual basis for integrating the activities of these agencies to protect public health and safety. The NREPRP addresses issues related to actual or perceived radiation hazard requiring a national response in order to: i. Provide co-ordination of a response involving multi-jurisdictions or significant national responsibilities; or ii. Provide national support to state and local governments. The objective of this research is to establish Guidance Manual for preparing a timely, organized and coordinated emergency response plan for Authorities/agencies to promptly and adequately determine and take actions to protect members of the public and emergency workers. The manual will not provide sufficient details for an adequate response. This level of details is contained in standard operating procedures that are being developed based on the plan developed. Base on the data obtain from integrated planning levels and responsibility sharing, the legal document of major government agencies participating in NREPRP form the legal basis for the response plan. Also the following documents should be some international legal binding documents. Base on the international safety requirement and some countries well developed NREPRP, we have drafted a guidance manual for new comer countries for easy development of their countries NREPRP. Also we have taken in to consideration lessons learn from most accident especially Fukushima accident.

  2. Guidance Manual for preparing Nuclear and Radiological Emergency Preparedness and Response Plan

    International Nuclear Information System (INIS)

    Muhammed, Kabiru; Jeong, Seung-Young

    2014-01-01

    The Nuclear and Radiological Emergency Preparedness and Response Plan(NREPRP) describes the capabilities, responsibilities and authorities of government agencies and a conceptual basis for integrating the activities of these agencies to protect public health and safety. The NREPRP addresses issues related to actual or perceived radiation hazard requiring a national response in order to: i. Provide co-ordination of a response involving multi-jurisdictions or significant national responsibilities; or ii. Provide national support to state and local governments. The objective of this research is to establish Guidance Manual for preparing a timely, organized and coordinated emergency response plan for Authorities/agencies to promptly and adequately determine and take actions to protect members of the public and emergency workers. The manual will not provide sufficient details for an adequate response. This level of details is contained in standard operating procedures that are being developed based on the plan developed. Base on the data obtain from integrated planning levels and responsibility sharing, the legal document of major government agencies participating in NREPRP form the legal basis for the response plan. Also the following documents should be some international legal binding documents. Base on the international safety requirement and some countries well developed NREPRP, we have drafted a guidance manual for new comer countries for easy development of their countries NREPRP. Also we have taken in to consideration lessons learn from most accident especially Fukushima accident

  3. 8432 - Order of 29 March 1989 publishing the Agreement of the Council of Ministers of 3 March 1989 on approval of the Basic Nuclear Emergency Plan

    International Nuclear Information System (INIS)

    1989-04-01

    The Order approves and reproduces the Basic Nuclear Emergency Plan. The Plan contains the instructions to be complied with when nuclear emergency plans are established at Province level in accordance with the radiological criteria laid down by the Nuclear Safety Council, in the event an area is affected by an accident originating in a nuclear power plant [fr

  4. The response to a worst-case scenario - the national emergency plan for nuclear accidents

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham D, John [Radiological Protection Inst. of Ireland (Ireland)

    1996-10-01

    The Chernobyl accident in 1986 highlighted many deficiencies in the preparedness of countries to deal with a major accident. It demonstrated how vulnerable countries are to transboundary contamination. Ireland had no emergency plan at the time of the accident and only minimal facilities with which to assess the consequences of the accident. Nonetheless, the then Nuclear Energy Board with the assistance of Government Departments and the Civil Defence organisation reacted quickly to assess the situation despite the complete lack of information about the accident from the then USSR. Even countries with advanced nuclear technologies faced similar difficulties. It was quickly recognised by Government that the national laboratory facilities were totally inadequate. The Nuclear Energy Board was provided with additional resources to assist it to cope in the short term with the very large demand for monitoring. In the longer term a new national radiation laboratory was provided and the Board was formally replaced by the Radiological Protection Institute of Ireland. It was given statutory responsibility to monitor radiation levels, to advise measures to be taken for the protection of the public and to provide information for the public. An emergency plan based on the Chernobyl experience was drafted in 1987, amended and published in 1992. Certain features of this plan were implemented from 1987 onwards, notably the classification of responsibilities and the installation of a national continuous radiation monitoring system. The paper outlines the responsibilities of those who could be involved in a response to a nuclear incident, the procedures used to evaluate its consequences and the provision of information for the public. The plan provides an integrated management system which has sufficient flexibility to enable a rapid response to be made to a major or minor crisis, either foreseen or unforeseen and whatever its cause.

  5. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 4. Radiological emergency response planning for nuclear power plants in California

    International Nuclear Information System (INIS)

    Yen, W.W.S.

    1977-01-01

    This report reviews the state of emergency response planning for nuclear power plants in California. Attention is given to the role of Federal agencies, particularly the Nuclear Regulatory Commission, in planning for both on and off site emergency measures and to the role of State and local agencies for off site planning. The relationship between these various authorities is considered. Existing emergency plans for nuclear power plants operating or being constructed in California are summarized. The developing role of the California Energy Resources Conservation and Development Commission is examined

  6. ANSI/ANS-8.23-1997: nuclear criticality accident emergency planning and response

    International Nuclear Information System (INIS)

    Baker, J.S.

    2004-01-01

    American National Standard ANSUANS-8.23 was developed to expand upon the basic emergency response guidance given in American National Standard, 'Administrative Practices for Nuclear Criticality Safety' ANSI/ANS-8.19-1996 (Ref. 1). This standard provides guidance for minimizing risks to personnel during emergency response to a nuclear criticality accident outside reactors. This standard is intended to apply to those facilities for which a criticality accident alarm system, as specified in American National Standard, 'Criticality Accident Alarm System', ANSI/ANS-8.3-1997 (Ref. 2) is in use. The Working Group was established in 1990, with Norman L. Pruvost as chairman. The Working Group had up to twenty-three members representing a broad range of the nuclear industry, and has included members from Canada, Japan and the United Kingdom. The initial edition of ANSI/ANS-8.23 was approved by the American National Standards Institute on December 30, 1997. It provides guidance for the following topics: (1) Management and technical staff responsibilities; (2) Evaluation of a potential criticality accident; (3) Emergency plan provisions; (4) Evacuation; (5) Re-entry, rescue and stabilization; and (6) Classroom training, exercises and evacuation drills. This guidance is not for generic emergency planning issues, but is specific to nuclear criticality accidents. For example, it assumes that an Emergency Plan is already established at facilities that implement the standard. During the development of the initial edition of ANSI/ANS-8.23, each Working Group member evaluated potential use of the standard at a facility with which the member was familiar. This revealed areas where a facility could have difficulty complying with the standard. These reviews helped identify and eliminate many potential problems and ambiguities with the guidance. The Working Group has received very limited feedback from the user community since the first edition of the standard was published. Suggestions

  7. Hypothetical accidents of light-water moderated nuclear power plants in the framework of emergency planning

    International Nuclear Information System (INIS)

    1979-07-01

    Hypothetical accidents in nuclear power plants are events which by definition can have a devastating impact on the surroundings of the plant. Apart from an adequate plant design, the protection of the population in case of an accident is covered by the emergency planning. Of major importance are the measures for the short-term emergency protection. The decision on whether these measures are applied has to be based on appropriate measurements within the plant. The aim and achieved result of this investigation is to specify accident types. They serve as operational decision making criteria to determine the necessary measurements for analysing the accident in the accident situation, and to provide indications for choosing the suitable strategy for the protection measures. (orig.) [de

  8. Reevaluation of the emergency planning zone for nuclear power plants in Taiwan using MACCS2 code

    International Nuclear Information System (INIS)

    Wu, J.; Yang, Y.-M.; Chen, I.-J.; Chen, H.-T.; Chuang, K.-S.

    2006-01-01

    According to government regulations, the emergency planning zone (EPZ) of a nuclear power plant (NPP) must be designated before operation and reevaluated every 5 years. Corresponding emergency response planning (ERP) has to be made in advance to guarantee that all necessary resources are available under accidental releases of radioisotope. In this study, the EPZ for each of the three operating NPPs, Chinshan, Kuosheng, and Maanshan, in Taiwan was reevaluated using the MELCOR Accident Consequence Code System 2 (MACCS2) developed by Sandia National Laboratory. Meteorological data around the nuclear power plant were collected during 2003. The source term data including inventory, sensible heat content, and timing duration, were based on previous PRA information of each plant. The effective dose equivalent and thyroid dose together with the related individual risk and societal risk were calculated. By comparing the results to the protective action guide and related safety criteria, 1.5, 1.5, and 4.5 km were estimated for Chinshan, Kuosheng, and Maanshan NPPs, respectively. We suggest that a radius of 5.0 km is a reasonably conservative value of EPZ for each of the three operating NPPs in Taiwan

  9. Emergency plan belgian experience

    International Nuclear Information System (INIS)

    Clymans, A.

    1989-01-01

    The Chernobyl disaster prompted authorities in Belgium to carry out a comprehensive review of all emergency plans and, in particular, those designed specifically for nuclear accidents. This review was aimed at determining what type of plans existed and to what extent such plans were operational. This paper sets out to present a broad overview of different aspects of this problem: organization of public emergency plans, co-ordination of operations, merits and demerits of centralization as opposed to decentralization, planning zones, obligation to release information to the public and relations with the media, and finally the international dimension to the problem. The author expresses the hope that the latter area will inspire practical suggestions [fr

  10. Method for Developing a Communication Strategy and Plan for a Nuclear or Radiological Emergency. Emergency Preparedness and Response. Publication Date: July 2015

    International Nuclear Information System (INIS)

    2015-08-01

    The aim of this publication is to provide a practical resource for emergency planning in the area of public communication in the development of a radiation emergency communication plan (RECP). The term 'public communication' is defined as any activity that communicates information to the public and the media during a nuclear or radiological emergency. To avoid confusion, the term public communication has been used in this publication rather than public information, which may be used in other IAEA publications and documents to ensure consistency with the terminology used in describing the command and control system. This publication also aims to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(11) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research with regard to the response to nuclear or radiological emergencies. This publication is intended to provide guidance to national and local authorities on developing an RECP which incorporates the specific functions, arrangements and capabilities that will be required for public communication during a nuclear or radiological emergency. The two main features of this publication are the template provided to develop an RECP and detailed guidance on developing a communication strategy for emergency preparedness and response to nuclear or radiological emergencies. The template is consistent with the outline of the national radiation emergency plan proposed in Method for Developing Arrangements for Response to a Nuclear or Radiological Emergency (EPR-Method 2003). This publication is part of the IAEA

  11. Analyzing and sense making of human factors in the Malaysian radiation and nuclear emergency planning framework

    Science.gov (United States)

    Hamid, A. H. A.; Rozan, M. Z. A.; Deris, S.; Ibrahim, R.; Abdullah, W. S. W.; Rahman, A. A.; Yunus, M. N. M.

    2016-01-01

    The evolution of current Radiation and Nuclear Emergency Planning Framework (RANEPF) simulator emphasizes on the human factors to be analyzed and interpreted according to the stakeholder's tacit and explicit knowledge. These human factor criteria are analyzed and interpreted according to the "sense making theory" and Disaster Emergency Response Management Information System (DERMIS) design premises. These criteria are corroborated by the statistical criteria. In recent findings, there were no differences of distributions among the stakeholders according to gender and organizational expertise. These criteria are incrementally accepted and agreed the research elements indicated in the respective emergency planning frameworks and simulator (i.e. 78.18 to 84.32, p-value <0.05). This paper suggested these human factors criteria in the associated analyses and theoretical perspectives to be further acomodated in the future simulator development. This development is in conjunction with the proposed hypothesis building of the process factors and responses diagram. We proposed that future work which implies the additional functionality of the simulator, as strategized, condensed and concise, comprehensive public disaster preparedness and intervention guidelines, to be a useful and efficient computer simulation.

  12. Analyzing and sense making of human factors in the Malaysian radiation and nuclear emergency planning framework

    International Nuclear Information System (INIS)

    Hamid, A. H. A.; Rozan, M. Z. A.; Ibrahim, R.; Deris, S.; Abdullah, W. S. W.; Yunus, M. N. M.; Rahman, A. A.

    2016-01-01

    The evolution of current Radiation and Nuclear Emergency Planning Framework (RANEPF) simulator emphasizes on the human factors to be analyzed and interpreted according to the stakeholder’s tacit and explicit knowledge. These human factor criteria are analyzed and interpreted according to the “sense making theory” and Disaster Emergency Response Management Information System (DERMIS) design premises. These criteria are corroborated by the statistical criteria. In recent findings, there were no differences of distributions among the stakeholders according to gender and organizational expertise. These criteria are incrementally accepted and agreed the research elements indicated in the respective emergency planning frameworks and simulator (i.e. 78.18 to 84.32, p-value <0.05). This paper suggested these human factors criteria in the associated analyses and theoretical perspectives to be further acomodated in the future simulator development. This development is in conjunction with the proposed hypothesis building of the process factors and responses diagram. We proposed that future work which implies the additional functionality of the simulator, as strategized, condensed and concise, comprehensive public disaster preparedness and intervention guidelines, to be a useful and efficient computer simulation

  13. Analyzing and sense making of human factors in the Malaysian radiation and nuclear emergency planning framework

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, A. H. A., E-mail: amyhamijah@gmail.com, E-mail: amyhamijah@nm.gov.my [Faculty of Computing, Universiti Teknologi Malaysia (UTM), Skudai, 81310 Johor Bahru, Johor (Malaysia); Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, 16100 Kota Bharu, Kelantan (Malaysia); Rozan, M. Z. A., E-mail: drmohdzaidi@gmail.com; Ibrahim, R. [Faculty of Computing, Universiti Teknologi Malaysia (UTM), Skudai, 81310 Johor Bahru, Johor (Malaysia); Deris, S. [Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, 16100 Kota Bharu, Kelantan (Malaysia); Abdullah, W. S. W.; Yunus, M. N. M. [Malaysian Nuclear Agency (NM), Bangi, 43000 Kajang, Selangor (Malaysia); Rahman, A. A. [Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor (Malaysia)

    2016-01-22

    The evolution of current Radiation and Nuclear Emergency Planning Framework (RANEPF) simulator emphasizes on the human factors to be analyzed and interpreted according to the stakeholder’s tacit and explicit knowledge. These human factor criteria are analyzed and interpreted according to the “sense making theory” and Disaster Emergency Response Management Information System (DERMIS) design premises. These criteria are corroborated by the statistical criteria. In recent findings, there were no differences of distributions among the stakeholders according to gender and organizational expertise. These criteria are incrementally accepted and agreed the research elements indicated in the respective emergency planning frameworks and simulator (i.e. 78.18 to 84.32, p-value <0.05). This paper suggested these human factors criteria in the associated analyses and theoretical perspectives to be further acomodated in the future simulator development. This development is in conjunction with the proposed hypothesis building of the process factors and responses diagram. We proposed that future work which implies the additional functionality of the simulator, as strategized, condensed and concise, comprehensive public disaster preparedness and intervention guidelines, to be a useful and efficient computer simulation.

  14. Guidance for emergency planning in nuclear power plants; Vaegledning foer insatsplanering i kaerntekniska anlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Tommy; Ekdahl, Maria (Ringhals AB, Vaeroebacka (Sweden))

    2008-06-15

    Ringhals has been a model for this study, but the purpose has been to make the report applicable at all nuclear power plants in Sweden. The work has been done in close co-operation with the Swedish nuclear power plants and Rescue Services in the nuclear power municipalities Oesthammar, Oskarshamn, and Varberg. The internal fire brigade at the nuclear power plants has also been involved. A document will also be published as a further guidance at efforts of the type fires, which are mentioned in the enclosed document. After a fire in a switchgear room in 2005 the need of making the existing effort planning more effective at nuclear power plants was observed. The idea with the planning is to plan the effort in order to give the operational and emergency staff a good and actual support to come to a decision and to start the mission without delay. The risk information is showed by planning layouts, symbols and drawings as basis, give risk information and effort information. The effort information shows outer arrangements, manual action points, fire installations, passive fire safety etc. The risk information is shown by risk symbols. Their purpose is to give a fast overview of the existing risks. Reactor safety effects is the ruling influence if an effort has to be done in order to secure safety for a third person. In order to make an effort in an area personal risks for rescue staff, such as electricity risks, radiological risks, chemicals and gas bottles with compressed gases, has to be eliminated. For complicated missions detailed instructions are needed in order to handle specific risks. In a group discussion different people with pertinent knowledge has to value which problematic efforts need detailed instruction. Missions that have to be analyzed in a work group as above are: fire may affect the reactor safety, fire that may threaten the structural integrity, chemical discharge with big consequence on environment/third person and handling of gas system (compressed

  15. Strategic Aspects of Nuclear and Radiological Emergency Management. Planning for Effective Decision Making; Consequence Management and Transition to Recovery

    International Nuclear Information System (INIS)

    2010-01-01

    The collective experience of the NEA Working Party on Nuclear Emergency Matters (WPNEM), and in particular, the experience from the International Nuclear Emergency Exercise (INEX) series, has shown that it is important to plan and to implement emergency response actions based on a guiding strategic vision. Within this context, Strategic Aspects of Nuclear and Radiological Emergency Management presents a framework of strategic planning elements to be considered by national emergency management authorities when establishing or enhancing processes for decision making, and when developing or implementing protection strategies. The focus is on nuclear or radiological emergency situations leading to complex preparedness and response conditions, involving multiple jurisdictions and significant international interfaces. The report is aimed at national emergency management authorities, international organisations and those who are seeking to improve the effectiveness of emergency management. Its goal is to provide insights into decision-making processes within existing emergency planning arrangements. It also highlights common areas of good practice in decision making. Specific areas for improvement, identified during the INEX-3 consequence management exercise, are included, particularly in support of decision making for countermeasures for consequence management and the transition to recovery. (authors)

  16. Review of off-site emergency preparedness and response plan of Indian NPPs based on experience of Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Singh, Hukum; Dash, M.; Shukla, Vikas; Vijayan, P.; Krishnamurthy, P.R.

    2012-01-01

    Nuclear power plants in India are designed, constructed and operated based on the principle of the highest priority to nuclear safety. To deal with any unlikely situation of radiological emergency, the emergency preparedness and response plans are ensured to be in place at all NPPs prior to their commissioning. These plans are periodically reviewed and tested by conducting emergency exercise with the participation of various agencies such as Nuclear Power Corporation of India Limited, NDMA, district authorities, regulatory body and general public. On March 11, 2011 an earthquake of magnitude 9.0 hit the Fukushima Dai-ichi and Dai-ni followed by tsunami waves of height 15 meters above reference sea level. This resulted in large scale release of radioactive material from Fukushima Dai-ichi NPS. This led to the evacuation of a large number of people from the areas surrounding the affected nuclear power plants. The event was rated as level 7 event in International Nuclear Event Scale (INES). The event also revealed the challenges in handling radiological emergency situation in adverse environmental conditions, The experience of managing radiological emergency situation during Fukushima nuclear accident provides opportunities to review and improve emergency preparedness and response programme. The present paper presents the chronology of the emergency situation, challenges faced and handled in Fukushima. Even though the possibility of a Fukushima type nuclear accident in India is very remote due to the low probability of a high intensity earthquake followed by tsunami at NPP sites, the efforts needs to be initiated from the regulatory point of view for an effective Nuclear and Radiological Emergency Preparedness and Response Plans. The Emergency Preparedness and Response Plans of NPP sites were reviewed in the light of unique challenges of accident at Fukushima. It is realized that multi unit events are the realities that must be addressed as part of Emergency

  17. Review of off-site emergency preparedness and response plan of Indian NPPs based on experience of Fukushima nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Hukum; Dash, M.; Shukla, Vikas; Vijayan, P.; Krishnamurthy, P.R., E-mail: vshukla@aerb.gov.in [Operating Plants Safety Division, Atomic Energy Regulatory Board, Mumbai (India)

    2012-07-01

    Nuclear power plants in India are designed, constructed and operated based on the principle of the highest priority to nuclear safety. To deal with any unlikely situation of radiological emergency, the emergency preparedness and response plans are ensured to be in place at all NPPs prior to their commissioning. These plans are periodically reviewed and tested by conducting emergency exercise with the participation of various agencies such as Nuclear Power Corporation of India Limited, NDMA, district authorities, regulatory body and general public. On March 11, 2011 an earthquake of magnitude 9.0 hit the Fukushima Dai-ichi and Dai-ni followed by tsunami waves of height 15 meters above reference sea level. This resulted in large scale release of radioactive material from Fukushima Dai-ichi NPS. This led to the evacuation of a large number of people from the areas surrounding the affected nuclear power plants. The event was rated as level 7 event in International Nuclear Event Scale (INES). The event also revealed the challenges in handling radiological emergency situation in adverse environmental conditions, The experience of managing radiological emergency situation during Fukushima nuclear accident provides opportunities to review and improve emergency preparedness and response programme. The present paper presents the chronology of the emergency situation, challenges faced and handled in Fukushima. Even though the possibility of a Fukushima type nuclear accident in India is very remote due to the low probability of a high intensity earthquake followed by tsunami at NPP sites, the efforts needs to be initiated from the regulatory point of view for an effective Nuclear and Radiological Emergency Preparedness and Response Plans. The Emergency Preparedness and Response Plans of NPP sites were reviewed in the light of unique challenges of accident at Fukushima. It is realized that multi unit events are the realities that must be addressed as part of Emergency

  18. Prediction of evacuation time for emergency planning zone of Uljin nuclear site

    International Nuclear Information System (INIS)

    Jeon, In Young; Lee, Jai Ki

    2002-01-01

    The time for evacuation of residents in Emergency Planning Zone (EPZ) of Uljin nuclear site in case of a radiological emergency was estimated with traffic analysis. Evacuees were classified into 4 groups by considering population density, local jurisdictions, and whether they are residents or transients. The survey to investigate the behavioral characteristics of the residents was made for 200 households and included a hypothetical scenario explaining the accident situation and questions such as dwelling place, time demand for evacuation preparation, transportation means for evacuation, sheltering place, and evacuation direction. The microscopic traffic simulation model, CORSIM, was used to simulate the behavior of evacuating vehicles on networks. The results showed that the evacuation time required for total vehicles to move out from EPZ took longer in the daytime than at night in spite that the delay times at intersections were longer at night than in the daytime. This was analyzed due to the differences of the trip generation time distribution. To validate whether the CORSIM model can appropriately simulate the congested traffic phenomena assumable in case of emergency, a benchmark study was conducted at an intersection without an actuated traffic signal near Uljin site during the traffic peak-time in the morning. This study indicated that the predicted output by the CORSIM model was in good agreement with the observed data, satisfying the purpose of this study

  19. The production and operation of the nuclear industry road emergency response plan (NIREP)

    International Nuclear Information System (INIS)

    Higson, J.

    1991-01-01

    For many years, radioactive material, ranging from small sources used for medical and commercial purposes to large consignments of irradiated fuel, has been safely moved by road in Great Britain. All such movements are controlled by law and have to meet clearly specified safety requirements concerning packaging and shielding to ensure that if the transporting vehicle is involved in an accident, there is no increase in the hazards involved because of the nature of its load. There are currently some 40,000 movements by road every year, but over more than 25 years, there has never been an accident which has led to any significant radiological impact to members of the public. A national scheme to provide contingency arrangements in the event of a road accident involving radioactive materials has now been set up by the major users and consignors of radioactive material. Called NIREP (Nuclear Industry Road Emergency Response Plan), the member industries have agreed immediately to despatch, from the nearest organisation to the incident, qualified health physicist personnel to deal with any incident involving radioactive material belonging to (or consigned by) any of the participating companies. With their widespread location of establishments, all parts of the UK mainland are covered. Vehicles covered by the scheme will display a NIREP placard, thus giving the Police, or other emergency services, an emergency telephone number of a coordinating centre and information on the site responsible for the load. (author)

  20. ANS [American Nuclear Society] topical meeting on radiological accidents: Perspectives and emergency planning: Proceedings

    International Nuclear Information System (INIS)

    1987-03-01

    The increasing use of radioactive materials and the increasing public concern about possible accidents involving these materials has led to greater emphasis on preparing for such emergencies. The ANS Topical Meeting on Radiological Accidents - Perspectives and Emergency Planning provided a review of experiences with radiological accidents. The meeting covered some of the most important aspects of radiological accidents. Papers were presented which dealt with radiological accident experience. Technical response to accidents is of primary interest to many in the nuclear community; most of the papers submitted fell into this area. So many of these papers dealt with the use of computers in response that a session on that topic was arranged. A very significant impact of most radiological accidents is the cost, especially the cost of cleanup. There were papers on what is known about costs and associated current topics, such as modification and extension of the Price-Anderson Act. At least as important as the technical response to accidents is how society attempts to deal with them. A session on institutional issues was included to discuss how governments and other organizations respond to and deal with accidents. Medical effects of accidents are of great concern to the public. Invited papers to review the effects of high doses of radiation as well as very low doses were included in that session. Although the nuclear industry has an excellent safety record, this fact often does not agree with the public perception of the industry. The final session explored the public response to and perception of radiological emergencies and accidents. This subject will ultimately determine the future use of radioactive materials in this country

  1. Criteria for preparation and evaluation of radiological emergency response plans and preparedness in support of nuclear power plants: Criteria for utility offsite planning and preparedness: Final report

    International Nuclear Information System (INIS)

    Podolak, E.M. Jr.; Sanders, M.E.; Wingert, V.L.; Donovan, R.W.

    1988-09-01

    The Nuclear Regulatory Commission (NRC) and the Federal Emergency Management Agency (FEMA) have added a supplement to NUREG-0654/FEMA-REP-1, Rev. 1 that provides guidance for the development, review, and evaluation of utility offsite radiological emergency response planning and preparedness for those situations in which state and/or local governments decline to participate in emergency planning. While this guidance primarily applies to plants that do not have full-power operating licenses, it does have relevance to operating nuclear power plants

  2. The regulatory approach to ensuring the adequacy of emergency planning for nuclear power stations in South Africa

    International Nuclear Information System (INIS)

    Metcalf, P.E.

    1986-01-01

    The first nuclear power station in South Africa became operational in 1984. The paper describes the basis on which emergency planning was required from a regulatory point of view. The extent of planning required and the associated facilities are described, together with the structure of the emergency response organization and associated responsibilities. The provisions in place to ensure ongoing readiness of the emergency response organization are discussed. These include training and retraining of operational staff, equipment and inventory checks and the conducting of an annual full-scale demonstration exercise. (author)

  3. Regional cooperation for emergency plan

    International Nuclear Information System (INIS)

    Chu, D.S.L.; Liu, P.C.

    1981-01-01

    It has become increasingly evident since the Three Mile Island (TMI) accident that a sound emergency plan is indispensable to the overall nuclear power generation program. In some developing countries in Eastern Aisa, the availability of manpower resources and facilities to handle a nuclear power plant accident are rather limited. Therefore, the establishment of a regional mutual emergency plan is deemed necessary. A preliminary idea concerning this establishment is presented for deliberation by this Conference

  4. Nuclear power plant emergency preparedness

    International Nuclear Information System (INIS)

    2005-01-01

    The guide sets forth detailed requirements on how the licensee of a nuclear power plant shall plan, implement and maintain emergency response arrangements. The guide is also applied to nuclear material and nuclear waste transport in situations referred to in guide YVL 6.5. Requirements on physical protection are presented in a separate guide of Finnish Radiation and Nuclear Safety Authority (STUK)

  5. On-site emergency planning

    International Nuclear Information System (INIS)

    Kueffer, K.

    1980-01-01

    This lecture covers the Emergency Planning of the Operating organization and is based on the Code of Practice and Safety Guides of the IAEA as well as on arrangements in use at the Swiss Nuclear Power Station Beznau and - outlines the basis and content of an emergency plan - describes the emergencies postulated for emergency planning purposes - describes the responsibilities, the organization and the procedures of the operating organization to cope with emergency situations and the liaison between the operating organization, the regulatory body and public authorities - describes the facilities and equipment which should be available to cope with emergency sitauations - describes the measures and actions to be taken when an emergency arises in order to correct abnormal plant conditions and to protect the persons on-and off-site - describes the aid to be given to affected personnel - describes the aspects relevant to maintaining the emergency plan and organization in operational readiness. (orig./RW)

  6. Nuclear emergency preparedness in Canada

    International Nuclear Information System (INIS)

    1993-03-01

    The preparedness of utilities and government agencies at various levels for dealing with nuclear emergencies occurring at nuclear reactors in Canada is reviewed and assessed. The review is centered on power reactors, but selected research reactors are included also. Emergency planning in the U.S.A., Germany and France, and international recommendations on emergency planning are reviewed to provide background and a basis for comparison. The findings are that Canadians are generally well protected by existing nuclear emergency plans at the electric utility and provincial levels but there are improvements that can be made, mainly at the federal level and in federal-provincial coordination. Ten issues of importance are identified: commitment to nuclear emergency planning by the federal government; division of federal and provincial roles and responsibilities; auditing of nuclear emergency preparedness of all levels of government and of electric utilities; the availability of technical guidance appropriate to Canada; protective action levels for public health and safety; communication with the public; planning and response for the later phases of a nuclear emergency; off-site exercises and training; coordination of international assistance; and emergency planning for research reactors. (L.L.) 79 refs., 2 tabs

  7. Emergencies and emergency planning in France

    International Nuclear Information System (INIS)

    Jammet, H.

    1986-01-01

    The organization for dealing with radiation emergencies in France is complex and centralized. It consists of the Radiation Security Council with participants from the Premier Ministre and the Ministers of Interior, Industry, Health, and Defense. A permanent general secretary for radiation security coordinates the work of the various departments. Planning for nuclear power emergencies is divided between on-site, in which organization and intervention are the responsibilities of the manager of the plant, and off-site, in which organization and intervention are the responsibility of the regional governor. Both on-site and off-site planning have models integrated into a special code of practice called the radiation emergency organization

  8. Supporting system in emergency response plan for nuclear material transport accidents

    International Nuclear Information System (INIS)

    Nakagome, Y.; Aoki, S.

    1993-01-01

    As aiming to provide the detailed information concerning nuclear material transport accidents and to supply it to the concerned organizations by an online computer, the Emergency Response Supporting System has been constructed in the Nuclear Safety Technology Center, Japan. The system consists of four subsystems and four data bases. By inputting initial information such as name of package and date of accident, one can obtain the appropriate initial response procedures and related information for the accident immediately. The system must be useful for protecting the public safety from nuclear material transport accidents. But, it is not expected that the system shall be used in future. (J.P.N.)

  9. Post-Chernobyl emergency planning

    International Nuclear Information System (INIS)

    1986-01-01

    This report is the result of a study ordered by the Swedish Nuclear Power Inspectorate and the National Swedish Institute of Radiation Protection to evaluate the measurements taken in Sweden in response to the Chernobyl accident. The enquiry was also given the task of suggesting improvements of the nuclear accidents emergency planning and other activities relevant to nuclear accidents. Detailed accounts are given of the course of events in Sweden at the Chernobyl accident and the steps taken by central or local authorities are discussed. Several alterations of the emergency planning are proposed and a better coordination of the affected organizations is suggested. (L.E.)

  10. Upgrading France's emergency plans

    International Nuclear Information System (INIS)

    Moures, Y.

    1991-01-01

    In France as elsewhere, the Chernobyl accident spurred a new stage in the development of nuclear safety. In the months following the accident, France's Minister of Industry launched a campaign to strengthen research and safety measures to: prevent reactor accidents; reinforce the concept of quality in operations; train staff, in areas such as crisis management; systematically review plans, installations and techniques related to crisis management; study accident containment procedures. There was also a systematic review of communication links with authorities and outside emergency organizations during the critical phase of an accident. On the operational level regulatory monitoring procedures were reorganized and reinforced. France has not opted for the permanent presence of on-site inspectors, but rather for the total, continuous responsibility of the power plant operator, with the safety authority intervening at frequent intervals. A major programme was also established to increase capabilities for investigation and intervention in a radioactive environment in nuclear installations. (author)

  11. Emergency planning and preparedness for re-entry of a nuclear powered satellite

    International Nuclear Information System (INIS)

    1996-01-01

    This safety practice report provides a general overview of the management of incidents or emergencies that may be created when nuclear power sources employed in space systems accidentally re-enter the earth's atmosphere and impact on its surface. 8 refs, 4 figs, 7 tabs

  12. Amendment to the Decree of the Slovak Nuclear Regulatory Authority on details concerning emergency planning in case of nuclear incident or accident

    International Nuclear Information System (INIS)

    Biharyová, Michaela

    2018-01-01

    Following up amendment to the Slovak Atomic Act, the Decree No. 55/2006 on details concerning emergency planning in case of nuclear incident or accident has also been amended now. Following a short introductory text by the author, the entire text of the ‘Decree of the Nuclear Regulatory Authority of the Slovak Republic No 9/2018 Coll. of 2 January 2018 amending Decree of the Nuclear Regulatory Authority of the Slovak Republic No 55/2006 Coll. on details in emergency planning in case of nuclear incident or accident as amended by Decree No. 35/2012 Coll.’ is reproduced. The Amendment entered into force 1 February 2018. (orig.)

  13. Nuclear emergencies: a GP's guide

    International Nuclear Information System (INIS)

    Waterston, E.

    1991-01-01

    This booklet is designed for GPs in the event of a nuclear emergency, with answers to questions which people will commonly ask, concerning, for example, sheltering/evacuation, iodine tablets, milk, water; vegetables, meat, baby food and cancer risk. Information is also provided on radiation units, the Department of Environment plans for responding to nuclear accidents overseas, the Department of Energy plans for responding to a civil nuclear accident in the UK and information resources. (UK)

  14. Preliminary study on Malaysian Nuclear Agency emergency response and preparedness plan from ICT perspective

    International Nuclear Information System (INIS)

    Amy Hamijah Ab Hamid; Muhd Noor Muhd Yunus; Mohd Ashhar Khalid; Abdul Muin Abdul Rahman; Mohd Yusof Mohd Ali; Mohamad Safuan Sulaiman; Hasfazilah Hassan

    2009-01-01

    Emergency response and preparedness (ERP) is an important components of a safety programme developed for any nuclear research centre or nuclear power plant to ensure that the facility can be operated safely and immediate response and actions can be taken to minimize the risk in case of unplanned events and incidences. ERP inclusion in the safety program has been made compulsory by most of the safety standard systems introduced currently including those of ISO 14000, OSHAS 18001 and IAEA. ERP has been included in the Nuclear Malaysia's Safety Health and Environment Management System (SHE-MS) for similar purpose. The ERP has been developed based on guidelines stipulated by AELB, IAEA, DOSH, Fire Brigade and Police Force, taking into consideration all possible events and incidences that can happen within the laboratories and irradiation facilities as a result of activities carried out by its personnel. This paper briefly describes the overall structure of the Nuclear Malaysia ERP, how it functions and being managed, and a brief historical perspective. However ERP is not easily implemented because of human errors and other weaknesses identified. Some ERP cases are analysed and assessed which based on the challenges, strategies and lessons learned from an ICT (Information and Communication Technology) perspective. Therefore, results of the analysis could then be used as inputs to develop a new system of Decision Support System (DSS) for ERP that is more effective in managing emergencies. This system is to be incorporated into the existing SHE-MS of Nuclear Malaysia. (Author)

  15. The evolution and improvements of the external emergency plans of Angra dos Reis nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Goes, Alexandre Gromann de; Araujo, Jefferson Borges, E-mail: gromann@cnen.gov.br, E-mail: jeferson@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN/CGRC), Rio de Janeiro, RJ (Brazil). Coordenacao Geral de Reatores e do Ciclo Combustivel

    2015-07-01

    The scenery that now has been configuring in the area of science and nuclear technology in the society, with their obstacles and their evolution tendencies, their philosophical discussions around fundamental concepts, and the necessity to evolve the capacity in emergency response is described in this paper. Some obstacles related to the acceptance of the nuclear energy are mentioned and some proposed strategies are also presented, as well as, specific politics for the analyzed case. One can conclude that it is imperative, that the opinion and public perception of the risk, associated with radioactive facilities should be considered and that the debate continues involving legislators, operators and the public in general. (author)

  16. The evolution and improvements of the external emergency plans of Angra dos Reis nuclear power plant

    International Nuclear Information System (INIS)

    Goes, Alexandre Gromann de; Araujo, Jefferson Borges

    2015-01-01

    The scenery that now has been configuring in the area of science and nuclear technology in the society, with their obstacles and their evolution tendencies, their philosophical discussions around fundamental concepts, and the necessity to evolve the capacity in emergency response is described in this paper. Some obstacles related to the acceptance of the nuclear energy are mentioned and some proposed strategies are also presented, as well as, specific politics for the analyzed case. One can conclude that it is imperative, that the opinion and public perception of the risk, associated with radioactive facilities should be considered and that the debate continues involving legislators, operators and the public in general. (author)

  17. Emergency planning of the city of Munich with reference to nuclear facilities, especially the nuclear power stations Isar I and II, resp. the reactor in Garching

    International Nuclear Information System (INIS)

    1990-01-01

    During the hearing of Munich's city council of 13.7.1990 thirteen experts were heard on the following subjects: Hazard potential of Isar reactors and FRM reactor and appropriate radioactive waste transports; responsibilities in emergency planning. Some of the experts cannot visualize a major accident and propose not to cater for it. Shelters and evacuation are not planned for Munich, both solutions not being realizable for all inhabitants. Nuclear phaseout is seen by some as a measure of prevention. (HSCH) [de

  18. 10 CFR 76.91 - Emergency planning.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Emergency planning. 76.91 Section 76.91 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.91 Emergency planning... Emergency Planning and Community Right-to-Know Act of 1986, Title III, Public Law 99-499, or other State or...

  19. Severe accident modeling and offsite dose consequence evaluations for nuclear power plant emergency planning

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.H.; Feng, T.S.; Huang, K.C. [National Tsing-Hua Univ., Hsinchu, Taiwan (China); Wang, J.R. [Inst. of Nuclear Energy Research, Longtan, Taiwan (China); Cheng, Y.H. [Industrial Tech. Res. Inst., Hsinchu, Taiwan (China); Shih, C., E-mail: ckshih@ess.nthu.edu.tw [National Tsing-Hua Univ., Hsinchu, Taiwan (China)

    2011-07-01

    We have investigated the roles of Firewater Addition System and Passive Flooder in ABWR severe accidents, such as LOCA and SBO. The results are apparent that Firewater System is vital in the highly unlikely situation where all AC are lost. Also in this paper, we present EPZDose, an effective and faster-than-real time code for offsite dose consequences predictions and evaluations. Illustrations with the release from our severe accident scenario show friendly and informative user's interface for supporting decision makings in nuclear emergency situations. (author)

  20. Analysis of the emergency plan of Angra dos Reis Nuclear Power Plants: a critical view related to accessibility and mobility of people with special needs

    International Nuclear Information System (INIS)

    Correa, Luanda C.A.; Correa, Samanda C.A.; Santos, Geissa; Souza, Edmilson M.

    2014-01-01

    This work intends to make a critical analysis of the emergency plan of the Angra dos Reis Nuclear Power Plants related to appropriate transportation, accommodation and infrastructure for people with special needs

  1. On-site emergency planning

    International Nuclear Information System (INIS)

    Kueffer, K.

    1981-01-01

    This lecture covers the Emergency Planning of the Operating Organization and does not describe the functions and responsibilities of the Regulatory Body and public authorities. The lecture is based on the Codes of Practice and Safety Guides of the International Atomic Energy Agency (IAEA) and arrangements as in use in the Swiss Nuclear Power Station Beznau. (orig.)

  2. Off-site emergency planning

    International Nuclear Information System (INIS)

    Narrog, J.

    1980-01-01

    In the event of a nuclear accident, the actions taken to protect the public from off-site consequences must be effective. An effective organization of emergency actions is based on two components: the actions of the operator of the nuclear facility and the actions of the competent authorities. The measures of the operator are of special importance in the first hours after the beginning of the nuclear accident, because there is no other help. Therefore the operator of a nuclear facility shall be obliged under the nuclear licensing procedure to make provisions of his own and carry out protective measures which should be compiled in a so-called 'alarm-plan'. On the other hand the means of the operator are too small in many cases and there is a need for actions by the responsible authorities. The actions of the authorities should be compiled in a so-called 'emergency response plan'. The emergency response plan shall apply to all cases in which, as a result of occurrences in or at a nuclear facility, a damaging impact on the environment is expected or has occurred requiring the authorities in charge to intervene for its prevention or limitation. (orig./RW)

  3. Radiological criteria in nuclear emergencies

    International Nuclear Information System (INIS)

    Carrillo, D.; Diaz de la Cruz, F.

    1985-01-01

    It is pretended to enlighten the way to adopt the recommendations, from supranational organizations or the practices followed in other countries, to the peculiarities existing in Spain for the specific case of Nuclear Emergency Response Planning. The adaptation has been focalized in the criteria given by the Spanish Nuclear Safety Council and has taken into account the radiological protection levels, which have been considered adequate for Spanish population in case of nuclear accidents. (author)

  4. Educational program emergency planning.

    Science.gov (United States)

    Curtis, Tammy

    2009-01-01

    Tragic university shootings have prompted administrators of higher education institutions to re-evaluate their emergency preparedness plans and take appropriate measures for preventing and responding to emergencies. To review the literature and identify key components needed to prevent shootings at higher education institutions in the United States, and in particular, institutions housing radiologic science programs. Twenty-eight emergency preparedness plans were retrieved electronically and reviewed from a convenience sample of accredited radiologic science programs provided by the Joint Review Committee on Education in Radiologic Technology Web site. The review of the 28 emergency preparedness plans confirmed that most colleges are prepared for basic emergencies, but lack the key components needed to successfully address mass-casualty events. Only 5 (18%) of the 28 institutions addressed policies concerning school shootings.

  5. Nuclear emergency preparedness: national organisation

    Energy Technology Data Exchange (ETDEWEB)

    El Messaoudi, M.; Essadki, H.; Lferde, M.; Moutia, Z. [Faculte des Sciences, Dept. de Physique, Rabat (Morocco)

    2006-07-01

    As in all other industries, the nuclear facilities can be the object of accidents whose consequences go beyond the limits of their site and consequently radioactive releases would be issued in the environment justifying the protection measures of population. Even if all the precautions were taken during the stages from the design to the operation, to reduce the risk of accident in nuclear installations, this risk can not be completely suppressed. For the radiological risk, as for the other major risks, the protection of the public always was taken in consideration by public power. The nuclear emergency plan gives the opportunity to have a quick appropriate reaction to a sudden event, which has (or might have) direct consequences for the population. The Moroccan public authorities had proceeded to reinforce at the national level, the control of nuclear safety and protection against radiation by the set up of a new nuclear safety authority. Evidently, the organization and the management of a nuclear and/or radiological emergency were at centre of this reform. Taking into account the subjective risk of radiological terrorism, the authorities should reinforce measurements guaranteeing radiological safety and security, and elaborate the appropriate emergency plans. The aim of this paper is to give a progress report on nuclear emergency plan aspects and to present a corresponding organization which could be applied by national authority. (authors)

  6. Nuclear emergency preparedness: national organisation

    International Nuclear Information System (INIS)

    El Messaoudi, M.; Essadki, H.; Lferde, M.; Moutia, Z.

    2006-01-01

    As in all other industries, the nuclear facilities can be the object of accidents whose consequences go beyond the limits of their site and consequently radioactive releases would be issued in the environment justifying the protection measures of population. Even if all the precautions were taken during the stages from the design to the operation, to reduce the risk of accident in nuclear installations, this risk can not be completely suppressed. For the radiological risk, as for the other major risks, the protection of the public always was taken in consideration by public power. The nuclear emergency plan gives the opportunity to have a quick appropriate reaction to a sudden event, which has (or might have) direct consequences for the population. The Moroccan public authorities had proceeded to reinforce at the national level, the control of nuclear safety and protection against radiation by the set up of a new nuclear safety authority. Evidently, the organization and the management of a nuclear and/or radiological emergency were at centre of this reform. Taking into account the subjective risk of radiological terrorism, the authorities should reinforce measurements guaranteeing radiological safety and security, and elaborate the appropriate emergency plans. The aim of this paper is to give a progress report on nuclear emergency plan aspects and to present a corresponding organization which could be applied by national authority. (authors)

  7. Review of environmental scenario planning for nuclear power plant emergency exercises

    International Nuclear Information System (INIS)

    Rossi, J.

    1996-11-01

    A prerequisite for the safe operation of the nuclear reactors is preparedness against accidents. To maintain this requirement activities in accidental situations are practised in various preparedness organisations together and separately in several annual site preparedness and larger rescue service exercises. This report accumulates planning practice of exercises and important aspects affecting on that. The principal target and partial aims of the exercise are set in good time. Exercises concern mostly the early phase of an accident. The radiological calculational methods of accident are based on the existing dose calculation models. The radiation safety points of view should be taken into account when off-site radiation situations are created so that alternative countermeasures could be weighed. Exercises include also activity on the field due to radiation monitoring patrols. When the real-time weather is employed the exercising of measurement patrols need to be reorganized. (orig.) (4 refs.)

  8. On-site emergency preparedness and response PLAN for EDF Nuclear Power Plants

    International Nuclear Information System (INIS)

    BOSSARD, J. L.

    1997-01-01

    Considering nuclear safety concepts applied to reactor design and preventive measures taken by EDF during operation, and although the probability of a nuclear accident, even minor, on a unit is very low, it still cannot be considered nil. Therefore, the operator must be prepared, if such an event should occur, by defining and implementing a 'crisis organisation' in cooperation with the Safety Authorities. The crisis organisation has been set up in order to master and control the accident, i.e. in order to prevent, in real time, the accident developing into a more serious situation and to limit the consequences regarding technical and radiological concerns. EDF crisis organisation is integrated into the current organisation at local level as well as at national level. In addition to the operation team in 'shifts', crisis organisation is based 'on-call' personnel available at home (local level) or within a restricted area (national level). This organisation includes Managers, Experts, Participants EDF (+FRAMATOME), each of the them working, in case of an emergency, in his field of skills

  9. Recommended criteria for the evaluation of on-site nuclear power plant emergency plans, volume II: criteria

    International Nuclear Information System (INIS)

    1997-01-01

    A critical review of existing Canadian and international nuclear power plant (NPP) emergency plans, evaluation criteria, and approaches has been conducted to provide AECB staff with information which can be used to assess the adequacy of NPP on-site emergency response plans. The results of this work are published in two volumes. Volume I, Basis Document, provides the reasons why certain requirements are in place. It also gives comprehensive references to various standards.Volume II, Criteria, contains the criteria which relate to on-site actions and their integration with control room activities and the roles of off-site responsible organizations. The recommended criteria provide information on what is required, and not on how to accomplish the requirements. The licensees are given the latitude to decide on the methods and processes needed to meet the requirements. The documents do not address NPP off-site plans and response capability, or the control room emergency operating procedures and response capability. This report contains only Volume II: Criteria. 55 refs., 2 tabs., 1 fig

  10. Emergency planning and operating experience

    International Nuclear Information System (INIS)

    Halpern, O.; Breniere, J.

