WorldWideScience

Sample records for nuclear emergency management

  1. Emergency management and the nuclear terrorism threat

    International Nuclear Information System (INIS)

    DeVito, D.A.; Suiter, L.

    1987-01-01

    Counterterrorism is not the province of the emergency manager. Generally law enforcement has that role. Instead, the emergency manager's role is crisis management; the responsibility is to be the focal point for the chief executive officer (mayor, governor, or national executive) regarding the protection of the population. Managers must be able to gather and synthesize sufficient information, rapidly and accurately, on which to base sound decisions. To do so, they must have a highly efficient, coordinated emergency management organization in place at the state and local levels of government, and there must be a workable plan for emergency operations that integrates all public safety forces into an effective response to all types of emergencies. A major goal of emergency management is to ensure that government is in control and that the public perceives that the system is working. All states have an emergency management organization at the state level, as do most counties and large cities. However, some states and local governments, particularly those that have nuclear power plants within their borders, are better staffed, equipped, and trained than others to deal with nuclear incidents. States with nuclear facilities have an emergency management organization, an emergency plan, and adequate communications, equipment, and trained personnel to handle a nuclear accident or incident at a plant. 21 references

  2. Managing a Nuclear Emergency Originating from Abroad

    International Nuclear Information System (INIS)

    Grlicarev, I.

    1998-01-01

    The basic aspects of managing a nuclear emergency, which occurred in a foreign country, are considered. The most important sources of information are defined by the bilateral or multilateral conventions. The decision aiding techniques and intervention levels can substantially improve the decision making. The experiences from the INEX-2 exercises are presented after the Swiss and Finnish exercise. (author)

  3. Nuclear emergency management procedures in Europe

    Science.gov (United States)

    Carter, Emma

    The Chernobyl accident brought to the fore the need for decision-making in nuclear emergency management to be transparent and consistent across Europe. A range of systems to support decision-making in future emergencies have since been developed, but, by and large, with little consultation with potential decision makers and limited understanding of the emergency management procedures across Europe and how they differ. In nuclear emergency management, coordination, communication and information sharing are of paramount importance. There are many key players with their own technical expertise, and several key activities occur in parallel, across different locations. Business process modelling can facilitate understanding through the representation of processes, aid transparency and structure the analysis, comparison and improvement of processes. This work has been conducted as part of a European Fifth Framework Programme project EVATECH, whose aim was to improve decision support methods, models and processes taking into account stakeholder expectations and concerns. It has involved the application of process modelling to document and compare the emergency management processes in four European countries. It has also involved a multidisciplinary approach taking a socio-technical perspective. The use of process modelling did indeed facilitate understanding and provided a common platform, which was not previously available, to consider emergency management processes. This thesis illustrates the structured analysis approach that process modelling enables. Firstly, through an individual analysis for the United Kingdom (UK) model that illustrated the potential benefits for a country. These are for training purposes, to build reflexive shared mental models, to aid coordination and for process improvement. Secondly, through a comparison of the processes in Belgium, Germany, Slovak Republic and the UK. In this comparison of the four processes we observed that the four process

  4. The Information Management Platform on Nuclear Emergency Resources of China

    International Nuclear Information System (INIS)

    Dong, L.

    2016-01-01

    Full text: The Chinese government has always attached great importance to nuclear emergency work, and has invested to form lots of nuclear emergency resources. Meanwhile, there also exist some management problems such as repeated investment, fragmented inventory list, inefficient management, etc. To achieve integrated management on the nuclear emergency resources of China, the Chinese government initiated the project “The Information Management Platform on Nuclear Emergency Resources of China”. The goal of the project is to support a timely, managed, controlled, coordinated and effective response while the resources managing process remains economically efficient. The project team firstly completed the nuclear emergency resources classification and encoding. Based on these, the nuclear emergency resources information management software system was developed. The pilot operation in the system was carried out both in Guangxi and Liaoning Province at the same time. Nuclear emergency resources survey was done as the relevant information was put into the database in these regions. The evaluation result on the pilot operation showed that, the information management platform on emergency resources would apparently improve efficiency of nuclear emergency preparedness and response, and it also would increase economical efficiency on inventory list, information management and invest decision. (author

  5. Off-site nuclear emergency management

    International Nuclear Information System (INIS)

    Miska, H.

    2003-01-01

    Full text: Urgent protective measures for the possibly affected population are the main items to be addressed here, that means actions to be planned and taken in the pre-release and release phase of a nuclear accident. Since we will focus an off-site nuclear emergency management, the utility or licensee only plays a subordinate role, but nevertheless may be the potential cause of all actions. At the other end, there is the possible affected population, the environment, and also economic values. Emergency preparedness and response aims at minimizing adverse effects from the power plant to the values to protect. In the early phase of an accident under consideration here, prompt and sharp actions are necessary to ensure efficacy. On the other hand, the available information on the situation is most limited in this phase such that pre-determined actions based on simple criteria are indispensable. The responsibility for early response actions normally rest with a regional authority which may have some county administrations at subordinate level. The leader of the regional staff has to decide upon protective measures to be implemented at county or municipal level; thus, coherence of the response is ensured at least at a regional level. The decision will be governed at the one side by the existing or predicted radiological situation, on the other side an practical limitations like availability of teams and means. The radiological situation has to be assessed by an advisory team that compiles all information from the utility, the weather conditions, and monitoring results. While the staff leader is experienced through response to major non-nuclear events, the advisors mainly come from the environmental side, having no experience in taking swift decisions in an emergency, but are used to control and prevent. This might be the source of conflicts as observed in several exercises. The radiation protection advisors collect information from the utility, especially about time

  6. Nuclear emergency management: what is new?

    International Nuclear Information System (INIS)

    Lazo, T.; Mundigl, S.

    2003-01-01

    Through the use of internationally organised, multinational drills, a wealth of experience and knowledge have been gained at both the national and international levels. The lessons learnt primarily concerned the early, urgent-communication phases of nuclear emergencies, and are currently in the process of being consolidated and incorporated into national structures and approaches. The focus of current works is shifting towards later accident phases, particularly to the mid-term phase, when control has been regained of the emergency situation but the accident consequences have yet to be addressed. In addition to these ''classic'' nuclear emergency response interests, since the 11 september 2001 national authorities have been concerned with accident response capabilities in case of terrorist acts that might involve radiation. (A.L.B.)

  7. Nuclear emergency preparedness and management the international nuclear emergency exercise Inex 2000

    International Nuclear Information System (INIS)

    Mundigl, St.

    2003-01-01

    With the initiation of the first international nuclear emergency exercise INEX 1, performed as a table-top exercise in 1993, the international community tested, for the first time, approaches and policies in place to manage a nuclear or radiological emergency. INEX 1 with its related workshops led to a wealth of lessons learned and to an improvement in nuclear emergency management. The INEX 2 exercise series, initiated by the NEA and performed between 1996 and 1999, established an international nuclear emergency 'exercise culture' leading to a clear improvement of the international aspects of nuclear emergency preparedness and management. INEX 2 was a series of four command post exercises based on national nuclear emergency exercises in Switzerland, Finland, Hungary and Canada. Simulated accidents at nuclear power plants were used to test existing procedures in emergency response and management, and to analyse local, regional, national and international emergency plans under realistic conditions. In addition, the exercises allowed the participating countries to gain experience using new concepts and tools. The most significant result of INEX 2 and a major step forward in nuclear emergency management was the development of a new communication and information exchange strategy, which is currently implemented by various NEA member countries as well as by the international community in general. The objective of this new strategy is to assist the decision-maker by improving the selection of the data transmitted, by encouraging the transmission and reception of such data and information using modern communication methods, e.g. secure world wide web technologies, and by defining emergency monitoring and modelling needs. To test the validity and usefulness of the newly-developed strategy, the NEA proposed to organize an international nuclear emergency exercise, INEX 2000, similar in scope to the INEX 2 exercises. In addition, the NEA suggested to include, for the first

  8. Over a decade of nuclear emergency management at the Nea

    International Nuclear Information System (INIS)

    Ahier, B.

    2005-01-01

    The OECD Nuclear Energy Agency has a long tradition of expertise in the area of nuclear emergency policy, planning, preparedness and management. Through its activities in this field, the Agency offers its member countries unbiased assistance on nuclear preparedness matters, with a view to facilitating improvements in nuclear emergency preparedness strategies and response at the international level. The 1986 Chernobyl accident demonstrated that nuclear accidents can have international consequences, highlighting the need for international co-operation, and leading to improvements in the areas of international communication, information exchange and harmonization of response actions between countries. From its inception, the NEA Working Party on Nuclear Emergency Matters has focused on improving the effectiveness of international nuclear emergency preparedness and management. Part of its work programme is set on exploring and developing new concepts and future procedures to enhance national and international preparedness and response management. A central approach to this has been the preparation and conduct of the International Nuclear Emergency Exercise (INEX) series. The role and strategies of exercises and future directions are discussed in this presentation. (A.L.B.)

  9. Conceptual design of the national nuclear emergency management information system

    International Nuclear Information System (INIS)

    Wang Xingyu; Shi Zhongqi

    2003-01-01

    A Conceptual Design of the National Nuclear Emergency Management Information System was brought forward in this paper, based on the summarization of some emergency management information systems used in China and some other countries. The conceptual system should have four basic characteristics, that are (1) a graphic displaying and querying interface based on GIS (2) data and results shared with the assessment software of nuclear accident (3) a complete set of databases and (4) the capability of on-line data receiving or real-time distributing of the commands and information for emergency response

  10. Assessment and Prognosis for Nuclear Emergency Management in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seung-Young; Lee, Hyun-Ha; Lee, Young-Min; Park, Sang-Hyun; Nam, Kwang-Woo; Jeong, Sang-Houn; Jin, Sobeom; Kim, Dong-Il; Kim, Wan-Joo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    The nuclear accident of Fukushima, March 2011, raised public concerns over the safety of nuclear facilities and emergency preparedness in Korea. Therefore, KINS has enhanced the AtomCARE for assessment and prognosis and environmental monitoring system. The KINS has reinforced the radiological/radioactive environment monitoring system across the country to ensure prompt and effective protective measures for the public. Also, the act of radiological emergency management revised to adopt (PAZ) and the (UPZ) at 2014. All in all, Korea will give comprehensive effort to reflect the lessons learned from Fukushima accident for improvement of the assessment and prognosis system. This paper reviews the status of assessment and prognosis system for nuclear emergency response in Korea. The Korea Institute of Nuclear Safety (KINS) performs the regulation and radiological emergency preparedness of the nuclear facilities and radiation utilizations.

  11. NDMA guidelines on management of nuclear and radiological emergencies

    International Nuclear Information System (INIS)

    Abani, M.C.

    2011-01-01

    The National Disaster Management Authority (NDMA), ever since it's formation as an apex policy making body for the country in the field of disaster management, has formulated a set of guidelines to assist the various ministries, states and stakeholders in preparing their plans to handle different types of disasters. The guidelines on management of nuclear and radiological emergencies assume great importance in the present context, as our country has very ambitious programme to exploit nuclear energy for peaceful uses. Though, we have an enviable and impeccable record of safety and virtually fail-safe operations in all our nuclear establishments, the possibility, however, remote it may be, of human error, systems failure, sabotage, earthquake, floods, terrorist attacks etc leading to the release of radioactive material in the public domain, cannot be entirely ruled out. With this view, it was decided to prepare the national guidelines by NDMA to manage any nuclear/radiological emergency in public domain. Through these guidelines, we aim to further strengthen our existing nuclear/radiological emergency management framework and generate public awareness, which will go a long way in allaying misapprehensions, if any, amongst the public about the country's nuclear programme. Like in all our guidelines for handling of different types of the disasters, in these Guidelines also, maximum emphasis has been laid on the prevention of nuclear and radiological emergencies, along with a detailed consideration of all other elements of the disaster management continuum. The national guidelines have been prepared and a consensus was arrived on various issues, after widespread consultations and elaborates discussions amongst experts as well as stakeholders. It is assumed that once these guidelines are implemented by the stakeholders and converted into action plans followed by SOPs that will further reduce the chances of accidents in the nuclear arena. (author)

  12. Emergency management in nuclear power plants: a regulatory view

    International Nuclear Information System (INIS)

    Shukla, Vikas; Chander, Vipin; Vijayan, P.; Nair, P.S.; Krishnamurthy, P.R.

    2011-01-01

    The nuclear power plants in India adopts a high level of defence in depth concept in design and operates at highest degree of safety, however the possibility of nuclear accidents cannot be ruled out. The safety and regulatory review of Nuclear Power Plants (NPPs) in India are carried out by Atomic Energy Regulatory Board (AERB). Section 33 of Atomic Energy (Radiation Protection) Rules-2004 provides the basic requirements of emergency preparedness aspects for a nuclear facility. Prior to the issuance of a license for the operation of NPPs, AERB ensures that the site specific emergency response manuals are in place and tested. The emergency response plan includes the emergency response organization, their responsibilities, the detailed scheme of emergency preparedness, response, facilities, equipments, coordination and support of various organizations and other technical aspects. These emergency preparedness plans are tested at periodic interval to check the overall effectiveness. The plant and site emergency exercise is handled by the plant authorities as per the site emergency plan. The events with off-site consequences are handled by the district authorities according to the off-site emergency plan. In off-site emergency exercises, observers from AERB and other associated organizations participate. Observations of the participants are discussed in the feedback session of the exercise for their disposition. This paper reviews the current level of emergency planning and preparedness, statistics of emergency exercises conducted and their salient findings. The paper highlights improvement in the emergency management programme over the years including development of advance technical support systems. The major challenges in off-site emergency management programme such as industrial growth and increase in population within the sterilized zone, frequent transfer of district officials and the floating population around the NPPs are outlined. The areas for improvement in

  13. Strategic aspects of nuclear and radiological emergency management

    International Nuclear Information System (INIS)

    Ahier, B.

    2010-01-01

    Emergency situations demand that actions be taken by responsible organisations in a timely and effective manner to mitigate consequences for the population, infrastructure and the environment, and to support the return of affected areas to normal social and economic activity to the extent possible. To deliver an effective response over the emergency management time-line, it is necessary to make, maintain and exercise adequate plans and arrangements in advance of an emergency situation. These must contain appropriate elements and resources for preparedness, response and assistance to identified threats, recognize and include all implicated partners, and take account of international interfaces. Effective management of complex emergency situations that can lead to a wide range of consequences and involve multiple organisations at the local, national and international levels also requires anticipation of the range of decision-making needs, an understanding of the interactions between response organisations and a model for their co-ordination. Experience from managing emergency situations has shown that the integration of these factors into emergency preparedness and response arrangements should be based on a guiding strategic vision. Emergency response is a dynamic process that develops in time from a situation of little information to one of potentially overwhelming information. Within this context, emergency response organisations must be able to respond in an appropriate and timely manner at any point along the emergency management time-line. This will be facilitated by an overarching framework to guide the decision-making process. To contribute to work in this area, the NEA Committee on Radiation Protection and Public Health (CRPPH) Working Party on Nuclear Emergency Matters (WPNEM) reviewed its collective experience to extract key themes that could form a strategy for improving decision-making in emergency management. This focused on the NEA International Nuclear

  14. Monitoring and data management strategies for nuclear emergencies

    International Nuclear Information System (INIS)

    2000-01-01

    Since the accident at Chernobyl in 1986, many countries have intensified their efforts in nuclear emergency planning, preparedness and management. Experience from the NEA nuclear emergency exercises (INEX 1 and INEX 2) indicated a need to improve the international system of communication and information in case of a radiological emergency. To address this need, research was carried out by three NEA working groups, the findings of which are synthesised in the present report. This report defines emergency monitoring and modelling needs, and proposes strategies which will assist decision makers by improving the selection of data that is transmitted, and the way in which data and information are transmitted and received. Modern communication methods, such as the Internet, are a key part of the strategies described. (author)

  15. Are current processes for nuclear emergency management in Europe adequate?

    Energy Technology Data Exchange (ETDEWEB)

    Carter, E; French, S [Manchester Business School, University of Manchester, Booth Street West, Manchester M15 6PB (United Kingdom)

    2006-12-15

    We describe the results of process mapping of nuclear emergency management procedures in four European countries. We find clear differences and explore these in relation to their suitability for building a shared understanding across the emergency management team of the evolving situation and a balanced appreciation of the uncertainties. Our findings indicate that there are some issues that cause concern in that the procedures may run smoothly and efficiently but they may also risk underestimating uncertainty or ignore key issues that have only been identified by a minority of experts or models. We are concerned that they do not facilitate the building of shared mental models that the literature such as that on highly reliable organisations has shown is important.

  16. Are current processes for nuclear emergency management in Europe adequate?

    International Nuclear Information System (INIS)

    Carter, E; French, S

    2006-01-01

    We describe the results of process mapping of nuclear emergency management procedures in four European countries. We find clear differences and explore these in relation to their suitability for building a shared understanding across the emergency management team of the evolving situation and a balanced appreciation of the uncertainties. Our findings indicate that there are some issues that cause concern in that the procedures may run smoothly and efficiently but they may also risk underestimating uncertainty or ignore key issues that have only been identified by a minority of experts or models. We are concerned that they do not facilitate the building of shared mental models that the literature such as that on highly reliable organisations has shown is important

  17. Development of CSA N1600-14: general requirements for nuclear emergency management programs

    Energy Technology Data Exchange (ETDEWEB)

    Sellar, C. [Canadian Standards Association Group, Mississauga, ON (Canada); Coles, J. [Ontario Power Generation, Darlington, ON (Canada)

    2014-07-01

    CSA Group has published a new standard on General requirements for nuclear emergency management programs (CSA N1600-14). The standard establishes criteria for the emergency management programs of on- and off-site organizations to address nuclear emergencies at Canadian nuclear power plants (NPPs). It provides the requirements to develop, implement, evaluate, maintain, and continuously improve a nuclear emergency management program for prevention and mitigation, preparedness, response, and recovery from a nuclear emergency at a NPP. This paper discusses the development of the standard, and provides the key drivers, structure, scope, and outline of the standard, while highlighting key features, impacts, and benefits. (author)

  18. How to Manage Public Information in Case of Nuclear Emergency

    International Nuclear Information System (INIS)

    Caldarovic, O.

    2000-01-01

    In the paper the problem of efficient, adequate and full information and education of the population as one of the most important aspects of nuclear emergency situations si discussed. It is shown that information and education in these situation must follow major principles of democratic information, that all decisions must be made in advance and in full co-ordination as well as with a full responsibility of the development of the situation. Furthermore, effective information is seen as a missing link in different nuclear emergency situation so far. A model of effective information is discussed and proposed. (author)

  19. Performing better nuclear emergency management exercises in Belgium

    International Nuclear Information System (INIS)

    Sohier, A.

    2006-01-01

    The recently revised Royal Decree of 17 October 2003 (the Belgian Monitor of 22 November 2003) stipulating the nuclear emergency plan for radiological risks on the Belgian territory aims at reducing the impact of a radiological or nuclear accident to the population. It describes the organisation, tasks and necessary interactions between the different participating entities at the federal, provincial and communal level. It also foresees that each major nuclear installation holds regularly exercises with the different off-site entities to test and improve the response procedures. Under contract with the Ministry of Interior, and in consortium with AVN and IRE, SCK-CEN has been assigned as co-ordinator for the improvement of the methodology for emergency exercises, and to apply this for the 2005 exercises of the nuclear installations of Doel and Tihange. The main objective of this project is to define a methodology allowing to conduct exercises in a more efficient way. The methodology is based on the IAEA EPR-EXERCISE (2005) publication. This should in turn (1) allow the principal actors to train the different aspects of a nuclear crisis, (2) allow easier detection of deficiencies in the emergency plan and its application, and (3) result in the necessary corrective actions to improve future responses to crises

  20. Reliability of decision-support systems for nuclear emergency management

    Energy Technology Data Exchange (ETDEWEB)

    Ionescu, Tudor B.

    2013-08-15

    Decision support systems for nuclear emergency management (DSNE) are currently used worldwide to assist decision makers in taking emergency response countermeasures in case of accidental releases of radioactive materials from nuclear facilities. The present work has been motivated by the fact that, up until now, DSNE systems have not been regarded as safetycritical software systems, such as embedded software currently being used in vehicles and aircraft. The core of any DSNE system is represented by the different simulation codes linked together to form the dispersion simulation workflow. These codes require input emission and meteorological data to produce forecasts of the atmospheric dispersion of radioactive pollutants and other substances. However, the reliability of the system not only depends on the trustworthiness of the measured (or generated) input data but also on the reliability of the simulation codes used. The main goal of this work is to improve the reliability of DSNE systems by adapting current state of the art methods from the domain of software reliability engineering to the case of atmospheric dispersion simulation codes. The current approach is based on the design by diversity principle for improving the reliability of codes and the trustworthiness of results as well as on a flexible fault-tolerant workflow scheduling algorithm for ensuring the maximum availability of the system. The author's contribution is represented by (i) an acceptance test for dispersion simulation results, (ii) an adjudication algorithm (voter) based on comparing taxonomies of dispersion simulation results, and (iii) a feedback-control based fault-tolerant workflow scheduling algorithm. These tools provide means for the continuous verification of dispersion simulation codes while tolerating timing faults caused by disturbances in the underlying computational environment and will thus help increase the reliability and trustworthiness of DSNE systems in missioncritical

  1. Reliability of decision-support systems for nuclear emergency management

    International Nuclear Information System (INIS)

    Ionescu, Tudor B.

    2013-08-01

    Decision support systems for nuclear emergency management (DSNE) are currently used worldwide to assist decision makers in taking emergency response countermeasures in case of accidental releases of radioactive materials from nuclear facilities. The present work has been motivated by the fact that, up until now, DSNE systems have not been regarded as safetycritical software systems, such as embedded software currently being used in vehicles and aircraft. The core of any DSNE system is represented by the different simulation codes linked together to form the dispersion simulation workflow. These codes require input emission and meteorological data to produce forecasts of the atmospheric dispersion of radioactive pollutants and other substances. However, the reliability of the system not only depends on the trustworthiness of the measured (or generated) input data but also on the reliability of the simulation codes used. The main goal of this work is to improve the reliability of DSNE systems by adapting current state of the art methods from the domain of software reliability engineering to the case of atmospheric dispersion simulation codes. The current approach is based on the design by diversity principle for improving the reliability of codes and the trustworthiness of results as well as on a flexible fault-tolerant workflow scheduling algorithm for ensuring the maximum availability of the system. The author's contribution is represented by (i) an acceptance test for dispersion simulation results, (ii) an adjudication algorithm (voter) based on comparing taxonomies of dispersion simulation results, and (iii) a feedback-control based fault-tolerant workflow scheduling algorithm. These tools provide means for the continuous verification of dispersion simulation codes while tolerating timing faults caused by disturbances in the underlying computational environment and will thus help increase the reliability and trustworthiness of DSNE systems in missioncritical

  2. Analysis of emergency response to fukushima nuclear accident in Japan and suggestions for China's nuclear emergency management

    International Nuclear Information System (INIS)

    Li Wei; Ding Qihua; Wu Haosong

    2014-01-01

    On March 11, 2011, the Fukushima Dai-ichi Nuclear Power Station of the Tokyo Electric Power Company ('TEPCO') was hit and damaged by a magnitude 9 earthquake and accompanying tsunami. The accident is determined to be of the highest rating on the International Nuclear Event Scale. The Government of Japan and TEPCO have taken emergency response actions on-site and off-site at the accident. It became clear through the investigation that the accident had been initiated on the occasion of a natural disaster of an earthquake and tsunami, but there have been various complex problems behind this very serious and large scale accident. For an example, the then-available accident preventive measures and disaster preparedness of TEPCO were insufficient against tsunami and severe accidents; inadequate TEPCO emergency responses to the accident at the site were also identified. The accident rang the alarm for the nuclear safety of nuclear power plants. It also taught us a great of lessons in nuclear emergency management. (authors)

  3. High-risk facilities. Emergency management in nuclear, chemical and hazardous waste facilities

    International Nuclear Information System (INIS)

    Kloepfer, Michael

    2012-01-01

    The book on emergency management in high-risk facilities covers the following topics: Change in the nuclear policy, risk management of high-risk facilities as a constitutional problem - emergency management in nuclear facilities, operational mechanisms of risk control in nuclear facilities, regulatory surveillance responsibilities for nuclear facilities, operational mechanism of the risk control in chemical plants, regulatory surveillance responsibilities for chemical facilities, operational mechanisms of the risk control in hazardous waste facilities, regulatory surveillance responsibilities for hazardous waste facilities, civil law consequences in case of accidents in high-risk facilities, criminal prosecution in case of accidents in high-risk facilities, safety margins as site risk for emission protection facilities, national emergency management - strategic emergency management structures, warning and self-protection of the public in case of CBRN hazards including aspects of the psych-social emergency management.

  4. Emergency management

    International Nuclear Information System (INIS)

    1996-01-01

    In 1995, major efforts of the Nuclear Regulatory Authority of the Slovak Republic (NRA SR) were focused on tasks associated with completion and incorporation of the Emergency Response Centre (ERC) of NRA SR in emergency planning and crisis management. Construction of the ERC had begun based on NRA SR's knowledge, as well as recommendations of Regulatory Assistance Management Group (RAMG) International Mission in 1993 and follow-up missions in 1994. Early in 1994, re-construction of selected rooms had been done and early in 1995, supported by the UK and U.S.A. Government's funding, technical equipment was purchased. The equipment was necessary for ERC operation as tools to improve NRA SR readiness for the management of emergency situations at nuclear installations. NRA SR commenced operation of the Centre in April 1995. The Centre has been on-line connected to a teledosimetric system of Radiation Monitoring Laboratory in Trnava. The basic software for assessment of radiation consequences of a NPP accident was supplied were also focused on cooperation with state administration authorities and organizations which were involved in an emergency planning structure. In September 1995, staffing of the ERC was completed and parallel, the first document concerning the ERC prime task, i.e. activities and procedures of of NRA SR Crisis crew in case of an accident at a nuclear installation on the territory of the Slovak Republic, was approved by the NRA SR's Management. In the period that is being assessed, NRA SR made significant progress in events classification and emergency planning terminology in order to unify the above between both the Slovak NPPs

  5. Nuclear emergencies

    International Nuclear Information System (INIS)

    1991-01-01

    This leaflet, which is in the form of a fold-up chart, has panels of text which summarize the emergencies that could arise and the countermeasures and emergency plans that have been prepared should nuclear accident occur or affect the United Kingdom. The levels of radiation doses at which various measures would be introduced are outlined. The detection and monitoring programmes that would operate is illustrated. The role of NRPB and the responsible government departments are set out together with an explanation of how the National Arrangements for Incidents involving Radioactivity would be coordinated. (UK)

  6. Consequence Management and International Nuclear Emergency Exercises: Lessons from INEX 3

    International Nuclear Information System (INIS)

    Wim Molhoek; Vince McClelland; Amanda Stegen; Brian Ahier; Ted Lazo

    2006-01-01

    The OECD Nuclear Energy Agency (Nea) has a long tradition of expertise in the area of nuclear emergency policy, preparedness, and management. The 1986 Chernobyl accident demonstrated that nuclear accidents may have consequences over wide areas, highlighting the need for international cooperation, coordination and communication. From the beginning, the Nea focus of work, as carried out by the Working Party on Nuclear Emergency Matters, has been on improving the effectiveness of international nuclear emergency preparedness and management. A major pillar of this work has been the preparation and organisation of the International Nuclear Emergency Exercise (I.N.E.X.) series. Beginning in 1993, the Nea I.N.E.X. series has proved successful in testing and developing arrangements for nuclear emergency response. The I.N.E.X.-1,-2 and -2000 series, which focussed on the early-phase of an emergency, provided a unique forum for testing existing as well as new arrangements and concepts for international nuclear emergency management, and succeeded in establishing a recognised international nuclear emergency exercise culture. In response to international interest in the longer term consequence management issues that will arise after an emergency, the Nea developed a third generation of exercises, I.N.E.X. 3. The I.N.E.X. 3 series of national level table-top exercises focused on the response to widespread radiological contamination of the environment and the issues likely to be raised in the medium to longer term period after such an event. Exercise objectives included an investigation of decisions on agricultural countermeasures and food restrictions, countermeasures such as travel and trade, recovery management and public information. The evaluation aimed to identify aspects of national decision-making which would benefit from international co-ordination, compare national approaches and identify 'best' practices in these circumstances. An International Evaluation Workshop will

  7. Management of Large Volumes of Waste Arising in a Nuclear or Radiological Emergency

    International Nuclear Information System (INIS)

    2017-10-01

    This publication, prepared in light of the IAEA Action Plan on Nuclear Safety developed after the accident at the Fukushima Daiichi nuclear power plant, addresses the management of large volumes of radioactive waste arising in a nuclear or radiological emergency, as part of overall emergency preparedness. The management of large volumes of waste will be one of many efforts to be dealt with to allow recovery of affected areas, to support return of evacuated or relocated populations and preparations for normal social and economic activities, and/or to mitigate additional environmental impacts. The publication is intended to be of use to national planners and policy makers, facility and programme managers, and other professionals responsible for developing and implementing national plans and strategies to manage radioactive waste arising from nuclear or radiological emergencies.

  8. Practices and Experience in Stakeholder Involvement for Post-nuclear Emergency Management - Summary of the workshop

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    One of the most important aspects of post-accident consequence management is the involvement of stakeholders: in the planning, preparation and execution as well as in sustaining efforts over the long term. Having recognised the significance of stakeholder participation in several International Nuclear Emergency Exercises (INEX), the NEA Committee on Radiation Protection and Public Health (CRPPH) decided to organise the Practices and Experience in Stakeholder Involvement for Post-nuclear Emergency Management Workshop to explore these issues. This summary highlights the key issues discussed during the workshop, which brought together 75 emergency management and communication specialists from 16 countries. In light of the accident at the Fukushima Daiichi nuclear power plant, the experience shared during this workshop will be central to further improving national emergency management arrangements

  9. Importance of Promocat in nuclear emergency management in ANAV; Impacto del Promocat en la gestion de emergencias en ANAV

    Energy Technology Data Exchange (ETDEWEB)

    Gil Cortiella, R.; Torres Gurdel, C.

    2016-08-01

    The nuclear power plant emergency management tool PROMOCAT, has been developed for supporting and facilitating the nuclear emergency management in the Spanish NPPs of Asco and Vandellos II. PROMOCAT is a computerized tool that comprises all the activities made by the Technical Support Centre (TSC) and Offsite facilities. In order to ease the management and decision-making during a nuclear emergency. In addition, the drill mode helps to improve and strengthen emergency personnel training. (Author)

  10. Strategic Aspects of Nuclear and Radiological Emergency Management. Planning for Effective Decision Making; Consequence Management and Transition to Recovery

    International Nuclear Information System (INIS)

    2010-01-01

    The collective experience of the NEA Working Party on Nuclear Emergency Matters (WPNEM), and in particular, the experience from the International Nuclear Emergency Exercise (INEX) series, has shown that it is important to plan and to implement emergency response actions based on a guiding strategic vision. Within this context, Strategic Aspects of Nuclear and Radiological Emergency Management presents a framework of strategic planning elements to be considered by national emergency management authorities when establishing or enhancing processes for decision making, and when developing or implementing protection strategies. The focus is on nuclear or radiological emergency situations leading to complex preparedness and response conditions, involving multiple jurisdictions and significant international interfaces. The report is aimed at national emergency management authorities, international organisations and those who are seeking to improve the effectiveness of emergency management. Its goal is to provide insights into decision-making processes within existing emergency planning arrangements. It also highlights common areas of good practice in decision making. Specific areas for improvement, identified during the INEX-3 consequence management exercise, are included, particularly in support of decision making for countermeasures for consequence management and the transition to recovery. (authors)

  11. Major alternatives for government policies, organizational structures, and actions in civilian nuclear reactor emergency management in the United States

    International Nuclear Information System (INIS)

    1980-01-01

    The purpose of this report is to identify and assess major alternatives for governmental policies, organizational structures, and actions in civilian nuclear reactor emergency management in the United States. The National Academy of Public Administration agreed to identify and evaluate alternatives for governmental policies, organizational structures, and actions in civilian nuclear reactor emergency management. It agreed to review present policies and practices in civilian nuclear reactor emergency management, to review selected experiences and practices of governmental agencies other than the Nuclear Regulatory Commission, and industries other than the nuclear power industry, and to identify alternatives to the present nuclear emergency system

  12. The nuclear medicine department in the emergency management plan: a referent structure for the nuclear and radiological risks

    International Nuclear Information System (INIS)

    Barat, J.L.; Ducassou, D.; Lesgourgues, P.; Zamaron, S.; Boulard, G.

    2006-01-01

    Each french public or private hospital has to establish guidelines for an immediate response to mass casualties (Emergency Management Plan or 'White' Plan). For a nuclear accident or terrorist attack, the staff of the Nuclear Medicine Department may be adequately prepared and equipped. This paper presents the nuclear and radiological risks section of the final draft of the White Plan developed at Bordeaux University Hospital. (author)

  13. MOCAT project: innovation applied to the improvement of emergency management in the nuclear power Garona

    International Nuclear Information System (INIS)

    Callejo, J. L.; Caro, R. J.

    2009-01-01

    With the aim of improving the Emergency Management, the Nuclear Power Station of Santa Maria de Garona has undertaken Technical Support Centre (TSC) Modernization Project MOCAT. Developed by Tecnatom, it applies the new Information Technologies to the management of the information available in the TSC and computerizes the procedures associated to the different areas from the TSC. First stage structures the relevant information in two sheets for Operation and Radiation control Areas and mechanizes the Radiological control Area Manager guideline, the Event Management and the emergency Direct Screen. (Author)

  14. Severe accident management at nuclear power plants - emergency preparedness and response actions

    International Nuclear Information System (INIS)

    Pawar, S.K.; Krishnamurthy, P.R.

    2015-01-01

    This paper describes the current level of emergency planning and preparedness and also improvement in the emergency management programme over the years including lessons learned from Fukushima accident, hazard analysis and categorization of nuclear facilities into hazard category for establishing the emergency preparedness class, classification of emergencies based on the Emergency Action Levels (EAL), development of EAL’s for PHWR, Generic Criteria in terms of projected dose for initiating protective actions (precautionary urgent protective actions, urgent protective actions, early protective actions), operational intervention levels (OIL), Emergency planning zones and distances, protection strategy and reference levels, use of residual dose for establishing reference levels for optimization of protection strategy, criteria for termination of emergency, transition of emergency exposure situation to existing exposure situation or planned exposure situation, criteria for medical managements of exposed persons and guidance for controlling the dose of emergency workers. This paper also highlights the EALs for typical PHWR type reactors for all types of emergencies (plant, site and offsite), transition from emergency operating procedures (EOP) to accident management guidelines (AMG) to emergency response actions and proposed implementation of guidelines

  15. Nuclear emergency preparedness and response in Japan. Risk management and communication regarding nuclear events

    International Nuclear Information System (INIS)

    Sato, Hajime

    2011-01-01

    Severe accidents at nuclear plants can result in long-standing and large-scale disasters encompassing wide areas. The public may have special concerns regarding these plants and radiation-related health risks. It has therefore been argued that risk communications efforts, along with rigid safety management of nuclear plants, are imperative to prevent such accidents, mitigate their impacts, and alleviate public concerns. This article introduces a set of laws, acts, codes, and guidelines concerning nuclear safety in Japan. In addition, the preparedness and mitigation plans and programs for dealing with nuclear accidents and possible disasters are also discussed. Furthermore, the ongoing accidents at the Fukushima nuclear power plants following the Great East Japan Earthquake in 2011, and the government response to them are presented. A set of points regarding the management and communications of power plant accidents are discussed. (author)

  16. The long-term management of nuclear emergencies: The principles

    International Nuclear Information System (INIS)

    Baverstock, K.; Cherp, A.; Gray, P.

    2004-01-01

    The long-term impact of the Chernobyl accident on the most affected populations in Belarus (Ukraine)) and the Russian Federation is still evident in terms of a continuing elevated level of thyroid cancer, prominent psychosocial effects, a depressed economy and a low level of well being. Some of these impacts are directly and primarily attributable to exposure to ionising radiation, while others have more complex origins and have evolved over the period since the accident. It is argued that although these latter impacts were largely unpredictable at the time of the accident, they could have been minimised had an appropriate management plan been in force. The principles underlying such a management plan for use in future accidents are enumerated. An essential component in further developing such a plan would be a thorough review of the experience of the Chernobyl accident in order to 'learn the lessons' that accident holds. (authors)

  17. Experience from the third international nuclear emergency exercise (INEX 3) on consequence management

    International Nuclear Information System (INIS)

    2007-01-01

    Since the beginning of the 1990's, the OECD Nuclear Energy Agency (NEA) has offered its member countries a forum for improving efficiency and effectiveness in nuclear emergency management, focusing in particular on the international aspects of emergency preparedness and response. A central approach to this has been the preparation and conduct of the International Nuclear Emergency Exercise (INEX) series. The INEX 3 consequence management exercises were developed by the NEA Working Party on Nuclear Emergency Matters in response to its members desire to better prepare for the longer-term response following a nuclear or radiological emergency. The INEX 3 exercise series was developed in 2002-2004, and conducted throughout 2005 and early 2006 by 15 participating countries. The INEX 3 evaluation workshop held in Paris (France) in May 2006 was convened with the objective of allowing participants to share their national experiences with INEX 3, compare approaches, analyse the implications on decision making and identify key needs in longer-term consequence management. In addition to providing a valuable discussion forum for participants, the workshop concluded by establishing a set of identified needs in longer-term consequence management to which the participants felt that the NEA and international community could usefully contribute. These included the four main areas addressed by the exercise agriculture and food countermeasures, decisions on countermeasures such as travel, trade or tourism, recovery management and public information as well as stakeholder involvement and liability/compensation issues. This report summarises the development of the INEX 3 exercise, the major evaluation outcomes of the national exercises, and the key policy-level outcomes, recommendations and follow-up activities arising from the exercise and workshop. (authors)

  18. Decision making process and emergency management in different phases of a nuclear accident

    International Nuclear Information System (INIS)

    Duranova, T.

    2005-01-01

    EVATECH, Information Requirements and Countermeasure Evaluation Techniques in Nuclear Emergency Management, was a research project in the key action 'Nuclear Fission' of the fifth EURATOM Framework Programme (FP5). The overall objective of the project was to enhance the quality and coherence of response to nuclear emergencies in Europe by improving the decision support methods, models and processes in ways that take into account the expectations and concern of the many different parties involved - stake holders both in managing the emergency response and those who are affected by the consequences of nuclear emergencies. The project had ten partners from seven European countries. The development of the real-time online decision support system RODOS has been one of the major items in the area of radiation protection within the European Commission's Framework Programmes. The main objectives of the RODOS project have been to develop a comprehensive and integrated decision support system that is generally applicable across Europe and to provide a common framework for incorporating the best features of existing decision support systems and future developments. Furthermore the objective has been to provide greater transparency in the decision process to: improve public understanding and acceptance of off-site emergency measures, to facilitate improved communication between countries of monitoring data, predictions of consequences, etc., in the event of any future accident, and to promote, through the development and use of the system, a more coherent, consistent and harmonised response to any future accident that may affect Europe. (authors)

  19. Emerging Trends in the Nuclear Fuel Cycle: Implications for Waste Management

    International Nuclear Information System (INIS)

    Spradley, L.; Camper, L.; Rehmann, M.

    2009-01-01

    There are emerging trends in the nuclear fuel cycle that have implications for waste management. This paper will discuss activities in both the front-end and back-end of the nuclear fuel cycle for the U.S. Nuclear Regulatory Commission (NRC)-regulated entities. Particular focus will be given to the front-end which includes uranium recovery facilities, conversion facilities, and enrichment facilities. The back-end activities include progress on the proposed high-level waste geologic repository at Yucca Mountain, NV and efforts to reprocess spent nuclear fuel or down-blend HEU. While there are potential environmental impacts due to construction and dismantling of fuel cycle facilities, this paper focuses on the operational waste stream that will need to be managed as a result of fuel-cycle facilities. (authors)

  20. The management of post nuclear or radiological emergency situations in France

    International Nuclear Information System (INIS)

    Godet, Jean-Luc; Mehl-Auget, Isabelle; Johanna Fite

    2008-01-01

    For several years, public authorities have defined an organisation for the management of emergency situations arising from an accident occurring at a nuclear installation. So far, the management of the risk arising from the post accident step was, in itself, not explored with the same care. Whatsoever, no formal policy on which the action of public authority could be based is today available. The French Nuclear Safety Authority (ASN), in relation with the other concerned departments, is now in charge to prepare and implement the necessary provisions to respond to a post accident situation. In June 2005, ASN established the steering committee for the management of post nuclear or radiological emergency situations (CODIRPA). The definition of a national policy related to the management of the radiological risk during a post event situation has to integrate various organisation aspects such as: lifting of protection emergency provisions and rehabilitation of buildings, life in contaminated rural territories, agriculture and water, dose and radiological consequences, sanitary surveillance of victims and populations, indemnification, waste management of contaminated crops and soils, organisation of public Authorities. During the 2nd step of CODIRPA work (2008-2009), the first elements of policy will be consolidated and new scenarios will be studied (one worsened scenario and one scenario with alpha emitting radionuclide). In parallel, a procedure for local actor's consultation has just been launched. (author)

  1. Bibliography for nuclear criticality accident experience, alarm systems, and emergency management

    International Nuclear Information System (INIS)

    Putman, V.L.

    1995-09-01

    The characteristics, detection, and emergency management of nuclear criticality accidents outside reactors has been an important component of criticality safety for as long as the need for this specialized safety discipline has been recognized. The general interest and importance of such topics receives special emphasis because of the potentially lethal, albeit highly localized, effects of criticality accidents and because of heightened public and regulatory concerns for any undesirable event in nuclear and radiological fields. This bibliography lists references which are potentially applicable to or interesting for criticality alarm, detection, and warning systems; criticality accident emergency management; and their associated programs. The lists are annotated to assist bibliography users in identifying applicable: industry and regulatory guidance and requirements, with historical development information and comments; criticality accident characteristics, consequences, experiences, and responses; hazard-, risk-, or safety-analysis criteria; CAS design and qualification criteria; CAS calibration, maintenance, repair, and testing criteria; experiences of CAS designers and maintainers; criticality accident emergency management (planning, preparedness, response, and recovery) requirements and guidance; criticality accident emergency management experience, plans, and techniques; methods and tools for analysis; and additional bibliographies

  2. Developments in the JRodos decision support system for off-site nuclear emergency management and rehabilitation

    Energy Technology Data Exchange (ETDEWEB)

    Landman, Claudia [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany); Pro-Science GmbH, Ettlingen (Germany); Raskob, Wolfgang; Trybushnyi, Dmytro [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany)

    2016-07-01

    JRodos is a non-commercial computer-based decision support system for nuclear accidents. The simulation models for assessing radiological and other consequences and the system features and components allow real-time operation for off-site emergency management as well as the use as a tool for preparing exercises and pre-plannng of countermeasures. There is an active user community that takes influence on further developments.

  3. Off-site nuclear emergency management in Germany under the auspices of the federal structure

    International Nuclear Information System (INIS)

    Bayer, A.; Bittner, S.; Korn, H.

    1998-01-01

    Both the individual states (Laender) and the federation (Bund) are involved in off-site emergency management in Germany. The states operate site-related Remote Monitoring Systems for Nuclear Power Plants, while the federation operates a nationwide Integrated Measurement and Information System. The states are responsible for accident response, the federation is responsible for radiation precaution measures. In the event of an accident, the state and federal authorities make their decisions and implement the corresponding emergency measures within their responsibility. Exchange of information exists between the two levels. (P.A.)

  4. Advanced simulation and management software for nuclear emergency training and response

    International Nuclear Information System (INIS)

    Rose, K.W.

    2011-01-01

    The importance of training of safety personnel to deal with real world scenarios is prevalent amongst nuclear emergency preparedness and response organizations. For the development of training tools we have committed to ensure that field procedures, data collection software and decision making tools be identical during training sessions as they would be during a real emergency. By identifying the importance of a fully integrated tool, we have developed a safety support system capable of both functioning in training mode and real mode, enabling emergency response organizations to train more efficiently and effectively. This new fully integrated emergency management tool is called S3-FAST also known as Safety Support Systems - Field Assessment Survey Tool. (orig.)

  5. Improved nuclear emergency management system reflecting lessons learned from the emergency response at Fukushima Daini Nuclear Power Station after the Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Kawamura, Shinichi; Narabayashi, Tadashi

    2016-01-01

    Three nuclear reactors at Fukushima Daini Nuclear Power Station lost all their ultimate heat sinks owing to damage from the tsunami caused by the Great East Japan Earthquake on March 11, 2011. Water was injected into the reactors by alternate measures, damaged cooling systems were restored with promptly supplied substitute materials, and all the reactors were brought to a cold shutdown state within four days. Lessons learned from this experience were identified to improve emergency management, especially in the areas of strategic response planning, logistics, and functions supporting response activities continuing over a long period. It was found that continuous planning activities reflecting information from plant parameters and response action results were important, and that relevant functions in emergency response organizations should be integrated. Logistics were handled successfully but many difficulties were experienced. Therefore, their functions should be clearly established and improved by emergency response organizations. Supporting emergency responders in the aspects of their physical and mental conditions was important for sustaining continuous response. As a platform for improvement, the concept of the Incident Command System was applied for the first time to a nuclear emergency management system, with specific improvement ideas such as a phased approach in response planning and common operation pictures. (author)

  6. Cooperation in Nuclear Waste Management, Radiation Protection, Emergency Preparedness, Reactor Safety and Nuclear Non-Proliferation in Eastern Europe

    International Nuclear Information System (INIS)

    Dassen, Lars van; Delalic, Zlatan; Ekblad, Christer; Keyser, Peter; Turner, Roland; Rosengaard, Ulf; German, Olga; Grapengiesser, Sten; Andersson, Sarmite; Sandberg, Viviana; Olsson, Kjell; Stenberg, Tor

    2009-10-01

    The Swedish Radiation Safety Authority (SSM) is trusted with the task of implementing Sweden's bilateral assistance to Russia, Ukraine, Georgia, Belarus and Armenia in the fields of reactor safety, nuclear waste management, nuclear non-proliferation as well as radiation protection and emergency preparedness. In these fields, SSM also participates in various projects financed by the European Union. The purpose of this project-oriented report is to provide the Swedish Government and other funding agencies as well as other interested audiences in Sweden and abroad with an encompassing understanding of our work and in particular the work performed during 2008. the activities are divided into four subfields: Nuclear waste management; Reactor safety; Radiation safety and emergency preparedness; and, Nuclear non-proliferation. SSM implements projects in the field of spent nuclear fuel and radioactive waste management in Russia. The problems in this field also exist in other countries, yet the concentration of nuclear and radioactive materials are nowhere higher than in north-west Russia. And given the fact that most of these materials stem from the Cold War era and remain stored under conditions that vary from 'possibly acceptable' to 'wildly appalling' it is obvious that Sweden's first priority in the field of managing nuclear spent fuel and radioactive waste lies in this part of Russia. The prioritisation and selection of projects in reactor safety are established following thorough discussions with the partners in Russia and Ukraine. For specific guidance on safety and recommended safety improvements at RBMK and VVER reactors, SSM relies on analyses and handbooks established by the IAEA in the 1990s. In 2008, there were 16 projects in reactor safety. SSM implements a large number of projects in the field of radiation protection and emergency preparedness. The activities are at a first glance at some distance from the activities covered and foreseen by for instance the

  7. 54 countries and 5 international organizations join in a worldwide exercise in nuclear emergency management

    International Nuclear Information System (INIS)

    2001-01-01

    As part of ongoing international cooperation to deal with possible nuclear emergencies, on 22-23 May 2001, an extensive international nuclear emergency exercise will be carried out at the Gravelines NPP. The main objectives of the exercise are to test existing national and international procedures and arrangements for responding to nuclear emergency, co-ordinate the release of information and assess the effectiveness of advisory and decision making mechanism. The IAEA has specific responsibilities under two international conventions related to emergencies involving ionizing radiation - the Convention on Early Notification of a Nuclear Accident and the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency

  8. Role of first responder's training in the management of nuclear and radiological emergencies

    International Nuclear Information System (INIS)

    Nagarajan, V.; Sankhla, Rajesh; Verma, R.K.

    2008-01-01

    Consequent to the terrorist attacks on WTC in USA and other similar terrorist attacks worldwide, there has been increasing public concern regarding the use of radioactive materials in a malevolent act. As the radioactive sources are widely used in the industries, terrorists may have access to these facilities and obtain the radioactive material suitable for making Radioactive Dispersal Device (RDD) often called as dirty bomb. Response to nuclear or radiological emergency may involve highly specialized agencies or technical experts. Hence well-coordinated arrangements must be integrated with those required for any other conventional emergencies. During radiological emergencies, emergency service personnel are expected to play a major role in the early response. Though these personnel are well equipped and trained in tackling the normal emergencies it is essential to train them to deal with the radiological emergencies due to inherent characteristics of radioactivity. For the effective management of radiological emergencies, these first responders are required to be trained in such a way that they understand the concept of radiation protection. This objective can be achieved by using a typical training module consisting of interactive class room lectures, practical sessions to use the instruments and handling of radioactive sources, demonstration of radiation protection practices, exhibition of all radiation survey instruments and protective equipment etc., display of various posters and RDD Emergency Exercise. (author)

  9. Development of a standard communication protocol for an emergency situation management in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man Cheol, E-mail: charleskim@kaeri.re.k [Integrated Risk Assessment Center, Korea Atomic Energy Research Institute, 150, Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Park, Jinkyun; Jung, Wondea [Integrated Risk Assessment Center, Korea Atomic Energy Research Institute, 150, Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Hanjeom; Kim, Yoon Joong [YGN Nuclear Power Division Training Center, Korea Hydro and Nuclear Power Company, 517 Kyemari, Hongnong-eup, Yeongkwang-gun, Chonnam 513-880 (Korea, Republic of)

    2010-06-15

    Correct communication between main control room (MCR) operators is an important factor in the management of emergency situations in nuclear power plants (NPPs). For this reason, a standard communication protocol for the management of emergency situations in NPPs has been developed, with the basic direction of enhancing the safety of NPPs and the standardization of communication protocols. To validate the newly developed standard communication protocol, validation experiments with 10 licensed NPP MCR operator teams was performed. From the validation experiments, it was found that the use of the standard communication protocol required more time, but it can contribute to the enhancement of the safety of NPPs by an operators' better grasp of the safety-related parameters and a more efficient and clearer communication between NPP operators, while imposing little additional workloads on the NPP MCR operators. The standard communication protocol is expected to be used to train existing NPP MCR operators without much aversion, as well as new operators.

  10. Populations protection and territories management in nuclear emergency and post-accident situation

    International Nuclear Information System (INIS)

    Bourrel, M.; Calmon, Ph.; Calvez, M.; Chambrette, V.; Champion, D.; Devin, P.; Godino, O.; Lombard, J.; Rzepka, J.P.; Schneider, Th.; Verhaeghe, B.; Cogez, E.; Kayser, O.; Guenon, C.; Jourdain, J.R.; Bouchot, E.; Murith, Ch.; Lochard, J.; Cluchier, A.; Vandecasteele, Ch.; Pectorin, X.; Dubiau, Ph.; Gerphagnon, O.; Roche, H.; Cessac, B.; Cochard, A.; Machenaud, G.; Jourdain, J.R.; Pirard, Ph.; Leger, M.; Bouchot, E.; Demet, M.; Charre, J.P.; Poumadere, M.; Cogez, E.

    2010-01-01

    This document gathers the slides of the available presentations given during these conference days. Twenty seven presentations out of 29 are assembled in the document and deal with: 1 - radiological and dosimetric consequences in nuclear accident situation: impact on the safety approach and protection stakes (E. Cogez); 2 - organisation of public authorities in case of emergency and in post-event situation (in case of nuclear accident or radiological terror attack in France and abroad), (O. Kayser); 3 - ORSEC plan and 'nuclear' particular intervention plan (PPI), (C. Guenon); 4 - thyroid protection by stable iodine ingestion: European perspective (J.R. Jourdain); 5 - preventive distribution of stable iodine: presentation of the 2009/2010 public information campaign (E. Bouchot); 6 - 2009/2010 iodine campaign: presentation and status (O. Godino); 7 - populations protection in emergency and post-accident situation in Switzerland (C. Murith); 8 - CIPR's recommendations on the management of emergency and post-accident situations (J. Lochard); 9 - nuclear exercises in France - status and perspectives (B. Verhaeghe); 10 - the accidental rejection of uranium at the Socatri plant: lessons learnt from crisis management (D. Champion); 11 - IRE's radiological accident of August 22, 2008 (C. Vandecasteele); 12 - presentation of the CEA's crisis national organisation: coordination centre in case of crisis, technical teams, intervention means (X. Pectorin); 13 - coordination and realisation of environmental radioactivity measurement programs, exploitation and presentation of results: status of IRSN's actions and perspectives (P. Dubiau); 14 - M2IRAGE - measurements management in the framework of geographically-assisted radiological interventions in the environment (O. Gerphagnon and H. Roche); 15 - post-accident management of a nuclear accident - the CODIRPA works (I. Mehl-Auget); 16 - nuclear post-accident: new challenges of crisis expertise (D. Champion); 17 - aid guidebooks

  11. The nuclear emergency plans

    International Nuclear Information System (INIS)

    Fuertes Menendez, M. J.; Gasco Leonarte, L.; Granada Ferrero, M. J.

    2007-01-01

    Planning of the response to emergencies in nuclear plants is regulated by the Basic Nuclear Emergency Plan (PLABEN). This basic Plan is the guidelines for drawing up, implementing and maintaining the effectiveness of the nuclear power plant exterior nuclear emergency plans. The five exterior emergency plans approved as per PLABEN (PENGUA, PENCA, PENBU, PENTA and PENVA) place special emphasis on the preventive issues of emergency planning, such as implementation of advance information programs to the population, as well as on training exercises and drills. (Author)

  12. Emergency management in the countries without nuclear power plants: the Italian case study

    International Nuclear Information System (INIS)

    Franzero, S.; Giaimo, G.; Pizzi, R.

    2003-01-01

    Full text: Italy stopped the activity of its nuclear power plants (NPPs), built up starting from the '60s, alter the accident occurred at the Chernobyl NPP in 1986 and the suspension of the use of nuclear energy for pacific motives, sanctioned by a popular referendum in 1987. They are going to be decommissioned in the near future. In spite of this, Italian people are still exposed to a risk of nuclear or radiological accidents, due to the presence of 1) research centres making use of nuclear reactors (although without critical masses); 2) industrial plants and storage centres that manage radioactive and nuclear materials; 3) the chance of foreign ships with nuclear engines mooring in some Italian harbours. Actually, the worst scenario deals with the possibility of an accident occuring at a foreign NPP, especially if the NPP is located less than 200 Km from the national boundaries. Inside this distance, there are 13 NPPs (see picture 1, next page), 6 located in France, 4 in Switzerland, 2 in Germany and 1 in Slovenia. An accident occurring at one of those NPPs is the basic scenario of the 'National plan of the countermeasures against radiological emergencies', which was prepared in 1996 and is now under review. The plan reports in detail the actions that national and local authorities must take in order to contain the effects of a possible radioactive plume diffusion coming from foreign countries: 1) the procedures to activate the relevant authorities; 2) the command and control sequence for the emergency management (which put at the top the Department of Civil Protection - DCP - established in the Presidency of the Council of Ministers); 3) the procedures for the information exchange between authorities and the people likely to be involved in the accident. In addition to the planned procedures, the Italian authorities have many technical and scientific tools at their disposal to survey disasters. Since the 80s, Italy has been provided with a national automatic

  13. On the benefits of multi-attribute risk analysis in nuclear emergency management

    International Nuclear Information System (INIS)

    Haemaelaeinen, R.P.; Lindstedt, M.

    1999-01-01

    The radiation protection authorities have seen a need to apply multi-attribute risk analysis in the nuclear emergency management and planning processes to deal with the conflicting objectives, different parties involved and uncertainties. This type of an approach is expected to help in at least the following three areas; to ensure that all the relevant attributes are considered in the decision making, to enhance communication between concerned parties including the population, and to provide a method for including risk analysis explicitly in the process. A MAUT analysis was used to select a strategy for protecting the population after a simulated nuclear accident. A value-focused approach and the use of a neutral facilitator were seen as very useful

  14. On the benefits of multi-attribute risk analysis in nuclear emergency management

    Energy Technology Data Exchange (ETDEWEB)

    Haemaelaeinen, R.P.; Lindstedt, M. [Helsinki Univ. of Technology (Finland). Systems Analysis Lab.; Sinkko, K. [The Radiation and Nuclear Safety Authority, Helsinki (Finland)

    1999-12-01

    The radiation protection authorities have seen a need to apply multi-attribute risk analysis in the nuclear emergency management and planning processes to deal with the conflicting objectives, different parties involved and uncertainties. This type of an approach is expected to help in at least the following three areas; to ensure that all the relevant attributes are considered in the decision making, to enhance communication between concerned parties including the population, and to provide a method for including risk analysis explicitly in the process. A MAUT analysis was used to select a strategy for protecting the population after a simulated nuclear accident. A value-focused approach and the use of a neutral facilitator were seen as very useful.

  15. Management of agricultural aspects in nuclear and/or radiological emergency situations

    International Nuclear Information System (INIS)

    Griperay, Gerard

    1997-01-01

    In revealing the agricultural aspects of the nuclear and/or radiological emergency situations the paper stresses upon the shocking role which the Chernobyl nuclear accident had on the agricultural management in France. Merely, the misunderstand, unawareness and lack of information relative to production as well as contamination conditions led to damages of FF 150 millions to the detriment of French farmers. Reflexions upon and analysis of this case has led to several conclusions concerning the role of information, the situation of international standards, and the lack of knowledge in important practical issues related to radioisotope migration in plants and agricultural products. Among the future lines of action in this field there are discussed the issues of indemnity, post-accident planning, drilling and information. In conclusion the following points are highlighted: 1. Redefinition of the EU standards; 2. Updating the situation of food and agricultural production units located around basic nuclear facilities in order to dispose of the necessary statistics to make decisions in emergency situations; 3. In absence of a post-accident plan, a scheme of action should be elaborated able to be rapidly implemented by public authorities in order to protect the consumer and restrict the supply to local market and exportation only to warranted agricultural products

  16. Planning for nuclear emergencies

    International Nuclear Information System (INIS)

    Lakey, J.R.A.

    1989-01-01

    This paper aims to stimulate discussions between nuclear engineers and the radiological protection professions in order to facilitate planning for nuclear emergencies. A brief review is given of the response to nuclear accidents. Studying accidents can lead to prevention, but some effort must be put into emergency response. Such issues as decontamination and decommissioning, socio-economic consequences, education and training for nuclear personnel and exercises and drills, are raised. (UK)

  17. Development of a decision support system for off-site emergency management in the early phase of a nuclear accident

    International Nuclear Information System (INIS)

    Datta, D.; Sharma, R.M.

    2002-01-01

    Full text: Experience gained after the Chernobyl accident clearly demonstrated the importance of improving administrative, organizational and technical emergency management arrangements in India. The more important areas where technical improvements were needed were early warning monitoring, communication networks for the rapid and reliable exchange of radiological and other information and decision support systems for off-site emergency management. A PC based artificial intelligent software has been developed to have a decision support system that can easily implement to manage off-site nuclear emergency and subsequently analyze the off-site consequences of the nuclear accident. A decision support tool, STEPS (source term estimate based on plant status), that provides desired input to the present software was developed. The tool STEPS facilitates meta knowledge of the system. The paper describes the details of the design of the software, functions of various modules, tuning of respective knowledge base and overall its scope in real sense in nuclear emergency preparedness and response

  18. Information system as technical support for the management of nuclear emergencies

    International Nuclear Information System (INIS)

    Di Marco, G.; Masone, M.; Ursino, S.

    1995-01-01

    Following the Chernobyl accident that affected large European areas, many countries have improved their organizations for the management of radiological emergencies, in order to make them suitable to face situations with a large territorial impact in terms of contamination. In case of accidents with a deep radiological impact, the national competent authority has the role to make decisions about countermeasures to be adopted in order to minimize the consequences of the contamination to population and to the environment. Such countermeasures get adopted on the basis of measured contamination as well as on the basis of the forecast evolution of the radioactive plume. In order to accomplish this role, it is necessary to have, in real time, the availability of all the relevant information required to assess and to continuously update the accident scenario as well as the possibility to perform forecasts about the evolution of the situation. To this purpose ANPA Emergency Centre has designed and implemented an Information System in Support to Nuclear Emergencies Management (SISGEN) which is rapid and reliable in the acquisition and elaboration of huge quantities of data. This paper presents data elaborated by the information system as well as objectives, functions and architecture of the system

  19. Cooperation in Nuclear Waste Management, Radiation Protection, Emergency Preparedness, Reactor Safety and Nuclear Non-Proliferation in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Dassen, Lars van; Delalic, Zlatan; Ekblad, Christer; Keyser, Peter; Turner, Roland; Rosengaard, Ulf; German, Olga; Grapengiesser, Sten; Andersson, Sarmite; Sandberg, Viviana; Olsson, Kjell; Stenberg, Tor

    2009-10-15

    The Swedish Radiation Safety Authority (SSM) is trusted with the task of implementing Sweden's bilateral assistance to Russia, Ukraine, Georgia, Belarus and Armenia in the fields of reactor safety, nuclear waste management, nuclear non-proliferation as well as radiation protection and emergency preparedness. In these fields, SSM also participates in various projects financed by the European Union. The purpose of this project-oriented report is to provide the Swedish Government and other funding agencies as well as other interested audiences in Sweden and abroad with an encompassing understanding of our work and in particular the work performed during 2008. the activities are divided into four subfields: Nuclear waste management; Reactor safety; Radiation safety and emergency preparedness; and, Nuclear non-proliferation. SSM implements projects in the field of spent nuclear fuel and radioactive waste management in Russia. The problems in this field also exist in other countries, yet the concentration of nuclear and radioactive materials are nowhere higher than in north-west Russia. And given the fact that most of these materials stem from the Cold War era and remain stored under conditions that vary from 'possibly acceptable' to 'wildly appalling' it is obvious that Sweden's first priority in the field of managing nuclear spent fuel and radioactive waste lies in this part of Russia. The prioritisation and selection of projects in reactor safety are established following thorough discussions with the partners in Russia and Ukraine. For specific guidance on safety and recommended safety improvements at RBMK and VVER reactors, SSM relies on analyses and handbooks established by the IAEA in the 1990s. In 2008, there were 16 projects in reactor safety. SSM implements a large number of projects in the field of radiation protection and emergency preparedness. The activities are at a first glance at some distance from the activities covered and

  20. Proposals on the establishment of the decision support systems for nuclear emergency management in China

    International Nuclear Information System (INIS)

    Qu Jingyuan; Wang Xingyu; Xue Dazhi; Shi Zhongqi; Xi Shuren; Cao Jianzhu

    2003-01-01

    As an important part of Chinese three-level nuclear emergency management system, decision support/accident consequence assessment systems have primarily been established at national, provincial and licensee levels. Valuable experience has been accumulated in the development, operation and maintenance of these systems. At the same time, more and more attention has been paid to their performance regarding to accurate judgment and forecast as well as the application of the information provided by them in a decision-making in the event of an accident. This paper briefly presents current status of the development and application of the systems in China. Then it discusses the need to establish a comprehensive network of decision support/accident consequence assessment systems based on the current systems built up at national, provincial and licensee levels. Finally, the way by which this ultimate goal can be achieved is proposed in this paper

  1. Status and perspective on the research and development of the chinese decision support system for nuclear emergency management

    International Nuclear Information System (INIS)

    Qu Jingyuan; Cao Jianzhu; Liu Lei; Xue Dazhi; Xi Shuren

    2001-01-01

    The research and development of the Chinese decision support system for nuclear emergency management is now under the way. The framework of the European decision support system for nuclear emergencies is taken as the platform for the development of the Chinese system. The objective of the Chinese project is to provide technical support to decision-makers in the decision-making of protective actions in the event of a major nuclear accident. The author presents the organization, current status and future prospect on the Chinese effort

  2. Nuclear and Radiological Emergency Management and Rehabilitation Strategies: Towards a EU approach for decision support tools

    International Nuclear Information System (INIS)

    Raskob, W.; Gering, F.; Lochard, J.; Nisbet, A.; Starostova, V.; Tomic, B.

    2011-01-01

    Highlights: → European emergency management and rehabilitation was strengthened. → Development of generic European handbooks for urban and agricultural areas. → Decision support systems became more operational. → Harmonisation of tools in Europe has been promoted. - Abstract: The 5-year multi-national project EURANOS (European Approach to Nuclear and Radiological Emergency Management and Rehabilitation Strategies), funded by the European Commission and 23 European Member States, started in April 2004. Integrating 17 national emergency management organisations with 33 research institutes, it brings together best practices, knowledge and technology to enhance the preparedness for Europe's response to any radiation emergency and long term contamination. Key objectives of the project are to collate information on the likely effectiveness and consequences of a wide range of countermeasures, to provide guidance to emergency management organisations and decision makers on the establishment of an appropriate response strategy and to further enhance advanced decision support systems (DSS), in particular, RODOS (Real-time On-line Decisions Support) decision support system), through feedback from their operational use. Further, the project aims to create regional initiatives leading to information exchange based on state-of-the-art information technologies, to develop guidance which assists Member States in developing a framework for the sustainable rehabilitation of living conditions in contaminated areas and to maintain and enhance knowledge and competence through emergency exercises, training and education, thus fostering best practice in emergency response. The project is divided into three major research activities and a set of demonstration projects which are split in two phases lasting over two and three years, respectively. The research activities address specific issues previously identified by the users or by previous research in the area. They are focused

  3. Knowledge databases as instrument for a fast assessment in nuclear emergency management

    Energy Technology Data Exchange (ETDEWEB)

    Raskob, Wolfgang; Moehrle, Stella [Institute for Nuclear and Energy Technologies, Karlsruhe Institute of Technology (KIT), Hermann-von- Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-07-01

    The European project PREPARE (Innovative integrated tools and platforms for radiological emergency preparedness and post-accident response in Europe) aims to close gaps that have been identified in nuclear and radiological preparedness following the first evaluation of the Fukushima disaster. Among others, a work package was established to develop a so called Analytical Platform exploring the scientific and operational means to improve information collection, information exchange and the evaluation of such types of disasters. As methodological approach knowledge databases and case-based reasoning (CBR) will be used. The application of knowledge gained from previous events or the establishment of scenarios in advance to anticipate possible event developments are used in many areas, but so far not in nuclear and radiological emergency management and preparedness. However in PREPARE, knowledge databases and CBR should be combined by establishing a database, which contains historic events and scenarios, their propagation with time, and applied emergency measures and using the CBR methodology to find solutions for events that are not part of the database. The objectives are to provide information about consequences and future developments after a nuclear or radiological event and emergency measures, which include early, intermediate and late phase actions. CBR is a methodology to solve new problems by utilizing knowledge of previously experienced problem situations. In order to solve a current problem, similar problems from a case base are retrieved. Their solutions are taken and, if necessary, adapted to the current situation. The suggested solution is revised and if it is confirmed, it is stored in the case base. Hence, a CBR system learns with time by storing new cases with its solutions. CBR has many advantages, such as solutions can be proposed quickly and do not have to be made from scratch, solutions can be proposed in domains that are not understood completely

  4. Emerging nuclear suppliers

    International Nuclear Information System (INIS)

    Sands, A.

    1990-01-01

    Efforts to prevent the spread of nuclear weapons have usually taken two tracks: The traditional approach has concentrated on a potential proliferant's perceived need for nuclear technology and possibly weapons; a second approach has targeted the supply side of the proliferation equation. The issue being examined in this book---emerging nuclear suppliers---falls between these two approaches. The potential proliferants have emerged as possible unrestrained suppliers of nuclear materials and technology. They threaten the entire nonproliferation regime by their exporting, not their weapons development. Analyzing and understanding the issue of emerging suppliers requires a refined definition of suppliers in general. The simple dichotomy of traditional versus emerging suppliers is no longer an adequate framework for analysis. Suppliers differ significantly in their technical capabilities, experience, and regime involvement, and these distinctions result in different nuclear export policies

  5. The RODOS system: decision support for nuclear off-site emergency management in Europe

    International Nuclear Information System (INIS)

    Raskob, W.; Ehrhardt, J.

    2000-01-01

    The integrated and comprehensive real-time on-line decision support system, RODOS, for off-site emergency management of nuclear accidents has been developed with support of the European Commission and the German Ministry of Environment. About 40 West and East European institutes have been involved in the development of the existing version for (pre-) operational use. This paper gives an overview of the structure, the content, the main functions and the development status of the RODOS system. It describes how the system has been and is being installed in emergency centres of a number of European counties. Designed as a generic tool, the RODOS system is applicable from the very early stages of an accident up to many year after the release and from the vicinity of a site to far distant areas, unperturbed by national boundaries. Decision support is provided by the system at various levels, ranging from the largely descriptive with information on the present and future radiological situation, to an evaluation of the benefits and disadvantages of different countermeasures' options and their feasibility. This includes ranking them according to the decision-makers' expressed preferences and weights with due consideration of subjective arguments on socio-psychological and political influences. The capability of the RODOS software framework for integrating models, methods and database in a modular way and the flexibility of the user interface will be addressed in the paper. Their functionalities offer the possibility of adapting RODOS to local, regional and national conditions, in particular to the corresponding meteorological and radiological monitoring networks, the geographical and economic structures, different plant types and accident conditions. A hierarchy of user interfaces allows adaptation of the system to the needs and qualifications of users in real emergencies and in training and exercises. The potential role of RODOS for improving emergency response in Europe

  6. Emerging Challenges in the Development and Management of Nuclear Knowledge in Kenya

    International Nuclear Information System (INIS)

    Chesori, R.C.; Kilavi, P.K.; Omondi, C.

    2016-01-01

    Full text: Nuclear knowledge remains a crucial asset in the nuclear industry. Establishment of new nuclear builds, operations, maintenance and the decommissioning of nuclear power plants (NPPs) essentially are knowledge intensive endeavors that require a lot of technical expertise. The expertise is defined by knowledgeable and competent personnel that range from nuclear engineers to nuclear economists, nuclear lawyers, and environmentalists among others. The technological challenge facing the industry currently is the aging experts that have created a huge knowledge gap that threatens the future of the industry. This realization has caused an alarm and has led to concerted efforts aimed at facilitating knowledge transfer to younger generations at a global scale especially in countries with established nuclear industry. This effort has led to development of nuclear knowledge management best practices models by knowledge experts at IAEA that seeks to assist member states in coping with the present day challenges in the industry. (author

  7. Accident and emergency management

    International Nuclear Information System (INIS)

    Andersen, V.; Moellenbach, K.; Heinonen, R.; Jakobsson, S.; Kukko, T.; Berg, Oe.; Larsen, J.S.; Westgaard, T.; Magnusson, B.; Andersson, H.; Holmstroem, C.; Brehmer, B.; Allard, R.

    1988-06-01

    There is an increasing potential for severe accidents as the industrial development tends towards large, centralised production units. In several industries this has led to the formation of large organisations which are prepared for accidents fighting and for emergency management. The functioning of these organisations critically depends upon efficient decision making and exchange of information. This project is aimed at securing and possibly improving the functionality and efficiency of the accident and emergency management by verifying, demonstrating, and validating the possible use of advanced information technology in the organisations mentioned above. With the nuclear industry in focus the project consists of five main activities: 1) The study and detailed analysis of accident and emergency scenarios based on records from incidents and rills in nuclear installations. 2) Development of a conceptual understanding of accident and emergency management with emphasis on distributed decision making, information flow, and control structure sthat are involved. 3) Development of a general experimental methodology for evaluating the effects of different kinds of decision aids and forms of organisation for emergency management systems with distributed decision making. 4) Development and test of a prototype system for a limited part of an accident and emergency organisation to demonstrate the potential use of computer and communication systems, data-base and knowledge base technology, and applications of expert systems and methods used in artificial intelligence. 5) Production of guidelines for the introduction of advanced information technology in the organisations based on evaluation and validation of the prototype system. (author)

  8. Nuclear knowledge management

    International Nuclear Information System (INIS)

    2007-01-01

    The management of nuclear knowledge has emerged as a growing challenge in recent years. The need to preserve and transfer nuclear knowledge is compounded by recent trends such as ageing of the nuclear workforce, declining student numbers in nuclear-related fields, and the threat of losing accumulated nuclear knowledge. Addressing these challenges, the IAEA promotes a 'knowledge management culture' through: - Providing guidance for policy formulation and implementation of nuclear knowledge management; - Strengthening the contribution of nuclear knowledge in solving development problems, based on needs and priorities of Member States; - Pooling, analysing and sharing nuclear information to facilitate knowledge creation and its utilization; - Implementing effective knowledge management systems; - Preserving and maintaining nuclear knowledge; - Securing sustainable human resources for the nuclear sector; and - Enhancing nuclear education and training

  9. Emergency monitoring strategy and radiation measurements document of the NKS project emergency management and radiation monitoring in nuclear and radiological accidents (EMARAD)

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, J. [Radiation and Nuclear Safety Authority (STUK) (Finland)

    2006-04-15

    This report is one of the deliverables of the NKS Project Emergency management and radiation monitoring in nuclear and radiological accidents (EMARAD) (20022005). The project and the overall results are briefly described in the NKS publication 'Emergency Management and Radiation Monitoring in Nuclear and Radiological Accidents. Summary Report on the NKS Project EMARAD' (NKS-137, April 2006). In a nuclear or radiological emergency, all radiation measurements must be performed efficiently and the results interpreted correctly in order to provide the decision-makers with adequate data needed in analysing the situation and carrying out countermeasures. Managing measurements in different situations in a proper way requires the existence of pre-prepared emergency monitoring strategies. Preparing a comprehensive yet versatile strategy is not an easy task to perform because there are lots of different factors that have to be taken into account. The primary objective of this study was to discuss the general problematics concerning emergency monitoring strategies and to describe a few important features of an efficient emergency monitoring system as well as factors affecting measurement activities in practise. Some information concerning the current situation in the Nordic countries has also been included. (au)

  10. Emergency monitoring strategy and radiation measurements. Working document of the NKS project emergency management and radiation monitoring in nuclear and radiological accidents (EMARAD)

    International Nuclear Information System (INIS)

    Lahtinen, J.

    2006-04-01

    This report is one of the deliverables of the NKS Project Emergency management and radiation monitoring in nuclear and radiological accidents (EMARAD) (20022005). The project and the overall results are briefly described in the NKS publication 'Emergency Management and Radiation Monitoring in Nuclear and Radiological Accidents. Summary Report on the NKS Project EMARAD' (NKS-137, April 2006). In a nuclear or radiological emergency, all radiation measurements must be performed efficiently and the results interpreted correctly in order to provide the decision-makers with adequate data needed in analysing the situation and carrying out countermeasures. Managing measurements in different situations in a proper way requires the existence of pre-prepared emergency monitoring strategies. Preparing a comprehensive yet versatile strategy is not an easy task to perform because there are lots of different factors that have to be taken into account. The primary objective of this study was to discuss the general problematics concerning emergency monitoring strategies and to describe a few important features of an efficient emergency monitoring system as well as factors affecting measurement activities in practise. Some information concerning the current situation in the Nordic countries has also been included. (au)

  11. The emerging nuclear suppliers

    International Nuclear Information System (INIS)

    Dunn, L.A.

    1990-01-01

    Since the early 1980s, a growing amount of attention has been paid to a small group of mostly developing countries that have come to be called the emerging nuclear suppliers. Argentina and Brazil, China and South Korea, India and Pakistan, Spain and Yugoslavia have frequently been mentioned in this category. Their actual and potential nuclear export dealings and policies have been the subject of academic writings and policy papers, of scholarly symposia and exchanges at meetings of the traditional nuclear suppliers. With foundation and other support, UCLA's Center for International and Strategic Affairs has begun a major project to develop a database on the transactions, policies, and export control institutions of the emerging suppliers. This chapter provides some guidelines for policy toward the emerging nuclear suppliers

  12. Evaluation of management of communication in the actions of preparedness and response to nuclear and radiological emergencies

    Energy Technology Data Exchange (ETDEWEB)

    Mello Filho, Mauro Otto de Cavalcanti; Beserra, Marcela Tatiana Fernandes, E-mail: maurootto@cefet-rj.br, E-mail: maurootto@gmail.com, E-mail: mbeserra@cefet-rj.br [Centro Federal de Educacao Celso Sucknow da Fonseca (CEFET-RJ), Rio de Janeiro, RJ (Brazil); Wasserman, Maria Angelica Vergara, E-mail: mwasserman@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Wasserman, Julio Cesar de Faria Alvim, E-mail: geowass@vm.uff.br [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2013-07-01

    The use of practices involving the use of ionizing radiation in diverse areas of knowledge increases every day. This growth warning about the increased probability of accidents, radiological and nuclear emergencies, with possible consequences for the public, workers and the environment. Within this scenario, it is clear that studies and reassessments of the emergency response actions, receive proposals for continuous improvement. The achievement of the objectives of the response must be sustained by tactical, operation and logistics optimized processes. The articulation through communication between the teams involved in the response must be adaptable to each accident or emergency, respecting its size. The objectives of this study is to perform an assessment on the management of communication in the actions of Preparedness and Response to Nuclear and Radiological Emergencies. This assessment is supported by best practices of the Incident Command System (ICS) and the Institute of Project Management (Project Management Institute-PMI). For this purpose, based on models referred were established performance indicators supported by the BSC (Balanced Scorecard). These indicators allowed to evaluate more objectively the performance of the communication processes associated with each phase of the response. The study resulted in the proposed model documents aiming to assist planning of communications exercises in preparation and response actions, supported and adapted the best practices of PMI. These methodologies were evaluated by real cases selected from radiological and nuclear emergencies published by the International Atomic Energy Agency (IAEA). (author)

  13. Evaluation of management of communication in the actions of preparedness and response to nuclear and radiological emergencies

    International Nuclear Information System (INIS)

    Mello Filho, Mauro Otto de Cavalcanti; Beserra, Marcela Tatiana Fernandes; Wasserman, Maria Angelica Vergara; Wasserman, Julio Cesar de Faria Alvim

    2013-01-01

    The use of practices involving the use of ionizing radiation in diverse areas of knowledge increases every day. This growth warning about the increased probability of accidents, radiological and nuclear emergencies, with possible consequences for the public, workers and the environment. Within this scenario, it is clear that studies and reassessments of the emergency response actions, receive proposals for continuous improvement. The achievement of the objectives of the response must be sustained by tactical, operation and logistics optimized processes. The articulation through communication between the teams involved in the response must be adaptable to each accident or emergency, respecting its size. The objectives of this study is to perform an assessment on the management of communication in the actions of Preparedness and Response to Nuclear and Radiological Emergencies. This assessment is supported by best practices of the Incident Command System (ICS) and the Institute of Project Management (Project Management Institute-PMI). For this purpose, based on models referred were established performance indicators supported by the BSC (Balanced Scorecard). These indicators allowed to evaluate more objectively the performance of the communication processes associated with each phase of the response. The study resulted in the proposed model documents aiming to assist planning of communications exercises in preparation and response actions, supported and adapted the best practices of PMI. These methodologies were evaluated by real cases selected from radiological and nuclear emergencies published by the International Atomic Energy Agency (IAEA). (author)

  14. Nuclear emergency preparedness: national organisation

    Energy Technology Data Exchange (ETDEWEB)

    El Messaoudi, M.; Essadki, H.; Lferde, M.; Moutia, Z. [Faculte des Sciences, Dept. de Physique, Rabat (Morocco)

    2006-07-01

    As in all other industries, the nuclear facilities can be the object of accidents whose consequences go beyond the limits of their site and consequently radioactive releases would be issued in the environment justifying the protection measures of population. Even if all the precautions were taken during the stages from the design to the operation, to reduce the risk of accident in nuclear installations, this risk can not be completely suppressed. For the radiological risk, as for the other major risks, the protection of the public always was taken in consideration by public power. The nuclear emergency plan gives the opportunity to have a quick appropriate reaction to a sudden event, which has (or might have) direct consequences for the population. The Moroccan public authorities had proceeded to reinforce at the national level, the control of nuclear safety and protection against radiation by the set up of a new nuclear safety authority. Evidently, the organization and the management of a nuclear and/or radiological emergency were at centre of this reform. Taking into account the subjective risk of radiological terrorism, the authorities should reinforce measurements guaranteeing radiological safety and security, and elaborate the appropriate emergency plans. The aim of this paper is to give a progress report on nuclear emergency plan aspects and to present a corresponding organization which could be applied by national authority. (authors)

  15. Nuclear emergency preparedness: national organisation

    International Nuclear Information System (INIS)

    El Messaoudi, M.; Essadki, H.; Lferde, M.; Moutia, Z.

    2006-01-01

    As in all other industries, the nuclear facilities can be the object of accidents whose consequences go beyond the limits of their site and consequently radioactive releases would be issued in the environment justifying the protection measures of population. Even if all the precautions were taken during the stages from the design to the operation, to reduce the risk of accident in nuclear installations, this risk can not be completely suppressed. For the radiological risk, as for the other major risks, the protection of the public always was taken in consideration by public power. The nuclear emergency plan gives the opportunity to have a quick appropriate reaction to a sudden event, which has (or might have) direct consequences for the population. The Moroccan public authorities had proceeded to reinforce at the national level, the control of nuclear safety and protection against radiation by the set up of a new nuclear safety authority. Evidently, the organization and the management of a nuclear and/or radiological emergency were at centre of this reform. Taking into account the subjective risk of radiological terrorism, the authorities should reinforce measurements guaranteeing radiological safety and security, and elaborate the appropriate emergency plans. The aim of this paper is to give a progress report on nuclear emergency plan aspects and to present a corresponding organization which could be applied by national authority. (authors)

  16. Emergency Management and Radiation Monitoring in Nuclear and Radiological Accidents. Summary Report on the NKS Project EMARAD

    International Nuclear Information System (INIS)

    Lahtinen, J.

    2006-04-01

    In order to manage various nuclear or radiological emergencies the authorities must have pre-prepared plans. The purpose of the NKS project EMARAD (Emergency Management and Radiation Monitoring in Nuclear and Radiological Accidents) was to produce and gather various data and information that could be useful in drawing up emergency plans and radiation monitoring strategies. One of the specific objectives of the project was to establish a www site that would contain various radiation-threat and radiation-monitoring related data and documents and that could be accessed by all Nordic countries. Other important objectives were discussing various factors affecting measurements in an emergency, efficient use of communication technology and disseminating relevant information on such topics as urban dispersion and illicit use of radiation. The web server is hosted by the Radiation and Nuclear Safety Authority (STUK) of Finland. The data stored include pre-calculated consequence data for nuclear power plant accidents as well as documents and presentations describing e.g. general features of monitoring strategies, the testing of the British urban dispersion model UDM and the scenarios and aspects related to malicious use of radiation sources and radioactive material. As regards the last item mentioned, a special workshop dealing with the subject was arranged in Sweden in 2005 within the framework of the project. (au)

  17. Emergency Management and Radiation Moni-toring in Nuclear and Radiological Accidents. Summary Report on the NKS Project EMARAD

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, J [Radiation and Nuclear Safety Authority (STUK) (Finland)

    2006-04-15

    In order to manage various nuclear or radiological emergencies the authorities must have pre-prepared plans. The purpose of the NKS project EMARAD (Emergency Management and Radiation Monitoring in Nuclear and Radiological Accidents) was to produce and gather various data and information that could be useful in drawing up emergency plans and radiation monitoring strategies. One of the specific objectives of the project was to establish a www site that would contain various radiation-threat and radiation-monitoring related data and documents and that could be accessed by all Nordic countries. Other important objectives were discussing various factors affecting measurements in an emergency, efficient use of communication technology and disseminating relevant information on such topics as urban dispersion and illicit use of radiation. The web server is hosted by the Radiation and Nuclear Safety Authority (STUK) of Finland. The data stored include pre-calculated consequence data for nuclear power plant accidents as well as documents and presentations describing e.g. general features of monitoring strategies, the testing of the British urban dispersion model UDM and the scenarios and aspects related to malicious use of radiation sources and radioactive material. As regards the last item mentioned, a special workshop dealing with the subject was arranged in Sweden in 2005 within the framework of the project. (au)

  18. Accident management in the case of serious emergencies in nuclear power plant

    International Nuclear Information System (INIS)

    1990-06-01

    On-site emergency planning comprises all action taken in a nuclear power station to identify beyond-design base accidents at an early stage and reliably, to keep it under control and overcome it with the minimum of damage. The individual papers set out the basic terminology, the thermohydraulic processes in the cooling circuits during severe incidents, action to maintain the integrity of the containment, the potential of expert systems, simulator training and new developments for simulating accident conditions. (DG) [de

  19. Improvment, extension and integration of operational decision support systems for nuclear emergency management (DSSNET)

    International Nuclear Information System (INIS)

    Ehrhardt, J.

    2005-07-01

    The DSSNET network was established in October 2000 with the overall objective to create an effective and accepted framework for better communication and understanding between the community of institutions involved in operational off-site emergency management and the many and diverse RTD institutes further developing methods and tools in this area, in particular decision support systems (DSS), for making well informed and consistent judgements with respect to practical improvements of emergency response in Europe. 37 institutions from 21 countries of East and West Europe have been members of the network with about half of them responsible for operational emergency management. The objectives of the network have been numerous and the more important ones include: to ensure that future RTD is more responsive to user needs, to inform the user community of new developments and their potential for improving emergency response, to improve operational decision support systems from feedback of operational experience, to identify how information and data exchange between countries can be improved, to promote greater coherence among operational decision support systems and to encourage shared development of new and improved decision support systems features, and to improve the practicability of operational decision support systems. To stimulate the communication and feedback between the operational and the RTD community, problem-oriented emergency exercises were performed, which covered the various time phases of an accident and which extended from the near range to farther distances with frontier crossing transport of radionuclides. The report describes the objectives of the DSSNET, the five emergency exercises performed and the results of their evaluation. They provided valuable insight and lessons for operators and users of decision support systems, in particular the need for much more intensive training and exercising with decision support systems and their interaction with

  20. Improvement, extension and integration of operational decision support systems for nuclear emergency management (DSSNET)

    International Nuclear Information System (INIS)

    Raskob, W.

    2007-01-01

    The DSSNET network was established in October 2000 with the overall objective to create an effective and accepted framework for better communication and understanding between the community of institutions involved m operational off-site emergency management and the many and diverse Research and Technological Development (RTD) institutes further developing methods and tools in this area, in particular decision support systems (DSS), for making well informed and consistent judgements with respect to practical improvements of emergency response in Europe. 37 institutions from 21 countries of East and West Europe have been members of the network with about half of them responsible for operational emergency management. To stimulate the communication and feedback between the operational and the RTD community, problem-oriented emergency exercises were performed, which covered the various time phases of an accident and which extended from the near range to farther distances with frontier crossing transport of radionuclides. This paper concentrates on the five emergency exercises conducted in the frame of the project. (orig.)

  1. Information technology support for emergency management

    International Nuclear Information System (INIS)

    Uuspaeae, P.

    1990-01-01

    Information systems for distributed decision support for emergency management are considered. Specific applications include nuclear power plant emergencies. Emergencies in other industries such as chemical industry may also be considered. Research in the ISEM project is briefly summarized

  2. Strengths of common resources for managing emergencies in the Spanish nuclear power plants (CAE y UME)

    International Nuclear Information System (INIS)

    Blas, J. de

    2014-01-01

    Following the accident at the Fukushima-Daiichi power plants, the electrical sector of nuclear generation recognised the need to reinforce the capacities that the nuclear power plants already had and which they were developing in order to satisfy the requisites of the stress tests, with the additional support of equipment and human resources common to all of them. Thus the idea arose to create a Spanish emergency Support centre. Its scope included an intervention unit, pumping equipment and electrical generation, a centralised warehouse and transfer logistics. UNESA-UME Collaboration Protocol With the collaboration of the CSN as a mediator, the UME reached an agreement with the nuclear electrical sector (UNESA) in order to be able to increase knowledge about the Spanish nuclear power plants and establish a means of collaboration to be able to act with their own human and equipment resources at a site that might suffer an accident such as the one at the Japanese plants of Fukushima-Daiichi. (Author)

  3. Communication in nuclear emergency

    International Nuclear Information System (INIS)

    Nozawa, Masao

    1996-01-01

    In order to take protection measures smoothly at the time of emergency in nuclear power stations and others, it is necessary to prepare information communication facilities mutually among disaster prevention organizations including the state and information transmission network for residents in surrounding areas. The matters decided in ''the measures to be taken for the time being for the countermeasures to prevent disaster in nuclear power stations and others'' are shown. In order to avoid the congestion of communication, the exclusively used communication systems are adopted for disaster prevention organizations, in which facsimile is used to transmit graphic information. The data communication circuits for distributing SPEEDI are installed between Science and Technology Agency, Nuclear Power Safety Technology Center and respective prefectures. The routes, means and order of notices must be confirmed beforehand mutually among the related organizations. As to the general communication for disaster countermeasures, the communication systems in ministries and agencies are described. (K.I.)

  4. Fusion of Nuclear and Emerging Technology

    International Nuclear Information System (INIS)

    Nahrul Khaer Alang Rashid

    2005-04-01

    The presentation discussed the following subjects: emerging technology; nuclear technology; fusion emerging and nuclear technology; progressive nature of knowledge; optically stimulated luminescence - application of luminescence technology to sediments; Biosystemics technology -convergence nanotechnology, ecological science, biotechnology, cognitive science and IT - prospective impact on materials science, the management of public system for bio-health, eco and food system integrity and disease mitigation

  5. European approach to nuclear and radiological emergency management and rehabilitation strategies (EURANOS)

    International Nuclear Information System (INIS)

    Raskob, W.

    2007-01-01

    The 5-year multi-national project EURANOS, funded by the European Commission and 23 European Member States, started in April 2004. Integrating 17 national emergency management organisations with 33 research institutes, it brings together best practice, knowledge and technology to enhance the preparedness for Europe's response to any radiation emergency and long-term contamination. Key objectives of the project are to collate information on the likely effectiveness and consequences of a wide range of countermeasures, to provide guidance to emergency management organisations and decision makers on the establishment of an appropriate response strategy and to further enhance advanced decision support systems, in particular, RODOS (Real-time On-Line DecisiOn Support), through feedback from their operational use. The research activities focused on emergency actions and countermeasures, the enhancement of decision support systems for operational application and the development of strategies for the sustainable rehabilitation of contaminated territories. The demonstration activities exercise the developed methods and tools in the actual operational environment. (orig.)

  6. JRODOS system: a modern and efficient tool for the management and preparation of nuclear and radiological emergencies and rehabilitation. Implementation in Spain

    International Nuclear Information System (INIS)

    Montero Prieto, M.; Dvirzhark, A.; Acero, A.; Gallego Diaz, E.

    2011-01-01

    JRODOS system is revealed as an efficient, flexible and user-approved at European level to assist in the management of nuclear and radiological emergencies and the subsequent rehabilitation of contaminated environments, both at the national response in the first phase emergence as a regional / local level in emergency preparedness and recovery environment with the help of the social partners concerned.

  7. Improving the Reliability of Decision-Support Systems for Nuclear Emergency Management by Leveraging Software Design Diversity

    Directory of Open Access Journals (Sweden)

    Tudor B. Ionescu

    2016-03-01

    Full Text Available This paper introduces a novel method of continuous verification of simulation software used in decision-support systems for nuclear emergency management (DSNE. The proposed approach builds on methods from the field of software reliability engineering, such as N-Version Programming, Recovery Blocks, and Consensus Recovery Blocks. We introduce a new acceptance test for dispersion simulation results and a new voting scheme based on taxonomies of simulation results rather than individual simulation results. The acceptance test and the voter are used in a new scheme, which extends the Consensus Recovery Block method by a database of result taxonomies to support machine-learning. This enables the system to learn how to distinguish correct from incorrect results, with respect to the implemented numerical schemes. Considering that decision-support systems for nuclear emergency management are used in a safety-critical application context, the methods introduced in this paper help improve the reliability of the system and the trustworthiness of the simulation results used by emergency managers in the decision making process. The effectiveness of the approach has been assessed using the atmospheric dispersion forecasts of two test versions of the widely used RODOS DSNE system.

  8. Nuclear medicine in emergency

    International Nuclear Information System (INIS)

    Mansi, L.; Rambaldi, P.F.; Cuccurullo, V.; Varetto, T.

    2005-01-01

    The role of a procedure depends not only on its own capabilities but also on a cost/effective comparison with alternative technique giving similar information. Starting from the definition of emergency as a sudden unexpected occurrence demanding immediate action, the role of nuclear medicine (NM) is difficult to identify if it is not possible to respond 24h a day, 365 days a year, to clinical demands. To justify a 24 h NM service it is necessary to reaffirm the role in diagnosis of pulmonary embolism in the spiral CT era, to spread knowledge of the capabilities of nuclear cardiology in reliability diagnosis myocardial infraction (better defining admission and discharge to/from the emergency department), to increase the number of indications. Radionuclide technique could be used as first line, alternative, complementary procedures in a diagnostic tree taking into account not only the diagnosis but also the connections with prognosis and therapy in evaluating cerebral pathologies, acute inflammation/infection, transplants, bleeding, trauma, skeletal, hepatobiliary, renal and endocrine emergencies, acute scrotal pain

  9. Managing Terrorism or Accidental Nuclear Errors, Preparing for Iodine-131 Emergencies: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Eric R. Braverman

    2014-04-01

    Full Text Available Chernobyl demonstrated that iodine-131 (131I released in a nuclear accident can cause malignant thyroid nodules to develop in children within a 300 mile radius of the incident. Timely potassium iodide (KI administration can prevent the development of thyroid cancer and the American Thyroid Association (ATA and a number of United States governmental agencies recommend KI prophylaxis. Current pre-distribution of KI by the United States government and other governments with nuclear reactors is probably ineffective. Thus we undertook a thorough scientific review, regarding emergency response to 131I exposures. We propose: (1 pre-distribution of KI to at risk populations; (2 prompt administration, within 2 hours of the incident; (3 utilization of a lowest effective KI dose; (4 distribution extension to at least 300 miles from the epicenter of a potential nuclear incident; (5 education of the public about dietary iodide sources; (6 continued post-hoc analysis of the long-term impact of nuclear accidents; and (7 support for global iodine sufficiency programs. Approximately two billion people are at risk for iodine deficiency disorder (IDD, the world’s leading cause of preventable brain damage. Iodide deficient individuals are at greater risk of developing thyroid cancer after 131I exposure. There are virtually no studies of KI prophylaxis in infants, children and adolescents, our target population. Because of their sensitivity to these side effects, we have suggested that we should extrapolate from the lowest effective adult dose, 15–30 mg or 1–2 mg per 10 pounds for children. We encourage global health agencies (private and governmental to consider these critical recommendations.

  10. Trends in risk management in nuclear industry

    International Nuclear Information System (INIS)

    Kim, Inn Seock

    1996-01-01

    Safety management may be classified into three dimensions: risk management, accident management, and emergency management. This paper addresses the recent trends of safety management in nuclear industry, focussing on risk management and accident management

  11. Emergency management for a nuclear power plant using fuzzy cognitive maps

    International Nuclear Information System (INIS)

    Espinosa-Paredes, G.; Nunez-Carrera, A.; Laureano-Cruces, A.L.; Vazquez-Rodriguez, A.; Espinosa-Martinez, E.-G.

    2008-01-01

    This paper explores the application of fuzzy cognitive maps (FCM) to emergency operating procedures (EOPS), to represent the decision-making process during abnormal situations in a nuclear power plant (NPP). The decision-making process in a NPP is a complex process, due to the many elements involved in its operation, and the permanent attention demanded by its maintenance. At the present time, the decision making process in a NPP is analyzed and developed by reactor operators, based on a set of instructions as well as flow charts to mitigate the consequences of a broad range of transients, accidents and multiple equipment failures, whose main characteristic is to be linear representations of events within a scenario. One of the main objectives of this paper is to present a method based in FCM that could be applied in the development of EOPS, and show some simulations, specifically the loss of coolant accident (LOCA) scenario in a boiling water reactor (BWR) with the Mark II containment design was studied. The FCM-based method represents with high fidelity the expert reasoning (the human expert is very important) and the interpretation of the results aids instantly to the reactor operators in the surveillance of the reactor proper functionality due that they have the responsibility of the decision taking in emergency situations. The simulations results show that the FCM predict properly the phenomenon in the reactor vessel and primary containment

  12. Emergency preparedness: medical management of nuclear accidents involving large groups of victims

    International Nuclear Information System (INIS)

    Parmentier, N.; Nenot, J.C.

    1988-01-01

    The treatment of overexposed individuals implies hospitalisation in a specialized unit applying hematological intense care. If the accident results in a small number of casualties, the medical management does not raise major problems in most of the countries, where specialized units exist, as roughly 7% of the beds are available at any time. But an accident which would involved tens or hundreds of people raises much more problems for hospitalization. Such problems are also completely different and will involve steps in the medical handling, mainly triage, (combined injuries), determination of whole body dose levels, transient hospitalization. In this case, preplanning is necessary, adapted to the system of medical care in case of a catastrophic event in the given Country, with the main basic principles : emergency concerns essentially the classical injuries (burns and trauma) - and contamination problems in some cases - treatment of radiation syndrome is not an emergency during the first days but some essential actions have to be taken such as early blood sampling for biological dosimetry and for HLa typing

  13. Nuclear power plant emergency preparedness

    International Nuclear Information System (INIS)

    2005-01-01

    The guide sets forth detailed requirements on how the licensee of a nuclear power plant shall plan, implement and maintain emergency response arrangements. The guide is also applied to nuclear material and nuclear waste transport in situations referred to in guide YVL 6.5. Requirements on physical protection are presented in a separate guide of Finnish Radiation and Nuclear Safety Authority (STUK)

  14. Management of Radiological emergencies

    International Nuclear Information System (INIS)

    Lentijo, J. C.; Gil, E.; San Nicolas, J.; Lazuen, J. A.

    2004-01-01

    Spain has a system of planning and response to emergency situations that is structured and coordinated by the General Directorship of civil Defense of the Ministry of the Interior and in which all levels of the Public Administration. state, autonomous and municipal-and owners of potentially hazardous activities participate. Activities involving a nuclear or radiological risk have specific emergency plans whose general principles are based on the general emergency system and whose technical bases are consistent with international practices and recommendations. The Consejo de Seguridad Nuclear actively participates in the design, implementation and activation of these plans, and for this purpose has an organization superimposed on its ordinary working organization that is activated in the event of an accident, as well as an Emergency Room specifically designed to deal with nuclear and radiological emergencies. (Author)

  15. Cooperation in Nuclear Waste Management, Radiation Protection, Emergency Preparedness, Reactor Safety and Nuclear Non-Proliferation with the Russian Federation, Ukraine, Armenia, Georgia and Belarus

    International Nuclear Information System (INIS)

    Dassen, Lars van; Andersson, Sarmite; Bejarano, Gabriela; Delalic, Zlatan; Ekblad, Christer; German, Olga; Grapengiesser, Sten; Karlberg, Olof; Olsson, Kjell; Sandberg, Viviana; Stenberg, Tor; Turner, Roland; Zinger, Irene

    2010-06-01

    The Swedish Radiation Safety Authority (SSM) is trusted with the task of implementing Sweden's bilateral cooperation with Russia, Ukraine, Georgia, Belarus and Armenia in the fields of reactor safety, nuclear waste management, nuclear non-proliferation as well as radiation protection and emergency preparedness. In these fields, SSM also participates in a number of projects financed by the European Union. This report gives an overview of the cooperation projects in 2009 as well as the framework in which they are performed. Summaries of each project are given in an Appendix. The project managers in the Section for Cooperation and Development in the Department of International Affairs are responsible for the cooperation projects and the implementation of the bilateral programmes. But the positive outcome of the projects is also dependent on a large number of experts at SSM who work with the regulatory functions in the nuclear and radiation protection fields in a Swedish context as well as on external consultants. Together, their experience is invaluable for the implementation of the projects. But the projects also give experience of relevance for the SSM staff.

  16. Cooperation in Nuclear Waste Management, Radiation Protection, Emergency Preparedness, Reactor Safety and Nuclear Non-Proliferation with the Russian Federation, Ukraine, Armenia, Georgia and Belarus.

    Energy Technology Data Exchange (ETDEWEB)

    Dassen, Lars van; Andersson, Sarmite; Bejarano, Gabriela; Delalic, Zlatan; Ekblad, Christer; German, Olga; Grapengiesser, Sten; Karlberg, Olof; Olsson, Kjell; Sandberg, Viviana; Stenberg, Tor; Turner, Roland; Zinger, Irene

    2010-06-15

    The Swedish Radiation Safety Authority (SSM) is trusted with the task of implementing Sweden's bilateral cooperation with Russia, Ukraine, Georgia, Belarus and Armenia in the fields of reactor safety, nuclear waste management, nuclear non-proliferation as well as radiation protection and emergency preparedness. In these fields, SSM also participates in a number of projects financed by the European Union. This report gives an overview of the cooperation projects in 2009 as well as the framework in which they are performed. Summaries of each project are given in an Appendix. The project managers in the Section for Cooperation and Development in the Department of International Affairs are responsible for the cooperation projects and the implementation of the bilateral programmes. But the positive outcome of the projects is also dependent on a large number of experts at SSM who work with the regulatory functions in the nuclear and radiation protection fields in a Swedish context as well as on external consultants. Together, their experience is invaluable for the implementation of the projects. But the projects also give experience of relevance for the SSM staff.

  17. Nuclear emergency preparedness in Canada

    International Nuclear Information System (INIS)

    1993-03-01

    The preparedness of utilities and government agencies at various levels for dealing with nuclear emergencies occurring at nuclear reactors in Canada is reviewed and assessed. The review is centered on power reactors, but selected research reactors are included also. Emergency planning in the U.S.A., Germany and France, and international recommendations on emergency planning are reviewed to provide background and a basis for comparison. The findings are that Canadians are generally well protected by existing nuclear emergency plans at the electric utility and provincial levels but there are improvements that can be made, mainly at the federal level and in federal-provincial coordination. Ten issues of importance are identified: commitment to nuclear emergency planning by the federal government; division of federal and provincial roles and responsibilities; auditing of nuclear emergency preparedness of all levels of government and of electric utilities; the availability of technical guidance appropriate to Canada; protective action levels for public health and safety; communication with the public; planning and response for the later phases of a nuclear emergency; off-site exercises and training; coordination of international assistance; and emergency planning for research reactors. (L.L.) 79 refs., 2 tabs

  18. Civil emergency preparedness at the Ignalina nuclear power plant

    International Nuclear Information System (INIS)

    1998-12-01

    Workshop was held in the frame of Lithuania's cooperation with NATO on disasters management subject and was concentrated on the preparation of management of nuclear accident at Ignalina NPP. The following topics were covered: emergency preparedness inside Ignalina NPP, preparedness for nuclear accidents at national level, experience in Nordic countries and IAEA activities in harmonization of nuclear emergency preparedness in different countries

  19. Training for emergency management

    International Nuclear Information System (INIS)

    Grauf, E.

    1993-01-01

    There are specific boundary conditions where preparedness for in-plant emergency management is as necessary and useful as is the training for the management of design-based accidents. The shift personnel has to be trained to cope particularly with the difficult and demanding initial phase of an emergency, and care must be taken to be very close to reality. Only thus can weak points be discovered and removed by pinpointed measures such as organisational changes, optimization of emergency management procedures, or hardware conditions. (orig.) [de

  20. Developments in emergency planning within Scottish nuclear

    International Nuclear Information System (INIS)

    Simpson, A.

    2000-01-01

    Scottish Nuclear has recently completed a major program of improvements to its nuclear emergency facilities. The improvements include the construction of a purpose built Off-Site Emergency Centre for each of its two power stations and the development of a computer based information management system to facilitate the rapid distribution of information on an emergency to local, regional and national agencies. A computer code has also been developed to allow the rapid assessment of the effects of any accidental release on the local population. The improvements to the emergency facilities have been coupled with changes in local and national arrangements for dealing with a civil nuclear emergency. The use of airborne surveying techniques for rapidly determining levels of deposited activity following an accident is also being examined and preliminary airborne surveys have been carried out. (author)

  1. Dose monitoring in nuclear emergency

    International Nuclear Information System (INIS)

    Nan Hongjie; Yang Zhongping; Lei Xin

    2012-01-01

    In order to protect people from irradiation sickness and rebuild the radiation filed in nuclear emergency, personal and environmental dose need to be monitored. The application of TLD in dose monitoring is discussed in this paper. (authors)

  2. Development scenarios for the national coordination exercise and long-term management after a nuclear emergency

    International Nuclear Information System (INIS)

    Montero Prieto, M.; Gallego Diez, E.