    1984-01-01

    The purpose of this paper is to derive lessons from operating experience for the planning of emergency measures. This operating experience has two facets: it is obtained not only from the various incidents and accidents which have occurred in countries with nuclear power programmes and from the resulting application of emergency plans but also from the different exercises and simulations carried out in France and in other countries. Experience generally confirms the main approaches selected for emergency plans. The lessons to be derived are of three types: first, it appears necessary to set forth precisely the responsibilities of each person involved in order to prevent a watering-down of decisions in the event of an accident; secondly, considerable improvements need to be made in the different communication networks to be used; and thirdly, small accidents with minor radiological consequences deserve as systematic and thorough an approach as large and more improbable accidents. (author)

  11. Learning, innovation and communication: evolving dynamics of a nuclear emergency plan; Aprendizagem, inovacao e comunicacao: a dinamica evolutica de um plano de emergencia nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Quadros, Andre Luiz Lopes

    2014-07-01

    The technological development inherent to modern societies has placed human beings in situations of choice from a wide variety of possible risks. As a way to protect people and the environment, actions need to be developed in order to reduce possible consequences of the materialisation of these risks. The thermonuclear power generation demand planning in order to prepare answers to possible emergency situations, as even being considered of low probability of occurrence, when they happen have a significant impact on populations and regions of its surroundings. Considering the relevance of this issue, this thesis aimed to identify and analyze the dynamics of preparedness and response to emergency situations in a Nuclear Power Plant, trying to understand its evolution over the time and systematizing it, considering the actors involved, processes of organizational learning, innovation and risk communication, considered as crucial for the development and improvement of emergency plans. Concerning preparedness and response to possible emergency situations in this nuclear plant, it was possible not only to confirm the importance of the three processes studied, but also observe that they can be treated and evaluated in an integrated and systematic way. So, it was presented a model that aims to facilitate the understanding of this perspective and enhance the importance of participation and cooperation between all stakeholders (organizations and the local population) within a socio-participatory perspective. To this end, this exploratory research sought for evidences in documents, participation in planning meetings, direct observation of the general exercises of the CNAAA External Emergency Plan of 2013, interviews with some of the actors involved and through the application of a questionnaire among the population of the Praia Vermelha, in Angra dos Reis, Rio de Janeiro. (author)

  12. Emerging nuclear suppliers

    International Nuclear Information System (INIS)

    Sands, A.

    1990-01-01

    Efforts to prevent the spread of nuclear weapons have usually taken two tracks: The traditional approach has concentrated on a potential proliferant's perceived need for nuclear technology and possibly weapons; a second approach has targeted the supply side of the proliferation equation. The issue being examined in this book---emerging nuclear suppliers---falls between these two approaches. The potential proliferants have emerged as possible unrestrained suppliers of nuclear materials and technology. They threaten the entire nonproliferation regime by their exporting, not their weapons development. Analyzing and understanding the issue of emerging suppliers requires a refined definition of suppliers in general. The simple dichotomy of traditional versus emerging suppliers is no longer an adequate framework for analysis. Suppliers differ significantly in their technical capabilities, experience, and regime involvement, and these distinctions result in different nuclear export policies

  13. Emergency response planning in Pennsylvania

    International Nuclear Information System (INIS)

    Reilly, M.A.

    1988-01-01

    In the decade since the accident at Three Mile Island, emergency planning for response to these events has undergone a significant change in Pennsylvania, as elsewhere. Changes respond to federal guidance and to state agency initiatives. The most singular change is the practice of implementing a protective action throughout the entire emergency planning zone (EPZ). Due to Pennsylvania agency experiences during the accident, the decision was made soon after to develop a staff of nuclear engineers, each giving special day-to-day attention to a specific nuclear power station in the state. Changes in communications capabilities are significant, these being dedicated phone lines between the Commonwealth and each power station, and the reorientation of the Department of Environmental Resources radio network to accommodate direction of field monitoring teams from Harrisburg. Changes that are being or will be implemented in the near future include assessing the emergency response data system for electronic delivery of plant parameter data form facilities during accidents, increased participation in exercises, emergency medical planning, and training, the inclusion of all 67 counties in Pennsylvania in an ingestion EPZ, and the gradual severance of dependence on land-line emergency communication systems

  14. External plans for radiological emergency

    International Nuclear Information System (INIS)

    Suarez, G.; Vizuet G, J.; Benitez S, J.A.

    1999-01-01

    Since 1989, the National Institute of Nuclear Research in Mexico shares in the task of Food and Water Control corresponding to the FT-86 task force of External Plans for Radiological Emergency (PERE), in charge of the Veracruz Health Services. In the PERE preparation stage previous actions are necessary developed for the preparation and updating of this plan and the task organization with the purpose to maintaining standing and operable in any time and circumstance, the capability to response in the face of an emergency. This stage englobes activities which must be realized before to carry out the Plan as they are the specialized training of personnel which participates and the execution of exercises and simulacrums. Until 1998, training and exercises for this task had been realized under diverse possible sceneries but in conditions that simulated the presence of radioactive material. For this reason, it should be emphasized the training realized during the days 6th, 7th, 8th July, 1999, in the emergency planning zone of the Plan, which to carry out using radioactive material. The National Institute of Nuclear Research had in charge of the training. This work describes all the activities for the realization of this training. (Author)

  15. Emergency planning zone reduction

    International Nuclear Information System (INIS)

    Edwards, C.

    2002-01-01

    This paper describes the process used by a large industrial Department of Energy (DOE) site to communicate changing hazards to its stakeholders and install the confidence necessary to implement the resulting emergency planning changes. Over the last decade as the sites missions have shifted from full-scale production to a greater emphasis on environmental restoration and waste management, the off-site threat from its operations has substantially decreased. The challenge was to clearly communicate the reduced hazards, install confidence in the technical analysis that documented the hazard reduction, and obtain stakeholder buy-in on the path forward to change the emergency management program. The most significant change to the emergency management program was the proposed reduction of the sites Emergency Planning Zone (EPZ). As the EPZ is defined as an area for which planning is needed to protect the public in the event of an accident, the process became politically challenging. An overview of how the site initially approached this problem and then learned to more substantially involve the state and local emergency preparedness agencies and the local Citizens Advisory Board will be presented. (author)

  16. Emergency planning for fuel cycle facilities

    International Nuclear Information System (INIS)

    Lacey, L.R.

    1991-01-01

    In April 1989, NRC published new emergency planning regulations which apply to certain by-product, source, and special nuclear materials licensees including most fuel cycle facilities. In addition to these NRC regulations, other regulatory agencies such as EPA, OSHA, and DOT have regulations concerning emergency planning or notification that may apply to fuel cycle facilities. Emergency planning requirements address such areas as emergency classification, organization, notification and activation, assessment, corrective and protective measures, emergency facilities and equipment, maintaining preparedness, records and reports, and recovery. This article reviews applicable regulatory requirements and guidance, then concentrates on implementation strategies to produce an effective emergency response capability

  17. Hanford Emergency Response Plan

    International Nuclear Information System (INIS)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures

  18. Hanford Emergency Response Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures.

  19. Emergency Planning and Preparedness in Belgium

    International Nuclear Information System (INIS)

    Degueldre, D.; Maris, M.

    1998-01-01

    The present Belgian nuclear emergency planning and preparedness is based on experience cumulated since the early eighties. This paper describes the organisation, actuation process, the emergency planning zones and the applicable intervention guidance levels. The role of AVN as on-site inspector, nuclear emergency adviser and emergency assessor is explained as well as its human and technical resources. Finally the paper presents briefly the experience feedback on emergency exercises and training in Belgium as well as AVN's views on some debatable topics. (author)

  20. The emerging nuclear suppliers

    International Nuclear Information System (INIS)

    Dunn, L.A.

    1990-01-01

    Since the early 1980s, a growing amount of attention has been paid to a small group of mostly developing countries that have come to be called the emerging nuclear suppliers. Argentina and Brazil, China and South Korea, India and Pakistan, Spain and Yugoslavia have frequently been mentioned in this category. Their actual and potential nuclear export dealings and policies have been the subject of academic writings and policy papers, of scholarly symposia and exchanges at meetings of the traditional nuclear suppliers. With foundation and other support, UCLA's Center for International and Strategic Affairs has begun a major project to develop a database on the transactions, policies, and export control institutions of the emerging suppliers. This chapter provides some guidelines for policy toward the emerging nuclear suppliers

  1. Radiological emergencies - planning and preparedness

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-12-31

    This information and training film in three parts deals with the technical background for emergency planning, emergency planning concepts and emergency preparedness. It describes the technical characteristics of radiological emergencies on which important emergency planning concepts are based and the purpose of those concepts. The film also demonstrates how emergency organizations must work together to ensure adequate preparedness. The programme reflects the standards, guidance and recommendations of the International Atomic Energy Agency

  2. Opportunities in SMR Emergency Planning

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne L. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Reactor Technologies Program

    2014-10-01

    Using year 2014 cost information gathered from twenty different locations within the current commercial nuclear power station fleet, an assessment was performed concerning compliance costs associated with the offsite emergency Planning Standards contained in 10 CFR 50.47(b). The study was conducted to quantitatively determine the potential cost benefits realized if an emergency planning zone (EPZ) were reduced in size according to the lowered risks expected to accompany small modular reactors (SMR). Licensees are required to provide a technical basis when proposing to reduce the surrounding EPZ size to less than the 10 mile plume exposure and 50 mile ingestion pathway distances currently being used. To assist licensees in assessing the savings that might be associated with such an action, this study established offsite emergency planning costs in connection with four discrete EPZ boundary distances, i.e., site boundary, 2 miles, 5 miles and 10 miles. The boundary selected by the licensee would be based on where EPA Protective Action Guidelines are no longer likely to be exceeded. Additional consideration was directed towards costs associated with reducing the 50 mile ingestion pathway EPZ. The assessment methodology consisted of gathering actual capital costs and annual operating and maintenance costs for offsite emergency planning programs at the surveyed sites, partitioning them according to key predictive factors, and allocating those portions to individual emergency Planning Standards as a function of EPZ size. Two techniques, an offsite population-based approach and an area-based approach, were then employed to calculate the scaling factors which enabled cost projections as a function of EPZ size. Site-specific factors that influenced source data costs, such as the effects of supplemental funding to external state and local agencies for offsite response organization activities, were incorporated into the analysis to the extent those factors could be

  3. Chapter No.9. Emergency planning

    International Nuclear Information System (INIS)

    2002-01-01

    Emergency preparedness is a set of measures the aim of which is to mitigate possible impacts of events during the operation of nuclear facilities, transport of nuclear materials and radioactive waste as well as to reduce consequences to environment and population. An emergency planning of UJD is understood as an establishment of technical and organisational means determined for prognosis of development of events having radiation consequences together with capability to suggest the countermeasures needed to minimise the impact to population. Emergency Response Centre (ERC) of UJD is a technical support tool of UJD and at the same time it fulfils the role of advisory body for the National Emergency Commission for Radiation Accidents (NECRA) In 2001 UJD continued in further increase of equipment quality in the ERC by completion of facilities necessary to transmit necessary data from nuclear facilities, for communication and other HW and SW means. That it is why the application of geographic information systems (GIS), higher quality of data transmission from nuclear facilities and installation of new database platform could be enabled. Also the documentation of ERC has been completed by the emergency procedures of NPP Mochovce and guides of the RODOS system were finished. In the area of emergency preparedness UJD activities in 2001 were focused on preparation and realisation of emergency exercises and execution of inspections. In accordance with the inspection plan inspectors executed several inspections which were targeted to control the course of exercises at nuclear facilities, documentation and the way of training of members of the UJD headquarters. The function of systems of notification and warning, communication, monitoring and technical support means of both NPP Bohunice and NPP Mochovce has been verified and checked as well. The ultimate attention, however, was paid to the preparation of UJD emergency headquarters. The preparation was realised in a form of

  4. The Veterinary Public Health Service and the National Organization for Nuclear Emergency Planning and Response in the Netherlands: Development of a measurement strategy in case of nuclear accidents

    International Nuclear Information System (INIS)

    Lembrechts, J.F.M.M.; Pruppers, M.J.M.

    1993-12-01

    In this report the position of the Veterinary Public Health Service (VHI), which is part of the Ministry of Welfare, Health and Cultural Affairs, within the National Organisation for Nuclear Emergency Planning and Response (NPK), is evaluated. NPK is activated in case of nuclear accidents in order to describe and model the evolution of the environmental contamination, to advise on countermeasures and to supervise their application and effects. Within this organisation VHI has to organize or execute measurements on animals and veterinary products and to coordinate countermeasures pertaining to their field of work. The suggestion is made to integrate the tasks of VHI and those of the Inspectorate for Health Protection (IGB) and to attune the activities of VHI and those of the State Institute for Quality Control of Agricultural Products (RIKILIT). Advices are given on how to detail the tasks of VHI adequately in the context of NPK, amongst others by describing methods to collect and interpret data. It is suggested to firstly put into practice in vivo monitoring techniques for '3'I and 134 Cs/ 137 Cs and to agree with other institutions on plans for sampling, sample preparation and measurements of milk. Finally a monitoring strategy for VHI is broadly outlined. It provides the framework for the definition of a detailed programme on sampling and measurement in case of a real accident. The monitoring strategy gives answers on the crucial question 'what has to be measured why and how by which person'. Since questions on where, when and how frequently measurements have to made should be tailored to the actual emergency situation, they are not dealt with in this report. 5 figs., 5 tabs., 66 refs

  5. The emergency plan of the ININ

    International Nuclear Information System (INIS)

    Ruiz C, M.A.

    1991-01-01

    The emergency plan of the ININ, it was elaborated in 1988 and revised by the National Commission of Nuclear Safety and Safeguards (CNSNS) in 1989. At the beginning of 1990 and with the support of the IAEA it was practiced the first revision to the text of this plan, for what the proposal revision is what constitutes the development of this report

  6. On some problems concerning the national emergency planning

    International Nuclear Information System (INIS)

    Angelov, V.; Bonchev, Ts.; Semova, T.; Georgiev, V.

    1995-01-01

    The basic principles of national emergency planning and preparedness in case of severe nuclear accident are discussed. Recommendations concerning the participating authorities in Bulgaria and their cooperation are given. The need to synchronize the plan with the NPP Kozloduy emergency plan is pointed out. The introduction of new legislation outlining the necessity of national emergency planning is stressed. 13 refs

  7. On some problems concerning the national emergency planning

    Energy Technology Data Exchange (ETDEWEB)

    Angelov, V [Civil Defence Administration, Sofia (Bulgaria); Bonchev, Ts [Sofia Univ. (Bulgaria). Fizicheski Fakultet; Andonov, S [Civil Defence Administration, Sofia (Bulgaria); Semova, T [Sofia Univ. (Bulgaria). Fizicheski Fakultet; Ganchev, N [Committee on the Use of Atomic Energy for Peaceful Purposes, Sofia (Bulgaria); Georgiev, V [Energoproekt, Sofia (Bulgaria)

    1996-12-31

    The basic principles of national emergency planning and preparedness in case of severe nuclear accident are discussed. Recommendations concerning the participating authorities in Bulgaria and their cooperation are given. The need to synchronize the plan with the NPP Kozloduy emergency plan is pointed out. The introduction of new legislation outlining the necessity of national emergency planning is stressed. 13 refs.

  8. Development of a mobile game based on virtual reality tools to sensitize the population about the nuclear power plant's emergency plan

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Lucas H.H.; Mol, Antônio C. de A.; Santo, André C. do E.; Legey, Ana Paula [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Centro Universitário Carioca (Unicarioca), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The Angra dos Reis Nuclear Power Plant's emergency plan, it is the bunch of instructions that every citizen must adopt in case of an emergency situation. It is highly important, that all the people living in the power plant's surroundings truly understand every single step of the plan, because only in this way people will know how to react in case of a necessity. To hit this goals, the Brazil's Electronuclear, made educational booklets, in the shape of comic books, trying to guide the population about the plan. On the other hand, we have an increasingly connected world, making possible that digital games, be very well accepted by the population. So this project has as an objective, developing a digital tool, in form of a mobile game that shows in a playful and interactive way for the user, the emergency plan, complementing the educational process and social actions made by many institutions. With the information taken from the booklets, objects and buildings were modeled in Autodesk 3Ds Max, allied with the Unity 3D Game Engine, to make a city, inspired in Angra do Reis (RJ). The player has to follow all the security protocols giving by the Eletronuclear according with the rules provided by the National Nuclear Energy Commission. Is expected, with this game that will be available for the Eletronuclear that more people have the chance to know and believe in the efficiency of the emergency plan already established. (author)

  9. Development of a mobile game based on virtual reality tools to sensitize the population about the nuclear power plant's emergency plan

    International Nuclear Information System (INIS)

    Ferreira, Lucas H.H.; Mol, Antônio C. de A.; Santo, André C. do E.; Legey, Ana Paula

    2017-01-01

    The Angra dos Reis Nuclear Power Plant's emergency plan, it is the bunch of instructions that every citizen must adopt in case of an emergency situation. It is highly important, that all the people living in the power plant's surroundings truly understand every single step of the plan, because only in this way people will know how to react in case of a necessity. To hit this goals, the Brazil's Electronuclear, made educational booklets, in the shape of comic books, trying to guide the population about the plan. On the other hand, we have an increasingly connected world, making possible that digital games, be very well accepted by the population. So this project has as an objective, developing a digital tool, in form of a mobile game that shows in a playful and interactive way for the user, the emergency plan, complementing the educational process and social actions made by many institutions. With the information taken from the booklets, objects and buildings were modeled in Autodesk 3Ds Max, allied with the Unity 3D Game Engine, to make a city, inspired in Angra do Reis (RJ). The player has to follow all the security protocols giving by the Eletronuclear according with the rules provided by the National Nuclear Energy Commission. Is expected, with this game that will be available for the Eletronuclear that more people have the chance to know and believe in the efficiency of the emergency plan already established. (author)

  10. Report on the emergency evacuation review team on emergency response plans for the Perry and Davis-Besse nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This book is a report by Ohio's Emergency Evacuation Review Team, at the request of Governor Richard Celeste. The Team concludes that the current emergency response plan for Ohio's reactors is inadequate to protect the public and recommends changes in the current emergency plant requirements. The report also includes a summary of the litigation that has occurred since Celeste withdrew his support for the plans, a list of experts consulted, and sources used to prepare the report. An important document, and a study which every state should undertake

  11. Communication in nuclear emergency

    International Nuclear Information System (INIS)

    Nozawa, Masao

    1996-01-01

    In order to take protection measures smoothly at the time of emergency in nuclear power stations and others, it is necessary to prepare information communication facilities mutually among disaster prevention organizations including the state and information transmission network for residents in surrounding areas. The matters decided in ''the measures to be taken for the time being for the countermeasures to prevent disaster in nuclear power stations and others'' are shown. In order to avoid the congestion of communication, the exclusively used communication systems are adopted for disaster prevention organizations, in which facsimile is used to transmit graphic information. The data communication circuits for distributing SPEEDI are installed between Science and Technology Agency, Nuclear Power Safety Technology Center and respective prefectures. The routes, means and order of notices must be confirmed beforehand mutually among the related organizations. As to the general communication for disaster countermeasures, the communication systems in ministries and agencies are described. (K.I.)

  12. Millstone nuclear power plant emergency system assessment

    International Nuclear Information System (INIS)

    Akhmad Khusyairi

    2011-01-01

    U.S.NRC determined an obligation to build a nuclear power plant emergency response organization for both on-site and off-site. Millstone Nuclear Power Plants have 3 nuclear reactors and 2 of 3 still in commercial operation. Reactor unit 1, BWR type has been permanently shut down in 1998, while the two others, units 2 and 3 obtain the extended operating license respectively until 2035 and 2045. As a nuclear installation has the high potential radiological impact, Millstone nuclear power plant emergency response organization must establish both on-site or off-site. Emergency response organization that is formed must involve several state agencies, both state agencies and municipality. They have specific duties and functions in a state of emergency, so that protective measures can be undertaken in accordance with the community that has been planned. Meanwhile, NRC conduct their own independent assessment of nuclear power plant emergencies. (author)

  13. Radiological emergency response planning in Pennsylvania

    International Nuclear Information System (INIS)

    Henderson, O.K.

    1981-01-01

    The most important aspect of emergency preparedness is to recognize and accept the fact that there exists a potential for a problem or a condition and that it requires some attention. Emergency plans should be sufficiently flexible so as to accommodate the emergency situation as it unfolds. Of the several emergency responses that may be taken following a nuclear power plant accident evacuation evokes the greatest attention and discussion as to whether it is truly a feasible option. Movements of people confined to mass care facilities or on life support systems involve special requirements. The Three Mile Island accident has been the most studied nuclear incident in the history of the nuclear power reactor industry. The findings of these reports will have a major influence on nuclear power issues as they are addressed in the future. The question remains as to whether the political leadership will be willing to provide the resources required by the emergency plan. Future safety and emergency response to nuclear accidents depend upon Government and industry acting responsibly and not merely responding to regulations. The Three Mile Island accident has had some beneficial side effects for the emergency management community. It has: increased the level of awareness and importance of emergency planning; served as a catalyst for the sharing of experiences and information; encouraged standardization of procedures; and emphasized the need for identifying and assigning responsibilities. The Emergency Management Organization in responding to a disaster situation does not enjoy the luxury of time. It needs to act decisively and correctly. It does not often get a second chance. Governments, at all levels, and the nuclear power industry have been put on notice as a result of Three Mile Island. The future of nuclear energy may well hang in the balance, based upon the public's perception of the adequacy of preparedness and safety measures being taken. (author)

  14. Nuclear medicine in emergency

    International Nuclear Information System (INIS)

    Mansi, L.; Rambaldi, P.F.; Cuccurullo, V.; Varetto, T.

    2005-01-01

    The role of a procedure depends not only on its own capabilities but also on a cost/effective comparison with alternative technique giving similar information. Starting from the definition of emergency as a sudden unexpected occurrence demanding immediate action, the role of nuclear medicine (NM) is difficult to identify if it is not possible to respond 24h a day, 365 days a year, to clinical demands. To justify a 24 h NM service it is necessary to reaffirm the role in diagnosis of pulmonary embolism in the spiral CT era, to spread knowledge of the capabilities of nuclear cardiology in reliability diagnosis myocardial infraction (better defining admission and discharge to/from the emergency department), to increase the number of indications. Radionuclide technique could be used as first line, alternative, complementary procedures in a diagnostic tree taking into account not only the diagnosis but also the connections with prognosis and therapy in evaluating cerebral pathologies, acute inflammation/infection, transplants, bleeding, trauma, skeletal, hepatobiliary, renal and endocrine emergencies, acute scrotal pain

  15. Plan for radiological emergencies situations

    International Nuclear Information System (INIS)

    Estrada Figueroa, E.R.

    1998-01-01

    The objective for the Emergencies plan it is to reestablish the stock that they should be executed by the regulatory Entity in Guatemala during a real potential radiological emergency situation in the national territory

  16. Nuclear emergency exercises in Canada

    International Nuclear Information System (INIS)

    Ali, F.B.

    1993-01-01

    The practice followed in planning, preparing and conducting offsite nuclear emergency exercises in the Province of Ontario, Canada, is described. In addition, some of the main issues that arise during this process are discussed, as well as Canadian experience in dealing with them. The planning process starts with basic decisions on the aim, scope and duration of the exercise. It proceeds through selection of the exercise objectives and participants, the development of scenarios and incident lists culminating in a master scenario and a master incident list, and finally, the production of control inputs. Preparations include the setting up of a planning organization, making arrangements for exercise control and evaluation, and the required logistics. Some aspects of international exercises are also covered, based upon experience with joint exercises with the U.S.A

  17. Non-nuclear radiological emergencies. Special plan for radiological risk of the Valencian Community; Emergencias radiológicas no nucleares. Plan especial ante el riesgo radiológico de la Comunidad Valenciana

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez Rodrigo, I.; Piles Alepuz, I.; Peiró Juan, J.; Calvet Rodríguez, D.

    2015-07-01

    After the publication of the Radiological Hazard Basic Directive, Generalitat (the regional government in Valencian Community) initiated the edition of the pertinent Special Plan, with the objective to assemble the response of all the Security and Emergency Agencies, including the Armed Forces, in a radiological emergency affecting the territory of the Valencian Community, under a single hierarchy command. Being approved and homologated the Radiological Hazard Special Plan, Generalitat has undertaken the implementation process planned to finish in June 2015. Following the same process as other Plans, implementation is organized in a first informative stage, followed of a formative and training stage, and finishing with an activation exercise of the Plan. At the end of the process, is expected that every Agency will know their functions, the structure and organization in which the intervention takes place, the resources needed, and adapt their protocols to the Plan requirements. From the beginning, it has been essential working together with the Nuclear Safety Council, as is established in the agreement signed in order to collaborate in Planning, Preparedness and Response in Radiological Emergencies. [Spanish] Tras la publicación de la Directriz Básica de Riesgo Radiológico, la Generalitat inició la redacción del correspondiente Plan Especial, con el objetivo de articular la respuesta de todos los organismos de Seguridad y Emergencias, y las Fuerzas Armadas, en una emergencia radiológica que afecte al territorio de la Comunidad Valenciana, bajo la dirección de un mando único. Aprobado y homologado el Plan Especial ante el Riesgo Radiológico, la Generalitat ha acometido el proceso de implantación que finalizará en junio de 2015. Por analogía con otros planes de la Comunidad, la implantación se estructura en una primera fase divulgativa e informativa, seguida de una fase formativa y de adiestramiento, culminando con un simulacro de activación del Plan

  18. A model national emergency plan for radiological accidents

    International Nuclear Information System (INIS)

    2000-07-01

    The IAEA has supported several projects for the development of a national response plan for radiological emergencies. As a result, the IAEA has developed a model National Emergency Response Plan for Radiological Accidents (RAD PLAN), particularly for countries that have no nuclear power plants. This plan can be adapted for use by countries interested in developing their own national radiological emergency response plan, and the IAEA will supply the latest version of the RAD PLAN on computer diskette upon request

  19. A model national emergency response plan for radiological accidents

    International Nuclear Information System (INIS)

    1993-09-01

    The IAEA has supported several projects for the development of a national response plan for radiological emergencies. As a results, the IAEA has developed a model National Emergency Response Plan for Radiological Accidents (RAD PLAN), particularly for countries that have no nuclear power plants. This plan can be adapted for use by countries interested in developing their own national radiological emergency response plan, and the IAEA will supply the latest version of the RAD PLAN on computer diskette upon request. 2 tabs

  20. Brazilian emergency planning for radiological accidents

    International Nuclear Information System (INIS)

    Mendonca, A.H.

    1986-01-01

    Brazilian emergency planning for radiological accidents is organized to respond promptly to any emergency at nuclear power plants or other installations utilizing nuclear fuel. It consists of several committees: a general coordination committee with representatives from several federal departments, with final decision with the Brazilian Nuclear Energy Commission (CNEN), and the Federal Environmental Protection Agency (SEMA). Some committees conduct support activities. For example, the Operational Coordination Committee supervises the tasks undertaken by the Army, Navy, and Air Force in response to the needs and decisions of the general coordination committee

  1. Nuclear emergencies and protective actions

    International Nuclear Information System (INIS)

    Sjoeblom, Klaus

    1995-01-01

    Although technical improvements have increased the safety of new and old nuclear power plants, many simultaneous component failures and/or human errors are improbable but possible. Both the plant (on-site) and the nearby area (off-site) have emergency plans. Rescue service authorities are responsible of the off-site. The main protective actions are sheltering, evacuation and iodine ingestion. The Loviisa off-site emergency plan assumes that a major part of this population takes care of their own protective actions; Rescue service authorities can then concentrate on the coordination activities and to those people who need help. To be able to carry out the protective actions timely and effectively the people should have information on radiation risk and emergency planning. In case of a potential accident the local population should follow the rescue service information and know how to shelter and how to evacuate themselves. Though there are many stockpiles of iodine pellets in the area the rescue service authorities recommend that each household should purchase iodine pellets for their own need. The utility and the rescue service authorities have distributed information brochures to all homes within 30 km from Loviisa NPP since 1990. This brochure gives information on radiation and protective actions in case of an accident. Because the brochures might not stay available and so also the local telephone book contains this information

  2. New source terms and the implications for emergency planning requirements at nuclear power plants in the United State

    International Nuclear Information System (INIS)

    Kaiser, G.D.; Cheok, M.C.

    1987-01-01

    This paper begins with a brief review of current approaches to source term driven changes to NRC emergency planning requirements and addresses significant differences between them. Approaches by IDCOR and EPRI, industry submittals to NRC and alternative risk-based evaluations have been considered. Important issues are discussed, such as the role of Protective Action Guides in determining the radius of the emergency planning zone (EPZ). The significance of current trends towards the prediction of longer warning times and longer durations of release in new source terms is assessed. These trends may help to relax the current notification time requirements. Finally, the implications of apparent support in the regulations for a threshold in warning time beyond which ad hoc protective measures are adequate is discussed

  3. Transport accident emergency response plan

    International Nuclear Information System (INIS)

    Vallette-Fontaine, M.; Frantz, P.

    1998-01-01

    To comply with the IAEA recommendations for the implementation of an Emergency Response Plan as described in Safety Series 87, Transnucleaire, a company deeply involved in the road and rail transports of the fuel cycle, masters means of Emergency Response in the event of a transport accident. This paper aims at analyzing the solutions adopted for the implementation of an Emergency Response Plan and the development of a technical support and adapted means for the recovery of heavy packagings. (authors)

  4. Beyond defense-in-depth: cost and funding of state and local government radiological emergency response plans and preparedness in support of commercial nuclear power stations

    International Nuclear Information System (INIS)

    Salomon, S.N.

    1979-10-01

    Inadequate, sporadic, uncertain and frustrating are words local, state and Federal officials use to describe the current hodgepodge funding approach to State and local government radiological emergency response plans and preparedeness in support of commercial nuclear power stations. The creation of a Radiological Emergency Response Plans and Preparedness Fund for State and Local Government is offered as a preferred solution. Monies for the Fund could be derived from a one time Fee of $1 million levied on the operator of each nuclear power station. Every five years, adjustments could be made in the Fee to assure full recovery of costs because of inflation, revised criteria and other cost related factors. Any surplus would be refunded to the utilities. Any state that has obtained NRC concurrence or is in the process could be reimbursed for previous expenditures up to two years prior to NRC concurrence. Concurrence in all state and local government plans is the objective of the funding program. The Fund should be administered by the Nuclear Regulatory Commission. The report also discusses actions by Federal and state agencies and points to long range considerations, such as a training institute, including transportation and non-commercial and other fixed nuclear facilities, where preparedness could be enhanced by a coherent funding mechanism. All recommendations are based on an inquiry by the Office of state Programs, NRC, into the historical and future costs and funding of radiological emergency response plans and preparedness at the state and local government levels and are derived from discussions with many local, State and Federal officials

  5. Emergency planning for industrial hazards

    International Nuclear Information System (INIS)

    Gow, H.B.F.; Kay, R.W.

    1988-01-01

    The European Communities have produced a Directive on the Major Accident Hazards of Certain Industrial Activities which sets out standards for the control and mitigation of the hazards presented by sites and storages which contain significant quantities of dangerous substances. An essential element of these controls is the provision of effective on-and off-site emergency plans. This conference explores the considerable research effort which is going on throughout the world in the improvement of systems for emergency planning. Attention was also drawn to areas where difficulties still exist, for example in predicting the consequences of an accident, the complexities of communication problems and the difficulties arising from involvement of the public. The proceedings are in six parts which deal with organizations implementing emergency planning: on- and off-site emergency planning and design; techniques for emergency plans; expenses and auditing of emergency plans; lessons learnt from the emergency management of major accidents; information to the public to and during emergencies. (author)

  6. Decree of the 28 August 2017 bearing approval of the decision nr 2017-DC-0592 of the Authority for Nuclear Safety of the 13 June 2017 related to obligations of operators of basic nuclear installations in terms of preparation and of management of emergency situations, and to the content of the internal emergency plan. Decision nr 2017-DC-0592 of the Authority for Nuclear Safety of 13 June 2017 related to obligations of operators of basic nuclear installations in terms of preparation and of management of emergency situations, and to the content of the internal emergency plan

    International Nuclear Information System (INIS)

    Mortureux, M.

    2017-01-01

    The decree formalises the implementation of decision made by the ASN regarding the preparation and management of emergency situations, and the content of the internal emergency plan for basic nuclear installations (some aspects concern installations others than nuclear power plants). Delays of elaboration and publication of the internal emergency plan are indicated for nuclear installations, and depend on the fact the installation is being dismantled or to be dismantled, or is being operated or to be created. An appendix contains a set of definitions of relevant terms related to the installation organisation, a specification of some general measures regarding the organisation to be implemented, procedures related to the alert and coordination with authorities and external bodies and departments, involved human resources, crisis exercises and real-life simulations to be performed, material resources to be used for the management of emergency situations, and aspects related to the protection of people present within the installation

  7. Regulation of the State Office of Nuclear Safety No. 318/2002 of 13 June 2002 specifying details to ensure emergency preparedness of nuclear facilities and workplaces handling ionizing radiation sources, and requirements for the contents of internal emergency plans and emergency rules

    International Nuclear Information System (INIS)

    2002-01-01

    The Regulation addresses the following issues: definition of a radiological event and interventions to be accomplished if a radiological event takes place; emergency preparedness; establishing a radiological event; assessment of a radiological event; warnings, notifications and alarms during a radiological event; intervention - management, procedures, instructions; radiological situation monitoring programme; provisions to restrict human exposure; health care provisions; documentation; informing the State Office of Nuclear Safety; personnel instructions and training; emergency preparedness inspection; internal emergency plan; emergency rules; and related issues. This Regulation supersedes Regulation No. 219/1997. (P.A.)

  8. Nuclear emergency planning and response in industrial areas. Results of a qualitative study in 9 industrial companies

    International Nuclear Information System (INIS)

    Pauwels, N.; Hardeman, F.; Soudan, K.

    1998-11-01

    Substantial economic losses and potential dangerous situations may result when industrial companies unexpectedly have to shut down their activities in an abrupt way. With respect to the industrial companies located in the Antwerp harbour region, the reason for such an unplanned shut-down could be the decision to (preventively) evacuate their workers, or to have them sheltered, in case of an alarm situation at a nearby nuclear power plant of Doel or in any other adjacent industrial factory. Between January and August 1998, the prevention advisors of nine industrial companies have been interviewed to gain insight in the scale and relative importance of several economic costs and practical difficulties that may arise. Moreover, the appropriateness of the existing nuclear emergency response decision structure and intervention philosophy was investigated. The main conclusions drawn from the interviews are reported. Recommendations are made to increase the efficiency of implementing countermeasures in industrial areas

  9. Nuclear emergency planning and response in industrial areas. Results of a qualitative study in 9 industrial companies

    Energy Technology Data Exchange (ETDEWEB)

    Pauwels, N.; Hardeman, F.; Soudan, K

    1998-11-01

    Substantial economic losses and potential dangerous situations may result when industrial companies unexpectedly have to shut down their activities in an abrupt way. With respect to the industrial companies located in the Antwerp harbour region, the reason for such an unplanned shut-down could be the decision to (preventively) evacuate their workers, or to have them sheltered, in case of an alarm situation at a nearby nuclear power plant of Doel or in any other adjacent industrial factory. Between January and August 1998, the prevention advisors of nine industrial companies have been interviewed to gain insight in the scale and relative importance of several economic costs and practical difficulties that may arise. Moreover, the appropriateness of the existing nuclear emergency response decision structure and intervention philosophy was investigated. The main conclusions drawn from the interviews are reported. Recommendations are made to increase the efficiency of implementing countermeasures in industrial areas.

  10. Summary of public comments and NRC staff analysis relating to rulemaking on emergency planning for nuclear power plants

    International Nuclear Information System (INIS)

    1980-09-01

    This NUREG provides a summary and discussions of public comments received during the expedited rulemaking to upgrade emergency preparedness around nuclear power reactor sites. The final rule was published in the Federal Register (45 FR 55402) on August 19, 1980. The information in NUREG-0684 was excerpted in the main from internal paper SECY-80-275 (June 3, 1980) which forwarded the final rule to the Commission for consideration. This document, along with NUREG-0628, NUREG/CP-0011, and the materials cited in the Final Rules, should be considered a compendium of the major issues raised in this proceeding and acted upon by the Commission

  11. Upgrade the intervention levels derived for water and foods, to be include in the PERE 607 procedure the external radiological emergency plan in the Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Llado Castillo, R.; Aguilar Pacheco, R.

    1998-01-01

    The work shows the results obtained in the upgrade the intervention levels derived for water and foods, to be include in the PERE 607 procedure the external radiological emergency plan in the Laguna Verde nuclear power plant

  12. Emergency management and the nuclear terrorism threat

    International Nuclear Information System (INIS)

    DeVito, D.A.; Suiter, L.

    1987-01-01

    Counterterrorism is not the province of the emergency manager. Generally law enforcement has that role. Instead, the emergency manager's role is crisis management; the responsibility is to be the focal point for the chief executive officer (mayor, governor, or national executive) regarding the protection of the population. Managers must be able to gather and synthesize sufficient information, rapidly and accurately, on which to base sound decisions. To do so, they must have a highly efficient, coordinated emergency management organization in place at the state and local levels of government, and there must be a workable plan for emergency operations that integrates all public safety forces into an effective response to all types of emergencies. A major goal of emergency management is to ensure that government is in control and that the public perceives that the system is working. All states have an emergency management organization at the state level, as do most counties and large cities. However, some states and local governments, particularly those that have nuclear power plants within their borders, are better staffed, equipped, and trained than others to deal with nuclear incidents. States with nuclear facilities have an emergency management organization, an emergency plan, and adequate communications, equipment, and trained personnel to handle a nuclear accident or incident at a plant. 21 references

  13. Regulatory aspects of emergency planning

    International Nuclear Information System (INIS)

    Jamgochian, M.T.

    1986-01-01

    The paper discusses the advances that have been made in the USA in the field of emergency planning over the past several years and considers regulatory changes that may be on the horizon. The paper examines the importance of severe accident source terms and their relationship to emergency preparedness, recent research results of work on source terms, and the experience gained from evaluation of licensee performance during annual emergency preparedness exercises. (author)

  14. Emergency response planning in Saskatchewan

    International Nuclear Information System (INIS)

    Irwin, R.W.

    1998-01-01

    Release reporting and spill clean-up requirements by Saskatchewan Energy and Mines were reviewed. Wascana's experience in response planning was discussed. It was suggested that the key to prevention was up-front due diligence, including facility and oil well analysis. Details of Wascana's emergency plan, and details of Saskatchewan Energy and Mines release reporting procedures were also provided

  15. Emergency planning knowledge

    International Nuclear Information System (INIS)

    Gheorghe, A.; Vamanu, D.

    1996-01-01

    This book is an essay in dealing with the risks and consequences of disruptive events in some emblematical enterprises of our time. The striking relevance of the variability factor in emergency management makes it difficult to encompass the entire difficulty in a fully generic, streamlined discourse. That is why, while trying its best to extract generic pieces of wisdom from the varied experience reported in the exploding literature around that deals with the subject, this text would rather focus on a few case histories at hand, that may more eloquently, if implicitly, illustrate authors' stand. The three projects that served the purpose - ETH-NUMERISK, MONITOT.HSK, and ETH-CHEMRISK - are components of a research project in the Swiss academic and educational environment. figs., tabs., refs,

  16. Emergency preparedness: a comprehensive plan

    International Nuclear Information System (INIS)

    Wilson, R.H.

    1975-01-01

    The Atlantic Richfield Hanford Company (ARHCO) has developed comprehensive plans for coping with emergencies ranging from criticality to civil disturbance. A unique notification system provides for immediate contact with key personnel by using a central communications center, crash alarm warning networks, and a continuing telephone cascade notification system. There is also the capability of immediately contacting other contractor key personnel. Certain jobs have been predetermined as necessary for coping with an emergency. An emergency staff consisting of responsible management, with alternates, has been preselected to automatically fill these jobs when notified. Control centers for headquarters and ''field'' are established with telephone and radio communication capabilities and are also supplied with some source materials to assist initiating plans for containing an emergency for recovery. A comprehensive emergency procedures manual has been developed, which contains information of company-wide application and procedures for specific facilities covering almost all accident situations

  17. Medical treatment of radiation damages and medical emergency planning in case of nuclear power plant incidents and accidents

    International Nuclear Information System (INIS)

    Ohlenschlaeger, L.

    1981-03-01

    Medical measures in case of radiation damages are discussed on the basis of five potential categories of radiation incidents and accidents, respectively, viz. contaminations, incorporations, external local and general radiation over-exposures, contaminated wounds, and combinations of radiation damages and conventional injuries. Considerations are made for diagnostic and therapeutic initial measures especially in case of minor and moderate radiation accidents. The medical emergency planning is reviewed by means of definations used in the practical handling of incidents or accidents. The parameters are: extent of the incident or accident, number of persons involved, severity of radiation damage. Based on guiding symptoms the criteria for the classification into minor, moderate or severe radiation accidents are discussed. Reference is made to the Medical Radiation Protection Centers existing in the Federal Republic of Germany and the possibility of getting advices in case of radiation incidents and accidents. (orig.) [de

  18. Police procedures in civil nuclear emergencies

    International Nuclear Information System (INIS)

    Smith, F.H.

    1989-01-01

    The responsibilities of the police in the event of a nuclear emergency are summarized. Preparation and planning is needed with site operators and other organisations who would also be involved in the event of an accident. Several points in particular are discussed; shelter and evacuation, the issue of potassium iodate tablets, protection of police officers, the police involvement in the operation support centres, public education and further discussion on the integration and development of the organisation of emergency procedures. (U.K.)

  19. Emergency planning and emergency drill for a 5 MW district heating reactor

    International Nuclear Information System (INIS)

    Shi Zhongqi; Wu Zhongwang; Hu Jingzhong; Feng Yuying; Li Zhongsan; Dong Shiyuan

    1991-01-01

    The authors describes the main contents of the emergency planning for a 5 MW nuclear district heating reactor and some considerations for the planning's making, and presents the situation on implementing emergency preparedness and an emergency drill that has been carried out

  20. Status and developing of nuclear emergency response techniques in China

    International Nuclear Information System (INIS)

    Jiangang, Zhang; Bing, Zhao; Rongyao, Tang; Xiaoxiao, Xu

    2008-01-01

    Full text: Nuclear Emergency preparedness and response in China is consistent with international basic principle of nuclear safety and emergency response. Nuclear emergency response techniques in China developed with nuclear power from 1980s. The status of nuclear emergency techniques in China are: 1) China have plentiful experiences and abilities in the fields of nuclear facility emergency planning and preparedness, nuclear accident consequence assessment, emergency monitoring, and emergency advisory; 2) Emergency assistance ability in China has a foundation, however it cannot satisfy national requirement; 3) Emergency planning and preparedness is not based on hazard assessment; 4) Remote monitoring and robot techniques in not adaptable to the requirements of nuclear emergency response; 5) A consistent emergency assessment system is lack in China. In this paper, it is analyzed what is the developing focal points of nuclear emergency response techniques in China, and it is proposed that the main points are: a) To develop the research of emergency preparedness on the base of hazard analysis; b) To improve remote monitoring and robot ability during nuclear emergency; c) To develop the response technique research with anti-terrorism. (author)

  1. Dose monitoring in nuclear emergency

    International Nuclear Information System (INIS)

    Nan Hongjie; Yang Zhongping; Lei Xin

    2012-01-01

    In order to protect people from irradiation sickness and rebuild the radiation filed in nuclear emergency, personal and environmental dose need to be monitored. The application of TLD in dose monitoring is discussed in this paper. (authors)

  2. Off-site intervention plan of the public health authorities for emergencies at the Caorso nuclear power plant

    International Nuclear Information System (INIS)

    Fabbri, S.; Sogni, R.; Boeri, G.; Cencetti, S.; Melandri, G.; Paterlini, L.

    1986-01-01

    The Caorso nuclear power plant, which is near Piacenza and has an 875 MW boiling water reactor, has been generating electricity on a regular basis since 1978. The off-site intervention plan of the public health authorities, based on an analysis of hypothetical accidents, was approved in 1977 and subsequently revised. A study of the radiological consequences of these accidents for man and the environment indicates that the highest doses likely to be received by inhalation of 131 I would be no more than a few rem, whereas the levels of soil contamination, even at a distance of 40 km, could exceed 1 μCi/m 2 . The main problems caused by such accidents are therefore related to environmental contamination. Under the intervention plan, the provincial prefect is responsible for co-ordinating the work of all the civil, military and medical authorities. Teams from ENEL, the fire service and the local health services (USL) monitor the concentration of 131 I in the air and the exposure level, and take samples within a radius of 10 km around the site. The police and army control road traffic and are responsible, if necessary, for the evacuation of the population. A radiometry co-ordination centre (CCRI) is set up to process the readings made by the teams and provides the prefect with the technical information he requires to take decisions The local medical services (USL) run the centre where the population is assembled and monitor superficial contamination, apply initial decontamination measures, and provide medical assistance in general. The Piacenza USL also takes action by sending out its mobile radiometry laboratory, using its measurement equipment and providing logistic support to the CCRI. It is also to play a major role in informing the population in the event of an alarm. (author)

  3. External plans for radiological emergency; Plan de emergencia radiologica externo

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, G; Vizuet G, J; Benitez S, J A [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    Since 1989, the National Institute of Nuclear Research in Mexico shares in the task of Food and Water Control corresponding to the FT-86 task force of External Plans for Radiological Emergency (PERE), in charge of the Veracruz Health Services. In the PERE preparation stage previous actions are necessary developed for the preparation and updating of this plan and the task organization with the purpose to maintaining standing and operable in any time and circumstance, the capability to response in the face of an emergency. This stage englobes activities which must be realized before to carry out the Plan as they are the specialized training of personnel which participates and the execution of exercises and simulacrums. Until 1998, training and exercises for this task had been realized under diverse possible sceneries but in conditions that simulated the presence of radioactive material. For this reason, it should be emphasized the training realized during the days 6th, 7th, 8th July, 1999, in the emergency planning zone of the Plan, which to carry out using radioactive material. The National Institute of Nuclear Research had in charge of the training. This work describes all the activities for the realization of this training. (Author)

  4. Institutional planning for radiation emergencies

    International Nuclear Information System (INIS)

    Keil, E.R.