    2013-01-01

    Developing a strategy to deal with an emergency situation from the response phase to the recovery can facilitate decision-making organizations to ensure optimum protection of health, the environment and society. It is strengthening the preparedness and response capacity to achieve a high degree of participation of the agents involved. (Author)

  3. Radiological criteria in nuclear emergencies

    International Nuclear Information System (INIS)

    Carrillo, D.; Diaz de la Cruz, F.

    1985-01-01

    It is pretended to enlighten the way to adopt the recommendations, from supranational organizations or the practices followed in other countries, to the peculiarities existing in Spain for the specific case of Nuclear Emergency Response Planning. The adaptation has been focalized in the criteria given by the Spanish Nuclear Safety Council and has taken into account the radiological protection levels, which have been considered adequate for Spanish population in case of nuclear accidents. (author)

  4. Nuclear emergencies: a GP's guide

    International Nuclear Information System (INIS)

    Waterston, E.

    1991-01-01

    This booklet is designed for GPs in the event of a nuclear emergency, with answers to questions which people will commonly ask, concerning, for example, sheltering/evacuation, iodine tablets, milk, water; vegetables, meat, baby food and cancer risk. Information is also provided on radiation units, the Department of Environment plans for responding to nuclear accidents overseas, the Department of Energy plans for responding to a civil nuclear accident in the UK and information resources. (UK)

  5. Confronting Emergent Nuclear-Armed Regional Adversaries: Prospects for Neutralization, Strategies for Escalation Management

    Science.gov (United States)

    2015-01-01

    states vulnerable to 6 Scott D. Sagan , “The Perils of Proliferation: Organization Theory...substantially less than those of the opponent’s. As Prussian military theorist Carl von Clausewitz so famously asserted, “The political object—the...powers or that the United States could not manage 6 Carl von Clausewitz, On War, edited and translated

  6. Nuclear emergency planning in Norway

    International Nuclear Information System (INIS)

    Baarli, J.

    1986-01-01

    The nuclear emergency planning in Norway is forming a part of the Search and Rescue Service of the country. Due to the fact that Norway do not have any nucleat power reactor, the nuclear emergency planning has not been given high priority. The problems however are a part of the activity of the National Institute of Radiation Hygiene, and the emergency preparedness is at the present time to a large extent based on the availability of professional health physicists and their knowledge, rather than established practices

  7. Methodology for the nuclear design validation of an Alternate Emergency Management Centre (CAGE)

    Science.gov (United States)

    Hueso, César; Fabbri, Marco; de la Fuente, Cristina; Janés, Albert; Massuet, Joan; Zamora, Imanol; Gasca, Cristina; Hernández, Héctor; Vega, J. Ángel

    2017-09-01

    The methodology is devised by coupling different codes. The study of weather conditions as part of the data of the site will determine the relative concentrations of radionuclides in the air using ARCON96. The activity in the air is characterized depending on the source and release sequence specified in NUREG-1465 by RADTRAD code, which provides results of the inner cloud source term contribution. Known activities, energy spectra are inferred using ORIGEN-S, which are used as input for the models of the outer cloud, filters and containment generated with MCNP5. The sum of the different contributions must meet the conditions of habitability specified by the CSN (Spanish Nuclear Regulatory Body) (TEDE validated.

  8. Education of management off-site nuclear emergency for students at the University of Veszprem, Hungary

    International Nuclear Information System (INIS)

    Kanyar, B.; Somlai, J.

    2002-01-01

    Formerly, in correlation with the educational and research profiles of the University of Veszprem, the subjects in radiology were linked rather to chemical engineering by teaching radiochemistry, use of radioisotopes, nuclear technology and radiometry. The sub-branch of Radiochemistry for the students in chemical engineering became developed during the installation of the units of Nuclear Power Plant, Paks in Hungary, in the years of 1980-es. The number of students entered to radiochemistry from beginning of the 6. semester had been permanently 10-15 from the altogether 70-100 ones. The new, increased spectra of possibilities, and less demand for chemical engineers forced university leaders to seek new fields of education at the beginning of 1990. Branches of environmental engineering, information technology, economy, tourism, teaching languages and many other fields were introduced. The increased role of environmental problems - including the interest to the radiation effects of the Chernobyl accident, and to natural background due to the radon in dwellings - directed the Department of Radiochemistry to the education of radioecology, too. Due to the interest in the subjects of environmental radiation among the students of environmental engineering, the sub-branch of Radioecology has been established in 1999. The number of students specialised in radioecology from beginning of the 6. semester had taken additional 10-15 from nearly 80 ones. The students passing the main examinations and practices are getting an authority licence to work in laboratory of ionising radiation and radioisotopes without any extra courses and examinations. The newly introduced subject is the Protection against non-ionizing radiation (15 hours) mainly for the students of the mechanical and electrical engineers

  9. Methodology for the nuclear design validation of an Alternate Emergency Management Centre (CAGE

    Directory of Open Access Journals (Sweden)

    Hueso César

    2017-01-01

    Full Text Available The methodology is devised by coupling different codes. The study of weather conditions as part of the data of the site will determine the relative concentrations of radionuclides in the air using ARCON96. The activity in the air is characterized depending on the source and release sequence specified in NUREG-1465 by RADTRAD code, which provides results of the inner cloud source term contribution. Known activities, energy spectra are inferred using ORIGEN-S, which are used as input for the models of the outer cloud, filters and containment generated with MCNP5. The sum of the different contributions must meet the conditions of habitability specified by the CSN (Spanish Nuclear Regulatory Body (TEDE <50 mSv and equivalent dose to the thyroid <500 mSv within 30 days following the accident doses so that the dose is optimized by varying parameters such as CAGE location, flow filtering need for recirculation, thicknesses and compositions of the walls, etc. The results for the most penalizing area meet the established criteria, and therefore the CAGE building design based on the methodology presented is radiologically validated.

  10. Methodology for the nuclear design validation of an Alternate Emergency Management Centre (CAGE

    Directory of Open Access Journals (Sweden)

    Hueso César

    2017-01-01

    Full Text Available The methodology is devised by coupling different codes. The study of weather conditions as part of the data of the site will determine the relative concentrations of radionuclides in the air using ARCON96. The activity in the air is characterized depending on the source and release sequence specified in NUREG-1465 by RADTRAD code, which provides results of the inner cloud source term contribution. Known activities and energy spectra are inferred using ORIGEN-S, which are used as input for the models of the outer cloud, filters and containment generated with MCNP5. The sum of the different contributions must meet the conditions of habitability specified by the CSN (Spanish Nuclear Regulatory Body (TEDE <50 mSv and equivalent dose to the thyroid <500 mSv within 30 days following the accident doses so that the dose is optimized by varying parameters including CAGE location, flow filtering need for recirculation, thicknesses and compositions of the walls, etc. The results for the most penalizing area meet the established criteria, and therefore the CAGE building design based on the methodology presented is radiologically validated.

  11. Emergency management at sea

    International Nuclear Information System (INIS)

    Bockholts, I.P.

    1992-01-01

    In the past years, all kind of activities in the field of emergency management have been taken in order to handle accidents. In the scope of this paper, emergencies are those accidents that may lead to severe releases of oil and gas, whereby also attention is paid to collisions between offshore installations and drifting objects and the situation where people fall overboard. Case histories show that coping with these serious accidents is not always as effective and successful as intended. The stage from being aware of the risks, to being prepared to cope with the consequences, to actually being capable to combat is long and consists of many elements. This paper will deal with the general approach of emergency management, the development of automated tools for decision support on emergencies as well as some fate and effect models

  12. MOCAT project: support tool to the management of the emergencies in the nuclear power plant of Santa Maria of Garona

    International Nuclear Information System (INIS)

    Calleja, J. L.

    2010-01-01

    Santa Maria de Garona NPP, as part of its continuous improvement philosophy, has decided to undertake the modernization of its Technical Support Center (CAT with the aim of improving the emergency management, provided in the Internal Emergency Plan. To this end, Tecnatom, applying the know-how acquired and within its line of technological innovation, has designed the Technical Support Center modernization project, MOCAT, in collaboration with Garona NPP. This project is basically the application of new information and communications technologies to the management of the information available on the CAT, and the computerization of the procedures for the responsible from the different areas of the CAT, which it is going to contribute significantly to the improvement of the security, allowing a better understanding of the state of the plant in emergency as well as a faster and smoother decision making, and an improved training and education of those responsible for the CAT in emergency management. (Author) 8 refs.

  13. General framework and key technologies of national nuclear emergency system

    International Nuclear Information System (INIS)

    Yuan Feng; Li Xudong; Zhu Guangying; Song Yafeng; Zeng Suotian; Shen Lifeng

    2014-01-01

    Nuclear emergency is the important safeguard for the sustainable development of nuclear energy, and is the significant part of national public crisis management. The paper gives the definition of nuclear emergency system explicitly based on the analysis of the characteristics of the nuclear emergency, and through the research of the structure and general framework, the general framework of the national nuclear emergency management system (NNEMS) is obtained, which is constructed in four parts, including one integrative platform, six layers, eight applications and two systems, then the paper indicate that the architecture of national emergency system that should be laid out by three-tiers, i.e. national, provincial and organizations with nuclear facilities, and also describe the functions of the NNEMS on the nuclear emergency's workflow. Finally, the paper discuss the key technology that NNIEMS needed, such as WebGIS, auxiliary decision-making, digitalized preplan and the conformity and usage of resources, and analyze the technical principle in details. (authors)

  14. Radiation emergency preparedness in nuclear power plants

    International Nuclear Information System (INIS)

    Geetha, P.V.; Ramamirtham, B.; Khot, P.

    2008-01-01

    The purpose of planning for radiation emergency response is to ensure adequate preparedness for protection of the plant personnel and members of the public from significant radiation exposures in the unlikely event of an accident. With a number of safety features in the reactor design and sound operating procedures, the probability of a major accident resulting in the releases of large quantities of radioactivity is extremely small. However, as an abundant cautious approach a comprehensive radiation emergency response preparedness is in place in all the nuclear power plants (NPPs). Radiation Emergency in NPPs is broadly categorized into three types; plant emergency, site emergency and off-site emergency. During off site emergency conditions, based on levels of radiation in the environment, Civil Authorities may impose several counter measures such as sheltering, administering prophylaxis (stable iodine for thyroid blocking) and evacuation of people from the affected area. Environmental Survey Laboratory (ESL) carries out environmental survey extensively in the affected sector identified by the meteorological survey laboratory. To handle emergency situations, Emergency Control Centre with all communication facility and Emergency Equipment Centre having radiation measuring instruments and protective equipment are functional at all NPPs. AERB stipulates certain periodicity for conducting the exercises on plant, site and off site emergency. These exercises are conducted and deficiencies corrected for strengthening the emergency preparedness system. In the case of off site emergency exercise, observers are invited from AERB and Crisis Management Group of Department of Atomic Energy (DAE). The emergency exercises conducted by Nuclear Power Plant Sites have been very satisfactory. (author)

  15. Preparedness of Operation Teams' Non-technical Skills in a Main Control Room of Nuclear Power Plants to Manage Emergency Situations

    International Nuclear Information System (INIS)

    Yim, Ho Bin; Kim, Ar Ryum; Seong, Poong Hyun

    2012-01-01

    Human reliability is one of the important determinants for the system safety. Nuclear Energy Agency reported that approximately half of events reported by foreign nuclear industry were related with inappropriate human actions. The human error problems can be viewed in two ways: the person approach and the system approach. Other terms to represent each approach are active failures and latent conditions. Active failures are unsafe acts committed by people who are in direct contact with systems whereas latent conditions are the inevitable 'resident pathogens' within the system. To identify what kinds of non-technical skills were needed to cope with emergency conditions, a method to evaluate preparedness of task management in emergency conditions based on monitoring patterns was presented. Five characteristics were suggested to evaluate emergency task management and communication: latent mistake resistibility, latent violation resistibility, thoroughness, communication, and assertiveness. Case study was done by analyzing emergency training of 9 different real operation teams in the reference plant. The result showed that the 9 teams had their own emergency task management skills which resulted in good and bad performances

  16. Preparedness of Operation Teams' Non-technical Skills in a Main Control Room of Nuclear Power Plants to Manage Emergency Situations

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Ho Bin; Kim, Ar Ryum; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-05-15

    Human reliability is one of the important determinants for the system safety. Nuclear Energy Agency reported that approximately half of events reported by foreign nuclear industry were related with inappropriate human actions. The human error problems can be viewed in two ways: the person approach and the system approach. Other terms to represent each approach are active failures and latent conditions. Active failures are unsafe acts committed by people who are in direct contact with systems whereas latent conditions are the inevitable 'resident pathogens' within the system. To identify what kinds of non-technical skills were needed to cope with emergency conditions, a method to evaluate preparedness of task management in emergency conditions based on monitoring patterns was presented. Five characteristics were suggested to evaluate emergency task management and communication: latent mistake resistibility, latent violation resistibility, thoroughness, communication, and assertiveness. Case study was done by analyzing emergency training of 9 different real operation teams in the reference plant. The result showed that the 9 teams had their own emergency task management skills which resulted in good and bad performances

  17. Environmental management in nuclear industry

    International Nuclear Information System (INIS)

    Pillai, K.C.; Bhat, I.S.

    1988-01-01

    Safety of the environment is given due attention right at the design state of nuclear energy installations. Besides this engineered safety environmental protection measures are taken on (a) site selection criteria (b) waste management practices (c) prescribing dose limits for the public (d) having intensive environmental surveillance programme and (e) emergency preparedness. The paper enumerates the application of these protection measures in the environmental management to make the nuclear industry as an example to follow in the goal of environmental safety. (author)

  18. Planning and preparedness for radiological emergencies at nuclear power stations

    International Nuclear Information System (INIS)

    Thomson, R.; Muzzarelli, J.

    1996-01-01

    The Radiological Emergency Preparedness (REP) Program was created after the March 1979 accident at the Three Mile Island nuclear power station. The Federal Emergency Management Agency (FEMA) assists state and local governments in reviewing and evaluating state and local REP plans and preparedness for accidents at nuclear power plants, in partnership with the US Nuclear Regulatory Commission (NRC), which evaluates safety and emergency preparedness at the power stations themselves. Argonne National Laboratory provides support and technical assistance to FEMA in evaluating nuclear power plant emergency response exercises, radiological emergency plans, and preparedness

  19. Integrated emergency management in KKG

    International Nuclear Information System (INIS)

    Kluegel, J.U.; Plank, H.

    2007-01-01

    The development and introduction of emergency measures in Switzerland was mainly characterized by the evaluation of international experience and by systematic analysis of beyond-design basis accidents within the framework of plant-specific probabilistic safety analyses. As early as in the mid-eighties, the Swiss regulatory authority demanded that measures be taken against severe accidents, and periodically added more detailed requirements, most recently in 2000 when the introduction of Severe Accident Management Guidelines (SMAG) was demanded for power operation as well as operation in the non-power mode. The SMAG were introduced at the Goesgen nuclear power station within a project in the period between 2003 and 2005. For this purpose, a concept of integrated emergency management was developed which is based on updates of the proven emergency manual. One important aspect of this integrative concept is the distinction between preventive and mitigating procedures by defining appropriate criteria. The findings made in the implementation phase of the project include the realization that the introduction of procedures dealing with severe accidents also requires the ability to develop new ways of thinking and acting in accident management. This implies the awareness that procedures covering severe accidents must be applied much more flexibly and in the light of the situation than regulations covering fault conditions. Also possibilities to simulate severe accidents were created within the project both for the development of procedures and for training plant operators and members of the emergency staff. (orig.)

  20. Decree of the 28 August 2017 bearing approval of the decision nr 2017-DC-0592 of the Authority for Nuclear Safety of the 13 June 2017 related to obligations of operators of basic nuclear installations in terms of preparation and of management of emergency situations, and to the content of the internal emergency plan. Decision nr 2017-DC-0592 of the Authority for Nuclear Safety of 13 June 2017 related to obligations of operators of basic nuclear installations in terms of preparation and of management of emergency situations, and to the content of the internal emergency plan

    International Nuclear Information System (INIS)

    Mortureux, M.

    2017-01-01

    The decree formalises the implementation of decision made by the ASN regarding the preparation and management of emergency situations, and the content of the internal emergency plan for basic nuclear installations (some aspects concern installations others than nuclear power plants). Delays of elaboration and publication of the internal emergency plan are indicated for nuclear installations, and depend on the fact the installation is being dismantled or to be dismantled, or is being operated or to be created. An appendix contains a set of definitions of relevant terms related to the installation organisation, a specification of some general measures regarding the organisation to be implemented, procedures related to the alert and coordination with authorities and external bodies and departments, involved human resources, crisis exercises and real-life simulations to be performed, material resources to be used for the management of emergency situations, and aspects related to the protection of people present within the installation

  1. Nuclear and radiological emergency management and rehabilitation strategies: towards a EU approach for decision support tools (EURANOS)

    International Nuclear Information System (INIS)

    Raskob, W.; Gering, F.; Lochard, J.; Nisbet, A.; Starostova, V.; Tomic, B.

    2010-01-01

    The 5-year multi-national project EURANOS, funded by the European Commission and 23 European Member States, started in April 2004. Integrating 17 national emergency management organisations with 33 research institutes, it brings together best practices, knowledge and technology to enhance the preparedness for Europe's response to any radiation emergency and long term contamination. Key objectives of the project are to collate information on the likely effectiveness and consequences of a wide range of countermeasures, to provide guidance to emergency management organisations and decision makers on the establishment of an appropriate response strategy and to further enhance advanced decision support systems (DSS), in particular, RODOS, through feedback from their operational use. Further, the project aims to create regional initiatives leading to information exchange based on state-of-the-art information technologies, to develop guidance which assists Member States in developing a framework for the sustainable rehabilitation of living conditions in contaminated areas

  2. Studying the emerging nuclear suppliers

    International Nuclear Information System (INIS)

    Rydell, R.F.

    1990-01-01

    None of these events---nor any of the many others that are cited in the case studies of this book---can be singled out as heralding a revolutionary transformation of the global nuclear marketplace. The cumulative effect of such developments, however, may well be the emergence of a market in the year 2000 that is far less concentrated than today's market for nuclear reactors and fuel cycle technology. If this gradual structural transformation is accompanied by the entry into the market of new buyers and sellers that do not accept the Nuclear Non-Proliferation Treaty (NPT), safeguards administered by the IAEA, or other international norms directed at preventing the spread of nuclear weapon capabilities, the result may indeed have revolutionary dimensions for the business, diplomacy, and research of nuclear energy. A similar outcome could arise even f these norms are widely accepted but are not matched by an increase in the resources available to national governments and key international agencies that implement these norms. This paper identifies some of the pitfalls that researchers often encounter in researching the emerging suppliers and will outline some basic ground rules to guide the collection and interpretation of empirical evidence on supplier behavior

  3. Spinoffs from radiological emergency preparedness programmes to generic emergency management

    International Nuclear Information System (INIS)

    Sanders, M.E.

    1986-01-01

    In the USA, the radiological emergency preparedness (REP) programme for nuclear power plants is being used to enhance emergency management programmes for other types of emergencies. The REP programme is particularly useful in developing plans and preparedness measures for chemical accidents. The Integrated Emergency Management System (IEMS) approach provides a means for maximizing relationships between the REP programme and other programmes. IEMS essentially involves applying common elements of planning and preparedness to all types of emergencies, while recognizing that unique characteristics of specific natural and man-made emergencies require special planning and preparedness considerations. Features of the REP programme that make it compatible with the IEMS approach and useful in coping with other types of emergencies are: (1) the close co-operation between the national nuclear regulatory and emergency management organizations; (2) the programme integration among all levels of government, the nuclear power industry, public interest groups and the general public and (3) the comprehensiveness and sophistication of the programme. The REP programme in the USA represents a state-of-the-art emergency management capability. Some of its elements are readily transferrable to most other types of emergency preparedness programmes, while other elements can be adapted more readily to other hazard-specific programmes. The Bhopal accident has been a catalyst for this adaptation to chemical accidents, in such areas as furnishing hazard-specific information to the public, alert and notification systems, definition of the hazards and risks involved, establishing planning zones and developing close working relationships among the industry, the public and government

  4. Nuclear emergency preparedness in the Netherlands

    International Nuclear Information System (INIS)

    Dal, A.H.; Molhoek, W.; Leest, A.M.M.; Moen, J.E.T.; Sonderen, J.F. van; Aldenkamp, F.J.

    1997-01-01

    The Dutch organisation for nuclear emergency management has been described in previous papers. Briefly, the Ministry of Housing, Spatial Planning and Environment (VROM) and the Ministry of the Interior (BIZA) coordinate the input of all other Ministries and agencies at the government level, and provide the general strategy for dealing with the situation at hand. Any indication of a possible nuclear incident may alert the organization. Signals indicating, such incidents are continuously collected by the Emergency Management Department a VROM in the Hague. An expert group is permanently available for the evaluation of serious warnings, either via bilateral or other international contacts (IAEA, EC, neighbouring countries) or through the Dutch early warning monitoring network via the National Institute of Public Health and the Environment (RIVM). The chairman of this evaluation group has the authority to decide whether to start up the National Organization for Nuclear Emergency Management. Its start means the installation of a Policy Team of Cabinet Ministers or their representatives, and the involvement of many authorities and organizations at the national, provincial and local levels

  5. RODOS-based simulation of potential accident scenarios for emergency response management in the vicinity of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Walter, H.; Gering, F.; Arnold, K.; Gerich, B.; Heinrich, G.; Welte, U.

    2016-09-15

    In the wake of the Fukushima disaster in March 2011, the German Federal Office for Radiation Protection (BfS) started to investigate the potential radiological consequences of a ''Fukushima-like'' accident in a German nuclear power plant and conducted appropriate simulations in 2012. Between the end of 2012 and the end of 2013, the first study was followed by a much more detailed and comprehensive investigation comprising more than 5000 case studies for three nuclear power plant (NPP) sites in Germany. Based on these results the German Commission on Radiological Protection (SSK) released a new recommendation in March 2014 including an expansion of the current emergency planning zones for nuclear power plants in Germany. The key results of this study with respect to the maximum dimensions of the affected areas where dose criteria may be exceeded are described below. The following results are based on the largest nuclear release scenario ''FKA'' (INES scale 7): - Threshold levels for deterministic effects and high doses (effective doses higher than 1000 mSv) can be reached or exceeded within a distance of about 3 km on average. - The emergency reference level for the intervention ''Evacuation'' can be reached or exceeded within a distance of up to 9 to 18 km (adults) and/or up to 14 to 24 km (infants) on average (the indicated interval describes the minimum and maximum levels of the median value at all three NPP sites). - The emergency reference level for the intervention ''Sheltering'' can be reached or exceeded within a distance of up to 62 to 80 km (adults) and/or up to 91 to 114 km (infants) on average. - The emergency reference level for the intervention ''Stable iodine prophylaxis'' can be exceeded within a distance of up to 24 to 34 km (adults) and/or up to 148 to 161 km (infants and pregnant women) on average.

  6. Principles of off-site nuclear emergency exercises

    International Nuclear Information System (INIS)

    Miska, H.

    2011-01-01

    Due to high safety standards at nuclear power plants, no experience exits with nuclear emergencies in Western Europe. Thus, emergency exercises are the only possibility to assure effective protective measures should the very unlikely severe accident occur. The main objectives of exercises are generally the check of response plans for suitability, the test of the equipment's applicability and training of personnel for the unusual task to manage a nuclear emergency. After an introduction into the different types of exercises, this contribution focuses on offsite nuclear emergency exercises, explaining frame conditions to ensure good practice and, finally, reports some experience from exercises. (orig.)

  7. Management of a radiological emergency. Organization and operation

    International Nuclear Information System (INIS)

    Dubiau, Ph.

    2007-01-01

    After a recall of potential radiological emergency situations and their associated risks, this article describes the organization in France of the crisis management and its operation at the national and international scale: 1 - Nuclear or radiological emergency situations and their associated risks: inventory of ionising radiation sources, accidental situations, hazards; 2 - crisis organization in situation of radiological or nuclear emergency: organization at the local scale, organization at the national scale; 3 - management of emergency situations: accident at a facility, action circle, radiological emergency situations outside nuclear facilities, international management of crisis, situations that do not require the implementation of an emergency plan. (J.S.)

  8. National emergency plan for nuclear accidents

    International Nuclear Information System (INIS)

    1992-10-01

    The national emergency plan for nuclear accidents is a plan of action designed to provide a response to accidents involving the release or potential release of radioactive substances into the environment, which could give rise to radiation exposure to the public. The plan outlines the measures which are in place to assess and mitigate the effects of nuclear accidents which might pose a radiological hazard in ireland. It shows how accident management will operate, how technical information and monitoring data will be collected, how public information will be provided and what measures may be taken for the protection of the public in the short and long term. The plan can be integrated with the Department of Defence arrangements for wartime emergencies

  9. Information of the public, the media, and the population in the event of a nuclear incident. Seminar of the Working Group 'Emergency management'

    International Nuclear Information System (INIS)

    Bayer, A.

    1997-01-01

    Experience from the TMI accident and the accident at Chernobyl has shown that the population in an affected area quickly tends to take their own decisions and proceed to action spoiling all official emergency planning, if information to the population comes too late and is not adequately formulated. Rapid and understandable information about safety relevance of the emergency according to the INES event scale may be of higher value and effectiveness than any detailed account of the accident. For example, information given about an explosion o n the s i t e of XY NPP may easily become falsified on the dissemination pathway and end up as news about an explosion o f the XY NPP. Suitable accident management today primarily is a question of prompt, competent and adequately presented information through the responsible bodies. Technological emergency management may demand less manpower than the required public information campaign. In the event of an emergency in Europe, one has to reckon with several hundreds of journalists of the various news media gathering on site within short, demands for information coming in from a multitude of European countries or organisations, channeled through the IAEA (EMERCOM) or Brussels (ECURIE), and, last but not least, from the countries' populations. Realising these needs, the AKN decided to organise the seminar and hopes that it will contribute its share to underline the importance of information of the public in the event of a nuclear emergency. (orig/CB) [de

  10. Computer managed emergency operating procedures

    International Nuclear Information System (INIS)

    Salamun, I.; Mavko, B.; Stritar, A.

    1994-01-01

    New computer technology is a very effective tool for developing a new design of nuclear power plant control room. It allows designer possibility to create a tool for managing with large database of power plant parameters and displaying them in different graphic forms and possibility of automated execution of well known task. The structure of Emergency Operating Procedures (EOP) is very suitable for programming and for creating expert system. The Computerized Emergency Operating Procedures (CEOP) described in this paper can be considered as an upgrading of standard EOP approach. EmDiSY (Emergency Display System - computer code name for CEOP) main purpose is to supply the operator with necessary information, to document all operator actions and to execute well known tasks. It is a function oriented CEOP that gives operator guidance on how to verify the critical safety functions and how to restore and maintain these functions where they are degraded. All knowledge is coded and stored in database files. The knowledge base consists from stepping order for verifying plant parameters, desired values of parameters, conditions for comparison and links between procedures and actions. Graphical shell allows users to read database, to follow instruction and to find out correct task. The desired information is concentrated in one screen and allows users to focus on a task. User is supported in two ways: desired parameter values are displayed on the process picture and automated monitoring critical safety function status trees are all time in progress and available to the user. (author). 4 refs, 4 figs

  11. Nuclear emergencies and protective actions

    International Nuclear Information System (INIS)

    Sjoeblom, Klaus

    1995-01-01

    Although technical improvements have increased the safety of new and old nuclear power plants, many simultaneous component failures and/or human errors are improbable but possible. Both the plant (on-site) and the nearby area (off-site) have emergency plans. Rescue service authorities are responsible of the off-site. The main protective actions are sheltering, evacuation and iodine ingestion. The Loviisa off-site emergency plan assumes that a major part of this population takes care of their own protective actions; Rescue service authorities can then concentrate on the coordination activities and to those people who need help. To be able to carry out the protective actions timely and effectively the people should have information on radiation risk and emergency planning. In case of a potential accident the local population should follow the rescue service information and know how to shelter and how to evacuate themselves. Though there are many stockpiles of iodine pellets in the area the rescue service authorities recommend that each household should purchase iodine pellets for their own need. The utility and the rescue service authorities have distributed information brochures to all homes within 30 km from Loviisa NPP since 1990. This brochure gives information on radiation and protective actions in case of an accident. Because the brochures might not stay available and so also the local telephone book contains this information

  12. Managing nuclear liabilities

    International Nuclear Information System (INIS)

    Pooley, D.

    1997-01-01

    This paper discusses the importance of managing liabilities in the nuclear industry and considers the main ingredients which make for successful liabilities management. It looks specifically at UKAEA's experience to date and lists its key management principles, including the use of the liabilities management ratio which is the company's current bottom-line performance measure. (Author)

  13. Security and Emergency Management Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Security and Emergency Management Division identifies vulnerabilities, risks, and opportunities to improve the security of transportation systems, critical...

  14. Risk management at GPU Nuclear

    International Nuclear Information System (INIS)

    Long, R.L.

    1991-01-01

    This paper reports on GPU Nuclear. Among other goals, it established the independence of key safety functions as highlighted by the lessons learned from the accident. In particular, an independent Nuclear Assurance Division was established which include Quality Assurance, Training and Education, Emergency Preparedness, and Nuclear Safety Assessment. The latter consisted of corporate and site independent-safety-review groups. As the GPU Nuclear organization matured, a mid-1987 reorganization created an even more focused Planning and Nuclear Safety Division bringing together Nuclear Safety Assessment with Licensing and Regulatory Affairs and Risk Management. The Risk Management Group (RMG), which began its work in fall 1987, was formed to develop a framework for proactive identification, evaluation, and cost-effective reduction and management of risks of all types. The RMG set out to learn as much as possible about risks and their management in nuclear and other high-technology industries. This began with a thorough literature search. It progressed to interviews with individuals and organizations which have demonstrated innovative ideas, experience, and reputations for safe and reliable operation

  15. Nuclear emergency exercises in Canada

    International Nuclear Information System (INIS)

    Ali, F.B.

    1993-01-01

    The practice followed in planning, preparing and conducting offsite nuclear emergency exercises in the Province of Ontario, Canada, is described. In addition, some of the main issues that arise during this process are discussed, as well as Canadian experience in dealing with them. The planning process starts with basic decisions on the aim, scope and duration of the exercise. It proceeds through selection of the exercise objectives and participants, the development of scenarios and incident lists culminating in a master scenario and a master incident list, and finally, the production of control inputs. Preparations include the setting up of a planning organization, making arrangements for exercise control and evaluation, and the required logistics. Some aspects of international exercises are also covered, based upon experience with joint exercises with the U.S.A

  16. Managing nuclear supplier risks

    International Nuclear Information System (INIS)

    Ramberg, B.

    1990-01-01

    This paper reports that with the appearance of such third-tier suppliers as Argentina, Brazil, South Korea, Taiwan, China, and others capable of producing nuclear components and sensitive nuclear materials, assurance that importers are using nuclear energy benignly and safely may become more uncertain. It is therefore important to integrate emerging exporters and importers into a regime of norms designed to minimize nuclear risks. The experience of the London Nuclear Suppliers Group (NSG) to arrive at a code of conduct is encouraging. Placed in the context of the larger evolving nuclear energy regime that seeks to address nuclear safety, proliferation, terrorism, and military attacks on reactors, the international community has made substantial progress. Still, there is much that remains to be done

  17. Nuclear emergency preparedness and response in Germany

    International Nuclear Information System (INIS)

    Miska, H.

    2009-01-01

    Off-site nuclear emergency response in Germany is divided into disaster response under the responsibility of the Laender and measures for precautionary radiation protection pursuant to the Precautionary Radiation Protection Act under the lead of federal authorities. Early countermeasures at the regional level require a different management than long-term and comprehensive actions of precautionary radiation protection. As situations may arise in which measures of both approaches overlap with regard to place and time, it is essential to make thorough preparations in order to avoid problems with implementation. (orig.)

  18. Emergency control centers for nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Guidance is provided for the development and implementation of emergency control centers for nuclear power plants, including nuclear plant control room, nuclear plant company headquarters, emergency control center, and nuclear plant alternate emergency control center. Requirements and recommendations are presented for the mission, communications, instrumentation and equipment associated with each type of control center. Decisional aids, manning requirements and resources are also given; the decision aids cover both the accident assessment and protective action areas. Both normal and alternate means of communications are considered. Off-site emergency control centers, although not covered in the strict sense by this standard, are considered in an appendix

  19. Emerging nuclear suppliers in the Third World

    International Nuclear Information System (INIS)

    Stahl, K.

    1990-01-01

    The emergence of new supplier states of nuclear technology within the Third World has raised concern, if those nuclear supplier states will promote an unrestricted and uncontrolled transfer of nuclear technology to developing countries and augment the risk of nuclear weapons proliferation. The article analyses the nuclear export capacities, nuclear exports and the export policy of Argentina, Brazil and India. Argentina is considered as the most important emerging nuclear supplier state in the Third World. Nuclear exports have to be authorisized by the government in all three states and will be covered by IAEA-safeguards in the recipient country. The three states will exercise restraint in the transfer of sensitive nuclear technology. Nuclear exports of Argentina, Brazil and India so far will not augment the danger of nuclear weapons proliferation. (orig./HSCH) [de

  20. Regulatory requirements on accident management and emergency preparedness - concept of nuclear and radiation safety during beyond-design-basis accidents

    International Nuclear Information System (INIS)

    Yanke, R.

    2002-01-01

    Actual practice the and proposals for further activities in the field of Accident Management (AM) in the member countries of the Co-operation Forum of WWER regulators and in Western countries have been assessed. Further the results of the last working group on AM , the overview of interactions of severe accident research and the regulatory positions in various countries, IAEA reports, practice in Switzerland and Finland, were taken into consideration. From this information, the working group derived recommendations on Accident Management. The general proposals correspond to the present state of the art on AM. They do not describe the whole spectra of recommendations on AM for NPPs with WWER reactors. A basis for the implementation of an AM program is given, which could be extended in a follow-up working group. The developments and research concerning AM have to be continued. The positions of various countries with regard to the 'Interactions of severe accident research and the regulatory positions' are given. On the basis of the working group proposals, the WWER regulators could set regulatory requirements and support further developments of AM strategies, making use of the benefits of common features of NPPs with WWER reactors. Concerted actions in the field of AM between the WWER regulators would bundle the development of a unified concept of recommendations and speed up the implementation of AM measures in order to minimise the risks involved in nuclear power generation

  1. Training teams for emergency management

    NARCIS (Netherlands)

    Schaafstal, A.M.; Johnston, J.H.; Oser, R.L.

    2001-01-01

    Emergency management (EM), the decision making involved in directing the relief operation after a disaster or otherwise catastrophic accident is an issue of great public and private concern because of the high stakes involved. Due to the nature of emergencies, and especially mass emergencies, EM

  2. Nuclear waste management

    International Nuclear Information System (INIS)

    Wyatt, A.

    1978-01-01

    The Canadian Nuclear Association has specific views on the following aspects of waste management: a) public information and public participation programs should be encouraged; b) positive political leadership is essential; c) a national plan and policy are necessary; d) all hazardous materials should receive the same care as radioactive wastes; e) power plant construction need not be restricted as long as there is a commitment to nuclear waste management; f) R and D should be funded consistently for nuclear waste management and ancillary topics like alternative fuel cycles and reprocessing. (E.C.B.)

  3. Emergency Department Management of Trauma

    DEFF Research Database (Denmark)

    MacKenzie, Colin; Lippert, Freddy

    1999-01-01

    Initial assessment and management of severely injured patients may occur in a specialized area of an emergency department or in a specialized area of a trauma center. The time from injury until definitive management is of essence for survival of life-threatening trauma. The initial care delivered...... injured patients after these patients reach a hospital emergency department or a trauma center....

  4. Fire Service Emergency Management Handbook

    Science.gov (United States)

    1985-01-01

    Adapted from Formulating Public Policy in Emergency Management Course Book and ResourceMRanual for Public OTTicials, ILMA Emergency Management Institute...659-2447 (202) 785-2757 Christian Reformed World Relief Presbyterian Church in U.S. Committee General Assemby Mission Board C. Neil Molenaar 341 Ponce...Healer, Mind as Slayer. New York: Delta Books , 1977. 86B:6 B-45 4) Mitchell, J.T., & Resnik, HLP: Emergency Response to Crisis: A Crisis Intervention

  5. Millstone nuclear power plant emergency system assessment

    International Nuclear Information System (INIS)

    Akhmad Khusyairi

    2011-01-01

    U.S.NRC determined an obligation to build a nuclear power plant emergency response organization for both on-site and off-site. Millstone Nuclear Power Plants have 3 nuclear reactors and 2 of 3 still in commercial operation. Reactor unit 1, BWR type has been permanently shut down in 1998, while the two others, units 2 and 3 obtain the extended operating license respectively until 2035 and 2045. As a nuclear installation has the high potential radiological impact, Millstone nuclear power plant emergency response organization must establish both on-site or off-site. Emergency response organization that is formed must involve several state agencies, both state agencies and municipality. They have specific duties and functions in a state of emergency, so that protective measures can be undertaken in accordance with the community that has been planned. Meanwhile, NRC conduct their own independent assessment of nuclear power plant emergencies. (author)

  6. Emergency management information system (EMINS)

    International Nuclear Information System (INIS)

    Desonier, L.M.

    1987-01-01

    In a time of crisis or in an emergency, a manager is required to make many decisions to facilitate the proper solution and conclusion to the emergency or crisis. In order to make these decisions, it is necessary for the manager to have correct up-to-date information on the situation, which calls for an automated information display and entry process. The information handling needs are identified in terms of data, video, and voice. Studies of existing Emergency Operations Centers and evaluations of hardware and software have been completed. The result of these studies and investigations is the design and implementation of an automated Emergency Management Information System. Not only is the system useful for Emergency Management but for any information management requirement

  7. Taipower's nuclear backend management

    International Nuclear Information System (INIS)

    Lee, R.C.S.

    1987-01-01

    Taiwan Power Company's (Taipower's) nuclear backend management system will be established to encompass disposition of operating waste, plant decommissioning and decommissioning waste and spent nuclear fuel. During the past few years, most of the activities were proceeded in the expansion of spent fuel pool storage capacity of existing six nuclear power stations. A spent fuel interim storage system is being planned taking into account of local condition and international development status of various storage methods. A general principle concerning the plant decommissioning and disposition of operating waste and decommissioning waste is addressed. This paper also describes the general approach to be adopted for well integrating the various components of Taipower's nuclear backend management system. A description of Taipower's ongoing nuclear backend cost recovery program in which an ad hoc fund is set up to guarantee the financing of future backend management activities is given, too

  8. Urban meteorological modelling for nuclear emergency preparedness

    International Nuclear Information System (INIS)

    Baklanov, Alexander; Sorensen, Jens Havskov; Hoe, Steen Cordt; Amstrup, Bjarne

    2006-01-01

    The main objectives of the current EU project 'Integrated Systems for Forecasting Urban Meteorology, Air Pollution and Population Exposure' (FUMAPEX) are the improvement of meteorological forecasts for urban areas, the connection of numerical weather prediction (NWP) models to urban air pollution and population dose models, the building of improved urban air quality information and forecasting systems, and their application in cities in various European climates. In addition to the forecast of the worst air-pollution episodes in large cities, the potential use of improved weather forecasts for nuclear emergency management in urban areas, in case of hazardous releases from nuclear accidents or terror acts, is considered. Such use of NWP data is tested for the Copenhagen metropolitan area and the Oresund region. The Danish Meteorological Institute (DMI) is running an experimental version of the HIRLAM NWP model over Zealand including the Copenhagen metropolitan area with a horizontal resolution of 1.4 km, thus approaching the city-scale. This involves 1-km resolution physiographic data with implications for the urban surface parameters, e.g. surface fluxes, roughness length and albedo. For the city of Copenhagen, the enhanced high-resolution NWP forecasting will be provided to demonstrate the improved dispersion forecasting capabilities of the Danish nuclear emergency preparedness decision-support system, the Accident Reporting and Guidance Operational System (ARGOS), used by the Danish Emergency Management Agency (DEMA). Recently, ARGOS has been extended with a capability of real-time calculation of regional-scale atmospheric dispersion of radioactive material from accidental releases. This is effectuated through on-line interfacing with the Danish Emergency Response Model of the Atmosphere (DERMA), which is run at DMI. For local-scale modelling of atmospheric dispersion, ARGOS utilises the Local-Scale Model Chain (LSMC), which makes use of high-resolution DMI

  9. Nuclear materials management procedures

    International Nuclear Information System (INIS)

    Veevers, K.; Silver, J.M.; Quealy, K.J.; Steege, E. van der.

    1987-10-01

    This manual describes the procedures for the management of nuclear materials and associated materials at the Lucas Heights Research Laboratories. The procedures are designed to comply with Australia's nuclear non-proliferation obligations to the International Atomic Energy Agency (IAEA), bilateral agreements with other countries and ANSTO's responsibilities under the Nuclear Non-Proliferation (Safeguards) Act, 1987. The manual replaces those issued by the Australian Atomic Energy Commission in 1959, 1960 and 1969

  10. Sequential multi-nuclide emission rate estimation method based on gamma dose rate measurement for nuclear emergency management

    International Nuclear Information System (INIS)

    Zhang, Xiaole; Raskob, Wolfgang; Landman, Claudia; Trybushnyi, Dmytro; Li, Yu

    2017-01-01

    Highlights: • Sequentially reconstruct multi-nuclide emission using gamma dose rate measurements. • Incorporate a priori ratio of nuclides into the background error covariance matrix. • Sequentially augment and update the estimation and the background error covariance. • Suppress the generation of negative estimations for the sequential method. • Evaluate the new method with twin experiments based on the JRODOS system. - Abstract: In case of a nuclear accident, the source term is typically not known but extremely important for the assessment of the consequences to the affected population. Therefore the assessment of the potential source term is of uppermost importance for emergency response. A fully sequential method, derived from a regularized weighted least square problem, is proposed to reconstruct the emission and composition of a multiple-nuclide release using gamma dose rate measurement. The a priori nuclide ratios are incorporated into the background error covariance (BEC) matrix, which is dynamically augmented and sequentially updated. The negative estimations in the mathematical algorithm are suppressed by utilizing artificial zero-observations (with large uncertainties) to simultaneously update the state vector and BEC. The method is evaluated by twin experiments based on the JRodos system. The results indicate that the new method successfully reconstructs the emission and its uncertainties. Accurate a priori ratio accelerates the analysis process, which obtains satisfactory results with only limited number of measurements, otherwise it needs more measurements to generate reasonable estimations. The suppression of negative estimation effectively improves the performance, especially for the situation with poor a priori information, where it is more prone to the generation of negative values.

  11. Sequential multi-nuclide emission rate estimation method based on gamma dose rate measurement for nuclear emergency management

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaole, E-mail: zhangxiaole10@outlook.com [Institute for Nuclear and Energy Technologies, Karlsruhe Institute of Technology, Karlsruhe, D-76021 (Germany); Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing, 100084 (China); Raskob, Wolfgang; Landman, Claudia; Trybushnyi, Dmytro; Li, Yu [Institute for Nuclear and Energy Technologies, Karlsruhe Institute of Technology, Karlsruhe, D-76021 (Germany)

    2017-03-05

    Highlights: • Sequentially reconstruct multi-nuclide emission using gamma dose rate measurements. • Incorporate a priori ratio of nuclides into the background error covariance matrix. • Sequentially augment and update the estimation and the background error covariance. • Suppress the generation of negative estimations for the sequential method. • Evaluate the new method with twin experiments based on the JRODOS system. - Abstract: In case of a nuclear accident, the source term is typically not known but extremely important for the assessment of the consequences to the affected population. Therefore the assessment of the potential source term is of uppermost importance for emergency response. A fully sequential method, derived from a regularized weighted least square problem, is proposed to reconstruct the emission and composition of a multiple-nuclide release using gamma dose rate measurement. The a priori nuclide ratios are incorporated into the background error covariance (BEC) matrix, which is dynamically augmented and sequentially updated. The negative estimations in the mathematical algorithm are suppressed by utilizing artificial zero-observations (with large uncertainties) to simultaneously update the state vector and BEC. The method is evaluated by twin experiments based on the JRodos system. The results indicate that the new method successfully reconstructs the emission and its uncertainties. Accurate a priori ratio accelerates the analysis process, which obtains satisfactory results with only limited number of measurements, otherwise it needs more measurements to generate reasonable estimations. The suppression of negative estimation effectively improves the performance, especially for the situation with poor a priori information, where it is more prone to the generation of negative values.

  12. Nuclear emergency protection. Today and tomorrow

    International Nuclear Information System (INIS)

    Buettner, Jens Uwe

    2016-01-01

    The state of affairs of the nuclear emergency protection at accidents in connection with the use of nuclear power, at incidents with dangerous radiation sources as well as in case of criminal use of radioactive substances is presented. Moreover, the organization and the responsibilities as well as the preparation and realization of emergency training are considered and commented.

  13. Medical rescue for nuclear or radiologic emergencies

    International Nuclear Information System (INIS)

    Chen Xiaohua; Nie Suifeng

    2011-01-01

    Nuclear or radiologic emergencies are defined as incidents that are caused by radioactive substance or by other sources of radiation and can pose a serious hazard to public health. In case of nuclear or radiologic emergencies, radioactive rays will damage the human body and bring about psychological and mental stress, resulting in a series of social psychological effects. The key to medical rescue for nuclear or radiologic emergencies is to take effective measures which can minimize the body harm resulting from nuclear or radiologic emergencies and maintain social stability. This article reviews the personnel protection, on-the-spot salvage, treatments of various harm, and prevention of public psychological effect following nuclear or radiologic emergencies. (authors)

  14. Nuclear waste management news

    International Nuclear Information System (INIS)

    Stoeber, H.

    1987-01-01

    In view of the fact that nuclear waste management is an important factor determining the future perspectives of the peaceful uses of nuclear energy, it seems suitable to offer those who are interested in this matter a source of well-founded, concise information. This first newsletter will be followed by others at irregular intervals, reviewing the latest developments and the state of the art in West Germany and abroad. The information presented in this issue reports the state of the art of nuclear waste management in West Germany and R and D activities and programmes, refers to conferences or public statements, and reviews international relations and activities abroad. (orig.) [de

  15. Managing UK nuclear liabilities

    International Nuclear Information System (INIS)

    Sadnicki, Mike; MacKerron, Gordon.

    1997-01-01

    This paper sets out a framework for a fundamental reappraisal of the management of nuclear liabilities in the United Kingdom, built around two policy objectives, sustainable development and cost-effectiveness. The practical implications of the policy objectives are explored in relation to nuclear liability strategies, such as the adequacy or otherwise of current funding arrangements, the completeness of liability estimates and the distribution of financial responsibility between the public and private sector. A fundamental review of the management of nuclear liabilities is urged in the light of inadequacies identified in this paper. (UK)

  16. A study on the improvement of nuclear emergency countermeasure technology for local government

    International Nuclear Information System (INIS)

    Khang, Byung Oui; Lee, J. T.; Lee, G. Y.

    2005-01-01

    There were necessities of the establishment of the regional nuclear emergency plan on the nuclear disaster of nuclear facilities according to the 'nuclear facilities physical protection and emergency preparedness act' and the strengthening of the regional nuclear disaster management system to get confidence on the related national policy from the public and the defining and improving the relationship between local government and other organizations on responsibilities, authorities, duties and support. So, the project was started, the Results of the project are the establishment of Regional Nuclear Emergency Plan (Draft) connected to the national safety management basic plan and national radiological emergency plan which contains the description of the emergency preparedness to respond nuclear disaster and the duty description of related organizations to respond a nuclear disaster and several description of nuclear emergency preparedness. And this report describes the regional nuclear disaster countermeasure technology improvement and the emergency training, drill, exercise methodology

  17. Medical assistance in the management of nuclear power plant accidents. Guide for: medical personnel of emergency preparedness services, doctors of emergency departments, doctors for out-patient or in-patient treatment. 2. rev. ed.

    International Nuclear Information System (INIS)

    Gumprecht, D.; Haehnel, S.

    1995-01-01

    The guide explains the medical tasks and activities in the context of the emergency preparedness programmes and provisions established by the Laender. The medical expert for radiation injuries is a particularly important function in the radiologial accident management services. The provisions for medical care have been determined on the basis of knowledge drawn among other sources from the German Nuclear Power Plant Risk Study, Phase B. In addition, the guide's provisions are based on international knowledge about the consequences of enhanced radiation exposure, and the medical tasks and the required organisational infrastructure have been determined accordingly. A further source of reference for planning the activities are the data accumulated during emergency preparedness training activities in the various Laender. (orig./MG). 3 figs., 5 tabs [de

  18. Nuclear risk management

    International Nuclear Information System (INIS)

    2001-01-01

    This paper gives the list of contributions to Eurosafe 2001 which was organised around two round tables on the first day and five seminars on the second day. The first round table dealt with the technical, organisational and societal aspects of risk management aimed at the prevention of accidents in nuclear power plants. The second round table focused on radiological risks from the normal operation of nuclear installations. Special consideration has been given to the involvement of stakeholders. The five seminars were held in order to provide opportunities for comparing experiences and learning about recent activities of IRSN, GRS and their partners in the European Union and Eastern Europe: - Safety assessment and analysis of nuclear installations; -Nuclear safety research; -Environment and radiation protection; - Waste management; - Nuclear material security. (author)

  19. Nuclear risk management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This paper gives the list of contributions to Eurosafe 2001 which was organised around two round tables on the first day and five seminars on the second day. The first round table dealt with the technical, organisational and societal aspects of risk management aimed at the prevention of accidents in nuclear power plants. The second round table focused on radiological risks from the normal operation of nuclear installations. Special consideration has been given to the involvement of stakeholders. The five seminars were held in order to provide opportunities for comparing experiences and learning about recent activities of IRSN, GRS and their partners in the European Union and Eastern Europe: - Safety assessment and analysis of nuclear installations; -Nuclear safety research; -Environment and radiation protection; - Waste management; - Nuclear material security. (author)

  20. Decision support for emergency management

    International Nuclear Information System (INIS)

    Andersen, V.

    1989-05-01

    A short introduction will be given to the Nordic project ''NKA/INF: Information Technology for Accident and Emergency Management'', which is now in its final phase. To perform evaluation of the project, special scenarious have been developed, and experiments based on these will be fulfilled and compared with experiments without use of the decision support system. Furthermore, the succeeding European project, ''IT Support for Emergency Management - ISEM'', with the purpose of developing a decision support system for complex and distributed decision making in emergency management in full scale, will be described and the preliminary conceptual model for the system will be presented. (author)

  1. Nuclear waste management

    International Nuclear Information System (INIS)

    1982-12-01

    The subject is discussed, with special reference to the UK, under the headings: radiation; origins of the waste (mainly from nuclear power programme; gas, liquid, solid; various levels of activity); dealing with waste (methods of processing, storage, disposal); high-active waste (storage, vitrification, study of means of eventual disposal); waste management (UK organisation to manage low and intermediate level waste). (U.K.)

  2. Medical management and planning for radiation emergencies

    International Nuclear Information System (INIS)

    Bongirwar, P.R.

    2001-01-01

    Radiation Emergencies which result as a consequence of nuclear or radiological accidents can produce a spectrum of different types of radiation injuries which could include cases of whole body irradiation causing Acute Radiation Syndrome, partial body irradiation, radiation burns (localized irradiation), radioactive contamination and combined injuries having component of conventional injuries. General principles of managing these cases entail doing triage, offering immediate emergency care and instituting definitive treatment. Infra-structural facilities which are required to facilitate their management include first aid post at plant site, personnel decontamination centre, site clinic and specialized hospital which can offer comprehensive investigational and treatment modalities. Training of medical and paramedical personnel is crucial as part of emergency preparedness programme and if needed, help can be sought from WHO's Radiation Emergency Medical Preparedness and Assistance Network Centres. (author)

  3. Emergency preparedness and response: compensating victims of a nuclear accident

    International Nuclear Information System (INIS)

    Schwartz, Julia

    2004-01-01

    The 1986 tragedy at the Chernobyl Nuclear Power Plant in Ukraine motivated the entire international nuclear community to ensure that countries would, in the future, be well prepared to manage the physical, psychological and financial consequences of a serious nuclear accident. Since that event, numerous nuclear emergency preparedness and post-emergency management programmes have been established at national and international levels to ensure that appropriate mechanisms will respond to the threat, and the aftermath, of a nuclear accident. The INEX 2000 Workshop on the Indemnification of Nuclear Damage, jointly organised by the OECD/Nuclear Energy Agency and the French Government, was the first ever international programme to address the manner in which victims of a nuclear accident with trans-boundary consequences would be compensated for damage suffered before, during and after the accident. The Workshop results revealed striking differences in the compensation principles and practices implemented in the 30 participating countries, in the co-ordination measures between different public authorities within an affected state, and in the co-operative procedures between the accident state and its neighbours. All participants agreed on the need for improvement in these areas, particularly for maintaining public confidence in governments' ability to properly manage nuclear emergencies

  4. Emergency Department Management of Trauma

    DEFF Research Database (Denmark)

    MacKenzie, Colin; Lippert, Freddy

    1999-01-01

    services (EMS) response times and advanced prehospital care increase the number of critically injured patients surviving sufficiently long to reach a hospital “in extremis.” Both scenarios provide challenges in the management of traumatized patients. This article addresses the management of severely......Initial assessment and management of severely injured patients may occur in a specialized area of an emergency department or in a specialized area of a trauma center. The time from injury until definitive management is of essence for survival of life-threatening trauma. The initial care delivered...... injured patients after these patients reach a hospital emergency department or a trauma center....

  5. Nuclear knowledge management

    International Nuclear Information System (INIS)

    Constantin, Marin; Ghitescu, Petre

    2007-01-01

    Nuclear knowledge is characterized by high-complexity and variety of the component topics and long duration required by the build-up of individual competence. At organizational level, these characteristics made the power of an organization or institution to be determined by the capital accumulated of existing knowledge. Furthermore, the capacity of an organization to re-generate and raise the knowledge capital according to the specific processes it is running according to the existing demand decides its position/ranking in the economy of nuclear field. Knowledge management emphasizes re-utilization of existing practice and experience, upgrade, enrich and re-value of accumulated knowledge. The present paper identifies and classifies the nuclear knowledge steps, namely: tacit knowledge, explicit knowledge, preserving, transfer, knowledge capture etc. On this basis there are identified the existing problems of nuclear knowledge management in Romania such as: difficulties to keep within the country the existing expertise, lack of interest in nuclear education, low level of organization of existing knowledge due to a small number of data bases, an insufficient integration of existing knowledge in IT systems, lack of ontology and taxonomy or an average structuralism. Nuclear knowledge in Romania is facing a major challenge which is generated by the future development of nuclear facilities. It is related to the rising demand of expertise and experts. This challenge is better solved by partnership between end users and institutions of Research and Development and university organization as well which could ensure the generation, transfer and preservation of nuclear knowledge. (authors)

  6. JRODOS system: a modern and efficient tool for the management and preparation of nuclear and radiological emergencies and rehabilitation. Implementation in Spain; El sistema JRODOS: una herramienta moderna y eficaz para la gestion y preparacion de emergencias nucleares y radiologicas y la rehabilitacion. Implementacion en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Montero Prieto, M.; Dvirzhark, A.; Acero, A.; Gallego Diaz, E.

    2011-07-01

    JRODOS system is revealed as an efficient, flexible and user-approved at European level to assist in the management of nuclear and radiological emergencies and the subsequent rehabilitation of contaminated environments, both at the national response in the first phase emergence as a regional / local level in emergency preparedness and recovery environment with the help of the social partners concerned.

  7. German emergency management concept

    International Nuclear Information System (INIS)

    Burkart, K.

    1993-01-01

    The advantages and disadvantages of the margin and start-up value concepts (according to ICRP 40 and EU-ordinances) are explained, and it is demonstrated that the two concepts are combinable. The combined concept has the advantage of immediately providing, if required, intervention levels for the various measures to be taken, and of obliging those persons concerned with emergency protection to study and quantify, already at the planning stage, the influence of a range of accident conditions on the decision on measures. In this context, the use of computerized decision support systems which are currently being developed is indispensable. (orig./DG) [de

  8. Management of nuclear knowledge

    International Nuclear Information System (INIS)

    Khan, R.; Boeck, H.; Villa, M.

    2008-04-01

    The IAEA Technical Meeting (TM) on the 'Role of universities in preserving and managing nuclear knowledge' was held in Vienna, Austria, 10-14 December 2007. This TM is the continuation of IAEA efforts to address future workforce demand developments, quality and quantity of nuclear higher education in member states. IAEA activities always focussed in particular on curricula, on networking universities and on internet platforms. The objective of this meeting was to provide a forum to present and discuss the status of and good practices of nuclear higher education in member states. Around twenty experts from different member states presented the status and on-going practices of nuclear education. This meeting was divided into two main sections: part A gave the status of nuclear education in the member states while part B included the best practices and recommendations. A summary of both sessions are provided in this report. (Nevyjel)

  9. Emergency response and nuclear risk governance. Nuclear safety at nuclear power plant accidents

    International Nuclear Information System (INIS)

    Kuhlen, Johannes

    2014-01-01

    The present study entitled ''Emergency Response and Nuclear Risk Governance: nuclear safety at nuclear power plant accidents'' deals with issues of the protection of the population and the environment against hazardous radiation (the hazards of nuclear energy) and the harmful effects of radioactivity during nuclear power plant accidents. The aim of this study is to contribute to both the identification and remediation of shortcomings and deficits in the management of severe nuclear accidents like those that occurred at Chernobyl in 1986 and at Fukushima in 2011 as well as to the improvement and harmonization of plans and measures taken on an international level in nuclear emergency management. This thesis is divided into a theoretical part and an empirical part. The theoretical part focuses on embedding the subject in a specifically global governance concept, which includes, as far as Nuclear Risk Governance is concerned, the global governance of nuclear risks. Due to their characteristic features the following governance concepts can be assigned to these risks: Nuclear Safety Governance is related to safety, Nuclear Security Governance to security and NonProliferation Governance to safeguards. The subject of investigation of the present study is as a special case of the Nuclear Safety Governance, the Nuclear Emergency governance, which refers to off-site emergency response. The global impact of nuclear accidents and the concepts of security, safety culture and residual risk are contemplated in this context. The findings (accident sequences, their consequences and implications) from the analyses of two reactor accidents prior to Fukushima (Three Mile Iceland in 1979, Chernobyl in 1986) are examined from a historical analytical perspective and the state of the Nuclear Emergency governance and international cooperation aimed at improving nuclear safety after Chernobyl is portrayed by discussing, among other topics, examples of &apos

  10. 44 CFR Appendix A to Part 353 - Memorandum of Understanding Between Federal Emergency Management Agency and Nuclear Regulatory...

    Science.gov (United States)

    2010-10-01

    ... NRC that an emergency, unforeseen contingency, or other reason would prevent FEMA from providing a... they are revised to correct deficiencies noted in the Federal review. If, in FEMA's view, the plans...

  11. The NKS-B Programme for Nordic cooperation on nuclear and radiological emergency preparedness, including measurement strategies, radioecology and waste management

    DEFF Research Database (Denmark)

    Andersson, Kasper Grann; Leino, Kaisu; Magnússon, Sigurður M.

    2014-01-01

    The NKS platform for Nordic cooperation and competence maintenance in nuclear and radiological safety comprises two parallel programmes: the NKS-R programme on nuclear reactor safety and the NKS-B programme on emergency preparedness. This paper introduces the NKS-B programme and its current...

  12. Emergency management logistics must become emergency supply chain management.

    Science.gov (United States)

    Young, Richard R; Peterson, Matthew R

    2014-01-01

    Much has been written about how emergency management (EM) needs to look to the future regarding issues of resource management (monetary, human, and material). Constraints on budgets are ongoing and the staffing of emergency response activities is often difficult because volunteers have little to no training. The management of material resources has also been a challenge because 1) the categories of material vary by the type of emergency, 2) the necessary quantities of material are often not located near the ultimate point of need, and 3) the transportation assets are rarely available in the form and quantity required to allow timely and effective response. The logistics and resource management functions of EM (what we refer to as EM logistics) have been largely reactive, with little to no pre-event planning for potential demand. We applied the Supply Chain Operational Reference (SCOR) model to EM logistics in an effort to transform it to an integrated and scalable system of physical, information, and financial flows into which are woven the functions of sourcing, making, delivering, and returning, with an overarching planning function that transcends the organizational boundaries of participants. The result is emergency supply chain management, which embraces many more participants who share in a larger quantity of more useful information about the resources that need to be deployed when responding to and recovering from emergency events.

  13. Latin America: emerging nuclear market

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The need for nuclear power in Latin American countries is surveyed. It is concluded that Latin America offers the greatest external market for all exporters of nuclear reactors and associated services in the near future. Mexico, Venezuela, Ecuador, and Bolivia are the only countries with fossil-fuel reserves adequate to meet their requirements in the next 20 to 30 years. Nuclear power is a necessity to maintain or improve the standard of living in the countries of Brazil, Argentina, Chile, and Peru

  14. Emergency management in the early phase

    International Nuclear Information System (INIS)

    Crick, M.

    2003-01-01

    Full text: An overview of emergency management is provided from a systems approach with the aim of providing a common understanding for the diverse symposium participants of the elements of the management system required for preparedness and response for the early phase of an emergency at a nuclear installation. The systems approach starts with the recognition of response goals, and using detailed analyses of threats, past experience, international law and principles, a response strategy is developed. This step is illustrated with the case of severe accidents at PWRs and identifies the need for and nature of: emergency classification based an plant conditions; notification; radiological monitoring and assessment strategies; operational criteria for implementing protective action decisions; management of public information. From the strategy, detailed functional requirements can be defined addressing: establishing emergency management and operations; identifying, notifying and activating; taking mitigatory action; taking urgent protective action; providing information and issuing instructions and warnings to the public; protecting emergency workers; assessing the initial phase; managing the medical response; keeping the public informed; taking countermeasures against ingestion; mitigating the non-radiological consequences of the emergency and the response. Meeting these requirements necessitates decisions from competent authorities, the means to implement them, and mechanisms for response co-ordination, which need to be prepared in advance. These are supported by infrastructure, including: clear authorities; organization; coordinated plans and procedures; logistical support, facilities and tools; training and exercises; and a quality assurance programme. Some reflections an the key differences between response to emergencies arising from accidents and these arising from deliberate acts will be provided. An impression will be given of the level of preparedness and

  15. Managing the nuclear utility

    International Nuclear Information System (INIS)

    Williams, J.W. Jr.

    1985-01-01

    The Florida Power and Light Company (FP and L) is the fifth largest investor-owned utility in the country. The success of nuclear power generation at the St. Lucie Units 1 and 2 and Turkey Point Units 3 and 4 has resulted from a continuing management commitment to the nuclear program. The management of the power plants rely strongly on teamwork for most large projects and activities whether they entail plant operation, construction, or maintenance. Various examples of how teamwork has been used to realize the successful completion of projects or solutions to problems are given

  16. Effective nuclear and radiation emergency planning

    International Nuclear Information System (INIS)

    Grlicarev, I.

    2000-01-01

    The paper describes how to develop a balanced emergency plan, which realistically reflect the interfaces with various emergency organizations. The use of resources should be optimized with focusing on the most likely accidents. The pitfalls of writing an emergency plan without ''big picture'' in mind should be avoided. It is absolutely essential to have a clear definition of responsibilities and to have proper understanding of the tasks in between all counterparts in the emergency preparedness. Special attention should be paid to off-site part of the nuclear emergency preparedness, because the people involved in it usually receive less training than the on-site personnel and they are not specialized for nuclear emergencies but deal with all sorts of emergencies. (author)

  17. Emerging nuclear security issues for transit countries

    International Nuclear Information System (INIS)

    Gabulov, I.A.

    2003-01-01

    Full text: Tragic events of September eleventh have made nuclear terrorism dangers more evident. In the light of increased terrorism preventing the spread of nuclear and nuclear related items as well as radioactive materials that can be used for production so-called 'dirty bomb'is an urgent global claim. Nuclear Security issues cover multiple aspects of the security and first of all the threat from nuclear terrorism, detection and protection of illicit trafficking of nuclear materials and other radioactive sources, legal shipment of such type materials as well as nuclear related dual use items. In the face of emerging threats the prevention of proliferation by the development of effective national system of nuclear export controls is hugely important for transit countries like Azerbaijan with underdeveloped export controls and strategic locations along trade and smuggling routes between nuclear suppliers States and countries attempting to develop nuclear weapons or any nuclear explosive devices. Thus, in the face of increasing international threat from nuclear terrorism the role and place of Azerbaijan Republic in the struggle against terrorism increases. In this context it is very important to establish effective national capabilities for detection and prevention of illicit trafficking of radioactive and nuclear materials as well as nuclear related dual use items across Azerbaijan's borders. One of the ways for enhancing and strengthening existing activities in this field is carrying out joint actions between scientists and enforcement officials in order to improve knowledge of the front-line customs and border guard inspectors concerning multiple aspects of Nuclear Security

  18. Status of the Real-time On-line Decision Support (RODOS) system for off-site emergency management after nuclear and radiological accidents

    International Nuclear Information System (INIS)

    Raskov, W.; Ehrhardt, J.; Landman, C.; Pasler-Sauer, J.

    2006-01-01

    Under the auspices of its EURATOM Research Framework Programmes, the European Commission (EC) has supported the development of the comprehensive decision support system RODOS (Real-time On-line Decision Support) for off-site emergency management after nuclear accidents for more than a decade. Many national research programmes, research institutes and industrial collaborators contributed to the project, in particular the German Ministry of Environment, Nature Conservation and Reactor Safety (B MU). The RODOS system can be applied to accidental releases into the atmosphere and various aquatic environments within and across Europe. It provides coherent support before, during and after such a release to assist analysis of the situation and decision making about short and long-term countermeasures for mitigating the consequences with respect to health, the environment, and the economy. Appropriate interfaces exist with local and national radiological monitoring data systems, meteorological measurements and forecasts, and for the adaptation to local, regional and national conditions in Europe. Within the European Integrated Project EURANOS of the sixth Framework Programme, the RODOS system is being enhanced, among others, for radiological emergencies such as dirty bombs attacks, transport accidents and satellite crashes by extensions of the nuclide list, the source term characteristics and the atmospheric dispersion model

  19. Emergency Managers Confront Climate Change

    Directory of Open Access Journals (Sweden)

    John R. Labadie

    2011-08-01

    Full Text Available Emergency managers will have to deal with the impending, uncertain, and possibly extreme effects of climate change. Yet, many emergency managers are not aware of the full range of possible effects, and they are unsure of their place in the effort to plan for, adapt to, and cope with those effects. This may partly reflect emergency mangers’ reluctance to get caught up in the rancorous—and politically-charged—debate about climate change, but it mostly is due to the worldview shared by most emergency managers. We focus on: extreme events; acute vs. chronic hazards (floods vs. droughts; a shorter event horizon (5 years vs. 75–100 years; and a shorter planning and operational cycle. This paper explores the important intersection of emergency management, environmental management, and climate change mitigation and adaptation. It examines the different definitions of terms common to all three fields, the overlapping strategies used in all three fields, and the best means of collaboration and mutual re-enforcement among the three to confront and solve the many possible futures that we may face in the climate change world.

  20. FEMA's Integrated Emergency Management Information System (IEMIS)

    International Nuclear Information System (INIS)

    Jaske, R.T.; Meitzler, W.

    1987-01-01

    FEMA is implementing a computerized system for use in optimizing planning, and for supporting exercises of these plans. Called the Integrated Emergency Management Information System (IEMIS), it consists of a base geographic information system upon which analytical models are superimposed in order to load data and report results analytically. At present, it supports FEMA's work in offsite preparedness around nuclear power stations, but is being developed to deal with a full range of natural and technological accident hazards for which emergency evacuation or population movement is required

  1. Nuclear waste management

    International Nuclear Information System (INIS)

    Wicks, G.G.; Ross, W.A.

    1984-01-01

    Papers from the Second International Symposium on Ceramics in Nuclear Waste Management, held during the American Ceramic Society's 85th Annual Meeting, comprise this eighth volume in the Advances in Ceramics series. The 81 papers included in this volume were compiled by George G. Wicks, of Savannah River Lab, and Wayne A. Ross, of Battelle, Pacific Northwest Labs

  2. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Rosselli, R.

    1984-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) established two separate special bank accounts: the Nuclear Waste Fund (NWF) was established to finance all of the Federal Government activities associated with the disposal of High-Level Waste (HLW) or Spent Nuclear Fuel (SNF). The Interim Storage Fund (ISF) is the financial mechanism for the provision of Federal Interim Storage capacity, not to exceed 1900 metric tons of SNF at civilian power reactors. The management of these funds is discussed. Since the two funds are identical in features and the ISF has not yet been activated, the author's remarks are confined to the Nuclear Waste Fund. Three points discussed include legislative features, current status, and planned activities

  3. Professional Nuclear Materials Management

    International Nuclear Information System (INIS)

    Forcella, A.A.; O'Leary, W.J.

    1966-01-01

    This paper describes the scope of nuclear materials management for a typical power reactor in the United States of America. Since this power reactor is financed by private capital, one of the principal obligations of the reactor operator is to ensure that the investment is protected and will furnish an adequate financial return. Because of the high intrinsic value of nuclear materials, appropriate security and accountability must be continually exercised to minimize losses beyond security and accountability for the nuclear materials. Intelligent forethought and planning must be employed to ensure that additional capital is not lost as avoidable additional costs or loss of revenue in a number of areas. The nuclear materials manager must therefore provide in advance against the following contingencies and maintain constant control or liaison against deviations from planning during (a) pre-reactor acquisition of fuel and fuel elements, (b) in-reactor utilization of the fuel elements, and (c) post-reactor recovery of fuel values. During pre-reactor planning and operations, it is important that the fuel element be designed for economy in manufacture, handling, shipping, and replaceability. The time schedule for manufacturing operations must minimize losses of revenue from unproductive dead storage of high cost materials. For in-reactor operations, the maximum achievable burn-up of the fissionable material must be obtained by means of appropriate fuel rearrangement schemes. Concurrently the unproductive down-time of the reactor for fuel rearrangement, inspections, and the like must be minimized. In the post-reactor period, when the fuel has reached a predetermined depletion of fissionable material, the nuclear materials manager must provide for the most economical reprocessing and recovery of fissionable values and by-products. Nuclear materials management is consequently an essential factor in achieving competitive fuel cycle and unit energy costs with power reactors

  4. The emerging nuclear suppliers and nonproliferation

    International Nuclear Information System (INIS)

    Potter, W.C.

    1990-01-01

    The number of states capable of exporting nuclear material, technology, equipment, and services is large and growing. Once confined primarily to states party to the Nuclear Non-Proliferation Treaty (NPT), the list of actual and potential nuclear suppliers now includes many countries that do not subscribe to the NPT or to other international nuclear export control agreements. Although international control accords---such as the Nuclear Exporters' (Zangger) Committee and the London Nuclear Suppliers Group (NSG) guidelines---do not prohibit the export of sensitive nuclear materials and equipment, they do reduce the risks of proliferation by imposing international safeguards as a condition for export. The purpose of this book---the culmination of one phase of an ongoing international research project on the emerging nuclear suppliers and nonproliferation---is to remedy, at least in part, this data deficiency

  5. Emerging nuclear energy systems and nuclear weapon proliferation

    International Nuclear Information System (INIS)

    Gsponer, A.; Sahin, S.; Jasani, B.

    1983-01-01

    Generally when considering problems of proliferation of nuclear weapons, discussions are focused on horizontal proliferation. However, the emerging nuclear energy systems currently have an impact mainly on vertical proliferation. The paper indicates that technologies connected with emerging nuclear energy systems, such as fusion reactors and accelerators, enhance the knowledge of thermonuclear weapon physics and will enable production of military useful nuclear materials (including some rare elements). At present such technologies are enhancing the arsenal of the nuclear weapon states. But one should not forget the future implications for horizontal proliferation of nuclear weapons as some of the techniques will in the near future be within the technological and economic capabilities of non-nuclear weapon states. Some of these systems are not under any international control. (orig.) [de

  6. Information technology for emergency management

    International Nuclear Information System (INIS)

    Andersen, V.

    1990-01-01

    Improved performance in emergency management by the use of modern information technology has been investigated. Limited parts of a preparedness system have been chosen based on analysis of drills with respect to emergency situations and real accidents. Specific functions relevant for the situation have been selected and implemented in prototype test systems. Finally, the usefulness of the prototype systems has been evaluated by experiments following specific scenarios. (author) 24 refs

  7. Brief introduction of nuclear power plant emergency system EmInfoSys

    International Nuclear Information System (INIS)

    Xiao Yuhua; Zhao Zhigang

    2014-01-01

    Nuclear safety is the lifeline of nuclear energy and nuclear technology, nuclear accident emergency response is the last line of nuclear security defense, and is one of the important measures to ensure the healthy development of the nuclear energy safety. The establishment of complete function, sensitive reaction and efficient emergency management system for operation of nuclear and radiation accidents is an important task of nuclear security. From 2001 China Techenergy Co., Ltd. participated in the Qinshan, Tianwan, Ministry of Environmental Protection, Haiyang, Taishan, Fangchenggang, Sanmen, etc. nuclear emergency projects, and the nuclear emergency EmInfoSys (emergency management information system) platform was developed with independent intellectual property rights. A brief introduction about EmInfoSys system was performed in this paper. (authors)

  8. CEGB nuclear power stations basic emergency plan

    International Nuclear Information System (INIS)

    1978-03-01

    The introduction states that this is a typical emergency plan for a nuclear power station employing about 500 people, having two reactors and a total electrical output of 500 Megawatts in an intensively farmed rural area. The document has the following headings: definitions ('site incident', etc); functions of the site emergency organization; conditions for taking emergency action; persons empowered to declare or cancel a site incident or an emergency; emergency actions by staff; control centres; communication; collaboration with other bodies; warnings; transport; house rules; public information centre. (U.K.)

  9. Information for nuclear emergency response: a case study based on ANGRA nuclear power plant emergency simulation exercises

    International Nuclear Information System (INIS)

    Carvalho, Paulo V.R. de

    2008-01-01

    Full text: Current nuclear emergency management procedures do not always satisfactorily address issues related to the information availability and to how people in emergency control centres use this information to respond to an nuclear accident. The lack of an adequate and prompt information may lead to a response that can be very different from what authorities recommend and thus create confusion, mistrust, and widespread uncertainty. This is a potentially serious problem for emergency planners. An adequate and prompt access to relevant information is a critical requirement that emergency teams face while they work towards reducing the undesired consequences of the emergency. There are three basic types of knowledge according to a conceptual framework developed to deal with emergency response: Previous Personal, Previous and, Current Contextual knowledge. Most decisions in emergency control centres require a dynamic combination of all types of knowledge, particularly the current contextual that comes from the emergency settings, including all information about the activities of other emergency teams. The aim of this paper is to describe the concepts and the structure of a system that aims at storing and disseminating the previous formal and contextual knowledge to help teams make the correct decisions during the evolution of an emergency. The elicitation of critical requirements are provided by a case study based on Cognitive Work Analysis and Naturalistic Decision Making methods, applied to a nuclear emergency response simulation. The framework and a prototype system were tested in a controlled experiment. The paper reports the results of this experiment. (author)

  10. Status of the RODOS system for off-site emergency management after nuclear and radiological accidents and its enhancement under the EURANOS project

    International Nuclear Information System (INIS)

    Raskob, W.

    2007-01-01

    Full text: Under the auspices of its Euratom Research Framework Programmes, the European Commission (EC) has supported the development of the RODOS (Real-time On-line Decision Support) system for off-site emergency management after nuclear accidents for more than a decade. Significant additional funds have been provided by many national RTD programmes, research institutes and industrial collaborators. In particular, the German Ministry of Environment, Nature Conservation and Reactor Safety (BMU) financially contributed to the project with emphasis on early emergency response. As a result of these collaborative actions, a comprehensive decision support system (RODOS) has been developed which can be applied generally within and across Europe. The current version of the system has been, or is being, installed in national emergency centres in several European countries for (pre-operational) use (Germany, Finland, Spain, Portugal, Austria, the Netherlands, Poland, Hungary, Slovakia, Ukraine, Slovenia, and the Czech Republic). Installation is foreseen or under consideration in Switzerland, Greece, Romania, Bulgaria, and Russia within the next few years. RODOS provides coherent support at all stages of an accident (i.e., before, during and after a release), including the long term management and restoration of contaminated areas. The system is able to support decisions about the introduction of a wide range of potentially useful countermeasures (e.g., sheltering and evacuation of people, distribution of iodine tablets, food restrictions, agricultural countermeasures, relocation, decontamination, restoration, etc.) mitigating the consequences of an accident with respect to health, the environment, and the economy. It can be applied to accidental releases into the atmosphere and into various aquatic environments. Appropriate interfaces exist with local and national radiological monitoring data, meteorological measurements and forecasts, and for adaptation to local, regional

  11. Emerging trends in nuclear energy

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1984-01-01

    Nuclear energy is faltering in many places - especially in the USA: should it be written off. The author sees underlying trends that justify a more optimistic view of nuclear energy's future - the continuing tendency for the electricity intensity of economic activity to rise while the total energy intensity falls; a consistently favourable price trend for electricity compared with energy prices generally - a trend that may become more favourable if his judgment that nuclear plants will turn out to be very long-lived is borne out by events; the substitution of electricity-based processes in industry for older processes; and the development of ultra-safe reactors which will remove once and for all the fears of accidents such as the one that occurred at Three Mile Island. (author)

  12. Nuclear radiation sensors and monitoring following a nuclear or radiological emergencies

    International Nuclear Information System (INIS)

    Bhatnagar, P.K.

    2009-01-01

    Management of Nuclear and Radiological Emergencies arising from Radiological Dispersive Device (RDD), Improvised Nuclear Devices (IND), Nuclear Reactors/Power plants and Nuclear War require measurement of ionizing radiations and radioactivity on an enhanced scale relative to the levels encountered in peaceful uses of ionizing radiations and radioactivity. It is heartening that since Hiroshima, Nagasaki nuclear disaster, the world has been quiet but since early 2000 there has been a fear of certain devices to be used by terrorists, which could lead to panic, and disaster due to dispersal of radioactivity by RDD, IND. Nuclear attack would lead to blast, thermal, initial nuclear radiation, nuclear fall out leading to gamma and neutron dose, dose rates in range from few R, R/h to kR, kR/h, and determinations of k Bq or higher order. Such situations have been visualized at national levels and National Disaster Management Authority NDMA has been established and Disaster Management Act 2005 has come into existence. NDMA has prepared guidelines for Nuclear and radiological emergency management highlighting preparedness, mitigation, response, capacity building, etc. Critical point in all these issues is detection of emergency, quick intimation to the concerned for action in shortest possible time. Upper most requirement by those involved in pursuing action, is radiation sensor based radiation monitors for personnel, area, and to assess contamination due to radioactivity.This presentation briefly describes the Indian scenario in the development of the radiation sensors and the sensor-based radiation monitors. (author)

  13. Nuclear radiation sensors and monitoring following a nuclear or radiological emergencies

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, P K [Defence Laboratory, Jodhpur (India)

    2009-01-15

    Management of Nuclear and Radiological Emergencies arising from Radiological Dispersive Device (RDD), Improvised Nuclear Devices (IND), Nuclear Reactors/Power plants and Nuclear War require measurement of ionizing radiations and radioactivity on an enhanced scale relative to the levels encountered in peaceful uses of ionizing radiations and radioactivity. It is heartening that since Hiroshima, Nagasaki nuclear disaster, the world has been quiet but since early 2000 there has been a fear of certain devices to be used by terrorists, which could lead to panic, and disaster due to dispersal of radioactivity by RDD, IND. Nuclear attack would lead to blast, thermal, initial nuclear radiation, nuclear fall out leading to gamma and neutron dose, dose rates in range from few R, R/h to kR, kR/h, and determinations of k Bq or higher order. Such situations have been visualized at national levels and National Disaster Management Authority NDMA has been established and Disaster Management Act 2005 has come into existence. NDMA has prepared guidelines for Nuclear and radiological emergency management highlighting preparedness, mitigation, response, capacity building, etc. Critical point in all these issues is detection of emergency, quick intimation to the concerned for action in shortest possible time. Upper most requirement by those involved in pursuing action, is radiation sensor based radiation monitors for personnel, area, and to assess contamination due to radioactivity.This presentation briefly describes the Indian scenario in the development of the radiation sensors and the sensor-based radiation monitors. (author)

  14. National emergency medical assistance program for commercial nuclear power plants

    International Nuclear Information System (INIS)

    Linnemann, R.E.; Berger, M.E.

    1987-01-01

    Radiation Management Consultant's Emergency Medical Assistance Program (EMAP) for nuclear facilities provides a twenty-four hour emergency medical and health physics response capability, training of site and off-site personnel, and three levels of care for radiation accident victims: first air and rescue at an accident site, hospital emergency assessment and treatment, and definitive evaluation and treatment at a specialized medical center. These aspects of emergency preparedness and fifteen years of experience in dealing with medical personnel and patients with real or suspected radiation injury will be reviewed

  15. Interface robotics in nuclear emergencies

    International Nuclear Information System (INIS)

    Ruiz Mungia, E.

    1998-01-01

    The area between the reactor building and the external wall of a nuclear power station could be affected in case of a severe accident with repercussion in the outside. The article describes a series of robotics machines which could be used for building recognition, transmission improvement, civil works and for the making of a radiologic cartography in this area. (Author)

  16. India: an emerging nuclear giant

    International Nuclear Information System (INIS)

    Le Ngoc, Boris

    2015-01-01

    After having recalled that India has always been interested in nuclear energy, this article outlines that this country is suffering from an increasing air pollution with noticeable impacts on health (thousands of deaths per year due to pollution), and, even though its CO 2 emissions have very much increased during the past decades, its governments want to rely on nuclear energy to face climatic challenges. The article also outlines that the country is facing increasing energy needs when about 300 millions of inhabitants do not have access to electricity. New sources of energy production must then be developed, preferably de-carbonated sources (hydraulic, wind, nuclear, solar, so on). Therefore, progress must be made to reduce the share of fossil energy. The author proposes a brief presentation of the Indian nuclear programme, with its 20 existing reactors and 6 reactors under construction. A strategy has been defined to exploit as many PWRs as possible, to introduce fourth generation reactors, and to use a thorium fuelled reactor. The framework of the French-Indian partnership is briefly presented, and the involvements of AREVA for the construction of six EPRs, and of the CEA for the development of fourth generation reactors are evoked

  17. Managing change in nuclear utilities

    International Nuclear Information System (INIS)

    2001-07-01

    The nuclear power industry has undergone change since inception, but never so much as now. The rewards for proactively changing in anticipation of emerging demands are great, but the cost of failure is also great. Today nuclear plants are being shut down by socio-political and economic processes. The survival of the technology as a clean energy source for the future depends on the demonstration of long term safety to the public, protection of the environment, and economic superiority to competing energy sources. The overriding influence on these factors is strong management of the business with effective regulation. In particular it is necessary for both utility and regulator to believe that enhancing safety is part of being successful. This publication has been developed for all levels of management who are developing and implementing changes within their areas of responsibility. The safety conscious, continuous improvement, management culture, which has proven successful in today's nuclear business, has taken time to develop. Many utilities have difficulty sustaining this culture during the transitions that are intrinsic to change. Properly managed however, changes can enhance nuclear safety, plant reliability and cost competitiveness, from the design stage to decommissioning. Change has no respect for timing and regardless of the level of experience managers may have in its management, large scale change is confronting every nuclear utility world wide. These take the form of government policy changes, open market demands, privatization with the demand for increased shareholder returns, regulatory and social pressures, and economic and political transition. The danger from such issues for the nuclear company executive and the regulator is that they are powerful distractions, particularly for those executives who are not experienced in the unique managerial requirements of the nuclear business. This report gathers the experience of Member States into an array of

  18. Managing change in nuclear utilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The nuclear power industry has undergone change since inception, but never so much as now. The rewards for proactively changing in anticipation of emerging demands are great, but the cost of failure is also great. Today nuclear plants are being shut down by socio-political and economic processes. The survival of the technology as a clean energy source for the future depends on the demonstration of long term safety to the public, protection of the environment, and economic superiority to competing energy sources. The overriding influence on these factors is strong management of the business with effective regulation. In particular it is necessary for both utility and regulator to believe that enhancing safety is part of being successful. This publication has been developed for all levels of management who are developing and implementing changes within their areas of responsibility. The safety conscious, continuous improvement, management culture, which has proven successful in today's nuclear business, has taken time to develop. Many utilities have difficulty sustaining this culture during the transitions that are intrinsic to change. Properly managed however, changes can enhance nuclear safety, plant reliability and cost competitiveness, from the design stage to decommissioning. Change has no respect for timing and regardless of the level of experience managers may have in its management, large scale change is confronting every nuclear utility world wide. These take the form of government policy changes, open market demands, privatization with the demand for increased shareholder returns, regulatory and social pressures, and economic and political transition. The danger from such issues for the nuclear company executive and the regulator is that they are powerful distractions, particularly for those executives who are not experienced in the unique managerial requirements of the nuclear business. This report gathers the experience of Member States into an array of

  19. Composition and fundamental requirements of nuclear emergency response monitoring equipment

    International Nuclear Information System (INIS)

    Lai Yongfang; Huang Weiqi; Wang Yonghong

    2009-01-01

    Nuclear emergency monitoring equipment is concrete foundation for accomplishing radiation monitoring in nuclear or radiation accidents. Based on technical report: Generic procedures for monitoring in a nuclear or radiological emergency published by IAEA in 1999, this paper presents the main task and composition of nuclear emergency monitoring briefly, and then the basic equipment and trends of nuclear emergency monitoring equipment is put forward in detail, which is useful to construction and reinforcement of our nuclear emergency monitoring. (authors)

  20. Nuclear threats and emergency preparedness in Finland

    International Nuclear Information System (INIS)

    Mustonen, R.; Aaltonen, H.; Laaksonen, J.; Lahtinen, J.; Rantavaara, A.; Reponen, H.; Rytoemaa, T.; Suomela, M.; Toivonen, H.; Varjoranta, T.

    1995-10-01

    The political and economic upheavals which have taken place in Eastern Europe have had an impact on radiation and nuclear safety throughout Europe. Emergency preparedness systems for unexpected nuclear events have been developed further in all European countries, and prosperous western nations have invested in improving the safety of East European nuclear power plants. The economic crisis facing countries of the former Soviet Union has also promoted illicit trade in nuclear materials; this has made it necessary for various border guards and police authorities to intensify their collaboration and to tighten border controls. On 3-4 October 1995, Finnish Centre for Radiation and Nuclear Safety (STUK) arranged a seminar on nuclear threats and emergency preparedness in Finland. In addition to STUK experts, a wide range of rescue and civil defence authorities, environmental health specialists and other persons engaged in emergency preparedness attended the seminar. The publication contains a compilation of reports presented at the seminar. The reports cover a broad spectrum of nuclear threats analyzed at STUK, the impacts of radioactive fallout on human beings and on the environment, and preparedness systems by which the harmful effects of radiation or nuclear accidents can, if necessary, be minimized. (33 figs., 5 tabs.)

  1. The handling of nuclear emergencies in Argentina

    International Nuclear Information System (INIS)

    Hernandez, Daniel; Jordan, Osvaldo; Kunst, Juan; Bruno, Hector

    2008-01-01

    Full text: In 1998, the Executive signed the decree 1390, which defined the scope and the procedures corresponding to the Nuclear Activity Law. In this decree, the new functions of the Nuclear Regulatory Authority (ARN) are described, being the most important related to preparation and response for a nuclear emergency the following ones: 1) ARN must provide protection from harmful effects of ionizing radiations under normal conditions and emergency situations; 2) ARN must advise the Executive in case of radiological and nuclear emergencies; 3) ARN shall establish the criteria for the emergency plans of the facilities and train the members of neighbor public to the facilities in case of nuclear emergencies; 4) The emergency plans developed by local, provincial and national authorities must be approved by the ARN; 5) ARN shall lead the actions within the area covered by the emergency plans of the facilities. Security Forces and the Representatives of Civil Institutions shall report the designated ARN officer. The ARN recognized immediately the responsibility imposed by this law and, at the same time, the opportunity of improving the handling of emergencies through a centralized direction of the operations. Under this frame, ARN created the Radiological Emergencies Intervention System (SIER) with the goal of taking charge of the preparation and the handling of emergency situations. From the beginning, the purpose of the SIER was to improve the preparation and response to nuclear emergencies in a regular form, bearing in mind the cultural and socioeconomic situation of the country, as well as the local peculiarities. The first steep to achieve such a target was to gain the confidence of other organizations included in the response on the ARN technical and operational aptitude to lead the actions inside the emergency area and, later, to establish the pertinent arrangements. The strategy chosen by ARN to respond to nuclear emergencies consists in establishing an expert

  2. Nuclear Knowledge Management

    International Nuclear Information System (INIS)

    Hanamitsu, K.

    2015-01-01

    Knowledge is a strategic asset in every business. It should be actively managed by creating, acquiring, sharing, transferring and retaining among workers. Leaders and managers have to understand the significance of knowledge management (KM), recognise the risks of knowledge loss and gaps, and its impact on their working environment. Nuclear industry appears to be behind other industries in KM. This is firstly attributed to the nature of business which deals with sensitive data on nuclear materials and prioritises safety and security over information sharing. Second, it faces strong competition over the operational life-cycle, which discourages to exchange know-how and experiences. Third, nuclear industry is highly technology-oriented with homogeneous form, which misleads people to believe that KM has been already in place. Those factors could be barriers to establish nuclear KM culture on the basis of corporate core value and safety culture. Practical example of KM in business includes codification of particular skills into knowledge repository such as manual, handbook and database, and implicit knowledge transfer from experts to successors through apprenticeship and mentoring programmes. The examples suggest that KM applications closely link to information technology (IT) and human resource development (HRD) strategies, which results in effective integration of all available resources: people, process, and technology. Globalization and diversity is another dimension where KM can contribute to the solution. Global companies have to achieve a common goal beyond cultural, racial and gender differences. KM helps reduce the gaps, identify the core competence, and increase flexibility in workplace. Working women have been developing their professional career while adapting to situational changes in their lives. It might be easier for them to understand the importance of KM and develop KM practices in the organizations. KM will help nuclear industry to respond to the

  3. Nuclear waste management

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1985-01-01

    Most of our activities have always produced waste products of one sort or another. Huxley gives a humorous account of wastes throughout antiquity. So it should come as no surprise that some radioactive materials end up as waste products requiring management and disposal. Public perception of nuclear waste hazards places them much higher on the ''worry scale'' than is justified by the actual hazard involved. While the public perception of these hazards appears to revolve mostly around high-level wastes, there are several other categories of wastes that must also be controlled and managed. The major sources of radioactive wastes are discussed

  4. Managing nuclear maintenance

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    For utilities operating nuclear powerplants, the rules of the game continue to change. Conflicting regulatory pressures and a tougher competitive environment will make management's job more complicated and difficult in the 1990s. Dealing with these pressures successfully requires greater attention to maintenance effectiveness. Utilities can help shape their future environment by developing a well-planned strategy to guide their actions. Parts of the strategy that are discussed include developing a sound maintenance philosophy, selecting a service company, radiation exposure, and managing spare parts. This article also addresses the Swedish experience in maintenance, German philosophy regarding maintenance and the current maintenance practices of the Electricite de France

  5. Development of RODOS, a comprehensive real-time on-line decision support system for nuclear emergency management in Europe. Final report

    International Nuclear Information System (INIS)

    Ehrhardt, J.; Weis, A.

    1996-09-01

    The development of RODOS, a comprehensive, Real-time, On-line DecisiOn Support system for nuclear emergency management, that would be capable of finding broad application across Europe was included as a major item in the Radiation Protection Research Action of the European Commission's 3rd Framework Programme; it remains an important priority in the 4th Framework programme (1995-1998). When complete, the RODOS system is intended to be applicable from the vicinity of the release and the early phases of an accident to far distant areas and longer time periods. In this way it will be possible to achieve estimates, analyses, and prognoses of accident consequences with and without considering protective actions and countermeasures, which are consistent throughout all accident phases and distance ranges. It will also be possible to evaluate alternative combinations of measures in term of both, feasibility in the given situation, and public acceptability, socio-psychological and political implications. This Final Report summarises the results achieved by the partners of the EC contract FI3P-CT92-0036 within the time period 1992 to 1995, and more generally, gives an overview of the development status of the RODOS system and its functionalities realised by the end of the contract period. (orig.) [de

  6. Emergency planning and preparedness for nuclear facilities

    International Nuclear Information System (INIS)

    1986-01-01

    In order to review the advances made over the past seven years in the area of emergency planning and preparedness supporting nuclear facilities and consider developments which are on the horizon, the IAEA at the invitation of the Government of Italy, organized this International Symposium in co-operation with the Italian Commission for Nuclear and Alternative Energy Sources, Directorate of Nuclear Safety and Health Protection (ENEA-DISP). There were over 250 designated participants and some 70 observers from 37 Member States and four international organizations in attendance at the Symposium. The Symposium presentations were divided into sessions devoted to the following topics: emergency planning (20 papers), accident assessment (30 papers), protective measures and recovery operations (10 papers) and emergency preparedness (16 papers). A separate abstract was prepared for each of these papers

  7. ARAC: A support capability for emergency managers

    Energy Technology Data Exchange (ETDEWEB)

    Pace, J.C.; Sullivan, T.J.; Baskett, R.L. [and others

    1995-08-01

    This paper is intended to introduce to the non-radiological emergency management community the 20-year operational history of the Atmospheric Release Advisory Capability (ARAC), its concept of operations, and its applicability for use in support of emergency management decision makers. ARAC is a centralized federal facility for assessing atmospheric releases of hazardous materials in real time, using a robust suite of three-dimensional atmospheric transport and diffusion models, extensive geophysical and source-description databases, automated meteorological data acquisition systems, and experienced staff members. Although originally conceived to respond to nuclear accidents, the ARAC system has proven to be extremely adaptable, and has been used successfully during a wide variety of nonradiological hazardous chemical situations. ARAC represents a proven, validated, operational support capability for atmospheric hazardous releases.

  8. The systematics of emerging nuclear energy concepts

    International Nuclear Information System (INIS)

    Harms, A.A.; Ligou, J.

    1980-01-01

    The basic systematics pertaining to emerging nuclear energy concepts are examined from a historical and categorical perspective. For this purpose a complementary formulation of the interdependence of the vital fission-fusion-acceleration processes is established and then developed to accommodate explicitly recent developments for advanced synergetic nuclear energy proposals. The papers presented at the conference which form these proceeding are shown to integrate well and thus ecluidate the generalized systematics of this formulation. (orig.) [de

  9. Emergency Preparedness and Response at Nuclear Power Plants in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Khan, L. A.; Qamar, M. A.; Liaquat, M.R., E-mail: samasl@yahoo.com [Pakistan Atomic Energy Commission, Islamabad (Pakistan)

    2014-10-15

    Emergency preparedness and response arrangements at Nuclear Power Plants (NPPs) in Pakistan have been reevaluated in the light of Fukushima Daiichi accident. Appropriate measures have been taken to strengthen and effectively implement the on-site and off-site emergency plans. Verification of these plans is conducted through regulatory review and by witnessing periodic emergency drills and exercises conducted by the NPPs in the fulfilment of the regulatory requirements. Emergency Planning Zones (EPZs) have been revised at NPPs. A multi discipline reserve force has been formed for assistance during severe accidents. Nuclear Emergency Management System (NEMS) has been established at the national level in order to make necessary arrangements for responding to nuclear and radiological emergencies. Training programs for first responders and medical professionals have been launched. Emergencies coordination centres have been established at national and corporate levels. Public awareness program has been initiated to ensure that the surrounding population is provided with appropriate information on emergency planning and response. To share national and international operational experience, Pakistan has arranged various workshops and developed a strong link with International Atomic Energy Agency (IAEA). (author)

  10. Online Food Safety Information System for Nuclear or Radiological Emergencies

    International Nuclear Information System (INIS)

    Albinet, Franck; Adjigogov, Lazar; Dercon, Gerd

    2016-01-01

    Over the last year, the protocol with regards to data management and visualization requirements for food safety decision-making, developed under CRP D1.50.15 on R esponse to Nuclear Emergency Affecting Food and Agriculture , was further implemented. The development team moved away from early series of disconnected prototypes to a more advanced Information System integrating both data management and visualization components outlined in the agreed protocol

  11. Nuclear crisis management

    International Nuclear Information System (INIS)

    Hamburg, D.A.; George, A.L.

    1984-01-01

    Renewed interest in crisis management is caused by a growing recognition that a failure of communication between the superpowers in the face of a crisis provoked by some third party could issue in a nuclear war, other causes of this renewed interest are the fear of miscalculation and runaway escalation if the US and Soviet Union are drawn into a regional war in which each had vital interests and a concern that a missile might be fired on either side by accident or without proper authorization despite precautions. The authors, stating that crisis prevention should be viewed as an objective, not as a strategy, support the establishment of a joint US-Soviet nuclear risk control center designed to carry out four functions: (1) to facilitate communications between the two countries, (2) to avert nuclear confrontations during periods of accelerating tension, (3) to serve as an exchange of confidence building information during normal periods, and (4) to serve as a joint management center to plan for responses to terrorist or other third party group

  12. Emergency system for nuclear reactors

    International Nuclear Information System (INIS)

    1976-01-01

    The invention concerns a circuit called 'of emergency help' intended to remove, in a safe and quick manner, the residual thermal power on the safety vessel of a fast neutron reactor cooled by a liquid metal flow, in the event of a failure occurring inside the main reactor vessel or on it. This system includes a network of spray nozzle tubes, distributed around and near the external surface of the safety vessel, to project on to the surface of the vessel a mist of a liquid having high latent vaporisation heat. The steam produced on contact with the safety vessel is collected in the space provided between the safety vessel and the external protection vessel by at least one collector pipe for dischaging this steam outside the vessel. Under a preferred design mode of the invention the liquid is water the use of which turns out to be particularly advantageous in practice owing to its favourable physical properties and its low cost [fr

  13. Police procedures in civil nuclear emergencies

    International Nuclear Information System (INIS)

    Smith, F.H.

    1989-01-01

    The responsibilities of the police in the event of a nuclear emergency are summarized. Preparation and planning is needed with site operators and other organisations who would also be involved in the event of an accident. Several points in particular are discussed; shelter and evacuation, the issue of potassium iodate tablets, protection of police officers, the police involvement in the operation support centres, public education and further discussion on the integration and development of the organisation of emergency procedures. (U.K.)

  14. Nuclear Plant Integrated Outage Management

    International Nuclear Information System (INIS)

    Gerstberger, C. R.; Coulehan, R. J.; Tench, W. A.

    1992-01-01

    This paper is a discussion of an emerging concept for improving nuclear plant outage performance - integrated outage management. The paper begins with an explanation of what the concept encompasses, including a scope definition of the service and descriptions of the organization structure, various team functions, and vendor/customer relationships. The evolvement of traditional base scope services to the integrated outage concept is addressed and includes discussions on changing customer needs, shared risks, and a partnership approach to outages. Experiences with concept implementation from a single service in 1984 to the current volume of integrated outage management presented in this paper. We at Westinghouse believe that the operators of nuclear power plants will continue to be aggressively challenged in the next decade to improve the operating and financial performance of their units. More and more customers in the U. S. are looking towards integrated outage as the way to meet these challenges of the 1990s, an arrangement that is best implemented through a long-term partnering with a single-source supplier of high quality nuclear and turbine generator outage services. This availability, and other important parameters

  15. Hazardous Materials Management and Emergency Response (HAMMER)

    Data.gov (United States)

    Federal Laboratory Consortium — The Volpentest Hazardous Materials Management and Emergency Response (HAMMER) Federal Training Center is a safety and emergency response training center that offers...

  16. Nuclear emergency planning in Spain. The PLABEN review project

    International Nuclear Information System (INIS)

    Lentijo Lentijo, J. C.; Vila Pena, M.

    2002-01-01

    The international rules and recommendations for nuclear emergency planning and the Spanish experience gained in the management of event with radiological risk have noticed that is necessary to review the planning radiological bases for emergencies in nuclear power plants and to define the planning radiological bases for radiological emergencies that could happen in radioactive facilities or in activities out of the regulatory framework. The paper focuses on CSN actions concerning the Plaben review project related to define the new radiological principles taking into account the current international recommendations for interventions, make a proposal about the organisation and operation of the provincial radiological action group and the national support level for radiological emergency response. (Author) 7 refs

  17. Development of Secure and Sustainable Nuclear Infrastructure in Emerging Nuclear Nations Such as Vietnam

    International Nuclear Information System (INIS)

    Shipwash, Jacqueline L; Kovacic, Donald N

    2008-01-01

    The global expansion of nuclear energy will require international cooperation to ensure that nuclear materials, facilities, and sensitive technologies are not diverted to non-peaceful uses. Developing countries will require assistance to ensure the effective regulation, management, and operation of their nuclear programs to achieve best practices in nuclear nonproliferation. A developing nation has many hurdles to pass before it can give assurances to the international community that it is capable of implementing a sustainable nuclear energy program. In August of this year, the U.S. Department of Energy and the Ministry of Science and Technology of the Socialist Republic of Vietnam signed an arrangement for Information Exchange and Cooperation on the Peaceful Uses of Nuclear Energy. This event signals an era of cooperation between the U.S. and Vietnam in the area of nuclear nonproliferation. This paper will address how DOE is supporting the development of secure and sustainable infrastructures in emerging nuclear nations such as Vietnam

  18. Nuclear wastes management

    International Nuclear Information System (INIS)

    2005-01-01

    This document is the proceedings of the debate that took place at the French Senate on April 13, 2005 about the long-term French policy of radioactive wastes management. The different points tackled during the debate concern: the 3 axes of research of the 1991 law, the public acceptance about the implementation of repositories, the regional economic impact, the cost and financing, the lack of experience feedback, the reversibility or irreversibility of the storage, the share of nuclear energy in the sustainable development policy, the European Pressurized Reactor (EPR) project, the privatization of Electricite de France (EdF) etc. (J.S.)

  19. Nuclear database management systems

    International Nuclear Information System (INIS)

    Stone, C.; Sutton, R.

    1996-01-01

    The authors are developing software tools for accessing and visualizing nuclear data. MacNuclide was the first software application produced by their group. This application incorporates novel database management and visualization tools into an intuitive interface. The nuclide chart is used to access properties and to display results of searches. Selecting a nuclide in the chart displays a level scheme with tables of basic, radioactive decay, and other properties. All level schemes are interactive, allowing the user to modify the display, move between nuclides, and display entire daughter decay chains

  20. The Norwegian nuclear emergency preparedness system

    International Nuclear Information System (INIS)

    Naadland, E.; Stranden, E.