    1986-01-01

    Persons providing health care pride themselves on their ability to handle emergencies. This pride is born of the daily experience of caring for the sick and injured. Emergencies include traumatic injuries, sudden changes in health status, and various minor disturbances in the physical environment inside the hospital. The effectiveness of this ability is unquestioned in limited-scale problems. However, survey experience of the Joint Commission on the Accreditation of Hospitals (JCAH) reveals weaknesses when health care organizations are faced with larger scale problems such as earthquakes and plane crashes. One may speculate that a massive emergency such as occurred at Chernobyl would overwhelm this ability. Based on the same survey experience, JCAH believes that health care organizations can plan and train to prepare for large-scale emergencies in a careful and systematic manner. Through such study and practice, their existing confidence and ability to deal with limited emergencies can be explained

  5. The technical bases for government emergency plans

    International Nuclear Information System (INIS)

    Champion, D.; Herviou, K.

    2006-01-01

    Despite technical and organisational existing arrangements to prevent human and equipment failures, the occurrence of a severe accident inducing an important release of radioactive or toxic products could not be totally excluded. Public authorities are responsible for the development of emergency plans which main objective is the protection of the population in case of accident. The efficiency of emergency plans assumes they have been established before the occurrence of any accident, taking into account specificities of the installation and its environment. On the basis of the list of possible events likely to induce releases into the environment, some 'envelope' scenarios are selected and their consequences are assessed- The comparison of the consequences to reference levels for which protective actions are recommended gives the area where actions may be required. This approach is applied for the different nuclear facilities in France. Examples are given in the article on the definition of emergency plans technical basis for nuclear power plants, other nuclear facilities and transportation of radioactive materials. (authors)

  6. The handling of nuclear emergencies in Argentina

    International Nuclear Information System (INIS)

    Hernandez, Daniel; Jordan, Osvaldo; Kunst, Juan; Bruno, Hector

    2008-01-01

    Full text: In 1998, the Executive signed the decree 1390, which defined the scope and the procedures corresponding to the Nuclear Activity Law. In this decree, the new functions of the Nuclear Regulatory Authority (ARN) are described, being the most important related to preparation and response for a nuclear emergency the following ones: 1) ARN must provide protection from harmful effects of ionizing radiations under normal conditions and emergency situations; 2) ARN must advise the Executive in case of radiological and nuclear emergencies; 3) ARN shall establish the criteria for the emergency plans of the facilities and train the members of neighbor public to the facilities in case of nuclear emergencies; 4) The emergency plans developed by local, provincial and national authorities must be approved by the ARN; 5) ARN shall lead the actions within the area covered by the emergency plans of the facilities. Security Forces and the Representatives of Civil Institutions shall report the designated ARN officer. The ARN recognized immediately the responsibility imposed by this law and, at the same time, the opportunity of improving the handling of emergencies through a centralized direction of the operations. Under this frame, ARN created the Radiological Emergencies Intervention System (SIER) with the goal of taking charge of the preparation and the handling of emergency situations. From the beginning, the purpose of the SIER was to improve the preparation and response to nuclear emergencies in a regular form, bearing in mind the cultural and socioeconomic situation of the country, as well as the local peculiarities. The first steep to achieve such a target was to gain the confidence of other organizations included in the response on the ARN technical and operational aptitude to lead the actions inside the emergency area and, later, to establish the pertinent arrangements. The strategy chosen by ARN to respond to nuclear emergencies consists in establishing an expert

  7. An emergency response plan for transportation

    International Nuclear Information System (INIS)

    Fontaine, M.V.; Guerel, E.

    2000-01-01

    Transnucleaire is involved in road and rail transport of nuclear fuel cycle materials. To comply with IAEA recommendations, Transnucleaire has to master methods of emergency response in the event of a transport accident. Considering the utmost severe situations, Transnucleaire has studied several cases and focused especially on an accident involving a heavy cask. In France, the sub-prefect of each department is in charge of the organisation of the emergency teams. The sub-prefect may request Transnucleaire to supply experts, organisation, equipment and technical support. The Transnucleaire Emergency Response Plan covers all possible scenarios of land transport accidents and relies on: (i) an organisation ready for emergency situations, (ii) equipment dedicated to intervention, and (iii) training of its own experts and specialised companies. (author)

  8. Regulation No. 55/2006 Coll. of the Nuclear Regulatory Authority of the Slovak Republic dated as of January 12, 2006 on details concerning emergency planning in case of nuclear incident or accident

    International Nuclear Information System (INIS)

    2006-01-01

    This Regulation provides details on (a) the content of emergency plans, procedure for their submission and approval; (b) the measures, procedures and activities including degrees of severity of the events according to international criteria; (c) informing the Authority and the public; (d) contents of the documents necessary for application approval of the size of the area at risk, the size of the common area at risk, including the date of its submission; (e) monitoring systems; (f) training, practicing and updating emergency plans; (g) provided data and time during an incident or accident to nuclear installations and the transport of radioactive materials; (h) notification of operational events and events during shipment. This Regulation came into force on March 1, 2006.

  9. Radiation emergency preparedness in nuclear power plants

    International Nuclear Information System (INIS)

    Geetha, P.V.; Ramamirtham, B.; Khot, P.

    2008-01-01

    The purpose of planning for radiation emergency response is to ensure adequate preparedness for protection of the plant personnel and members of the public from significant radiation exposures in the unlikely event of an accident. With a number of safety features in the reactor design and sound operating procedures, the probability of a major accident resulting in the releases of large quantities of radioactivity is extremely small. However, as an abundant cautious approach a comprehensive radiation emergency response preparedness is in place in all the nuclear power plants (NPPs). Radiation Emergency in NPPs is broadly categorized into three types; plant emergency, site emergency and off-site emergency. During off site emergency conditions, based on levels of radiation in the environment, Civil Authorities may impose several counter measures such as sheltering, administering prophylaxis (stable iodine for thyroid blocking) and evacuation of people from the affected area. Environmental Survey Laboratory (ESL) carries out environmental survey extensively in the affected sector identified by the meteorological survey laboratory. To handle emergency situations, Emergency Control Centre with all communication facility and Emergency Equipment Centre having radiation measuring instruments and protective equipment are functional at all NPPs. AERB stipulates certain periodicity for conducting the exercises on plant, site and off site emergency. These exercises are conducted and deficiencies corrected for strengthening the emergency preparedness system. In the case of off site emergency exercise, observers are invited from AERB and Crisis Management Group of Department of Atomic Energy (DAE). The emergency exercises conducted by Nuclear Power Plant Sites have been very satisfactory. (author)

  10. The estimated evacuation time for the emergency planning zone of the Kori nuclear site, with a focus on the precautionary action zone

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Hee; Jeong, Jae Jun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Shin, Won Ki; Song, Eun Young; Cho, Cheol Woo [Div. of Nuclear Safety, Busan Metropolitan City, Busan (Korea, Republic of)

    2016-09-15

    The emergency planning zone (EPZ) of the city of Busan is divided into the precautionary actions zone (PAZ) and the urgent protective action planning zone; which have a 5-km radius and a 20-km to 21-km radius from the nuclear power plant site, respectively. In this study, we assumed that a severe accident occurred at Shin-Kori nuclear unit 3 and evaluated the dispersion speed of radiological material at each distance at various wind speeds, and estimated the effective dose equivalent and the evacuation time of PAZ residents with the goal of supporting off-site emergency action planning for the nuclear site. The total effective dose equivalent, which shows the effect of released radioactive materials on the residents, was evaluated using the RASCAL 4.2 program. In addition, a survey of 1,036 residents was performed using a standardized questionnaire, and the resident evacuation time according to road and distance was analyzed using the VISSIM 6.0 program. According to the results obtained using the VISSIM and RASCAL programs, it would take approximately 80 to 252.2 minutes for permanent residents to move out of the PAZ boundary, 40 to 197.2 minutes for students, 60 to 232.2 minutes for the infirm, such as elderly people and those in a nursing home or hospital, and 30 to 182.2 minutes for those temporarily within the area. Consequently, in the event of any delay in the evacuation, it is estimated that the residents would be exposed to up to 10 mSv·h-1 of radiation at the Exclusion Area Boundaries (EAB) boundary and 4-6 mSv·h-1 at the PAZ boundary. It was shown that the evacuation time for the residents is adequate in light of the time lapse from the initial moment of a severe accident to the radiation release. However, in order to minimize the evacuation time, it is necessary to maintain a system of close collaboration to avoid traffic congestion and spontaneous evacuation attempts.

  11. The estimated evacuation time for the emergency planning zone of the Kori nuclear site, with a focus on the precautionary action zone

    International Nuclear Information System (INIS)

    Lee, Jang Hee; Jeong, Jae Jun; Shin, Won Ki; Song, Eun Young; Cho, Cheol Woo

    2016-01-01

    The emergency planning zone (EPZ) of the city of Busan is divided into the precautionary actions zone (PAZ) and the urgent protective action planning zone; which have a 5-km radius and a 20-km to 21-km radius from the nuclear power plant site, respectively. In this study, we assumed that a severe accident occurred at Shin-Kori nuclear unit 3 and evaluated the dispersion speed of radiological material at each distance at various wind speeds, and estimated the effective dose equivalent and the evacuation time of PAZ residents with the goal of supporting off-site emergency action planning for the nuclear site. The total effective dose equivalent, which shows the effect of released radioactive materials on the residents, was evaluated using the RASCAL 4.2 program. In addition, a survey of 1,036 residents was performed using a standardized questionnaire, and the resident evacuation time according to road and distance was analyzed using the VISSIM 6.0 program. According to the results obtained using the VISSIM and RASCAL programs, it would take approximately 80 to 252.2 minutes for permanent residents to move out of the PAZ boundary, 40 to 197.2 minutes for students, 60 to 232.2 minutes for the infirm, such as elderly people and those in a nursing home or hospital, and 30 to 182.2 minutes for those temporarily within the area. Consequently, in the event of any delay in the evacuation, it is estimated that the residents would be exposed to up to 10 mSv·h-1 of radiation at the Exclusion Area Boundaries (EAB) boundary and 4-6 mSv·h-1 at the PAZ boundary. It was shown that the evacuation time for the residents is adequate in light of the time lapse from the initial moment of a severe accident to the radiation release. However, in order to minimize the evacuation time, it is necessary to maintain a system of close collaboration to avoid traffic congestion and spontaneous evacuation attempts

  12. Dungeness Power Station off-site emergency plan

    International Nuclear Information System (INIS)

    1993-01-01

    This off-site Emergency Plan in the event of an accidental release of radioactivity at the Dungeness Nuclear power station sets out the necessary management and coordination processes between Nuclear Electric, operators of the site, the emergency services and relevant local authorities. The objectives promoting the aim are identified and the activities which will be undertaken to protect the public and the environment in the event of an emergency are outlined. (UK)

  13. Handling of emergency situations: organization and plans

    International Nuclear Information System (INIS)

    Swindell, G.E.

    1975-01-01

    Sources of exposure and foreseeable types of accidents; responsibilities for the prevention and control of accidents; organization for controlling emergency situations; emergency control plans. (HP) [de

  14. What Chernobyl has taught us about emergency planning

    International Nuclear Information System (INIS)

    Orchard, H.C.

    1988-01-01

    The author discusses the U.K. government review of existing emergency plans in the light of experience of the Chernobyl accident, together with the nuclear industry review of the causes and consequences of the accident. Aspects of emergency planning covered by this outline review include the need for information, pressures brought to bear on site emergency organisation by public and news media, evacuation, the need for national inventories of equipment, protective clothing, health physics instruments, road transport vehicles etc. (U.K.)

  15. Emergency protection and nuclear power station remote monitoring

    International Nuclear Information System (INIS)

    Nowak, K.; Wolf, H.

    1986-01-01

    The States of the Federal Republic of Germany are planning emergency protection measures for the environment of nuclear power stations based on their statutory duty of care. In this connection the paper explains to what extent remote monitoring of nuclear power stations practised by the Federal Supervisory Authorities may support the design and implementation of emergency protection measures. (orig.) [de

  16. The National Institute of Nuclear Research (ININ) and its participation in the External Radiological Emergency Plans at Laguna Verde Power plant

    International Nuclear Information System (INIS)

    Suarez, G.

    1998-01-01

    In this article it is described the form in which the ININ participates in the External Radiological Emergency Plan at Laguna Verde Power plant. It is set the objective, mission and organization of this plan. The responsibilities and activities that plan has assigned are mentioned also the organization to fulfil them and the obtained results during 9 years of participation. (Author)

  17. Nuclear emergency preparedness and management the international nuclear emergency exercise Inex 2000

    International Nuclear Information System (INIS)

    Mundigl, St.

    2003-01-01

    With the initiation of the first international nuclear emergency exercise INEX 1, performed as a table-top exercise in 1993, the international community tested, for the first time, approaches and policies in place to manage a nuclear or radiological emergency. INEX 1 with its related workshops led to a wealth of lessons learned and to an improvement in nuclear emergency management. The INEX 2 exercise series, initiated by the NEA and performed between 1996 and 1999, established an international nuclear emergency 'exercise culture' leading to a clear improvement of the international aspects of nuclear emergency preparedness and management. INEX 2 was a series of four command post exercises based on national nuclear emergency exercises in Switzerland, Finland, Hungary and Canada. Simulated accidents at nuclear power plants were used to test existing procedures in emergency response and management, and to analyse local, regional, national and international emergency plans under realistic conditions. In addition, the exercises allowed the participating countries to gain experience using new concepts and tools. The most significant result of INEX 2 and a major step forward in nuclear emergency management was the development of a new communication and information exchange strategy, which is currently implemented by various NEA member countries as well as by the international community in general. The objective of this new strategy is to assist the decision-maker by improving the selection of the data transmitted, by encouraging the transmission and reception of such data and information using modern communication methods, e.g. secure world wide web technologies, and by defining emergency monitoring and modelling needs. To test the validity and usefulness of the newly-developed strategy, the NEA proposed to organize an international nuclear emergency exercise, INEX 2000, similar in scope to the INEX 2 exercises. In addition, the NEA suggested to include, for the first

  18. Principles of off-site nuclear emergency exercises

    International Nuclear Information System (INIS)

    Miska, H.

    2011-01-01

    Due to high safety standards at nuclear power plants, no experience exits with nuclear emergencies in Western Europe. Thus, emergency exercises are the only possibility to assure effective protective measures should the very unlikely severe accident occur. The main objectives of exercises are generally the check of response plans for suitability, the test of the equipment's applicability and training of personnel for the unusual task to manage a nuclear emergency. After an introduction into the different types of exercises, this contribution focuses on offsite nuclear emergency exercises, explaining frame conditions to ensure good practice and, finally, reports some experience from exercises. (orig.)

  19. The Norwegian nuclear emergency preparedness system

    International Nuclear Information System (INIS)

    Naadland, E.; Stranden, E.

    1995-01-01

    A new national organisation for nuclear emergency preparedness was established in Norway in 1993, based on experiences from the Chernobyl accident. This organisation is based on authorities and research institutions which in a normal situation have responsibilities and knowledge in fields that are also of major importance in a nuclear accident situation. The national emergency preparedness organisation consists of the Ministerial Co-ordination Committee, the Advisory Committee for Nuclear Accidents and their secretariat at the Norwegian Radiation Protection Authority, and an Information Group. The organisations participating in the Advisory Committee operate measuring networks, stations and laboratories. In an early phase of an accident, a minor group from the Advisory Committee forms a Crisis Committee for Nuclear Accidents. This committee has been delegated the authority to make decisions in this phase. The organisation represented by its secretariat at the Norwegian Radiation Protection Authority is responsible for coordinating the emergency planning, the measuring capacities and the professional needs ordinarily. The secretariat is on call 24 hours a day as point of contact according to bilateral and international agreements on early notification. In this paper the features of the emergency preparedness organisation are presented. (Author)

  20. Studying the emerging nuclear suppliers

    International Nuclear Information System (INIS)

    Rydell, R.F.

    1990-01-01

    None of these events---nor any of the many others that are cited in the case studies of this book---can be singled out as heralding a revolutionary transformation of the global nuclear marketplace. The cumulative effect of such developments, however, may well be the emergence of a market in the year 2000 that is far less concentrated than today's market for nuclear reactors and fuel cycle technology. If this gradual structural transformation is accompanied by the entry into the market of new buyers and sellers that do not accept the Nuclear Non-Proliferation Treaty (NPT), safeguards administered by the IAEA, or other international norms directed at preventing the spread of nuclear weapon capabilities, the result may indeed have revolutionary dimensions for the business, diplomacy, and research of nuclear energy. A similar outcome could arise even f these norms are widely accepted but are not matched by an increase in the resources available to national governments and key international agencies that implement these norms. This paper identifies some of the pitfalls that researchers often encounter in researching the emerging suppliers and will outline some basic ground rules to guide the collection and interpretation of empirical evidence on supplier behavior

  1. Nuclear materials inventory plan

    International Nuclear Information System (INIS)

    Doerr, R.W.; Nichols, D.H.

    1982-03-01

    In any processing, manufacturing, or active storage facility it is impractical to assume that any physical security system can prevent the diversion of Special Nuclear Material (SNM). It is, therefore, the responsibility of any DOE Contractor, Licensee, or other holder of SNM to provide assurance that loss or diversion of a significant quantity of SNM is detectable. This ability to detect must be accomplishable within a reasonable time interval and can be accomplished only by taking physical inventories. The information gained and decisions resulting from these inventories can be no better than the SNM accounting system and the quality of measurements performed for each receipt, removal and inventory. Inventories interrupt processing or production operations, increase personnel exposures, and can add significantly to the cost of any operation. Therefore, realistic goals for the inventory must be defined and the relationship of the inherent parameters used in its validation be determined. Purpose of this document is to provide a statement of goals and a plan of action to achieve them

  2. A study on the improvement of nuclear emergency countermeasure technology for local government

    International Nuclear Information System (INIS)

    Khang, Byung Oui; Lee, J. T.; Lee, G. Y.

    2005-01-01

    There were necessities of the establishment of the regional nuclear emergency plan on the nuclear disaster of nuclear facilities according to the 'nuclear facilities physical protection and emergency preparedness act' and the strengthening of the regional nuclear disaster management system to get confidence on the related national policy from the public and the defining and improving the relationship between local government and other organizations on responsibilities, authorities, duties and support. So, the project was started, the Results of the project are the establishment of Regional Nuclear Emergency Plan (Draft) connected to the national safety management basic plan and national radiological emergency plan which contains the description of the emergency preparedness to respond nuclear disaster and the duty description of related organizations to respond a nuclear disaster and several description of nuclear emergency preparedness. And this report describes the regional nuclear disaster countermeasure technology improvement and the emergency training, drill, exercise methodology

  3. A model national emergency plan for radiological accidents; Plan modelo nacional de respuesta de emergencia para accidentes radiologicos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The IAEA has supported several projects for the development of a national response plan for radiological emergencies. As a result, the IAEA has developed a model National Emergency Response Plan for Radiological Accidents (RAD PLAN), particularly for countries that have no nuclear power plants. This plan can be adapted for use by countries interested in developing their own national radiological emergency response plan, and the IAEA will supply the latest version of the RAD PLAN on computer diskette upon request.

  4. Radioactive materials transportation emergency response plan

    International Nuclear Information System (INIS)

    Karmali, N.

    1987-05-01

    Ontario Hydro transports radioactive material between its nuclear facilities, Atomic Energy of Canada Limited at Chalk River Laboratories and Radiochemical Company in Kanata, on a regular basis. Ontario Hydro also occasionally transports to Whiteshell Laboratories, Hydro-Quebec and New Brunswick Electric Power Commission. Although there are stringent packaging and procedural requirements for these shipments, Ontario Hydro has developed a Radioactive Materials Transportation Emergency Response Plan in the event that there is an accident. The Transportation Emergency Response plan is based on six concepts: 1) the Province id divided into three response areas with each station (Pickering, Darlington, Bruce) having identified response areas; 2) response is activated via a toll-free number. A shift supervisor at Pickering will answer the call, determine the hazards involved from the central shipment log and provide on-line advice to the emergency worker. At the same time he will notify the nearest Ontario Hydro area office to provide initial corporate response, and will request the nearest nuclear station to provide response assistance; 3) all stations have capability in terms of trained personnel and equipment to respond to an accident; 4) all Ontario Hydro shipments are logged with Pickering NGS. Present capability is based on computerized logging with the computer located in the shift office at Pickering to allow quick access to information on the shipment; 5) there is a three tier structure for emergency public information. The local Area Manager is the first Ontario Hydro person at the scene of the accident. The responding facility technical spokesperson is the second line of Corporate presence and the Ontario Hydro Corporate spokesperson is notified in case the accident is a media event; and 6) Ontario Hydro will respond to non-Hydro shipments of radioactive materials in terms of providing assistance, guidance and capability. However, the shipper is responsible

  5. A system for radiation monitoring at the site for emergency planning and response in a nuclear station potentialities and prospects

    International Nuclear Information System (INIS)

    Novakov, V.; Moskovska, N.; Madzharov, M.; Angelov, V.

    1993-01-01

    The paper describes the existing system for radiation monitoring of the NPP region. The location of the devices puts a number of problems as maintenance of the radiometric equipment and urgent collecting and processing of the measuring data. Undeniably, to get an effective and timely decision, it is necessary to have on hand information as complete and prompt as possible, about the radiological situation in the regions, towns, villages and sites. As a result of daily observation and registration, an amount of enough in volume data could be accumulated. This data may be used as a base in case of a sudden change of the radiological situation and/or in case of arising of some local contaminations as a result of a volley type of emission, accidents at the nuclear power stations and releases fractions of radioactive and rare gases. The data obtained for a comparatively large region (about 700 square kilometers) with a high degree of gamma detectors distribution density are discussed. In the conditions of a progressively complicating radiological situation, they allow to determine the possible directions of the emission and also to undertake some response actions for protection of the population in time. (author)

  6. Emergency planning and response preparedness in Slovenia

    International Nuclear Information System (INIS)

    Martincic, R.; Frlin-Lubi, A.; Usenicnik, B.

    2000-01-01

    Disasters do occur and so do nuclear or radiological accidents. Experience has shown that advance emergency response preparedness is essential in order to mitigate the consequences of an accident. In Slovenia, the Civil Protection Organization is the responsible authority for emergency preparedness and response to any kind of disasters. The Krko Nuclear Power Plant is the only nuclear power plant in Slovenia. To date the plant has operated safely and no serious incidents have been recorded. Slovenia nevertheless, maintains a high level of emergency preparedness, which is reflected in the area of prevention and safety and in the area of emergency response preparedness. The emergency management system for nuclear emergencies is incorporated into an overall preparedness and response system. The paper presents an overview of nuclear or radiological emergency response preparedness in Slovenia and its harmonization with the international guidelines. (author)

  7. Building a year 2000 emergency response plan

    International Nuclear Information System (INIS)

    Riopel, P.

    1998-01-01

    This presentation emphasized the importance of developing an emergency plan to minimize any impacts in the event that something may go wrong when the clock changes over at midnight on December 31, 1999. It is usually impossible to anticipate what kinds of emergencies will happen. Planning for emergencies does not have to be an intimidating task. Hazard analysis is a subjective way to investigate what can go wrong, the likelihood of it happening relative to some other potential emergency, and the seriousness of the event. In general, emergency planning for Y2K should not be significantly different from planning for any other type of emergency. Y2K is not the emergency. The events that occur as a consequence of Y2K are. It is these events that should be the focus of a Year 2000 emergency plan

  8. Development of nuclear emergency exercise programme (NEEP) in Korea

    International Nuclear Information System (INIS)

    Shin, H. K.; Kim, J. Y.; Kim, M. K.; Kim, S. H.

    2011-01-01

    The nuclear emergency exercise programme (NEEP) is a PC-based application intended for design and planning emergency preparedness and response (EP and R) exercises for a potential nuclear emergency in Korea. The application programme allows EP and R staff to create and edit exercise scenarios based on information customised for a specific nuclear power plant's emergency plans. NEEP includes the following features: (1) step-by-step guide to developing new exercise scenario according to emergency alarm level and potential accident type, (2) database of specific plant's field exercise scenarios that can be easily modified by users, (3) generating master scenario events list and messages of exercise participants and (4) allowing the quantitative evaluation of exercise participants from the view of exercise objectives and evaluator guides. NEEP also features tools for queries, reports and visualisation that can be used to create documentation during the scenario planning and exercise evaluation processes. (authors)

  9. New Nuclear Emergency Prognosis system in Korea

    Science.gov (United States)

    Lee, Hyun-Ha; Jeong, Seung-Young; Park, Sang-Hyun; Lee, Kwan-Hee

    2016-04-01

    This paper reviews the status of assessment and prognosis system for nuclear emergency response in Korea, especially atmospheric dispersion model. The Korea Institute of Nuclear Safety (KINS) performs the regulation and radiological emergency preparedness of the nuclear facilities and radiation utilizations. Also, KINS has set up the "Radiological Emergency Technical Advisory Plan" and the associated procedures such as an emergency response manual in consideration of the IAEA Safety Standards GS-R-2, GS-G-2.0, and GS-G-2.1. The Radiological Emergency Technical Advisory Center (RETAC) organized in an emergency situation provides the technical advice on radiological emergency response. The "Atomic Computerized Technical Advisory System for nuclear emergency" (AtomCARE) has been developed to implement assessment and prognosis by RETAC. KINS developed Accident Dose Assessment and Monitoring (ADAMO) system in 2015 to reflect the lessons learned from Fukushima accident. It incorporates (1) the dose assessment on the entire Korean peninsula, Asia region, and global region, (2) multi-units accident assessment (3) applying new methodology of dose rate assessment and the source term estimation with inverse modeling, (4) dose assessment and monitoring with the environmental measurements result. The ADAMO is the renovated version of current FADAS of AtomCARE. The ADAMO increases the accuracy of the radioactive material dispersion with applying the LDAPS(Local Data Assimilation Prediction System, Spatial resolution: 1.5 km) and RDAPS(Regional Data Assimilation Prediction System, Spatial resolution: 12km) of weather prediction data, and performing the data assimilation of automatic weather system (AWS) data from Korea Meteorological Administration (KMA) and data from the weather observation tower at NPP site. The prediction model of the radiological material dispersion is based on the set of the Lagrangian Particle model and Lagrangian Puff model. The dose estimation methodology

  10. Nuclear physics program plan

    International Nuclear Information System (INIS)

    1985-11-01

    The nuclear physics program objectives, resources, applications and implications of scientific opportunities are presented. The scope of projected research is discussed in conjunction with accelerator facilities and manpower. 25 figs., 2 tabs

  11. Nuclear emergency preparedness in the Netherlands

    International Nuclear Information System (INIS)

    Dal, A.H.; Molhoek, W.; Leest, A.M.M.; Moen, J.E.T.; Sonderen, J.F. van; Aldenkamp, F.J.

    1997-01-01

    The Dutch organisation for nuclear emergency management has been described in previous papers. Briefly, the Ministry of Housing, Spatial Planning and Environment (VROM) and the Ministry of the Interior (BIZA) coordinate the input of all other Ministries and agencies at the government level, and provide the general strategy for dealing with the situation at hand. Any indication of a possible nuclear incident may alert the organization. Signals indicating, such incidents are continuously collected by the Emergency Management Department a VROM in the Hague. An expert group is permanently available for the evaluation of serious warnings, either via bilateral or other international contacts (IAEA, EC, neighbouring countries) or through the Dutch early warning monitoring network via the National Institute of Public Health and the Environment (RIVM). The chairman of this evaluation group has the authority to decide whether to start up the National Organization for Nuclear Emergency Management. Its start means the installation of a Policy Team of Cabinet Ministers or their representatives, and the involvement of many authorities and organizations at the national, provincial and local levels

  12. Danish emergency plan for Barsebaeck Power Plant

    International Nuclear Information System (INIS)

    1981-01-01

    A revised edition of the Danish emergency plan for the Swedish Power Plant Barsebaeck (about 20 km from the Danish Territory) is prepared at the request of Environmental Council in cooperation with police management and civil defense organisations. The plan is valid from October 1981. The emergency plan defines the emergency organization and the provisions to be taken quickly to protect the population if it is exposed to ionizing radiation from release of radioactive effluents as a result of an accident in the Barsebaeck power plant. The emergency plan is based upon Regulation no. 278, June 27, 1963 and Regulation no. 502, October 1, 1974. (EG)

  13. Nuclear emergency planning in Belgium

    International Nuclear Information System (INIS)

    Smeesters, P.; Van Bladel, L.

    1995-01-01

    After a small presentation of the international recommendations supporting decision-making, this paper presents the limits of them. For example, particular groups such as pregnant women, are not taken into account. As a matter of fact, the belgium approach is as follows: take into account the more recent risk evaluation for radiation-induced effects, give priority to protecting public health (instead of purely financial cost/benefit analysis), integrate countermeasures aiming at preventive protection of the food chain... But, it should be stressed that those measures present several problems. The main one concerns the information of the public, which should be given as fast as possible. (TEC)

  14. Nordic nuclear emergency exercises. Final report

    International Nuclear Information System (INIS)

    Bennerstedt, T.; Stranden, E.; Salo, A.

    1995-01-01

    In all Nordic countries, nuclear emergency provisions have been revised following the Chernobyl accident. Local and national exercises are carried out regularly in each country. Several actions have been taken to harmonize the emergency approaches of the Nordic countries. In order to further promote consistent decisions in an emergency situation, two Nordic exercises were conducted in 1993. It was important to see if all five countries (Denmark, Finland, Iceland, Norway and Sweden) responded in a similar way to a given situation, as far as risk assessment and protective measures were concerned. The exercises were mainly aimed at decision makers and advisers of the five national emergency organizations. Thus, the exercises did not include comparison of underlying calculations on, e.g., atmospheric trajectories or transfer of radioactive material from air to ground. Such functions were tested separately in drills that also formed part of the Nordic emergency preparedness program. The exercises included an acute-phase situation (NORA), and a late-phase situation (ODIN). The Nordic exercises aroused international interest, and hence observers from IAEA, OECD/NEA and the European Union were invited to the exercises. NORA was observed by representatives from IAEA (in Finland) and OECD/NEA (in Sweden). ODIN was attended by IAEA (in Sweden) and the European Union (in Norway). Generally speaking, regional exercises such as NORA and ODIN help improve national emergency preparedness planning, organization and operations as well as international coordination. (EG)

  15. Inspection of licensee activities in emergency planning

    International Nuclear Information System (INIS)

    Van Binnebeek, J.J.; Gutierrez Ruiz, Luis Miguel; Bouvrie, E. des; Aro, Ilari; Gil, J.; Balloffet, Yves; Forsberg, Staffan; Klonk, H.; Lang, Hans-Guenter; Fichtinger, G.; Warren, T.; Manzella, P.; Gallo, R.; Koizumi, Hiroyoshi; Johnson, M.; Pittermann, P.

    1998-01-01

    The CNRA believes that safety inspections are a major element in the regulatory authority's efforts to ensure the safe operation of nuclear facilities. Considering the importance of these issues, the Committee has established a special Working Group on Inspection Practices (WGIP). The purpose of WGIP, is to facilitate the exchange of information and experience related to regulatory safety inspections between CNRA Member countries Following discussions at several meetings on the topic of what is expected by the regulatory body regarding inspection criteria, WGIP proposed putting together a compilation of Member countries practices on regulatory inspection practices with respect to licensee emergency planning. CNRA approved this task and this report. Information was collected from a questionnaire which was issued in 1996. The report presents information on regulatory inspection activities with respect to emergency planning in NEA Member countries. The focus of the report is on the third section. It reviews the similarities and differences in inspection practices to evaluate compliance with the requirements over which the regulatory body (RB) has jurisdiction

  16. Attitudes towards emergency plans, information and tasks

    International Nuclear Information System (INIS)

    Hultaaker, Oe.

    1986-11-01

    The staff composed of policemen, firemen, home-guards and coast-guards having emergency service at the Ringhals nuclear power plant have been interviewed as to their viewpoints. They have a similar attitude to nuclear power as the general public which is varying. They accept, however, the actual risk evaluation to a large extent. There are also opponents of nuclear power who are difficult to motivate about the training for emergency service. (G.B.)

  17. Emergency Meal Planning for Diabetics

    Science.gov (United States)

    ... emergency . What should I expect during an emergency situation? Many things we depend on daily may not ... 2017 National Kidney Foundation, Inc., 30 East 33rd Street, New York, NY 10016, 1-800-622-9010. ...

  18. The National Institute of Nuclear Research (ININ) and its participation in the External Radiological Emergency Plans at Laguna Verde Power plant; El ININ y su participacion en el Plan de Emergencia Radiologica Externo de la Central Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, G. [Instituto Nacional de Investigaciones Nucleares, Departamento de Proteccion Radiologica, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    In this article it is described the form in which the ININ participates in the External Radiological Emergency Plan at Laguna Verde Power plant. It is set the objective, mission and organization of this plan. The responsibilities and activities that plan has assigned are mentioned also the organization to fulfil them and the obtained results during 9 years of participation. (Author)

  19. Spent Nuclear Fuel Project Safety Management Plan

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities

  20. Arrangements for dealing with emergencies at civil nuclear installations

    International Nuclear Information System (INIS)

    Turner, M.J.; Robinson, I.F.

    1989-01-01

    This paper covers arrangements for dealing with nuclear emergencies at sites licensed by the Health and Safety Executive/Nuclear Installations Inspectorate. Such arrangements are over and above the contingency plans required for radiation incidents as required by the Ionising Radiations Regulations. The statutory position of the NII is described and, although the NII is limited to regulating the activities of the operator, the functions of the other organisations that could be involved in dealing with an emergency are briefly covered in order to give as complete a picture as possible. The basis for emergency planning is given together with the consequences and countermeasures for mitigation of a nuclear emergency, including the use of ERLs. The requirements for emergency exercises are explained. (author)

  1. Preparedness of public authorities for emergencies at nuclear power plants

    International Nuclear Information System (INIS)

    1982-01-01

    The safety guide lays down the requirements for the establishment of suitable procedures to be followed in the event of an emergency situation at a nuclear power plant. Many of the procedures would also be applicable at other nuclear facilities such as fuel manufacturing plants, irradiated fuel processing plants and the like. The guide defines reponsibilities for emergency planning, organization and action, protective measures to be taken, information and instruction of the public, training and cooperation across boundaries

  2. The emergency plan of the ININ; El plan de emergencia del ININ

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz C, M A [ININ, Salazar, Estado de Mexico (Mexico)

    1991-07-01

    The emergency plan of the ININ, it was elaborated in 1988 and revised by the National Commission of Nuclear Safety and Safeguards (CNSNS) in 1989. At the beginning of 1990 and with the support of the IAEA it was practiced the first revision to the text of this plan, for what the proposal revision is what constitutes the development of this report.

  3. Nuclear Station Facilities Improvement Planning

    International Nuclear Information System (INIS)

    Hooks, R. W.; Lunardini, A. L.; Zaben, O.

    1991-01-01

    An effective facilities improvement program will include a plan for the temporary relocation of personnel during the construction of an adjoining service building addition. Since the smooth continuation of plant operation is of paramount importance, the phasing plan is established to minimize the disruptions in day-to-day station operation and administration. This plan should consider the final occupancy arrangements and the transition to the new structure; for example, computer hookup and phase-in should be considered. The nuclear industry is placing more emphasis on safety and reliability of nuclear power plants. In order to do this, more emphasis is placed on operations and maintenance. This results in increased size of managerial, technical and maintenance staffs. This in turn requires improved office and service facilities. The facilities that require improvement may include training areas, rad waste processing and storage facilities, and maintenance facilities. This paper discusses an approach for developing an effective program to plan and implement these projects. These improvement projects can range in magnitude from modifying a simple system to building a new structure to allocating space for a future project. This paper addresses the planning required for the new structures with emphasis on site location, space allocation, and internal layout. Since facility planning has recently been completed by Sargent and Leyden at six U. S. nuclear stations, specific examples from some of those plants are presented. Site planning and the establishment of long-range goals are of the utmost importance when undertaking a facilities improvement program for a nuclear station. A plan that considers the total site usage will enhance the value of both the new and existing facilities. Proper planning at the beginning of the program can minimize costs and maximize the benefits of the program

  4. Radiation Emergency Planning in Petroleum Industry

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.; El-Naggar, M.A.; Abdel-Fattah, A.T.; Gomaa, A.M.

    2001-01-01

    Similar to all industrial activities utilizing radiation sources, or dealing with radioactive materials in its operations, petroleum industry requires the organization of a Radiation Emergency Plan. This plan should be based on a comprehensive and subtle understanding of the extensive multidisciplinary operations involved in petroleum processing and the dangers that threaten human health, environment and property; both from ordinary emergency situations common to petroleum industry activities and also from radiation emergency events. Radiation emergencies include radiological source accidents involving occurrence of high dose exposures. Radioactive contamination or spill are also major problems that may cause low dose exposures and environmental radioactive contamination. The simultaneous occurrence of other industrial emergency events such as fires or structural collapses will add to the seriousness of the emergency situation. The essential aspects of Radiation Emergency Planning include notification, assessment of situation, foresight, definition of roles and responsibilities including health safety and environmental concepts. An important contribution to the Emergency Planning is the proper intelligent medical response. Another essential parameter is the training of personnel that will undertake the responsibility of executing the emergency procedures according to the various emergency situations. The main features of the radiation Emergency Plan in Petroleum industry is presented in the text

  5. ANS-8.23: Criticality accident emergency planning and response

    International Nuclear Information System (INIS)

    Pruvost, N.L.

    1991-01-01

    A study group has been formed under the auspices of ANS-8 to examine the need for a standard on nuclear criticality accident emergency planning and response. This standard would be ANS-8.23. ANSI/ANS-8.19-1984, Administrative Practices for Nuclear Criticality Safety, provides some guidance on the subject in Section 10 titled -- Planned Response to Nuclear Criticality Accidents. However, the study group has formed a consensus that Section 10 is inadequate in that technical guidance in addition to administrative guidance is needed. The group believes that a new standard which specifically addresses emergency planning and response to a perceived criticality accident is needed. Plans for underway to request the study group be designated a writing group to create a draft of such a new standard. The proposed standard will divide responsibility between management and technical staff. Generally, management will be charged with providing the necessary elements of emergency planning such as a criticality detection and alarm system, training, safe evacuation routes and assembly areas, a system for timely accountability of personnel, and an effective emergency response organization. The technical staff, on the other hand, will be made responsible for establishing specific items such as safe and clearly posted evacuation evacuation routes and dose criteria for personnel assembly areas. The key to the question of responsibilities is that management must provide the resources for the technical staff to establish the elements of an emergency response effort

  6. Planning and training in emergency preparedness

    International Nuclear Information System (INIS)

    Perkins, T.G.

    1985-01-01

    Link Simulation Systems Division of the Singer Company is combining its tactical simulation and display system with state-of-the-art decision and control technology to provide a combined operations, planning, and training (COPAT) system. This system provides for the total integration of the three primary responsibilities of emergency managers: planning and training for and decision and control of an emergency. The system is intended to be a complete operations center for emergency management personnel. In the event of a natural disaster or man-made emergency, the national, state, county, and city emergency managers require a secure and reliable operations center. The COPAT system combines the decision and control capabilities with proven simulation techniques allowing for integrated planning and training. The hardware system, software, data bases, and maps used during planning and training are the same as those used during actual emergencies

  7. The emergency plan implementing procedures for HANARO facility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Tai; Khang, Byung Oui; Lee, Goan Yup; Lee, Moon [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-04-01

    The radiological emergency plan implementing procedures of HANARO (High-flux Advanced Neutron Application Reactor) facility is prepared based on the Korea Atomic Law, the Civil Defence Law, Disaster Protection Law and the emergency related regulatory guides such as Guidance for Evolution of Radiation Emergency Plans in Nuclear Research Facilities (KAERI/TR-956/98, Feb.1998) and the emergency plan of HANARO. These procedures is also prepared to ensure adequate response activities to the rediological events which would cause a significant risk to the KAERI staffs and the public nea to the site. Periodic trainning and exercise for the reactor operators and emergency staffs will reduce accident risks and the release of radioactivities to the environment. 61 refs., 81 tabs. (Author)

  8. Media and public relation. Part of emergency planning

    International Nuclear Information System (INIS)

    Jurkovic, I.A.; Debrecin, N.; Feretic, D.; Skanata, D.

    2000-01-01

    In the event of an emergency, media relation should be considered as one of the most important functions in emergency management. Individuals should be trained to be able to provide factual information to the media and the citizens during nuclear emergencies. Media can be also acquainted with the scope, ways and means of providing information related to nuclear emergencies during the predefined and regular media training or workshops, or as a part of regular training routine of involved organizations and institutions. This paper is through various approaches trying to present one of the possible ways that media and public relation can be treated during the emergencies and inside the developed emergency plans and procedures. It also represents an idea, based on the authors' experience, on a way in which things can be organized in the Croatian Technical Support Center when it comes to the media/public relation issue. (author)

  9. Emergency control centers for nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Guidance is provided for the development and implementation of emergency control centers for nuclear power plants, including nuclear plant control room, nuclear plant company headquarters, emergency control center, and nuclear plant alternate emergency control center. Requirements and recommendations are presented for the mission, communications, instrumentation and equipment associated with each type of control center. Decisional aids, manning requirements and resources are also given; the decision aids cover both the accident assessment and protective action areas. Both normal and alternate means of communications are considered. Off-site emergency control centers, although not covered in the strict sense by this standard, are considered in an appendix

  10. Emerging nuclear suppliers in the Third World

    International Nuclear Information System (INIS)

    Stahl, K.

    1990-01-01

    The emergence of new supplier states of nuclear technology within the Third World has raised concern, if those nuclear supplier states will promote an unrestricted and uncontrolled transfer of nuclear technology to developing countries and augment the risk of nuclear weapons proliferation. The article analyses the nuclear export capacities, nuclear exports and the export policy of Argentina, Brazil and India. Argentina is considered as the most important emerging nuclear supplier state in the Third World. Nuclear exports have to be authorisized by the government in all three states and will be covered by IAEA-safeguards in the recipient country. The three states will exercise restraint in the transfer of sensitive nuclear technology. Nuclear exports of Argentina, Brazil and India so far will not augment the danger of nuclear weapons proliferation. (orig./HSCH) [de

  11. Emergency Preparedness and Response at Nuclear Power Plants in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Khan, L. A.; Qamar, M. A.; Liaquat, M.R., E-mail: samasl@yahoo.com [Pakistan Atomic Energy Commission, Islamabad (Pakistan)

    2014-10-15

    Emergency preparedness and response arrangements at Nuclear Power Plants (NPPs) in Pakistan have been reevaluated in the light of Fukushima Daiichi accident. Appropriate measures have been taken to strengthen and effectively implement the on-site and off-site emergency plans. Verification of these plans is conducted through regulatory review and by witnessing periodic emergency drills and exercises conducted by the NPPs in the fulfilment of the regulatory requirements. Emergency Planning Zones (EPZs) have been revised at NPPs. A multi discipline reserve force has been formed for assistance during severe accidents. Nuclear Emergency Management System (NEMS) has been established at the national level in order to make necessary arrangements for responding to nuclear and radiological emergencies. Training programs for first responders and medical professionals have been launched. Emergencies coordination centres have been established at national and corporate levels. Public awareness program has been initiated to ensure that the surrounding population is provided with appropriate information on emergency planning and response. To share national and international operational experience, Pakistan has arranged various workshops and developed a strong link with International Atomic Energy Agency (IAEA). (author)

  12. AECB emergency response plan - in brief

    International Nuclear Information System (INIS)

    1995-10-01

    The AECB's mission is to ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment. The mission applies before, during and after emergencies

  13. Rural transportation emergency preparedness plans.

    Science.gov (United States)

    2009-07-01

    Improving the emergency preparedness of rural transportation systems is the overall goal of this research. Unique characteristics exist in rural transportation systems including widely dispersed and diverse populations and geographic areas. Exploring...

  14. Radiation emergency planning in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Niewodniczanski, J [National Atomic Energy Agency, Warsaw (Poland)

    1996-08-01

    The paper presents a schematic outline of the radiation emergency policy in Poland, rather from the point of view of logistics of the problem than discussing details of existing or proposed procedures. (author). 5 refs, 1 fig.

  15. Pre-fire planning for nuclear power plants

    International Nuclear Information System (INIS)

    Talbert, J.H.