    1995-01-01

    A new national organisation for nuclear emergency preparedness was established in Norway in 1993, based on experiences from the Chernobyl accident. This organisation is based on authorities and research institutions which in a normal situation have responsibilities and knowledge in fields that are also of major importance in a nuclear accident situation. The national emergency preparedness organisation consists of the Ministerial Co-ordination Committee, the Advisory Committee for Nuclear Accidents and their secretariat at the Norwegian Radiation Protection Authority, and an Information Group. The organisations participating in the Advisory Committee operate measuring networks, stations and laboratories. In an early phase of an accident, a minor group from the Advisory Committee forms a Crisis Committee for Nuclear Accidents. This committee has been delegated the authority to make decisions in this phase. The organisation represented by its secretariat at the Norwegian Radiation Protection Authority is responsible for coordinating the emergency planning, the measuring capacities and the professional needs ordinarily. The secretariat is on call 24 hours a day as point of contact according to bilateral and international agreements on early notification. In this paper the features of the emergency preparedness organisation are presented. (Author)

  1. Hungarian system for nuclear emergency preparedness

    International Nuclear Information System (INIS)

    Borsi, Laszlo; Szabo, Laszlo; Ronaky, Jozsef

    2000-01-01

    The Hungarian Government had established in 1989 on the basis of national and international experience the National System for Nuclear Emergency Preparedness (NSNEP). Its guidance is ad-ministered by the Governmental Commission for Nuclear Emergency Preparedness (GCNEP). The work of the Governmental Commission is designated to be assisted by the Secretariat, the Operational Staff and by the Technical Scientific Council. The leading and guiding duties of the relevant ministries and national agencies are performed by the Sectional Organisations for Nuclear Emergency Preparedness (SONEP), together with those of the Metropolitan Agencies and of the county agencies by the Metropolitan Local Committee (MLCNEP) and by County Local Committees. The chairman of the Governmental Commission is the Minister of the Interior whose authority covers the guidance of the NSNEP's activities. The Secretariat of the Governmental Commission (SGC) co-ordinates the activities of the bodies of the Governmental Commission, the sectional organisations, the local committees for nuclear emergency preparedness and those of the other bodies responsible for implementing action. The Emergency Information Centre (EIC) of GCNEP as the central body of the National Radiation Monitoring, Warning and Surveillance System provides the information needed for preparing decisions at Governmental Commission level. The technical-scientific establishment of the governmental decisions in preparation for nuclear emergency situations and the elimination of their consequences are tasks of the Technical-Scientific Council. The Centre for Emergency Response, Training and Analysis (CERTA) of the Hungarian Atomic Energy Authority (HAEA) may be treated as a body of the Governmental Commission as well. The National Radiation Monitoring, Warning and Surveillance System (NRMWSS) is integral part of the NSNEP. The NRMWSS consists of the elements operated by the ministries and the operation of nation-wide measuring network in

  2. Accident knowledge and emergency management

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, B; Groenberg, C D

    1997-03-01

    The report contains an overall frame for transformation of knowledge and experience from risk analysis to emergency education. An accident model has been developed to describe the emergency situation. A key concept of this model is uncontrolled flow of energy (UFOE), essential elements are the state, location and movement of the energy (and mass). A UFOE can be considered as the driving force of an accident, e.g., an explosion, a fire, a release of heavy gases. As long as the energy is confined, i.e. the location and movement of the energy are under control, the situation is safe, but loss of confinement will create a hazardous situation that may develop into an accident. A domain model has been developed for representing accident and emergency scenarios occurring in society. The domain model uses three main categories: status, context and objectives. A domain is a group of activities with allied goals and elements and ten specific domains have been investigated: process plant, storage, nuclear power plant, energy distribution, marine transport of goods, marine transport of people, aviation, transport by road, transport by rail and natural disasters. Totally 25 accident cases were consulted and information was extracted for filling into the schematic representations with two to four cases pr. specific domain. (au) 41 tabs., 8 ills.; 79 refs.

  3. Accident knowledge and emergency management

    International Nuclear Information System (INIS)

    Rasmussen, B.; Groenberg, C.D.

    1997-03-01

    The report contains an overall frame for transformation of knowledge and experience from risk analysis to emergency education. An accident model has been developed to describe the emergency situation. A key concept of this model is uncontrolled flow of energy (UFOE), essential elements are the state, location and movement of the energy (and mass). A UFOE can be considered as the driving force of an accident, e.g., an explosion, a fire, a release of heavy gases. As long as the energy is confined, i.e. the location and movement of the energy are under control, the situation is safe, but loss of confinement will create a hazardous situation that may develop into an accident. A domain model has been developed for representing accident and emergency scenarios occurring in society. The domain model uses three main categories: status, context and objectives. A domain is a group of activities with allied goals and elements and ten specific domains have been investigated: process plant, storage, nuclear power plant, energy distribution, marine transport of goods, marine transport of people, aviation, transport by road, transport by rail and natural disasters. Totally 25 accident cases were consulted and information was extracted for filling into the schematic representations with two to four cases pr. specific domain. (au) 41 tabs., 8 ills.; 79 refs

  4. Management of gynecologic oncology emergencies

    International Nuclear Information System (INIS)

    Harwood-Nuss, A.L.; Benrubi, G.I.; Nuss, R.C.

    1987-01-01

    Gynecologic malignancies are the third most common cancer among women in the United States. Because of often subtle early findings, the diagnosis may not be made before the widespread dissemination of the disease. The Emergency Department physician will commonly encounter a woman with vaginal bleeding, pelvic pain, or a symptomatic abdominal mass. In this article, we have described the epidemiology, recognized patterns of spread, and associated findings of gynecologic tumors. The proper Emergency Department evaluation and management of these problems is emphasized with guidelines for the timing of referrals and consultation with the gynecologic oncologist. The treatment of gynecologic malignancies is often complicated and responsible for Emergency Department visits. The various modalities are addressed according to the organ systems affected and include sections on postoperative problems, gastrointestinal complaints, urologic complications of therapy, radiation therapy and its complications, with an emphasis on the most serious complications necessitating either careful outpatient management or hospital admission. As cost-containment pressure grows, we have included sections on chemotherapy and total parenteral nutrition, both of which are becoming common outpatient events for the cancer patient. 28 references

  5. Information to the public, the media, and the population in the event of a nuclear incident; an important component of nuclear emergency management

    International Nuclear Information System (INIS)

    Bayer, A.

    1997-01-01

    In the case of a nuclear incident, information is obtained from the plant operator and via the monitoring systems of the authorities. Information is passed on to the authorities (confidential area of communication) and to the media and the population (largely more accessible area of communication). Within the authorities, alongside the processing of information (actual situation, prognosis, evaluation, issuing of recommendations), an exchange of information takes place on the national, bilateral, supranational and international levels. The authorities inform those in political circles (the government), and via them, parliament and the general public (the media and the population). The informing of the public occurs directly (via, alongside other means, Videotext, T-Online and Internet), and also, via the mass media (press, radio, television). There are a number of problems which can only be solved with difficulty or, possibly, only on a more long-term basis. These lie in the areas of supply of and demand for information, communication, and preception and selection of information within the population. (orig.) [de

  6. Measuring strategy of Support Centre RIVM for nuclear emergencies

    International Nuclear Information System (INIS)

    Pruppers, M.J.M.; Smetsers, R.C.G.M.

    1994-11-01

    The accident at the Chernobyl nuclear power station in April 1986 and its consequences were reason for the Dutch government to evaluate and improve the facilities and the preparedness for nuclear emergency management in the Netherlands. The results of the evaluation have been elaborated in operational terms in the National Plan for Nuclear Emergency Planning and Response (EPR). During an accident with radioactive material the Technical Information Group (TIG) coordinates the measuring activities of the so-called Support Centres. According to the EPR, measuring activities of Support Centre RIVM are focussed on the collection and processing of data on emissions, concentrations, depositions and radiation doses from soil and air. This report describes the measuring strategy of RIVM for nuclear emergencies. The measuring strategy and the measuring plan, the latter deduced from the measuring strategy, concentrate on explicit answers to the following central questions: what has to be measured, by whom, where, when and how, and why? The demands of the TIG and the specification of tasks and operational facilities of Support Centre RIVM are considered as starting-points, limiting conditions and constraints for the measuring strategy. These items are converted to explicit choices for the measuring strategy and the default measuring plan. This report further includes a list of contacts of Support Centre RIVM with other (research) institutes, inside and outside the Netherlands, which may be relevant during a nuclear emergency. 3 figs., 2 tabs., 22 refs

  7. Effective emergency management: reconsidering the bureaucratic approach.

    Science.gov (United States)

    Neal, D M; Phillips, B D

    1995-12-01

    The command and control approach is compared with the Emergent Human Resources Model (EHRM) approach to emergency management. Four decades of systematic research shows that a rigid, bureaucratic command and control approach to emergency management generally leads to an ineffective emergency response. Previous studies and our own research suggest that flexible, malleable, loosely coupled, organizational configurations can create a more effective disaster response.

  8. Medical management of radiation emergencies

    International Nuclear Information System (INIS)

    Bongirwar, P.R.

    2002-01-01

    This review deals specifically with the medical management of victims, such as, the triage of exposed individuals on the basis of preliminary observations and investigations, planning priority of treatment to different groups, emergency care, and definitive care. The infrastructure for appropriate management involves first aid posts, decontamination centre, Site Hospital and Specialized Central Hospital. Medical management of life threatening radiation doses involve haematological examinations, blood component therapy, treatment with growth factors and if necessary, bone marrow transplantation as the last option. Most of the radiation accidents involving partial body and localized exposures are associated with industrial radiography sources. Such exposures are generally not life threatening but may involve serious skin injury, such as, ulceration, necrosis and gangrene. Methods have been developed to carry out decontamination of skin and decorporation of internally deposited radio nuclides. This article also provides information on the Radiation Emergency Medical Preparedness and Assistance Network and also outlines the role of media in reducing the human suffering in the event of an accident

  9. Managing hypopituitarism in emergency departments.

    Science.gov (United States)

    Welsh, Jeanette

    2015-10-01

    Healthcare professionals manage patients with a vast range of conditions, but often specialise and acquire expertise in specific disease processes. Emergency and pre-hospital clinicians care for patients with various conditions for short periods of time, so have less opportunity to become familiar with more unusual conditions, yet it is vital that they have some knowledge and understanding of these. Patients with rare conditions can present at emergency departments with common complaints, but the effect of their original diagnosis on the presenting complaint may be overlooked or underestimated. This article uses a case study to describe the experience of one patient who presented with vomiting, but who also had hypopituitarism and therefore required specific management she did not at first receive. The article describes hypopituitarism and the initial management of patients with this condition who become unwell, and discusses how the trust responded to the patient's complaint to improve patient safety and care. It has been written with the full participation and consent of the patient and her husband.

  10. New Nuclear Emergency Prognosis system in Korea

    Science.gov (United States)

    Lee, Hyun-Ha; Jeong, Seung-Young; Park, Sang-Hyun; Lee, Kwan-Hee

    2016-04-01

    This paper reviews the status of assessment and prognosis system for nuclear emergency response in Korea, especially atmospheric dispersion model. The Korea Institute of Nuclear Safety (KINS) performs the regulation and radiological emergency preparedness of the nuclear facilities and radiation utilizations. Also, KINS has set up the "Radiological Emergency Technical Advisory Plan" and the associated procedures such as an emergency response manual in consideration of the IAEA Safety Standards GS-R-2, GS-G-2.0, and GS-G-2.1. The Radiological Emergency Technical Advisory Center (RETAC) organized in an emergency situation provides the technical advice on radiological emergency response. The "Atomic Computerized Technical Advisory System for nuclear emergency" (AtomCARE) has been developed to implement assessment and prognosis by RETAC. KINS developed Accident Dose Assessment and Monitoring (ADAMO) system in 2015 to reflect the lessons learned from Fukushima accident. It incorporates (1) the dose assessment on the entire Korean peninsula, Asia region, and global region, (2) multi-units accident assessment (3) applying new methodology of dose rate assessment and the source term estimation with inverse modeling, (4) dose assessment and monitoring with the environmental measurements result. The ADAMO is the renovated version of current FADAS of AtomCARE. The ADAMO increases the accuracy of the radioactive material dispersion with applying the LDAPS(Local Data Assimilation Prediction System, Spatial resolution: 1.5 km) and RDAPS(Regional Data Assimilation Prediction System, Spatial resolution: 12km) of weather prediction data, and performing the data assimilation of automatic weather system (AWS) data from Korea Meteorological Administration (KMA) and data from the weather observation tower at NPP site. The prediction model of the radiological material dispersion is based on the set of the Lagrangian Particle model and Lagrangian Puff model. The dose estimation methodology

  11. Nuclear emergency buildings of Asco and Vandellos II nuclear power plants; Centros alternativos de emergencias de las centrales nucleares de Asco y Vandellos II

    Energy Technology Data Exchange (ETDEWEB)

    Massuet, J.; Sabater, J.; Mirallas Esteban, S.

    2016-08-01

    The Nuclear Emergency Buildings sited at Asco and Vandellos II Nuclear Power Plants (NPP) are designed to safety manage emergencies in extreme situations, beyond the design basis of the Nuclear Power Plants. Designed in accordance with the requirements of the Spanish Nuclear Regulator (Consejo de Seguridad Nuclear-CSN) these buildings are ready to operate over a period of 72 hours without external assistance and ensure habitability for crews of 120 and 70 people respectively. This article describes the architectural conception, features and major systems of the Nuclear Emergency Buildings sited at Asco and Vandellos II. (Author)

  12. Managing nuclear information in Tanzania

    International Nuclear Information System (INIS)

    Sawe, S.F.; Sungita, Y.Y.

    2004-01-01

    Nuclear information management and the applications of nuclear technology in Tanzania are limited to medical, agriculture, research and some industrial applications. It is demanding that the National database for nuclear information be established to keep the track of the information on radiation facilities, manpower development, radiation sources and radioactive waste management. In this paper the current status of nuclear information management in Tanzania is presented. The development, setbacks and future plans for establishment of national database with consequent improvement of nuclear information management are discussed. The National Radiation Commission (NRC) which is an official government body responsible for atomic energy matters in collaboration with other institutions applying nuclear technology keeps the records and inventory of facilities, manpower development and projects related to the nuclear field. The available information about nuclear application activities has been obtained through possessors' declaration, monitoring at entry/exit points, periodic reports from the licensees, radiation safety inspections, and the available link with the International Atomic Energy Agency (IAEA). In order to facilitate the dissemination of information, five ICT centres to serve in the fields of research, nuclear instrumentation, human health and agriculture have been established. The inventory of radiation facilities/materials and human resource is being build up as an initial input to the National database. Establishment of INIS centre is expected to improve the nuclear information management system in the country. The government and the IAEA are encouraged to support nuclear information management especially by strengthening ICT centres and facilitating the establishment of INIS National centre. (author)

  13. Managing nuclear information in Tanzania

    International Nuclear Information System (INIS)

    Sawe, S.F.; Sungita, Y.Y.

    2004-01-01

    Full text: Nuclear information management and the applications of nuclear technology in Tanzania are limited to medical, agriculture, research and some industrial applications. It is demanding that the National database for nuclear information be established to keep the track of the information on radiation facilities, manpower development, radiation sources and radioactive waste management. In this paper the current status of nuclear information management in Tanzania is presented. The development, setbacks and future plans for establishment of national database with consequent improvement of nuclear information management are discussed. The National Radiation Commission (NRC) which is an official government body responsible for atomic energy matters in collaboration with other institutions applying nuclear technology, keeps the records and inventory of facilities, manpower development and projects related to the nuclear field. The available information about nuclear application activities has been obtained through possessors' declaration, monitoring at entry/exit points, periodic reports from the licensees, radiation safety inspections, and the available link with the International Atomic Agency (IAEA). In order to facilitate the dissemination of information, five ICT centers to serve in the fields of research, nuclear instrumentation, human health and agriculture have been established. The inventory of radiation facilities/materials and human resource is being build up as an initial input to the National database. Establishment of INIS center is expected to improve the nuclear information management system in the country. The government and the IAEA are encouraged to support nuclear information management especially by strengthening ICT centers and facilitating the establishment of INIS National center. (author)

  14. Plan for national nuclear emergency preparedness

    International Nuclear Information System (INIS)

    1992-06-01

    The responsibility for Denmark's preparedness for nuclear emergencies lies with the Ministry of the Interior and the Civil Defense administration. The latter is particularly responsible for the presented plan which clarifies the organization and the measures to be taken in order to protect the public where, in the event of such an emergency, it could be in danger of radiation from radioactive materials. The main specifications of the plan, the activation of which covers the whole country, are that daily monitoring should be carried out so that warnings of nuclear accidents can be immediately conveyed to the relevant parties and that immediate action can be taken. These actions should result in the best possible protection against nuclear radiation so that acute and chronic damage to the health of members of the public can be restricted. The public, and relevant authorities should be informed of the situation and it should be attempted to regulate the reactions of individuals and of the society in general in such a way that damage to health, or social and economical conditions, can be restricted as much as possible. Denmark has not itself any atomic power plants, but some are located in neighbour countries and there are other sources such as nuclear research reactors, passing nuclear-driven ships etc. The detailed plan also covers possible sources of radiation, the nature of related damage to health, international cooperation, legal aspects, and a very detailed description of the overall administration and of the responsibilities of the organizations involved. (AB)

  15. Radiological aerial monitoring in a nuclear emergency

    International Nuclear Information System (INIS)

    Shin, Hyeongki; Kim, Juyoul; Jung, Gunhyo

    2008-01-01

    Since North Korea announced the underground nuclear test on last October 9th, 2006, many countries around the world have worried about the atmospheric dispersion and pollution of radioactive materials crossing the border by the clandestine nuclear test. After that time, verifying the existence of nuclear test by detecting radioactive materials such as xenon, I-131, and Cs-134 at the early stage of radiological emergency, locating the position of test site by backward trajectory analysis, and chasing the moving path of airborne radionuclide have been heavily issued. And collection of airborne radioactivity and gamma radiation monitoring technology using an aircraft have been recently examined by an authority concerned in South Korea. Although various techniques of radiological aerial monitoring have been developed and operated around the world, the relevant technical development or research is still required. In order to decide potential measuring location and time within the framework of radiological monitoring system, we use HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) model developed by National Oceanic and Atmospheric Administration (NOAA) of U.S. Department of Commerce. The model is validated and assessed against North Korea's nuclear test. Calculation results of radionuclide trajectory show a good agreement with measured values. Backward trajectory analysis is useful to track the radiological source term, possible time and place of nuclear accidents and/or activities. Nationwide early warning system using aircraft and atmospheric dispersion model can help a nearly real-time forecasting and warning in preparation for radiological emergencies. (author)

  16. Emergency planning and preparedness for nuclear facilities

    International Nuclear Information System (INIS)

    Koelzer, W.

    1988-01-01

    Nuclear installations are designed, constructed and operated in such a way that the probability for an incident or accident is very low and the probability for a severe accident with catastrophic consequences is extremely small. These accidents represent the residual risk of the nuclear installation, and this residual risk can be decreased on one hand by a better design, construction and operation and on the other hand by planning and taking emergency measures inside the facility and in the environment of the facility. By way of introduction and definition it may be indicated to define some terms pertaining to the subject in order to make for more uniform understanding. (orig./DG)

  17. Corrosion management in nuclear industry

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.

    2012-01-01

    Corrosion is a major degradation mechanism of metals and alloys which significantly affects the global economy with an average loss of 3.5% of GDP of several countries in many important industrial sectors including chemical, petrochemical, power, oil, refinery, fertilizer etc. The demand for higher efficiency and achieving name plate capacity, in addition to ever increasing temperatures, pressures and complexities in equipment geometry of industrial processes, necessitate utmost care in adopting appropriate corrosion management strategies in selecting, designing, fabricating and utilising various materials and coatings for engineering applications in industries. Corrosion control and prevention is an important focus area as the savings achieved from practicing corrosion control and prevention would bring significant benefits to the industry. Towards this, advanced corrosion management strategies starting from design, manufacturing, operation, maintenance, in-service inspection and online monitoring are essential. At the Indira Gandhi Centre for Atomic Research (IGCAR) strategic corrosion management efforts have been pursued in order to provide solutions to practical problems emerging in the plants, in addition to innovative efforts to provide insight into mechanism and understanding of corrosion of various engineering materials and coatings. In this presentation the author highlights how the nuclear industry benefited from the practical approach to successful corrosion management, particularly with respect to fast breeder reactor programme involving both reactor and associated reprocessing plants. (author)

  18. Information Systems Coordinate Emergency Management

    Science.gov (United States)

    2012-01-01

    The rescue crews have been searching for the woman for nearly a week. Hurricane Katrina devastated Hancock County, the southernmost point in Mississippi, and the woman had stayed through the storm in her beach house. There is little hope of finding her alive; the search teams know she is gone because the house is gone. Late at night in the art classroom of the school that is serving as the county s emergency operations center, Craig Harvey is discussing the search with the center s commander. Harvey is the Chief Operating Officer of a unique company called NVision Solutions Inc., based at NASA s Stennis Space Center in Bay St. Louis, only a couple of miles away. He and his entire staff have set up a volunteer operation in the art room, supporting the emergency management efforts using technology and capabilities the company developed through its NASA partnerships. As he talks to the commander, Harvey feels an idea taking shape that might lead them to the woman s location. Working with surface elevation data and hydrological principles, Harvey creates a map showing how the floodwaters from the storm would have flowed along the topography of the region around the woman s former home. Using the map, search crews find the woman s body in 15 minutes. Recovering individuals who have been lost is a sad reality of emergency management in the wake of a disaster like Hurricane Katrina in 2005. But the sooner answers can be provided, the sooner a community s overall recovery can take place. When damage is extensive, resources are scattered, and people are in dire need of food, shelter, and medical assistance, the speed and efficiency of emergency operations can be the key to limiting the impact of a disaster and speeding the process of recovery. And a key to quick and effective emergency planning and response is geographic information. With a host of Earth-observing satellites orbiting the globe at all times, NASA generates an unmatched wealth of data about our ever

  19. Ar-41 measurements and nuclear emergency preparedness

    International Nuclear Information System (INIS)

    Kunst, J.J.; Rodriguez, M.; Ugarte, R.; Vigile, R.S.; Boutet, L.I.; Jordan, O.D.; Hernandez, D.G.

    2010-01-01

    During the early phase of an emergency is necessary to confirm the release of radioactivity predictions made by the operator of the nuclear plant. In this context, it has begun measuring Ar-41 in the vicinity of a research reactor. Since the Ar-41 is produced in the reactor, it has been studied as a good way to validate the air dispersion model used in nuclear emergencies and to develop a method to improve the characterization of the release. For this latter purpose a pilot experiment was conducted to determine computational and experimental methods, the flux of 1.29 MeV of Ar-41 and compared to evaluate the accuracy of the assessments made. This paper describes meteorological forecasting systems used in the experiment, the estimate of the stability class and the concentration of nuclides using a calculation code developed by the ARN, as well as the methodology and equipment used for measurement in the field. (authors) [es

  20. An expert system for improving nuclear emergency response

    International Nuclear Information System (INIS)

    Salame-Alfie, A.; Goldbogen, G.C.; Ryan, R.M.; Wallace, W.A.; Yeater, M.L.

    1987-01-01

    The accidents at TMI-2 and Chernobyl have produced initiatives aimed at improving nuclear plant emergency response capabilities. Among them are the development of emergency response facilities with capabilities for the acquisition, processing, and diagnosis of data which are needed to help coordinate plant operations, engineering support and management under emergency conditions. An effort in this direction prompted the development of an expert system. EP (EMERGENCY PLANNER) is a prototype expert system that is intended to help coordinate the overall management during emergency conditions. The EP system was built using the GEN-X expert system shell. GEN-X has a variety of knowledge representation mechanisms including AND/OR trees, Decision trees, and IF/THEN tables, and runs on an IBM PC-XT or AT computer or compatible. Among the main features, EP is portable, modular, user friendly, can interact with external programs and interrogate data bases. The knowledge base is made of New York State (NYS) Procedures for Emergency Classification, NYS Radiological Emergency Preparedness Plan (REPP) and knowledge from experts of the NYS Radiological Emergency Preparedness Group and the Office of Radiological Health and Chemistry of the New York Power Authority (NYPA)

  1. Emergency Response Resources guide for nuclear power plant emergencies

    International Nuclear Information System (INIS)

    1992-07-01

    On August 28 and September 18, 1990, the States of Louisiana and Mississippi, Gulf States Utilities, five local parishes, six Federal agencies, and the American Nuclear Insurers participated in a post-emergency TABLETOP exercise in Baton Rouge, Louisiana. One of the products developed from that experience was this guide for understanding the responsibilities and obtaining resources for specific needs from the various participants, particularly from those organizations within the Federal Government. This first revision of that guide broadens the focus of the original document. Also, new information defines the major Federal response facilities. This guide should assist State and local government organizations with identifying and obtaining those resources for the post-emergency response when their resources have been exhausted

  2. Generic procedures for monitoring in a nuclear or radiological emergency

    International Nuclear Information System (INIS)

    1999-06-01

    One of the most important aspects of managing a radiological emergency is the ability to promptly and adequately assess the need for protective actions. Protective action accident management must make use of the key relevant information available. Decision-making and accident assessment will be an iterative and dynamic process aimed at refining the initial evaluation as more detailed and complete information becomes available. Emergency monitoring is one of the main sources for obtaining needed information. This publication is in the scope of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Legal Series No. 14) under which the IAEA is authorized to assist a State Party or a Member State among other matters in developing appropriate radiation monitoring programmes, procedures and standards (Article 5). The scope of this manual is restricted to practical guidance for environmental and source monitoring during a nuclear or other radiological emergency. It does not address emergency response preparedness, nor does it cover the emergency management aspects of accident assessment. This manual is organised into sections relating to measurements in order of priority of a major reactor accident, namely: ambient gamma/beta dose rates from plume, ground deposition or source; radionuclide concentrations in air; deposition maps for 131 I and 137 Cs and other important radionuclides; radionuclide mix in deposition and radionuclide concentrations in food, drinking water and other samples. The introductory section provides an overview of the design of emergency monitoring and sampling programmes, monitoring teams and their qualifications and training, monitoring equipment and instrumentation, protective actions for emergency monitoring teams and quality assurance and quality control checks

  3. Study on Korean Radiological Emergency System-Care System- and National Nuclear Emergency Preparedness System Development

    International Nuclear Information System (INIS)

    Akhmad Khusyairi; Yudi Pramono

    2008-01-01

    Care system; Radiological Emergency Supporting System. Environmental radiology level is the main aspect that should be concerned deal with the utilization of nuclear energy. The usage of informational technology in nuclear area gives significant contribution to anticipate and to protect human and environment. Since 1960, South Korea has developed environment monitoring system as the effort to protect the human and environment in the radiological emergency condition. Indonesia has possessed several nuclear installations and planned to build and operate nuclear power plants (PLTN) in the future. Therefore, Indonesia has to prepare the integrated system, technically enables to overcome the radiological emergency. Learning from the practice in South Korea, the system on the radiological emergency should be prepared and applied in Indonesia. However, the government regulation draft on National Radiological Emergency System, under construction, only touches the management aspect, not the technical matters. Consequently, when the regulation is implemented, it will need an additional regulation on technical aspect including the consideration on the system (TSS), the organization of operator and the preparation of human resources development of involved institution. For that purpose, BAPETEN should have a typical independence system in regulatory frame work. (author)

  4. Analysis on functions of mobile nuclear emergency monitoring lab

    International Nuclear Information System (INIS)

    Lai Yongfang; Wang Yonghong; Gao Jing; Sun Jian

    2012-01-01

    According to the fundamental purpose and mission of nuclear emergency monitoring and based on technological aspects, this paper discusses and analyses the functions and basic requirements on equipment in mobile radiation measurement lab in nuclear emergency response. (authors)

  5. Nuclear waste management: a perspective

    International Nuclear Information System (INIS)

    Leuze, R.E.

    1980-01-01

    The scope of our problems with nuclear waste management is outlined. Present and future inventories of nuclear wastes are assessed for risk. A discussion of what is presently being done to solve waste management problems and what might be done in the future are presented

  6. Managing for nuclear operational effectiveness

    International Nuclear Information System (INIS)

    Nevins, P.A.; Kasperski, D.C.

    1990-01-01

    The nuclear energy industry worldwide is changing, with significant implications for nuclear utility managers. While the UK and US nuclear industries have many differences, a number of the lessons learned in the US have direct applicability to the UK. Just as the physics behind nuclear power transcends political boundaries, so do many of the management techniques that are necessary to run an efficient and sound operation. The US nuclear industry is no longer a construction-based industry, as it has been for years. As nuclear construction slows or stops in many parts of the world and nuclear power comes under increased scrutiny everywhere, the industry is shifting away from a construction emphasis and towards an operations and maintenance emphasis. In North America more than one-half of nuclear executives believe that plant operating and maintenance costs, and not construction-related problems, are their number one concern. Furthermore, when asked what actions they would expect to take as a result of this concern, the majority indicated that the actions would be management-related for the most part, and included items such as: emphasize operating improvements, emphasize management improvements, upgrade outage management and maintenance management programs, increase senior management involvement and set management performance criteria. (author)

  7. Commercial nuclear-waste management

    International Nuclear Information System (INIS)

    Andress, D.A.

    1981-04-01

    This report is primarily concerned with nuclear waste generated by commercial power operations. It is clear, however, that the total generation of commercial nuclear waste does not tell the whole story, there are sizeable stockpiles of defense nuclear wastes which will impact areas such as total nuclide exposure to the biosphere and the overall economics of waste disposal. The effects of these other nuclear waste streams can be factored in as exogenous inputs. Their generation is essentially independent of nuclear power operations. The objective of this report is to assess the real-world problems associated with nuclear waste management and to design the analytical framework, as appropriate, for handling nuclear waste management issues in the International Nuclear Model. As such, some issues that are not inherently quantifiable, such as the development of environmental Impact Statements to satisfy the National Environmental Protection Act requirements, are only briefly mentioned, if at all

  8. Nordic nuclear emergency exercises. Final report

    International Nuclear Information System (INIS)

    Bennerstedt, T.; Stranden, E.; Salo, A.

    1995-01-01

    In all Nordic countries, nuclear emergency provisions have been revised following the Chernobyl accident. Local and national exercises are carried out regularly in each country. Several actions have been taken to harmonize the emergency approaches of the Nordic countries. In order to further promote consistent decisions in an emergency situation, two Nordic exercises were conducted in 1993. It was important to see if all five countries (Denmark, Finland, Iceland, Norway and Sweden) responded in a similar way to a given situation, as far as risk assessment and protective measures were concerned. The exercises were mainly aimed at decision makers and advisers of the five national emergency organizations. Thus, the exercises did not include comparison of underlying calculations on, e.g., atmospheric trajectories or transfer of radioactive material from air to ground. Such functions were tested separately in drills that also formed part of the Nordic emergency preparedness program. The exercises included an acute-phase situation (NORA), and a late-phase situation (ODIN). The Nordic exercises aroused international interest, and hence observers from IAEA, OECD/NEA and the European Union were invited to the exercises. NORA was observed by representatives from IAEA (in Finland) and OECD/NEA (in Sweden). ODIN was attended by IAEA (in Sweden) and the European Union (in Norway). Generally speaking, regional exercises such as NORA and ODIN help improve national emergency preparedness planning, organization and operations as well as international coordination. (EG)

  9. Emergency power systems at nuclear power plants

    International Nuclear Information System (INIS)

    1982-01-01

    This Guide applies to nuclear power plants for which the total power supply comprises normal power supply (which is electric) and emergency power supply (which may be electric or a combination of electric and non-electric). In its present form the Guide provides general guidance for all types of emergency power systems (EPS) - electric and non-electric, and specific guidance (see Appendix A) on the design principles and the features of the emergency electric power system (EEPS). Future editions will include a second appendix giving specific guidance on non-electric power systems. Section 3 of this Safety Guide covers information on considerations that should be taken into account relative to the electric grid, the transmission lines, the on-site electrical supply system, and other alternative power sources, in order to provide high overall reliability of the power supply to the EPS. Since the nuclear power plant operator does not usually control off-site facilities, the discussion of methods of improving off-site reliability does not include requirements for facilities not under the operator's control. Sections 4 to 11 of this Guide provide information, recommendations and requirements that would apply to any emergency power system, be it electric or non-electric

  10. Countermeasures for dairy products in nuclear emergencies

    International Nuclear Information System (INIS)

    Sinkko, K.; Ammann, M.; Kostiainen, E.; Salo, A.; Liskola, K.; Haemaelaeinen, R.P.; Mustajoki, J.

    2001-01-01

    This work was performed in order to plan countermeasures that, after an accidental release of radioactivity, could reduce the dose to the public due to the consumption of contaminated milk and milk products. The attention was focused on whether there are justified and optimised actions below the international recommended concentration levels in foodstuffs. The analysis was conducted as a case study, i.e., it was assumed that a hypothetical accident had happened in a nuclear power plant leading to a release of radionuclides which severely contaminated a wide area of Ostrobothnia, one of Finland's most important milk production areas. The dose averted by actions, the' monetary costs and the feasibility of actions were assessed. It was also studied what information is needed by decision-makers and in which form this information should be presented. Finally, it was examined how planning of countermeasures could be enhanced by applying decision analysis in establishing actions strategies and valuing attributes considered in decision making. Preparative meetings and a concluding workshop was arranged and all authorities involved in food-related emergency management were invited to jointly analyse different options. According to the query made the participants considered the decision workshop and decision analysis very practicable in exercises. The exercise as a whole was also evaluated useful or very useful. The presented techniques in a real situation were considered applicable but not as useful as in exercises. Thus it can be deduced that the concluding workshop and decision analysis interviews augment well conventional emergency exercises. Realistic dose assessments proved out to be very difficult. The software used was able to calculate the maximum radionuclide concentrations in foodstuffs processed from local raw materials. Radionuclide concentration in food or feedstuffs may, however, change quickly. Also, the production and processing of foodstuffs is a complex

  11. Status and developing of nuclear emergency response techniques in China

    International Nuclear Information System (INIS)

    Jiangang, Zhang; Bing, Zhao; Rongyao, Tang; Xiaoxiao, Xu

    2008-01-01

    Full text: Nuclear Emergency preparedness and response in China is consistent with international basic principle of nuclear safety and emergency response. Nuclear emergency response techniques in China developed with nuclear power from 1980s. The status of nuclear emergency techniques in China are: 1) China have plentiful experiences and abilities in the fields of nuclear facility emergency planning and preparedness, nuclear accident consequence assessment, emergency monitoring, and emergency advisory; 2) Emergency assistance ability in China has a foundation, however it cannot satisfy national requirement; 3) Emergency planning and preparedness is not based on hazard assessment; 4) Remote monitoring and robot techniques in not adaptable to the requirements of nuclear emergency response; 5) A consistent emergency assessment system is lack in China. In this paper, it is analyzed what is the developing focal points of nuclear emergency response techniques in China, and it is proposed that the main points are: a) To develop the research of emergency preparedness on the base of hazard analysis; b) To improve remote monitoring and robot ability during nuclear emergency; c) To develop the response technique research with anti-terrorism. (author)

  12. ISEM: Europe's ESPRIT support for emergency management

    International Nuclear Information System (INIS)

    Andersen, V.

    1991-01-01

    The CEC-supported ISEM project to develop Information technology Support for Emergency Management was started in 1989. Two specific applications to demonstrate the ISEM system were selected; a NPP accident and a chemical plant emergency. An Emergency Management System provides user-friendly facilities for communication between the numerous local, regional and national organizations

  13. Some Qualitative Requirements for Testing of Nuclear Emergency Response Robots

    International Nuclear Information System (INIS)

    Eom, Heungseop; Cho, Jai Wan; Choi, Youngsoo; Jeong, Kyungmin

    2014-01-01

    Korea Atomic Energy Research Institute (KAERI) is carrying out the project 'Development of Core Technology for Remote Response in Nuclear Emergency Situation', and as a part of the project, we are studying the reliability and performance requirements of nuclear emergency response robots. In this paper, we described some qualitative requirements for testing of nuclear emergency response robots which are different to general emergency response robots. We briefly introduced test requirements of general emergency response robots and described some qualitative aspects of test requirements for nuclear emergency response robots. When considering an immature field-robot technology and variety of nuclear emergency situations, it seems hard to establish quantitative test requirements of these robots at this time. However, based on studies of nuclear severe accidents and the experience of Fukushima NPP accident, we can expect some test requirements including quantitative ones for nuclear emergency response robots

  14. Considering nuclear emergency preparedness from realities after Fukushima nuclear disaster

    International Nuclear Information System (INIS)

    Idokawa, Katsutaka

    2013-01-01

    As an ex-chief of affected town of Fukushima nuclear disaster, basic ideas were enumerated as no more accident occurring, necessity of early evacuation, all budget and right belonging to end administrator, appropriate response of government's emergency countermeasure headquarter on proposal of end administrator, failure of evacuation lead coming from government's information concealment, no more secondary damage of affected refuge, public disclosure of information, safety as the top priority with no compromise or preferred profit, new mechanism of resident's direct participation in preventing accidents, and fair review system of inspection based on checklist. Nuclear-related regulatory organizations and electric utilities should be reformed as open and transparent organization and responsible for following results of accidents. Public trust on government was completely lost after the Fukushima nuclear disaster and people should not rely on some organizations and be respective expert and foster self-defense capability so as to establish government by the people. (T. Tanaka)

  15. Training to the Nuclear emergency plans

    International Nuclear Information System (INIS)

    Vera Navascues, I.

    2003-01-01

    In 1994 the Civil Protection Directorate outlined a formation plan related to the Nuclear emergency plans with the purpose of guaranteeing for the communities involved in this material a basic and homogeneous formation. In the preparation of this Plan the following phases had been developed: 1. Study of formative needs of the different participant communities involved in nuclear plans. This has been done throw the information collected by: nuclear emergency plans and procedures that develop them, questionnaires, observation list, exercise, drills, etc. 2. With all the needs detected and in function of them was designed the objectives to teach in relation with the knowledge and the abilities that the formation can give to the participants. 3. Definition of thematic areas related with the different matters to teach, derived from the different objectives. 4. Organization: The development of the formative activities through a specific material with orientations for the professors (content of material to impart, didactic resources, etc.) and a short summary of the Didactic Units imparted to the students. The methodology is based in short theoretical classes and in the active implication through practice activities exercises and drills to train its functions and the coordination of the different implied organizations. 5. Evaluation: the implantation of the formation plan contributes new formative needs. (Author)

  16. A Tactical Emergency Response Management System (Terms ...

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... information is a result of collaboration between accident response personnel. ... Tactical Emergency Response Management System (TERMS) which unifies all these different ... purpose of handling crisis and emergency.

  17. Nuclear accident/radiological emergency assistance plan. NAREAP - edition 2000. Emergency preparedness and response

    International Nuclear Information System (INIS)

    2000-01-01

    The purpose of the Nuclear Accident/Radiological Emergency Assistance Plan (NAREAP) is to describe the framework for systematic, integrated, co-ordinated, and effective preparedness and response for a nuclear accident or radiological emergency involving facilities or practices that may give rise to a threat to health, the environment or property. The purpose of the NAREAP is: to define the emergency response objectives of the Agency's staff in a nuclear accident or a radiological emergency; to assign responsibilities for performing the tasks and authorities for making the decisions that comprise the Agency staff's response to a nuclear accident or radiological emergency; to guide the Agency managers who must ensure that all necessary tasks are given the necessary support in discharging the Agency staff responsibilities and fulfilling its obligations in response to an emergency; to ensure that the development and maintenance of detailed and coherent response procedures are well founded; to act as a point of reference for individual Agency staff members on their responsibilities (as an individual or a team member) throughout a response; to identify interrelationships with other international intergovernmental Organizations; and to serve as a training aid to maintain readiness of personnel. The NAREAP refers to the arrangements of the International Atomic Energy Agency and of the United Nations Security and Safety Section at the Vienna International Centre (UNSSS-VIC) that may be necessary for the IAEA to respond to a nuclear accident or radiological emergency, as defined in the Early Notification and Assistance Conventions. It covers response arrangements for any situation that may have actual, potential or perceived radiological consequences and that could require a response from the IAEA, as well as the arrangements for developing, maintaining and exercising preparedness. The implementing procedures themselves are not included in the NAREAP, but they are required

  18. Risk management in nuclear projects

    International Nuclear Information System (INIS)

    Salles, Claudio J.R.

    2002-01-01

    The risk management will be defined by different aspects: danger or loss possibility, or responsibility for damage. The risk management is one stage of project management. The risk management is a continuous process of planning, identification, quantification, answer and risk control to maximize the success potential of activity. The reduction of risk is part of priority establishment. This work will indicate how introduce this important instrument in the management of nuclear projects. (author)

  19. Emergency power systems at nuclear power plants

    International Nuclear Information System (INIS)

    1991-01-01

    This Safety Guide was prepared as part of the Nuclear Safety Standards programme for establishing Codes and Safety Guides relating to nuclear power plants (NPPs). The first edition of the present Safety Guide was developed in the early 1980s. The text has now been brought up-to-date, refined in several details and amended to include non-electrical diverse and independent power sources. This Guide applies to NPP for which the total power supply comprises a normal power supply and an emergency power supply (EPS), which may be electrical or a combination of electrical and non-electrical. The Guide provides general guidance for all types of EPS and specific guidance on the design safety requirements and the features of the electrical and non-electrical portions of the EPS. 9 figs, 2 tabs

  20. Goals for nuclear waste management

    International Nuclear Information System (INIS)

    Watson, R.A.

    1978-01-01

    Establishing a publicly, politically, economically, and technologically acceptable waste management system for the fuel cycle is a necessary condition for accepting the nuclear program as a national energy option. Findings are given on the technology, politics, economics, morality, aesthetics, and societal impact of waste management. Proposed goals are outlined for the regulation of waste management

  1. NKA/INF: A project on emergency management

    International Nuclear Information System (INIS)

    Jakobsson, S.; Brehmer, B.

    1990-01-01

    The paper describes the development of a prototype emergency management system for the nuclear sector (project started in 1985 by the Nordic liaison committee for atomic energy). Two prototype systems have been implemented, one for on-site and one for off-site. The intended users of the systems are the plant emergency manager on-site and the chief of staff of the county emergency centre off-site. The proto-types are implemented in Lisp on Symbolics workstations using WIMP (windows, icons, menus and pointing) interface techniques

  2. Evaluation of the use of advanced information technology (expert systems) for data-base system development and emergency management in non-nuclear industries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J; Pedersen, O M; Groenberg, C D

    1987-04-01

    During recent years, a number of large industrial accidents have resulted in a widespread concern with organization of emergency services and means for effective support of the distributed organizations involved in emergency management. With the aim of presenting a discussion of the potential of modern information technology for decision support during accidents, the report brings a brief review of approaches to design of decision-support systems and expert systems. From the review it is concluded that models of decision support systems based on a control theoretic point of view, together with a cognitive approach to decision task analysis offer a suitable framework. In addition, it is concluded that Advanced Information-tools for data base design and for communication support in distributed decision-making should be considered for further development. A number of recent Danish industrial accidents are reviewed and key persons interviewed in order to give a preliminary basis for judging the feasibility of the theoretical discussion. The report includes a number of recommendations for further studies to support the development of a distributed data base system for emergency management.

  3. Emergency facility control device for nuclear reactor

    International Nuclear Information System (INIS)

    Ikehara, Morihiko.

    1981-01-01

    Purpose: To increase the reliability of a nuclear reactor by allowing an emergency facility to be manually started and stopped to make its operation more convenient and eliminate the possibility of erroneous operation in an emergency. Constitution: There are provided a first water level detector for detecting a level lower than the first low water level in a reactor container and a second water level detector for detecting a level lower than the second low water level lower than the first low water level, and an emergency facility can be started and stopped manually only when the level is higher than the second low water level, but the facility will be started regardless of the state of the manual operation when the level is lower than the second low water level. Thus, the emergency facility can be started by manual operation, but will be automatically started so as to secure the necessary minimum operation if the level becomes lower than the second low water level and the stopping operation thereafter is forgotten. (Kamimura, M.)

  4. Regulatory Information by Topic: Emergency Management

    Science.gov (United States)

    Regulatory information about emergencies, including chemical accident prevention, risk management plans (RMPs), chemical reporting, community right to know, and oil spills and hazardous substances releases.

  5. Flexible UAV Mission Management Using Emerging Technologies

    National Research Council Canada - National Science Library

    Desimone, Roberto; Lee, Richard

    2002-01-01

    This paper discusses recent results and proposed work in the application of emerging artificial intelligence technologies for flexible mission management, especially for unmanned (combat) airborne vehicles...

  6. Populations protection and territories management in nuclear emergency and post-accident situation; Protection des populations et gestion des territoires en situation d'urgence nucleaire et post-accidentelle

    Energy Technology Data Exchange (ETDEWEB)

    Bourrel, M.; Calmon, Ph.; Calvez, M.; Chambrette, V.; Champion, D.; Devin, P.; Godino, O.; Lombard, J.; Rzepka, J.P.; Schneider, Th.; Verhaeghe, B.; Cogez, E.; Kayser, O.; Guenon, C.; Jourdain, J.R.; Bouchot, E.; Murith, Ch.; Lochard, J.; Cluchier, A.; Vandecasteele, Ch.; Pectorin, X.; Dubiau, Ph.; Gerphagnon, O.; Roche, H.; Cessac, B.; Cochard, A.; Machenaud, G.; Jourdain, J.R.; Pirard, Ph.; Leger, M.; Bouchot, E.; Demet, M.; Charre, J.P.; Poumadere, M.; Cogez, E.

    2010-07-01

    This document gathers the slides of the available presentations given during these conference days. Twenty seven presentations out of 29 are assembled in the document and deal with: 1 - radiological and dosimetric consequences in nuclear accident situation: impact on the safety approach and protection stakes (E. Cogez); 2 - organisation of public authorities in case of emergency and in post-event situation (in case of nuclear accident or radiological terror attack in France and abroad), (O. Kayser); 3 - ORSEC plan and 'nuclear' particular intervention plan (PPI), (C. Guenon); 4 - thyroid protection by stable iodine ingestion: European perspective (J.R. Jourdain); 5 - preventive distribution of stable iodine: presentation of the 2009/2010 public information campaign (E. Bouchot); 6 - 2009/2010 iodine campaign: presentation and status (O. Godino); 7 - populations protection in emergency and post-accident situation in Switzerland (C. Murith); 8 - CIPR's recommendations on the management of emergency and post-accident situations (J. Lochard); 9 - nuclear exercises in France - status and perspectives (B. Verhaeghe); 10 - the accidental rejection of uranium at the Socatri plant: lessons learnt from crisis management (D. Champion); 11 - IRE's radiological accident of August 22, 2008 (C. Vandecasteele); 12 - presentation of the CEA's crisis national organisation: coordination centre in case of crisis, technical teams, intervention means (X. Pectorin); 13 - coordination and realisation of environmental radioactivity measurement programs, exploitation and presentation of results: status of IRSN's actions and perspectives (P. Dubiau); 14 - M2IRAGE - measurements management in the framework of geographically-assisted radiological interventions in the environment (O. Gerphagnon and H. Roche); 15 - post-accident management of a nuclear accident - the CODIRPA works (I. Mehl-Auget); 16 - nuclear post-accident: new challenges of crisis expertise (D

  7. Licensed bases management for advanced nuclear plants

    International Nuclear Information System (INIS)

    O'Connell, J.; Rumble, E.; Rodwell, E.

    2001-01-01

    Prospective Advanced Nuclear Plant (ANP) owners must have high confidence that the integrity of the licensed bases (LB) of a plant will be effectively maintained over its life cycle. Currently, licensing engineers use text retrieval systems, database managers, and checklists to access, update, and maintain vast and disparate licensing information libraries. This paper describes the demonstration of a ''twin-engine'' approach that integrates a program from the emerging class of concept searching tools with a modern Product Data Management System (PDMS) to enhance the management of LB information for an example ANP design. (author)

  8. Licensed bases management for advanced nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, J [Duke Engineering and Services, Marlborough, MA (United States); Rumble, E; Rodwell, E [EPRI, Palo Alto, CA (United States)

    2001-07-01

    Prospective Advanced Nuclear Plant (ANP) owners must have high confidence that the integrity of the licensed bases (LB) of a plant will be effectively maintained over its life cycle. Currently, licensing engineers use text retrieval systems, database managers, and checklists to access, update, and maintain vast and disparate licensing information libraries. This paper describes the demonstration of a ''twin-engine'' approach that integrates a program from the emerging class of concept searching tools with a modern Product Data Management System (PDMS) to enhance the management of LB information for an example ANP design. (author)

  9. Licensed bases management for advanced nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, J. [Duke Engineering and Services, Marlborough, MA (United States); Rumble, E.; Rodwell, E. [EPRI, Palo Alto, CA (United States)

    2001-07-01

    Prospective Advanced Nuclear Plant (ANP) owners must have high confidence that the integrity of the licensed bases (LB) of a plant will be effectively maintained over its life cycle. Currently, licensing engineers use text retrieval systems, database managers, and checklists to access, update, and maintain vast and disparate licensing information libraries. This paper describes the demonstration of a ''twin-engine'' approach that integrates a program from the emerging class of concept searching tools with a modern Product Data Management System (PDMS) to enhance the management of LB information for an example ANP design. (author)

  10. Highly Enhanced Risk Management Emergency Satellite

    DEFF Research Database (Denmark)

    Dalmeir, Michael; Gataullin, Yunir; Indrajit, Agung

    HERMES (Highly Enhanced Risk Management Emergency Satellite) is potential European satellite mission for global flood management, being implemented by Technical University Munich and European Space Agency. With its main instrument - a reliable and precise Synthetic Aperture Radar (SAR) antenna...

  11. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Mills, L.

    1984-01-01

    The Nuclear Waste Policy Acts requires that DOE enter into contracts with nuclear utilities and others to accept their nuclear wastes at some unspecified date, at some unspecified rate, hopefully starting in 1998. Contracts between DOE and the states, and with civilian and other government agencies must be sufficiently detailed to secure competitive bids on definable chunks of work at a fixed-cost basis with incentives. The need is stressed for a strong central program for the selection of contractors on the basis of competitive bidding on a fixed price basis to perform the task with defined deliverables

  12. Research on the organization of equipment of nuclear emergency

    International Nuclear Information System (INIS)

    Li Xiaoming; Yang Jun

    2012-01-01

    The emergency rescue operation on major accident of nuclear facilities contains four kinds of abilities that are command and control, radiation protection, radiation monitoring and radioactive decontamination, so it needs to organize some equipment of nuclear emergency to enhance the efficiency of nuclear emergency operation. The organization of equipment of nuclear emergency should accord to the reality of the development in our country. It should have extractive structure, brief variety and advance capability, and also should be convenient, useful and adequate. The method of organization can first accord to the organization of group and organize the facilities accord to the organization of group of the emergency rescue force. (authors)

  13. Proposal optimization in nuclear accident emergency decision based on IAHP

    International Nuclear Information System (INIS)

    Xin Jing

    2007-01-01

    On the basis of establishing the multi-layer structure of nuclear accident emergency decision, several decision objectives are synthetically analyzed, and an optimization model of decision proposals for nuclear accident emergency based on interval analytic hierarchy process is proposed in the paper. The model makes comparisons among several emergency decision proposals quantified, and the optimum proposal is selected out, which solved the uncertain and fuzzy decision problem of judgments by experts' experiences in nuclear accidents emergency decision. Case study shows that the optimization result is much more reasonable, objective and reliable than subjective judgments, and it could be decision references for nuclear accident emergency. (authors)

  14. The Nuclear Emergency Assistance Team, an Institution for Nuclear Emergency Relief

    Energy Technology Data Exchange (ETDEWEB)

    Boldyreff, P.; Kiefer, H.; Krause, H.; Zuehlke, K. [Gesellschaft fuer Kernforschung mbH, Karlsruhe, Federal Republic of Germany (Germany)

    1969-10-15

    The design of nuclear facilities is to exclude serious damage to the environment, even in case of the MCA (maximum credible accident). Although the likelihood of accidents exceeding the expected consequences of the MCA is extremely small, it is deemed reasonable to take general precautions against such accidents. Precautions of this type are customary also in the conventional field, and in this case they are to be implemented in part through the Nuclear Emergency Assistance Team. If the internal safety provisions of a nuclear facility are unable to prevent an impermissible leakage of radioactivity as the result of a major accident there is, at present, no possibility of decisively curbing the spread of activity throughout the environment in the first few hours after the accident. Hence the measures taken by the authorities as a result of the emission and immediately following upon it will have to be restricted to the protection of the population: analysis of intensity and pattern of distribution of activity, instructions.to seek closed shelters, or prohibition of the consumption of certain foodstuffs, distribution of blocking agents, etc. It is the purpose of the Nuclear Emergency Assistance Team to bring relief in the phase following the end of the emission. This may comprise the following steps: exact investigation of the external scope of the damage, in particular assessment of the contamination of ground, persons, and material; rapid personnel decontamination; securing and shielding radiation sources; fixing contamination and removing it immediately where this is deemed urgent for reasons of traffic or to keep the drinking water free from contamination; external containment of the source of danger; support in limiting the damage within the facility. In addition to these tasks of emergency protection, the Nuclear Emergency Assistance Team can take action also in disturbances within the facility which have no influence on the environment and where the operator

  15. Nuclear asset management. Slide notes

    International Nuclear Information System (INIS)

    Puglia, W.; Bailey, H.; Kubinova, J.

    2004-01-01

    Nuclear asset management is defined as the process for making resource allocation and risk management decisions at all levels of nuclear generation business to maximize value/profitability for all stakeholders while maintaining plant safety. In the presentation, the NAM concept is explained, financial benefits achieved in US industry over the past 12 years are outlined, Data Systems and Solutions (DS and S) is presented as a joint venture between Rolls-Royce and SAIC, and NAM benefits in nuclear industry from DS and S client experience are demonstrated. (P.A.)

  16. Province of Ontario nuclear emergency plan. Pt. 1

    International Nuclear Information System (INIS)

    1986-06-01

    The Province of Ontario Nuclear Emergency Plan has been developed pursuant to Section 8 of the Emergency Plans Act, 1983. This plan replaces the Province of Ontario Nuclear Contingency Off-Site Plan (June 1980) which is no longer applicable. The wastes plan includes planning, preparation, emergency organization and operational responsibilities and policy

  17. Nuclear materials management storage study

    International Nuclear Information System (INIS)

    Becker, G.W. Jr.

    1994-02-01

    The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs' Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites

  18. Management of nuclear retrofit

    International Nuclear Information System (INIS)

    Nanda, D.

    1981-01-01

    Inherently, the retrofit work is more complex than the construction of a new project. The major factors that contribute to the complexity are: operational plant, NRC Requirements, documentation requirements, problems with the existing documentation, changing scope of work and short implementation schedules. A good understanding of the nature of the work is essential for its management. A few of the factors to be considered in the management of the work are: understanding of the retrofit work by the management, an overall management philosophy for the execution of the projects, direct access to the top management, detailed planning, close monitoring, segregation of the outage work and close coordination between the various project groups

  19. Nuclear knowledge management: Russian lessons

    International Nuclear Information System (INIS)

    Gagarinski, A.; Yakovlev, N.

    2004-01-01

    Full text: Union, the issue of generation and accumulation of nuclear knowledge and human resources for realizing this knowledge in practice, have received strong governmental support, and were subject to strict control of the state. This policy, despite the well-known Russian difficulties related to the lag of computational base and complicated scientific and technical exchange with the West ('Iron Curtain'), in the 50-70's has made it possible both to solve the required defence tasks and ensure development of peaceful nuclear energy applications in the Soviet Union. The report briefly summarizes the main achievements in the field of nuclear knowledge management strategy in the period of fast nuclear energy deployment, which include: - establishment, on the base of the 'Uranium Project' founder institutions, of a series of nuclear science and engineering centers (Arzamas, Dimitrovgrad, Dubna, etc.), both within the nuclear branch and in the USSR and Soviet Republics' Academies of Science; - formation of scientific schools headed by eminent scientists, on the base of major nuclear energy issues, gathering creative teams with 'natural' nuclear knowledge transfer; - harmonious nuclear education system, including a large network of higher professional education institutions, which had a principal achievement - close relationship with the leading nuclear research centers; - creation of a regional centers' network intended for regular retraining of nuclear specialists; - creation and development of national centers for collecting, processing and evaluation of nuclear and other data (materials, thermal physics, etc.) necessary for nuclear engineering, as well as for development of algorithms and codes. Russian nuclear program as a whole, and KNM system in particular, received three severe crises in a short time period: - Chernobyl accident (1986); - restructuring of the political system (end of 80's - beginning of 90's); - collapse of the Soviet Union (1991). The report

  20. Medical management of nuclear disaster

    International Nuclear Information System (INIS)

    Kinugasa, Tatsuya

    1996-01-01

    This report briefly describes the measures to be taken other than ordinary duties when an accident happens in nuclear facilities such as atomic power plant, reprocessing plant, etc. Such nuclear disasters are assigned into four groups; (1) accidents in industrial levels, (2) accidents in which the workers are implicated, (3) accidents of which influence to environments should be taken into consideration and (4) accidents to which measures for inhabitants should be taken. Therefore, the measures to be taken at an emergency were also grouped in the following four; (1) treatments for the accident, itself, (2) measures to minimize the effects on the environment, (3) rescues of the victims and emergency cares for them and (4) measures and medical cares to protect the inhabitants from radiation exposure. Presently, medical professionals, especially doctors, nurses etc. are not accustomed to control nuclear contaminations. Therefore, it is needed for radiological professionals to actively provide appropriate advises about the control and measurement of contamination. (M.N.)

  1. Planning and implementing nuclear emergency response facilities

    International Nuclear Information System (INIS)

    Williams, D.H.

    1983-01-01

    After Three Mile Island, Arkansas Nuclear One produced a planning document called TMI-2 Response Program. Phase I of the program defined action plans in nine areas: safety assessment, training, organization, public information, communication, security, fiscal-governmental, technical and logistical support. Under safety assessment, the staff was made even better prepared to handle radioactive material. Under training, on site simulators for each unit at ANO were installed. The other seven topics interface closely with each other. An emergency control center is diagrammed. A habitable technical support system was created. A media center, with a large media area, and an auditorium, was built. Electric door strike systems increased security. Phone networks independently run via microwave were installed. Until Three Mile Island, logistical problems were guesswork. That incident afforded an opportunity to better identify and prepare for these problems

  2. New Basic Nuclear Emergency Plan (Plaben)

    International Nuclear Information System (INIS)

    Calvin, M.; Gil, E.; Martin, M.; Ramon, J.; Serrano, I.

    2004-01-01

    Ever since Plaben came into force in 1989, the national civil protection system has experienced a large evolution among other reasons due to the Autonomous Community governments assuming authority in this matter. In parallel, the regulation and international practice in matters of planning and nuclear emergency response has evolved as a consequence of the lessons learned following the long-term Chernobyl accident. Both circumstance recommended that Plaben be revised in order to adopt it to this new environment. The New Plaben was approved in June of this year and from that moment implantation has begun. Described in the article is the New Plaben, the modifications that respect the former the role that the CSN played in is revision and the main activities required to put it into practice. (Author)

  3. Waste management - nuclear style

    International Nuclear Information System (INIS)

    McCall, P.

    1977-01-01

    Possible ways of disposing of highly radioactive wastes arising from the United Kingdom nuclear industry are briefly reviewed: projecting into outer space, dumping in containers in the ocean, or storage on land. The problems in each case and, in particular, the risks of environmental contamination from marine or land disposal, are discussed. (U.K.)

  4. 76 FR 75771 - Emergency Planning Guidance for Nuclear Power Plants

    Science.gov (United States)

    2011-12-05

    ... Guidance for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Issuance of NUREG... Support of Nuclear Power Plants;'' NSIR/DPR-ISG-01, ``Interim Staff Guidance Emergency Planning for Nuclear Power Plants;'' and NUREG/CR-7002, ``Criteria for Development of Evacuation Time Estimate Studies...

  5. Future of Nuclear Power: NRC emergency preparedness licensing activities agenda

    International Nuclear Information System (INIS)

    Essig, T.H.

    1995-01-01

    This talk summary addresses the issue of how future policies of the NRC will affect nuclear power in areas such as construction, emergency preparedness, and licensing. Specific topics covered include the following: Emergent EP licensing issues for operating nuclear Power Plants; 10CFR Part 52 and the process for licensing of Advanced Light Water Reactors (ALWRs); and potential revisions to emergency preparedness programs for future nuclear power plants

  6. Research on environmental impacts of nuclear power and emergency preparedness

    International Nuclear Information System (INIS)

    Vuori, S.

    1994-01-01

    The future needs of nuclear energy research in Finland have been recently reviewed by an expert group. Concerning the research on environmental impacts and emergency preparedness, the group recommended the establishment of a common coordination group for the different projects in this field. The main objectives in this field include efficient accident management and mitigation of off-site consequences with appropriate countermeasures and more reliable real time prediction tools for atmospheric dispersion and radiation dose evaluations as well as efficient and fast real time surveillance and measurement systems. (orig.)

  7. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Hobart, L.

    1984-01-01

    The Nuclear Waste Fund involves a number of features which make it a unique federal program. Its primary purpose is to finance one of the largest and most controversial public works programs in the history of the United States. Despite the program's indicated size and advance publicity, no one knows exactly where the anticipated projects will be built, who will construct them, what they will look like when they are done or how they will be operated and by whom. Implimentation of this effort, if statutory targets are actually met, covers a 16-year period. To cover the costs of the program, the Federal Government will tax nuclear power at the rate of 1 mil per kilowatt hour generated. This makes it one of the biggest and longest-lived examples of advance collections for construction work in progress in the history of the United States. While the Department of Energy is authorized to collect funds for the program the Nuclear Regulatory Commission has the authority to cut off this revenue stream by the shutdown of particular reactors or particular reactor types. If all goes well, the Federal Government will begin receiving spent nuclear fuel by 1998, continuing to assess a fee which will cover operating and maintenance costs. If all does not go well, the Federal Government and/or utilities will have to take other steps to solve the problem of permanent disposal. Should the latter circumstance prevail, presumably not only used to date but the $7.5 billion would be spent. The Nuclear Waste Policy Act of 1982, contains no clear provision for utility refunds in that case

  8. Research nuclear reactor operation management

    International Nuclear Information System (INIS)

    Preda, M.; Carabulea, A.

    2008-01-01

    Some aspects of reactor operation management are highlighted. The main mission of the operational staff at a testing reactor is to operate it safely and efficiently, to ensure proper conditions for different research programs implying the use of the reactor. For reaching this aim, there were settled down operating plans for every objective, and procedure and working instructions for staff training were established, both for the start-up and for the safe operation of the reactor. Damages during operation or special situations which can arise, at stop, start-up, maintenance procedures were thoroughly considered. While the technical skill is considered to be the most important quality of the staff, the organising capacity is a must in the operation of any nuclear facility. Staff training aims at gaining both theoretical and practical experience based on standards about staff quality at each work level. 'Plow' sheet has to be carefully done, setting clear the decision responsibility for each person so that everyone's own technical level to be coupled to the problems which implies his responsibility. Possible events which may arise in operation, e.g., criticality, irradiation, contamination, and which do not arise in other fields, have to be carefully studied. One stresses that the management based on technical and scientific arguments have to cover through technical, economical and nuclear safety requirements a series of interlinked subprograms. Every such subprograms is subject to some peculiar demands by the help of which the entire activity field is coordinated. Hence for any subprogram there are established the objectives to be achieved, the applicable regulations, well-defined responsibilities, training of the personnel involved, the material and documentation basis required and activity planning. The following up of positive or negative responses generated by experiments and the information synthesis close the management scope. Important management aspects

  9. Safety of emerging nuclear energy systems

    International Nuclear Information System (INIS)

    Novikov, V.M.; Slesarev, I.S.

    1989-01-01

    The first stage of world nuclear power development based on light water fission reactors has demonstrated not only rather high rate but at the same time too optimistic attitude to safety problems. Large accidents at Three Mile Island and Chernobyl essentially affects the concept of NP development. As a result the safety and social acceptance of NP became of absolute priority among other problems. That's why emerging nuclear power systems should be first of all estimated from this point of view. In the paper some quantitative criteria of safety derived from estimations of social risk and economic-ecological damage from hypothetical accidents are formulated. On the base of these criteria we define two stages of possible way to meet safety demands: first--development of high safety fission reactors and second--that of asymptotic high safety ENEs. The limits of tolorated expenses for safety are regarded. The basis physical factors determining hazards of NES accidents are considered. This permits to classify the ways of safety demands fulfillment due to physical principals used

  10. Online Decision Support System (IRODOS) - an emergency preparedness tool for handling offsite nuclear emergency

    International Nuclear Information System (INIS)

    Vinod Kumar, A.; Oza, R.B.; Chaudhury, P.; Suri, M.; Saindane, S.; Singh, K.D.; Bhargava, P.; Sharma, V.K.

    2009-01-01

    A real time online decision support system as a nuclear emergency response system for handling offsite nuclear emergency at the Nuclear Power Plants (NPPs) has been developed by Health, Safety and Environment Group, Bhabha Atomic Research Centre (BARC), Department of Atomic Energy (DAE) under the frame work of 'Indian Real time Online Decision Support System 'IRODOS'. (author)

  11. Examining professional emergency managers in Korea

    International Nuclear Information System (INIS)

    Ha, Kyoo-Man

    2017-01-01

    Although the number of emergency managers has risen in South Korea (hereafter referred to as Korea) over the years, their role is not yet as defined and noteworthy compared to other professions because of its unidisciplinary approach. This article investigates how Korea has to improve emergency managers' disciplinary approach to ultimately contribute to the goal of effective transnational disaster management. This study uses qualitative content analysis of government policies, college curricula, nongovernmental organizations' (NGOs') emergency-manager certification, and mass media coverage to compare emergency managers' unidisciplinary and multidisciplinary approaches. The key tenet is that Korea must change its emergency managers' unidisciplinary approach into a multidisciplinary approach because the former is less effective when dealing with complicated disaster management systems. To achieve this change, the stakeholders must carry out their assigned responsibilities under risk-oriented management. As for the study's international implications, developing nations may consider the enhancement of related educational curricula, collaborative learning, continuous evaluation, disaster awareness, and disaster prevention for the emergency managers' multidisciplinary approach.

  12. Examining professional emergency managers in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kyoo-Man, E-mail: ha1999@hotmail.com

    2017-01-15

    Although the number of emergency managers has risen in South Korea (hereafter referred to as Korea) over the years, their role is not yet as defined and noteworthy compared to other professions because of its unidisciplinary approach. This article investigates how Korea has to improve emergency managers' disciplinary approach to ultimately contribute to the goal of effective transnational disaster management. This study uses qualitative content analysis of government policies, college curricula, nongovernmental organizations' (NGOs') emergency-manager certification, and mass media coverage to compare emergency managers' unidisciplinary and multidisciplinary approaches. The key tenet is that Korea must change its emergency managers' unidisciplinary approach into a multidisciplinary approach because the former is less effective when dealing with complicated disaster management systems. To achieve this change, the stakeholders must carry out their assigned responsibilities under risk-oriented management. As for the study's international implications, developing nations may consider the enhancement of related educational curricula, collaborative learning, continuous evaluation, disaster awareness, and disaster prevention for the emergency managers' multidisciplinary approach.

  13. Development of scenarios suitable for use in a national exercise of coordination and long-term management after a nuclear emergency

    International Nuclear Information System (INIS)

    Montero, M.; Gallego, E.

    2014-01-01

    Experiences from real accidents like Chernobyl or Fukushima, have demonstrated the importance of a more decentralized management if it is to address the implementation of measures that affect the daily lives of peoples and their properties. This is embodied in the need to engage more directly to regional and local levels, as well as other social partners and affected population in emergency preparedness, and especially, in the recovery phase and post-emergency rehabilitation. In the framework of the European NERIS-TP project, the organization of a national exercise that could help to address structuring and establishment of operational procedures in the planning and response for the recovery phase has been considered. This paper presents the selection and development of the scenarios for intervention that could be used as basis for analysis and joint discussion about the criteria, possibilities and specific alternatives that could/should be considered at local level during the recovery phase in a facilitated table top exercise with the participation of all possible actors involved or affected in case of a real situation. Available resources at European and national level, to model and analyze these scenarios are also present. (Author)

  14. Major issues on establishing an emergency plan in nuclear facilities

    International Nuclear Information System (INIS)

    Chen, Zhu-zhou

    1988-03-01

    Several major issues on emergency planning and preparation in nuclear facilities were discussed -- such as the importance of emergency planning and preparation, basic principles of intervention and implementation of emergency plan and emergency training and drills to insure the effectiveness of the emergency plan. It is emphasized that the major key point of emergency planning and response is to avoid the occurrence of serious nonrandom effect. 12 refs., 3 tabs

  15. Emergency preparedness for nuclear power plants in the USA

    International Nuclear Information System (INIS)

    Schwartz, S.A.

    1986-01-01

    In the case of an operating reactor, if it is determined that there are such deficiencies that a favourable NRC finding is not warranted and if the deficiencies are not corrected within four months of that determination, the Commission will determine whether the reactor should be shut down or whether some other enforcement action is appropriate. In any case, where the Commission believes that the public health, safety, or interest so requires, the plant will be required to shut down immediately. Emergency planning considerations must be extended to emergency planning zones, and these shall consist of an area of about 10 miles in radius for exposure to the radioactive plume that might result from an accident in a nuclear power reactor and an area of about 50 miles in radius for food that might become contaminated. To evaluate the effectiveness of the licensee programme to implement their emergency plan, a 'management oversight and risk tree' (MORT) approach was developed and used by NRC appraisal teams at all operating facilities and those close to licensing. Since April 1981, over 250 emergency preparedness exercises have been observed and annual inspections conducted at US commercial nuclear power generating facilities. As a result of this experience, licensees have generally progressed from a basic ability to implement their plan to a systematic demonstration of their emergency preparedness capabilities. Almost five years have elapsed since the inception of the upgraded emergency preparedness regulatory programme, and the NRC is evaluating the resources committed to the programme to determine if modifications are appropriate. Our goal is to ensure continued adequate readiness capability to protect the public health and safety in the event of an accident

  16. Quality management of nuclear fuel

    International Nuclear Information System (INIS)

    2006-01-01

    The Guide presents the quality management requirements to be complied with in the procurement, design, manufacture, transport, receipt, storage, handling and operation of nuclear fuel. The Guide also applies to control rods and shield elements to be placed in the reactor. The Guide is mainly aimed for the licensee responsible for the procurement and operation of fuel, for the fuel designer and manufacturer and for other organisations, whose activities affect fuel quality and the safety of fuel transport, storage and operation. General requirements for nuclear fuel are presented in Section 114 of the Finnish Nuclear Energy Decree and in Section 15 of the Government Decision (395/1991). Regulatory control of the safety of fuel is described in Guides YVL6.1, YVL6.2 and YVL6.3. An overview of the regulatory control of nuclear power plants carried out by STUK (Radiation and Nuclear Safety Authority, Finland) is clarified in Guide YVL1.1

  17. Review of IAEA documentation on Nuclear and radiological emergency

    International Nuclear Information System (INIS)

    Mukhono, P. M.

    2014-10-01

    The project focuses on the review of IAEA documentation on nuclear or radiological emergencies with main focus on methodology for developing and arrangement for nuclear and radiological emergencies. The main objective of this work is to identify limitations in IAEA documentation on emergency preparedness and response (EPR) and provide recommendation on the main actions needed to fill the gaps identified thus aiding in improvement of emergency preparedness and response to nuclear and radiological accidents. The review of IAEA documentation on nuclear and radiological emergency has been carried out by evaluating various emergency response elements. Several elements for EPR were highlighted covering the safety fundamentals, general safety requirements and EPR methods for development of an effective emergence response capability for nuclear or radiological emergencies. From these issues, the limitations of IAEA documentation on EPR were drawn and recommendations suggested as a means of improving EPR methods. Among them was the need for IAEA consider establishment of follow up and inspection programmes to facilitate implementation of EPR requirements in most developing countries, establishment of programmes that provide platforms for the countries to be motivated to update their system in line with the current status of emergency preparedness, review of the international information exchange aspects of nuclear emergencies in order to improve capabilities to communicate reliable data, information and decisions quickly and effectively among national authorities and their emergency and emergency response centres. (au)

  18. Applying business intelligence innovations to emergency management.

    Science.gov (United States)

    Schlegelmilch, Jeffrey; Albanese, Joseph

    2014-01-01

    The use of business intelligence (BI) is common among corporations in the private sector to improve business decision making and create insights for competitive advantage. Increasingly, emergency management agencies are using tools and processes similar to BI systems. With a more thorough understanding of the principles of BI and its supporting technologies, and a careful comparison to the business model of emergency management, this paper seeks to provide insights into how lessons from the private sector can contribute to the development of effective and efficient emergency management BI utilisation.

  19. Current emergency programs for nuclear installations in Japan

    International Nuclear Information System (INIS)

    Chino, Masamichi

    2007-01-01

    Large effort has been taken for nuclear emergency programs in Japan especially after the JCO accident. A special law for nuclear emergency was established after the accident. The law extended the scope of emergency preparedness to fuel cycle facilities, research reactors, etc. and clarified the roles and responsibilities of the national government, local governments and license holders. For initial responses, the action levels and action procedures are defined based on environmental doses and specific initial events of NPPs. A senior specialist was dispatched to each site for nuclear emergency and a facility 'Off-site center' to be used as the local emergency headquator was designated at each site. This paper describes the structure of emergency program, responsibility of related organizations and the definition of unusual events for notification and emergency. Emergency preparedness, emergency radiation monitoring and computer-based prediction of on- and off-site situation are also addressed. (author)

  20. Status of nuclear waste management

    International Nuclear Information System (INIS)

    Kittel, J.H.

    1980-01-01

    This paper discusses what nuclear waste is and where it comes from, what the technical strategies are for disposing of this waste, compares the toxicity of nuclear waste to other materials that are more familiar to us, and finally, comments on why it is taking so long to get on with the job of isolating nuclear waste permanently. The author believes that the technical solutions for the management and disposal of high-level and low-level nuclear waste are adequately in hand. The issues that are delaying the implementation of this technology are almost entirely related to sociological and political considerations. High-level nuclear waste can be safely stored and isolated through a multiple barrier approach. Although it is a hazardous material and must be handled properly, its toxicity diminishes rapidly. It then becomes less hazardous than other materials that we deal with everyday in routine industrial or household operations. The disposal of low-level waste has not attracted as much public attention as high-level waste management. Nevertheless, it is just as important to the public. For example, the use of radioactive isotopes in medicine, and the many lives that are saved as a result, would be very greatly reduced if medical institutions had no place to dispose of their radioactive waste. The management of uranium mill tailings is similar in many technical aspects to low-level waste management. Institutional issues, however, have not become as important in the case of mill tailings disposal

  1. Emergency nurses' knowledge of pain management principles.

    Science.gov (United States)

    Tanabe, P; Buschmann, M

    2000-08-01

    The purpose of this study was to determine areas of emergency nurses' knowledge deficit regarding pain management, and to identify barriers to pain management as perceived by emergency nurses. Data were collected anonymously in a mail survey using a 52-item knowledge questionnaire addressing pain management principles and asking emergency nurses (Illinois Emergency Nurses Association members) to rate various barriers as to how often they affect their practice. Questionnaires were mailed to all Illinois ENA members (n = 1000). Three hundred five emergency nurses' questionnaires were returned. A significant deficit existed on 2 domains of knowledge: understanding of the terms "addiction," "tolerance," and "dependence"; and knowledge of various pharmacologic analgesic principles. Nurses with a master's degree or higher, or those who attended a 1-day seminar on pain management, achieved statistically significantly higher scores. The 2 barriers identified by emergency nurses as the most common were the inability to administer medication until a diagnosis is made (53%), and inadequate assessment of pain and pain relief (48%) (the percentage indicates how often the emergency nurses believed the barrier was present in their practice). The data indicate that emergency nurses may not have a good understanding of the management of pain with drugs, or of such issues as risk of addiction.

  2. Elements of a national emergency response system for nuclear accidents

    International Nuclear Information System (INIS)

    Dickerson, M.H.

    1987-01-01

    The purpose of this paper is to suggest elements for a general emergency response system, employed at a national level, to detect, evaluate and assess the consequences of a radiological atmospheric release occurring within or outside of national boundaries. These elements are focused on the total aspect of emergency response ranging from providing an initial alarm to a total assessment of the environmental and health effects. Elements of the emergency response system are described in such a way that existing resources can be directly applied if appropriate; if not, newly developed or an expansion of existing resources can be employed. The major thrust of this paper is toward a philosophical discussion and general description of resources that would be required to implementation. If the major features of this proposal system are judged desirable for implementation, then the next level of detail can be added. The philosophy underlying this paper is preparedness - preparedness through planning, awareness and the application of technology. More specifically, it is establishment of reasonable guidelines including the definition of reference and protective action levels for public exposure to accidents involving nuclear material; education of the public, government officials and the news media; and the application of models and measurements coupled to computer systems to address a series of questions related to emergency planning, response and assessment. It is the role of a proven national emergency response system to provide reliable, quality-controlled information to decision makers for the management of environmental crises

  3. International nuclear emergency exercises: lessons learned from the I.N.E.X. series

    International Nuclear Information System (INIS)

    Ahier, B.

    2008-01-01

    Since the early 1990's, the OECD Nuclear Energy Agency (NEA) has offered its member countries a forum for improving efficiency and effectiveness in nuclear emergency management, with a particular focus on international aspects. A central approach to this has been the International Nuclear Emergency Exercise (INEXI series. Since 1993, the INEX series has proved successful in testing and advancing arrangements for nuclear emergency response. INEX 1, 2 and 2000, which focused on early-phase issues, provided a unique forum to test arrangements and concepts for international nuclear emergency management, particularly international communications, coordination and decision-making. Importantly, these exercises established a recognised international nuclear emergency exercise culture. The most recent exercise, INEX 3, was developed in response to international interest in longer term post-emergency issues. Conducted in 2005-2006, INEX 3 focused on later-phase consequence management issues following discovery of serious radio-logical contamination in the environment. The post-exercise evaluation identified several aspects of national consequence management which would benefit from international cooperation, and to which the international community could usefully contribute as part of planning and preparedness. (author)

  4. Spent Nuclear Fuel project, project management plan

    International Nuclear Information System (INIS)

    Fuquay, B.J.

    1995-01-01

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  5. The emerging land management paradigm

    DEFF Research Database (Denmark)

    Enemark, Stig

    for comprehensive information about environmental conditions in combination with other land related data. It is argued that development of such a model is important or even necessary for facilitating a holistic approach to the management of land as the key asset of any nation or jurisdiction. Finally, the paper......Land management is the process by which the resources of land are put into good effect. Land management encompasses all activities associated with the management of land that are required to achieve sustainable development. The concept of land includes properties and natural resources and thereby...... encompasses the total natural and built environment. Land Administration Systems (LAS) are institutional frameworks complicated by the tasks they must perform, by national cultural, political and judicial settings, and by technology. This paper facilitates an overall understanding of the land management...

  6. Social media best practices in emergency management.

    Science.gov (United States)

    Siskey, Ashley; Islam, Tanveer

    2016-01-01

    Social media platforms have become popular as means of communications in emergency management. Many people use social media sites such as Facebook and Twitter on a daily basis including during disaster events. Emergency management agencies (EMAs) need to recognize the value of not only having a presence on social media but also actively engaging stakeholders and the public on these sites. However, identifying best practices for the use of social media in emergency management is still in its infancy. The objective of this article is to begin to create or further define best practices for emergency managers to use social media sites particularly Facebook and Twitter in four key areas: 1) implementation, 2) education, 3) collaboration, and 4) communication. A list of recommendations of best practices is formulated for each key area and results from a nationwide survey on the use of social media by county EMAs are discussed in this article.

  7. Development on the radiological emergency management guide

    Energy Technology Data Exchange (ETDEWEB)

    Khang, Byung Oui; Lee, Jong Tai; Lee, Goan Yup; Lee, Moon

    2000-01-01

    The comprehensive emergency management system in KAERI describes the requirements for emergency plan, preparedness, evaluations and readiness assurance, response and recovery activities to timely and effectively countermeasure according to the type and size of an event. The guidance of facility emergency plan and detailed response procedures for initial action, building/site evacuation, personnel accountability, search and fire fighting in the radioactive, fissionable, toxic and inflammable hazardous substances handling facilities are also developed. (author)

  8. Improvements in emergency management in nuclear power plants after the Fukushima accident: ORE, CAE and CAGE; Mejoras en la gestion de emergencias en centrales nucleares tras el accidente de Fukushima: ORE, CAE y CAGE

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez Gonzalez, S.; Sanchez Lombardia, A.; Martin Calvarro, J. M.; Calvin Cuartero, M.

    2016-08-01

    After Fukushima accident European NPP safety was checked by means of homogenous stress test promoted by European council. At Spain CSN issued Technical instructions to confirm safety NPP margins were appropriate . As a result of this assessment licensees promoted improving NPP safety by strengthen ERO; a new Support Emergency center (CAE) and construction of a new alternative management centre (CAGE) at each site. European countries have been improving and reinforced NPP safety in a similar way to Spain. (Author)

  9. Emergency preparedness for nuclear electric generating facilities in foreign countries: A brief survey of practices

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, C R [Battelle Human Affairs Research Centers, Seattle, WA (United States); Marcus, A A; Hanhardt, Jr, A M; Selvin, M; Huelshoff, M [Pacific Northwest Laboratory, Richland, WA (United States)

    1980-12-01

    This report summarizes the emergency plans for accidents at nuclear power plants in Germany, Sweden, Switzerland, the United Kingdom, Canada, and France. Soviet Union documents were examined, but no published information was found on the subject. The study of foreign plans was to determine what U.S. planners might learn that could be useful to them. Plans of the foreign countries were published before the nuclear accident at Three Mile Island and reflected a generally accepted premise that a serious nuclear emergency would never occur. Therefore, there are few ideas of immediate use to U.S. planners. Most countries have since begun to re-examine their emergency planning. The study also discusses the emergency action levels, warning systems, evacuation management and procedures, and public information and education for people living near nuclear power plants and defines roles of nuclear facility operators and roles of the government. (author)

  10. Emergency protection and nuclear power station remote monitoring

    International Nuclear Information System (INIS)

    Nowak, K.; Wolf, H.

    1986-01-01

    The States of the Federal Republic of Germany are planning emergency protection measures for the environment of nuclear power stations based on their statutory duty of care. In this connection the paper explains to what extent remote monitoring of nuclear power stations practised by the Federal Supervisory Authorities may support the design and implementation of emergency protection measures. (orig.) [de

  11. International Nuclear Management Programmes -- INMP-- (VNMU)

    International Nuclear Information System (INIS)

    Adachi, Fumio

    2014-01-01

    • INMP is an IAEA-facilitated collaboration for universities to provide master’s degree programs in nuclear management, targeting managers or future managers working in the nuclear sector. • There are currently no full master’s degree programmes specializing in management for the nuclear sector. • Managers at NPP are typically engineers with few chances of formal management education. • In newcomer countries to nuclear energy, working towards the introduction of nuclear power, often lack technical or managerial experience in nuclear energy

  12. The development of nuclear power and emergency response

    International Nuclear Information System (INIS)

    Pan Ziqiang

    2007-01-01

    Nuclear power is a safe, clean energy, which has been evidenced by the history of nuclear power development. Nuclear power is associated with very low risk but not equal to zero. Accident emergency response and preparedness is a final barrier necessary to reduce potential risks that may arise from nuclear power plants, which must be enhanced. In the course of accident emergency response and preparedness, it is highly necessary to draw domestic and foreign experiences and lessons. Lastly, the paper presents the discussions of some issues which merit attention with respect to emergency response and preparedness in China. (authors)

  13. The emerging nuclear suppliers: some guidelines for policy (U)

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Lewis A.

    1988-04-01

    Lewis A. Dunn, a former Assistant Director of the US Arms Control and Disarmament Agency and now a senior analyst with Science Applications International Corporation, looks to the future to offer "The Emerging Nuclear Suppliers: Some Guidelines for Policy ." Mr. Dunn notes that although most emerging suppliers are cautious, many are not party to existing nonproliferation treaties. He calls upon the nonproliferation community to continue the present policy of not supporting unsafeguarded nuclear activities. He suggests that the nonproliferation community work within existing standards and infrastructures of nuclear suppliers to convince emerging supplier nations of the merits of nuclear export control.

  14. Emergency department operations and management education in emergency medicine training

    Institute of Scientific and Technical Information of China (English)

    Bret A Nicks; Darrell Nelson

    2012-01-01

    BACKGROUND:This study was undertaken to examine the current level of operations and management education within US-based Emergency Medicine Residency programs.METHODS:Residency program directors at all US-based Emergency Medicine Residency programs were anonymously surveyed via a web-based instrument.Participants indicated their levels of residency education dedicated to documentation,billing/coding,core measure/quality indicator compliance,and operations management.Data were analyzed using descriptive statistics for the ordinal data/Likert scales.RESULTS:One hundred and six(106)program directors completed the study instrument of one hundred and fifty-six(156)programs(70%).Of these,82.6%indicated emergency department(ED)operations and management education within the training curriculum.Dedicated documentation training was noted in all but 1 program(99%).Program educational offerings also included billing/coding(83%),core measure/quality indicators(78%)and operations management training(71%).In all areas,the most common means of educating came through didactic sessions and direct attending feedback or 69%-94%and 72%-98%respectively.Residency leadership was most confident with resident understanding of quality documentation(80%)and less so with core measures(72%),billing/coding/RVUs(58%),and operations management tools(23%).CONCLUSIONS:While most EM residency programs integrate basic operational education related to documentation and billing/coding,a smaller number provide focused education on the dayto-day management and operations of the ED.Residency leadership perceives graduating resident understanding of operational management tools to be limited.All respondents value further resident curriculum development of ED operations and management.

  15. Emergency cooling system for nuclear reactors

    International Nuclear Information System (INIS)

    Frisch, E.; Andrews, H.N.

    1976-01-01

    Upon the occasion of loss of coolant in a nuclear reactor as when a coolant supply or return line breaks, or both lines break, borated liquid coolant from an emergency source is supplied in an amount to absorb heat being generated in the reactor even after the control rods have been inserted. The liquid coolant flows from pressurized storage vessels outside the reactor to an internal manifold from which it is distributed to unused control rod guide thimbles in the reactor fuel assemblies. Since the guide thimbles are mounted at predetermined positions relative to heat generating fuel elements in the fuel assemblies, holes bored at selected locations in the guide thimble walls, sprays the coolant against the reactor fuel elements which continue to dissipate heat but at a reduced level. The cooling water evaporates upon contacting the fuel rods thereby removing the maximum amount of heat (970 BTU per pound of water) and after heat absorption will leave the reactor in the form of steam through the break which is the cause of the accident to help assure immediate core cooldown

  16. Knowledge Management in Nuclear Medicine

    International Nuclear Information System (INIS)

    Abaza, A.

    2017-01-01

    The last two decades have seen a significant increase in the demand for medical radiation services following the introduction of new techniques and technologies that has led to major improvements in the diagnosis and treatment of human diseases. The diagnostic and therapeutic applications of nuclear medicine techniques play a pivotal role in the management of these diseases, improving the quality of life of patients by means of an early diagnosis allowing opportune and proper therapy. On the other hand, inappropriate or unskilled use of these technologies can result in potential health hazards for patients and staff. So, there is a need to control and minimize these health risks and to maximize the benefits of radiation in medicine. The present study aims to discuss the role of nuclear medicine technology knowledge and scales in improving the management of patients, and raising the awareness and knowledge of nuclear medicine staff regarding the use of nuclear medicine facilities. The practical experience knowledge of nuclear medicine staff in 50 medical centers was reviewed through normal visiting and compared with the IAEA Published documents information. This review shows that the nuclear medicine staff has good technology knowledge and scales during managing patients as compared to IAEA Published information regarding the radiation protection measures and regulation. The outcome of the study reveals that competent authority can improve radiation safety in medical settings by developing and facilitating the implementation of scientific evidence-based policies and recommendations covering nuclear medicine technology focusing in the public health aspects and considering the risks and benefits of the use of radiation in health care. It could be concluded that concerted and coordinated efforts are required to improve radiation safety, quality and sustain ability of health systems

  17. Managing nuclear predominant generating capacity

    International Nuclear Information System (INIS)

    Bouget, Y.H.; Carbonnier, D.

    1999-01-01

    The most common believe, associated with nuclear power plant, leads to the conclusion that it can only operate, as a base load plant. This observation can be reversed, by just looking at large generating capacity, using an important nuclear generation mix. Nuclear plants may certainly load follow and contribute to the grid frequency control. The French example illustrates these possibilities. The reactor control of French units has been customized to accommodate the grid requests. Managing such a large nuclear plant fleet requires to take various actions, ranging from a daily basis to a multi-annual prospective standpoint. The paper describes the various contributions leading to safe, reliable, well accepted and cost competitive nuclear plants in France. The combination of all aspects related to operations, maintenance scheduling, nuclear safety management, are presented. The use of PWR units carries considerable weight in economic terms, with several hundred million francs tied in with outage scheduling every year. This necessitates a global view of the entire generating system which can be mobilized to meet demand. There is considerable interaction between units as, on the one hand, they are competing to satisfy the same need, and, on the other hand, reducing maintenance costs means sharing the necessary resources, and thus a coordinated staggering of outages. In addition, nuclear fuel is an energy reserve which remains in the reactor for 3 or 4 years, with some of the fuel renewed each year. Due to the memory effect, the fuel retains a memory of past use, so that today's choices impact upon the future. A medium-term view of fuel management is also necessary. The coordination systems implemented by EDF aim to control these parameters for the benefit of electricity consumers. (author)

  18. Strategy for developing and conducting nuclear emergency exercises

    International Nuclear Information System (INIS)

    2007-01-01

    Emergency situations demand that actions be taken by responsible organisations and individuals at the site of the emergency and at the local, national and international levels to mitigate the impact on people and the environment. Effective emergency response requires development and implementation of emergency plans and procedures; established arrangements at the local, national and international levels; acquisition and maintenance of resources (funding, equipment and personnel); training of personnel; conduct of exercises; and a 'feedback programme' whereby improvements to the emergency management system are made based on lessons identified from exercises and actual events. A means for demonstrating the effectiveness of an emergency programme is through the conduct of exercises. Exercises demonstrate the effectiveness of plans, procedures, training and equipment; adequacy of response arrangements and resources; capabilities of response personnel in performing their assigned tasks; ability of individuals and organisations to work together; and provide a forum for exploring and testing revisions, modifications, and new and/or proposed changes to any emergency programme element in near realistic situations. Exercises may range in scope from small-scale drills to large-scale national or international exercises. There is clear benefit to organisations in supporting, developing and conducting well-managed exercises. Exercising is a resource-intensive tool; however, it is a critical tool for enhancing performance, testing arrangements and identifying areas for improvement. A thoroughly developed strategy should therefore be in place to ensure maximum value from an exercise programme. This report contributes to the good practice and management of exercise programmes by providing a strategy for improving the value of planning, conducting, participating in and/or supporting exercises. The OECD/NEA International Nuclear Emergency Exercise (INEX) series undertaken over the

  19. Report on the days on 'population protection and land management in a nuclear emergency and post-accidental situation'; Compte rendu des journees -protection des populations et gestion des territoires en situation d'urgence nucleaire et post-accidentelle-

    Energy Technology Data Exchange (ETDEWEB)

    Chambrette, V.; Foulquier, L. [Institut de Radioprotection et de Surete Nucleaire - IRSN, 92 - Clamart (France)

    2010-10-15

    This document proposes a synthesis of interventions and contributions proposed during two days about the issues of protection of population and land management in a nuclear emergency and post-accidental situation. The four sessions dealt with the following issues: 1. protection challenges and doctrine; 2. lessons learnt from exercises and actual situations; 3. for a better preparedness to post-accidental management; 4. society facing a nuclear crisis

  20. Emergency department management of shoulder dystocia.

    Science.gov (United States)

    Del Portal, Daniel A; Horn, Amanda E; Vilke, Gary M; Chan, Theodore C; Ufberg, Jacob W

    2014-03-01

    Precipitous obstetric deliveries can occur outside of the labor and delivery suite, often in the emergency department (ED). Shoulder dystocia is an obstetric emergency with significant risk of adverse outcome. To review multiple techniques for managing a shoulder dystocia in the ED. We review various techniques and approaches for achieving delivery in the setting of shoulder dystocia. These include common maneuvers, controversial interventions, and interventions of last resort. Emergency physicians should be familiar with multiple techniques for managing a shoulder dystocia to reduce the chances of fetal and maternal morbidity and mortality. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Study of developing nuclear fabrication facility's integrated emergency response manual

    International Nuclear Information System (INIS)

    Kim, Taeh Yeong; Cho, Nam Chan; Han, Seung Hoon; Moon, Jong Han; Lee, Jin Hang; Min, Guem Young; Han, Ji Ah

    2016-01-01

    Public begin to pay attention to emergency management. Thus, public's consensus on having high level of emergency management system up to advanced country's is reached. In this social atmosphere, manual is considered as key factor to prevent accident or secure business continuity. Therefore, we first define possible crisis at KEPCO Nuclear Fuel (hereinafter KNF) and also make a 'Reaction List' for each crisis situation at the view of information-design. To achieve it, we analyze several country's crisis response manual and then derive component, indicate duties and roles at the information-design point of view. From this, we suggested guideline to make 'Integrated emergency response manual(IERM)'. The manual we used before have following few problems; difficult to applicate at the site, difficult to deliver information. To complement these problems, we searched manual elements from the view of information-design. As a result, we develop administrative manual. Although, this manual could be thought as fragmentary manual because it confined specific several agency/organization and disaster type

  2. The emerging land management paradigm

    DEFF Research Database (Denmark)

    Enemark, Stig

    2006-01-01

    Manchet: This paper was first presented by Professor Enemark at the RICS Christmas Lecture in December last year. It provides a cogent and detailed reference point for the current state of land management in developed countries, charts a course for the future and looks at how education must chang...

  3. A prototype nuclear emergency response decision making expert system

    International Nuclear Information System (INIS)

    Chang, C.; Shih, C.; Hong, M.; Yu, W.; Su, M.; Wang, S.

    1990-01-01

    A prototype of emergency response expert system developed for nuclear power plants, has been fulfilled by Institute of Nuclear Energy Research. Key elements that have been implemented for emergency response include radioactive material dispersion assessment, dynamic transportation evacuation assessment, and meteorological parametric forecasting. A network system consists of five 80386 Personal Computers (PCs) has been installed to perform the system functions above. A further project is still continuing to achieve a more complicated and fanciful computer aid integral emergency response expert system

  4. Spent Nuclear Fuel Project Safety Management Plan

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities

  5. Management of a radiological emergency. Organization and operation; Gestion d'une urgence radiologique. Organisation et fonctionnement

    Energy Technology Data Exchange (ETDEWEB)

    Dubiau, Ph. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Clamart (France)

    2007-07-15

    After a recall of potential radiological emergency situations and their associated risks, this article describes the organization in France of the crisis management and its operation at the national and international scale: 1 - Nuclear or radiological emergency situations and their associated risks: inventory of ionising radiation sources, accidental situations, hazards; 2 - crisis organization in situation of radiological or nuclear emergency: organization at the local scale, organization at the national scale; 3 - management of emergency situations: accident at a facility, action circle, radiological emergency situations outside nuclear facilities, international management of crisis, situations that do not require the implementation of an emergency plan. (J.S.)

  6. Advanced information technology for training and emergency management

    International Nuclear Information System (INIS)

    Wahlstroem, B.

    1989-01-01

    Modern information technology provides many possibilities for improving both the safety and the availability of nuclear installations. A Nordic research programme was started in 1977, in which several organizations in Denmark, Finland, Norway and Sweden has been participating. The work has on a general level been addressing control rooms, human reliability and information technology for nuclear power plants. The research has had impact on the development of the control room solutions and the training simulators in Finland and also in the other Nordic countries. The present phase of the Nordic cooperation is investigating the use of advanced information technology in emergency management. The paper gives a brief introduction to the use of advance information technology for training and emergency management, which is based on the experience from the Nordic projects and other similar application projects in Finland. The paper includes also references to results from several of the projects. (author)

  7. A new series of international nuclear emergency exercises (INEX)

    International Nuclear Information System (INIS)

    Halil-Burcin Okyar; Lazo, Edward; Siemann, Michael

    2014-01-01

    The INEX series of international nuclear emergency exercises, organised under the auspices of the NEA Working Party on Nuclear Emergency Matters (WPNEM), has proven successful in testing, investigating and improving national and international response arrangements for nuclear accidents and radiological emergencies. The Fukushima Daiichi nuclear power plant (NPP) accident occurred during INEX-4 and had a direct impact on NEA technical standing committees' work programmes. The WPNEM played an important role during the emergency, following and studying the insights and ideas that drive nuclear emergency management decision making. It collected crucial information on governmental decisions and recommendations with respect to the accident situation, and implemented a framework study to assist in the collection of NEA member country experiences that would facilitate the identification of commonalities in national assessment approaches and results. The findings triggered the INEX-5 exercise, which will build upon the experiences and lessons learnt from past nuclear accidents/incidents, and the success of previous INEX exercises. This exercise is intended to test mechanisms for decision making at the national level, particularly in uncertain circumstances or in the absence of data, to examine arrangements for international co-operation and coordination of data and information exchange among countries and arrangements for practical support and assistance between groups of countries or geographical regions. It will also investigate the long-term issues beyond the early response phase. The WPNEM agreed on a tightly focused scope, which will consist of a tabletop exercise or moderated workshop that is not based on a real time test. The exercise will be a common scenario based on a re-enactment of a nuclear power plant accident, although not the Fukushima accident. It will consider coincident impacts on multiple units and include impacts on other critical national

  8. A probable radiological emergency in nuclear medicine

    International Nuclear Information System (INIS)

    Colombo, J.C.

    1998-01-01

    Full text: When a therapeutic dose of 131 I is indicated, especially in the thyroid carcinomas, the authorized doctor must always have present the possibility that the patient eliminates high activities of the radio-active material with the vomit. Keeping in mind that dose of 100 to 200 mCi is habitual in the carcinoma of thyroid, this episode can constitute a true radiological emergency, particularly because the first ones in taking knowledge of the fact can be people without appropriate preparation to this situation, what can cause contaminations difficult to manage them. Because it is not acceptable that a source open of high activity remains without treatment long time, the authorized doctor must act immediately, for that which should be prepared with anticipation, and have the necessary elements, to have an operative routine and to administer the storage of the polluted elements appropriately. To such an effect, we have orchestrated a sequential program of performance of 11 points, in the cases of plentiful vomits, with contamination of floors and things of the room. The program begins with the writing instructions for the patient and the personnel of infirmary in case of feeling desires to vomit, and de program is completed in case of being necessary. The elements are detailed in a handbag that contains for radiological emergencies for vomit. It notes that the low cost of the elements and clothes kind for surgery disposable. It discusses about the necessity of having prepared rooms for to receive patient with treatment with 131 I, in the clinics and public hospitals. (author) [es

  9. Aspects of nuclear waste management

    International Nuclear Information System (INIS)

    Moberg, L.

    1990-10-01

    Six areas of concern in nuclear waste management have been dealt with in a four-year Nordic research programme. They include work in two international projects, Hydrocoin dealing with modelling of groundwater flow in crystalline rock, and Biomovs, concerned with biosphere models. Geologic questions of importance to the prediction of future behaviour are examined. Waste quantities from the decommissioning of nuclear power stations are estimated, and total amounts of waste to be transported in the Nordic countries are evaluated. Waste amounts from a hypothetical reactor accident are also calculated. (au)

  10. Nuclear safety management at the Wolsong NGS

    Energy Technology Data Exchange (ETDEWEB)

    Bong-Seob, Han [Korea Electric Power Corp., Wolson NPP no. 1 and 2 (Korea, Republic of)

    1997-12-01

    Nuclear safety management at the Wolsong nuclear power plant is described, including the following issues: site selection; plant history; operational goals; operational guidelines; reactor safety; safety training; plant maintenance; management of plant equipment lifetime; future tasks.

  11. Nuclear safety management at the Wolsong NGS

    International Nuclear Information System (INIS)

    Han Bong-Seob

    1997-01-01

    Nuclear safety management at the Wolsong nuclear power plant is described, including the following issues: site selection; plant history; operational goals; operational guidelines; reactor safety; safety training; plant maintenance; management of plant equipment lifetime; future tasks

  12. ARGOS-NT: A computer based emergency management system

    International Nuclear Information System (INIS)

    Hoe, S.; Thykier-Nielsen, S.; Steffensen, L.B.

    2000-01-01

    In case of a nuclear accident or a threat of a release the Danish Emergency Management Agency is responsible for actions to minimize the consequences in Danish territory. To provide an overview of the situation, a computer based system called ARGOS-NT has been developed in 1993/94. This paper gives an overview of the system with emphasis on the prognostic part of the system. An example calculation shows the importance of correct landscape modeling. (author)

  13. Proceedings: 2001 Nuclear Asset Management Workshop

    International Nuclear Information System (INIS)

    2002-01-01

    The fourth annual EPRI Nuclear Asset Management Workshop helped decision makers at all levels of nuclear enterprises to keep informed about developing nuclear asset management (NAM) processes, methods, and tools. The goal is to operate nuclear plants with enhanced profitability, while maintaining safety

  14. Emergency preparedness to nuclear accidents in the Czech Republic

    International Nuclear Information System (INIS)

    Starostova, V.; Prouza, Z.; Koldus, F.; Rutova, H.

    2003-01-01

    Full text: Emergency preparedness to nuclear accidents (radiation emergency preparedness) is a part of general emergency preparedness and crisis management in the Czech Republic. The bases for it were given in 1997 when radiation emergency preparedness was defined and requirements to it were given in Act No. 18/1997 Coll., so called the Atomic Act, which entered into force in July 1997. In 2000, the bases for general emergency preparedness and crisis management in the Czech Republic were given namely in two acts - in Act No. 239/2000 Coll., an integrated rescue system, and in Act No. 240/2000 Coll., on crisis management. Both these acts entered into force on 1 January 2001. The Atomic Act determines duties of licensees in the field of preparedness. One of them is obligation to prepare and submit to SUJB the on-site emergency plan as one of attachments to his application for the licence. (The licence can be issued if defined documents, including this plan, are approved.) The licensee is obliged, under conditions given in detail in one of implementing regulation, to prepare a proposal of the emergency planning zone and submit it to SUJB. In the Act, there are also given the requirements for licensee's actions in case of a radiation emergency occurrence. On the other hand the Atomic Act names what are SUJB competencies and also what are these ones from the point of view of radiation emergency. Among others SUJB establishes the emergency planning zone, controls the activity of the National Radiation Monitoring Network, provides for the activities of an Emergency Response Centre and ensures the availability of background information necessary to take decisions aimed at reducing or averting exposure in the case of a radiation accident. SUJB has its own crisis staff; it has 4 shifts, which change regularly weekly. About 50 SUJB employees divided into 12 different functions are members of this staff. The Emergency Response Centre (ERC) of SUJB organizes work of this staff

  15. Case Study for Effectiveness Analysis on Nuclear Regulatory Infrastructure Support for Emerging Nuclear Energy Countries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. E.; Byeon, M. J.; Yoo, J. W.; Lee, J. M.; Lim, J. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    The donor countries need to make decisions on various steps such as whether to fully accept newcomers’ requests, the depth of support, and how the supportive action will be carried out. Such is not an easy task due to limited time, resources, manpower, etc. Thus, creating an infrastructure to support emerging nuclear energy countries is needed. This paper suggests the resource portfolio concept used in business management and aims to analyze the validity of supporting the new entrants’ development of regulatory infrastructure as a case study. This study tries to develop a very simple Excel-based tool for assessing the supporting strategy quantitatively and screening the activities that is projected to be less effective and attractive. There are many countries, so called newcomers, which have expressed interests in developing their own nuclear power program. It has been recognized by the international community that every country considering embarking upon their own nuclear power program should establish their nuclear safety infrastructure to sustain a high level of nuclear safety. The newcomers have requested for considerable assistance from the IAEA and they already have bilateral cooperation programs with the advanced countries with matured nuclear regulatory programs. Currently, the regulatory bodies that provide support are confronted with two responsibilities as follows; the primary objective of the regulatory bodies is to ensure that the operator fulfills the responsibility to protect human health.

  16. Case Study for Effectiveness Analysis on Nuclear Regulatory Infrastructure Support for Emerging Nuclear Energy Countries

    International Nuclear Information System (INIS)

    Lee, Y. E.; Byeon, M. J.; Yoo, J. W.; Lee, J. M.; Lim, J. H.

    2016-01-01

    The donor countries need to make decisions on various steps such as whether to fully accept newcomers’ requests, the depth of support, and how the supportive action will be carried out. Such is not an easy task due to limited time, resources, manpower, etc. Thus, creating an infrastructure to support emerging nuclear energy countries is needed. This paper suggests the resource portfolio concept used in business management and aims to analyze the validity of supporting the new entrants’ development of regulatory infrastructure as a case study. This study tries to develop a very simple Excel-based tool for assessing the supporting strategy quantitatively and screening the activities that is projected to be less effective and attractive. There are many countries, so called newcomers, which have expressed interests in developing their own nuclear power program. It has been recognized by the international community that every country considering embarking upon their own nuclear power program should establish their nuclear safety infrastructure to sustain a high level of nuclear safety. The newcomers have requested for considerable assistance from the IAEA and they already have bilateral cooperation programs with the advanced countries with matured nuclear regulatory programs. Currently, the regulatory bodies that provide support are confronted with two responsibilities as follows; the primary objective of the regulatory bodies is to ensure that the operator fulfills the responsibility to protect human health

  17. Cultivating stakeholder interaction in emergency management

    International Nuclear Information System (INIS)

    Weaver, W.J.; Brownell, L.F.