    1980-01-01

    Regardless of the fire prevention measures which are taken, plant experience indicates that fires will occur in a nuclear power plant. When a fire occurs, the plant staff must handle the fire emergency. Pre-fire planning is a method of developing detailed fire attack plans and salvage operations to protect equipment from damage due to fire and fire fighting operations. This paper describes the purpose and use of a pre-fire plan to achieve these goals in nuclear power plants

  16. The Nuclear Emergency Assistance Team, an Institution for Nuclear Emergency Relief

    Energy Technology Data Exchange (ETDEWEB)

    Boldyreff, P.; Kiefer, H.; Krause, H.; Zuehlke, K. [Gesellschaft fuer Kernforschung mbH, Karlsruhe, Federal Republic of Germany (Germany)

    1969-10-15

    does not have the necessary means to remove the disturbance. Furthermore, the Nuclear Emergency Assistance Team is also equipped to render assistance in non-nuclear disasters. Details are given of the organization, the available and planned equipment and of some of the experience gained in action. The Gesellschaft fuer Kernforschung mbH is prepared also to make the Nuclear Emergency Assistance. Team available outside the Federal Republic of Germany, if its assistance is desired. (author)

  17. Implementation of a geographical information system in nuclear emergencies

    International Nuclear Information System (INIS)

    Sadaniowski, I.; Telleria, D.; Jordan, O.; Bruno, H.; Boutet, L.; Hernandez, D.

    2006-01-01

    From 2003, the Nuclear Regulatory Authority (RNA) has worked in the implementation of a Geographical Information System (SIG) for the planning and the intervention in emergencies, with special emphasis in the nuclear emergencies. The main objective of the SIG developed in the ARN is to give the necessary support for the planning, training and application of the actions of radiological protection necessary in front of a nuclear emergency, offering the geo referenced cartographic base, the readiness of logistical resources in the whole country, incorporating results of models of forecast of consequences and environmental measurements during the emergency, facilitating the analysis of this information in real time and facilitating the presentation of results for the decision making. The cartographic base is constituted of demographic, social, economic data identification of main actors interveners in the emergency, vial infrastructure and natural characteristics of the area in question. In this work the main characteristics of the implemented SIG are presented including the conceptual standards of design that contemplate the international requirements for the planning and answer in the event of nuclear emergencies, the current state of the system and the foreseen evolution. A description of the opposing problems during its implementation that can be common to many countries of the region is also presented, as well as the obtained experience of its use in preparation tasks for emergencies and in mocks. (Author)

  18. Nuclear safety research master plan

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others

    2001-06-01

    The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output.

  19. Nuclear emergency protection. Today and tomorrow

    International Nuclear Information System (INIS)

    Buettner, Jens Uwe

    2016-01-01

    The state of affairs of the nuclear emergency protection at accidents in connection with the use of nuclear power, at incidents with dangerous radiation sources as well as in case of criminal use of radioactive substances is presented. Moreover, the organization and the responsibilities as well as the preparation and realization of emergency training are considered and commented.

  20. Fusion of Nuclear and Emerging Technology

    International Nuclear Information System (INIS)

    Nahrul Khaer Alang Rashid

    2005-04-01

    The presentation discussed the following subjects: emerging technology; nuclear technology; fusion emerging and nuclear technology; progressive nature of knowledge; optically stimulated luminescence - application of luminescence technology to sediments; Biosystemics technology -convergence nanotechnology, ecological science, biotechnology, cognitive science and IT - prospective impact on materials science, the management of public system for bio-health, eco and food system integrity and disease mitigation

  1. Planning for spontaneous evacuation during a radiological emergency

    International Nuclear Information System (INIS)

    Johnson, J.H. Jr.

    1984-01-01

    The Federal Emergency Management Agency's (FEMA's) radiological emergency preparedness program ignores the potential problem of spontaneous evacuation during a nuclear reactor accident. To show the importance of incorporating the emergency spatial behaviors of the population at risk in radiological emergency preparedness and response plans, this article presents empirical evidence that demonstrates the potential magnitude and geographic extent of spontaneous evacuation in the event of an accident at the Long Island Lighting Company's Shoreham Nuclear Power Station. The results indicate that, on the average, 39% of the population of Long Island is likely to evacuate spontaneously and thus to cast an evacuation shadow extending at least 25 miles beyond the plant. On the basis of these findings, necessary revisions to FEMA's radiological emergency preparedness program are outlined

  2. Medical rescue for nuclear or radiologic emergencies

    International Nuclear Information System (INIS)

    Chen Xiaohua; Nie Suifeng

    2011-01-01

    Nuclear or radiologic emergencies are defined as incidents that are caused by radioactive substance or by other sources of radiation and can pose a serious hazard to public health. In case of nuclear or radiologic emergencies, radioactive rays will damage the human body and bring about psychological and mental stress, resulting in a series of social psychological effects. The key to medical rescue for nuclear or radiologic emergencies is to take effective measures which can minimize the body harm resulting from nuclear or radiologic emergencies and maintain social stability. This article reviews the personnel protection, on-the-spot salvage, treatments of various harm, and prevention of public psychological effect following nuclear or radiologic emergencies. (authors)

  3. Planning in emergencies and disasters

    African Journals Online (AJOL)

    surgical training - although this mainly comprises the clinical aspect of it. A disaster is a large-scale emergency and thus involves many other disciplines other than medical. In the last .... old, refugees and migrants .... Thought should be put into the preservation, dignity ... especially rescue workers and volunteers, working in.

  4. Local Emergency Planning Committee (LEPC) Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The LEPC data set contains over 3000 listings, as of 2008, for name and location data identifying Local Emergency Planning Committees (LEPCs). LEPCs are people...

  5. Emergency management in nuclear power plants: a regulatory view

    International Nuclear Information System (INIS)

    Shukla, Vikas; Chander, Vipin; Vijayan, P.; Nair, P.S.; Krishnamurthy, P.R.

    2011-01-01

    The nuclear power plants in India adopts a high level of defence in depth concept in design and operates at highest degree of safety, however the possibility of nuclear accidents cannot be ruled out. The safety and regulatory review of Nuclear Power Plants (NPPs) in India are carried out by Atomic Energy Regulatory Board (AERB). Section 33 of Atomic Energy (Radiation Protection) Rules-2004 provides the basic requirements of emergency preparedness aspects for a nuclear facility. Prior to the issuance of a license for the operation of NPPs, AERB ensures that the site specific emergency response manuals are in place and tested. The emergency response plan includes the emergency response organization, their responsibilities, the detailed scheme of emergency preparedness, response, facilities, equipments, coordination and support of various organizations and other technical aspects. These emergency preparedness plans are tested at periodic interval to check the overall effectiveness. The plant and site emergency exercise is handled by the plant authorities as per the site emergency plan. The events with off-site consequences are handled by the district authorities according to the off-site emergency plan. In off-site emergency exercises, observers from AERB and other associated organizations participate. Observations of the participants are discussed in the feedback session of the exercise for their disposition. This paper reviews the current level of emergency planning and preparedness, statistics of emergency exercises conducted and their salient findings. The paper highlights improvement in the emergency management programme over the years including development of advance technical support systems. The major challenges in off-site emergency management programme such as industrial growth and increase in population within the sterilized zone, frequent transfer of district officials and the floating population around the NPPs are outlined. The areas for improvement in

  6. Measuring strategy of Support Centre RIVM for nuclear emergencies

    International Nuclear Information System (INIS)

    Pruppers, M.J.M.; Smetsers, R.C.G.M.

    1994-11-01

    The accident at the Chernobyl nuclear power station in April 1986 and its consequences were reason for the Dutch government to evaluate and improve the facilities and the preparedness for nuclear emergency management in the Netherlands. The results of the evaluation have been elaborated in operational terms in the National Plan for Nuclear Emergency Planning and Response (EPR). During an accident with radioactive material the Technical Information Group (TIG) coordinates the measuring activities of the so-called Support Centres. According to the EPR, measuring activities of Support Centre RIVM are focussed on the collection and processing of data on emissions, concentrations, depositions and radiation doses from soil and air. This report describes the measuring strategy of RIVM for nuclear emergencies. The measuring strategy and the measuring plan, the latter deduced from the measuring strategy, concentrate on explicit answers to the following central questions: what has to be measured, by whom, where, when and how, and why? The demands of the TIG and the specification of tasks and operational facilities of Support Centre RIVM are considered as starting-points, limiting conditions and constraints for the measuring strategy. These items are converted to explicit choices for the measuring strategy and the default measuring plan. This report further includes a list of contacts of Support Centre RIVM with other (research) institutes, inside and outside the Netherlands, which may be relevant during a nuclear emergency. 3 figs., 2 tabs., 22 refs

  7. Nuclear power in Asia: Experience and plans

    International Nuclear Information System (INIS)

    Lee Chang Kun

    1999-01-01

    Asian countries have developed ambitious energy supply programs to expand their energy supply systems to meet the growing needs of their rapidly expanding economies. Most of their new electrical generation needs will be met by coal, oil and gas. However, the consideration of growing energy demand, energy security, environmental conservation, and technology enhancement is inducing more Asian countries toward the pursuit of nuclear power development. At present, nuclear power provides about 30% of electricity in Japan, and about 40% of electricity in Korea. These and other Asian countries are presumed to significantly increase their nuclear power generation capacities in coming years. Korea's nuclear power generation facilities are projected to grow from 12 gigawatt in 1998 to 16.7 gigawatt by 2004. On the other hand, China and India have now installed nuclear capacities of about 2 gigawatt, respectively, which will increase by a factor of two or more by 2004. The installed nuclear capacity in the Asian region totalled 67 gigawatt as of the end of 1997, representing about sixteen percent of the world capacity of 369 gigawatt. Looking to the year 2010, it is anticipated that most of the world's increase in nuclear capacity will come from Asia. It is further forecasted that Asian nations will continue to expand their nuclear capacity as they move into the 21st century. For example, China plans to develop additional 18 gigawatt of nuclear power plants by the year 2010. Nuclear power is also of particular interest to a number of emerging Asian countries in view of environmental conservation and mitigation of greenhouse gas emissions in particular. Nuclear power appeals to some countries because of its high technology content. The strength in an advanced technology, such as the technological capability related to nuclear power, contributes to the overall development of the corresponding country's engineering base, enhancement of industrial infrastructure and expansion of

  8. Generic procedures for medical response during a nuclear or radiological emergency. Emergency preparedness and response

    International Nuclear Information System (INIS)

    2005-04-01

    The aim of this publication is to serve as a practical resource for planning the medical response to a nuclear or radiological emergency. It fulfils in part functions assigned to the IAEA under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), namely, to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and available results of research relating to such emergencies. Effective medical response is a necessary component of the overall response to nuclear or radiological (radiation) emergencies. In general, the medical response may represent a difficult challenge for the authorities due to the complexity of the situation, often requiring specialized expertise, and special organizational arrangements and materials. To be effective, adequate planning and preparedness are needed. This manual, if implemented, should help to contribute to coherent international response. The manual provides the practical tools and generic procedures for use by emergency medical personnel during an emergency situation. It also provides guidance to be used at the stage of preparedness for development of medical response capabilities. The manual also addresses mass casualty emergencies resulting from malicious acts involving radioactive material. This part was supported by the Nuclear Security Fund. The manual was developed based on a number of assumptions about national and local capabilities. Therefore, it must be reviewed and revised as part of the planning process to match the potential accidents, threats, local conditions and other unique characteristics of the facility where it may be used

  9. Over a decade of nuclear emergency management at the Nea

    International Nuclear Information System (INIS)

    Ahier, B.

    2005-01-01

    The OECD Nuclear Energy Agency has a long tradition of expertise in the area of nuclear emergency policy, planning, preparedness and management. Through its activities in this field, the Agency offers its member countries unbiased assistance on nuclear preparedness matters, with a view to facilitating improvements in nuclear emergency preparedness strategies and response at the international level. The 1986 Chernobyl accident demonstrated that nuclear accidents can have international consequences, highlighting the need for international co-operation, and leading to improvements in the areas of international communication, information exchange and harmonization of response actions between countries. From its inception, the NEA Working Party on Nuclear Emergency Matters has focused on improving the effectiveness of international nuclear emergency preparedness and management. Part of its work programme is set on exploring and developing new concepts and future procedures to enhance national and international preparedness and response management. A central approach to this has been the preparation and conduct of the International Nuclear Emergency Exercise (INEX) series. The role and strategies of exercises and future directions are discussed in this presentation. (A.L.B.)

  10. The emergency plan of a firm

    OpenAIRE

    Lonk, David

    2008-01-01

    The aim of this bachelor thesis is to describe an emergency plan for a firm in area of a preventing riskiness and usability of the plan in time of crisis situation. The thesis also analyzes methods and approaches to a creation of the plan. It examines in detail the formation from an identification of possible hazards through a suggestion of solutions to testing and updating of the plan. Last but not least, my thesis describes the most suitable structure of the plan with respects to its utiliz...

  11. Off-site nuclear emergency exercises in Japan

    International Nuclear Information System (INIS)

    Eiji, U.; Kiyoshi, T.; Masao, O.; Shigeru, F.

    1993-01-01

    Nuclear emergency planning and preparedness in Japan have been organized by both national and local governments based on the Disaster Countermeasures Basic Act. Off-site nuclear emergency exercises are classified into two types: national-government level exercises and local-government level exercises. National-government level exercises are carried out once a year by the competent national authorities. Among these authorities, the Science and Technology Agency (STA) fills a leading position in the Japanese nuclear emergency planning and preparedness. Local-government level exercises are carried out once a year or once in a few years by the local governments of the prefectures where nuclear facilities are located. Most of the off-site nuclear emergency exercises in Japan are performed by local-governments. The aim of these exercises is to reinforce the skills of the emergency staff. The national government (STA etc.) provides advices and assistance including financial support to the local-governments. Emergency exercises with the participation of residents have been carried out in some local-governments. As an example of local-government level exercises, an experience in Shizuoka prefecture (central part of Japan) is presented

  12. Emergency planning and preparedness: pre- and post-Three Mile Island

    International Nuclear Information System (INIS)

    Collins, H.E.

    1980-01-01

    The problems of radiological emergency response planning revealed by the Three-Mile Island nuclear power plant accident, are discussed. The most pressing problems are the need for an adequate planning basis, the improvement of accident assessment, the improvement and development of training programs, the need for adequate fundina and the development of emergency planning auidance. (H.K.)

  13. Responsibility modelling for civil emergency planning

    OpenAIRE

    Sommerville, Ian; Storer, Timothy; Lock, Russell

    2009-01-01

    This paper presents a new approach to analysing and understanding civil emergency planning based on the notion of responsibility modelling combined with HAZOPS-style analysis of information requirements. Our goal is to represent complex contingency plans so that they can be more readily understood, so that inconsistencies can be highlighted and vulnerabilities discovered. In this paper, we outline the framework for contingency planning in the United Kingdom and introduce the notion of respons...

  14. Emergency measures following hypothetical actions against nuclear facilities in Italy

    International Nuclear Information System (INIS)

    Rogani, A.; Tabet, E.

    2003-01-01

    Full text: After the Chernobyl accident a national emergency plan of protective measures for radiological emergencies has been set up in Italy to cope with nuclear risks which require actions at national level. Since most of the Italian nuclear installations are, at present, not operational, the most relevant nuclear risk sources identified in the national emergency plan stem from accidents in nuclear power plants near the Italian borders or aboard nuclearpropelled ships, or events related to the fall of nuclear-powered satellites and transportation of radioactive materials. The plan identifies a reference scenario for nation-wide emergency interventions and the proper structures to be involved in the radiological emergency. However, risks related to nuclear terrorism are not taken into account in the plan, whereas nuclear plants as well as nuclear materials and sources (in use in medical, scientific and industrial applications) are known to represent potential targets for hostile acts, potentially giving rise to harmful radioactive releases into the atmosphere. Along with four nuclear power plants, now undergoing a decommissioning procedure, several other nuclear facilities, such as provisional radioactive waste deposits or research centers, are present in Italy. Unfortunately not all of the radioactive waste inventory is conditioned in such a way to make a spread of radioactive contamination, as a consequence of a hostile action, unlikely; moreover, spent fuel elements are still kept, in some cases, inside the plant spent fuel storage pool. In this paper the hypothetical radiological impact of deliberate actions against some reference nuclear installations will be evaluated, together with its amplications for an appropriate profiling of the emergency countermeasures which could be required. Especially the case of a terrorism act against a spent fuel storage pool is worked out in some detail, as this event appears to be one of those with the most severe

  15. Spent Nuclear Fuel project, project management plan

    International Nuclear Information System (INIS)

    Fuquay, B.J.

    1995-01-01

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  16. Nuclear forensics: a comprehensive model action plan for Nuclear Forensics Laboratory in India

    International Nuclear Information System (INIS)

    Deshmukh, A.V.; Nyati, S.; Fatangre, N.M.; Raghav, N.K.; Reddy, P.G.

    2013-01-01

    Nuclear forensic is an emerging and highly specialized discipline which deals with nuclear investigation and analysis of nuclear or radiological/radioactive materials. Nuclear Forensic analysis includes various methodology and analytical methods along with morphology, physical, chemical, elemental and isotopic analysis to characterize and develop nuclear database for the identification of unknown nuclear or radiological/radioactive material. The origin, source history, pathway and attribution of unknown radioactive/nuclear material is possible with certainty through Nuclear Forensics. Establishment of Nuclear Forensic Laboratory and development of expertise for nuclear investigation under one roof by developing the nuclear data base and laboratory network is need of the hour to ably address the problems of all the law enforcement and nuclear agencies. The present study provides insight in Nuclear Forensics and focuses on an urgent need for a comprehensive plan to set up Nuclear Forensic Laboratory across India. (author)

  17. Radiation emergency planning for medical organizations

    International Nuclear Information System (INIS)

    Jerez Vergueria, Sergio F.; Jerez Vergueria, Pablo F.

    1997-01-01

    The possible occurrence of accidents involving sources of ionizing radiation demands response plans to mitigate the consequences of radiological accidents. This paper offers orientations in order to elaborate emergency planning for institutions with medical applications of ionizing radiation. Taking into account that the prevention of accidents is of prime importance in dealing with radioactive materials and others sources of ionizing radiation, such as X-rays, it is recommended that one include in emergency instructions and procedures several aspects relative to causes which originate these radiological events. Topics such as identification of radiological events in these practices and their consequences, protective measures, planning for and emergency response and maintenance of emergency capacity, are considered in this article. (author)

  18. Assessment of Evacuation Protective Action Strategies For Emergency Preparedness Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joomyung; Jae, Moosung [Hanyang Univ., Seoul (Korea, Republic of); Ahn, Kwangil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    This report which studies about evacuation formation suggests some considerable factors to reduce damage of radiological accidents. Additional details would be required to study in depth and more elements should be considered for updating emergency preparedness. However, this methodology with sensitivity analysis could adapt to specific plant which has total information such as geological data, weather data and population data. In this point of view the evacuation study could be contribute to set up emergency preparedness plan and propose the direction to enhance protective action strategies. In radiological emergency, residents nearby nuclear power plant should perform protective action that is suggested by emergency preparedness plan. The objective of emergency preparedness plan is that damages, such as casualties and environmental damages, due to radioactive accident should be minimized. The recent PAR study includes a number of subjects to improve the quality of protective action strategies. For enhancing protective action strategies, researches that evaluate many factors related with emergency response scenario are essential parts to update emergency preparedness plan. Evacuation is very important response action as protective action strategy.

  19. Assessment of Evacuation Protective Action Strategies For Emergency Preparedness Plan

    International Nuclear Information System (INIS)

    Lee, Joomyung; Jae, Moosung; Ahn, Kwangil

    2013-01-01

    This report which studies about evacuation formation suggests some considerable factors to reduce damage of radiological accidents. Additional details would be required to study in depth and more elements should be considered for updating emergency preparedness. However, this methodology with sensitivity analysis could adapt to specific plant which has total information such as geological data, weather data and population data. In this point of view the evacuation study could be contribute to set up emergency preparedness plan and propose the direction to enhance protective action strategies. In radiological emergency, residents nearby nuclear power plant should perform protective action that is suggested by emergency preparedness plan. The objective of emergency preparedness plan is that damages, such as casualties and environmental damages, due to radioactive accident should be minimized. The recent PAR study includes a number of subjects to improve the quality of protective action strategies. For enhancing protective action strategies, researches that evaluate many factors related with emergency response scenario are essential parts to update emergency preparedness plan. Evacuation is very important response action as protective action strategy

  20. Emergency response and nuclear risk governance. Nuclear safety at nuclear power plant accidents

    International Nuclear Information System (INIS)

    Kuhlen, Johannes

    2014-01-01

    The present study entitled ''Emergency Response and Nuclear Risk Governance: nuclear safety at nuclear power plant accidents'' deals with issues of the protection of the population and the environment against hazardous radiation (the hazards of nuclear energy) and the harmful effects of radioactivity during nuclear power plant accidents. The aim of this study is to contribute to both the identification and remediation of shortcomings and deficits in the management of severe nuclear accidents like those that occurred at Chernobyl in 1986 and at Fukushima in 2011 as well as to the improvement and harmonization of plans and measures taken on an international level in nuclear emergency management. This thesis is divided into a theoretical part and an empirical part. The theoretical part focuses on embedding the subject in a specifically global governance concept, which includes, as far as Nuclear Risk Governance is concerned, the global governance of nuclear risks. Due to their characteristic features the following governance concepts can be assigned to these risks: Nuclear Safety Governance is related to safety, Nuclear Security Governance to security and NonProliferation Governance to safeguards. The subject of investigation of the present study is as a special case of the Nuclear Safety Governance, the Nuclear Emergency governance, which refers to off-site emergency response. The global impact of nuclear accidents and the concepts of security, safety culture and residual risk are contemplated in this context. The findings (accident sequences, their consequences and implications) from the analyses of two reactor accidents prior to Fukushima (Three Mile Iceland in 1979, Chernobyl in 1986) are examined from a historical analytical perspective and the state of the Nuclear Emergency governance and international cooperation aimed at improving nuclear safety after Chernobyl is portrayed by discussing, among other topics, examples of &apos

  1. AEA Technology, Harwell site emergency plan

    International Nuclear Information System (INIS)

    1993-01-01

    This plan, describes the site arrangements and facilities for dealing with an emergency at Harwell. These arrangements consist of amongst other things provision of suitably qualified, experienced and trained staff to take up posts, provision of suitable facilities and equipment, arrangements to alert and protect persons on and off the site, liaison and contact arrangements with external agencies and organisations and supply of information before and during any emergency. Other organisations have their own arrangements for dealing with an emergency at AEA Technology Harwell. The arrangements for dealing with any off-site consequences are drawn together in the ''Oxfordshire County Council Essential Services Emergency Plan (Off-Site) for AEA Technology, Harwell''. Prior information for members of the public who may be affected in the event of an emergency at Harwell is issued in the form of leaflets. (author)

  2. Exercises for radiological and nuclear emergency response. Planing - performance - evaluation

    International Nuclear Information System (INIS)

    Bayer, A.; Faleschini, J.; Goelling, K.; Stapel, R.; Strobl, C.

    2010-01-01

    The report of the study group emergency response seminar covers the following topics: (A) purpose of exercises and exercise culture: fundamentals and appliances for planning, performance and evaluation; (B) exercises in nuclear facilities; (C) exercises of national authorities and aid organizations on nuclear scenarios; exercises of national authorities and aid organizations on other radiological scenarios; (D) exercises in industrial plants, universities, medical facilities and medical services, and research institutes; (E) transnational exercises, international exercises; (F): exercises on public information.

  3. Latin America: emerging nuclear market

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The need for nuclear power in Latin American countries is surveyed. It is concluded that Latin America offers the greatest external market for all exporters of nuclear reactors and associated services in the near future. Mexico, Venezuela, Ecuador, and Bolivia are the only countries with fossil-fuel reserves adequate to meet their requirements in the next 20 to 30 years. Nuclear power is a necessity to maintain or improve the standard of living in the countries of Brazil, Argentina, Chile, and Peru

  4. Harmonisation of Nuclear Emergency Preparedness in Central and Eastern Europe

    International Nuclear Information System (INIS)

    Buglova, E.; Crick, M.; Reed, J.; Winkler, G. L.; Martincic, R.

    2000-01-01

    Under its Technical Co-operation programme the International Atomic Energy Agency has implementing a Regional Project RER/9/050:- Harmonisation of Regional Nuclear Emergency Preparedness for its Member States in the Europe region since 1997. The background of the project together with its achievements and future plans are presented in this paper. (author)

  5. Special event planning for the emergency manager.

    Science.gov (United States)

    Gaynor, Peter T

    2009-11-01

    In the domain of emergency management and homeland security there is a lack of a formal planning process at the local level when it comes to special event planning. The unique nature of special event planning demands an understanding of the planning process for both traditional and non-traditional planning partners. This understanding will make certain that local governments apply due diligence when planning for the safety of the public. This paper offers a practical roadmap for planning at the local level. It will address those 'special events' that are beyond routine local events but not of a sufficient scale to be granted National Special Security Event status. Due to the infrequency of 'special events' in most communities, it is imperative that deliberate planning takes place. Upon conclusion, the reader will be able to construct a planning process tailored to the needs of their community, guide both traditional and non-traditional planning partners through the planning process, determine priorities, explore alternatives, plan for contingencies, conduct a confirmation brief, facilitate operations and assemble an after-action report and improvement plan.

  6. Recent emergency planning trends in Canada

    International Nuclear Information System (INIS)

    Howieson, J.Q.; Ali, F.B.

    1988-01-01

    Two significant reviews have recently been completed which have affected the approach to emergency planning in Canada. The two reviews have occurred in the province of Ontario where 21 of Canada's 23 reactors are located. Both reviews (one dealing with safety in general, and the other specifically with emergency planning) were performed for the Government of Ontario and were primarily motivated by the severe consequences of the accident at Chernobyl. It was determined that two tiers of emergency planning are needed: (i) the first tier (termed the Maximum Planning Accident or MPA) provides for detailed planning for accidents which can be quantitatively determined to be as low as once in 10 5 station-years. (about once in 10 6 reactor-years for Ontario Hydro's multi-unit sites). For this tier, planning assures public exposure to radioactive doses is kept less than the Protective Action Levels. (ii) the second tier (termed the Worst Credible Radiation Emission or WCRE) provides for planning for accidents which are lower in frequency or whose frequency cannot be quantified (e.g., gross human error or hostile action). For this tier, planning protects against the onset of early morbidity (sickness) and the onset of early mortality (death) in a member of the public

  7. Technical Basis for Radiological Emergency Plan Annex for WTD Emergency Response Plan: West Point Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hickey, Eva E.; Strom, Daniel J.

    2005-08-01

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document, Volume 3 of PNNL-15163 is the technical basis for the Annex to the West Point Treatment Plant (WPTP) Emergency Response Plan related to responding to a radiological emergency at the WPTP. The plan primarily considers response to radioactive material that has been introduced in the other combined sanitary and storm sewer system from a radiological dispersion device, but is applicable to any accidental or deliberate introduction of materials into the system.

  8. Explanation of procedure on site medical emergency response for nuclear accident

    International Nuclear Information System (INIS)

    Liu Yulong; Jiang Zhong

    2012-01-01

    National occupational health standard-Procedure on Site Medical Emergency Response for Nuclear Accident has been approved and issued by the Ministry of Health. This standard is formulated according to the Emergency Response Law of the People's Republic of China, Law of the People 's Republic of China on Prevention and Control of Occupational Diseases, Regulations on Emergency Measures for Nuclear Accidents at Nuclear Power Plants, and Health Emergency Plans for Nuclear and Radiological Accidents of Ministry of Health, supporting the use of On-site Medical Emergency Planning and Preparedness for Nuclear Accidents and Off-site Medical Emergency Planning and Preparedness for Nuclear Accidents. Nuclear accident on-site medical response procedure is a part of the on-site emergency plan. The standard specifies the basic content and requirements of the nuclear accident on-site medical emergency response procedures of nuclear facilities operating units to guide and regulate the work of nuclear accident on-site medical emergency response of nuclear facilities operating units. The criteria-related contents were interpreted in this article. (authors)

  9. Emerging nuclear security issues for transit countries

    International Nuclear Information System (INIS)

    Gabulov, I.A.

    2003-01-01

    Full text: Tragic events of September eleventh have made nuclear terrorism dangers more evident. In the light of increased terrorism preventing the spread of nuclear and nuclear related items as well as radioactive materials that can be used for production so-called 'dirty bomb'is an urgent global claim. Nuclear Security issues cover multiple aspects of the security and first of all the threat from nuclear terrorism, detection and protection of illicit trafficking of nuclear materials and other radioactive sources, legal shipment of such type materials as well as nuclear related dual use items. In the face of emerging threats the prevention of proliferation by the development of effective national system of nuclear export controls is hugely important for transit countries like Azerbaijan with underdeveloped export controls and strategic locations along trade and smuggling routes between nuclear suppliers States and countries attempting to develop nuclear weapons or any nuclear explosive devices. Thus, in the face of increasing international threat from nuclear terrorism the role and place of Azerbaijan Republic in the struggle against terrorism increases. In this context it is very important to establish effective national capabilities for detection and prevention of illicit trafficking of radioactive and nuclear materials as well as nuclear related dual use items across Azerbaijan's borders. One of the ways for enhancing and strengthening existing activities in this field is carrying out joint actions between scientists and enforcement officials in order to improve knowledge of the front-line customs and border guard inspectors concerning multiple aspects of Nuclear Security

  10. Survey of Canadian hospitals radiation emergency plans

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C [Social Data Research Ltd./The Flett Consulting Group, Inc., Ottawa, ON (Canada)

    1996-02-01

    This report documents the findings of a survey of Canadian hospitals conducted by Social Data Research Ltd. during the Spring and Summer, 1995. The main objective of the survey was to determine the state of readiness of Canadian hospitals in respect of radiation emergency planning. In addition, the AECB was interested in knowing the extent to which a report by the Group of Medical Advisors, `GMA-3: Guidelines on Hospital Emergency Plans for the Management of Minor Radiation Accidents`, which was sponsored and distributed in 1993, was received and was useful to hospital administrators and emergency personnel. A self-administered questionnaire was distributed to 598 acute care hospitals, and 274 responses were received. The main conclusion of this study is that, with the exception of a few large institutions, hospitals generally do not have specific action plans to handle minor radiation accidents. (author).

  11. Survey of Canadian hospitals radiation emergency plans

    International Nuclear Information System (INIS)

    Davis, C.

    1996-02-01

    This report documents the findings of a survey of Canadian hospitals conducted by Social Data Research Ltd. during the Spring and Summer, 1995. The main objective of the survey was to determine the state of readiness of Canadian hospitals in respect of radiation emergency planning. In addition, the AECB was interested in knowing the extent to which a report by the Group of Medical Advisors, 'GMA-3: Guidelines on Hospital Emergency Plans for the Management of Minor Radiation Accidents', which was sponsored and distributed in 1993, was received and was useful to hospital administrators and emergency personnel. A self-administered questionnaire was distributed to 598 acute care hospitals, and 274 responses were received. The main conclusion of this study is that, with the exception of a few large institutions, hospitals generally do not have specific action plans to handle minor radiation accidents. (author)

  12. Double shell tanks emergency pumping plan

    International Nuclear Information System (INIS)

    Tangen, M.J.

    1994-01-01

    At the request of the Department of Energy (DOE), a formal plan for the emergency transfer of waste from a leaking double shell tank to a designated receiver tank has been developed. This plan is in response to the priority 2 safety issue ''Response to a leaking double-shell tank'' in the DOE Report to Congress, 1991. The plan includes the tanks in four of the east tank farms and one of the west farms. The background information and supporting calculations used for the creation of the emergency plan are discussed in this document. The scope of this document is all of the double shell tanks in the AN, AP, AW, AY, and SY farms. The transfer lines, flush pits, and valve pits involved in the transfer of waste between these farms are also included in the scope. Due to the storage of high heat waste, AZ farm is excluded at this time

  13. Technical basis for PWR emergency plans forming

    International Nuclear Information System (INIS)

    L'Homme, A.; Manesse, D.; Gauvain, J.; Crabol, B.

    1989-10-01

    Our speech first summarizes the french approach concerning the management of severe accidents which could occur on PWR stations. Then it defines the source-term which is being used as a general support for elaborating the emergency plans devoted to the protection of the population. It describes next the consequences of this source-term on the site and in the environment, which constitute the technical bases for defining actions of utilities and concerned authorities. It gives lastly information on the present status of the different emergency plans and the complementary work undertaken to improve them [fr

  14. The emerging nuclear suppliers and nonproliferation

    International Nuclear Information System (INIS)

    Potter, W.C.

    1990-01-01

    The number of states capable of exporting nuclear material, technology, equipment, and services is large and growing. Once confined primarily to states party to the Nuclear Non-Proliferation Treaty (NPT), the list of actual and potential nuclear suppliers now includes many countries that do not subscribe to the NPT or to other international nuclear export control agreements. Although international control accords---such as the Nuclear Exporters' (Zangger) Committee and the London Nuclear Suppliers Group (NSG) guidelines---do not prohibit the export of sensitive nuclear materials and equipment, they do reduce the risks of proliferation by imposing international safeguards as a condition for export. The purpose of this book---the culmination of one phase of an ongoing international research project on the emerging nuclear suppliers and nonproliferation---is to remedy, at least in part, this data deficiency

  15. Emerging nuclear energy systems and nuclear weapon proliferation

    International Nuclear Information System (INIS)

    Gsponer, A.; Sahin, S.; Jasani, B.

    1983-01-01

    Generally when considering problems of proliferation of nuclear weapons, discussions are focused on horizontal proliferation. However, the emerging nuclear energy systems currently have an impact mainly on vertical proliferation. The paper indicates that technologies connected with emerging nuclear energy systems, such as fusion reactors and accelerators, enhance the knowledge of thermonuclear weapon physics and will enable production of military useful nuclear materials (including some rare elements). At present such technologies are enhancing the arsenal of the nuclear weapon states. But one should not forget the future implications for horizontal proliferation of nuclear weapons as some of the techniques will in the near future be within the technological and economic capabilities of non-nuclear weapon states. Some of these systems are not under any international control. (orig.) [de

  16. Off-site nuclear emergency management

    International Nuclear Information System (INIS)

    Miska, H.

    2003-01-01

    Full text: Urgent protective measures for the possibly affected population are the main items to be addressed here, that means actions to be planned and taken in the pre-release and release phase of a nuclear accident. Since we will focus an off-site nuclear emergency management, the utility or licensee only plays a subordinate role, but nevertheless may be the potential cause of all actions. At the other end, there is the possible affected population, the environment, and also economic values. Emergency preparedness and response aims at minimizing adverse effects from the power plant to the values to protect. In the early phase of an accident under consideration here, prompt and sharp actions are necessary to ensure efficacy. On the other hand, the available information on the situation is most limited in this phase such that pre-determined actions based on simple criteria are indispensable. The responsibility for early response actions normally rest with a regional authority which may have some county administrations at subordinate level. The leader of the regional staff has to decide upon protective measures to be implemented at county or municipal level; thus, coherence of the response is ensured at least at a regional level. The decision will be governed at the one side by the existing or predicted radiological situation, on the other side an practical limitations like availability of teams and means. The radiological situation has to be assessed by an advisory team that compiles all information from the utility, the weather conditions, and monitoring results. While the staff leader is experienced through response to major non-nuclear events, the advisors mainly come from the environmental side, having no experience in taking swift decisions in an emergency, but are used to control and prevent. This might be the source of conflicts as observed in several exercises. The radiation protection advisors collect information from the utility, especially about time

  17. Emerging trends in nuclear energy

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1984-01-01

    Nuclear energy is faltering in many places - especially in the USA: should it be written off. The author sees underlying trends that justify a more optimistic view of nuclear energy's future - the continuing tendency for the electricity intensity of economic activity to rise while the total energy intensity falls; a consistently favourable price trend for electricity compared with energy prices generally - a trend that may become more favourable if his judgment that nuclear plants will turn out to be very long-lived is borne out by events; the substitution of electricity-based processes in industry for older processes; and the development of ultra-safe reactors which will remove once and for all the fears of accidents such as the one that occurred at Three Mile Island. (author)

  18. Exercising the federal radiological emergency response plan

    International Nuclear Information System (INIS)

    Gant, K.S.; Adler, M.V.; Wolff, W.F.

    1986-01-01

    Multiagency exercises were an important part of the development of the Federal Radiological Emergency Response Plan. This paper concentrates on two of these exercises, the Federal Field Exercise in March 1984 and the Relocation Tabletop Exercise in December 1985. The Federal Field Exercise demonstrated the viability and usefulness of the draft plan; lessons learned from the exercise were incorporated into the published plan. The Relocation Tabletop Exercise examined the federal response in the postemergency phase. This exercise highlighted the change over time in the roles of some agencies and suggested response procedures that should be developed or revised. 8 refs

  19. Family emergency preparedness plans in severe tornadoes.

    Science.gov (United States)

    Cong, Zhen; Liang, Daan; Luo, Jianjun

    2014-01-01

    Tornadoes, with warnings usually issued just minutes before their touchdowns, pose great threats to properties and people's physical and mental health. Few studies have empirically investigated the association of family emergency preparedness planning and observed protective behaviors in the context of tornadoes. The purpose of this study was to examine predictors for the action of taking shelter at the time of tornadoes. Specifically, this study investigated whether having a family emergency preparedness plan was associated with higher likelihood of taking shelter upon receiving tornado warnings. This study also examined the effects of socioeconomic status and functional limitations on taking such actions. A telephone survey based on random sampling was conducted in 2012 with residents in Tuscaloosa AL and Joplin MO. Each city experienced considerable damages, injuries, and casualties after severe tornadoes (EF-4 and EF-5) in 2011. The working sample included 892 respondents. Analysis was conducted in early 2013. Logistic regression identified emergency preparedness planning as the only shared factor that increased the likelihood of taking shelter in both cities and the only significant factor in Joplin. In Tuscaloosa, being female and white also increased the likelihood of taking shelter. Disability was not found to have an effect. This study provided empirical evidence on the importance of having a family emergency preparedness plan in mitigating the risk of tornadoes. The findings could be applied to other rapid-onset disasters. © 2013 American Journal of Preventive Medicine Published by American Journal of Preventive Medicine All rights reserved.

  20. Hanford emergency management plan - release 15

    International Nuclear Information System (INIS)

    CARPENTER, G.A.

    1999-01-01

    The Hanford emergency management plan for the US Department of Energy Richland, WA and Office of River Protection. The program was developed in accordance with DOE Orders as well as Federal and State regulations to protect workers and public health and safety

  1. Hanford emergency management plan - release 15

    Energy Technology Data Exchange (ETDEWEB)

    CARPENTER, G.A.

    1999-07-19

    The Hanford emergency management plan for the US Department of Energy Richland, WA and Office of River Protection. The program was developed in accordance with DOE Orders as well as Federal and State regulations to protect workers and public health and safety.

  2. 76 FR 47055 - Emergency Restoration Plan (ERP)

    Science.gov (United States)

    2011-08-04

    ... (ERP) AGENCY: Rural Utilities Service, USDA. ACTION: Final rule. SUMMARY: The Rural Utilities Service... 12, 2004, at 69 FR 60541 requiring all borrowers to maintain an Emergency Response Plan (ERP) that... major natural or manmade disaster or other causes. This ERP requirement was not entirely new to the...

  3. Interface robotics in nuclear emergencies

    International Nuclear Information System (INIS)

    Ruiz Mungia, E.

    1998-01-01

    The area between the reactor building and the external wall of a nuclear power station could be affected in case of a severe accident with repercussion in the outside. The article describes a series of robotics machines which could be used for building recognition, transmission improvement, civil works and for the making of a radiologic cartography in this area. (Author)

  4. India: an emerging nuclear giant

    International Nuclear Information System (INIS)

    Le Ngoc, Boris

    2015-01-01

    After having recalled that India has always been interested in nuclear energy, this article outlines that this country is suffering from an increasing air pollution with noticeable impacts on health (thousands of deaths per year due to pollution), and, even though its CO 2 emissions have very much increased during the past decades, its governments want to rely on nuclear energy to face climatic challenges. The article also outlines that the country is facing increasing energy needs when about 300 millions of inhabitants do not have access to electricity. New sources of energy production must then be developed, preferably de-carbonated sources (hydraulic, wind, nuclear, solar, so on). Therefore, progress must be made to reduce the share of fossil energy. The author proposes a brief presentation of the Indian nuclear programme, with its 20 existing reactors and 6 reactors under construction. A strategy has been defined to exploit as many PWRs as possible, to introduce fourth generation reactors, and to use a thorium fuelled reactor. The framework of the French-Indian partnership is briefly presented, and the involvements of AREVA for the construction of six EPRs, and of the CEA for the development of fourth generation reactors are evoked

  5. Composition and fundamental requirements of nuclear emergency response monitoring equipment

    International Nuclear Information System (INIS)

    Lai Yongfang; Huang Weiqi; Wang Yonghong

    2009-01-01

    Nuclear emergency monitoring equipment is concrete foundation for accomplishing radiation monitoring in nuclear or radiation accidents. Based on technical report: Generic procedures for monitoring in a nuclear or radiological emergency published by IAEA in 1999, this paper presents the main task and composition of nuclear emergency monitoring briefly, and then the basic equipment and trends of nuclear emergency monitoring equipment is put forward in detail, which is useful to construction and reinforcement of our nuclear emergency monitoring. (authors)

  6. Some issues on nuclear and radiological emergency preparedness and response in China

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1999-01-01

    The nuclear emergency preparedness and response have comprehensively been developed over ten years in China. In order to promote the sound development of emergency preparedness and response, it is useful to retrospect the process of emergency preparedness and response, to summarize the experiences and absorb the experiences from foreign countries. The main issues are as follows: 1) The preparedness and response to nuclear and radiological accident is basically the same as the response to any accident involving hazardous material. 2) The classification of emergency planning, not only for nuclear facilities, but also irradiation installation, etc. 3) The hazard assessment-- a top priority. 4) The emergency planning zones. 5) Psychological impact

  7. Nuclear threats and emergency preparedness in Finland

    International Nuclear Information System (INIS)

    Mustonen, R.; Aaltonen, H.; Laaksonen, J.; Lahtinen, J.; Rantavaara, A.; Reponen, H.; Rytoemaa, T.; Suomela, M.; Toivonen, H.; Varjoranta, T.

    1995-10-01

    The political and economic upheavals which have taken place in Eastern Europe have had an impact on radiation and nuclear safety throughout Europe. Emergency preparedness systems for unexpected nuclear events have been developed further in all European countries, and prosperous western nations have invested in improving the safety of East European nuclear power plants. The economic crisis facing countries of the former Soviet Union has also promoted illicit trade in nuclear materials; this has made it necessary for various border guards and police authorities to intensify their collaboration and to tighten border controls. On 3-4 October 1995, Finnish Centre for Radiation and Nuclear Safety (STUK) arranged a seminar on nuclear threats and emergency preparedness in Finland. In addition to STUK experts, a wide range of rescue and civil defence authorities, environmental health specialists and other persons engaged in emergency preparedness attended the seminar. The publication contains a compilation of reports presented at the seminar. The reports cover a broad spectrum of nuclear threats analyzed at STUK, the impacts of radioactive fallout on human beings and on the environment, and preparedness systems by which the harmful effects of radiation or nuclear accidents can, if necessary, be minimized. (33 figs., 5 tabs.)

  8. Medical management and planning for radiation emergencies

    International Nuclear Information System (INIS)

    Bongirwar, P.R.

    2001-01-01

    Radiation Emergencies which result as a consequence of nuclear or radiological accidents can produce a spectrum of different types of radiation injuries which could include cases of whole body irradiation causing Acute Radiation Syndrome, partial body irradiation, radiation burns (localized irradiation), radioactive contamination and combined injuries having component of conventional injuries. General principles of managing these cases entail doing triage, offering immediate emergency care and instituting definitive treatment. Infra-structural facilities which are required to facilitate their management include first aid post at plant site, personnel decontamination centre, site clinic and specialized hospital which can offer comprehensive investigational and treatment modalities. Training of medical and paramedical personnel is crucial as part of emergency preparedness programme and if needed, help can be sought from WHO's Radiation Emergency Medical Preparedness and Assistance Network Centres. (author)

  9. Iran plans world's fourth biggest nuclear programme

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Power requirements of projected power generation to 1992, and fuel reserves, in Iran are submitted. The current nuclear programme is outlined. 34000 MWe of nuclear power is planned for the end of the century. (U.K.)

  10. Monitoring and data management strategies for nuclear emergencies

    International Nuclear Information System (INIS)

    2000-01-01

    Since the accident at Chernobyl in 1986, many countries have intensified their efforts in nuclear emergency planning, preparedness and management. Experience from the NEA nuclear emergency exercises (INEX 1 and INEX 2) indicated a need to improve the international system of communication and information in case of a radiological emergency. To address this need, research was carried out by three NEA working groups, the findings of which are synthesised in the present report. This report defines emergency monitoring and modelling needs, and proposes strategies which will assist decision makers by improving the selection of data that is transmitted, and the way in which data and information are transmitted and received. Modern communication methods, such as the Internet, are a key part of the strategies described. (author)

  11. Emergency planning, response and assessment: a concept for a center of excellence

    International Nuclear Information System (INIS)

    Dickerson, M.H.

    1986-01-01

    This paper discusses a general concept for a center of excellence devoted to emergency planning, response and assessment. A plan is presented to implement the concept, based on experience gained from emergency response as it relates to the nuclear and toxic chemical industries. The role of the World Laboratory in this endeavor would complement and enhance other organizations than are involved in related activities

  12. NDMA guidelines on management of nuclear and radiological emergencies

    International Nuclear Information System (INIS)

    Abani, M.C.

    2011-01-01

    The National Disaster Management Authority (NDMA), ever since it's formation as an apex policy making body for the country in the field of disaster management, has formulated a set of guidelines to assist the various ministries, states and stakeholders in preparing their plans to handle different types of disasters. The guidelines on management of nuclear and radiological emergencies assume great importance in the present context, as our country has very ambitious programme to exploit nuclear energy for peaceful uses. Though, we have an enviable and impeccable record of safety and virtually fail-safe operations in all our nuclear establishments, the possibility, however, remote it may be, of human error, systems failure, sabotage, earthquake, floods, terrorist attacks etc leading to the release of radioactive material in the public domain, cannot be entirely ruled out. With this view, it was decided to prepare the national guidelines by NDMA to manage any nuclear/radiological emergency in public domain. Through these guidelines, we aim to further strengthen our existing nuclear/radiological emergency management framework and generate public awareness, which will go a long way in allaying misapprehensions, if any, amongst the public about the country's nuclear programme. Like in all our guidelines for handling of different types of the disasters, in these Guidelines also, maximum emphasis has been laid on the prevention of nuclear and radiological emergencies, along with a detailed consideration of all other elements of the disaster management continuum. The national guidelines have been prepared and a consensus was arrived on various issues, after widespread consultations and elaborates discussions amongst experts as well as stakeholders. It is assumed that once these guidelines are implemented by the stakeholders and converted into action plans followed by SOPs that will further reduce the chances of accidents in the nuclear arena. (author)

  13. Communication planning by the nuclear regulatory body

    International Nuclear Information System (INIS)

    2002-01-01

    , both routine and emergency, and, for example, following events that give rise to public interest. The range of subjects for such programmes includes: the safety of nuclear installations; radiation protection and the safety of radiation sources: the safe transport of radioactive materials; planning. preparedness and response to emergencies; and the safe management of radioactive waste. For the sake of simplicity, unless otherwise stated, the term 'nuclear safety' is used in this publication to include nuclear, radiation, radioactive waste and transport safety. Section 2 outlines the general aspects of a communication programme. Section 3 describes the elements of a structured programme, including guidance for its implementation and evaluation. Section 4 summarizes the activities of the regulatory body in relation to the programme

  14. Nuclear power programme planning: An integrated approach

    International Nuclear Information System (INIS)

    2001-12-01

    The International Atomic Energy Agency (IAEA) has published material on different policy considerations in the introduction of nuclear power, primarily addressed to top level decision makers in government and industry in Member States. Several Member States and experts recommended to the IAEA to address the aspects of an integrated approach to nuclear power programme planning and to serve as guidance to those countries wishing to embark on a nuclear power programme. As a follow-up, the present publication is primarily intended to serve as guidance for executives and managers in Member States in planning for possible introduction of nuclear power plants in their electricity generating systems. Nuclear power programme planning, as dealt with in this publication, includes all activities that need to be carried out up to a well-founded decision to proceed with a project feasibility study. Project implementation beyond this decision is not in the scope of this publication. Although it is possible to use nuclear energy as a heat source for industrial processes, desalination and other heat applications, it is assumed in this publication that the planning is aimed towards nuclear power for electricity generation. Much of the information given would, however, also be relevant for planning of nuclear reactors for heat production. The publication was prepared within the framework of the IAEA programme on nuclear power planning, implementation and performance as a joint activity of the Nuclear Power Engineering Section and the Planning and Economic Studies Section (Division of Nuclear Power)

  15. New Structure of Emergency Response Plan in Croatia

    International Nuclear Information System (INIS)

    Valcic, I.; Subasic, D.; Cavlina, N.

    1998-01-01

    The new structure of a national emergency response plan in the case of nuclear accident is based on general requirements of modernization according to international recommendations, with a new Technical Support Center as a so-called lead technical agency, with the plan adapted to the organization of the Civil Protection, with all necessary elements of preparedness for the event of a nuclear accident in Krsko NPP and Paks NPP and with such a plan of procedures that will, to greatest possible extent, be compatible with the existing plan in neighboring countries Slovenia and Hungary. The main requirement that direct s a new organization scheme for taking protective actions in the event of a nuclear accident, is the requirement of introducing a Technical Support Center. The basic role of TSC is collecting data and information on nuclear accident, analyzing and estimating development of an accident, and preparing proposals for taking protective actions and for informing the public. TSC is required to forward those proposals to the Civil Protection, which on the basis of evaluation of proposals makes decisions on implementation and surveillance of implementation of protective measures. (author)

  16. Performing better nuclear emergency management exercises in Belgium

    International Nuclear Information System (INIS)

    Sohier, A.

    2006-01-01

    The recently revised Royal Decree of 17 October 2003 (the Belgian Monitor of 22 November 2003) stipulating the nuclear emergency plan for radiological risks on the Belgian territory aims at reducing the impact of a radiological or nuclear accident to the population. It describes the organisation, tasks and necessary interactions between the different participating entities at the federal, provincial and communal level. It also foresees that each major nuclear installation holds regularly exercises with the different off-site entities to test and improve the response procedures. Under contract with the Ministry of Interior, and in consortium with AVN and IRE, SCK-CEN has been assigned as co-ordinator for the improvement of the methodology for emergency exercises, and to apply this for the 2005 exercises of the nuclear installations of Doel and Tihange. The main objective of this project is to define a methodology allowing to conduct exercises in a more efficient way. The methodology is based on the IAEA EPR-EXERCISE (2005) publication. This should in turn (1) allow the principal actors to train the different aspects of a nuclear crisis, (2) allow easier detection of deficiencies in the emergency plan and its application, and (3) result in the necessary corrective actions to improve future responses to crises

  17. Do we need an emergency planning for contamination with alpha or beta emitting materials and how should this be?

    International Nuclear Information System (INIS)

    Gellermann, Rainer; Kueppers, Christian; Urbach, Michael; Schnadt, Horst; Lange, Florentin

    2016-01-01

    The emergency planning up to now was geared to the consequences of accidents in nuclear facilities. There were no planning guidelines like the recommendations for emergency planning in the vicinity of nuclear facilities for other radiological incidents. According to article 98 of the new European radiation protection standards the member states have to take care for the preparation of emergency plans fir the case of emergency exposure scenarios. The study discusses several scenarios that might induce alpha or beta contamination, existing approaches for guiding contamination values, intervention benchmarks, protection strategies including continuing public information, selected radionuclides that might be involved, exposure paths, guidance benchmarks for person decontamination, and recommendations for new emergency plans.

  18. The systematics of emerging nuclear energy concepts

    International Nuclear Information System (INIS)

    Harms, A.A.; Ligou, J.

    1980-01-01

    The basic systematics pertaining to emerging nuclear energy concepts are examined from a historical and categorical perspective. For this purpose a complementary formulation of the interdependence of the vital fission-fusion-acceleration processes is established and then developed to accommodate explicitly recent developments for advanced synergetic nuclear energy proposals. The papers presented at the conference which form these proceeding are shown to integrate well and thus ecluidate the generalized systematics of this formulation. (orig.) [de

  19. Emergency system for nuclear reactors

    International Nuclear Information System (INIS)

    1976-01-01

    The invention concerns a circuit called 'of emergency help' intended to remove, in a safe and quick manner, the residual thermal power on the safety vessel of a fast neutron reactor cooled by a liquid metal flow, in the event of a failure occurring inside the main reactor vessel or on it. This system includes a network of spray nozzle tubes, distributed around and near the external surface of the safety vessel, to project on to the surface of the vessel a mist of a liquid having high latent vaporisation heat. The steam produced on contact with the safety vessel is collected in the space provided between the safety vessel and the external protection vessel by at least one collector pipe for dischaging this steam outside the vessel. Under a preferred design mode of the invention the liquid is water the use of which turns out to be particularly advantageous in practice owing to its favourable physical properties and its low cost [fr

  20. Emergency preparedness for nuclear electric generating facilities in foreign countries: A brief survey of practices

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, C R [Battelle Human Affairs Research Centers, Seattle, WA (United States); Marcus, A A; Hanhardt, Jr, A M; Selvin, M; Huelshoff, M [Pacific Northwest Laboratory, Richland, WA (United States)

    1980-12-01

    This report summarizes the emergency plans for accidents at nuclear power plants in Germany, Sweden, Switzerland, the United Kingdom, Canada, and France. Soviet Union documents were examined, but no published information was found on the subject. The study of foreign plans was to determine what U.S. planners might learn that could be useful to them. Plans of the foreign countries were published before the nuclear accident at Three Mile Island and reflected a generally accepted premise that a serious nuclear emergency would never occur. Therefore, there are few ideas of immediate use to U.S. planners. Most countries have since begun to re-examine their emergency planning. The study also discusses the emergency action levels, warning systems, evacuation management and procedures, and public information and education for people living near nuclear power plants and defines roles of nuclear facility operators and roles of the government. (author)

  1. Reinforcement of planning and response to emergencies inside nuclear power plants; Refuerzo de la planificación y respuesta ante emergencias en el interior de las centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Cortés, M.A.; Garcés, J.M.; Bolaños, J.; Fernández, J.; Gutiérrez, C.; Pontejo, A.; Rosell, B.

    2015-07-01

    Fukushima Daichi nuclear accident (11th march of 2011) required a rapid and effective response of nuclear industry, in order to guarantee that current safety margins were enough to cope with events like this or even worse. In Europe, stress tests were carried out to comply with that objective, evaluating if every nuclear plant was able to succeed managing design basis accidents or even beyond. Stress-test results were satisfactory, although several areas for improvement where identified. Improvements in emergency response and management have been developed in several phases. First, increasing emergency response capacity by implementing modifications in existing equipment. Later, installing new equipment (generally portable) which would be used in even more degraded conditions. This must be held by the revision of emergency response personnel and their training. Finally, external support has been reinforced to help in longstanding emergencies, with the establishment of CAE (Regional Center), and collaboration protocols with the Army. These actions, supervised and approved by the Regulator Body (CSN) will lead to increase plants safety margins and their emergency response capacities in order to reduce probability and consequences of a nuclear accident to the minimum. [Spanish] El accidente nuclear ocurrido el 11 de marzo de 2011 en Fukushima Daichi requirió de una pronta y efectiva respuesta de la industria nuclear, que garantizase que los márgenes de seguridad eran los adecuados para hacer frente a sucesos de estas características o incluso peores. Con ese objetivo se planteó, a nivel europeo, la realización de unas pruebas de resistencia que valorasen si las centrales podían hacer frente con garantías a una serie de accidentes dentro y más allá de las bases de diseño. Los resultados fueron satisfactorios, si bien se identificaron varios aspectos de mejora. La mejora en la respuesta y gestión de emergencias de las centrales nucleares se ha planteado en

  2. OntoEmergePlan: variability of emergency plans supported by a domain ontology

    NARCIS (Netherlands)

    Ferreira, Maria I.G.B; Moreira, João; Campos, Maria Luiza M.; Braga, Bernardo F.B; Sales, Tiago P.; de Cordeiro, Kelli F.; Borges, Marcos R.S.

    2015-01-01

    The preparation of high quality emergency plans to guide operational decisions is an approach to mitigate the emergency management complexity. In such multidisciplinary scenario, teams with different perspectives need to collaborate towards a common goal and interact within a common understanding.

  3. Planning of elimination of emergency consequences

    Directory of Open Access Journals (Sweden)

    S. Kovalenko

    2015-05-01

    Full Text Available Introduction. The volume of useful information in the planning of elimination of emergency consequences process is reasonable to assess with calculatory problems and mathematical models. Materials and methods. The expert survey method is used to calculate quantitative values of probability and to determine the optimal solution before the information in condition is received. Results. It is determined that the quality of the solution of elimination emergency consequences depends primarily on the number of factors that are taken into account in particular circumstances of the situation; on the level of information readiness of control bodies to take decision to eliminate emergency consequences as soon as possible and to consider several options for achieving reasonableness and concreteness of a particular decision. The ratio between volume of useful information collected and processed during operation planning which is required for identifying optimal solution is calculated. This ratio allows to construct a graph of probability of identifying a solution in existing environment and probability value of identifying optimal solution before information in P*condition is obtained. This graph also shows the ratio volume of useful information collected and processed during operation planning and necessary volume of information for identifying optimal solution. Conclusion. The results of this research can be used for improving control bodies decisions to ensure safe working conditions for employees of food industry.

  4. Countermeasures for dairy products in nuclear emergencies

    International Nuclear Information System (INIS)

    Sinkko, K.; Ammann, M.; Kostiainen, E.; Salo, A.; Liskola, K.; Haemaelaeinen, R.P.; Mustajoki, J.

    2001-01-01

    This work was performed in order to plan countermeasures that, after an accidental release of radioactivity, could reduce the dose to the public due to the consumption of contaminated milk and milk products. The attention was focused on whether there are justified and optimised actions below the international recommended concentration levels in foodstuffs. The analysis was conducted as a case study, i.e., it was assumed that a hypothetical accident had happened in a nuclear power plant leading to a release of radionuclides which severely contaminated a wide area of Ostrobothnia, one of Finland's most important milk production areas. The dose averted by actions, the' monetary costs and the feasibility of actions were assessed. It was also studied what information is needed by decision-makers and in which form this information should be presented. Finally, it was examined how planning of countermeasures could be enhanced by applying decision analysis in establishing actions strategies and valuing attributes considered in decision making. Preparative meetings and a concluding workshop was arranged and all authorities involved in food-related emergency management were invited to jointly analyse different options. According to the query made the participants considered the decision workshop and decision analysis very practicable in exercises. The exercise as a whole was also evaluated useful or very useful. The presented techniques in a real situation were considered applicable but not as useful as in exercises. Thus it can be deduced that the concluding workshop and decision analysis interviews augment well conventional emergency exercises. Realistic dose assessments proved out to be very difficult. The software used was able to calculate the maximum radionuclide concentrations in foodstuffs processed from local raw materials. Radionuclide concentration in food or feedstuffs may, however, change quickly. Also, the production and processing of foodstuffs is a complex

  5. Management and training aspects of the emergency plan

    International Nuclear Information System (INIS)

    Lakey, J.R.A.

    1996-01-01

    The main objectives of an emergency management system are to prevent or reduce the likelihood of consequential loss in the event of an emergency occurring. In the event of a nuclear accident the effectiveness of measures for the protection of the public will depend on the advance preparation especially in education and training. This paper reviews two recent initiatives and concludes with comments on the future development of this subject. There is an increasing requirement in legal and moral terms for industry to inform the population of health hazards to which they are exposed. In a report published by the Nuclear Energy Agency (NEA/OECD) radiation protection was described as a subject which is impenetrable to the layman and as wide as it is complex. For this and other reasons radiation hazards are perceived to exceed all others and the public appear to have a poor image of the radiation protection specialists. Communication with the public and the media is widely recognized as a key pan of an emergency plan. This view is supported in the European Union which has sponsored the book on 'Radiation and Radiation Protection - a course for primary and secondary schools' which is described in this paper. The training of emergency teams includes the use of drills and exercises to maintain skills and can also be used to test the adequacy of plans. Every effort should be made to simulate the pressure on time and resources which would occur in a real event. Radiation emergencies are fortunately rare and so there is little practical experience of these events. The emergency worker must gain some radiation protection skills and must be able to use some technical language when communicating with specialist advisors. For this reason the European Union has sponsored the book 'Radiation Protection for Emergency Workers' which is also described in this paper. (author)

  6. Summary statement on emergency planning for transportation

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S S

    1983-08-01

    Present federal policy relies mainly on market forces for assuring adequate energy supplies. In addition to national oil stockpiles, the federal government has developed, but not yet tested, an early warning system for energy shortages, in cooperation with the Department of Defense. Primary responsibility for detailed contingency planning rests with the states. Transportation systems are undergoing general change and adaptation, which government should promote while managing its own transportation resources optimally. Government planning for emergencies of all varieties should be inter-agency directed, but constrained by full recognition of extensive remedial action taken at the local level. Industry emergency planning encompasses measures by the manufacturing sector, including optimal fuel economy for vehicles and the possible use of alternative fuels. Railroad contingency planning requires some federal and regional government regulatory reforms. The federal fuel allocation program was detrimental to all transportation modes. The appropriate degree of fuel price stabilization during shortages remains highly controversial, partly on the grounds that controls lower GNP. The prevalent view was that priority allocations at any level are worse than price allocations. Equity issues should be addressed at the local level and transfers carried out in the form of money. Field evaluations, combined with quantitative modeling of the issues raised here, would be highly desirable.

  7. Lagrangian modeling of atmospheric dispersion of radionuclides and geographical information systems as tools to support emergency planning in area of influence of nuclear complex of Angra dos Reis, RJ, Brazil

    International Nuclear Information System (INIS)

    Silva, Corbiniano

    2013-01-01

    Industrial accidents generally endanger structures and the set of environmental influence area where the enterprises are located, especially when affected by atmospheric dispersion of their pollutants, whose concern with the evacuation of the population is the main goal in emergency situations. Considering the nuclear complex Angra dos Reis - RJ, based on computer modeling analysis of the mechanisms of pollutant dispersion in conjunction with geographic information systems were developed. Thus, information about the dispersion of radionuclides - from simulations performed on the HYSPLIT; meteorological data (direction, intensity and calm on the wind regime and analysis of the wind field in the region using WRF), occurrence of landslides and data on the environmental study area were integrated into a GIS database using ArcGIS platform. Aiming at the identification and definition of escape routes in case of evacuation from accidental events in CNAAA, the results point solutions for long-term planning, based on weather and landslides, and short-term, supported by simulations of the dispersion radionuclides, in order to support actions that assist local emergency planning. (author)

  8. Joint Radiation Emergency Management Plan of the International Organizations of the International Organizations. Date Effective: 1 March 2017

    International Nuclear Information System (INIS)

    2017-01-01

    This Joint Emergency Management Plan of the International Organizations (Joint Plan) describes the interagency framework of preparedness for and response to an actual, potential or perceived nuclear or radiological emergency independent of whether it arises from an accident, natural disaster, negligence, nuclear security event or any other cause. The IAEA is the main coordinating body for development and maintenance of the Joint Plan. The Joint Plan is intended to support and underpin the efforts of national governments and seeks to ensure a coordinated and harmonized international response to nuclear or radiological emergencies. It is not intended to interfere with or replace the emergency preparedness and response arrangements of international organizations (or States).

  9. Managing a Nuclear Emergency Originating from Abroad

    International Nuclear Information System (INIS)

    Grlicarev, I.

    1998-01-01

    The basic aspects of managing a nuclear emergency, which occurred in a foreign country, are considered. The most important sources of information are defined by the bilateral or multilateral conventions. The decision aiding techniques and intervention levels can substantially improve the decision making. The experiences from the INEX-2 exercises are presented after the Swiss and Finnish exercise. (author)

  10. Institutional reforms of nuclear emergency preparedness in Japan and its challenges. Case studies on stakeholder involvement in establishing nuclear emergency preparedness in France and its implications for Japan

    International Nuclear Information System (INIS)

    Sugawara, Shin-etsu

    2013-01-01

    Based upon the experiences with the accident of Fukushima Daiichi Nuclear Power Station, Japan is now making a comprehensive review of nuclear emergency preparedness. The Nuclear Regulation Authority of Japan has changed drastically its basic concept of nuclear emergency arrangements from their dependence on the prediction methods to advance planning-oriented arrangements. In order to implement such changes in an effective enough manner, this report examines how to improve stakeholder involvement focusing on the French cases, where the Local Information Commissions (CLI) plays a critical role, and thereby derives concrete lessons for Japan. Case studies on CLI's involvement in French nuclear emergency preparedness revealed the following implications for Japan; 1. Improving continuously the disaster prevention plans of local governments and of nuclear utilities thorough recursive cycles of disaster-preparedness drill and its evaluation for the benefits of local inhabitants, 2. Setting appropriate ranges wherein local stakeholders involve constantly in establishing nuclear emergency preparedness without alienating completely other stakeholders, 3. Utilizing the prediction systems not as a means to support decision-making in emergency situations but as a tool for facilitating stakeholder involvement in the phase of advance planning, and 4. Integrating nuclear emergency preparedness into other disaster preventions for reducing complex and unrecognized risks. (author)

  11. International nuclear planning and manpower requirements

    International Nuclear Information System (INIS)

    Simnad, M.

    1977-01-01

    In the transfer of nuclear technology to developing countries one of the most pressing needs is the manpower requirements for the planning, construction, and operation of the nuclear power systems. The indigenous human resources of the respective countries must be educated and trained to a level commensurate with the demands of such an advanced and challenging technology. The issues to be addressed when discussing international nuclear planning and manpower requirements are summarized

  12. Water Utility Planning for an Emergency Drinking Water Supply

    Science.gov (United States)

    Reviews roles and responsibilities among various levels of government regarding emergency water supplies and seeks to encourage collaboration and partnership regarding emergency water supply planning.

  13. 29 CFR 1910.38 - Emergency action plans.

    Science.gov (United States)

    2010-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Means of Egress § 1910.38 Emergency action plans. (a) Application. An... plans. An emergency action plan must be in writing, kept in the workplace, and available to employees... information about the plan or an explanation of their duties under the plan. (d) Employee alarm system. An...

  14. Hungarian system for nuclear emergency preparedness

    International Nuclear Information System (INIS)

    Borsi, Laszlo; Szabo, Laszlo; Ronaky, Jozsef

    2000-01-01

    The Hungarian Government had established in 1989 on the basis of national and international experience the National System for Nuclear Emergency Preparedness (NSNEP). Its guidance is ad-ministered by the Governmental Commission for Nuclear Emergency Preparedness (GCNEP). The work of the Governmental Commission is designated to be assisted by the Secretariat, the Operational Staff and by the Technical Scientific Council. The leading and guiding duties of the relevant ministries and national agencies are performed by the Sectional Organisations for Nuclear Emergency Preparedness (SONEP), together with those of the Metropolitan Agencies and of the county agencies by the Metropolitan Local Committee (MLCNEP) and by County Local Committees. The chairman of the Governmental Commission is the Minister of the Interior whose authority covers the guidance of the NSNEP's activities. The Secretariat of the Governmental Commission (SGC) co-ordinates the activities of the bodies of the Governmental Commission, the sectional organisations, the local committees for nuclear emergency preparedness and those of the other bodies responsible for implementing action. The Emergency Information Centre (EIC) of GCNEP as the central body of the National Radiation Monitoring, Warning and Surveillance System provides the information needed for preparing decisions at Governmental Commission level. The technical-scientific establishment of the governmental decisions in preparation for nuclear emergency situations and the elimination of their consequences are tasks of the Technical-Scientific Council. The Centre for Emergency Response, Training and Analysis (CERTA) of the Hungarian Atomic Energy Authority (HAEA) may be treated as a body of the Governmental Commission as well. The National Radiation Monitoring, Warning and Surveillance System (NRMWSS) is integral part of the NSNEP. The NRMWSS consists of the elements operated by the ministries and the operation of nation-wide measuring network in

  15. Study on estimation of evacuation distances for nuclear emergency

    International Nuclear Information System (INIS)

    Sato, Sohei; Homma, Toshimitsu

    2005-09-01

    Japan Atomic Energy Research Institute (JAERI) have conducted the analytical studies on the Probabilistic Safety Assessment (PSA), the severe accidents, and the optimization of protective actions. Based on the results of these studies, JAERI are investigating the method for taking urgent protective actions more reasonably. If an accident occurs in a nuclear power plant (NPP), early protective actions are carried out. To implement these actions more effectively, emergency preparedness and emergency planning are important, and especially prompt evacuation is expected to reduce a large amount of radiation exposures. To examine the effect of early protective measures by using a PSA method, estimation of the parameter uncertainty related in the time for early protective actions is needed. For this purpose, we have developed an analytical method for urgent protective actions using geographic information, and estimated the movement distance based on gathering points arrangement an population distribution. For this analysis, we used the gathering point data shown on each regional plans for disaster prevention which will be used in actual emergency situation and targeted the population inside Emergency Planning Zone (EPZ). By applying this method for the existing sixteen commercial NPP sites, we estimated the average value and distribution of the movement distance for each sites. This report provides a brief description of the method for estimating the movement distance, input data for this analysis, and the result. Moreover, the problem on the method of evacuation distance analysis and usefulness of this method for emergency planning were discussed. (author)

  16. Utilising the emergency planning cycle for the transport of radioactive material

    International Nuclear Information System (INIS)

    Fox, M.

    2004-01-01

    As a world leader in the transport of radioactive material (RAM) British Nuclear Fuels plc (BNFL) and its subsidiary Pacific Nuclear Transport Limited (PNTL) recognise the importance of adopting the emergency planning cycle. The emergency response arrangements prepared and maintained in support of the International Transport business have been developed through this cycle to ensure that their emergency response section may achieve its aim and that the business unit is able to respond to any International Transport related incident in a swift, combined and co-ordinated manner. This paper outlines the eight key stages of the planning cycle and the experience that BNFL has gained in respect of its emergency response activities

  17. Nuclear emergency management: what is new?

    International Nuclear Information System (INIS)

    Lazo, T.; Mundigl, S.

    2003-01-01

    Through the use of internationally organised, multinational drills, a wealth of experience and knowledge have been gained at both the national and international levels. The lessons learnt primarily concerned the early, urgent-communication phases of nuclear emergencies, and are currently in the process of being consolidated and incorporated into national structures and approaches. The focus of current works is shifting towards later accident phases, particularly to the mid-term phase, when control has been regained of the emergency situation but the accident consequences have yet to be addressed. In addition to these ''classic'' nuclear emergency response interests, since the 11 september 2001 national authorities have been concerned with accident response capabilities in case of terrorist acts that might involve radiation. (A.L.B.)

  18. Special nuclear material inventory sampling plans

    International Nuclear Information System (INIS)

    Vaccaro, H.S.; Goldman, A.S.

    1987-01-01

    This paper presents improved procedures for obtaining statistically valid sampling plans for nuclear facilities. The double sampling concept and methods for developing optimal double sampling plans are described. An algorithm is described that is satisfactory for finding optimal double sampling plans and choosing appropriate detection and false alarm probabilities

  19. Emergency preparedness for nuclear power plants in the USA

    International Nuclear Information System (INIS)

    Schwartz, S.A.

    1986-01-01

    In the case of an operating reactor, if it is determined that there are such deficiencies that a favourable NRC finding is not warranted and if the deficiencies are not corrected within four months of that determination, the Commission will determine whether the reactor should be shut down or whether some other enforcement action is appropriate. In any case, where the Commission believes that the public health, safety, or interest so requires, the plant will be required to shut down immediately. Emergency planning considerations must be extended to emergency planning zones, and these shall consist of an area of about 10 miles in radius for exposure to the radioactive plume that might result from an accident in a nuclear power reactor and an area of about 50 miles in radius for food that might become contaminated. To evaluate the effectiveness of the licensee programme to implement their emergency plan, a 'management oversight and risk tree' (MORT) approach was developed and used by NRC appraisal teams at all operating facilities and those close to licensing. Since April 1981, over 250 emergency preparedness exercises have been observed and annual inspections conducted at US commercial nuclear power generating facilities. As a result of this experience, licensees have generally progressed from a basic ability to implement their plan to a systematic demonstration of their emergency preparedness capabilities. Almost five years have elapsed since the inception of the upgraded emergency preparedness regulatory programme, and the NRC is evaluating the resources committed to the programme to determine if modifications are appropriate. Our goal is to ensure continued adequate readiness capability to protect the public health and safety in the event of an accident

  20. Study on Korean Radiological Emergency System-Care System- and National Nuclear Emergency Preparedness System Development

    International Nuclear Information System (INIS)

    Akhmad Khusyairi; Yudi Pramono

    2008-01-01

    Care system; Radiological Emergency Supporting System. Environmental radiology level is the main aspect that should be concerned deal with the utilization of nuclear energy. The usage of informational technology in nuclear area gives significant contribution to anticipate and to protect human and environment. Since 1960, South Korea has developed environment monitoring system as the effort to protect the human and environment in the radiological emergency condition. Indonesia has possessed several nuclear installations and planned to build and operate nuclear power plants (PLTN) in the future. Therefore, Indonesia has to prepare the integrated system, technically enables to overcome the radiological emergency. Learning from the practice in South Korea, the system on the radiological emergency should be prepared and applied in Indonesia. However, the government regulation draft on National Radiological Emergency System, under construction, only touches the management aspect, not the technical matters. Consequently, when the regulation is implemented, it will need an additional regulation on technical aspect including the consideration on the system (TSS), the organization of operator and the preparation of human resources development of involved institution. For that purpose, BAPETEN should have a typical independence system in regulatory frame work. (author)

  1. The Reference Scenarios for the Swiss Emergency Planning

    International Nuclear Information System (INIS)

    Hanspeter Isaak; Navert, Stephan B.; Ralph Schulz

    2006-01-01

    For the purpose of emergency planning and preparedness, realistic reference scenarios and corresponding accident source terms have been defined on the basis of common plant features. Three types of representative reference scenarios encompass the accident sequences expected to be the most probable. Accident source terms are assumed to be identical for all Swiss nuclear power plants, although the plants differ in reactor type and power. Plant-specific probabilistic safety analyses were used to justify the reference scenarios and the postulated accident source terms. From the full spectrum of release categories available, those categories were selected which would be covered by the releases and time frames assumed in the reference scenarios. For each nuclear power plant, the cumulative frequency of accident sequences not covered by the reference scenarios was determined. It was found that the cumulative frequency for such accident sequences does not exceed about 1 x 10 -6 per year. The Swiss Federal Nuclear Safety Inspectorate concludes that the postulated accident source terms for the reference scenarios are consistent with the current international approach in emergency planning, where one should concentrate on the most probable accident sequences. (N.C.)

  2. Radiological aerial monitoring in a nuclear emergency

    International Nuclear Information System (INIS)

    Shin, Hyeongki; Kim, Juyoul; Jung, Gunhyo

    2008-01-01

    Since North Korea announced the underground nuclear test on last October 9th, 2006, many countries around the world have worried about the atmospheric dispersion and pollution of radioactive materials crossing the border by the clandestine nuclear test. After that time, verifying the existence of nuclear test by detecting radioactive materials such as xenon, I-131, and Cs-134 at the early stage of radiological emergency, locating the position of test site by backward trajectory analysis, and chasing the moving path of airborne radionuclide have been heavily issued. And collection of airborne radioactivity and gamma radiation monitoring technology using an aircraft have been recently examined by an authority concerned in South Korea. Although various techniques of radiological aerial monitoring have been developed and operated around the world, the relevant technical development or research is still required. In order to decide potential measuring location and time within the framework of radiological monitoring system, we use HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) model developed by National Oceanic and Atmospheric Administration (NOAA) of U.S. Department of Commerce. The model is validated and assessed against North Korea's nuclear test. Calculation results of radionuclide trajectory show a good agreement with measured values. Backward trajectory analysis is useful to track the radiological source term, possible time and place of nuclear accidents and/or activities. Nationwide early warning system using aircraft and atmospheric dispersion model can help a nearly real-time forecasting and warning in preparation for radiological emergencies. (author)

  3. NASA program planning on nuclear electric propulsion

    International Nuclear Information System (INIS)

    Bennett, G.L.; Miller, T.J.

    1992-03-01

    As part of the focused technology planning for future NASA space science and exploration missions, NASA has initiated a focused technology program to develop the technologies for nuclear electric propulsion and nuclear thermal propulsion. Beginning in 1990, NASA began a series of interagency planning workshops and meetings to identify key technologies and program priorities for nuclear propulsion. The high-priority, near-term technologies that must be developed to make NEP operational for space exploration include scaling thrusters to higher power, developing high-temperature power processing units, and developing high power, low-mass, long-lived nuclear reactors. 28 refs

  4. Management plan for the Nuclear Standards Program

    International Nuclear Information System (INIS)

    1979-11-01

    This Management Plan was prepared to describe the manner in which Oak Ridge National Laboratory will provide technical management of the Nuclear Standards Program. The organizational structure that has been established within ORNL for this function is the Nuclear Standards Management Center, which includes the Nuclear Standards Office (NSO) already in existence at ORNL. This plan is intended to support the policies and practices for the development and application of technical standards in ETN projects, programs, and technology developments as set forth in a standards policy memorandum from the DOE Program Director for Nuclear Energy

  5. Nuclear emergency management procedures in Europe

    Science.gov (United States)

    Carter, Emma

    The Chernobyl accident brought to the fore the need for decision-making in nuclear emergency management to be transparent and consistent across Europe. A range of systems to support decision-making in future emergencies have since been developed, but, by and large, with little consultation with potential decision makers and limited understanding of the emergency management procedures across Europe and how they differ. In nuclear emergency management, coordination, communication and information sharing are of paramount importance. There are many key players with their own technical expertise, and several key activities occur in parallel, across different locations. Business process modelling can facilitate understanding through the representation of processes, aid transparency and structure the analysis, comparison and improvement of processes. This work has been conducted as part of a European Fifth Framework Programme project EVATECH, whose aim was to improve decision support methods, models and processes taking into account stakeholder expectations and concerns. It has involved the application of process modelling to document and compare the emergency management processes in four European countries. It has also involved a multidisciplinary approach taking a socio-technical perspective. The use of process modelling did indeed facilitate understanding and provided a common platform, which was not previously available, to consider emergency management processes. This thesis illustrates the structured analysis approach that process modelling enables. Firstly, through an individual analysis for the United Kingdom (UK) model that illustrated the potential benefits for a country. These are for training purposes, to build reflexive shared mental models, to aid coordination and for process improvement. Secondly, through a comparison of the processes in Belgium, Germany, Slovak Republic and the UK. In this comparison of the four processes we observed that the four process

  6. Nuclear plant data systems - some emerging directions

    International Nuclear Information System (INIS)

    Johnson, R.D.; Humphress, G.B.; McCullough, L.D.; Tashjian, B.M.

    1983-01-01

    Significant changes have occurred in recent years in the nuclear power industry to accentuate the need for data systems to support information flow and decision making. Economic conditions resulting in rapid inflation and larger investments in new and existing plants and the need to plan further ahead are primary factors. Government policies concerning environmental control, as well as minimizing risk to the public through increased nuclear safety regulations on operating plants are additional factors. The impact of computer technology on plant data systems, evolution of corporate and plant infrastructures, future plant data, system designs and benefits, and decision making capabilities and data usage support are discussed. (U.K.)

  7. Ar-41 measurements and nuclear emergency preparedness

    International Nuclear Information System (INIS)

    Kunst, J.J.; Rodriguez, M.; Ugarte, R.; Vigile, R.S.; Boutet, L.I.; Jordan, O.D.; Hernandez, D.G.

    2010-01-01

    During the early phase of an emergency is necessary to confirm the release of radioactivity predictions made by the operator of the nuclear plant. In this context, it has begun measuring Ar-41 in the vicinity of a research reactor. Since the Ar-41 is produced in the reactor, it has been studied as a good way to validate the air dispersion model used in nuclear emergencies and to develop a method to improve the characterization of the release. For this latter purpose a pilot experiment was conducted to determine computational and experimental methods, the flux of 1.29 MeV of Ar-41 and compared to evaluate the accuracy of the assessments made. This paper describes meteorological forecasting systems used in the experiment, the estimate of the stability class and the concentration of nuclides using a calculation code developed by the ARN, as well as the methodology and equipment used for measurement in the field. (authors) [es

  8. The French governmental organisation and relief in France planning in case of a nuclear accident

    International Nuclear Information System (INIS)

    Guizard, C.

    1992-01-01

    Despite of the unlikeliness of a nuclear accident, emergency planning is a must. It has several aspects: Internal Emergency PLan, Specific Intervention Plan, Post Accident and Relief specialized Plan. As a whole, the organisation is similar to the one used for others industrial risks. In a 'Department', the supervisor for overall emergency action is the 'Prefet', a high civil servant appointed by the Cabinet and responsible for nuclear security; all the other civil servants are under the Prefet's command and assist him. A national post-accident plan is being worked out; it will cover all the fields of intervention: control, administration of stable iodine, sheltering or evacuation. (author)

  9. Emergency Response Resources guide for nuclear power plant emergencies

    International Nuclear Information System (INIS)

    1992-07-01

    On August 28 and September 18, 1990, the States of Louisiana and Mississippi, Gulf States Utilities, five local parishes, six Federal agencies, and the American Nuclear Insurers participated in a post-emergency TABLETOP exercise in Baton Rouge, Louisiana. One of the products developed from that experience was this guide for understanding the responsibilities and obtaining resources for specific needs from the various participants, particularly from those organizations within the Federal Government. This first revision of that guide broadens the focus of the original document. Also, new information defines the major Federal response facilities. This guide should assist State and local government organizations with identifying and obtaining those resources for the post-emergency response when their resources have been exhausted

  10. Stress Tests Worldwide - IAEA Nuclear Safety Action Plan

    International Nuclear Information System (INIS)

    Lyons, J.E.

    2012-01-01

    The IAEA nuclear safety action plan relies on 11 important issues. 1) Safety assessments in light of the Fukushima accident: the IAEA secretariat will develop a methodology for stress tests against specific extreme natural hazards and will provide assistance for their implementation; 2) Strengthen existing IAEA peer reviews; 3) Emergency preparedness and response; 4) National Regulatory bodies in terms of independence and adequacy of human and financial resources; 5) The development of safety culture and scientific and technical capacity in Operating Organizations; 6) The upgrading of IAEA safety standards in a more efficient way; 7) A better implementation of relevant conventions concerning nuclear safety and nuclear accidents; 8) To provide a broad assistance on safety standard for countries embarking on a nuclear power program; 9) To facilitate the use of available information, expertise and techniques concerning radiation protection; 10) To enhance the transparency of nuclear industry; and 11) To promote the cooperation between member states in nuclear safety. (A.C.)

  11. Analysis on functions of mobile nuclear emergency monitoring lab

    International Nuclear Information System (INIS)

    Lai Yongfang; Wang Yonghong; Gao Jing; Sun Jian

    2012-01-01

    According to the fundamental purpose and mission of nuclear emergency monitoring and based on technological aspects, this paper discusses and analyses the functions and basic requirements on equipment in mobile radiation measurement lab in nuclear emergency response. (authors)

  12. Planning and implementation of nuclear research programmes

    International Nuclear Information System (INIS)

    Lopes, J.L.

    1986-01-01

    The planning and implementation of nuclear research programmes in developed and developing countries is discussed. The main aspects of these programmes in USA, France, Japan, India and Brazil are reported. (M.W.O.) [pt

  13. State of emergency preparedness for US health insurance plans.

    Science.gov (United States)

    Merchant, Raina M; Finne, Kristen; Lardy, Barbara; Veselovskiy, German; Korba, Caey; Margolis, Gregg S; Lurie, Nicole

    2015-01-01

    Health insurance plans serve a critical role in public health emergencies, yet little has been published about their collective emergency preparedness practices and policies. We evaluated, on a national scale, the state of health insurance plans' emergency preparedness and policies. A survey of health insurance plans. We queried members of America's Health Insurance Plans, the national trade association representing the health insurance industry, about issues related to emergency preparedness issues: infrastructure, adaptability, connectedness, and best practices. Of 137 health insurance plans queried, 63% responded, representing 190.6 million members and 81% of US plan enrollment. All respondents had emergency plans for business continuity, and most (85%) had infrastructure for emergency teams. Some health plans also have established benchmarks for preparedness (eg, response time). Regarding adaptability, 85% had protocols to extend claim filing time and 71% could temporarily suspend prior medical authorization rules. Regarding connectedness, many plans shared their contingency plans with health officials, but often cited challenges in identifying regulatory agency contacts. Some health insurance plans had specific policies for assisting individuals dependent on durable medical equipment or home healthcare. Many plans (60%) expressed interest in sharing best practices. Health insurance plans are prioritizing emergency preparedness. We identified 6 policy modifications that health insurance plans could undertake to potentially improve healthcare system preparedness: establishing metrics and benchmarks for emergency preparedness; identifying disaster-specific policy modifications, enhancing stakeholder connectedness, considering digital strategies to enhance communication, improving support and access for special-needs individuals, and developing regular forums for knowledge exchange about emergency preparedness.

  14. Idaho National Laboratory Emergency Readiness Assurance Plan - Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Carl J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Department of Energy Order 151.1C, Comprehensive Emergency Management System requires that each Department of Energy field element documents readiness assurance activities, addressing emergency response planning and preparedness. Battelle Energy Alliance, LLC, as prime contractor at the Idaho National Laboratory (INL), has compiled this Emergency Readiness Assurance Plan to provide this assurance to the Department of Energy Idaho Operations Office. Stated emergency capabilities at the INL are sufficient to implement emergency plans. Summary tables augment descriptive paragraphs to provide easy access to data. Additionally, the plan furnishes budgeting, personnel, and planning forecasts for the next 5 years.

  15. Los Alamos National Laboratory emergency management plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, G.F.

    1998-07-15

    The Laboratory has developed this Emergency Management Plan (EMP) to assist in emergency planning, preparedness, and response to anticipated and actual emergencies. The Plan establishes guidance for ensuring safe Laboratory operation, protection of the environment, and safeguarding Department of Energy (DOE) property. Detailed information and specific instructions required by emergency response personnel to implement the EMP are contained in the Emergency Management Plan Implementing Procedure (EMPIP) document, which consists of individual EMPIPs. The EMP and EMPIPs may be used to assist in resolving emergencies including but not limited to fires, high-energy accidents, hazardous material releases (radioactive and nonradioactive), security incidents, transportation accidents, electrical accidents, and natural disasters.

  16. Integrated Nuclear Security Support Plan (INSSP)

    International Nuclear Information System (INIS)

    Moore, G.M.

    2010-01-01

    Integrated Nuclear Security Support Plan (INSSP) purposes the framework for a comprehensive approach to addressing specific national security needs. It provides means for coordinating nuclear security assistance to member states. Identifies responsible parties for completion of nuclear security activities which are necessary to build sustainable nuclear security programs. International Atomic Energy Agency INSSP development process is based on findings and recommendations from a range of nuclear security missions and other information needs assessments. Takes into account of the ongoing work activities of other bilateral assistance.

  17. Nuclear program of Iran plans and development

    International Nuclear Information System (INIS)

    2016-01-01

    Described are the history of nuclear energy planning in Iran and the development of the Bushehr Nuclear Power Plant (BNPP-1) project and its impact on the competency building in national companies, nuclear safety infrastructure, training activities, public awareness and acceptance. The activities of Nuclear Engineering Department is also presented. In order to enhance technical support services to BNPP1 and also to use capabilities of other companies in the international arena and in line with safe and reliable operation of Bushehr Nuclear Power Plant, NPPD/TAVANA Company has attempted to make contact with many companies outside the country

  18. An expert system for improving nuclear emergency response

    International Nuclear Information System (INIS)

    Salame-Alfie, A.; Goldbogen, G.C.; Ryan, R.M.; Wallace, W.A.; Yeater, M.L.

    1987-01-01

    The accidents at TMI-2 and Chernobyl have produced initiatives aimed at improving nuclear plant emergency response capabilities. Among them are the development of emergency response facilities with capabilities for the acquisition, processing, and diagnosis of data which are needed to help coordinate plant operations, engineering support and management under emergency conditions. An effort in this direction prompted the development of an expert system. EP (EMERGENCY PLANNER) is a prototype expert system that is intended to help coordinate the overall management during emergency conditions. The EP system was built using the GEN-X expert system shell. GEN-X has a variety of knowledge representation mechanisms including AND/OR trees, Decision trees, and IF/THEN tables, and runs on an IBM PC-XT or AT computer or compatible. Among the main features, EP is portable, modular, user friendly, can interact with external programs and interrogate data bases. The knowledge base is made of New York State (NYS) Procedures for Emergency Classification, NYS Radiological Emergency Preparedness Plan (REPP) and knowledge from experts of the NYS Radiological Emergency Preparedness Group and the Office of Radiological Health and Chemistry of the New York Power Authority (NYPA)

  19. Reactivation of the Argentine nuclear plan

    International Nuclear Information System (INIS)

    Rey, Francisco C.

    2007-01-01

    The Argentine Government, in a ceremony held at the Government House and headed by the President of the Republic, announced on the 23th. of August, 2006 a new plan for the nuclear activity. The Argentine Atomic Energy Commission considers this plan as the relaunching of the nuclear activity in the country, made with a clear strategic vision and based on the same premises took into account fifty seven years ago when the Atomic Energy Commission was created. (author) [es

  20. More efficient response to nuclear emergencies

    International Nuclear Information System (INIS)

    1979-12-01

    Data provided by the local authorities in the counties in which the Oskarshamn and Barsebaeck nuclear power plants are situated is presented. The data is for planning of evaluation in the case of a reactor accident and includes population, population distribution, age distribution, institutions such as schools and hospitals, transport, both public and private and accommodation possibilities. Agricultural and domestic animal data are also provided. (J.I.W.)

  1. Emergency power systems at nuclear power plants

    International Nuclear Information System (INIS)

    1982-01-01

    This Guide applies to nuclear power plants for which the total power supply comprises normal power supply (which is electric) and emergency power supply (which may be electric or a combination of electric and non-electric). In its present form the Guide provides general guidance for all types of emergency power systems (EPS) - electric and non-electric, and specific guidance (see Appendix A) on the design principles and the features of the emergency electric power system (EEPS). Future editions will include a second appendix giving specific guidance on non-electric power systems. Section 3 of this Safety Guide covers information on considerations that should be taken into account relative to the electric grid, the transmission lines, the on-site electrical supply system, and other alternative power sources, in order to provide high overall reliability of the power supply to the EPS. Since the nuclear power plant operator does not usually control off-site facilities, the discussion of methods of improving off-site reliability does not include requirements for facilities not under the operator's control. Sections 4 to 11 of this Guide provide information, recommendations and requirements that would apply to any emergency power system, be it electric or non-electric

  2. Integrating hospitals into community emergency preparedness planning.

    Science.gov (United States)

    Braun, Barbara I; Wineman, Nicole V; Finn, Nicole L; Barbera, Joseph A; Schmaltz, Stephen P; Loeb, Jerod M

    2006-06-06

    Strong community linkages are essential to a health care organization's overall preparedness for emergencies. To assess community emergency preparedness linkages among hospitals, public health officials, and first responders and to investigate the influence of community hazards, previous preparation for an event requiring national security oversight, and experience responding to actual disasters. With expert advice from an advisory panel, a mailed questionnaire was used to assess linkage issues related to training and drills, equipment, surveillance, laboratory testing, surge capacity, incident management, and communication. A simple random sample of 1750 U.S. medical-surgical hospitals. Of 678 hospital representatives that agreed to participate, 575 (33%) completed the questionnaire in early 2004. Respondents were hospital personnel responsible for environmental safety, emergency management, infection control, administration, emergency services, and security. Prevalence and breadth of participation in community-wide planning; examination of 17 basic elements in a weighted analysis. In a weighted analysis, most hospitals (88.2% [95% CI, 84.1% to 92.3%]) engaged in community-wide drills and exercises, and most (82.2% [CI, 77.8% to 86.5%]) conducted a collaborative threat and vulnerability analysis with community responders. Of all respondents, 57.3% (CI, 52.1% to 62.5%) reported that their community plans addressed the hospital's need for additional supplies and equipment, and 73.0% (CI, 68.1% to 77.9%) reported that decontamination capacity needs were addressed. Fewer reported a direct link to the Health Alert Network (54.4% [CI, 49.3% to 59.5%]) and around-the-clock access to a live voice from a public health department (40.0% [CI, 35.0% to 45.0%]). Performance on many of 17 basic elements was better in large and urban hospitals and was associated with a high number of perceived hazards, previous national security event preparation, and experience in actual

  3. Some consideration on decision-making in a nuclear emergency

    International Nuclear Information System (INIS)

    Nakashima, Y.; Wang, H.