    1994-01-01

    The Secretary of Energy has defined the mission for the Department. Her vision for the Department of Energy (DOE) is to promote environmental excellence, economic growth, and leadership in science and technology. The Office of Environmental Restoration and Waste Management (EM), which is responsible for implementing an emergency management system for EM facilities and the transport of non-weapons-related radioactive materials, has addressed this mission through the establishment of six goals. This paper specifically discusses efforts to accomplish the last goal: Develop a stronger partnership between the DOE and its stakeholders. EM's Emergency Management Program supports strong partnerships with all interested parties. The EM Emergency Management Program provides the capability for preparedness in the event of an operational emergency at EM facilities, and it gives DOE the capability for preparedness in the event of an operational emergency involving DOE shipments of non-weapons-related radioactive and hazardous materials in transit. The Program is committed to plan, train, and provide material resources for the protection and safety of DOE workers, the public, and the environment. A great deal of stakeholder interaction is associated with the transport of DOE radioactive materials. To assure a communication link to other DOE program areas and interested stakeholders outside the DOE, the Emergency Management Program has committed extensive resources within the transportation program to promote and support EM's commitment to stakeholder involvement. The Transportation Emergency Preparedness Program (TEPP) develops and enhances integrated emergency preparedness in the area of transportation. TEPP coordinates programs across the DOE complex and supplies a DOE-wide unified approach to the public

  18. Medical emergency management among Iranian dentists.

    Science.gov (United States)

    Khami, Mohammad Reza; Yazdani, Reza; Afzalimoghaddam, Mohammad; Razeghi, Samaneh; Moscowchi, Anahita

    2014-11-01

    More than 18,000 patients need medical emergencies management in dental offices in Iran annually. The present study investigates medical emergencies management among Iranian dentists. From the list of the cell phone numbers of the dentists practicing in the city of Tehran, 210 dentists were selected randomly. A self-administered questionnaire was used as the data collection instrument. The questionnaire requested information on personal and professional characteristics of the dentists, as well as their knowledge and self-reported practice in the field of medical emergency management, and availability of required drugs and equipments to manage medical emergencies in their offices. Totally, 177 dentists (84%) completed the questionnaire. Less than 60% of the participants were knowledgeable about characteristics of hypoglycemic patient, chest pain with cardiac origin, and true cardiopulmonary resuscitation (CPR) practice. Regarding practice, less than one quarter of the respondents acquired acceptable scores. In regression models, higher practice scores were significantly associated with higher knowledge scores (p < 0.001). The results call for a need to further education on the subject for dentists. Continuing education and changing dental curriculum in the various forms seems to be useful in enhancement of the self-reported knowledge and practice of dentists. To successful control of medical emergencies in the dental office, dentists must be prepared to recognize and manage a variety of such conditions. In addition to dentist's knowledge and skill, availability of necessary equipments and trained staff is also of critical importance.

  19. The Enhancement of Nuclear Control and Emergency Preparedness Systems in KAERI

    International Nuclear Information System (INIS)

    Lee, Goan Yup; Lee, B. D.; Kim, J. S.; Park, H. J.

    2008-12-01

    The objective of this study is to foster international environment for peaceful nuclear technology based on the international transparency with respect to the control, management and surveillance system. In this regards, this study establishes, operates and upgrades the nuclear control and management information system of the KAERI that assumed the prerequisite means for Integrated Safeguards systems of the IAEA which is implemented from the July of 2008. It is also included the radiological emergency system that contains the safety information surveillance system in KAERI to meet the national legislative requirements. The nuclear control and management information system of the KAERI could be controlled and managed the accounting information of the nuclear facility with on-line manner. This system enhances transparency of accounting management of the KAERI in terms of effective ways for the Agency inspectors and national inspectors to implement the no-notice inspection under the Integrated Safeguards system. To complete the nuclear safety information collecting and monitoring system at EOF for KAERI, the real-time remote monitoring systems for RIPF, IMEF, PIEF were established. In addition, after the review of the abnormal condition of RMS data, the notification system for a radiation abnormal condition at nuclear facilities was operated. And also, the server of emergency management system was improved, the emergency situation notification system to all KAERI and KNF site was established

  20. National radiological emergency response to the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Dela Rosa, Alumanda M.

    2011-01-01

    The Fukushima nuclear power plant accident occurred on March 11, 2011, when two natural disasters of unprecedented strengths, an earthquake with magnitude 9 followed one hour later by a powerful tsunami struck northeastern Japan and felled the external power supply and the emergency diesel generators of the Fukushima Daiichi nuclear power station, resulting in a loss of coolant accident. There were core meltdowns in three nuclear reactors with the release of radioactivity estimated to be 1/10 of what was released to the environment during the Chernobyl nuclear power plant accident in April 1986. The Fukushima nuclear accident tested the capability of the Philippine Nuclear Research Institute (PNRI) and the National Disaster Risk Reduction and Management Council (NDRRMC) in responding to such radiological emergency as a nuclear power plant accident. The PNRI and NDRRMC activated the RADPLAN for possible radiological emergency. The emergency response was calibrated to the status of the nuclear reactors on site and the environmental monitoring undertaken around the site and off-site, including the marine environment. This orchestrated effort enabled the PNRI and the national agencies concerned to reassure the public that the nuclear accident does not have a significant impact on the Philippines, both on the health and safety of the people and on the safety of the environment. National actions taken during the accident will be presented. The role played by the International Atomic Energy Agency as the central UN agency for nuclear matters will be discussed. (author)

  1. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  2. Resilience and Brittleness in a Nuclear Emergency Response Simulation: Focusing on Team Coordination Activity

    International Nuclear Information System (INIS)

    Costa, Wagner Schenkel; Buarque, Lia; Voshell, Martin; Branlat, Matthieu; Woods, David D.; Gomes, Jose Orlando

    2008-01-01

    The current work presents results from a cognitive task analysis (CTA) of a nuclear disaster simulation. Audio-visual records were collected from an emergency room team composed of individuals from 26 different agencies as they responded to multiple scenarios in a simulated nuclear disaster. This simulation was part of a national emergency response training activity for a nuclear power plant located in a developing country. The objectives of this paper are to describe sources of resilience and brittleness in these activities, identify cues of potential improvements for future emergency simulations, and leveraging the resilience of the emergency response System in case of a real disaster. Multiple CTA techniques were used to gain a better understanding of the cognitive dimensions of the activity and to identify team coordination and crisis management patterns that emerged from the simulation training. (authors)

  3. Emergency preparedness and response plan for nuclear facilities in Indonesia

    International Nuclear Information System (INIS)

    Nur Rahmah Hidayati; Pande Made Udiyani

    2009-01-01

    All nuclear facilities in Indonesia are owned and operated by the National Nuclear Energy Agency (BATAN). The programs and activities of emergency planning and preparedness in Indonesia are based on the existing nuclear facilities, i.e. research reactors, research reactor fuel fabrication plant, radioactive waste treatment installation and radioisotopes production installation. The assessment is conducted to learn of status of emergency preparedness and response plan for nuclear facilities in Indonesia and to support the preparation of future Nuclear Power Plant. The assessment is conducted by comparing the emergency preparedness and response system in Indonesia to the system in other countries such as Japan and Republic of Korea, since the countries have many Nuclear Power Plants and other nuclear facilities. As a result, emergency preparedness response plan for existing nuclear facility in Indonesia has been implemented in many activities such as environmental monitoring program, facility monitoring equipment, and the continuous exercise of emergency preparedness and response. However, the implementation need law enforcement for imposing the responsibility of the coordinators in National Emergency Preparedness Plan. It also needs some additional technical support systems which refer to the system in Japan or Republic of Korea. The systems must be completed with some real time monitors which will support the emergency preparedness and response organization. The system should be built in NPP site before the first NPP will be operated. The system should be connected to an Off Site Emergency Center under coordination of BAPETEN as the regulatory body which has responsibility to control of nuclear energy in Indonesia. (Author)

  4. The emergence of scientific management in America

    Directory of Open Access Journals (Sweden)

    Sorin-George Toma

    2014-05-01

    Full Text Available A scientific approach to management was initiated for the first time in America in the late 19th century. Scientific management arose mainly from the need to increase efficiency in America, but other key factors were the spread of big businesses and the expanding application of science in industry. The aims of our paper are to present the emergence of scientific management in America and to emphasize the contribution of some of the most representatives American authors to its development. The methodological approach is literature review. Our paper shows that scientific management was essentially an American achievement that provided useful lessons for the whole human society.

  5. Nuclear emergency preparedness in the Nordic and Baltic Sea countries

    Energy Technology Data Exchange (ETDEWEB)

    Jaworska, A. [Norwegian Radiation Protection Authority (Norway)

    2002-07-01

    Radiation emergency preparedness systems must be able to deal with the threats posed to each country and the region as a whole. The threats from nuclear accidents differ in the various countries of the region. The most serious nuclear threats are those with cross-border implications and are generally assumed to be due to the presence of nuclear reactors of various kinds. Some countries in the region, Finland, Germany, Lithuania, the Russian Federation and Sweden, have nuclear power plants, and several countries in the region possess smaller research reactors. Other nuclear threats arise from nuclear powered naval vessels or submarines, and from nuclear powered satellites. Production, transportation, use, and disposal of radioactive materials constitute potential local nuclear hazards. Finally, terrorist use of radioactive material poses a nuclear threat to all countries. (au)

  6. Nuclear emergency preparedness in the Nordic and Baltic Sea countries

    International Nuclear Information System (INIS)

    Jaworska, A.

    2002-01-01

    Radiation emergency preparedness systems must be able to deal with the threats posed to each country and the region as a whole. The threats from nuclear accidents differ in the various countries of the region. The most serious nuclear threats are those with cross-border implications and are generally assumed to be due to the presence of nuclear reactors of various kinds. Some countries in the region, Finland, Germany, Lithuania, the Russian Federation and Sweden, have nuclear power plants, and several countries in the region possess smaller research reactors. Other nuclear threats arise from nuclear powered naval vessels or submarines, and from nuclear powered satellites. Production, transportation, use, and disposal of radioactive materials constitute potential local nuclear hazards. Finally, terrorist use of radioactive material poses a nuclear threat to all countries. (au)

  7. Statistical methods for nuclear material management

    Energy Technology Data Exchange (ETDEWEB)

    Bowen W.M.; Bennett, C.A. (eds.)

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems.

  8. Statistical methods for nuclear material management

    International Nuclear Information System (INIS)

    Bowen, W.M.; Bennett, C.A.

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems

  9. NDMA guidelines on handling of nuclear and radiological emergencies

    Energy Technology Data Exchange (ETDEWEB)

    Abani, M C [National Disaster Management Authority, New Delhi (India)

    2010-07-01

    The vulnerability to the disasters is high in India due to the large population density, fast growing urbanization, industrialization and also because of poor economic conditions of people. Natural disasters have been recurring phenomena in India, leading to extensive loss of life, livelihood and property. The primary reason for such heavy losses can be attributed to the reactive and response-centric approach adopted in the past in handling of the disasters. Based on the Guidelines a holistic approach is to be adopted for Nuclear Emergency Management Framework that assigns the highest priority to prevention, mitigation and compliance to regulatory requirements, while strengthening preparedness, capacity development, response etc. It will be implemented through strengthening of the existing action plans or by preparing new action plans at national, state and district levels by the stakeholders at all levels of administration

  10. NDMA guidelines on handling of nuclear and radiological emergencies

    International Nuclear Information System (INIS)

    Abani, M.C.

    2010-01-01

    The vulnerability to the disasters is high in India due to the large population density, fast growing urbanization, industrialization and also because of poor economic conditions of people. Natural disasters have been recurring phenomena in India, leading to extensive loss of life, livelihood and property. The primary reason for such heavy losses can be attributed to the reactive and response-centric approach adopted in the past in handling of the disasters. Based on the Guidelines a holistic approach is to be adopted for Nuclear Emergency Management Framework that assigns the highest priority to prevention, mitigation and compliance to regulatory requirements, while strengthening preparedness, capacity development, response etc. It will be implemented through strengthening of the existing action plans or by preparing new action plans at national, state and district levels by the stakeholders at all levels of administration

  11. On-site emergency intervention plan for nuclear accident situation at SCN-Pitesti TRIGA Reactor

    International Nuclear Information System (INIS)

    Margeanu, S.; Oprea, I.

    2008-01-01

    A 14 MW TRIGA research reactor is operated on the Institute for Nuclear Research site. In the event of a nuclear accident or radiological emergency that may affect the public the effectiveness of protective actions depends on the adequacy of intervention plans prepared in advance. Considerable planning is necessary to reduce to manageable levels the types of decisions leading to effective responses to protect the public in such an event. The essential structures of our on-site, off-site and county emergency intervention plan and the correlation between emergency intervention plans are presented. (authors)

  12. Appraisal of Scientific Resources for Emergency Management.

    Science.gov (United States)

    1983-09-01

    scientific, technical, and management skills. These included entomology , toxicology, public health, environmental impact analysis, economic analysis...Legionnaire’s Disease, Microbiology, chemical analysis & epidem- 1976 iology studies essential. 7. Medfly Controversy, 1981 Entomology , toxicology...Analytical 2. Inorganic 3. Organic 4. Physical 5. Nuclear 6. Forensic 7. Ordnance 8. Drugs 9. Narcotics 10. Chemical Warfare Agents 11. Insecticides

  13. Nuclear maintenance and management system

    International Nuclear Information System (INIS)

    Yamaji, Yoshihiro; Abe, Norihiko

    2000-01-01

    The Mitsubishi Electric Co., Ltd. has developed to introduce various computer systems for desk-top business assistance in a power plant such as system isolation assisting system, operation parameter management system, and so on under aiming at business effectiveness since these ten and some years. Recently, by further elapsed years of the plants when required for further cost reduction and together with change of business environment represented by preparation of individual personal computer, further effectiveness, preparation of the business environment, and upgrading of maintenance in power plant business have been required. Among such background, she has carried out various proposals and developments on construction of a maintenance and management system integrated the business assistant know-hows and the plant know-hows both accumulated previously. They are composed of three main points on rationalization of business management and document management in the further effectiveness, preparation of business environment, TBM maintenance, introduction of CBM maintenance and introduction of maintenance assistance in upgrading of maintenance. Here was introduced on system concepts aiming at the further effectiveness of the nuclear power plant business, preparation of business environment, upgrading of maintenance and maintenance, and so on, at a background of environment around maintenance business in the nuclear power plants (cost-down, highly elapsed year of the plant, change of business environment). (G.K)

  14. State of nuclear waste management of German nuclear power stations

    International Nuclear Information System (INIS)

    1983-01-01

    The waste management of nuclear power plants in the Federal Republic of Germany is today prevailing in the public discussion. Objections raised in this connection, e.g. that the nuclear waste management has been omitted from the development of peaceful utilization of nuclear energy or remained insolved, are frequently accepted without examination, and partly spread as facts. This is, however, not the truth: From the outset in 1955 the development of nuclear technology in the Federal Republic of Germany has included investigations of the problems of reprocessing and non-detrimental disposal of radioactive products, and the results have been compiled in a national nuclear waste management concept. (orig.) [de

  15. Stakeholder involvement in Swedish nuclear waste management

    International Nuclear Information System (INIS)

    Elam, Mark; Sundqvist, Goeran

    2006-09-01

    This report concerning Swedish nuclear waste management has been produced as part of a cross national research project: CARL - A Social Science Research Project into the Effects of Stakeholder involvement on Decision-Making in Radioactive Waste Management. Besides Sweden, the participating countries are Belgium, Canada, Finland, Slovenia and United Kingdom. A social science research team, working for three years, is in the first phase conducting research in their own countries in order to produce 6 country reports. During the next years the focus will shift to comparisons of stakeholder involvement practices in the participating countries. The report addresses current practices of Swedish nuclear waste management and their historical development. The main focus is on past, current and emerging patterns of stakeholder involvement in the siting of a deep repository for the final disposal of Sweden's spent nuclear fuel. The general questions attended to in the report are: Who are the main stakeholders, and how have they emerged and gained recognition as such? What are the issues currently subject to stakeholder involvement and how have these been decided upon? How is stakeholder involvement organized locally and nationally and how has this changed over time? How has stakeholder involvement gained acceptance as an activity of value in the siting of major waste facilities? The report have attempted to show the development of stakeholder involvement in the siting of a final repository for Sweden's spent nuclear fuel as resembling something other than a straightforward linear process of improvement and refinement. Stakeholder involvement has developed, over the past 15 years or so, into something more like a patchwork of different shapes and forms. Some of the forces that may well contribute to the further elaboration of the patchwork of stakeholder involvement have been pointed out, contingently modifying once more its overall colour and orientation. Questions have been

  16. Stakeholder involvement in Swedish nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Mark; Sundqvist, Goeran [Goeteborg Univ. (Sweden). Section for Science and Technology Studies

    2006-09-15

    This report concerning Swedish nuclear waste management has been produced as part of a cross national research project: CARL - A Social Science Research Project into the Effects of Stakeholder involvement on Decision-Making in Radioactive Waste Management. Besides Sweden, the participating countries are Belgium, Canada, Finland, Slovenia and United Kingdom. A social science research team, working for three years, is in the first phase conducting research in their own countries in order to produce 6 country reports. During the next years the focus will shift to comparisons of stakeholder involvement practices in the participating countries. The report addresses current practices of Swedish nuclear waste management and their historical development. The main focus is on past, current and emerging patterns of stakeholder involvement in the siting of a deep repository for the final disposal of Sweden's spent nuclear fuel. The general questions attended to in the report are: Who are the main stakeholders, and how have they emerged and gained recognition as such? What are the issues currently subject to stakeholder involvement and how have these been decided upon? How is stakeholder involvement organized locally and nationally and how has this changed over time? How has stakeholder involvement gained acceptance as an activity of value in the siting of major waste facilities? The report have attempted to show the development of stakeholder involvement in the siting of a final repository for Sweden's spent nuclear fuel as resembling something other than a straightforward linear process of improvement and refinement. Stakeholder involvement has developed, over the past 15 years or so, into something more like a patchwork of different shapes and forms. Some of the forces that may well contribute to the further elaboration of the patchwork of stakeholder involvement have been pointed out, contingently modifying once more its overall colour and orientation. Questions

  17. Investigation of nuclear safety regulation and emergency preparedness for other countries

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Hitoshi; Kakuta, Akio; Yasuda, Makoto [Japan Nuclear Energy Safety Organization, Policy Planning and Coordination Department, Tokyo (Japan); Funahashi, Toshihiro [Japan Nuclear Energy Safety Organization, Nuclear Emergency Response and Prepardness Department, Tokyo (Japan)

    2012-10-15

    , in the emergency, state governments are respond to the public protection. In the U.S., the role of the responding of large-scale disasters including terrorist attacks, are defined by National Response Framework (NRF) and National Incident Management System (NIMS), Nuclear Regulatory Commission, performs the responding advice to licensee and state government in the nuclear emergency. Federal Emergency Management Agency (FEMA) supports of state government activities. In the case of the damage extending to several states, Department of Homeland Security (DHS) mainly exercises jurisdiction over the whole of responding. In the case of Canada, the Health Canada and the Canadian Nuclear Safety Commission take responsibility for the control of responding to nuclear emergency. On the other hand, state government basically cope with nuclear emergency in Germany, but if the nuclear emergency affects multiple states, the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety controls designated state agencies. (author)

  18. Preparedness of public authorities for emergencies at nuclear power plants

    International Nuclear Information System (INIS)

    1982-01-01

    The safety guide lays down the requirements for the establishment of suitable procedures to be followed in the event of an emergency situation at a nuclear power plant. Many of the procedures would also be applicable at other nuclear facilities such as fuel manufacturing plants, irradiated fuel processing plants and the like. The guide defines reponsibilities for emergency planning, organization and action, protective measures to be taken, information and instruction of the public, training and cooperation across boundaries

  19. Brief on nuclear emergency planning and preparedness in Ontario

    International Nuclear Information System (INIS)

    1987-01-01

    Ontario has an excellent conceptual plan to ensure the safety of its inhabitants in the event of a nuclear accident anywhere in the world. This plan still needs to be translated into tangible preparedness to deal with such an emergency. The province is confident that, with the assistance of Ontario Hydro, a high level of nuclear emergency preparedness will soon be established for the people of the province

  20. Development of nuclear emergency exercise programme (NEEP) in Korea

    International Nuclear Information System (INIS)

    Shin, H. K.; Kim, J. Y.; Kim, M. K.; Kim, S. H.

    2011-01-01

    The nuclear emergency exercise programme (NEEP) is a PC-based application intended for design and planning emergency preparedness and response (EP and R) exercises for a potential nuclear emergency in Korea. The application programme allows EP and R staff to create and edit exercise scenarios based on information customised for a specific nuclear power plant's emergency plans. NEEP includes the following features: (1) step-by-step guide to developing new exercise scenario according to emergency alarm level and potential accident type, (2) database of specific plant's field exercise scenarios that can be easily modified by users, (3) generating master scenario events list and messages of exercise participants and (4) allowing the quantitative evaluation of exercise participants from the view of exercise objectives and evaluator guides. NEEP also features tools for queries, reports and visualisation that can be used to create documentation during the scenario planning and exercise evaluation processes. (authors)

  1. Arrangements for dealing with emergencies at civil nuclear installations

    International Nuclear Information System (INIS)

    Turner, M.J.; Robinson, I.F.

    1989-01-01

    This paper covers arrangements for dealing with nuclear emergencies at sites licensed by the Health and Safety Executive/Nuclear Installations Inspectorate. Such arrangements are over and above the contingency plans required for radiation incidents as required by the Ionising Radiations Regulations. The statutory position of the NII is described and, although the NII is limited to regulating the activities of the operator, the functions of the other organisations that could be involved in dealing with an emergency are briefly covered in order to give as complete a picture as possible. The basis for emergency planning is given together with the consequences and countermeasures for mitigation of a nuclear emergency, including the use of ERLs. The requirements for emergency exercises are explained. (author)

  2. Current management of surgical oncologic emergencies.

    Science.gov (United States)

    Bosscher, Marianne R F; van Leeuwen, Barbara L; Hoekstra, Harald J

    2015-01-01

    For some oncologic emergencies, surgical interventions are necessary for dissolution or temporary relieve. In the absence of guidelines, the most optimal method for decision making would be in a multidisciplinary cancer conference (MCC). In an acute setting, the opportunity for multidisciplinary discussion is often not available. In this study, the management and short term outcome of patients after surgical oncologic emergency consultation was analyzed. A prospective registration and follow up of adult patients with surgical oncologic emergencies between 01-11-2013 and 30-04-2014. The follow up period was 30 days. In total, 207 patients with surgical oncologic emergencies were included. Postoperative wound infections, malignant obstruction, and clinical deterioration due to progressive disease were the most frequent conditions for surgical oncologic emergency consultation. During the follow up period, 40% of patients underwent surgery. The median number of involved medical specialties was two. Only 30% of all patients were discussed in a MCC within 30 days after emergency consultation, and only 41% of the patients who underwent surgery were discussed in a MCC. For 79% of these patients, the surgical procedure was performed before the MCC. Mortality within 30 days was 13%. In most cases, surgery occurred without discussing the patient in a MCC, regardless of the fact that multiple medical specialties were involved in the treatment process. There is a need for prognostic aids and acute oncology pathways with structural multidisciplinary management. These will provide in faster institution of the most appropriate personalized cancer care, and prevent unnecessary investigations or invasive therapy.

  3. Unmanned Mobile Monitoring for Nuclear Emergency Response

    Energy Technology Data Exchange (ETDEWEB)

    Choi, YoungSoo; Park, JongWon; Kim, TaeWon; Jeong, KyungMin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Severe accidents at nuclear power plant have led to significant consequences to the people, the environment or the facility. Therefore, the appropriate response is required for the mitigation of the accidents. In the past, most of responses were performed by human beings, but it was dangerous and risky. In this paper, we proposed unmanned mobile system for the monitoring of nuclear accident in order to response effectively. For the integrity of reactor cooling and containment building, reactor cooling pipe and hydrogen distribution monitoring with unmanned ground vehicle was designed. And, for the safety of workers, radiation distribution monitoring with unmanned aerial vehicle was designed. Unmanned mobile monitoring system was proposed to respond nuclear accidents effectively. Concept of reinforcing the integrity of RCS and containment building, and radiation distribution monitoring were described. RCS flow measuring, hydrogen distribution measuring and radiation monitoring deployed at unmanned vehicle were proposed. These systems could be a method for the preparedness of effective response of nuclear accidents.

  4. Hanford emergency management plan - release 15

    International Nuclear Information System (INIS)

    CARPENTER, G.A.

    1999-01-01

    The Hanford emergency management plan for the US Department of Energy Richland, WA and Office of River Protection. The program was developed in accordance with DOE Orders as well as Federal and State regulations to protect workers and public health and safety

  5. Hanford emergency management plan - release 15

    Energy Technology Data Exchange (ETDEWEB)

    CARPENTER, G.A.

    1999-07-19

    The Hanford emergency management plan for the US Department of Energy Richland, WA and Office of River Protection. The program was developed in accordance with DOE Orders as well as Federal and State regulations to protect workers and public health and safety.

  6. Management of information within emergencies departments in ...

    African Journals Online (AJOL)

    Introduction: the management of health information is a key pillar in both emergencies reception and handling facilities, given the strategic position and the potential of these facilities within hospitals, and in the monitoring of public health and epidemiology. With the technological revolution, computerization made the ...

  7. Emergency room management of radiation accidents

    International Nuclear Information System (INIS)

    Rosenberg, R.; Mettler, F.A. Jr.

    1990-01-01

    Emergency room management of radioactively contaminated patients who have an associated medical injury requiring immediate attention must be handled with care. Radioactive contamination of the skin of a worker is not a medical emergency and is usually dealt with at the plant. Effective preplanning and on-the-scene triage will allow the seriously injured and contaminated patients to get the medical care they need with a minimum of confusion and interference. Immediate medical and surgical priorities always take precedence over radiation injuries and radioactive contamination. Probably the most difficult aspect of emergency management is the rarity of such accidents and hence the unfamiliarity of the medical staff with the appropriate procedures. The authors discuss how the answer to these problems is preplanning, having a simple and workable procedure and finally having 24-h access to experts

  8. Emergency core cooling systems in CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1981-12-01

    This report contains the responses by the Advisory Committee on Nuclear Safety to three questions posed by the Atomic Energy Control Board concerning the need for Emergency Core Cooling Systems (ECCS) in CANDU nuclear power plants, the effectiveness requirement for such systems, and the extent to which experimental evidence should be available to demonstrate compliance with effectiveness standards

  9. Emerging nuclear energy systems: Economic challenge: Revision 1

    International Nuclear Information System (INIS)

    Nuckolls, J.H.

    1986-01-01

    Future nuclear energy systems may achieve substantially lower energy costs than those of existing fossil energy systems and comparable capital costs. Such low cost nuclear energy would provide a strong economic incentive to minimize the use of fossil fuels. If these low cost nuclear energy systems emerge in the next few decades, 21st century civilization may be able to avert potentially disastrous CO 2 induced global climate changes. 12 refs., 1 fig

  10. Using social media for disaster emergency management

    Science.gov (United States)

    Wang, Y. D.; Wang, T.; Ye, X. Y.; Zhu, J. Q.; Lee, J.

    2016-06-01

    Social media have become a universal phenomenon in our society (Wang et al., 2012). As a new data source, social media have been widely used in knowledge discovery in fields related to health (Jackson et al., 2014), human behaviour (Lee, 2014), social influence (Hong, 2013), and market analysis (Hanna et al., 2011). In this paper, we report a case study of the 2012 Beijing Rainstorm to investigate how emergency information was timely distributed using social media during emergency events. We present a classification and location model for social media text streams during emergency events. This model classifies social media text streams based on their topical contents. Integrated with a trend analysis, we show how Sina-Weibo fluctuated during emergency events. Using a spatial statistical analysis method, we found that the distribution patterns of Sina-Weibo were related to the emergency events but varied among different topics. This study helps us to better understand emergency events so that decision-makers can act on emergencies in a timely manner. In addition, this paper presents the tools, methods, and models developed in this study that can be used to work with text streams from social media in the context of disaster management.

  11. Critical examination of emergency plans for nuclear accidents

    International Nuclear Information System (INIS)

    Catsaros, Nicolas.

    1986-08-01

    An analysis of emergency plans of various countries for nuclear installations on- and off-site emergency preparedness is presented. The analysis is focused on the off-site organization and countermeasures to protect public health and safety. A critical examination of the different approaches is performed and recommendations for effectiveness improvement and optimization are formulated. (author)

  12. More efficient response to nuclear emergencies

    International Nuclear Information System (INIS)

    1979-12-01

    Three documents related to the first volume of this report are presented here. These are a description of the emergency provisions organisation, an analysis of the weaknesses in the present organisation and proposed improvements (with appendices on the information problem in excercises with the emergency provisions at Ringhals and attitudes to tasks connected with evacuation following a power reactor accident) and agreements with Denmark, Finland, Norway and the IAEA for mutual assistance. (JIW)

  13. Comparison of nuclear plant emergency plans of PBNCC members

    International Nuclear Information System (INIS)

    Kato, W.Y.; Hopwood, J.M.

    1987-01-01

    The Nuclear Safety Working Group (NSWG) of the Pacific Basin Nuclear Cooperation Committee initiated cooperation among Pacific Basin areas based primarily around emergency planning. The NSWG conducted a review of the emergency response plans of members. This paper briefly reviews and makes a comparison of the emergency response plans, with particular attention on the response organization, the planning zone, and the protective action guidelines for emergencies. Although all areas have adopted the same basic elements of emergency planning and are similar, there are also variances due to different governmental structures, population densities, and available resources. It is found that the most significant difference is in the size of the emergency planning zone. The paper concludes with a discussion on possible future cooperative activities of the working group. (author)

  14. Radiation monitoring strategy in nuclear or radiological emergencies

    International Nuclear Information System (INIS)

    Lahtinen, J.

    2003-01-01

    Full text: Radiation measurements provide indispensable data needed for the management of a nuclear or radiological emergency. There must exist pre-prepared emergency monitoring strategies, with accompanying procedures and methods, that help the authorities to perform measurements efficiently and, consequently, to evaluate the radiological situation correctly and to carry out proper countermeasures on time. However, defining a realistic yet comprehensive radiation monitoring strategy for emergencies is far from being an easy task. The very concept of 'emergency monitoring strategy' should be understood in a broad sense. In an ideal case, a strategy has interfaces with all related emergency and information exchange arrangements and agreements both at the national and international level. It covers all activities from the recognition of a potential hazard situation to environmental sampling performed during the late phases of an accident. It integrates routine-monitoring practices with the special requirements set by emergency monitoring and the use of fixed monitoring stations with that of mobile measurement teams. It includes elements for gathering, analyzing, transmitting and presenting data, as well as for combining them with different kinds of forecasts. It also takes into account the various intrinsic characteristics of possible threat scenarios and contains options for adapting measuring activities according to prevailing environmental conditions. Furthermore, a strategy must have relevant links to the social and economical realities and to the primary interests of different stakeholders. In order to assist individual countries in establishing national strategies, international organisations (IAEA, OECD/NEA, EU) have published basic guidelines for emergency response and radiation measurements. Nuclear accidents, especially the Chernobyl case with its large-scale environmental consequences, and other kinds of shocking events (like the one on September 11, 2001

  15. Proposal of new framework in nuclear emergency response based on problem in East Japan Great Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In the nuclear emergency response activity in a East Japan great earthquake, the weakness the frame and the activity procedure (scheme) of the emergency response activity of our country that had been constructed after the accident of JCO became clear. Especially, it is necessary to recognize the importance of the enhancement of a prior plan after not only provision to response but also the damage to the environment occurs in the emergency for measures for restoration. Moreover, it is necessary to examine a concrete strategy about the management system strengthening of the radiation exposure at the accident. In this study, the experience and the finding in a East Japan great earthquake are arranged. The accident scenario that should be targeted is rearranged, and it proposes a new frame in the nuclear emergency response field through the requirement examinations such as the points of procedure, equipment, and the capital machine parts that lie a regulations frame of the nuclear emergency response, the activity frame of the nuclear emergency response, and materialized of the nuclear emergency response activity. (author)

  16. Proposal of new framework in nuclear emergency response based on problem in East Japan Great Earthquake

    International Nuclear Information System (INIS)

    2013-01-01

    In the nuclear emergency response activity in a East Japan great earthquake, the weakness the frame and the activity procedure (scheme) of the emergency response activity of our country that had been constructed after the accident of JCO became clear. Especially, it is necessary to recognize the importance of the enhancement of a prior plan after not only provision to response but also the damage to the environment occurs in the emergency for measures for restoration. Moreover, it is necessary to examine a concrete strategy about the management system strengthening of the radiation exposure at the accident. In this study, the experience and the finding in a East Japan great earthquake are arranged. The accident scenario that should be targeted is rearranged, and it proposes a new frame in the nuclear emergency response field through the requirement examinations such as the points of procedure, equipment, and the capital machine parts that lie a regulations frame of the nuclear emergency response, the activity frame of the nuclear emergency response, and materialized of the nuclear emergency response activity. (author)

  17. Proposal of new framework in nuclear emergency response based on problem in East Japan Great Earthquake

    International Nuclear Information System (INIS)

    2012-01-01

    In the nuclear emergency response activity in a East Japan great earthquake, the weakness the frame and the activity procedure (scheme) of the emergency response activity of our country that had been constructed after the accident of JCO became clear. Especially, it is necessary to recognize the importance of the enhancement of a prior plan after not only provision to response but also the damage to the environment occurs in the emergency for measures for restoration. Moreover, it is necessary to examine a concrete strategy about the management system strengthening of the radiation exposure at the accident. In this study, the experience and the finding in a East Japan great earthquake are arranged. The accident scenario that should be targeted is rearranged, and it proposes a new frame in the nuclear emergency response field through the requirement examinations such as the points of procedure, equipment, and the capital machine parts that lie a regulations frame of the nuclear emergency response, the activity frame of the nuclear emergency response, and materialized of the nuclear emergency response activity. (author)

  18. Meteorological considerations in emergency response capability at nuclear power plant

    International Nuclear Information System (INIS)

    Fairobent, J.E.

    1985-01-01

    Meteorological considerations in emergency response at nuclear power plants are discussed through examination of current regulations and guidance documents, including discussion of the rationale for current regulatory requirements related to meteorological information for emergency response. Areas discussed include: major meteorological features important to emergency response; onsite meteorological measurements programs, including redundant and backup measurements; access to offsite sources of meteorological information; consideration of real-time and forecast conditions and atmospheric dispersion modeling

  19. Nuclear emergency planning and response in the Netherlands after Chernobyl

    International Nuclear Information System (INIS)

    Bergman, L.J.W.M.; Kerkhoven, I.P.

    1989-01-01

    After Chernobyl an extensive project on nuclear emergency planning and response was started in the Netherlands. The objective of this project was to develop a (governmental) structure to cope with accidents with radioactive materials, that can threaten the Dutch community and neighbouring countries. The project has resulted in a new organizational structure for nuclear emergency response, that differs on major points from the existing plans and procedures. In this paper an outline of the new structure is given. Emphasis is placed on accidents with nuclear power plants

  20. Identifying and training non-technical skills of nuclear emergency response teams

    International Nuclear Information System (INIS)

    Crichton, M.T.; Flin, R.

    2004-01-01

    Training of the non-technical (social and cognitive) skills that are crucial to safe and effective management by teams in emergency situations is an issue that is receiving increasing emphasis in many organisations, particularly in the nuclear power industry. As teams play a major role in emergency response organisations (ERO), effective functioning and interactions within, between and across teams is crucial, particularly as the management of an emergency situation often requires that teams are extended by members from various other sections and strategic groups throughout the company, as well as members of external agencies. A series of interviews was recently conducted with members of a UK nuclear emergency response organisation to identify the non-technical skills required by team members that would be required for managing an emergency. Critical skills have been identified as decision making and situation assessment, as well as communication, teamwork, and stress management. A number of training strategies are discussed which can be tailored to the roles and responsibilities of the team members and the team leader, based on the roles within the team being defined as either Decision Maker, Evaluator, or Implementor, according to Nuclear Energy Institute (NEI) classifications. It is anticipated that enhanced learning of the necessary non-technical skills, through experience and directed practice, will improve the skills of members of emergency response teams

  1. Identifying and training non-technical skills of nuclear emergency response teams

    Energy Technology Data Exchange (ETDEWEB)

    Crichton, M.T. E-mail: m.crichton@abdn.ac.uk; Flin, R

    2004-08-01

    Training of the non-technical (social and cognitive) skills that are crucial to safe and effective management by teams in emergency situations is an issue that is receiving increasing emphasis in many organisations, particularly in the nuclear power industry. As teams play a major role in emergency response organisations (ERO), effective functioning and interactions within, between and across teams is crucial, particularly as the management of an emergency situation often requires that teams are extended by members from various other sections and strategic groups throughout the company, as well as members of external agencies. A series of interviews was recently conducted with members of a UK nuclear emergency response organisation to identify the non-technical skills required by team members that would be required for managing an emergency. Critical skills have been identified as decision making and situation assessment, as well as communication, teamwork, and stress management. A number of training strategies are discussed which can be tailored to the roles and responsibilities of the team members and the team leader, based on the roles within the team being defined as either Decision Maker, Evaluator, or Implementor, according to Nuclear Energy Institute (NEI) classifications. It is anticipated that enhanced learning of the necessary non-technical skills, through experience and directed practice, will improve the skills of members of emergency response teams.

  2. Criteria for preparation and evaluation of radiological emergency response plans and preparedness in support of nuclear power plants. Interim report

    International Nuclear Information System (INIS)

    1980-01-01

    The purpose of this document is to provide a common reference and interim guidance source for: state and local governments and nuclear facility operators in the development of radiological emergency response plans and preparedness in support of nuclear power plants; and Nuclear Regulatory Commission (NRC), Federal Emergency Management Agency (FEMA) and other Federal agency personnel engaged in the review of state, local government, and licensee plans and preparedness

  3. MEMbrain. A software emergency management system

    International Nuclear Information System (INIS)

    Drager, K.H.; Brokke, I.

    1998-01-01

    MEMbrain is the name of the EUREKA project EU904. MEM is an abbreviation for Major Emergency Management and brain refers to computer technology. MEMbrain is a strategic European project - the consortium includes partners from six countries, covering the European continent from North to South (Finland, Norway, Denmark, France, Portugal and Greece). The strategy for the project has been to develop a dynamic decision support tool based on: information, prediction, communication, on-line training. The project's results has resulted in a set of knowledge-based software tools supporting MEM activities e.g.; public protection management, man to man communication management, environment information management, resource management, as well as an implementation of an architecture to integrate such tools. (R.P.)

  4. Emergency surgical airway management in Denmark

    DEFF Research Database (Denmark)

    Rosenstock, C V; Nørskov, A K; Wetterslev, J

    2016-01-01

    for difficult airway management. RESULTS: In the DAD cohort 27 out of 452 461 patients had an ESA representing an incidence of 0.06 events per thousand (95% CI; 0.04 to 0.08). A total of 12 149/452 461 patients underwent Ear-Nose and Throat (ENT) surgery, giving an ESA incidence among ENT patients of 1.6 events...... of which three failed. Reviewers evaluated airway management as satisfactory in 10/27 patients. CONCLUSIONS: The incidence of ESA in the DAD cohort was 0.06 events per thousand. Among ENT patients, the ESA Incidence was 1.6 events per thousand. Airway management was evaluated as satisfactory for 10......BACKGROUND: The emergency surgical airway (ESA) is the final option in difficult airway management. We identified ESA procedures registered in the Danish Anaesthesia Database (DAD) and described the performed airway management. METHODS: We extracted a cohort of 452 461 adult patients undergoing...

  5. Nuclear plant data systems - some emerging directions

    International Nuclear Information System (INIS)

    Johnson, R.D.; Humphress, G.B.; McCullough, L.D.; Tashjian, B.M.

    1983-01-01

    Significant changes have occurred in recent years in the nuclear power industry to accentuate the need for data systems to support information flow and decision making. Economic conditions resulting in rapid inflation and larger investments in new and existing plants and the need to plan further ahead are primary factors. Government policies concerning environmental control, as well as minimizing risk to the public through increased nuclear safety regulations on operating plants are additional factors. The impact of computer technology on plant data systems, evolution of corporate and plant infrastructures, future plant data, system designs and benefits, and decision making capabilities and data usage support are discussed. (U.K.)

  6. Meeting of senior officials on managing nuclear knowledge. Meeting report

    International Nuclear Information System (INIS)

    2002-01-01

    In response to the recommendations of several Agency advisory committees, e.g. INSAG, SAGNE 2002, SAGNA, SAGTAC, to address issues related to nuclear knowledge management, the IAEA convened a meeting on Managing Nuclear Knowledge with senior representatives from Member States. The purpose of the meeting was to sharpen awareness and understanding of the emerging concerns about the maintenance and preservation of knowledge and expertise in nuclear science, technology and applications and to better comprehend the role of the Agency in this process. The meeting was attended by more than 70 participants from 35 Member States and 4 international organizations, representing academic leaders, senior level executives, managers and governmental officials. This report includes general recommendations, summary of the keynote of the Member States, statements on the role of the IAEA and International cooperation in managing nuclear knowledge

  7. Engineering thinking in emergency situations: A new nuclear safety concept.

    Science.gov (United States)

    Guarnieri, Franck; Travadel, Sébastien

    2014-11-01

    The lessons learned from the Fukushima Daiichi accident have focused on preventive measures designed to protect nuclear reactors, and crisis management plans. Although there is still no end in sight to the accident that occurred on March 11, 2011, how engineers have handled the aftermath offers new insight into the capacity of organizations to adapt in situations that far exceed the scope of safety standards based on probabilistic risk assessment and on the comprehensive identification of disaster scenarios. Ongoing crises in which conventional resources are lacking, but societal expectations are high, call for "engineering thinking in emergency situations." This is a new concept that emphasizes adaptability and resilience within organizations-such as the ability to create temporary new organizational structures; to quickly switch from a normal state to an innovative mode; and to integrate a social dimension into engineering activities. In the future, nuclear safety oversight authorities should assess the ability of plant operators to create and implement effective engineering strategies on the fly, and should require that operators demonstrate the capability for resilience in the aftermath of an accident.

  8. Off-site nuclear emergency exercises in Japan

    International Nuclear Information System (INIS)

    Eiji, U.; Kiyoshi, T.; Masao, O.; Shigeru, F.

    1993-01-01

    Nuclear emergency planning and preparedness in Japan have been organized by both national and local governments based on the Disaster Countermeasures Basic Act. Off-site nuclear emergency exercises are classified into two types: national-government level exercises and local-government level exercises. National-government level exercises are carried out once a year by the competent national authorities. Among these authorities, the Science and Technology Agency (STA) fills a leading position in the Japanese nuclear emergency planning and preparedness. Local-government level exercises are carried out once a year or once in a few years by the local governments of the prefectures where nuclear facilities are located. Most of the off-site nuclear emergency exercises in Japan are performed by local-governments. The aim of these exercises is to reinforce the skills of the emergency staff. The national government (STA etc.) provides advices and assistance including financial support to the local-governments. Emergency exercises with the participation of residents have been carried out in some local-governments. As an example of local-government level exercises, an experience in Shizuoka prefecture (central part of Japan) is presented

  9. Nuclear waste management. Pioneering solutions from Finland

    International Nuclear Information System (INIS)

    Rasilainen, Kari

    2016-01-01

    Presentation outline: Background: Nuclear energy in Finland; Nuclear Waste Management (NWM) Experiences; Low and Intermediate Level Waste (LILW); High Level Waste - Deep Geological Repository (DGR); NWM cost estimate in Finland; Conclusions: World-leading expert services

  10. IT support for emergency management - ISEM

    International Nuclear Information System (INIS)

    Andersen, V.

    1990-11-01

    The project is aimed at the development of an integrated information system capable of supporting the complex, dynamic distributed decision making in the management of emergencies. Emphasis will be put on definition of a system architecture and on development of an application generator and tools to support the full life cycle of the system. The development will be driven by the requirements derived from emergency organisations in two different industries. Care is taken that the results are easily applicable and adaptable to other organisations. (author)

  11. Implementation of a geographical information system in nuclear emergencies

    International Nuclear Information System (INIS)

    Sadaniowski, I.; Telleria, D.; Jordan, O.; Bruno, H.; Boutet, L.; Hernandez, D.

    2006-01-01

    From 2003, the Nuclear Regulatory Authority (RNA) has worked in the implementation of a Geographical Information System (SIG) for the planning and the intervention in emergencies, with special emphasis in the nuclear emergencies. The main objective of the SIG developed in the ARN is to give the necessary support for the planning, training and application of the actions of radiological protection necessary in front of a nuclear emergency, offering the geo referenced cartographic base, the readiness of logistical resources in the whole country, incorporating results of models of forecast of consequences and environmental measurements during the emergency, facilitating the analysis of this information in real time and facilitating the presentation of results for the decision making. The cartographic base is constituted of demographic, social, economic data identification of main actors interveners in the emergency, vial infrastructure and natural characteristics of the area in question. In this work the main characteristics of the implemented SIG are presented including the conceptual standards of design that contemplate the international requirements for the planning and answer in the event of nuclear emergencies, the current state of the system and the foreseen evolution. A description of the opposing problems during its implementation that can be common to many countries of the region is also presented, as well as the obtained experience of its use in preparation tasks for emergencies and in mocks. (Author)

  12. Nuclear emergency response planning based on participatory decision analytic approaches

    International Nuclear Information System (INIS)

    Sinkko, K.

    2004-10-01

    This work was undertaken in order to develop methods and techniques for evaluating systematically and comprehensively protective action strategies in the case of a nuclear or radiation emergency. This was done in a way that the concerns and issues of all key players related to decisions on protective actions could be aggregated into decision- making transparently and in an equal manner. An approach called facilitated workshop, based on the theory of Decision Analysis, was tailored and tested in the planning of actions to be taken. The work builds on case studies in which it was assumed that a hypothetical accident in a nuclear power plant had led to a release of considerable amounts of radionuclides and therefore different types of protective actions should be considered. Altogether six workshops were organised in which all key players were represented, i.e., the authorities, expert organisations, industry and agricultural producers. The participants were those responsible for preparing advice or presenting matters for those responsible for the formal decision-making. Many preparatory meetings were held with various experts to prepare information for the workshops. It was considered essential that the set-up strictly follow the decision- making process to which the key players are accustomed. Key players or stakeholders comprise responsible administrators and organisations, politicians as well as representatives of the citizens affected and other persons who will and are likely to take part in decision-making in nuclear emergencies. The realistic nature and the disciplined process of a facilitated workshop and commitment to decision-making yielded up insight in many radiation protection issues. The objectives and attributes which are considered in a decision on protective actions were discussed in many occasions and were defined for different accident scenario to come. In the workshops intervention levels were derived according justification and optimisation

  13. Nuclear power. Volume 2: nuclear power project management

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The following topics are discussed: review of nuclear power plants; licensing procedures; safety analysis; project professional services; quality assurance and project organization; construction, scheduling and operation; construction, scheduling and operation; nuclear fuel handling and fuel management; and plant cost management. 116 references, 115 figures, 33 tables

  14. Research on evacuation planning as nuclear emergency preparedness

    International Nuclear Information System (INIS)

    Yamamoto, Kazuya

    2007-10-01

    The International Atomic Energy Agency (IAEA) has introduced new concepts of precautionary action zone (PAZ) and urgent protective action planning zone (UPZ) in 'Preparedness and Response for a Nuclear or Radiological Emergency' (GS-R-2 (2002)), in order to reduce substantially the risk of severe deterministic health effects. Open literature based research was made to reveal problems on evacuation planning and the preparedness for nuclear emergency arising from introduction of PAZ into Japan that has applied the emergency planning zone (EPZ) concept currently. In regard to application of PAZ, it should be noted that the requirements for preparedness and response for a nuclear or radiological emergency are not only dimensional but also timely. The principal issue is implementation of evacuation of precautionary decided area within several hours. The logic of evacuation planning for a nuclear emergency and the methods of advance public education and information in the U.S. is effective for even prompt evacuation to the outside of the EPZ. As concerns evacuation planning for a nuclear emergency in Japan, several important issues to be considered were found, that is, selection of public reception centers which are outside area of the EPZ, an unique reception center assigned to each emergency response planning area, public education and information of practical details about the evacuation plan in advance, and necessity of the evacuation time estimates. To establish a practical evacuation planning guide for nuclear emergencies, further researches on application of traffic simulation technology to evacuation time estimates and on knowledge of actual evacuation experience in natural disasters and chemical plant accidents are required. (author)

  15. Nuclear threats and emergency preparedness in Finland; Ydinuhkat ja varautuminen

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, R; Aaltonen, H; Laaksonen, J; Lahtinen, J; Rantavaara, A; Reponen, H; Rytoemaa, T; Suomela, M; Toivonen, H; Varjoranta, T

    1995-10-01

    The political and economic upheavals which have taken place in Eastern Europe have had an impact on radiation and nuclear safety throughout Europe. Emergency preparedness systems for unexpected nuclear events have been developed further in all European countries, and prosperous western nations have invested in improving the safety of East European nuclear power plants. The economic crisis facing countries of the former Soviet Union has also promoted illicit trade in nuclear materials; this has made it necessary for various border guards and police authorities to intensify their collaboration and to tighten border controls. On 3-4 October 1995, Finnish Centre for Radiation and Nuclear Safety (STUK) arranged a seminar on nuclear threats and emergency preparedness in Finland. In addition to STUK experts, a wide range of rescue and civil defence authorities, environmental health specialists and other persons engaged in emergency preparedness attended the seminar. The publication contains a compilation of reports presented at the seminar. The reports cover a broad spectrum of nuclear threats analyzed at STUK, the impacts of radioactive fallout on human beings and on the environment, and preparedness systems by which the harmful effects of radiation or nuclear accidents can, if necessary, be minimized. (33 figs., 5 tabs.).

  16. Waste management in the nuclear engineering curriculum

    International Nuclear Information System (INIS)

    Tulenko, J.S.

    1989-01-01

    One of the most significant challenges facing the nuclear industry is to successfully close the nuclear fuel cycle and effectively demonstrate to the public that nuclear wastes do not present a health risk. This issue is currently viewed by many as the most important issue affecting public acceptance of nuclear power, and it is imperative that nuclear engineers be able to effectively address the question of nuclear waste from both a generation and disposal standpoint. To address the issue, the area of nuclear waste management has been made one of the fields of specialized study in the Department of Nuclear Engineering Sciences at the University of Florida. The study of radioactive waste management at the University of Florida is designed both for background for the general nuclear engineering student and for those wishing to specialize in it as a multidiscipline study area involving the Departments of Nuclear Engineering Sciences, Environmental Sciences, Material Science and Engineering, Geology, Civil Engineering, and Industrial Engineering

  17. A study on emergency preparedness for nuclear power plant/ Establishment of emergency communication network system

    International Nuclear Information System (INIS)

    Yang, Y. K.; Jung, Y. D.; Kim, S. Y.

    1991-12-01

    The objective of this study was to develop an emergency database search system for nuclear power plants during nuclear incidents / accidents. Image data reported from nuclear power plants to the regulatory body and other related data will be stored systematically in the computer. The data will be utilized during nuclear emergency to prevent the accident from spreading out and to minimize its effect. It will also be used in exchanging information on accident or incidents with the foreign countries. The operational documents in the Kori-4 nuclear power plant are used as the major source for the categorization and analysis in performing this research. It was not easy to access the detailed operational data due to its unique characteric for the security. Therefore, we strongly suggest to increase manpower for this project in Korea Institute of Nuclear Safety (KINS) and archive involvement from Korea Electric Power Company to establish better database retrieval system

  18. A study on emergency preparedness for nuclear power plant/ Establishment of emergency communication network system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y K; Jung, Y D; Kim, S Y [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    1991-12-15

    The objective of this study was to develop an emergency database search system for nuclear power plants during nuclear incidents / accidents. Image data reported from nuclear power plants to the regulatory body and other related data will be stored systematically in the computer. The data will be utilized during nuclear emergency to prevent the accident from spreading out and to minimize its effect. It will also be used in exchanging information on accident or incidents with the foreign countries. The operational documents in the Kori-4 nuclear power plant are used as the major source for the categorization and analysis in performing this research. It was not easy to access the detailed operational data due to its unique characteric for the security. Therefore, we strongly suggest to increase manpower for this project in Korea Institute of Nuclear Safety (KINS) and archive involvement from Korea Electric Power Company to establish better database retrieval system.