    1996-01-01

    In various phases of a disaster, the result of decision-making should finally reach the local public of interest, and the detriment among the public should be minimized optimized according to the proper response by the public who receive the result. The decision involves the proper selection among countermeasures, and should reach each one of the public. The expression to be informed to the public should be quite understandable in its meaning. After Hanshin big earthquake (Jan. 17, 1995), the basic plan for countermeasures against disasters which is the foundation for the basic law for disasters has been largely revised and reissued in July 1995. For preparedness and countermeasures outside a nuclear facility, there are many useful experiences that have to be learnt from natural disasters. In Japan and China, there have been no major nuclear accidents affecting the public in the environment. However, preparedness for nuclear emergency derived from natural disasters is important. (author)

  4. Emergency planning practices and criteria in the OECD countries after the Chernobyl accident

    International Nuclear Information System (INIS)

    Boeri, G.; Wiktorsson, C.

    1988-09-01

    This critical review has been prepared at the request of the Committee on Radiation Protection and Public Health (CRPPH), on the basis of information collected from Member countries on their emergency planning practices and criteria, and on changes being considered as a consequence of the Chernobyl accident. This information was officially provided to the Secretariat in response to a questionnaire. Other material has also been used, such as official papers describing national practices and reports presented at meetings organised by the NEA. In these cases the sources are given in the list of references. The information in this report reflects the situation in the Member countries at the end of 1987 and it might well be that additional changes were introduced in the emergency planning practices and criteria of several countries after the answers were sent to the Secretariat. It should also be noted that several of the questions were mainly relevant to nuclear power reactor operations. However, the basic philosophy for emergency planning is general, i.e. radiological criteria, emergency organisation, medical assistance, information to the public, etc., and applies in similar ways to different emergencies. Therefore, the information in the report should be valid for different types of radiological emergencies, although emphasis is placed in the report is on nuclear power reactor emergencies. For non-nuclear power Member countries the information refers mainly to plans to cope with other types of radiation emergencies, and to emergencies of a transboundary origin. Finally, the information covers only the off-site part of emergency planning, apart from some reflections in Chapter 1 on on-site emergency planning and the measures taken at nuclear facilities to prevent an accident or mitigate its consequences

  5. Some Qualitative Requirements for Testing of Nuclear Emergency Response Robots

    International Nuclear Information System (INIS)

    Eom, Heungseop; Cho, Jai Wan; Choi, Youngsoo; Jeong, Kyungmin

    2014-01-01

    Korea Atomic Energy Research Institute (KAERI) is carrying out the project 'Development of Core Technology for Remote Response in Nuclear Emergency Situation', and as a part of the project, we are studying the reliability and performance requirements of nuclear emergency response robots. In this paper, we described some qualitative requirements for testing of nuclear emergency response robots which are different to general emergency response robots. We briefly introduced test requirements of general emergency response robots and described some qualitative aspects of test requirements for nuclear emergency response robots. When considering an immature field-robot technology and variety of nuclear emergency situations, it seems hard to establish quantitative test requirements of these robots at this time. However, based on studies of nuclear severe accidents and the experience of Fukushima NPP accident, we can expect some test requirements including quantitative ones for nuclear emergency response robots

  6. Optimization of emergency response to major nuclear accidents

    International Nuclear Information System (INIS)

    Papazoglou, I.A.; Christou, M.D.

    1991-01-01

    A methodology for the optimization of the short-term emergency response in the event of a nuclear accident has been developed. The method aims at an optimum combination of protective actions in the presence of a multitude of conflicting objectives and under uncertainty. Conflicting objectives arise when the minimization of the potential adverse effects of an accident and the simultaneous minimization of the associated socioeconomic impacts is attempted. Additional conflicting objectives appear whenever an emergency plan tends to decrease a particular health effect (e.g. acute deaths) while at the same time it increases another (e.g. latent deaths). The uncertainty is due to the multitude of the possible accident scenarios and their respective probability of occurrence, the stochastic variability in the weather conditions and in the variability and/or lack of knowledge in the parameters of the risk assessment models. A multiobjective optimization approach is adopted in a dynamic programming scheme. An emergency protective plan consists of defining a protective action (e.g. evacuation, sheltering) at each spatial cell around the plant. Three criteria (evaluators) are used as the objective functions of the problem, namely, acute fatalities, latent effects and socioeconomic cost. The optimization procedure defines the efficient frontier, i.e. all emergency plans that are not dominated by another in all three criteria. No value trade-offs are necessary up to this point

  7. Special nuclear material inventory sampling plans

    International Nuclear Information System (INIS)

    Vaccaro, H.; Goldman, A.

    1987-01-01

    Since their introduction in 1942, sampling inspection procedures have been common quality assurance practice. The U.S. Department of Energy (DOE) supports such sampling of special nuclear materials inventories. The DOE Order 5630.7 states, Operations Offices may develop and use statistically valid sampling plans appropriate for their site-specific needs. The benefits for nuclear facilities operations include reduced worker exposure and reduced work load. Improved procedures have been developed for obtaining statistically valid sampling plans that maximize these benefits. The double sampling concept is described and the resulting sample sizes for double sample plans are compared with other plans. An algorithm is given for finding optimal double sampling plans that assist in choosing the appropriate detection and false alarm probabilities for various sampling plans

  8. Nuclear power infrastructure and planning

    International Nuclear Information System (INIS)

    2005-01-01

    There are several stages in the process of introducing nuclear power in a country. These include feasibility studies; technology evaluation; request for proposals and proposal evaluation; project and contracts development and financing; supply, construction, and commissioning; and finally operation. The IAEA is developing guidance directed to provide criteria for assessing the minimum infrastructure necessary for: a) a host country to consider when engaging in the implementation of nuclear power, or b) a supplier country to consider when assessing that the recipient country would be in an acceptable condition to begin the implementation of nuclear power. There are Member States that may be denied the benefits of nuclear energy if the infrastructure requirements are too large or onerous for the national economy. However if co-operation could be achieved, the infrastructure burden could be shared and economic benefits gained by several countries acting jointly. The IAEA is developing guidance on the potential for sharing of nuclear power infrastructure among countries adopting or extending nuclear power programme

  9. Emergency public information procedures for nuclear plants

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    As a result of the accident at Three Mile Island on March 28, 1979, increased emphasis has been placed on the public information capabilities of utility companies, and particularly their crisis public information procedures. A special industry task force was assigned to develop a generic model for a utility crisis public information plan. This report has been prepared not as a literal emergency plan for a utility, but as a generic check-off list of items and procedures that a utility should consider as a part of its own plan. Because of considerable variations in service areas, utility organization, and other factors, specific approaches may vary from utility to utility. The approaches cited here are generic suggestions that would help lead to an industrywide ability to inform the public, quickly and accurately, about non-routine events that it would consider of importance

  10. Considering nuclear emergency preparedness from realities after Fukushima nuclear disaster

    International Nuclear Information System (INIS)

    Idokawa, Katsutaka

    2013-01-01

    As an ex-chief of affected town of Fukushima nuclear disaster, basic ideas were enumerated as no more accident occurring, necessity of early evacuation, all budget and right belonging to end administrator, appropriate response of government's emergency countermeasure headquarter on proposal of end administrator, failure of evacuation lead coming from government's information concealment, no more secondary damage of affected refuge, public disclosure of information, safety as the top priority with no compromise or preferred profit, new mechanism of resident's direct participation in preventing accidents, and fair review system of inspection based on checklist. Nuclear-related regulatory organizations and electric utilities should be reformed as open and transparent organization and responsible for following results of accidents. Public trust on government was completely lost after the Fukushima nuclear disaster and people should not rely on some organizations and be respective expert and foster self-defense capability so as to establish government by the people. (T. Tanaka)

  11. Workforce Planning for New Nuclear Power Programmes

    International Nuclear Information System (INIS)

    2011-01-01

    An appropriate infrastructure is essential for the efficient, safe, reliable and sustainable use of nuclear power. The IAEA continues to be encouraged by its Member States to provide assistance to those considering the introduction of nuclear power. Its response has been to increase technical assistance, organize more missions and hold workshops, as well as to issue new and updated publications in the IAEA Nuclear Energy Series. Milestones in the Development of a National Infrastructure for Nuclear Power, an IAEA Nuclear Energy Series publication (NG-G-3.1), provides detailed guidance on a holistic approach to national nuclear infrastructure development involving three phases. Nineteen issues are identified in this guide, ranging from development of a government's national position on nuclear power to planning for procurement related to the first nuclear power plant. One of these 19 issues upon which each of the other 18 depend is suitable human resources development. As a growing number of Member States begin to consider the nuclear power option, they ask for guidance from the IAEA on how to develop the human resources necessary to launch a nuclear power programme. The nuclear power field, comprising industry, government authorities, regulators, R and D organizations and educational institutions, relies on a specialized, highly trained and motivated workforce for its sustainability and continued success, quite possibly more than any other industrial field. This report has been prepared to provide information on the use of integrated workforce planning as a tool to effectively develop these resources for the spectrum of organizations that have a stake in such nuclear power programmes. These include, during the initial stages, a nuclear energy programme implementing organization (NEPIO), as well as the future operating organization, nuclear regulatory body, government authorities and technical support organizations if a decision is made to initiate a nuclear power

  12. Method for Developing Arrangements for Response to a Nuclear or Radiological Emergency (Updating IAEA-TECDOC-953) (Spanish Ed.)

    International Nuclear Information System (INIS)

    2009-01-01

    This publication provides a practical resource for emergency planning and fulfils, in part, functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency. If used effectively, it will help users to develop a capability to adequately respond to a nuclear or radiological emergency

  13. Method for Developing Arrangements for Response to a Nuclear or Radiological Emergency (Updating IAEA-TECDOC-953) (French Ed.)

    International Nuclear Information System (INIS)

    2009-01-01

    This publication provides a practical resource for emergency planning and fulfils, in part, functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency. If used effectively, it will help users to develop a capability to adequately respond to a nuclear or radiological emergency

  14. Method for Developing Arrangements for Response to a Nuclear or Radiological Emergency (Updating IAEA-TECDOC-953) (Russian Ed.)

    International Nuclear Information System (INIS)

    2009-01-01

    This publication provides a practical resource for emergency planning and fulfils, in part, functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency. If used effectively, it will help users to develop a capability to adequately respond to a nuclear or radiological emergency

  15. Guidelines for attendance and registration for radiological emergencies of nuclear accidents

    International Nuclear Information System (INIS)

    1994-01-01

    Today in Brazil the use of nuclear energy is becoming an usual practice in various activities. Thus, must be a matter of great weight, directions for attendance and registration for radiological emergencies or nuclear accidents. This work shows the planning elaborated by the Comissao Nacional de Energia Nuclear (Brazilian CNEN) for nuclear plants, aiming avoid the injurious effects from the ionizing radiation exposure, radionuclides release or the direct or indirect exposure of ionizing radiation, that proceeding from a radiological emergencies or a nuclear accidents. (J.A.M.M.)

  16. Elements of a national emergency response system for nuclear accidents

    International Nuclear Information System (INIS)

    Dickerson, M.H.

    1987-01-01

    The purpose of this paper is to suggest elements for a general emergency response system, employed at a national level, to detect, evaluate and assess the consequences of a radiological atmospheric release occurring within or outside of national boundaries. These elements are focused on the total aspect of emergency response ranging from providing an initial alarm to a total assessment of the environmental and health effects. Elements of the emergency response system are described in such a way that existing resources can be directly applied if appropriate; if not, newly developed or an expansion of existing resources can be employed. The major thrust of this paper is toward a philosophical discussion and general description of resources that would be required to implementation. If the major features of this proposal system are judged desirable for implementation, then the next level of detail can be added. The philosophy underlying this paper is preparedness - preparedness through planning, awareness and the application of technology. More specifically, it is establishment of reasonable guidelines including the definition of reference and protective action levels for public exposure to accidents involving nuclear material; education of the public, government officials and the news media; and the application of models and measurements coupled to computer systems to address a series of questions related to emergency planning, response and assessment. It is the role of a proven national emergency response system to provide reliable, quality-controlled information to decision makers for the management of environmental crises

  17. Planning developments in British Nuclear Fuels Ltd

    Energy Technology Data Exchange (ETDEWEB)

    Roper, D A [British Nuclear Fuels Ltd., Risley

    1978-10-01

    The state of the corporate planning art in British Nuclear Fuels Ltd. was described by N.R.Geary (Long Range Planning, September (1973)) just 2 years after Company formation. This article discusses more recent planning developments over the period to date during which the Company adopted a Divisionalized structure (from October 1974) and has been required to submit an annual Company plan to the Department of Energy (from November 1975). Background information on the origin and nature of the BNFL and its business, and the particular features of the Company which reflect into the nature and method of its planning were given in the 1973 article and only a brief introductory updating of the Company position is included here. Subsequently the features and problems of BNFL's operating and development planning system are described. Finally, messages arising from BNFL's planning experience to date which may be of general application and therefore of value to other practitioners of planning are listed.

  18. Particular intervention plan of The Bugey Nuclear Power Plant

    International Nuclear Information System (INIS)

    2014-01-01

    The Particular intervention plan (PPI in French) is an emergency plan which foresees the measures and means to be implemented to address the potential risks of the presence and operation of a nuclear facility. This plan is implemented and developed by the Prefect in case of nuclear accident (or incident leading to a potential accident), the impact of which extending beyond the facility perimeter. It represents a special section of the organisation plan for civil protection response (ORSEC plan). The PPI foresees the necessary measures and means for crisis management during the first hours following the accident and is triggered by the Department Prefect according to the information provided by the facility operator. Its aim is to protect the populations leaving within 10 km of the facility against a potential radiological hazard. The PPI describes: the facility, the intervention area, the protection measures for the population, the conditions of emergency plan triggering, the crisis organisation, the action forms of the different services, and the post-accident stage. This document is the public version of the Particular intervention plan of the Bugey NPP (Ain, France)

  19. Particular intervention plan of the Flamanville Nuclear Power Plant

    International Nuclear Information System (INIS)

    2008-01-01

    The Particular intervention plan (PPI in French) is an emergency plan which foresees the measures and means to be implemented to address the potential risks of the presence and operation of a nuclear facility. This plan is implemented and developed by the Prefect in case of nuclear accident (or incident leading to a potential accident), the impact of which extending beyond the facility perimeter. It represents a special section of the organisation plan for civil protection response (ORSEC plan). The PPI foresees the necessary measures and means for crisis management during the first hours following the accident and is triggered by the Department Prefect according to the information provided by the facility operator. Its aim is to protect the populations leaving within 10 km of the facility against a potential radiological hazard. The PPI describes: the facility, the intervention area, the protection measures for the population, the conditions of emergency plan triggering, the crisis organisation, the action forms of the different services, and the post-accident stage. This document is the public version of the Particular intervention plan of the Flamanville NPP (Manche, France)

  20. Survey on national practices and lessons learnt from off-site nuclear emergency exercises

    International Nuclear Information System (INIS)

    Viktorsson, C.

    1993-01-01

    Nuclear emergency exercises are considered to make an important contribution to the efficiency of emergency preparedness. Generally, the details of the emergency exercises are specified for each country and often for each site, reflecting the particular features that exist in relation to general emergency arrangements. The Chernobyl accident brought a new dimension into the arena of emergency arrangements - the international dimension. New conventions and revised international guidance have been issued and have been or are being included in national emergency plans. The OECD Nuclear Energy Agency decided in 1990 to promote international co-operation in the field of emergency exercises and has adopted a programme of work in this field. One component of this programme, which concerns a survey on national practices and lessons learnt from the planning and conduct of emergency exercises, is dealt with in this paper

  1. 40 CFR 264.227 - Emergency repairs; contingency plans.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Emergency repairs; contingency plans... FACILITIES Surface Impoundments § 264.227 Emergency repairs; contingency plans. (a) A surface impoundment... days after detecting the problem. (c) As part of the contingency plan required in subpart D of this...

  2. 40 CFR 52.1477 - Nevada air pollution emergency plan.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Nevada air pollution emergency plan. 52.1477 Section 52.1477 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Nevada § 52.1477 Nevada air pollution emergency plan. Section 6.1.5 of...

  3. 40 CFR 52.274 - California air pollution emergency plan.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false California air pollution emergency plan. 52.274 Section 52.274 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.274 California air pollution emergency plan. (a) Since the...

  4. Emergency power systems at nuclear power plants

    International Nuclear Information System (INIS)

    1991-01-01

    This Safety Guide was prepared as part of the Nuclear Safety Standards programme for establishing Codes and Safety Guides relating to nuclear power plants (NPPs). The first edition of the present Safety Guide was developed in the early 1980s. The text has now been brought up-to-date, refined in several details and amended to include non-electrical diverse and independent power sources. This Guide applies to NPP for which the total power supply comprises a normal power supply and an emergency power supply (EPS), which may be electrical or a combination of electrical and non-electrical. The Guide provides general guidance for all types of EPS and specific guidance on the design safety requirements and the features of the electrical and non-electrical portions of the EPS. 9 figs, 2 tabs

  5. Nuclear emergency preparedness and response in Germany

    International Nuclear Information System (INIS)

    Miska, H.

    2009-01-01

    Off-site nuclear emergency response in Germany is divided into disaster response under the responsibility of the Laender and measures for precautionary radiation protection pursuant to the Precautionary Radiation Protection Act under the lead of federal authorities. Early countermeasures at the regional level require a different management than long-term and comprehensive actions of precautionary radiation protection. As situations may arise in which measures of both approaches overlap with regard to place and time, it is essential to make thorough preparations in order to avoid problems with implementation. (orig.)

  6. Using principles from emergency management to improve emergency response plans for research animals.

    Science.gov (United States)

    Vogelweid, Catherine M

    2013-10-01

    Animal research regulatory agencies have issued updated requirements for emergency response planning by regulated research institutions. A thorough emergency response plan is an essential component of an institution's animal care and use program, but developing an effective plan can be a daunting task. The author provides basic information drawn from the field of emergency management about best practices for developing emergency response plans. Planners should use the basic principles of emergency management to develop a common-sense approach to managing emergencies in their facilities.

  7. Development and verification for review plan of emergency action level (EAL)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Emergency action levels (EALs) are used as the trigger in order to implement the precautionary protective actions at the nuclear emergency. In this study the framework for applying the EAL in Japan and the process for developing the review plan, such as procedures to review the basis of EAL submitted by the licensee, have been investigated based on the survey for EAL review executed in the United States. In addition, issues to reflect the EAL framework in enhancement of the local government emergency planning and emergency response support system have been investigated. (author)

  8. 29 July 1991-Royal Order setting up a Higher Institute for Emergency Planning

    International Nuclear Information System (INIS)

    1991-01-01

    This Institute was set up in accordance with national legislation on protection against major industrial risks and Directive 89/618 Euratom on informing the general public about health protection measures to be applied and steps to be taken in the event of a radiological emergency. The Institute's duties include: organizing training for emergency planning and assistance; promoting the exchange of ideas on emergency planning between the authorities and operators of installations which could generate major risks, including nuclear installations; and disseminating adequate and regularly updated information to persons involved in emergency assistance on the risks they incur and the protection measures to be taken. (NEA)

  9. Emergency facility control device for nuclear reactor

    International Nuclear Information System (INIS)

    Ikehara, Morihiko.

    1981-01-01

    Purpose: To increase the reliability of a nuclear reactor by allowing an emergency facility to be manually started and stopped to make its operation more convenient and eliminate the possibility of erroneous operation in an emergency. Constitution: There are provided a first water level detector for detecting a level lower than the first low water level in a reactor container and a second water level detector for detecting a level lower than the second low water level lower than the first low water level, and an emergency facility can be started and stopped manually only when the level is higher than the second low water level, but the facility will be started regardless of the state of the manual operation when the level is lower than the second low water level. Thus, the emergency facility can be started by manual operation, but will be automatically started so as to secure the necessary minimum operation if the level becomes lower than the second low water level and the stopping operation thereafter is forgotten. (Kamimura, M.)

  10. Urban meteorological modelling for nuclear emergency preparedness

    International Nuclear Information System (INIS)

    Baklanov, Alexander; Sorensen, Jens Havskov; Hoe, Steen Cordt; Amstrup, Bjarne

    2006-01-01

    The main objectives of the current EU project 'Integrated Systems for Forecasting Urban Meteorology, Air Pollution and Population Exposure' (FUMAPEX) are the improvement of meteorological forecasts for urban areas, the connection of numerical weather prediction (NWP) models to urban air pollution and population dose models, the building of improved urban air quality information and forecasting systems, and their application in cities in various European climates. In addition to the forecast of the worst air-pollution episodes in large cities, the potential use of improved weather forecasts for nuclear emergency management in urban areas, in case of hazardous releases from nuclear accidents or terror acts, is considered. Such use of NWP data is tested for the Copenhagen metropolitan area and the Oresund region. The Danish Meteorological Institute (DMI) is running an experimental version of the HIRLAM NWP model over Zealand including the Copenhagen metropolitan area with a horizontal resolution of 1.4 km, thus approaching the city-scale. This involves 1-km resolution physiographic data with implications for the urban surface parameters, e.g. surface fluxes, roughness length and albedo. For the city of Copenhagen, the enhanced high-resolution NWP forecasting will be provided to demonstrate the improved dispersion forecasting capabilities of the Danish nuclear emergency preparedness decision-support system, the Accident Reporting and Guidance Operational System (ARGOS), used by the Danish Emergency Management Agency (DEMA). Recently, ARGOS has been extended with a capability of real-time calculation of regional-scale atmospheric dispersion of radioactive material from accidental releases. This is effectuated through on-line interfacing with the Danish Emergency Response Model of the Atmosphere (DERMA), which is run at DMI. For local-scale modelling of atmospheric dispersion, ARGOS utilises the Local-Scale Model Chain (LSMC), which makes use of high-resolution DMI

  11. Interdepartmental circular on nuclear and radiological emergency exercises

    International Nuclear Information System (INIS)

    2011-01-01

    This document deals with the planning of nuclear and radiological emergency exercises for 2012 in France. It discusses the return on experience of these exercises, identifies the national objectives for 2012, and indicates the exercise agenda for 2012 and predictions for 2013. The appendix is a guide for the preparation and assessment of these exercises. It indicates the concerned references and regulations, describes the classification of these exercises, and indicates how they must be prepared, performed and reported, how they must be assessed, and the different aspects which must be addressed in terms of return on experience

  12. USSR reins-in nuclear plans

    International Nuclear Information System (INIS)

    Perera, Judith.

    1989-01-01

    The USSR had hoped to double its nuclear capacity by the year 2000 to provide 20 per cent of its electricity. But this may no longer be possible in the face of the growing anti-nuclear movement allowed by Glasnost and given a focus by Chernobyl. Local protest has forced Moscow to drop its plans to build one of the world's biggest nuclear power plants at Ignalina in Lithuania. Although two 1,500 MW units are operating, there is national opposition to two more being built there. A year ago the Government had to scrap plans to build a 1,000MW VVER (pressurised water reactor) at Krasnador near the Black Sea, because of high seismic activity in the area. In the Ukraine, building has also stopped at the Chigirin plant. Plans to build nuclear heat and power plants at Odessa and Kharkov were cancelled last July. Construction of a nuclear power and heat plant at Minsk has been suspended and the Byelorussian government has proposed to Moscow that it should be redesigned to run on gas. A planned nuclear power and heat plant in Gorky and a plant being built in the Crimea are in doubt. Armenia's two reactors in the Ararat valley are to be closed and converted to a thermal plant, following increased concern after the 1988 earthquake. The USSR are looking at other energy sources, geothermal, solar, wind and wave. (author)

  13. Strategic aspects of nuclear and radiological emergency management

    International Nuclear Information System (INIS)

    Ahier, B.

    2010-01-01

    Emergency situations demand that actions be taken by responsible organisations in a timely and effective manner to mitigate consequences for the population, infrastructure and the environment, and to support the return of affected areas to normal social and economic activity to the extent possible. To deliver an effective response over the emergency management time-line, it is necessary to make, maintain and exercise adequate plans and arrangements in advance of an emergency situation. These must contain appropriate elements and resources for preparedness, response and assistance to identified threats, recognize and include all implicated partners, and take account of international interfaces. Effective management of complex emergency situations that can lead to a wide range of consequences and involve multiple organisations at the local, national and international levels also requires anticipation of the range of decision-making needs, an understanding of the interactions between response organisations and a model for their co-ordination. Experience from managing emergency situations has shown that the integration of these factors into emergency preparedness and response arrangements should be based on a guiding strategic vision. Emergency response is a dynamic process that develops in time from a situation of little information to one of potentially overwhelming information. Within this context, emergency response organisations must be able to respond in an appropriate and timely manner at any point along the emergency management time-line. This will be facilitated by an overarching framework to guide the decision-making process. To contribute to work in this area, the NEA Committee on Radiation Protection and Public Health (CRPPH) Working Party on Nuclear Emergency Matters (WPNEM) reviewed its collective experience to extract key themes that could form a strategy for improving decision-making in emergency management. This focused on the NEA International Nuclear

  14. Coastal pollution emergency plan. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Semanov, G.; Volkov, V.; Somkin, V.; Iljushenko-Krylov, D.

    1997-12-31

    A higher degree of ecological safety in ship traffic depends on onboard measures as well as reception facilities on shore, treatment of ship generated wastes and preparedness for combating emergency oil spills. The problem is particularly acute in the North Sea Route (NSR) due to high vulnerability of the Arctic ecosystems, low rates of natural degradation of oil, absence of forward coastal infrastructure, low efficiency of oil combating means in ice conditions and severe climatic conditions. Oil spills in the NSR are likely to occur as the offshore production and transportation of oil increase. Therefore a regional Oil Spill Contingency Plan (OSCP) is being constructed and developed on 3 levels: 1) Development of concept, definition of response organisations and their technical ability (Part I). 2) Collection and analysis of information, development of scenarios of probable oil spills, clearing of the funding mechanism and basis for additional outside co-operation from other Russian regions and circumpolar countries (part II). 3) Development of NSR OSCP (part III). The present report (part I) provides the plan concept, rescue organisations and data on types and amounts of the oil spill combating technical means and of the floating facilities available in the NSR or it`s vicinity. The concept takes into account subdivision of the Route, interaction and links between responsible organisations, realities of the Russian Arctic such as transport, communications, energy, labour resources etc. and requirements of the IMO and of the International Convention OPRC 90. According to Russian legislation implementation of combating operations at sea is the responsibility of the Maritime Pollution Control and Salvage Administration that consists of a Central Administration and basin emergency divisions situated in Murmansk and Nahodka. The body is responsible for carrying out cleaning operations at sea from installations and may be assisted by resources and means of the co

  15. Nuclear power and energy planning

    International Nuclear Information System (INIS)

    Jones, P.

    1990-11-01

    With the rapid depletion of conventional energy sources such as coal and oil and the growing world demand for energy the question of how to provide the extra energy needed in the future is addressed. Relevant facts and figures are presented. Coal and oil have disadvantages as their burning contributes to the greenhouse gases and they will become scarcer and more expensive. Renewable sources such as wind and wave power can supply some but not all future energy requirements. The case made for nuclear power is that it is the only source which offers the long term prospect of meeting the growing world energy demand whilst keeping energy costs close to present levels and which does not add to atmospheric pollution. Reassurance as to the safety of nuclear power plants and the safe disposal of radioactive wastes is given. (UK)

  16. WASP in Nuclear Power Planning

    International Nuclear Information System (INIS)

    Cao Chi; Vuong Minh Quang; Nguyen Tri Ho

    1993-03-01

    The main modules of WASP are presented in details in the introduction paragraph. The authors have emphasized on the probabilistic simulation used in WASP for evaluating different costs of the objective function and the Bellman principle for finding the optimal trajectory in dynamic programming. In the second paragraph the principal results obtained by the Nuclear Power Dept. of VINATOM are enumerated: a/the most cost-effective solution for Vietnam is to introduce a nuclear power capacity of 800-1200 MW by around the year 2010; b/ different types of reactors for the first NPP are ranked according to their economic criteria; c/ the sensitivity analysis is also carried out with respect to discount rates, LOLP (loss of load probability), ENS (energy non served), construction cost. (author). 4 figs, 7 tabs

  17. Planning and architectural safety considerations in designing nuclear power plants

    International Nuclear Information System (INIS)

    Konsowa, Ahmed A.

    2009-01-01

    To achieve optimum safety and to avoid possible hazards in nuclear power plants, considering architectural design fundamentals and all operating precautions is mandatory. There are some planning and architectural precautions should be considered to achieve a high quality design and construction of nuclear power plant with optimum safety. This paper highlights predicted hazards like fire, terrorism, aircraft crash attacks, adversaries, intruders, and earthquakes, proposing protective actions against these hazards that vary from preventing danger to evacuating and sheltering people in-place. For instance; using safeguards program to protect against sabotage, theft, and diversion. Also, site and building well design focusing on escape pathways, emergency exits, and evacuation zones, and the safety procedures such as; evacuation exercises and sheltering processes according to different emergency classifications. In addition, this paper mentions some important codes and regulations that control nuclear power plants design, and assessment methods that evaluate probable risks. (author)

  18. Emergency response planning for transport accidents involving radioactive materials

    International Nuclear Information System (INIS)

    1982-03-01

    The document presents a basic discussion of the various aspects and philosophies of emergency planning and preparedness along with a consideration of the problems which might be encountered in a transportation accident involving a release of radioactive materials. Readers who are responsible for preparing emergency plans and procedures will have to decide on how best to apply this guidance to their own organizational structures and will also have to decide on an emergency planning and preparedness philosophy suitable to their own situations

  19. Nuclear power planning study for Bangladesh

    International Nuclear Information System (INIS)

    1975-01-01

    The country's interest in and plans for nuclear power, as well as the organizational setup and involvement of the Bangladesh Atomic Energy Commission in the planning, construction and operation of nuclear power plants, are described. The report contains some data on population, general economics, gross national product, mineral resources and energy consumption. The electricity supply system, its development, generating and transmission facilities, costs of existing plants and plants under construction, various systems operation criteria, economic criteria and technical data on existing generating units are given. A number of appendixes have been included to provide additional and background information on the computer programs, methods of forecasting load, methodology and parameters used, fossil and nuclear fuel costs, general technical and economic data on thermal and nuclear plants, and other appropriate data

  20. Nuclear reactor built, being built, or planned

    International Nuclear Information System (INIS)

    1991-06-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1990. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE, from the US Nuclear Regulatory Commission, from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations, from US and foreign embassies, and from foreign governmental nuclear departments. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly

  1. General framework and key technologies of national nuclear emergency system

    International Nuclear Information System (INIS)

    Yuan Feng; Li Xudong; Zhu Guangying; Song Yafeng; Zeng Suotian; Shen Lifeng

    2014-01-01

    Nuclear emergency is the important safeguard for the sustainable development of nuclear energy, and is the significant part of national public crisis management. The paper gives the definition of nuclear emergency system explicitly based on the analysis of the characteristics of the nuclear emergency, and through the research of the structure and general framework, the general framework of the national nuclear emergency management system (NNEMS) is obtained, which is constructed in four parts, including one integrative platform, six layers, eight applications and two systems, then the paper indicate that the architecture of national emergency system that should be laid out by three-tiers, i.e. national, provincial and organizations with nuclear facilities, and also describe the functions of the NNEMS on the nuclear emergency's workflow. Finally, the paper discuss the key technology that NNIEMS needed, such as WebGIS, auxiliary decision-making, digitalized preplan and the conformity and usage of resources, and analyze the technical principle in details. (authors)

  2. ASME nuclear codes and standards risk management strategic planning

    International Nuclear Information System (INIS)

    Hill, Ralph S. III; Balkey, Kenneth R.; Erler, Bryan A.; Wesley Rowley, C.

    2007-01-01

    This paper is prepared in honor and in memory of the late Professor Emeritus Yasuhide Asada to recognize his contributions to ASME Nuclear Codes and Standards initiatives, particularly those related to risk-informed technology and System Based Code developments. For nearly two decades, numerous risk-informed initiatives have been completed or are under development within the ASME Nuclear Codes and Standards organization. In order to properly manage the numerous initiatives currently underway or planned for the future, the ASME Board on Nuclear Codes and Standards (BNCS) has an established Risk Management Strategic Plan (Plan) that is maintained and updated by the ASME BNCS Risk Management Task Group. This paper presents the latest approved version of the plan beginning with a background of applications completed to date, including the recent probabilistic risk assessment (PRA) standards developments for nuclear power plant applications. The paper discusses planned applications within ASME Nuclear Codes and Standards that will require expansion of the ASME PRA Standard to support new advanced light water reactor and next generation reactor developments, such as for high temperature gas-cooled reactors. Emerging regulatory developments related to risk-informed, performance- based approaches are summarized. A long-term vision for the potential development and evolution to a nuclear systems code that adopts a risk-informed approach across a facility life-cycle (design, construction, operation, maintenance, and closure) is also summarized. Finally, near term and long term actions are defined across the ASME Nuclear Codes and Standards organizations related to risk management, including related U.S. regulatory activities. (author)

  3. Systematic preparation, execution and evaluation of emergency exercises at the Beznau nuclear power plant

    International Nuclear Information System (INIS)

    Tenschert, J.

    2011-01-01

    Based on federal acts and a specific guideline of the nuclear authority ENSI, strict requirements are imposed on emergency exercises at Swiss NPPs. The Beznau NPP has conducted emergency exercises for more than 30 years. Systematic exercise planning assures that all emergency cases defined in the plant-specific emergency plan are considered in the exercise scenarios. Technically oriented scenarios cover all groups of initiating events and all safety levels of the defense in depth principle. The exercise results are an important input for optimization measures in the areas of emergency organization, documentation and infrastructure. Due to the goal-oriented enforcement of laws and guidelines by the nuclear authority ENSI, emergency exercises serve as a motor of further optimization of emergency preparedness. (orig.)

  4. The ORSEC arrangement and the 'nuclear' intervention specific plan

    International Nuclear Information System (INIS)

    Guenon, C.

    2010-01-01

    In order to take the specific character of a nuclear emergency situation into account, France has developed planning tools within the so-called Crisis National Organisation (ONC, organisation nationale de crise). This organisation involves public bodies, agencies and companies. Thus, intervention specific plans (PPI, plans particuliers d'intervention) are included in the ORSEC general arrangement. The assessment of geographical and chronological consequences of a nuclear accident has lead to the definition of two main categories of measures, depending on the fact they are immediately or progressively applied. They involve the intervention of specialised means. This report also indicates how new measures have been introduced in the ORSEC arrangement to manage the post-accident phase. The author also outlines that crisis communication must also be prepared and tested

  5. Energy and nuclear power planning studies

    International Nuclear Information System (INIS)

    Bennett, L.L.; Molina, P.E.; Mueller, T.

    1990-01-01

    The article focuses on the procedures established by the IAEA for providing assistance to international Member States in conducting studies for the analysis of the economic viability of a nuclear power programme. This article specifically reviews energy and nuclear power planning (ENPP) studies in Algeria, Jordan, and Thailand. It highlights major accomplishments in the context of study objectives and organizations, and the principal lessons learned in the process. 4 figs, 1 tab

  6. Research on the organization of equipment of nuclear emergency

    International Nuclear Information System (INIS)

    Li Xiaoming; Yang Jun

    2012-01-01

    The emergency rescue operation on major accident of nuclear facilities contains four kinds of abilities that are command and control, radiation protection, radiation monitoring and radioactive decontamination, so it needs to organize some equipment of nuclear emergency to enhance the efficiency of nuclear emergency operation. The organization of equipment of nuclear emergency should accord to the reality of the development in our country. It should have extractive structure, brief variety and advance capability, and also should be convenient, useful and adequate. The method of organization can first accord to the organization of group and organize the facilities accord to the organization of group of the emergency rescue force. (authors)

  7. Proposal optimization in nuclear accident emergency decision based on IAHP

    International Nuclear Information System (INIS)

    Xin Jing

    2007-01-01

    On the basis of establishing the multi-layer structure of nuclear accident emergency decision, several decision objectives are synthetically analyzed, and an optimization model of decision proposals for nuclear accident emergency based on interval analytic hierarchy process is proposed in the paper. The model makes comparisons among several emergency decision proposals quantified, and the optimum proposal is selected out, which solved the uncertain and fuzzy decision problem of judgments by experts' experiences in nuclear accidents emergency decision. Case study shows that the optimization result is much more reasonable, objective and reliable than subjective judgments, and it could be decision references for nuclear accident emergency. (authors)

  8. Participation of the ININ in the external radiological emergency plan of the Laguna Verde power plant

    International Nuclear Information System (INIS)

    Martinez S, R.; Cervini L, A.

    1991-01-01

    The planning of performances in radiological emergencies, with the object of reducing the consequences as much as possible on the population to accidental liberations of radioactive material coming from Nuclear power plant, it has been of main interest in the nuclear community in the world. In Mexico it has not been the exception, since with the setting in march of the Laguna Verde nuclear power plant exists an executive program of planning for emergencies that it outlines the activities to follow trending to mitigate the consequences that are derived of this emergency. As integral part of this program this the External Plan of Radiological Emergency (PERE) that covers the emergencies that could leave the frontiers of the Laguna Verde power plant. In the PERE it settles down the planning, address and control of the preparation activities, response and recovery in emergencies, as well as the organization and coordination of the institutions that participate. The National Institute of Nuclear Research (ININ), like integral part of these institutions in the PERE, has an infrastructure that it allows to participate in the plan in a direct way in the activities of 'Control of the radiological exhibition the response personnel and control of water and foods' and of support way and consultant ship in the activities of 'Monitoring, Classification and decontamination of having evaluated' and 'Specialized medical radiological attention'. At the moment the ININ has a radiological mobile unit and this conditioning a second mobile unit to carry out part of the activities before mentioned; also accounts with 48 properly qualified people that directly intervene in the plan. In order to guarantee an adequate response in the PERE an organization it has been structured like that of the annex as for the personnel, transport, team, procedures and communication system, with the objective always of guaranteeing the security and the population's health in emergency situations in the

  9. Civil emergency preparedness at the Ignalina nuclear power plant

    International Nuclear Information System (INIS)

    1998-12-01

    Workshop was held in the frame of Lithuania's cooperation with NATO on disasters management subject and was concentrated on the preparation of management of nuclear accident at Ignalina NPP. The following topics were covered: emergency preparedness inside Ignalina NPP, preparedness for nuclear accidents at national level, experience in Nordic countries and IAEA activities in harmonization of nuclear emergency preparedness in different countries

  10. Strategy for developing and conducting nuclear emergency exercises

    International Nuclear Information System (INIS)

    2007-01-01

    Emergency situations demand that actions be taken by responsible organisations and individuals at the site of the emergency and at the local, national and international levels to mitigate the impact on people and the environment. Effective emergency response requires development and implementation of emergency plans and procedures; established arrangements at the local, national and international levels; acquisition and maintenance of resources (funding, equipment and personnel); training of personnel; conduct of exercises; and a 'feedback programme' whereby improvements to the emergency management system are made based on lessons identified from exercises and actual events. A means for demonstrating the effectiveness of an emergency programme is through the conduct of exercises. Exercises demonstrate the effectiveness of plans, procedures, training and equipment; adequacy of response arrangements and resources; capabilities of response personnel in performing their assigned tasks; ability of individuals and organisations to work together; and provide a forum for exploring and testing revisions, modifications, and new and/or proposed changes to any emergency programme element in near realistic situations. Exercises may range in scope from small-scale drills to large-scale national or international exercises. There is clear benefit to organisations in supporting, developing and conducting well-managed exercises. Exercising is a resource-intensive tool; however, it is a critical tool for enhancing performance, testing arrangements and identifying areas for improvement. A thoroughly developed strategy should therefore be in place to ensure maximum value from an exercise programme. This report contributes to the good practice and management of exercise programmes by providing a strategy for improving the value of planning, conducting, participating in and/or supporting exercises. The OECD/NEA International Nuclear Emergency Exercise (INEX) series undertaken over the

  11. Ghana's Integrated Nuclear Security Support Plan

    International Nuclear Information System (INIS)

    Dahlstrom, Danielle

    2013-01-01

    At the Korle Bu Teaching Hospital outside Accra, Pearl Lovelyn Lawson checks the records of the next patient to undergo radiotherapy and adjusts the dose settings of the teletherapy machine. It is business as usual at the facility that treats over fifty patients each day. But Lawson's routine now includes additional procedures to ensure that the highly radioactive cobalt-60 source located inside the machine remains secure. Nuclear security devices and systems such as double locks, motion sensors, and cameras that transmit images to a central alarm system have been installed to ensure that the source cannot be stolen, the facility sabotaged, or unauthorized access gained. At Korle Bu physical protection measures were upgraded as part of Ghana's Integrated Nuclear Security Support Plan (INSSP). Preventing, detecting and responding to criminal acts like the theft or illegal transfer of a radioactive source, is an international priority that could be addressed through an INSSP. As one of its key nuclear security services, the IAEA assists Member States in drafting such plans. An INSSP is developed jointly with the Member State, using a holistic approach to nuclear security capacity building. It reinforces the primary objective of a State's nuclear security regime to protect people, society, and the environment from the harmful consequences of a nuclear security event. Addressing five components - the legal and regulatory framework, prevention, detection, and sustainability - the jointly developed plan identifies the needs, responsible entities and organizations within the State, as well as the timeframe for the implementation of agreed nuclear security related activities. Ghana's INSSP, tailored to its specific needs, is based on findings and recommendations from advisory service missions carried out in Ghana, including an International Nuclear Security Advisory Service mission and an International Physical Protection Advisory Service mission. Ghana's INSSP was

  12. Strategic planning approach to nuclear training

    International Nuclear Information System (INIS)

    Mills, R.J.

    1985-01-01

    Detroit Edison Company's Nuclear Training group used an organizational planning process that yielded significant results in 1984. At the heart of the process was a concept called the Driving Force which served as the basis for the development of goals, objectives, and action plants. A key ingredient of the success of the planning process was the total, voluntary participation by all members of the organization

  13. Spent nuclear fuel project integrated schedule plan

    International Nuclear Information System (INIS)

    Squires, K.G.

    1995-01-01

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel

  14. Spent nuclear fuel project integrated schedule plan

    Energy Technology Data Exchange (ETDEWEB)

    Squires, K.G.

    1995-03-06

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

  15. Implementation of a geographical information system in nuclear emergencies; Implementacion de un sistema de informacion geografico en emergencias nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Sadaniowski, I; Telleria, D; Jordan, O; Bruno, H; Boutet, L; Hernandez, D [Autoridad Regulatoria Nuclear, Av. Del Libertador 8250, Ciudad de Buenos Aires (Argentina)

    2006-07-01

    From 2003, the Nuclear Regulatory Authority (RNA) has worked in the implementation of a Geographical Information System (SIG) for the planning and the intervention in emergencies, with special emphasis in the nuclear emergencies. The main objective of the SIG developed in the ARN is to give the necessary support for the planning, training and application of the actions of radiological protection necessary in front of a nuclear emergency, offering the geo referenced cartographic base, the readiness of logistical resources in the whole country, incorporating results of models of forecast of consequences and environmental measurements during the emergency, facilitating the analysis of this information in real time and facilitating the presentation of results for the decision making. The cartographic base is constituted of demographic, social, economic data identification of main actors interveners in the emergency, vial infrastructure and natural characteristics of the area in question. In this work the main characteristics of the implemented SIG are presented including the conceptual standards of design that contemplate the international requirements for the planning and answer in the event of nuclear emergencies, the current state of the system and the foreseen evolution. A description of the opposing problems during its implementation that can be common to many countries of the region is also presented, as well as the obtained experience of its use in preparation tasks for emergencies and in mocks. (Author)

  16. Maintenance planning for nuclear power plants

    International Nuclear Information System (INIS)

    Mattu, R.K.; Cooper, S.E.; Lauderdale, J.R.

    2004-01-01

    Maintenance planning for nuclear power plants is similar to that in other industrial plants but it is heavily influenced by regulatory rules, with consequent costs of compliance. Steps by the nuclear industry and the Nuclear Regulatory Commission to address that problem include development of guidelines for maintenance of risk-critical equipment, using PRA-based techniques to select a set of equipment that requires maintenance and reliability-centered maintenance (RCM) approaches for determining what maintenance is required. The result of the process is a program designed to ensure effective maintenance of the equipment most critical to plant safety. (author)

  17. Spent Nuclear Fuel Project dose management plan

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1996-03-01

    This dose management plan facilitates meeting the dose management and ALARA requirements applicable to the design activities of the Spent Nuclear Fuel Project, and establishes consistency of information used by multiple subprojects in ALARA evaluations. The method for meeting the ALARA requirements applicable to facility designs involves two components. The first is each Spent Nuclear Fuel Project subproject incorporating ALARA principles, ALARA design optimizations, and ALARA design reviews throughout the design of facilities and equipment. The second component is the Spent Nuclear Fuel Project management providing overall dose management guidance to the subprojects and oversight of the subproject dose management efforts

  18. Application of improved topsis method to accident emergency decision-making at nuclear power station

    International Nuclear Information System (INIS)

    Zhang Jin; Cai Qi; Zhang Fan; Chang Ling

    2009-01-01

    Given the complexity in multi-attribute decision-making on nuclear accident emergency, and by integrating subjective weight and impersonal weight of each evaluating index, a decision-making model for emergency plan at nuclear power stations is established with the application of improved TOPSIS model. The testing results indicated that the improved TOPSIS-based multi-attribute decision-making has a better assessment results. (authors)

  19. Planning and Nuclear Knowledge Management

    International Nuclear Information System (INIS)

    Grance Torales, V.L.; Lira, L.

    2016-01-01

    Full text: The present case aims to share the experience of the Intellectual Capital Section (ICS), part of Planning, Coordination and Control Department of the Argentine Atomic Energy Commission (CNEA) in its search for a sustainable knowledge management. Among the strategic objectives included in CNEA’s Strategic Plan (SP), is the development, preservation and transference of knowledge and experience. Under this framework, the role initially assumed by the ICS, consisted on the observation and diagnosis of the situation of the Institutional Human Capital (HC), through the study of the main characteristics of the staff of CNEA. The second stage of SP (2015–2025), which consisted of updating the HC data, the incorporation of the concept of “knowledge management” was approved by the authorities of the Institution. Based on this background, in 2016 the objectives of the ICS are aimed at organizing and coordinating a network of knowledge management that involves the entire organization. This new phase implies, among other things, the proposal of a knowledge management policy, interaction with other sectors of CNEA for implementation, analysis of the tools to be used, in order to determine a way and work style that suits the culture and structure of the organization. (author

  20. NDMA guidelines on handling of nuclear and radiological emergencies

    Energy Technology Data Exchange (ETDEWEB)

    Abani, M C [National Disaster Management Authority, New Delhi (India)

    2010-07-01

    The vulnerability to the disasters is high in India due to the large population density, fast growing urbanization, industrialization and also because of poor economic conditions of people. Natural disasters have been recurring phenomena in India, leading to extensive loss of life, livelihood and property. The primary reason for such heavy losses can be attributed to the reactive and response-centric approach adopted in the past in handling of the disasters. Based on the Guidelines a holistic approach is to be adopted for Nuclear Emergency Management Framework that assigns the highest priority to prevention, mitigation and compliance to regulatory requirements, while strengthening preparedness, capacity development, response etc. It will be implemented through strengthening of the existing action plans or by preparing new action plans at national, state and district levels by the stakeholders at all levels of administration

  1. NDMA guidelines on handling of nuclear and radiological emergencies

    International Nuclear Information System (INIS)

    Abani, M.C.

    2010-01-01

    The vulnerability to the disasters is high in India due to the large population density, fast growing urbanization, industrialization and also because of poor economic conditions of people. Natural disasters have been recurring phenomena in India, leading to extensive loss of life, livelihood and property. The primary reason for such heavy losses can be attributed to the reactive and response-centric approach adopted in the past in handling of the disasters. Based on the Guidelines a holistic approach is to be adopted for Nuclear Emergency Management Framework that assigns the highest priority to prevention, mitigation and compliance to regulatory requirements, while strengthening preparedness, capacity development, response etc. It will be implemented through strengthening of the existing action plans or by preparing new action plans at national, state and district levels by the stakeholders at all levels of administration

  2. Planning for off-site response to radiation accidents in nuclear facilities

    International Nuclear Information System (INIS)

    1981-01-01

    The purpose of this publication is to give guidance to those who are responsible for the protection of the public in the event of an accident occurring at a land-based nuclear facility. This guidance should assist in the advance preparation of emergency response plans and implementing procedures. Basic principles of protective measures along with their advantages and disadvantages are discussed. Other principles related to emergency planning and the operational response to an emergency are outlined. Although the guidance is primarily oriented towards land-based nuclear power facilities, the guidance does have general application to other types of nuclear facility

  3. Planning for off-site response to radiation accidents in nuclear facilities

    International Nuclear Information System (INIS)

    1979-01-01

    The purpose of this manual is to give guidance to those who are responsible for the protection of the public in the event of an accident occurring at a land-based nuclear facility. This guidance should assist in the advance preparation of emergency response plans and implementing procedures. Basic principles of protective measures along with their advantages and disadvantages are discussed. Other principles related to emergency planning and the operational response to an emergency are outlined. Although the guidance is primarily oriented toward land-based nuclear power facilities, the guidance does have general application to other types of nuclear facilities

  4. National response plan - Major nuclear or radiological accidents

    International Nuclear Information System (INIS)

    2014-02-01

    France has been implementing stringent radiation protection and nuclear safety and security measures for many years. However, this does not mean that the country is exempt from having to be prepared to deal with an emergency. Changes in France, Europe and other parts of the globe have made it necessary for France to reconsider how it responds to nuclear and radiological emergencies. As the potential impact of a nuclear or radiological accident can affect a wide range of activities, the plan described herein is based on a cross-sector and inter-ministerial approach to emergency response. The Chernobyl and Fukushima-Daiichi disasters are proof that the consequences of a major nuclear or radiological accident can affect all levels of society. These challenges are substantial and relate to: public health: An uncontrolled nuclear accident can have immediate consequences (death, injury, irradiation) as well as long-term consequences that can lead to increased risk of developing radiation-induced diseases (such as certain types of cancer); environmental quality: Radiation contamination can last for several decades and, in some cases, can result in an area being closed off permanently to the public; economic and social continuity: Nuclear accidents bring human activity to a halt in contaminated areas, disrupting the economic and social order of the entire country. It may therefore be necessary to adapt economic and social systems and carry out clean-up operations if people and businesses have been displaced; quality of international relations: Related to fulfillment of obligations to alert and inform European and international partners. This international dimension also covers the protection of French nationals present in countries stricken by a nuclear accident. This national plan provides reference information on how to prepare for a nuclear or radiological emergency and make the appropriate decisions in the event of an emergency. It covers the emergency phase (including

  5. Standard review plan for the review and evaluation of emergency plans for research and test reactors

    International Nuclear Information System (INIS)

    1983-10-01

    This document provides a Standard Review Plan to assure that complete and uniform reviews are made of research and test reactor radiological emergency plans. The report is organized under ten planning standards which correspond to the guidance criteria in American National Standard ANSI/ANS 15.16 - 1982 as endorsed by Revision 1 to Regulatory Guide 2.6. The applicability of the items under each planning standard is indicated by subdivisions of the steady-state thermal power levels at which the reactors are licensed to operate. Standard emergency classes and example action levels for research and test reactors which should initiate these classes are given in an Appendix. The content of the emergency plan is as follows: the emergency plan addresses the necessary provisions for coping with radiological emergencies. Activation of the emergency plan is in response to the emergency action levels. In addition to addressing those severe emergencies that will fall within one of the standard emergency classes, the plan also discusses the necessary provisions to deal with radiological emergencies of lesser severity that can occur within the operations boundary. The emergency plan allows for emergency personnel to deviate from actions described in the plan for unusual or unanticipated conditions

  6. Enhancing nuclear emergency response through international co-operation

    International Nuclear Information System (INIS)

    Ugletveit, F.; Aaltonen, H.

    2003-01-01

    Full text: A large number of different national plans and procedures have been established and substantial resources allocated world wide with varying comprehensiveness and quality depending an the national requirements and the possible threat scenarios considered. These national plans are only to a small degree harmonized. It is clear that it is the responsibility of the authorities in the respective countries or utilities under their jurisdiction, to decide upon and implement appropriate response actions to a nuclear emergency. The basic needs for responding properly are: infrastructure in terms of plans, procedures etc.; information regarding the accident, its development and consequences; resources in terms of expertise, man power and tools for acquiring and processing information, making assessments and decisions and carry out the actions. When a large number of countries are making assessments and decisions for their own country and providing the public with information, it is important that assessments, decisions and public information become correct, complete and consistent across boarders. In order to achieve this, they should all have access to the same information as basis for their actions. Lack of information or wrong information could easily lead to wrong assessments, wrong decisions and misleading information to the public. If there is a serious nuclear emergency somewhere that could potentially affect several or many States in one way or another, 'everyone' would like to know 'everything' that happens 'everywhere'. In this case, all States should have the obligation to share with the international community the relevant information they have available themselves and that could be of interest for other States responding to the situation. During a serious nuclear or radiological emergency, the demand for different kinds of resources is huge and could, in many countries, probably exceed national capabilities. Looking at the situation in a global

  7. The current status and reinforcement plan for radiation emergency medicine in Korea

    International Nuclear Information System (INIS)

    Kim, Hyun Ki; Lee, Youngmin; Lee, Jai Ki

    2011-01-01

    Korea operating twenty nuclear power plants was ranked 6th in nuclear power generation in the world. The potential risk for radiological emergency also increases along with the growing use of radiation and radioisotopes and a constant expansion of the nuclear industry in neighboring countries, Japan and China. This paper is intended for finding ways to strengthen medical planning and response preparedness from achievements in radiation emergency medicine over the years. 'Integrated Medical Preparedness System' for a radiological disaster is proposed as a practical way to enhance mobilization of existing human and material resources in the health care. It is based on the collaborative response among the related medical institutes : radiation emergency medical institutes around the Korean Institute of Radiological and Medical Sciences, emergency medical centers around the National Emergency Medical Center and other hospitals available. (author)

  8. Joint radiation emergency management plan of the international organizations. Emergency preparedness and response. Date effective: 1 December 2002

    International Nuclear Information System (INIS)

    2002-11-01

    directives and regulations that bear on emergency response arrangements among some States. There are also bilateral agreements between some international organizations that also have relevance to preparedness and response arrangements. In March 2002, the IAEA Board of Governors approved a Safety Requirements document to be issued according to the IAEA's statutory function 'to establish ... standards of safety for protection of health and minimization of danger to life and property'. These Safety Requirements, entitled 'Preparedness and Response for a Nuclear or Radiological Emergency' (GS-R-2), are being jointly sponsored by the FAO, IAEA, the International Labour Organisation (ILO), the OECD Nuclear Energy Agency (NEA/OECD), the United Nations Office for the Co-ordination of Humanitarian Affairs (OCHA), the Pan American Health Organization (PAHO) and WHO. These safety standards imply additional expectations with regard to operational emergency response arrangements. It has been recognized by the organizations responsible for emergency response, and reflected in the above requirements, that good planning in advance of an emergency can substantially improve the response. Moreover, one of the most important features of emergency response plans is to have clear lines of responsibility and authority. With this in mind, the IAEA, the organizations party to the Conventions, and some other international organizations that participate in the activities of the IACRNA develop and maintain this 'Joint Radiation Emergency Management Plan of the International Organizations' (the Joint Plan), which describes: the objectives of response; the organizations involved in response, their roles and responsibilities, and the interfaces among them and between them and States; operational concepts; and preparedness arrangements. These practical arrangements are reflected in the various organizations own emergency plans. The IAEA is the main co-ordinating body for development and maintenance of the

  9. Ontario Hydro's plan for used nuclear fuel

    International Nuclear Information System (INIS)

    Stevens-Guille, P.D.; Howes, H.A.; Freire-Canosa, J.

    1992-01-01

    A comprehensive plan for the management of used nuclear fuel has been published by Ontario Hydro. In this paper current practices are discussed and actions leading to disposal in a repository are outlined. Extended storage options are discussed should disposal be delayed

  10. Future of Nuclear Power: NRC emergency preparedness licensing activities agenda

    International Nuclear Information System (INIS)

    Essig, T.H.

    1995-01-01

    This talk summary addresses the issue of how future policies of the NRC will affect nuclear power in areas such as construction, emergency preparedness, and licensing. Specific topics covered include the following: Emergent EP licensing issues for operating nuclear Power Plants; 10CFR Part 52 and the process for licensing of Advanced Light Water Reactors (ALWRs); and potential revisions to emergency preparedness programs for future nuclear power plants

  11. 7 CFR 1730.28 - Emergency Restoration Plan (ERP).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Emergency Restoration Plan (ERP). 1730.28 Section... § 1730.28 Emergency Restoration Plan (ERP). (a) Each borrower with an approved RUS electric program loan as of October 12, 2004 shall have a written ERP no later than January 12, 2006. The ERP should be...

  12. 29 CFR 1926.35 - Employee emergency action plans.

    Science.gov (United States)

    2010-07-01

    ... Provisions § 1926.35 Employee emergency action plans. (a) Scope and application. This section applies to all...) Names or regular job titles of persons or departments who can be contacted for further information or... the employee in the event of an emergency. The written plan shall be kept at the workplace and made...

  13. Safety of emerging nuclear energy systems

    International Nuclear Information System (INIS)

    Novikov, V.M.; Slesarev, I.S.

    1989-01-01

    The first stage of world nuclear power development based on light water fission reactors has demonstrated not only rather high rate but at the same time too optimistic attitude to safety problems. Large accidents at Three Mile Island and Chernobyl essentially affects the concept of NP development. As a result the safety and social acceptance of NP became of absolute priority among other problems. That's why emerging nuclear power systems should be first of all estimated from this point of view. In the paper some quantitative criteria of safety derived from estimations of social risk and economic-ecological damage from hypothetical accidents are formulated. On the base of these criteria we define two stages of possible way to meet safety demands: first--development of high safety fission reactors and second--that of asymptotic high safety ENEs. The limits of tolorated expenses for safety are regarded. The basis physical factors determining hazards of NES accidents are considered. This permits to classify the ways of safety demands fulfillment due to physical principals used

  14. Planning for a radiological emergency in health care institutions

    International Nuclear Information System (INIS)

    Jerez Vegueria, S.F.; Jerez Vegueria, P.F.

    1998-01-01

    The possible occurrence of accidents involving sources of ionizing radiation calls for response plans to mitigate the consequences of radiological accidents. An emergency planning framework is suggested for institutions which use medical applications of ionizing radiation. Bearing in mind that the prevention of accidents is of prime importance in dealing with radioactive materials and other sources of ionizing radiation, it is recommended that emergency instructions and procedures address certain aspects of the causes of these radiological events. Issues such as identification of radiological events in medical practices and their consequences, protective measures, planning for an emergency response and maintenance of emergency capacity are considered. (author)

  15. Online Decision Support System (IRODOS) - an emergency preparedness tool for handling offsite nuclear emergency

    International Nuclear Information System (INIS)

    Vinod Kumar, A.; Oza, R.B.; Chaudhury, P.; Suri, M.; Saindane, S.; Singh, K.D.; Bhargava, P.; Sharma, V.K.

    2009-01-01

    A real time online decision support system as a nuclear emergency response system for handling offsite nuclear emergency at the Nuclear Power Plants (NPPs) has been developed by Health, Safety and Environment Group, Bhabha Atomic Research Centre (BARC), Department of Atomic Energy (DAE) under the frame work of 'Indian Real time Online Decision Support System 'IRODOS'. (author)

  16. Evaluation criteria for emergency response plans in radiological transportation

    International Nuclear Information System (INIS)

    Lindell, M.K.; Perry, R.W.

    1980-01-01

    This paper identifies a set of general criteria which can be used as guides for evaluating emergency response plans prepared in connection with the transportation of radiological materials. The development of criteria takes the form of examining the meaning and role of emergency plans in general, reviewing the process as it is used in connection with natural disasters and other nonnuclear disasters, and explicitly considering unique aspects of the radiological transportation setting. Eight areas of critical importance for such response plans are isolated: notification procedures; accident assessment; public information; protection of the public at risk; other protective responses; radiological exposure control; responsibility for planning and operations; and emergency response training and exercises. (Auth.)

  17. Emergency preparedness to nuclear accidents in the Czech Republic

    International Nuclear Information System (INIS)

    Starostova, V.; Prouza, Z.; Koldus, F.; Rutova, H.

    2003-01-01

    Full text: Emergency preparedness to nuclear accidents (radiation emergency preparedness) is a part of general emergency preparedness and crisis management in the Czech Republic. The bases for it were given in 1997 when radiation emergency preparedness was defined and requirements to it were given in Act No. 18/1997 Coll., so called the Atomic Act, which entered into force in July 1997. In 2000, the bases for general emergency preparedness and crisis management in the Czech Republic were given namely in two acts - in Act No. 239/2000 Coll., an integrated rescue system, and in Act No. 240/2000 Coll., on crisis management. Both these acts entered into force on 1 January 2001. The Atomic Act determines duties of licensees in the field of preparedness. One of them is obligation to prepare and submit to SUJB the on-site emergency plan as one of attachments to his application for the licence. (The licence can be issued if defined documents, including this plan, are approved.) The licensee is obliged, under conditions given in detail in one of implementing regulation, to prepare a proposal of the emergency planning zone and submit it to SUJB. In the Act, there are also given the requirements for licensee's actions in case of a radiation emergency occurrence. On the other hand the Atomic Act names what are SUJB competencies and also what are these ones from the point of view of radiation emergency. Among others SUJB establishes the emergency planning zone, controls the activity of the National Radiation Monitoring Network, provides for the activities of an Emergency Response Centre and ensures the availability of background information necessary to take decisions aimed at reducing or averting exposure in the case of a radiation accident. SUJB has its own crisis staff; it has 4 shifts, which change regularly weekly. About 50 SUJB employees divided into 12 different functions are members of this staff. The Emergency Response Centre (ERC) of SUJB organizes work of this staff

  18. Development of emergency response plans for community water ...

    African Journals Online (AJOL)

    All water services systems, irrespective of size, location etc., should have emergency response plans (ERPs) to guide officials, stakeholders and consumers through emergencies, as part of managing risks in the water supply system. Emergencies in the water supply system may result from, among other causes, natural ...

  19. Review of IAEA documentation on Nuclear and radiological emergency

    International Nuclear Information System (INIS)

    Mukhono, P. M.

    2014-10-01

    The project focuses on the review of IAEA documentation on nuclear or radiological emergencies with main focus on methodology for developing and arrangement for nuclear and radiological emergencies. The main objective of this work is to identify limitations in IAEA documentation on emergency preparedness and response (EPR) and provide recommendation on the main actions needed to fill the gaps identified thus aiding in improvement of emergency preparedness and response to nuclear and radiological accidents. The review of IAEA documentation on nuclear and radiological emergency has been carried out by evaluating various emergency response elements. Several elements for EPR were highlighted covering the safety fundamentals, general safety requirements and EPR methods for development of an effective emergence response capability for nuclear or radiological emergencies. From these issues, the limitations of IAEA documentation on EPR were drawn and recommendations suggested as a means of improving EPR methods. Among them was the need for IAEA consider establishment of follow up and inspection programmes to facilitate implementation of EPR requirements in most developing countries, establishment of programmes that provide platforms for the countries to be motivated to update their system in line with the current status of emergency preparedness, review of the international information exchange aspects of nuclear emergencies in order to improve capabilities to communicate reliable data, information and decisions quickly and effectively among national authorities and their emergency and emergency response centres. (au)

  20. Current emergency programs for nuclear installations in Japan

    International Nuclear Information System (INIS)

    Chino, Masamichi

    2007-01-01

    Large effort has been taken for nuclear emergency programs in Japan especially after the JCO accident. A special law for nuclear emergency was established after the accident. The law extended the scope of emergency preparedness to fuel cycle facilities, research reactors, etc. and clarified the roles and responsibilities of the national government, local governments and license holders. For initial responses, the action levels and action procedures are defined based on environmental doses and specific initial events of NPPs. A senior specialist was dispatched to each site for nuclear emergency and a facility 'Off-site center' to be used as the local emergency headquator was designated at each site. This paper describes the structure of emergency program, responsibility of related organizations and the definition of unusual events for notification and emergency. Emergency preparedness, emergency radiation monitoring and computer-based prediction of on- and off-site situation are also addressed. (author)

  1. Management of Large Volumes of Waste Arising in a Nuclear or Radiological Emergency

    International Nuclear Information System (INIS)

    2017-10-01

    This publication, prepared in light of the IAEA Action Plan on Nuclear Safety developed after the accident at the Fukushima Daiichi nuclear power plant, addresses the management of large volumes of radioactive waste arising in a nuclear or radiological emergency, as part of overall emergency preparedness. The management of large volumes of waste will be one of many efforts to be dealt with to allow recovery of affected areas, to support return of evacuated or relocated populations and preparations for normal social and economic activities, and/or to mitigate additional environmental impacts. The publication is intended to be of use to national planners and policy makers, facility and programme managers, and other professionals responsible for developing and implementing national plans and strategies to manage radioactive waste arising from nuclear or radiological emergencies.

  2. The Information Management Platform on Nuclear Emergency Resources of China

    International Nuclear Information System (INIS)

    Dong, L.

    2016-01-01

    Full text: The Chinese government has always attached great importance to nuclear emergency work, and has invested to form lots of nuclear emergency resources. Meanwhile, there also exist some management problems such as repeated investment, fragmented inventory list, inefficient management, etc. To achieve integrated management on the nuclear emergency resources of China, the Chinese government initiated the project “The Information Management Platform on Nuclear Emergency Resources of China”. The goal of the project is to support a timely, managed, controlled, coordinated and effective response while the resources managing process remains economically efficient. The project team firstly completed the nuclear emergency resources classification and encoding. Based on these, the nuclear emergency resources information management software system was developed. The pilot operation in the system was carried out both in Guangxi and Liaoning Province at the same time. Nuclear emergency resources survey was done as the relevant information was put into the database in these regions. The evaluation result on the pilot operation showed that, the information management platform on emergency resources would apparently improve efficiency of nuclear emergency preparedness and response, and it also would increase economical efficiency on inventory list, information management and invest decision. (author

  3. Planning a revolution in nuclear power technology

    International Nuclear Information System (INIS)

    Egan, J.R.

    1987-01-01

    Approaching the marketing and deployment of small, inherently safe reactors from the standpoint of the legal and financial community, the author suggests various ideal planning criteria that should be adhered to by designers and suppliers in order for the new plants to achieve political and financial acceptability. Although new nuclear technology based on those criteria promise to rekindle the prospects for nuclear fission, neither governments nor suppliers are likely to undertake the requisite investments. Rather, the author proposes a private development initiative between the political community, private investors, and would-be suppliers. (author)

  4. Nuclear power planning and feasibility studies

    International Nuclear Information System (INIS)

    Streeton, D.F.

    1977-01-01

    This lecture will review the basic steps associated with planning the introduction of nuclear power. Areas covered will include power market surveys, energy resources evaluations, potential alternative strategies, organisational factors and implementational requirements. The lecture will then consider the implications and requirements associated with establishing the feasibility of a nuclear project. Among others, aspects of power systems integration, site selection reactor type evaluation, cost and economic analysis, influence of contracting strategies, comparison with alternative power generation solutions, financial impact, etc. will be discussed and reviewed. (HK) [de

  5. Lessons learned from the second Federal Radiology Emergency Response Plan Field Exercise (FFE-2)

    International Nuclear Information System (INIS)

    Adler, M.V.; Gant, K.S.; Weiss, B.H.; Wolff, W.F.; Adler, V.

    1988-01-01

    The FFE-2, held in 1987 at the Zion Nuclear Power Station, provided a large-scale, multiagency, field test of the Federal Radiological Emergency Response Plan (FRERP). The FRERP provided workable guidance for coordinating the federal response efforts and effectively supplementing the states' resources. Needs for more training for responders and clarification in portions of the response were identified

  6. The link between off-site-emergency planning and plant-internal accident management

    Energy Technology Data Exchange (ETDEWEB)

    Braun, H.; Goertz, R.

    1995-02-01

    A variety of accident management measures has been developed and implemented in the German nuclear power plants. They constitute a fourth level of safety in the defence-in-depth concept. The containment venting system is an important example. A functioning link with well defined lines of communication between plant-internal accident management and off-site disaster emergency planning has been established.

  7. Dutch National Plan combat nuclear accidents

    International Nuclear Information System (INIS)

    1988-01-01

    This document presents the Dutch National Plan combat nuclear accidents (NPK). Ch. 2 discusses some important starting points which are determining for the framework and the performance of the NPK, in particular the accident typology which underlies the plan. Also the new accident-classification system for the Dutch nuclear power plants, the standardization for the measures to be taken and the staging around nuclear power plants are pursued. In ch. 3 the legal framework of the combat nuclear accidents is described. In particular the Nuclear-power law, the Accident law and the Municipality law are pursued. Also the role of province and municipality are described. Ch. 4 deals with the role of the owner/licensee of the object where the accident occurs, in the combat of accident. In ch. 5 the structure of the nuclear-accident combat at national level is outlined, subdivided in alarm phase, combat phase and the winding-up phase. In ch.'s 6-12 these phases are elaborated more in detail. In ch.'s 10-13 the measures to be taken in nuclear accidents, are described. These measures are distinguished with regard to: protection of the population and medical aspects, water economy, drinking-water supply, agriculture and food supply. Ch. 14 describes the responsibility of the burgomaster. Ch.'s 15 and 16 present an overview of the personnel, material, procedural and juridical modifications and supplements of existing structures which are necessary with regard to the new and modified parts of the structure. Ch. 17 indicates how by means of the appropriate education and exercise it can be achieved that all personnel, services and institutes concerned possess the knowledge and experience necessary for the activities from the NKP to be executed as has been described. Ch. 18 contains a survey of activities to be performed and a proposal how these can be realized. (H.W.). figs.; tabs

  8. Nuclear regulatory policy concept on safety, security, safeguards and emergency preparedness (3S+EP)

    International Nuclear Information System (INIS)

    Ilyas, Zurias

    2009-01-01

    Regulatory Policy is formulated in regulations that stipulate the assurance of workers and public safety and environmental protection. Legislation and regulations on nuclear energy should consider nuclear safety, security and safeguards, as well as nuclear emergency preparedness (3S+EP) and liability for nuclear damage. Specific requirements stipulated in international conventions and agreements should also be taken into account. Regulatory Policy is formulated in regulations that stipulate the assurance of workers and public safety and environmental protection. Legislation and regulations on nuclear energy should consider nuclear safety, security and safeguards, as well as nuclear emergency preparedness (3S+EP) and liability for nuclear damage. Specific requirements stipulated in international conventions and agreements should also be taken into account. By undertaking proper regulatory oversight on Safety, Security and Emergency Preparedness (3S+EP) as an integrated and comprehensive system, safe and secure use of nuclear energy can be assured. Licence requirements and conditions should fulfil regulatory requirements pertaining to 3S+EP for nuclear installation as an integrated system. An effective emergency capacity that can be immediately mobilized is important. The capacity in protecting the personnel before, during and after the disaster should also be planned. Thus, proper emergency preparedness should be supported by adequate resources. The interface between safety, security, safeguards and emergency preparedness has to be set forth in nuclear regulations, such as regulatory requirements; 3S+EP; components, systems and structures of nuclear installations and human resources. Licensing regulations should stipulate, among others, DIQ, installations security system, safety analysis report, emergency preparedness requirements and necessary human resources that meet the 3S+EP requirements.

  9. A new series of international nuclear emergency exercises (INEX)

    International Nuclear Information System (INIS)

    Halil-Burcin Okyar; Lazo, Edward; Siemann, Michael

    2014-01-01

    The INEX series of international nuclear emergency exercises, organised under the auspices of the NEA Working Party on Nuclear Emergency Matters (WPNEM), has proven successful in testing, investigating and improving national and international response arrangements for nuclear accidents and radiological emergencies. The Fukushima Daiichi nuclear power plant (NPP) accident occurred during INEX-4 and had a direct impact on NEA technical standing committees' work programmes. The WPNEM played an important role during the emergency, following and studying the insights and ideas that drive nuclear emergency management decision making. It collected crucial information on governmental decisions and recommendations with respect to the accident situation, and implemented a framework study to assist in the collection of NEA member country experiences that would facilitate the identification of commonalities in national assessment approaches and results. The findings triggered the INEX-5 exercise, which will build upon the experiences and lessons learnt from past nuclear accidents/incidents, and the success of previous INEX exercises. This exercise is intended to test mechanisms for decision making at the national level, particularly in uncertain circumstances or in the absence of data, to examine arrangements for international co-operation and coordination of data and information exchange among countries and arrangements for practical support and assistance between groups of countries or geographical regions. It will also investigate the long-term issues beyond the early response phase. The WPNEM agreed on a tightly focused scope, which will consist of a tabletop exercise or moderated workshop that is not based on a real time test. The exercise will be a common scenario based on a re-enactment of a nuclear power plant accident, although not the Fukushima accident. It will consider coincident impacts on multiple units and include impacts on other critical national

  10. Amatchmethod Based on Latent Semantic Analysis for Earthquakehazard Emergency Plan

    Science.gov (United States)

    Sun, D.; Zhao, S.; Zhang, Z.; Shi, X.

    2017-09-01

    The structure of the emergency plan on earthquake is complex, and it's difficult for decision maker to make a decision in a short time. To solve the problem, this paper presents a match method based on Latent Semantic Analysis (LSA). After the word segmentation preprocessing of emergency plan, we carry out keywords extraction according to the part-of-speech and the frequency of words. Then through LSA, we map the documents and query information to the semantic space, and calculate the correlation of documents and queries by the relation between vectors. The experiments results indicate that the LSA can improve the accuracy of emergency plan retrieval efficiently.

  11. AMATCHMETHOD BASED ON LATENT SEMANTIC ANALYSIS FOR EARTHQUAKEHAZARD EMERGENCY PLAN

    Directory of Open Access Journals (Sweden)

    D. Sun

    2017-09-01

    Full Text Available The structure of the emergency plan on earthquake is complex, and it’s difficult for decision maker to make a decision in a short time. To solve the problem, this paper presents a match method based on Latent Semantic Analysis (LSA. After the word segmentation preprocessing of emergency plan, we carry out keywords extraction according to the part-of-speech and the frequency of words. Then through LSA, we map the documents and query information to the semantic space, and calculate the correlation of documents and queries by the relation between vectors. The experiments results indicate that the LSA can improve the accuracy of emergency plan retrieval efficiently.

  12. Lagrangian modeling of atmospheric dispersion of radionuclides and geographical information systems as tools to support emergency planning in area of influence of nuclear complex of Angra dos Reis, RJ, Brazil; Modelagem Lagrangeana da dispersao atmoferica de radionuclideos e sistemas de informacao geografica como ferramentas de suporte ao planejamento de emergencia na area de influencia do complexo nuclear de Angra dos Reis, RJ

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Corbiniano

    2013-07-01

    Industrial accidents generally endanger structures and the set of environmental influence area where the enterprises are located, especially when affected by atmospheric dispersion of their pollutants, whose concern with the evacuation of the population is the main goal in emergency situations. Considering the nuclear complex Angra dos Reis - RJ, based on computer modeling analysis of the mechanisms of pollutant dispersion in conjunction with geographic information systems were developed. Thus, information about the dispersion of radionuclides - from simulations performed on the HYSPLIT; meteorological data (direction, intensity and calm on the wind regime and analysis of the wind field in the region using WRF), occurrence of landslides and data on the environmental study area were integrated into a GIS database using ArcGIS platform. Aiming at the identification and definition of escape routes in case of evacuation from accidental events in CNAAA, the results point solutions for long-term planning, based on weather and landslides, and short-term, supported by simulations of the dispersion radionuclides, in order to support actions that assist local emergency planning. (author)

  13. The development of nuclear power and emergency response

    International Nuclear Information System (INIS)

    Pan Ziqiang

    2007-01-01

    Nuclear power is a safe, clean energy, which has been evidenced by the history of nuclear power development. Nuclear power is associated with very low risk but not equal to zero. Accident emergency response and preparedness is a final barrier necessary to reduce potential risks that may arise from nuclear power plants, which must be enhanced. In the course of accident emergency response and preparedness, it is highly necessary to draw domestic and foreign experiences and lessons. Lastly, the paper presents the discussions of some issues which merit attention with respect to emergency response and preparedness in China. (authors)

  14. The emerging nuclear suppliers: some guidelines for policy (U)

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Lewis A.

    1988-04-01

    Lewis A. Dunn, a former Assistant Director of the US Arms Control and Disarmament Agency and now a senior analyst with Science Applications International Corporation, looks to the future to offer "The Emerging Nuclear Suppliers: Some Guidelines for Policy ." Mr. Dunn notes that although most emerging suppliers are cautious, many are not party to existing nonproliferation treaties. He calls upon the nonproliferation community to continue the present policy of not supporting unsafeguarded nuclear activities. He suggests that the nonproliferation community work within existing standards and infrastructures of nuclear suppliers to convince emerging supplier nations of the merits of nuclear export control.

  15. Missions and planning for nuclear space power

    International Nuclear Information System (INIS)

    Buden, D.

    1979-01-01

    Requirements for electrical and propulsion power for space are expected to increase dramatically in the 1980s. Nuclear power is probably the only source for some deep space missions and a major competitor for many orbital missions, especially those at geosynchronous orbit. Because of the potential requirements, a technology program on reactor components has been initiated by the Department of Energy. The missions that are foreseen, the current reactor concept, and the technology program plan are described

  16. Emergency cooling system for nuclear reactors

    International Nuclear Information System (INIS)

    Frisch, E.; Andrews, H.N.

    1976-01-01

    Upon the occasion of loss of coolant in a nuclear reactor as when a coolant supply or return line breaks, or both lines break, borated liquid coolant from an emergency source is supplied in an amount to absorb heat being generated in the reactor even after the control rods have been inserted. The liquid coolant flows from pressurized storage vessels outside the reactor to an internal manifold from which it is distributed to unused control rod guide thimbles in the reactor fuel assemblies. Since the guide thimbles are mounted at predetermined positions relative to heat generating fuel elements in the fuel assemblies, holes bored at selected locations in the guide thimble walls, sprays the coolant against the reactor fuel elements which continue to dissipate heat but at a reduced level. The cooling water evaporates upon contacting the fuel rods thereby removing the maximum amount of heat (970 BTU per pound of water) and after heat absorption will leave the reactor in the form of steam through the break which is the cause of the accident to help assure immediate core cooldown

  17. Improved nuclear emergency management system reflecting lessons learned from the emergency response at Fukushima Daini Nuclear Power Station after the Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Kawamura, Shinichi; Narabayashi, Tadashi

    2016-01-01

    Three nuclear reactors at Fukushima Daini Nuclear Power Station lost all their ultimate heat sinks owing to damage from the tsunami caused by the Great East Japan Earthquake on March 11, 2011. Water was injected into the reactors by alternate measures, damaged cooling systems were restored with promptly supplied substitute materials, and all the reactors were brought to a cold shutdown state within four days. Lessons learned from this experience were identified to improve emergency management, especially in the areas of strategic response planning, logistics, and functions supporting response activities continuing over a long period. It was found that continuous planning activities reflecting information from plant parameters and response action results were important, and that relevant functions in emergency response organizations should be integrated. Logistics were handled successfully but many difficulties were experienced. Therefore, their functions should be clearly established and improved by emergency response organizations. Supporting emergency responders in the aspects of their physical and mental conditions was important for sustaining continuous response. As a platform for improvement, the concept of the Incident Command System was applied for the first time to a nuclear emergency management system, with specific improvement ideas such as a phased approach in response planning and common operation pictures. (author)

  18. NPP accident scenario. Which emergency measures are planned in Switzerland?

    International Nuclear Information System (INIS)

    Flury, Christoph

    2016-01-01

    As a consequence of the reactor accident in Fukushima the Swiss government has ordered an extensive analysis of emergency planning in case of a NPP accident Switzerland. A special working group has analyzed the possible improvements of Swiss emergency planning based on the experiences in Japan. Under the special direction of the Bundesamt fuer Bevoelkerungsschutz (BABS) the agreed improvements were integrated into the emergency concept. The reference scenarios have been re-assessed and the zone concept adapted. The emergency measures include shelter-type rooms (basement or window-less rooms), the preventive distribution of iodine pills, measures concerning agriculture, aquatic systems, preventive evacuation, traffic regulations, and delayed evacuation.

  19. National energy planning with nuclear option

    International Nuclear Information System (INIS)

    Soetrisnanto, Arnold Y.; Hastowo, Hudi; Soentono, Soedyartomo

    2002-01-01

    National energy planning with nuclear option. Energy planning development is a part of the sustainable development that supports the attainment of national development goals. The objective of the study is to support the national planning and decision-making process in the energy and electric sector in Indonesia with nuclear option for period of 1998-2027. This study performs the provision of detailed economic sector and regional energy demand projection by MAED simulation model based on the economic and population scenarios. The optimization of the future energy supply such as electricity supply taking all known Indonesian energy sources and all relevant technologies into consideration by MARKAL Model. The results shows that Indonesia's need for final energy is forecasted to increase two times, from 4028,4 PJ at the beginning of study become 8145,6 PJ at the end of study. Performing the sensitivity study, it is predicted that nuclear energy could be introduced in the Java-Bali electricity grid about year 2016

  20. National nuclear plan - Present and prospects

    International Nuclear Information System (INIS)

    Valeca, Serban Constantin; Popescu, Dan

    2003-01-01

    The Romanian Research, Development and Innovation Plan (PNCDI) contains programmes aiming at: strengthening the national research and development capacity as well as enhancing the employment of scientific and technologic potential; obtaining national scientific excellency in the frame of globalization; achieving valuable results in specific objectives of importance for national economy and foreign policy; European integration of the national research potential. In the frame of PNCDI there are sub-programmes oriented toward nuclear field as follows: PC6 EURATIOM, with EU; Technical Cooperation projects with IAEA; basic and applied research projects with JINR, Dubna and CERN, Geneva as well with other international organizations. These sub-programs have also domestic-oriented objectives as for instance: boosting the reform in the nuclear sector; alignment the specific legislation with the European legislation; preserving the high-skilled human resources; strengthening the safety of nuclear facilities; strengthening the radiation protection of occupational personnel, population and environment; ensuring the management of radioactive waste with final disposal; enhancing the nuclear industry competitiveness; developing innovative concepts of new NPP types; formation and training of young specialists; ensuring the access on large scale to the European nuclear installations; organizing and intensifying the technology transport, as well as, simulation of small and average scale enterprises, boosting the cooperation between industrial and scientific organization enhancing the exchange the scientific information. All nuclear activities in Romania are peaceful and subject to a severe control of the state and of the habilitated international organisms. For Cernavoda NPP Romania chose the CANDU PHW project as a successful project developed in Canada and world wide. The performances concerning nuclear safety are highest while the costs of nuclear electricity is competitive with

  1. Responsibilities and tasks of the Emergency planning organization

    International Nuclear Information System (INIS)

    Jonsson, B.

    1983-10-01

    In order to strengthen the emergency preparedness of the most essential agencies so that all types of nuclear accidents can be mastered, the following measures will be taken: - special training for decision-makers and other personnel - introduction of continuously operating staff emergency organization - introduction of a prompt radiation measurement organization - introduction of reliable telecommunications links. (author)

  2. [The Hospital Emergency Plan: Important Tool for Disaster Preparedness].

    Science.gov (United States)

    Wurmb, Thomas; Scholtes, Katja; Kolibay, Felix; Rechenbach, Peer; Vogel, Ulrich; Kowalzik, Barbara

    2017-09-01

    Hospitals need to be prepared for any kind of disaster. The terrorist attacks and mass shootings that took place in Europe in recent years impressively demonstrated the capability of hospitals to manage such challenging and disastrous events. To be adequately prepared, the hospital emergency plan is a very important tool. In this article we describe the entire process of drafting the emergency plan. We discuss the theoretical background as well as different models of disaster planning and we give important practical hints and tips for those in charge of the hospital disaster planning. Georg Thieme Verlag KG Stuttgart · New York.

  3. Preventative maintenance plan for emergency pumping trailers

    International Nuclear Information System (INIS)

    Wiggins, D.D.

    1994-09-01

    The purpose/goal of this document is to identify the maintenance requirements and resources available to properly maintain the readiness and condition of the Emergency Pumping Equipment controlled by the Tank Waste Remediation System Tank Farms Plant Engineering and Tank Stabilization Operations. This equipment is intended to pump a single-shell tank (SST) that has been identified as an assumed leaking tank. The goal is to commence pumping (submersible or jet) as soon as safely possible after identifying a SST as an assumed leaking tank. Important information pertaining to the Emergency Pumping Equipment, Over-Ground Piping installation, and procedures is found in WHC-SD-WM-AP-005, ''Single Shell Tank Leak Emergency Pumping Guide.''

  4. 77 FR 25375 - Emergency Planning Zone

    Science.gov (United States)

    2012-04-30

    ... of the National Academy of Sciences Biological Effects of Ionizing Radiation (BEIR) VII Report and... protect their health and safety in the event of an accident at the plant.'' The NIRS is a non-profit... concerned about nuclear power, radioactive waste, radiation and sustainable energy issues.'' In addition...

  5. 78 FR 49726 - International Framework for Nuclear Energy Cooperation Finance/Regulatory/Energy Planning...

    Science.gov (United States)

    2013-08-15

    ..., (2) government commitment and support, and (3) a sound business plan. This workshop will be designed... power purchase agreements, are playing today in the financing of nuclear power projects in emerging... opportunity to network, build relationships in the global civil nuclear sector and learn more about current...

  6. A prototype nuclear emergency response decision making expert system

    International Nuclear Information System (INIS)

    Chang, C.; Shih, C.; Hong, M.; Yu, W.; Su, M.; Wang, S.

    1990-01-01

    A prototype of emergency response expert system developed for nuclear power plants, has been fulfilled by Institute of Nuclear Energy Research. Key elements that have been implemented for emergency response include radioactive material dispersion assessment, dynamic transportation evacuation assessment, and meteorological parametric forecasting. A network system consists of five 80386 Personal Computers (PCs) has been installed to perform the system functions above. A further project is still continuing to achieve a more complicated and fanciful computer aid integral emergency response expert system

  7. Draft emergency action level guidelines for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-09-15

    This document is provided for interim use during the initial phases of the NRC effort to promptly improve emergency preparedness at operating nuclear power plants. Changes to the document can be expected as experience is gained in its use and public comments are received. Further, the Commission has initiated a rulemaking procedure, now scheduled for completion in January 1930 in the area of Emergency Planning and Preparedness. Additional requirements are to be expected when rulemaking is completed and some modifications to this document may be necessary. Four classes of Emergency Action Levels are established which replace the classes in Regulatory Guide 1.101, each with associated examples of initiating conditions. The classes are: - Notification of Unusual Event; - Alert; - Site Emergency; - General Emergency. The rationale for the notification and alert classes is to provide early and prompt notification of minor events which could lead to more serious consequences given operator error or equipment failure or which might be indicative of more serious conditions which are not yet fully realized. A gradation is provided to assure fuller response preparations for more serious indicators. The site emergency class reflects conditions where some significant releases are likely or are occurring but where a core melt situation is not indicated based on current information. In this situation full mobilization of emergency personnel in tie :near site environs is indicated as well as dispatch of monitoring teams and associated communications. The general emergency class involves actual or imminent substantial core degradation or malting with the potential for loss of containment. The immediate action for this class is sheltering (staying inside) rather thai evacuation until an assessment can be made that (1) an evacuation is indicated and (2) an evacuation, if indicated, can be completed prior to significant release and transport of radioactive material to the affected

  8. Draft emergency action level guidelines for nuclear power plants

    International Nuclear Information System (INIS)

    1979-09-01

    This document is provided for interim use during the initial phases of the NRC effort to promptly improve emergency preparedness at operating nuclear power plants. Changes to the document can be expected as experience is gained in its use and public comments are received. Further, the Commission has initiated a rulemaking procedure, now scheduled for completion in January 1930 in the area of Emergency Planning and Preparedness. Additional requirements are to be expected when rulemaking is completed and some modifications to this document may be necessary. Four classes of Emergency Action Levels are established which replace the classes in Regulatory Guide 1.101, each with associated examples of initiating conditions. The classes are: - Notification of Unusual Event; - Alert; - Site Emergency; - General Emergency. The rationale for the notification and alert classes is to provide early and prompt notification of minor events which could lead to more serious consequences given operator error or equipment failure or which might be indicative of more serious conditions which are not yet fully realized. A gradation is provided to assure fuller response preparations for more serious indicators. The site emergency class reflects conditions where some significant releases are likely or are occurring but where a core melt situation is not indicated based on current information. In this situation full mobilization of emergency personnel in tie :near site environs is indicated as well as dispatch of monitoring teams and associated communications. The general emergency class involves actual or imminent substantial core degradation or malting with the potential for loss of containment. The immediate action for this class is sheltering (staying inside) rather thai evacuation until an assessment can be made that (1) an evacuation is indicated and (2) an evacuation, if indicated, can be completed prior to significant release and transport of radioactive material to the affected

  9. The public transportation system security and emergency preparedness planning guide

    Science.gov (United States)

    2003-01-01

    Recent events have focused renewed attention on the vulnerability of the nation's critical infrastructure to major events, including terrorism. The Public Transportation System Security and Emergency Preparedness Planning Guide has been prepared to s...

  10. Civil-Military Emergency Planning Council Denver Conference Proceedings

    National Research Council Canada - National Science Library

    Lidy, A

    2000-01-01

    ...) program formed by the North Atlantic Treaty Organization (NATO) since 1990. One small but important element of this engagement program is the use of the Civil-Military Emergency Planning (CMEP...

  11. Emergency preparedness planning: A process to insure effectiveness and efficiency

    International Nuclear Information System (INIS)

    Schroeder, A.J. Jr.

    1994-01-01

    Prevention is undoubtedly the preferred policy regarding emergency response. Unfortunately, despite best intentions, emergencies do occur. It is the prudent operator that has well written and exercised plans in place to respond to the full suite of possible situations. This paper presents a planning process to help personnel develop and/or maintain emergency management capability. It is equally applicable at the field location, the district/regional office, or the corporate headquarters. It is not limited in scope and can be useful for planners addressing incidents ranging from fires, explosions, spills/releases, computer system failure, terrorist threats and natural disasters. By following the steps in the process diagram, the planner will document emergency management capability in a logical and efficient manner which should result in effective emergency response and recovery plans. The astute planner will immediately see that the process presented is a continuing one, fully compatible with the principles of continuous improvement

  12. The national radiological emergency preparedness and response plan in the Philippines

    International Nuclear Information System (INIS)

    Valdezco, Eulinia Mendoza

    2007-01-01

    The use of radiation sources of various types and activities is now widespread in the fields of industry, medicine, research and education in the Philippines. These radiation sources have been under the regulatory control of the Philippine Nuclear Research Institute (PNRI) to ensure that these materials are used in a safe manner and stored in a safe and secure location, and that those which have exceeded their useful life are appropriately disposed of. And while the safety record of the nuclear industry remains admirable compared to other industries, the occurrence of an accident affecting members of the public is always a possibility but with very low probability. In 2001, the National Disaster Coordinating Council (NDCC) approved the revised National Radiological Emergency Preparedness and Response Plan (RADPLAN). This plan outlines the activities and organizations necessary to mitigate the effects of nuclear emergencies or radiation related accidents. An important component of this plan is the education of the public as well as the emergency responders such as the police authorities fire emergency personnel, medical responders, community leaders and the general public. The threat of nuclear terrorism as an aftermath of the September 11 incident in the United States has also been considered in the latest revision of this document. (author)

  13. Severe accident management at nuclear power plants - emergency preparedness and response actions

    International Nuclear Information System (INIS)

    Pawar, S.K.; Krishnamurthy, P.R.

    2015-01-01

    This paper describes the current level of emergency planning and preparedness and also improvement in the emergency management programme over the years including lessons learned from Fukushima accident, hazard analysis and categorization of nuclear facilities into hazard category for establishing the emergency preparedness class, classification of emergencies based on the Emergency Action Levels (EAL), development of EAL’s for PHWR, Generic Criteria in terms of projected dose for initiating protective actions (precautionary urgent protective actions, urgent protective actions, early protective actions), operational intervention levels (OIL), Emergency planning zones and distances, protection strategy and reference levels, use of residual dose for establishing reference levels for optimization of protection strategy, criteria for termination of emergency, transition of emergency exposure situation to existing exposure situation or planned exposure situation, criteria for medical managements of exposed persons and guidance for controlling the dose of emergency workers. This paper also highlights the EALs for typical PHWR type reactors for all types of emergencies (plant, site and offsite), transition from emergency operating procedures (EOP) to accident management guidelines (AMG) to emergency response actions and proposed implementation of guidelines

  14. Measurement strategies for the Dutch Nuclear Emergency Response System of the National Poisons Control Centre

    International Nuclear Information System (INIS)

    Van Oostrum, I.E.A.; Joore, J.C.A.; Meulenbelt, J.; Savelkoul, T.J.F.

    1997-04-01

    The measurement strategy applicable to Public Health in case of a Nuclear Emergency affecting the Netherlands is presented. Within the framework of the Dutch Nuclear Emergency Response System (NPK, abbreviated in Dutch) the National Poisons Control Centre of the RIVM/AZU has an advisory obligation towards the Ministry of Public Health, Welfare and Sports (WVS). This role comprises advice to relevant ministries, coordination of the measurement strategies and advice on persons to be reviewed, i.e. physical, biological and clinical dosimetry. The choice of dosimetric methods and measurements to be achieved in case of a larger scale nuclear emergency in the Netherlands is discussed. An actual plan of handling is presented for this measurement plan. Intervention levels defined in NPK 1991 serve as guidelines for successive actions to be performed by regional health services. 8 figs., 6 tabs., 81 refs

  15. Planning guidance for the Chemical Stockpile Emergency Preparedness Program

    Energy Technology Data Exchange (ETDEWEB)

    Shumpert, B.L.; Watson, A.P.; Sorensen, J.H. [and others

    1995-02-01

    This planning guide was developed under the direction of the U.S. Army and the Federal Emergency Management Agency (FEMA) which jointly coordinate and direct the development of the Chemical Stockpile Emergency Preparedness Program (CSEPP). It was produced to assist state, local, and Army installation planners in formulating and coordinating plans for chemical events that may occur at the chemical agent stockpile storage locations in the continental United States. This document provides broad planning guidance for use by both on-post and off-post agencies and organizations in the development of a coordinated plan for responding to chemical events. It contains checklists to assist in assuring that all important aspects are included in the plans and procedures developed at each Chemical Stockpile Disposal Program (CSDP) location. The checklists are supplemented by planning guidelines in the appendices which provide more detailed guidance regarding some issues. The planning guidance contained in this document will help ensure that adequate coordination between on-post and off-post planners occurs during the planning process. This planning guide broadly describes an adequate emergency planning base that assures that critical planning decisions will be made consistently at every chemical agent stockpile location. This planning guide includes material drawn from other documents developed by the FEMA, the Army, and other federal agencies with emergency preparedness program responsibilities. Some of this material has been developed specifically to meet the unique requirements of the CSEPP. In addition to this guidance, other location-specific documents, technical studies, and support studies should be used as needed to assist in the planning at each of the chemical agent stockpile locations to address the specific hazards and conditions at each location.

  16. Assessment and Prognosis for Nuclear Emergency Management in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seung-Young; Lee, Hyun-Ha; Lee, Young-Min; Park, Sang-Hyun; Nam, Kwang-Woo; Jeong, Sang-Houn; Jin, Sobeom; Kim, Dong-Il; Kim, Wan-Joo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    The nuclear accident of Fukushima, March 2011, raised public concerns over the safety of nuclear facilities and emergency preparedness in Korea. Therefore, KINS has enhanced the AtomCARE for assessment and prognosis and environmental monitoring system. The KINS has reinforced the radiological/radioactive environment monitoring system across the country to ensure prompt and effective protective measures for the public. Also, the act of radiological emergency management revised to adopt (PAZ) and the (UPZ) at 2014. All in all, Korea will give comprehensive effort to reflect the lessons learned from Fukushima accident for improvement of the assessment and prognosis system. This paper reviews the status of assessment and prognosis system for nuclear emergency response in Korea. The Korea Institute of Nuclear Safety (KINS) performs the regulation and radiological emergency preparedness of the nuclear facilities and radiation utilizations.

  17. NRC staff preliminary analysis of public comments on advance notice of proposed rulemaking on emergency planning

    International Nuclear Information System (INIS)

    Peabody, C.A.; Hickey, J.W.N.

    1980-01-01

    The Nuclear Regulatory Commission (NRC) published an advance notice of proposed rulemaking on emergency planning on July 17, 1979 (44 FR 41483). In October and November 1979, the NRC staff submitted several papers to the Commission related to the emergency planning rulemaking. One of these papers was a preliminary analysis of public comments received on the advance notice (SECY-79-591B, November 13, 1979). This document consists of the preliminary analysis as it was submitted to the Commission, with minor editorial changes

  18. Critical Infrastructure Awareness Required by Civil Emergency Planning

    NARCIS (Netherlands)

    Luiijf, H.A.M.; Klaver, M.H.A.

    2005-01-01

    Modern societies are increasingly dependent on a set of critical products and services which comprise the Critical Infrastructure (CI). This makes Critical infrastructures increasingly important as a planning factor in case of emergencies. For that reason, we studied a number of emergencies and a

  19. 76 FR 41273 - National Emergency Communications Plan (NECP) Tribal Report

    Science.gov (United States)

    2011-07-13

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2011-0025] National Emergency Communications Plan... Communications (CS&C), Office of Emergency Communications (OEC), will submit the following information collection request (ICR) to the Office of Management and Budget (OMB) for review and clearance in accordance with the...

  20. 45 CFR 673.5 - Emergency response plan.

    Science.gov (United States)

    2010-10-01

    ... ensure that: (a) The vessel owner's or operator's shipboard oil pollution emergency plan, prepared and... Pollution from Ships, 1973, as modified by the Protocol of 1978 relating thereto (MARPOL 73/78), has provisions for prompt and effective response action to such emergencies as might arise in the performance of...

  1. Guide for the elaboration of plans to control emergencies

    International Nuclear Information System (INIS)

    1990-01-01

    This Venezuelan standard establishes the lines for the elaboration of plans to control emergencies. It includes general aspects for the control of any emergency originated by operational flaws, for the nature or for acts of third, in any industrial installation, working center, public or private building [es

  2. Spent Nuclear Fuel Project operational staffing plan

    International Nuclear Information System (INIS)

    Debban, B.L.

    1996-03-01

    Using the Spent Nuclear Fuel (SNF) Project's current process flow concepts and knowledge from cognizant engineering and operational personnel, an initial assessment of the SNF Project radiological exposure and resource requirements was completed. A small project team completed a step by step analysis of fuel movement in the K Basins to the new interim storage location, the Canister Storage Building (CSB). This analysis looked at fuel retrieval, conditioning of the fuel, and transportation of the fuel. This plan describes the staffing structure for fuel processing, fuel movement, and the maintenance and operation (M ampersand O) staffing requirements of the facilities. This initial draft does not identify the support function resources required for M ampersand O, i.e., administrative and engineering (technical support). These will be included in future revisions to the plan. This plan looks at the resource requirements for the SNF subprojects, specifically, the operations of the facilities, balances resources where applicable, rotates crews where applicable, and attempts to use individuals in multi-task assignments. This plan does not apply to the construction phase of planned projects that affect staffing levels of K Basins

  3. 29 CFR 1918.100 - Emergency action plans.

    Science.gov (United States)

    2010-07-01

    ... action plans. (a) Scope and application. This section requires all employers to develop and implement an... departments that can be contacted for further information or explanation of duties under the plan. (c) Alarm... emergency action or for reaction time for safe escape of employees from the workplace or the immediate work...

  4. Radiation monitoring strategy in nuclear or radiological emergencies

    International Nuclear Information System (INIS)

    Lahtinen, J.

    2003-01-01

    Full text: Radiation measurements provide indispensable data needed for the management of a nuclear or radiological emergency. There must exist pre-prepared emergency monitoring strategies, with accompanying procedures and methods, that help the authorities to perform measurements efficiently and, consequently, to evaluate the radiological situation correctly and to carry out proper countermeasures on time. However, defining a realistic yet comprehensive radiation monitoring strategy for emergencies is far from being an easy task. The very concept of 'emergency monitoring strategy' should be understood in a broad sense. In an ideal case, a strategy has interfaces with all related emergency and information exchange arrangements and agreements both at the national and international level. It covers all activities from the recognition of a potential hazard situation to environmental sampling performed during the late phases of an accident. It integrates routine-monitoring practices with the special requirements set by emergency monitoring and the use of fixed monitoring stations with that of mobile measurement teams. It includes elements for gathering, analyzing, transmitting and presenting data, as well as for combining them with different kinds of forecasts. It also takes into account the various intrinsic characteristics of possible threat scenarios and contains options for adapting measuring activities according to prevailing environmental conditions. Furthermore, a strategy must have relevant links to the social and economical realities and to the primary interests of different stakeholders. In order to assist individual countries in establishing national strategies, international organisations (IAEA, OECD/NEA, EU) have published basic guidelines for emergency response and radiation measurements. Nuclear accidents, especially the Chernobyl case with its large-scale environmental consequences, and other kinds of shocking events (like the one on September 11, 2001

  5. Generalized concepts for measures in case of nuclear and radiological emergencies; Generalisierte Konzepte fuer Massnahmen bei nuklearen und radiologischen Notfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Sogalla, Martin; Buettner, Uwe; Schnadt, Horst

    2015-05-15

    In the frame of the project 3610S60014 GRS has developed a generalized concept of measures for an improved availability of support and information systems for emergency purposes and the planning of press and public relations that shall be applicable for the complete spectrum of nuclear end radiological emergencies. The concept allows the derivation of criteria and clear procedures for the situation evaluation and decision making. The project is aimed to integrate all available measure concepts from external emergency preparedness, prevention of ABD hazards and specific nuclear emergency plans.

  6. ALWR utility requirements - A technical basis for updated emergency planning

    International Nuclear Information System (INIS)

    Leaver, David E.W.; DeVine, John C. Jr.; Santucci, Joseph

    2004-01-01

    U.S. utilities, with substantial support from international utilities, are developing a comprehensive set of design requirements in the form of a Utility Requirements Document (URD) as part of an industry wide effort to establish a technical foundation for the next generation of light water reactors. A key aspect of the URD is a set of severe accident-related design requirements which have been developed to provide a technical basis for updated emergency planning for the ALWR. The technical basis includes design criteria for containment performance and offsite dose during severe accident conditions. An ALWR emergency planning concept is being developed which reflects this severe accident capability. The main conclusion from this work is that the likelihood and consequences of a severe accident for an ALWR are fundamentally different from that assumed in the technical basis for existing emergency planning requirements, at least in the U.S. The current technical understanding of severe accident risk is greatly improved compared to that available when the existing U.S. emergency planning requirements were established nearly 15 years ago, and the emerging ALWR designs have superior core damage prevention and severe accident mitigation capability. Thus, it is reasonable and prudent to reflect this design capability in the emergency planning requirements for the ALWR. (author)

  7. Quantitative risk analysis as a basis for emergency planning

    Energy Technology Data Exchange (ETDEWEB)

    Yogui, Regiane Tiemi Teruya [Bureau Veritas do Brasil, Rio de Janeiro, RJ (Brazil); Macedo, Eduardo Soares de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    2009-07-01

    Several environmental accidents happened in Brazil and in the world during the 70's and 80's. This strongly motivated the preparation for emergencies in the chemical and petrochemical industries. Environmental accidents affect the environment and the communities that are neighbor to the industrial facilities. The present study aims at subsidizing and providing orientation to develop Emergency Planning from the data obtained on Quantitative Risk Analysis, elaborated according to the Technical Standard P4.261/03 from CETESB (Sao Paulo Environmental Agency). It was observed, during the development of the research, that the data generated on these studies need a complementation and a deeper analysis, so that it is possible to use them on the Emergency Plans. The main issues that were analyzed and discussed on this study were the reevaluation of hazard identification for the emergency plans, the consequences and vulnerability analysis for the response planning, the risk communication, and the preparation to respond to the emergencies of the communities exposed to manageable risks. As a result, the study intends to improve the interpretation and use of the data deriving from the Quantitative Risk Analysis to develop the emergency plans. (author)

  8. Radiological and nuclear emergency preparedness and response. How well are we prepared?

    International Nuclear Information System (INIS)

    Geick, Gunther H.G.; Herrmann, Andre R.; Koch, Doris; Meisenberg, Oliver; Rauber, Dominique; Stuerm, Rolf P.; Weiss, Wolfgang; Miska, Horst; Schoenhacker, Stefan

    2011-01-01

    The contributions to this topic are dealing, in a broad overview, with important aspects of Nuclear Emergency Preparedness and Response, like the influence of the new ICRP recommendations number 103 and number 109 on emergency preparedness and on planning for response, possible problems in installing and operating emergency care centres, experience from exercises as well as the training of response personnel in Austria and Germany. Finally, measures in emergency preparedness with regard to a dirty bomb attack are reported by means of an INEX-4-exercise in Switzerland. (orig.)

  9. Report on emergency electrical power supply systems for nuclear fuel cycle and reactor facilities security systems

    International Nuclear Information System (INIS)

    1977-01-01

    The report includes information that will be useful to those responsible for the planning, design and implementation of emergency electric power systems for physical security and special nuclear materials accountability systems. Basic considerations for establishing the system requirements for emergency electric power for security and accountability operations are presented. Methods of supplying emergency power that are available at present and methods predicted to be available in the future are discussed. The characteristics of capacity, cost, safety, reliability and environmental and physical facility considerations of emergency electric power techniques are presented. The report includes basic considerations for the development of a system concept and the preparation of a detailed system design

  10. Report on emergency electrical power supply systems for nuclear fuel cycle and reactor facilities security systems

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The report includes information that will be useful to those responsible for the planning, design and implementation of emergency electric power systems for physical security and special nuclear materials accountability systems. Basic considerations for establishing the system requirements for emergency electric power for security and accountability operations are presented. Methods of supplying emergency power that are available at present and methods predicted to be available in the future are discussed. The characteristics of capacity, cost, safety, reliability and environmental and physical facility considerations of emergency electric power techniques are presented. The report includes basic considerations for the development of a system concept and the preparation of a detailed system design.

  11. Emergency response planning in hospitals, United States: 2003-2004.

    Science.gov (United States)

    Niska, Richard W; Burt, Catharine W

    2007-08-20

    This study presents baseline data to determine which hospital characteristics are associated with preparedness for terrorism and natural disaster in the areas of emergency response planning and availability of equipment and specialized care units. Information from the Bioterrorism and Mass Casualty Preparedness Supplements to the 2003 and 2004 National Hospital Ambulatory Medical Care Surveys was used to provide national estimates of variations in hospital emergency response plans and resources by residency and medical school affiliation, hospital size, ownership, metropolitan statistical area status, and Joint Commission accreditation. Of 874 sampled hospitals with emergency or outpatient departments, 739 responded for an 84.6 percent response rate. Estimates are presented with 95 percent confidence intervals. About 92 percent of hospitals had revised their emergency response plans since September 11, 2001, but only about 63 percent had addressed natural disasters and biological, chemical, radiological, and explosive terrorism in those plans. Only about 9 percent of hospitals had provided for all 10 of the response plan components studied. Hospitals had a mean of about 14 personal protective suits, 21 critical care beds, 12 mechanical ventilators, 7 negative pressure isolation rooms, and 2 decontamination showers each. Hospital bed capacity was the factor most consistently associated with emergency response planning and availability of resources.

  12. Annual report of Nuclear Emergency Assistance and Training Center. April 1, 2008 - March 31, 2009

    International Nuclear Information System (INIS)

    Kanamori, Masashi; Hashimoto, Kazuichiro; Terunuma, Hiroshi; Ikeda, Takeshi; Ohmura, Akiko; Terakado, Naoya; Nagakura, Tomohiro; Fukumoto, Masahiro; Watanabe, Fumitaka; Yamamoto, Kazuya; Abe, Minako; Kikuchi, Masayuki; Sumiya, Akihiro; Matsusaka, Masaru

    2009-09-01

    When a nuclear emergency occurs in Japan, the Japan Atomic Energy Agency (JAEA) provides technical support to the National government, local governments, police, fire station and license holder etc. They are Designated Public Organizations conforming to the Basic Law on Emergency Preparedness and the Basic Plan for Disaster Countermeasures. The Nuclear Emergency Assistance and Training Center (NEAT) of JAEA provides a comprehensive range of technical support activities to an Off-Site Center in case of a nuclear emergency. Specifically, NEAT gives technical advice and information, provides for the dispatch of specialist as required, supplies emergency equipments and materials to the Joint Council of Nuclear Disaster Countermeasures, which meets at the Off-Site Center. NEAT provide various lectures and training course concerning nuclear disaster prevention for those personnel taking an active part in emergency response organizations at normal time. And NEAT researches on nuclear disaster prevention and also cooperate with international organizations. This annual report summarized the activities of JAEA/NEAT in the fiscal year 2008. (author)

  13. Annual report of Nuclear Emergency Assistance and Training Center. April 1, 2006 - March 31, 2008

    International Nuclear Information System (INIS)

    2008-12-01

    When a nuclear emergency occurs in Japan, the Japan Atomic Energy Agency (JAEA) provides technical support to the National government, local governments, police, fire station and license holder etc. They are Designated Public Organizations conforming to the Basic Law on Emergency Preparedness and the Basic Plan for Disaster Countermeasures. The Nuclear Emergency Assistance and Training Center (NEAT) of JAEA provides a comprehensive range of technical support activities to an off-site center in case of a nuclear emergency. Specifically, NEAT gives technical advice and information, provides for the dispatch of specialist as required, supplies emergency equipments and materials to the Joint Council of Nuclear Disaster Countermeasures, which meets at the off-site center. NEAT provide various lectures and training course concerning nuclear disaster prevention for those personnel taking an active part in emergency response organizations at normal time. And NEAT researches on nuclear disaster prevention and also cooperate with international organizations. This annual report summarized the activities of JAEA/NEAT in the fiscal year 2006 and 2007. (author)

  14. Annual report of Nuclear Emergency Assistance and Training Center. April 1, 2010 - March 31, 2011

    International Nuclear Information System (INIS)

    Katagiri, Hiromi; Okuno, Hiroshi; Sawahata, Masayoshi; Ikeda, Takeshi; Sato, Sohei; Terakado, Naoya; Nagakura, Tomohiro; Nakanishi, Chika; Fukumoto, Masahiro; Yamamoto, Kazuya; Abe, Minako; Kawakami, Takeshi; Kikuchi, Masayuki; Sumiya, Akihiro; Matsusaka, Masaru

    2011-12-01

    When a nuclear emergency occurs in Japan, the Japan Atomic Energy Agency (JAEA) has the responsibility of providing technical support to the National government, local governments, police, fire station and license holders etc., because the JAEA is designated a Public Organization conforming to the Basic Law on Emergency Preparedness and the Basic Plan for Disaster Countermeasures. The Nuclear Emergency Assistance and Training Center (NEAT) of JAEA provides a comprehensive range of technical support activities to an Off-Site Center in case of a nuclear emergency. Specifically, NEAT gives technical advice and information, dispatch specialists as required, supplies emergency equipment and materials to the National Government and local governments. NEAT provides various lectures and training courses concerning nuclear disaster prevention for those personnel taking an active part in emergency response organizations at normal time. NEAT also researches on nuclear disaster prevention and cooperates with international organizations. Concerning about the assistance to the Accident of Fukushima No.1 Nuclear Power Station caused by the Great East Japan Earthquake at 11 March, 2011, JAEA assisted activities including environmental radiation monitoring, environmental radioactivity analyses, resident public consulting etc., with its full scale effort. NEAT served as the center of these supporting activities of JAEA. This annual report summarized these activities of JAEA/NEAT in the fiscal year 2010. (author)

  15. International nuclear emergency exercises: lessons learned from the I.N.E.X. series

    International Nuclear Information System (INIS)

    Ahier, B.

    2008-01-01

    Since the early 1990's, the OECD Nuclear Energy Agency (NEA) has offered its member countries a forum for improving efficiency and effectiveness in nuclear emergency management, with a particular focus on international aspects. A central approach to this has been the International Nuclear Emergency Exercise (INEXI series. Since 1993, the INEX series has proved successful in testing and advancing arrangements for nuclear emergency response. INEX 1, 2 and 2000, which focused on early-phase issues, provided a unique forum to test arrangements and concepts for international nuclear emergency management, particularly international communications, coordination and decision-making. Importantly, these exercises established a recognised international nuclear emergency exercise culture. The most recent exercise, INEX 3, was developed in response to international interest in longer term post-emergency issues. Conducted in 2005-2006, INEX 3 focused on later-phase consequence management issues following discovery of serious radio-logical contamination in the environment. The post-exercise evaluation identified several aspects of national consequence management which would benefit from international cooperation, and to which the international community could usefully contribute as part of planning and preparedness. (author)

  16. An innovative approach to capability-based emergency operations planning.

    Science.gov (United States)

    Keim, Mark E

    2013-01-01

    This paper describes the innovative use information technology for assisting disaster planners with an easily-accessible method for writing and improving evidence-based emergency operations plans. This process is used to identify all key objectives of the emergency response according to capabilities of the institution, community or society. The approach then uses a standardized, objective-based format, along with a consensus-based method for drafting capability-based operational-level plans. This information is then integrated within a relational database to allow for ease of access and enhanced functionality to search, sort and filter and emergency operations plan according to user need and technological capacity. This integrated approach is offered as an effective option for integrating best practices of planning with the efficiency, scalability and flexibility of modern information and communication technology.

  17. Computer based virtual reality approach towards its application in an accidental emergency at nuclear power plant

    International Nuclear Information System (INIS)

    Yan Jun; Yao Qingshan

    1999-01-01

    Virtual reality is a computer based system for creating and receiving virtual world. As an emerging branch of computer discipline, this approach is extensively expanding and widely used in variety of industries such as national defence, research, engineering, medicine and air navigation. The author intends to present the fundamentals of virtual reality, in attempt to study some interested aspects for use in nuclear power emergency planning

  18. Nuclear emergency response exercises and decision support systems - integrating domestic experience with international reference systems

    International Nuclear Information System (INIS)

    Slavnicu, D.S.; Vamanu, D.V.; Gheorghiu, D.; Acasandrei, V.T.; Slavnicu, E.

    2010-01-01

    The paper glosses on the experience of a research-oriented team routinely involved in emergency preparedness and response management activities, with the assimilation, implementation, and application of decision support systems (DSS) of continental reference in Europe, and the development of supportive, domestic radiological assessment tools. Two exemplary nuclear alert exercises are discussed, along with solutions that emerged during drill planning and execution, to make decision support tools of various origins and strength to work synergistically and complement each other. (authors)

  19. The characters of emergency rescue and the measures to prevent accidents for nuclear-powered submarine

    International Nuclear Information System (INIS)

    Wang Yuexing

    1999-01-01

    The characteristics of emergency rescue and the measures for preventing and decreasing accidents in nuclear-powered submarine have been presented. The breakdown of equipment and human factors are the main reasons which lead to accidents. Four preventive measures are suggested: enhancing capabilities to take precautions against fire, seriously controlling the environmental factors which affect the health of the submariners, reinforcing the constitutions of the submariners, and working out emergency planning against serious accidents in advance

  20. Spent Nuclear Fuel (SNF) Removal Campaign Plan

    International Nuclear Information System (INIS)

    PAJUNEN, A.L.

    2000-01-01

    The overall operation of the Spent Nuclear Fuel Project will include fuel removal, sludge removal, debris removal, and deactivation transition activities. Figure 1-1 provides an overview of the current baseline operating schedule for project sub-systems, indicating that a majority of fuel removal activities are performed over an approximately three-and-one-half year time period. The purpose of this document is to describe the strategy for operating the fuel removal process systems. The campaign plan scope includes: (1) identifying a fuel selection sequence during fuel removal activities, (2) identifying MCOs that are subjected to extra testing (process validation) and monitoring, and (3) discussion of initial MCO loading and monitoring in the Canister Storage Building (CSB). The campaign plan is intended to integrate fuel selection requirements for handling special groups of fuel within the basin (e.g., single pass reactor fuel), process validation activities identified for process systems, and monitoring activities during storage

  1. Practices and Experience in Stakeholder Involvement for Post-nuclear Emergency Management - Summary of the workshop

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    One of the most important aspects of post-accident consequence management is the involvement of stakeholders: in the planning, preparation and execution as well as in sustaining efforts over the long term. Having recognised the significance of stakeholder participation in several International Nuclear Emergency Exercises (INEX), the NEA Committee on Radiation Protection and Public Health (CRPPH) decided to organise the Practices and Experience in Stakeholder Involvement for Post-nuclear Emergency Management Workshop to explore these issues. This summary highlights the key issues discussed during the workshop, which brought together 75 emergency management and communication specialists from 16 countries. In light of the accident at the Fukushima Daiichi nuclear power plant, the experience shared during this workshop will be central to further improving national emergency management arrangements

  2. Where is the evidence for emergency planning: a scoping review.

    Science.gov (United States)

    Challen, Kirsty; Lee, Andrew C K; Booth, Andrew; Gardois, Paolo; Woods, Helen Buckley; Goodacre, Steve W

    2012-07-23

    Recent terrorist attacks and natural disasters have led to an increased awareness of the importance of emergency planning. However, the extent to which emergency planners can access or use evidence remains unclear. The aim of this study was to identify, analyse and assess the location, source and quality of emergency planning publications in the academic and UK grey literature. We conducted a scoping review, using as data sources for academic literature Embase, Medline, Medline in Process, Psychinfo, Biosis, Science Citation Index, Cinahl, Cochrane library and Clinicaltrials.gov. For grey literature identification we used databases at the Health Protection Agency, NHS Evidence, British Association of Immediate Care Schemes, Emergency Planning College and the Health and Safety Executive, and the websites of UK Department of Health Emergency Planning Division and UK Resilience.Aggregative synthesis was used to analyse papers and documents against a framework based on a modified FEMA Emergency Planning cycle. Of 2736 titles identified from the academic literature, 1603 were relevant. 45% were from North America, 27% were commentaries or editorials and 22% were event reports.Of 192 documents from the grey literature, 97 were relevant. 76% of these were event reports.The majority of documents addressed emergency planning and response. Very few documents related to hazard analysis, mitigation or capability assessment. Although a large body of literature exists, its validity and generalisability is unclear There is little evidence that this potential evidence base has been exploited through synthesis to inform policy and practice. The type and structure of evidence that would be of most value of emergency planners and policymakers has yet to be identified.

  3. Where is the evidence for emergency planning: a scoping review

    Directory of Open Access Journals (Sweden)

    Challen Kirsty

    2012-07-01

    Full Text Available Abstract Background Recent terrorist attacks and natural disasters have led to an increased awareness of the importance of emergency planning. However, the extent to which emergency planners can access or use evidence remains unclear. The aim of this study was to identify, analyse and assess the location, source and quality of emergency planning publications in the academic and UK grey literature. Methods We conducted a scoping review, using as data sources for academic literature Embase, Medline, Medline in Process, Psychinfo, Biosis, Science Citation Index, Cinahl, Cochrane library and Clinicaltrials.gov. For grey literature identification we used databases at the Health Protection Agency, NHS Evidence, British Association of Immediate Care Schemes, Emergency Planning College and the Health and Safety Executive, and the websites of UK Department of Health Emergency Planning Division and UK Resilience. Aggregative synthesis was used to analyse papers and documents against a framework based on a modified FEMA Emergency Planning cycle. Results Of 2736 titles identified from the academic literature, 1603 were relevant. 45% were from North America, 27% were commentaries or editorials and 22% were event reports. Of 192 documents from the grey literature, 97 were relevant. 76% of these were event reports. The majority of documents addressed emergency planning and response. Very few documents related to hazard analysis, mitigation or capability assessment. Conclusions Although a large body of literature exists, its validity and generalisability is unclear There is little evidence that this potential evidence base has been exploited through synthesis to inform policy and practice. The type and structure of evidence that would be of most value of emergency planners and policymakers has yet to be identified.

  4. Nuclear emergency preparedness in the Nordic and Baltic Sea countries

    Energy Technology Data Exchange (ETDEWEB)

    Jaworska, A. [Norwegian Radiation Protection Authority (Norway)

    2002-07-01

    Radiation emergency preparedness systems must be able to deal with the threats posed to each country and the region as a whole. The threats from nuclear accidents differ in the various countries of the region. The most serious nuclear threats are those with cross-border implications and are generally assumed to be due to the presence of nuclear reactors of various kinds. Some countries in the region, Finland, Germany, Lithuania, the Russian Federation and Sweden, have nuclear power plants, and several countries in the region possess smaller research reactors. Other nuclear threats arise from nuclear powered naval vessels or submarines, and from nuclear powered satellites. Production, transportation, use, and disposal of radioactive materials constitute potential local nuclear hazards. Finally, terrorist use of radioactive material poses a nuclear threat to all countries. (au)

  5. Nuclear emergency preparedness in the Nordic and Baltic Sea countries

    International Nuclear Information System (INIS)

    Jaworska, A.

    2002-01-01

    Radiation emergency preparedness systems must be able to deal with the threats posed to each country and the region as a whole. The threats from nuclear accidents differ in the various countries of the region. The most serious nuclear threats are those with cross-border implications and are generally assumed to be due to the presence of nuclear reactors of various kinds. Some countries in the region, Finland, Germany, Lithuania, the Russian Federation and Sweden, have nuclear power plants, and several countries in the region possess smaller research reactors. Other nuclear threats arise from nuclear powered naval vessels or submarines, and from nuclear powered satellites. Production, transportation, use, and disposal of radioactive materials constitute potential local nuclear hazards. Finally, terrorist use of radioactive material poses a nuclear threat to all countries. (au)

  6. Proposal of new framework in nuclear emergency response based on problem in East Japan Great Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In the nuclear emergency response activity in a East Japan great earthquake, the weakness the frame and the activity procedure (scheme) of the emergency response activity of our country that had been constructed after the accident of JCO became clear. Especially, it is necessary to recognize the importance of the enhancement of a prior plan after not only provision to response but also the damage to the environment occurs in the emergency for measures for restoration. Moreover, it is necessary to examine a concrete strategy about the management system strengthening of the radiation exposure at the accident. In this study, the experience and the finding in a East Japan great earthquake are arranged. The accident scenario that should be targeted is rearranged, and it proposes a new frame in the nuclear emergency response field through the requirement examinations such as the points of procedure, equipment, and the capital machine parts that lie a regulations frame of the nuclear emergency response, the activity frame of the nuclear emergency response, and materialized of the nuclear emergency response activity. (author)

  7. Proposal of new framework in nuclear emergency response based on problem in East Japan Great Earthquake

    International Nuclear Information System (INIS)

    2013-01-01

    In the nuclear emergency response activity in a East Japan great earthquake, the weakness the frame and the activity procedure (scheme) of the emergency response activity of our country that had been constructed after the accident of JCO became clear. Especially, it is necessary to recognize the importance of the enhancement of a prior plan after not only provision to response but also the damage to the environment occurs in the emergency for measures for restoration. Moreover, it is necessary to examine a concrete strategy about the management system strengthening of the radiation exposure at the accident. In this study, the experience and the finding in a East Japan great earthquake are arranged. The accident scenario that should be targeted is rearranged, and it proposes a new frame in the nuclear emergency response field through the requirement examinations such as the points of procedure, equipment, and the capital machine parts that lie a regulations frame of the nuclear emergency response, the activity frame of the nuclear emergency response, and materialized of the nuclear emergency response activity. (author)

  8. Proposal of new framework in nuclear emergency response based on problem in East Japan Great Earthquake

    International Nuclear Information System (INIS)

    2012-01-01

    In the nuclear emergency response activity in a East Japan great earthquake, the weakness the frame and the activity procedure (scheme) of the emergency response activity of our country that had been constructed after the accident of JCO became clear. Especially, it is necessary to recognize the importance of the enhancement of a prior plan after not only provision to response but also the damage to the environment occurs in the emergency for measures for restoration. Moreover, it is necessary to examine a concrete strategy about the management system strengthening of the radiation exposure at the accident. In this study, the experience and the finding in a East Japan great earthquake are arranged. The accident scenario that should be targeted is rearranged, and it proposes a new frame in the nuclear emergency response field through the requirement examinations such as the points of procedure, equipment, and the capital machine parts that lie a regulations frame of the nuclear emergency response, the activity frame of the nuclear emergency response, and materialized of the nuclear emergency response activity. (author)

  9. Joint Radiation Emergency Management Plan of the International Organizations. Date Effective: 1 July 2013

    International Nuclear Information System (INIS)

    2013-01-01

    European Commission) are party to legally binding treaties and have directives and regulations which have a bearing on the emergency response arrangements in their Member States. There are also bilateral agreements between some international organizations that also have relevance to preparedness and response arrangements. In 2002, the IAEA issued Preparedness and Response for a Nuclear or Radiological Emergency (IAEA Safety Standards Series No. GS-R-2), jointly sponsored by the FAO, the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organization (PAHO), the United Nations Office for the Co-ordination of Humanitarian Affairs (OCHA) and WHO. The requirements established therein imply additional expectations with regard to operational emergency preparedness and response arrangements. It is recognized by the participating organizations, and reflected in the above requirements, that good planning in advance of an emergency can substantially improve the response. With this in mind, international organizations that participate in the IACRNE develop, maintain and co-sponsor this Joint Radiation Emergency Management Plan of the International Organizations (the 'Joint Plan'). The IAEA is the main coordinating body for the development and maintenance of the Joint Plan. The Joint Plan does not prescribe arrangements between the participating organizations, but describes a common understanding of how each organization acts during a response and in making preparedness arrangements. Nothing in the Joint Plan should be construed as superseding the arrangements in place in the international organizations (or States). However, all international organizations (and States), irrespective of whether they are members of IACRNE, are invited to consider these arrangements in their own emergency management plans. This publication is the sixth edition of the Joint Plan. It includes new arrangements/initiatives which were introduced after

  10. Joint Radiation Emergency Management Plan of the International Organizations. Date Effective: 1 July 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    European Commission) are party to legally binding treaties and have directives and regulations which have a bearing on the emergency response arrangements in their Member States. There are also bilateral agreements between some international organizations that also have relevance to preparedness and response arrangements. In 2002, the IAEA issued Preparedness and Response for a Nuclear or Radiological Emergency (IAEA Safety Standards Series No. GS-R-2), jointly sponsored by the FAO, the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organization (PAHO), the United Nations Office for the Co-ordination of Humanitarian Affairs (OCHA) and WHO. The requirements established therein imply additional expectations with regard to operational emergency preparedness and response arrangements. It is recognized by the participating organizations, and reflected in the above requirements, that good planning in advance of an emergency can substantially improve the response. With this in mind, international organizations that participate in the IACRNE develop, maintain and co-sponsor this Joint Radiation Emergency Management Plan of the International Organizations (the 'Joint Plan'). The IAEA is the main coordinating body for the development and maintenance of the Joint Plan. The Joint Plan does not prescribe arrangements between the participating organizations, but describes a common understanding of how each organization acts during a response and in making preparedness arrangements. Nothing in the Joint Plan should be construed as superseding the arrangements in place in the international organizations (or States). However, all international organizations (and States), irrespective of whether they are members of IACRNE, are invited to consider these arrangements in their own emergency management plans. This publication is the sixth edition of the Joint Plan. It includes new arrangements/initiatives which were introduced after

  11. Engineering thinking in emergency situations: A new nuclear safety concept.

    Science.gov (United States)

    Guarnieri, Franck; Travadel, Sébastien

    2014-11-01

    The lessons learned from the Fukushima Daiichi accident have focused on preventive measures designed to protect nuclear reactors, and crisis management plans. Although there is still no end in sight to the accident that occurred on March 11, 2011, how engineers have handled the aftermath offers new insight into the capacity of organizations to adapt in situations that far exceed the scope of safety standards based on probabilistic risk assessment and on the comprehensive identification of disaster scenarios. Ongoing crises in which conventional resources are lacking, but societal expectations are high, call for "engineering thinking in emergency situations." This is a new concept that emphasizes adaptability and resilience within organizations-such as the ability to create temporary new organizational structures; to quickly switch from a normal state to an innovative mode; and to integrate a social dimension into engineering activities. In the future, nuclear safety oversight authorities should assess the ability of plant operators to create and implement effective engineering strategies on the fly, and should require that operators demonstrate the capability for resilience in the aftermath of an accident.

  12. Joint radiation emergency management plan of the international organizations. Emergency preparedness and response. Date effective: 1 December 2004

    International Nuclear Information System (INIS)

    2004-11-01

    directives and regulations that bear on emergency response arrangements among some States. The IAEA is the main co-ordinating body for development and maintenance of the Joint Plan. All States irrespective whether they are party to one or other of the two Conventions are invited to adopt arrangements that are compatible with those described here when providing relevant information about nuclear or radiological emergencies to relevant international organizations, in order to minimize the radiological consequences and to facilitate the prompt provision of information and assistance. This document is the third edition of the Joint Plan

  13. Activities of the nuclear emergency assistance and training center. Strengthening co-operation with parties in normal circumstances

    International Nuclear Information System (INIS)

    Watanabe, Fumitaka; Matsui, Tomoaki; Nomura, Tamotsu

    2005-01-01

    The Japan Nuclear Cycle Development Institute (JNC) and the Japan Atomic Energy Research Institute (JAERI) established the Nuclear Emergency Assistance and Training Center (NEAT) in March 2002. The center aims to provide various support nuclear safety regulatory bodies, local governments and nuclear facility licenses as specialists about nuclear and radiological issues according to the role shown in the Basic Disaster Management Plan. Upon a nuclear and/or radiological disaster occurring in Japan, NEAT will send specialists to the disaster scene, and offer the use of special equipments. NEAT maintains frequent contact with related organizations in normal circumstance. NEAT also participates in nuclear emergency exercises instructed by the parties concerned, which has contributed to the brewing of mutual trust with related organizations. In October 2005, JNC and JAERI merged into a new organization named the Japan Atomic Energy Agency (JAEA). NEAT, as a section of the organization, continuously deals with nuclear emergencies. (author)

  14. Prevent, Counter, and Respond - A Strategic Plan to Reduce Global Nuclear Threats (FY 2016-FY2020)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    NNSA’s second core mission is reducing global nuclear dangers by preventing the acquisition of nuclear weapons or weapons-usable materials, countering efforts to acquire such weapons or materials, and responding to nuclear or radiological incidents. In 2015, NNSA reorganized its nonproliferation activities based on core competencies and realigned its counterterrorism and counterproliferation functions to more efficiently address both current and emerging threats and challenges. The reorganization accompanied the March 2015 release of the first ever Prevent, Counter, and Respond – A Strategic Plan to Reduce Global Nuclear Threats. This report, which NNSA will update annually, highlights key nuclear threat trends and describes NNSA’s integrated threat reduction strategy.

  15. Unmanned Mobile Monitoring for Nuclear Emergency Response

    Energy Technology Data Exchange (ETDEWEB)

    Choi, YoungSoo; Park, JongWon; Kim, TaeWon; Jeong, KyungMin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Severe accidents at nuclear power plant have led to significant consequences to the people, the environment or the facility. Therefore, the appropriate response is required for the mitigation of the accidents. In the past, most of responses were performed by human beings, but it was dangerous and risky. In this paper, we proposed unmanned mobile system for the monitoring of nuclear accident in order to response effectively. For the integrity of reactor cooling and containment building, reactor cooling pipe and hydrogen distribution monitoring with unmanned ground vehicle was designed. And, for the safety of workers, radiation distribution monitoring with unmanned aerial vehicle was designed. Unmanned mobile monitoring system was proposed to respond nuclear accidents effectively. Concept of reinforcing the integrity of RCS and containment building, and radiation distribution monitoring were described. RCS flow measuring, hydrogen distribution measuring and radiation monitoring deployed at unmanned vehicle were proposed. These systems could be a method for the preparedness of effective response of nuclear accidents.

  16. Development of the efficient emergency preparedness system for the nuclear critical infrastructure

    International Nuclear Information System (INIS)

    Kostadinov, V.; Marn, J.; Petelin, S.

    2007-01-01

    The evaluation of the critical nuclear infrastructure vulnerability to threats like human occurrences, terrorist attacks and natural disasters and the preparation of emergency response plans with the estimation of optimized costs are of the vital importance for the assurance of a safe nuclear facilities operation and the national security. In the past national emergency systems did not include vulnerability assessments of the critical nuclear infrastructure as the important part of the comprehensive preparedness framework. The fundamental aims of the efficient emergency preparedness and response system are to provide a sustained emergency readiness and to prevent an emergency situation and accidents. But when an event happens the mission is to mitigate consequences and to protect the people and environment against the nuclear and radiological damage. The efficient emergency response system, which would be activated in the case of the nuclear and/or radiological emergency and release of the radioactivity to the environment, is an important element of a comprehensive system of the nuclear and radiation safety. In the article the new methodology for the critical nuclear infrastructure vulnerability assessment as a missing part of an efficient emergency preparedness system is presented. It can help the overall national energy sectors to identify and better understand the terrorist threats and vulnerabilities of their critical infrastructure. The presented methodology could also facilitate national agencies to develop and implement a vulnerability awareness and education programs for their critical assets to enhance the security, reliability and safe operation of the whole energy infrastructure. The vulnerability assessment methodology will also assist nuclear power plants to develop, validate, and disseminate the assessment and survey of new efficient countermeasures. The significant benefits of the new vulnerability assessment research are to increase nuclear power

  17. The planning of decommissioning activities within nuclear facilities - Generating a Baseline Decommissioning Plan

    International Nuclear Information System (INIS)

    Meek, N.C.; Ingram, S.; Page, J.

    2003-01-01

    BNFL Environmental Services has developed planning tools to meet the emerging need for nuclear liabilities management and decommissioning engineering both in the UK and globally. It can provide a comprehensive baseline planning service primarily aimed at nuclear power stations and nuclear plant. The paper develops the following issues: Decommissioning planning; The baseline decommissioning plan;The process; Work package; Compiling the information; Deliverables summary; Customer Benefits; - Planning tool for nuclear liability life-cycle management; - Robust and reliable plans based upon 'real' experience; - Advanced financial planning; - Ascertaining risk; - Strategy and business planning. The following Deliverables are mentioned:1. Site Work Breakdown Structure; 2. Development of site implementation strategy from the high level decommissioning strategy; 3. An end point definition for the site; 4. Buildings, operational systems and plant surveys; 5. A schedule of condition for the site; 6. Development of technical approach for decommissioning for each work package; 7. Cost estimate to WBS level 5 for each work package; 8. Estimate of decommissioning waste arisings for each work package; 9. Preparation of complete decommissioning programme in planning software to suit client; 10. Risk modelling of work package and overall project levels; 11. Roll up of costs into an overall cost model; 12. Cash flow, waste profiling and resource profiling against the decommissioning programme; 13. Preparation and issue of Final Report. Finally The BDP process is represented by a flowchart listing the following stages: [Power Station project assigned] → [Review project and conduct Characterisation review of power station] → [Identify work packages] → [Set up WBS to level 3] → [Assign work packages] → [Update WBS to level 4] →[Develop cost model] → [Develop logic network] → [Develop risk management procedure] ] → [Develop project strategy document]→ [Work package

  18. Emergency core cooling systems in CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1981-12-01

    This report contains the responses by the Advisory Committee on Nuclear Safety to three questions posed by the Atomic Energy Control Board concerning the need for Emergency Core Cooling Systems (ECCS) in CANDU nuclear power plants, the effectiveness requirement for such systems, and the extent to which experimental evidence should be available to demonstrate compliance with effectiveness standards

  19. Off-site relations and emergency planning or the importance of being earnest

    International Nuclear Information System (INIS)

    Dunkle, M.K.

    1987-01-01

    Emergency planning is and will continue to be a vulnerable spot for the nuclear industry. Emergency planning issues can be reopened at any time during the life of the plant and this represents a threat that continues for the life of the plant. The area of planning in which utilities find themselves most vulnerable is off-site relations with the state and local government officials, the public, and even the news media. Utilities face two very basic challenges in developing and maintaining good off-site relations for emergency preparedness: (1) utility managers must understand and be capable of working with the myriad of personalities and dynamics in the emergency preparedness arena. (2) Emergency preparedness is an emotional issue and a technical subject not well understood by the average citizen. The public looks to well-founded emergency plans and strong leaders to effect them. With these, a sound communications strategy, and a good plant record, a utility stands a chance of achieving the real key to success, credibility

  20. Emerging nuclear energy systems: Economic challenge: Revision 1

    International Nuclear Information System (INIS)

    Nuckolls, J.H.

    1986-01-01

    Future nuclear energy systems may achieve substantially lower energy costs than those of existing fossil energy systems and comparable capital costs. Such low cost nuclear energy would provide a strong economic incentive to minimize the use of fossil fuels. If these low cost nuclear energy systems emerge in the next few decades, 21st century civilization may be able to avert potentially disastrous CO 2 induced global climate changes. 12 refs., 1 fig