  19. Emergency measures following hypothetical actions against nuclear facilities in Italy

    International Nuclear Information System (INIS)

    Rogani, A.; Tabet, E.

    2003-01-01

    Full text: After the Chernobyl accident a national emergency plan of protective measures for radiological emergencies has been set up in Italy to cope with nuclear risks which require actions at national level. Since most of the Italian nuclear installations are, at present, not operational, the most relevant nuclear risk sources identified in the national emergency plan stem from accidents in nuclear power plants near the Italian borders or aboard nuclearpropelled ships, or events related to the fall of nuclear-powered satellites and transportation of radioactive materials. The plan identifies a reference scenario for nation-wide emergency interventions and the proper structures to be involved in the radiological emergency. However, risks related to nuclear terrorism are not taken into account in the plan, whereas nuclear plants as well as nuclear materials and sources (in use in medical, scientific and industrial applications) are known to represent potential targets for hostile acts, potentially giving rise to harmful radioactive releases into the atmosphere. Along with four nuclear power plants, now undergoing a decommissioning procedure, several other nuclear facilities, such as provisional radioactive waste deposits or research centers, are present in Italy. Unfortunately not all of the radioactive waste inventory is conditioned in such a way to make a spread of radioactive contamination, as a consequence of a hostile action, unlikely; moreover, spent fuel elements are still kept, in some cases, inside the plant spent fuel storage pool. In this paper the hypothetical radiological impact of deliberate actions against some reference nuclear installations will be evaluated, together with its amplications for an appropriate profiling of the emergency countermeasures which could be required. Especially the case of a terrorism act against a spent fuel storage pool is worked out in some detail, as this event appears to be one of those with the most severe

  20. Emergency Management for Disasters in Malaysian Hotel Industry

    OpenAIRE

    AlBattat Ahmad Rasmi; Mat Som Ahmad Puad; Abukhalifeh Ala`a

    2014-01-01

    This paper aims to identify major emergencies that have the potential to place Malaysian hotels in emergency and disaster situations; investigate how hotels were prepared for emergencies, how they manage and overcome emergencies when occurred; and limitations and factors influencing successful emergency planning and adoption emergency management in Malaysian hotels. Face-to-face interview with managers from three, four and five star hotels from different backgrounds: local; regional; and Inte...

  1. [Primary emergencies: management of acute ischemic stroke].

    Science.gov (United States)

    Leys, Didier; Goldstein, Patrick

    2012-01-01

    The emergency diagnostic strategy for acute ischemic stroke consists of:--identification of stroke, based on clinical examination (sudden onset of a focal neurological deficit);--identification of the ischemic or hemorrhagic nature by MRI or CT;--determination of the early time-course (clinical examination) and the cause. In all strokes (ischemic or hemorrhagic), treatment consists of:--the same general management (treatment of a life-threatening emergency, ensuring normal biological parameters except for blood pressure, and prevention of complications);--decompressive surgery in the rare cases of intracranial hypertension. For proven ischemic stroke, other therapies consist of: rt-PA for patients admitted with 4.5 hours of stroke onset who have no contraindications, and aspirin (160 to 300 mg) for patients who are not eligible for rt-PA. These treatments should be administered within a few hours. A centralized emergency call system (phone number 15 in France) is the most effective way of achieving this objective.

  2. Emergency department management of priapism [digest].

    Science.gov (United States)

    Podolej, Gregory S; Babcock, Christine; Kim, Jeremy

    2017-01-22

    Priapism is a genitourinary emergency that demands a thorough, time-sensitive evaluation. There are 3 types of priapism: ischemic, nonischemic, and recurrent ischemic priapism; ischemic priapism accounts for 95% of cases. Ischemic priapism must be treated within 4 to 6 hours to minimize morbidity, including impotence. The diagnosis of ischemic priapism relies heavily on the history and physical examination and may be facilitated by penile blood gas analysis and penile ultrasound. This issue reviews current evidence regarding emergency department treatment of ischemic priapism using a stepwise approach that begins with aspiration of cavernosal blood, cold saline irrigation, and penile injection with sympathomimetic agents. Evidence-based management and appropriate urologic follow-up of nonischemic and recurrent ischemic priapism maximizes patient outcomes and resource utilization. [Points & Pearls is a digest of Emergency Medicine Practice].

  3. Nuclear emergency response exercises and decision support systems - integrating domestic experience with international reference systems

    International Nuclear Information System (INIS)

    Slavnicu, D.S.; Vamanu, D.V.; Gheorghiu, D.; Acasandrei, V.T.; Slavnicu, E.

    2010-01-01

    The paper glosses on the experience of a research-oriented team routinely involved in emergency preparedness and response management activities, with the assimilation, implementation, and application of decision support systems (DSS) of continental reference in Europe, and the development of supportive, domestic radiological assessment tools. Two exemplary nuclear alert exercises are discussed, along with solutions that emerged during drill planning and execution, to make decision support tools of various origins and strength to work synergistically and complement each other. (authors)

  4. Activities of the nuclear emergency assistance and training center. Strengthening co-operation with parties in normal circumstances

    International Nuclear Information System (INIS)

    Watanabe, Fumitaka; Matsui, Tomoaki; Nomura, Tamotsu

    2005-01-01

    The Japan Nuclear Cycle Development Institute (JNC) and the Japan Atomic Energy Research Institute (JAERI) established the Nuclear Emergency Assistance and Training Center (NEAT) in March 2002. The center aims to provide various support nuclear safety regulatory bodies, local governments and nuclear facility licenses as specialists about nuclear and radiological issues according to the role shown in the Basic Disaster Management Plan. Upon a nuclear and/or radiological disaster occurring in Japan, NEAT will send specialists to the disaster scene, and offer the use of special equipments. NEAT maintains frequent contact with related organizations in normal circumstance. NEAT also participates in nuclear emergency exercises instructed by the parties concerned, which has contributed to the brewing of mutual trust with related organizations. In October 2005, JNC and JAERI merged into a new organization named the Japan Atomic Energy Agency (JAEA). NEAT, as a section of the organization, continuously deals with nuclear emergencies. (author)

  5. Instrumentation needs and data management by the French protection and nuclear safety institute for the diagnosis and prognosis of the release during an emergency on a PWR

    International Nuclear Information System (INIS)

    Rague, B.; Janot, L.; Jouzier, A.

    1992-01-01

    IPSN in conjunction with EDF has been developing for the last years an approach for the diagnosis and prognosis of the Source Term during an accident on a PWR. Intended for the off-site emergency teams, this methodology is implemented with dedicated manual and computerized tools within the frame of the SESAME project. It is necessary to have access during the accident to various information dealing with the state of the plant. These information needs and the various means available to pick up data from the plant are described in this paper. Emphasis is given on the analysis of data that is needed to avoid any failure in the assessment of the state of the safety barriers and functions. This analysis deals with: the quality of the information depending on the environmental conditions and on the availability of the supply systems, the cross-check between measurements of same type, the cross-check between measurements of different types

  6. A global approach to risk management: lessons from the nuclear industry

    International Nuclear Information System (INIS)

    Lazo, T.; Kaufer, B.

    2003-01-01

    The industry's nuclear safety experts are continuously striving to minimise the possible risk and extent of a nuclear accident, while nuclear regulatory, authorities work to ensure that all safety requirements are met. Relying on a combination of deterministic and probabilistic approaches, they are obtaining positive results in terms of both risk-informed regulation and nuclear safety management. This article addresses this aspect of risk management, as well as the management of radiation exposure risk. It looks into nuclear emergency planning, preparedness and management, and stresses the importance of coordinating potential protection approaches and providing effective communication should a nuclear accident occur. (authors)

  7. More efficient response to nuclear emergencies

    International Nuclear Information System (INIS)

    1979-12-01

    Data provided by the local authorities in the counties in which the Oskarshamn and Barsebaeck nuclear power plants are situated is presented. The data is for planning of evaluation in the case of a reactor accident and includes population, population distribution, age distribution, institutions such as schools and hospitals, transport, both public and private and accommodation possibilities. Agricultural and domestic animal data are also provided. (J.I.W.)

  8. Guidelines for mutual emergency assistance arrangements in connection with a nuclear accident or radiological emergency

    International Nuclear Information System (INIS)

    1984-01-01

    The document contains the recommendations of a group of experts from 22 Member States and three international organizations which met in April 1983. These recommendations may serve as guidelines for use by states for the negotiation of bilateral or regional agreements relating to emergency assistance in the event of a nuclear accident or radiological emergency

  9. Current management of surgical oncologic emergencies.

    Directory of Open Access Journals (Sweden)

    Marianne R F Bosscher

    Full Text Available For some oncologic emergencies, surgical interventions are necessary for dissolution or temporary relieve. In the absence of guidelines, the most optimal method for decision making would be in a multidisciplinary cancer conference (MCC. In an acute setting, the opportunity for multidisciplinary discussion is often not available. In this study, the management and short term outcome of patients after surgical oncologic emergency consultation was analyzed.A prospective registration and follow up of adult patients with surgical oncologic emergencies between 01-11-2013 and 30-04-2014. The follow up period was 30 days.In total, 207 patients with surgical oncologic emergencies were included. Postoperative wound infections, malignant obstruction, and clinical deterioration due to progressive disease were the most frequent conditions for surgical oncologic emergency consultation. During the follow up period, 40% of patients underwent surgery. The median number of involved medical specialties was two. Only 30% of all patients were discussed in a MCC within 30 days after emergency consultation, and only 41% of the patients who underwent surgery were discussed in a MCC. For 79% of these patients, the surgical procedure was performed before the MCC. Mortality within 30 days was 13%.In most cases, surgery occurred without discussing the patient in a MCC, regardless of the fact that multiple medical specialties were involved in the treatment process. There is a need for prognostic aids and acute oncology pathways with structural multidisciplinary management. These will provide in faster institution of the most appropriate personalized cancer care, and prevent unnecessary investigations or invasive therapy.

  10. Management and training aspects of the emergency plan

    International Nuclear Information System (INIS)

    Lakey, J.R.A.

    1996-01-01

    The main objectives of an emergency management system are to prevent or reduce the likelihood of consequential loss in the event of an emergency occurring. In the event of a nuclear accident the effectiveness of measures for the protection of the public will depend on the advance preparation especially in education and training. This paper reviews two recent initiatives and concludes with comments on the future development of this subject. There is an increasing requirement in legal and moral terms for industry to inform the population of health hazards to which they are exposed. In a report published by the Nuclear Energy Agency (NEA/OECD) radiation protection was described as a subject which is impenetrable to the layman and as wide as it is complex. For this and other reasons radiation hazards are perceived to exceed all others and the public appear to have a poor image of the radiation protection specialists. Communication with the public and the media is widely recognized as a key pan of an emergency plan. This view is supported in the European Union which has sponsored the book on 'Radiation and Radiation Protection - a course for primary and secondary schools' which is described in this paper. The training of emergency teams includes the use of drills and exercises to maintain skills and can also be used to test the adequacy of plans. Every effort should be made to simulate the pressure on time and resources which would occur in a real event. Radiation emergencies are fortunately rare and so there is little practical experience of these events. The emergency worker must gain some radiation protection skills and must be able to use some technical language when communicating with specialist advisors. For this reason the European Union has sponsored the book 'Radiation Protection for Emergency Workers' which is also described in this paper. (author)

  11. Emergency planning and preparedness for re-entry of a nuclear powered satellite

    International Nuclear Information System (INIS)

    1996-01-01

    This safety practice report provides a general overview of the management of incidents or emergencies that may be created when nuclear power sources employed in space systems accidentally re-enter the earth's atmosphere and impact on its surface. 8 refs, 4 figs, 7 tabs

  12. 'Hidden messages' emerging from Afrocentric management perspectives

    Directory of Open Access Journals (Sweden)

    H. Van den Heuvel

    2008-12-01

    Full Text Available Purpose: This paper aims to examine how 'African management' discourse has emerged in South Africa. Altogether, it has stimulated debates - sometimes in controversial ways - on 'taboo issues', e.g. relating to 'cultural diversity' and 'ethnicity'. The stimulation of such debates within organisations is probably a more valuable contribution than a static, essentialised 'African identity' that it proclaims. Design/Methodology/Approach: The paper draws on a qualitative research project conducted in South Africa in 2003-2004. Its relevance lies in gaining in-depth insights into ('non-western' local management discourse. It seeks to contribute to the body of knowledge on political and cultural contexts in which South African organizations operate, and how they impact on local management perspectives, and vice versa. Findings: The research findings make clear how and under what circumstances 'African management' discourse has come about in South Africa, and how it could be interpreted. Implications: 'African management' advocates allegedly attempt to revise dominant management thinking and promote 'humane-ness' and participatory decision-making in South African organisations, in search of a contextualised management approach. Amongst others, it has produced new meanings of 'Africanness' and has opened up space for 'hidden messages', resentments and aspirations to become openly articulated. This throws another light on phenomena such as cultural diversity and ethnicity that usually tend to be 'neutralised'. This may turn out to be far healthier for blooming organisational cultures in South Africa than relentlessly hammering on prescribed 'corporate values'. Originality/Value: This paper informs the reader in detail about the emergence and evolvement of 'African management' discourse in South Africa. It is a unique attempt to develop an interpretative viewpoint on this intriguing phenomenon that offers a potentially valuable contribution in reading

  13. Nuclear waste management, reactor decommisioning, nuclear liability and public attitudes

    International Nuclear Information System (INIS)

    Green, R.E.

    1982-01-01

    This paper deals with several issues that are frequently raised by the public in any discussion of nuclear energy, and explores some aspects of public attitudes towards nuclear-related activities. The characteristics of the three types of waste associated with the nuclear fuel cycle, i.e. mine/mill tailings, reactor wastes and nuclear fuel wastes, are defined, and the methods currently being proposed for their safe handling and disposal are outlined. The activities associated with reactor decommissioning are also described, as well as the Canadian approach to nuclear liability. The costs associated with nuclear waste management, reactor decommissioning and nuclear liability are also discussed. Finally, the issue of public attitudes towards nuclear energy is addressed. It is concluded that a simple and comprehensive information program is needed to overcome many of the misconceptions that exist about nuclear energy and to provide the public with a more balanced information base on which to make decisions

  14. Preparedness for remote possibility of a nuclear emergency

    International Nuclear Information System (INIS)

    Fujishiro, Toshio

    2001-01-01

    Nuclear disaster prevention is fundamentally preparedness for emergency with extremely lower forming probability. In order to establish allowance of nuclear energy application from society, it is essential that it brings relief feelings with preparedness and without anxiety among everything. At a time when use of nuclear energy was begun, a consciousness that a nuclear facility was one highly considered on its safety faster than that in the other industries was large and intense, and then recognition of necessity for nuclear disaster prevention was extremely minute. However, the nuclear emergency of critical accident at the JCO fuel processing facility in Tokai-mura formed on September 30, 1999 gave Japanese extremely large impact so as fundamentally to change actual feelings against conventional nuclear disaster prevention. Here was introduced on efforts onto reinforcement of nuclear disaster prevention together with establishment of the special measure rule nuclear disaster prevention countermeasure as well as its advantages and progress, to investigate on a subject to do it for a preparedness with effectiveness for obtaining real safe feelings. (G.K.)

  15. COMMUNICATION IN THE EMERGENCY SITUATIONS MANAGEMENT

    OpenAIRE

    Ovidiu Aurel GHIUȚĂ; Gabriela PRELIPCEAN

    2014-01-01

    This paper is talking about communication use in emergency situations management from a marketing perspective. We have analyzed if this communication is different from the communication of a company with her publics; the legislation which provides the framework for this type of communication in Romania, when is applicable and who is in charge. As methodology we have utilized documentary research. We mention similarities and differences between this type of communication and Integrated Ma...

  16. COMMUNICATION IN THE EMERGENCY SITUATIONS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Ovidiu Aurel GHIUȚĂ

    2014-12-01

    Full Text Available This paper is talking about communication use in emergency situations management from a marketing perspective. We have analyzed if this communication is different from the communication of a company with her publics; the legislation which provides the framework for this type of communication in Romania, when is applicable and who is in charge. As methodology we have utilized documentary research. We mention similarities and differences between this type of communication and Integrated Marketing Communication (IMC.

  17. A conceptualization of a nuclear or radiological emergency

    Energy Technology Data Exchange (ETDEWEB)

    Konstantopoulos, Stasinos [Institute of Informatics and Telecommunications National Center for Scientific Research ‘Demokritos’, Agia Paraskevi 15310, Attiki (Greece); Ikonomopoulos, Andreas, E-mail: anikon@ipta.demokritos.gr [Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety National Center for Scientific Research ‘Demokritos’, Agia Paraskevi 15310, Attiki (Greece)

    2015-04-01

    Highlights: • Communicating nuclear and radiological safety concepts to the general public. • Multi-lingual semantic indexing of nuclear or radiological emergency content. • Linking informal language to formal nuclear or radiological emergency terms. • Extracting nuclear or radiological emergency terminologies from textual glossaries. • The IAEA Safety Glossary is the core of a cross-linked system of formal terminologies. - Abstract: A novel implementation is presented for NREO, a subject-specific ontology of the Nuclear or Radiological Emergency domain. The ontology design is driven by the requirements of ontology-based, multi-lingual language processing and retrieval use cases, but care is taken to architect the foundations in a way that can be extended to support other use cases in the domain. More specifically, NREO codifies and cross-references existing terminology glossaries and stakeholder lists into machine-processable terminological resources. At the interest of semantic interoperability, the proposed architecture is based on the Simple Knowledge Organization Scheme catalyzing the extensive cross-linking to different ontologies both within the nuclear technology domain and in related domains and disciplines. This and all other core design decisions are presented and discussed under the prism of their adequacy for our use cases and requirements. Both the ontology and terminological data have been made publicly available.

  18. A conceptualization of a nuclear or radiological emergency

    International Nuclear Information System (INIS)

    Konstantopoulos, Stasinos; Ikonomopoulos, Andreas

    2015-01-01

    Highlights: • Communicating nuclear and radiological safety concepts to the general public. • Multi-lingual semantic indexing of nuclear or radiological emergency content. • Linking informal language to formal nuclear or radiological emergency terms. • Extracting nuclear or radiological emergency terminologies from textual glossaries. • The IAEA Safety Glossary is the core of a cross-linked system of formal terminologies. - Abstract: A novel implementation is presented for NREO, a subject-specific ontology of the Nuclear or Radiological Emergency domain. The ontology design is driven by the requirements of ontology-based, multi-lingual language processing and retrieval use cases, but care is taken to architect the foundations in a way that can be extended to support other use cases in the domain. More specifically, NREO codifies and cross-references existing terminology glossaries and stakeholder lists into machine-processable terminological resources. At the interest of semantic interoperability, the proposed architecture is based on the Simple Knowledge Organization Scheme catalyzing the extensive cross-linking to different ontologies both within the nuclear technology domain and in related domains and disciplines. This and all other core design decisions are presented and discussed under the prism of their adequacy for our use cases and requirements. Both the ontology and terminological data have been made publicly available

  19. Risk management in nuclear power social aspects

    International Nuclear Information System (INIS)

    Sappa, N.N.

    1996-01-01

    Problems connected with safety evaluation and risk management during operation of nuclear power installations are considered. Social aspects of risk assessment of enterprises with increased danger are discussed

  20. Managing for safety at nuclear installations

    International Nuclear Information System (INIS)

    1996-01-01

    This publication, by the Health and Safety Executive's (HSE's) Nuclear Safety Division (NSD), provides a statement of the criteria the Nuclear Installations Inspectorate (NII) uses to judge the adequacy of any proposed or existing system for managing a nuclear installation in so far as it affects safety. These criteria have been developed from the basic HSE model, described in the publication Successful health and safety management that applies to industry generally, in order to meet the additional needs for managing nuclear safety. In addition, the publication identifies earlier studies upon which this work was based together with the key management activities and outputs. (Author)

  1. Construction work management for nuclear power stations

    International Nuclear Information System (INIS)

    Yoshikawa, Yuichiro

    1982-01-01

    Nuclear power generation is positioned as the nucleus of petroleum substitution. In the Kansai Electric Power Co., efforts have been made constantly to operate its nuclear power plants in high stability and safety. At present, Kansai Electric Power Co. is constructing Units 3 and 4 in the Takahama Nuclear Power Station in Fukui Prefecture. Under the application of the management of construction works described here, both the nuclear power plants will start operation in 1985. The activities of Kansai Electric Power Co. in the area of this management are described: an outline of the construction works for nuclear power stations, the management of the construction works in nuclear power stations (the stages of design, manufacturing, installation and test operation, respectively), quality assurance activities for the construction works of nuclear power plants, important points in the construction work management (including the aspects of quality control). (J.P.N.)

  2. How the Nuclear Applications Laboratories Help in Strengthening Emergency Response

    International Nuclear Information System (INIS)

    2014-01-01

    Safety is one of the most important considerations when engaging in highly advanced scientific and technological activities. In this respect, utilizing the potential of nuclear technology for peaceful purposes also involves risks, and nuclear techniques themselves can be useful in strengthening emergency response measures related to the use of nuclear technology. In the case of a nuclear incident, the rapid measurement and subsequent monitoring of radiation levels are top priorities as they help to determine the degree of risk faced by emergency responders and the general public. Instruments for the remote measurement of radioactivity are particularly important when there are potential health risks associated with entering areas with elevated radiation levels. The Nuclear Science and Instrumentation Laboratory (NSIL) — one of the eight laboratories of the Department of Nuclear Sciences and Applications (NA) in Seibersdorf, Austria — focuses on developing a variety of specialized analytical and diagnostic instruments and methods, and transferring knowledge to IAEA Member States. These include instruments capable of carrying out remote measurements. This emergency response work carried out by the NA laboratories supports health and safety in Member States and supports the IAEA’s mandate to promote the safe and peaceful use of nuclear energy

  3. Nuclear power. Volume 2. Nuclear power project management

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 2 contains the following chapters: (1) review of nuclear power plants; (2) licensing procedures; (3) safety analysis; (4) project professional services; (5) quality assurance and project organization; (6) construction, scheduling, and operation; (7) nuclear fuel handling and fuel management; (8) plant cost management; and (9) conclusion

  4. The quest for nuclear technology and the challenges of knowledge management in Nigeria

    International Nuclear Information System (INIS)

    Mundu, A.; Umar, A.M.

    2004-01-01

    The major milestones in the quest for nuclear technology were highlighted, followed by a review of nuclear application in research and development, health, water resource management and agriculture.the past activities of the national INIS centre particularly with respect to submission of input, promotion and knowledge management were examined. And a repositioned INIS centre to meet the challenges of nuclear information management and the emerging trend in knowledge management was presented with specific target in the short and the long term. (author)

  5. Involvement of the Public Health Authority in emergency planning and preparedness for nuclear facilities in Hungary

    International Nuclear Information System (INIS)

    Sztanyik, L.B.

    1986-01-01

    It is required by the Hungarian Atomic Energy Act and its enacting clause of 1980 that facilities established for the application of atomic energy be designed, constructed and operated in such a manner that abnormal operational occurrences can be avoided and unplanned exposures to radiation and radioactive substances can be prevented. The primary responsibility for planning and implementing emergency actions rests with the management of the operating organization. Thus one of the prerequisites of licensing the first nuclear power plant in Hungary was the preparation and submission for approval of an emergency plan by the operating organization. In addition to this, the council of the county where the power plant is located has also been obliged to prepare a complementary emergency plan, in co-operation with other regional and national authorities, for the prevention of consequences from an emergency that may extend beyond the site boundary of the plant. In preparing the complementary plan, the emergency plan of the facility had to be taken into account. Unlike most national authorities involved in nuclear matters, the Public Health Authority is involved in the preparation of plans for every kind of emergency in a nuclear facility, including even those whose consequences can probably be confined to the plant site. The paper discusses in detail the role and responsibility of the Public Health Authority in emergency planning and preparedness for nuclear facilities. (author)

  6. Generic Procedures for Response to a Nuclear or Radiological Emergency at Research Reactors

    International Nuclear Information System (INIS)

    2011-01-01

    Under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. The IAEA publishes the Emergency Preparedness and Response Series to fulfil that function. This publication is part of that series. IAEA Safety Standards Series No. GS-R-2 Preparedness and Response for a Nuclear or Radiological Emergency, contains the following requirement: 'To ensure that arrangements are in place for a timely, managed, controlled, coordinated and effective response at the scene...'. The IAEA General Conference, in resolution GC(53)/RES/10, continues to encourage Member States '...to enhance, where necessary, their own preparedness and response capabilities for nuclear and radiological incidents and emergencies, by improving capabilities to prevent accidents, to respond to emergencies and to mitigate any harmful consequences...'. This publication is intended to assist Member States meet the requirements of GS-R-2 and enhance their preparedness by providing guidance on the response by facility personnel to emergencies at research reactor facilities.

  7. ICENES '91:Sixth international conference on emerging nuclear energy systems

    International Nuclear Information System (INIS)

    1991-01-01

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, μ-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session

  8. Study on the lifting criteria of a nuclear emergency declaration and the measures for recovery at the emergency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In Japan the new concepts for unclear emergency preparedness and response (EPR) have been developed based on issues addressed through experience of the emergency resulting from the Great East Japan Earthquake. Decision-making processes for implementing the protective actions have been shifted from forecasting basis to managing risk basis according with the time lines such as the intermediate response and late recovery phases. This study had been planned in fiscal 2010 prior to the emergency at Fukushima and criteria on the lifting of a nuclear emergency declaration and the measures after transition to recovery have been investigated. In this fiscal year, contents for protective actions, criteria for implementation of recovery actions, and concept of operation according with early, intermediate and late phases separately have been conducted. (author)

  9. More efficient response to nuclear emergencies

    International Nuclear Information System (INIS)

    1979-12-01

    A working group was appointed in 1978 to consider the problems which would face the local authorities in the unlikely event of a reactor accident considerably more severe than that foreseen as the basis of the emergency provisions as defined in the parliamentary bill of 1960. The group's report is here presented, together with appendices containing population and meteorological data. This report has been used by the Radiation protection Institute in its evaluations, which are presented in vol. 2 of this report. The views expressed in this report are those of the working group. (JIW)

  10. Emergency scram actuation device for nuclear reactors

    International Nuclear Information System (INIS)

    Noyes, R.C.; Zaman, S.U.; Stuteville, D.W.

    1979-01-01

    The safety parameter employed for emergency scrams of a liquid metal cooled reactor is the coolant pressure. An actuation bellows is provided which is connected to a measuring chamber by means of a flow system. Both units are installed in a coolant flow section. The measuring chamber proper is connected with the coolant by means of an aperture limiting the flow. Inside the measuring chamber there is an expansion space filled with gas. Pressure changes in the coolant affect the pressure in the expansion space. Expansion of the bellows actuates the release mechanism. (DG) [de

  11. Generic procedures for medical response during a nuclear or radiological emergency. Emergency preparedness and response

    International Nuclear Information System (INIS)

    2005-04-01

    The aim of this publication is to serve as a practical resource for planning the medical response to a nuclear or radiological emergency. It fulfils in part functions assigned to the IAEA under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), namely, to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and available results of research relating to such emergencies. Effective medical response is a necessary component of the overall response to nuclear or radiological (radiation) emergencies. In general, the medical response may represent a difficult challenge for the authorities due to the complexity of the situation, often requiring specialized expertise, and special organizational arrangements and materials. To be effective, adequate planning and preparedness are needed. This manual, if implemented, should help to contribute to coherent international response. The manual provides the practical tools and generic procedures for use by emergency medical personnel during an emergency situation. It also provides guidance to be used at the stage of preparedness for development of medical response capabilities. The manual also addresses mass casualty emergencies resulting from malicious acts involving radioactive material. This part was supported by the Nuclear Security Fund. The manual was developed based on a number of assumptions about national and local capabilities. Therefore, it must be reviewed and revised as part of the planning process to match the potential accidents, threats, local conditions and other unique characteristics of the facility where it may be used

  12. Reliability of emergency ac power systems at nuclear power plants

    International Nuclear Information System (INIS)

    Battle, R.E.; Campbell, D.J.

    1983-07-01

    Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project

  13. Spent Nuclear Fuel Project dose management plan

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1996-03-01

    This dose management plan facilitates meeting the dose management and ALARA requirements applicable to the design activities of the Spent Nuclear Fuel Project, and establishes consistency of information used by multiple subprojects in ALARA evaluations. The method for meeting the ALARA requirements applicable to facility designs involves two components. The first is each Spent Nuclear Fuel Project subproject incorporating ALARA principles, ALARA design optimizations, and ALARA design reviews throughout the design of facilities and equipment. The second component is the Spent Nuclear Fuel Project management providing overall dose management guidance to the subprojects and oversight of the subproject dose management efforts

  14. Exercises for radiological and nuclear emergency response. Planing - performance - evaluation

    International Nuclear Information System (INIS)

    Bayer, A.; Faleschini, J.; Goelling, K.; Stapel, R.; Strobl, C.

    2010-01-01

    The report of the study group emergency response seminar covers the following topics: (A) purpose of exercises and exercise culture: fundamentals and appliances for planning, performance and evaluation; (B) exercises in nuclear facilities; (C) exercises of national authorities and aid organizations on nuclear scenarios; exercises of national authorities and aid organizations on other radiological scenarios; (D) exercises in industrial plants, universities, medical facilities and medical services, and research institutes; (E) transnational exercises, international exercises; (F): exercises on public information.

  15. Preparation of site emergency preparedness plans for nuclear installations

    International Nuclear Information System (INIS)

    1999-10-01

    Safety of public, occupational workers and the protection of environment should be assured while activities for economic and social progress are pursued. These activities include the establishment and utilisation of nuclear facilities and use of radioactive sources. This safety guidelines is issued as a lead document to facilitate preparation of specific site manuals by the responsible organisation for emergency response plans at each site to ensure their preparedness to meet any eventuality due to site emergency in order to mitigate its consequences on the health and safety of site personnel. It takes cognizance of an earlier AERB publications on the subject: Safety manual on site emergency plan on nuclear installations. AERB/SM/NISD-1, 1986 and also takes into consideration the urgent need for promoting public awareness and drawing up revised emergency response plans, which has come about in a significant manner after the accidents at Chernobyl and Bhopal

  16. Evaluating nuclear power plant crew performance during emergency response drills

    International Nuclear Information System (INIS)

    Rabin, D.

    1999-01-01

    The Atomic Energy Control Board (AECB) is responsible for the regulation of the health, safety and environmental consequences of nuclear activities in Canada. Recently, the Human Factors Specialists of the AECB have become involved in the assessment of emergency preparedness and emergency response at nuclear facilities. One key contribution to existing AECB methodology is the introduction of Behaviourally Anchored Rating Scales (BARS) to measure crew interaction skills during emergency response drills. This report presents results of an on-going pilot study to determine if the BARS provide a reliable and valid means of rating the key dimensions of communications, openness, task coordination and adaptability under simulated emergency circumstances. To date, the objectivity of the BARS is supported by good inter-rater reliability while the validity of the BARS is supported by the agreement between ratings of crew interaction and qualitative and quantitative observations of crew performance. (author)

  17. Province of Ontario nuclear emergency plan part V - Chalk River

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-10-01

    The aim of Part 5 of the Provincial Nuclear Emergency Plan is to describe the measures that shall be undertaken to deal with a nuclear emergency caused by the Chalk River Laboratories. This plan deals mainly with actions at the Provincial level and shall by supplemented by the appropriate Municipal Plan. The Townships of Rolph, Buchanan, Wylie, and McKay, the Town of Deep River and the Village of Chalk River are the designated municipalities with respect to CRL. 2 tabs., 5 figs.

  18. Province of Ontario nuclear emergency plan part V - Chalk River

    International Nuclear Information System (INIS)

    1991-10-01

    The aim of Part 5 of the Provincial Nuclear Emergency Plan is to describe the measures that shall be undertaken to deal with a nuclear emergency caused by the Chalk River Laboratories. This plan deals mainly with actions at the Provincial level and shall by supplemented by the appropriate Municipal Plan. The Townships of Rolph, Buchanan, Wylie, and McKay, the Town of Deep River and the Village of Chalk River are the designated municipalities with respect to CRL. 2 tabs., 5 figs

  19. Management of the process of nuclear transport

    International Nuclear Information System (INIS)

    Requejo, P.

    2015-01-01

    Since 1996 ETSA is the only Spanish logistics operator specialized on servicing the nuclear and radioactive industry. Nowadays ETSA has some technological systems specifically designed for the management of nuclear transports. These tools have been the result of the analysis of multiple factors involved in nuclear shipments, of ETSAs wide experience as a logistics operator and the search for continuous improvement. (Author)

  20. Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination

    Directory of Open Access Journals (Sweden)

    Dean Kyne

    2016-07-01

    Full Text Available Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives.

  1. Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination.

    Science.gov (United States)

    Kyne, Dean; Bolin, Bob

    2016-07-12

    Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP) reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives.

  2. Emergency medicine: an operations management view.

    Science.gov (United States)

    Soremekun, Olan A; Terwiesch, Christian; Pines, Jesse M

    2011-12-01

    Operations management (OM) is the science of understanding and improving business processes. For the emergency department (ED), OM principles can be used to reduce and alleviate the effects of crowding. A fundamental principle of OM is the waiting time formula, which has clear implications in the ED given that waiting time is fundamental to patient-centered emergency care. The waiting time formula consists of the activity time (how long it takes to complete a process), the utilization rate (the proportion of time a particular resource such a staff is working), and two measures of variation: the variation in patient interarrival times and the variation in patient processing times. Understanding the waiting time formula is important because it presents the fundamental parameters that can be managed to reduce waiting times and length of stay. An additional useful OM principle that is applicable to the ED is the efficient frontier. The efficient frontier compares the performance of EDs with respect to two dimensions: responsiveness (i.e., 1/wait time) and utilization rates. Some EDs may be "on the frontier," maximizing their responsiveness at their given utilization rates. However, most EDs likely have opportunities to move toward the frontier. Increasing capacity is a movement along the frontier and to truly move toward the frontier (i.e., improving responsiveness at a fixed capacity), we articulate three possible options: eliminating waste, reducing variability, or increasing flexibility. When conceptualizing ED crowding interventions, these are the major strategies to consider. © 2011 by the Society for Academic Emergency Medicine.

  3. Emergency planning and preparedness for a nuclear accident

    International Nuclear Information System (INIS)

    Rahe, E.P.

    1985-01-01

    Based on current regulations, FEMA approves each site-specific plan of state and local governments for each power reactor site after 1) formal review offsite preparedness, 2) holding a public meeting at which the preparedness status has been reviewed, and 3) a satisfactory joint exercise has been conducted with both utility and local participation. Annually, each state, within any position of the 10-mile emergency planning zone, must conduct a joint exercise with the utility to demonstrate its preparedness for a nuclear accident. While it is unlikely that these extreme measures will be needed as a result of an accident at a nuclear power station, the fact that these plans have been well thought out and implemented have already proven their benefit to society. The preparedness for a nuclear accident can be of great advantage in other types of emergencies. For example, on December 11, 1982, a non-nuclear chemical storage tank exploded at a Union Carbide plant in Louisiana shortly after midnight. More than 20,000 people were evacuated from their homes. They were evacuated under the emergency response plan formulated for use in the event of a nuclear accident at the nearby Waterford Nuclear plants. Clearly, this illustrates how a plan conceived for one purpose is appropriate to handle other types of accidents that occur in a modern industrial society

  4. Transfer factors for nuclear emergency preparedness

    Energy Technology Data Exchange (ETDEWEB)

    Kostiainen, E.; Haenninen, R. [Radiation and Nuclear Safety Authority (STUK) (Finland); Rosen, K.; Haak, E.; Eriksson, Aa. [Swedish Univ. of Agricultural Science (Sweden); Nielsen, S.P.; Keith-Roach, M. [Risoe National Lab. (Denmark); Salbu, B. [Agricultural Univ. of Norway (Norway)

    2002-12-01

    This report by the NKS/BOK-1.4 project subgroup describes transfer factors for radiocaesium and radiostrontium for the fallout year and the years after the fallout. The intention has been to collect information on tools to assess the order of magnitude of radioactive contamination of agricultural products in an emergency situation in Nordic environment. The report describes transfer paths from fallout to plant, from soil to plant and to animal products. The transfer factors of radionuclides (Sr, Cs, I) given in the report are intended to be used for making rough estimates of the contamination of agricultural products soon after the heaviness and composition of the deposition (Bq m{sup -2}) is known. (au)

  5. Emergency public information procedures for nuclear plants

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    As a result of the accident at Three Mile Island on March 28, 1979, increased emphasis has been placed on the public information capabilities of utility companies, and particularly their crisis public information procedures. A special industry task force was assigned to develop a generic model for a utility crisis public information plan. This report has been prepared not as a literal emergency plan for a utility, but as a generic check-off list of items and procedures that a utility should consider as a part of its own plan. Because of considerable variations in service areas, utility organization, and other factors, specific approaches may vary from utility to utility. The approaches cited here are generic suggestions that would help lead to an industrywide ability to inform the public, quickly and accurately, about non-routine events that it would consider of importance

  6. Transfer factors for nuclear emergency preparedness

    International Nuclear Information System (INIS)

    Kostiainen, E.; Haenninen, R.; Rosen, K.; Haak, E.; Eriksson, Aa.; Nielsen, S.P.; Keith-Roach, M.; Salbu, B.

    2002-12-01

    This report by the NKS/BOK-1.4 project subgroup describes transfer factors for radiocaesium and radiostrontium for the fallout year and the years after the fallout. The intention has been to collect information on tools to assess the order of magnitude of radioactive contamination of agricultural products in an emergency situation in Nordic environment. The report describes transfer paths from fallout to plant, from soil to plant and to animal products. The transfer factors of radionuclides (Sr, Cs, I) given in the report are intended to be used for making rough estimates of the contamination of agricultural products soon after the heaviness and composition of the deposition (Bq m -2 ) is known. (au)

  7. Emergency procedures of nuclear power plants-Evolution

    International Nuclear Information System (INIS)

    Atalla, D.L.

    1988-01-01

    During the TMI event the operators had some difficulties to accurately diagnose the accident, causing delay to recover the plant, and allowing the conditions to deteriorate. Further analysis concluded that the plant emergency procedures were incomplete, and did not cover the possibility of multiple and simultaneous failures. This paper covers a new approach for developing emergency procedures to create a new general strategy by providing valid instructions for all kinds of possible incidents in a nuclear power plant. (author) [pt

  8. Emergency medical assistance programs for nuclear power reactors

    International Nuclear Information System (INIS)

    Linnemann, R.E.; Mettler, F.A. Jr.

    1977-01-01

    This paper deals with a simple but practical medical support of geographically distributed nuclear reactors in isolated areas. A staff of experts at a centre devote their full attention to accident prevention and preparedness at reactor sites. They establish and maintain emergency medical programs at reactor sites and nearby support hospitals. The emphasis is on first aid and emergency treatment by medical attendants who are not and cannot be experts in radiation but do know how to treat patients. (author)

  9. Nuclear material management: challenges and prospects

    International Nuclear Information System (INIS)

    Rieu, J.; Besnainou, J.; Leboucher, I.; Chiguer, M.; Capus, G.; Greneche, D.; Durret, L.F.; Carbonnier, J.L.; Delpech, M.; Loaec, Ch.; Devezeaux de Lavergne, J.G.; Granger, S.; Devid, S.; Bidaud, A.; Jalouneix, J.; Toubon, H.; Pochon, E.; Bariteau, J.P.; Bernard, P.; Krellmann, J.; Sicard, B.

    2008-01-01

    The articles in this dossier were derived from the papers of the yearly S.F.E.N. convention, which took place in Paris, 12-13 March 2008. They deal with the new challenges and prospects in the field of nuclear material management, throughout the nuclear whole fuel cycle, namely: the institutional frame of nuclear materials management, the recycling, the uranium market, the enrichment market, the different scenarios for the management of civil nuclear materials, the technical possibilities of spent fuels utilization, the option of thorium, the convention on the physical protection of nuclear materials and installations, the characterisation of nuclear materials by nondestructive nuclear measurements, the proliferation from civil installations, the use of plutonium ( from military origin) and the international agreements. (N.C.)

  10. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (Chinese Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  11. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (Chinese Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-01

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  12. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (Arabic Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  13. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  14. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  15. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response

    International Nuclear Information System (INIS)

    2012-05-01

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  16. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  17. Emergency planning and preparedness of the Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Luong, B.V.

    2001-01-01

    The effectiveness of measures taken in case of accident or emergency to protect the site personnel, the general public and the environment will depend heavily on the adequacy of the emergency plan prepared in advance. For this reason, an emergency plan of the operating organization shall cover all activities planned to be carried out in the event of an emergency, allow for determining the level of the emergency and corresponding level of response according to the severity of the accident condition, and be based on the accidents analysed in the SAR as well as those additionally postulated for emergency planning purposes. The purpose of this paper is to present the practice of the emergency planning and preparedness in the Dalat Nuclear Research Institute (DNRI) for responding to accidents/incidents that may occur at the DNRI. The DNRI emergency plan and emergency procedures developed by the DNRI will be discussed. The information in the DNRI emergency plan such as the emergency organization, classification and identification of emergencies; intervention measures; the co-ordination with off-site organizations; and emergency training and drills will be described in detail. The emergency procedures in the form of documents and instructions for responding to accidents/incidents such as accidents in the reactor, accidents out of the reactor but with significant radioactive contamination, and fire and explosion accidents will be mentioned briefly. As analysed in the Safety Analysis Report for the DNRI, only the in-site actions are presented in the paper and no off-site emergency measures are required. (author)

  18. Lifecycle management for nuclear engineering project documents

    International Nuclear Information System (INIS)

    Zhang Li; Zhang Ming; Zhang Ling

    2010-01-01

    The nuclear engineering project documents with great quantity and various types of data, in which the relationships of each document are complex, the edition of document update frequently, are managed difficultly. While the safety of project even the nuclear safety is threatened seriously by the false documents and mistakes. In order to ensure the integrality, veracity and validity of project documents, the lifecycle theory of document is applied to build documents center, record center, structure and database of document lifecycle management system. And the lifecycle management is used to the documents of nuclear engineering projects from the production to pigeonhole, to satisfy the quality requirement of nuclear engineering projects. (authors)

  19. Management plan for the Nuclear Standards Program

    International Nuclear Information System (INIS)

    1979-11-01

    This Management Plan was prepared to describe the manner in which Oak Ridge National Laboratory will provide technical management of the Nuclear Standards Program. The organizational structure that has been established within ORNL for this function is the Nuclear Standards Management Center, which includes the Nuclear Standards Office (NSO) already in existence at ORNL. This plan is intended to support the policies and practices for the development and application of technical standards in ETN projects, programs, and technology developments as set forth in a standards policy memorandum from the DOE Program Director for Nuclear Energy

  20. The nuclear knowledge management: challenges and perspectives

    International Nuclear Information System (INIS)

    Gonzalez Garcia, Alejandro; Fernandez Rondon, Manuel

    2007-01-01

    The knowledge management has a one of its goals to keep and to drive the key organizational competence's to the development of products and services with high scientific and technological value, as proactive reply to a dynamic and complex environment. The International Atomic Energy Agency and nuclear institutions of Member Countries recognize that the pacific use of nuclear technology is supported on the nuclear knowledge collection and that its effective management is oriented to guarantee the continuos availability of scientific and technological information and high qualified people. Recently some nuclear Cuban institutions have started some projects to implement nuclear and organizational knowledge management process. In this paper some challenges and perspectives are presented for the nuclear knowledge management in Cuba and in the world context

  1. A governor's guide to emergency management. Volume one, Natural disasters

    Science.gov (United States)

    2001-02-27

    With lives, infrastructure, and resources at stake, governors must become instant experts in emergency management when their states are affected by natural disaster. The purpose of A Governor's Guide to Emergency Management is to provide governors an...

  2. The Profession of Emergency Management: Educational Opportunities and Gaps

    National Research Council Canada - National Science Library

    Darlington, Joanne D

    2008-01-01

    For the past several years, as the profession of emergency management has been evolving, there has been a growing interest in the need for more formalized training for the nation s hazards and emergency managers...

  3. Nuclear power plant life management

    International Nuclear Information System (INIS)

    Rorive, P.; Berthe, J.; Lafaille, J.P.; Eussen, G.

    1998-01-01

    Several definitions can be given to the design life of a nuclear power plant just as they can be attributed to the design life of an industrial installation: the book-keeping life which is the duration of the provision for depreciation of the plant, the licensed life which corresponds to the duration for which the plant license has been granted and beyond which a new license should be granted by the safety authorities, the design life which corresponds to the duration specified for ageing and fatigue calculations in the design of some selected components during the plant design phase, the technical life which is the duration of effective technical operation and finally the economic life corresponding to the duration of profitable operation of the plant compared with other means of electricity production. Plant life management refers to the measures taken to cope with the combination of licensed, design, technical and economical life. They can include repairs and replacements of components which have arrived to the end of their life due to known degradation processes such as fatigue, embrittlement, corrosion, wear, erosion, thermal ageing. In all cases however, it is of great importance to plan the intervention so as to minimise the economic impact. Predictive maintenance is used together with in-service inspection programs to fulfil this goal. The paper will go over the methodologies adopted in Belgium in all aspects of electrical, mechanical and civil equipment for managing plant life. (author)

  4. NNSA/NV Consequence Management Capabilities for Radiological Emergency Response

    International Nuclear Information System (INIS)

    Bowman, D. R.

    2002-01-01

    The U.S. Department of Energy's National Nuclear Security Administration Nevada Operations Office (NNSA/NV) provides an integrated Consequence Management (CM) response capability for the (NNSA) in the event of a radiological emergency. This encompasses planning, technical operations, and home team support. As the lead organization for CM planning and operations, NNSA/NV coordinates the response of the following assets during the planning and operational phases of a radiological accident or incident: (1) Predictive dispersion modeling through the Atmospheric Release Advisory Capability (ARAC) at Lawrence Livermore National Laboratory (LLNL) and the High Consequence Assessment Group at Sandia National Laboratories (SNL); (2) Regional radiological emergency assistance through the eight Radiological Assistance Program (RAP) regional response centers; (3) Medical advice and assistance through the Radiation Emergency Assistance Center/Training Site (REAC/TS) in Oak Ridge, Tennessee; (4) Aerial radiological mapping using the fixed-wing and rotor-wing aircraft of the Aerial Measuring System (AMS); (5) Consequence Management Planning Teams (CMPT) and Consequence Management Response Teams (CMRT) to provide CM field operations and command and control. Descriptions of the technical capabilities employed during planning and operations are given below for each of the elements comprising the integrated CM capability

  5. Haiyang nuclear power construction management and practice

    International Nuclear Information System (INIS)

    Wang Fengxue

    2010-01-01

    The paper introduces the basic situation of Shandong Haiyang Nuclear Power Plant, as well as the management and progress of the project. Through the construction management practice, problems encountered in nuclear power construction are put forward for peer exchange and discussion. (author)

  6. Nuclear generation cost management and economic benefits

    International Nuclear Information System (INIS)

    Horton, E.P.; Sepa, T.R.

    1989-01-01

    The CANDU-Pressurized Heavy Water (CANDU-PHW) type of nuclear generating station has been developed jointly by Atomic Energy of Canada Limited and Ontario Hydro. This report discusses the cost management principles used for Ontario Hydro's CANDU-PHW program, current cost management initiatives, and the economic benefits of nuclear power to the provinces of Ontario and New Brunswick, in Canada

  7. Strategies of management of the nuclear fuel

    International Nuclear Information System (INIS)

    Leon, J.R.; Perez, A.; Filella, J.M.

    1996-01-01

    The management of nuclear fuel is depending on several factors: - Regulatory commission. The enterprises owner of the NPPs.The enterprise owner of the energy distribution. These factors are considered for the management of nuclear fuel. The design of fuel elements, the planning of cycles, the design of core reactors and the costs are analyzed. (Author)

  8. Nuclear power project management information system

    International Nuclear Information System (INIS)

    Zou Lailong; Zhang Peng; Xiao Ziyan; Chun Zengjun; Huang Futong

    2001-01-01

    Project Management Information System is an important infrastructure facility for the construction and operation of Nuclear Power Station. Based on the practice of Lingao nuclear power project management information system (NPMIS), the author describes the NPMIS design goals, system architecture and software functionality, points out the outline issues during the development and deployment of NPMIS

  9. Planning of emergency medical treatment in nuclear power plant

    International Nuclear Information System (INIS)

    Kusama, Tomoko

    1989-01-01

    Medical staffs and health physicists have shown deep concerning at the emergency plans of nuclear power plants after the TMI nuclear accident. The most important and basic countermeasure for accidents was preparing appropriate and concrete organization and plans for treatment. We have planed emergency medical treatment for radiation workers in a nuclear power plant institute. The emergency medical treatment at institute consisted of two stages, that is on-site emergency treatment at facility medical service. In first step of planning in each stage, we selected and treatment at facility medical service. In first step of planning in each stage, we selected and analyzed all possible accidents in the institute and discussed on practical treatments for some possible accidents. The manuals of concrete procedure of emergency treatment for some accidents were prepared following discussion and facilities and equipment for medical treatment and decontamination were provided. All workers in the institute had periodical training and drilling of on-site emergency treatment and mastered technique of first aid. Decontamination and operation rooms were provided in the facillity medical service. The main functions at the facility medical service have been carried out by industrial nurses. Industrial nurses have been in close co-operation with radiation safety officers and medical doctors in regional hospital. (author)

  10. Exposure management systems in emergencies as comprehensive medical care

    International Nuclear Information System (INIS)

    Shinohara, Teruhiko

    2000-01-01

    The emergency management of nuclear hazards relies on a comprehensive medical care system that includes accident prevention administration, environmental monitoring, a health physics organization, and a medical institution. In this paper, the care organization involved in the criticality accident at Tokai-mura is described, and the problems that need to be examined are pointed out. In that incident, even the expert was initially utterly confused and was unable to take appropriate measures. The author concluded that the members of the care organization were all untrained for dealing with nuclear hazards and radiation accidents. The education and training of personnel at the job site are important, and they are even more so for the leaders. Revisions of the regional disaster prevention plans and care manual are needed. (K.H.)

  11. Activities of research group on radiological aspects of emergency countermeasures in the nuclear accident of Fukushima Nuclear Power Plants, (2)

    International Nuclear Information System (INIS)

    Urabe, Itsumasa

    2012-01-01

    Radiation effects research group of 'Nuclear safety' investigation committee has been working after the Fukushima Daiichi nuclear disaster on evaluating the emission rate and the diffusion of radioactive materials, on collecting, analyzing and evaluating the information on radioactive materials in the environment, on measuring the radiation dose at the state of emergency, on managing the exposure of habitants and disaster-prevention staff, on collaborating with related associations, and on making proposals on information release and actions against the disaster. At the international symposium by the 'Nuclear safety' investigation committee on November, 2011, the following issues were presented: Application of the concept of ICRP, Release of radioactive materials into the air, Evaluation of spatial dose distribution, Diffusion of radioactive materials in the sea, Evaluation of the exposure of the habitants, and Radiation measurement at the state of emergency (J.P.N.)

  12. International Nuclear Waste Management Fact Book

    International Nuclear Information System (INIS)

    Leigh, I.W.

    1994-05-01

    International Nuclear Waste Management Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R ampersand D programs, and key personnel in 24 countries, including the US, four multinational agencies and 21 nuclear societies. This publication succeeds the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 13 years. While the title is different, there are no substantial changes in the content

  13. Selection and construction of nuclear and radiation emergency medical center in a region

    International Nuclear Information System (INIS)

    Wang Guojun; He Xu; Liao Li; Gao Dong

    2014-01-01

    Three level of first-class comprehensive hospital is an important force of nuclear and radiation accident rescue, has a very rich experience in response to nuclear and radiation accidents and deal with large quantities of the sick and wounded. With the foundation and the ability of the construction and operation of medical emergency rescue center. This paper according to the median model location theory of emergency center, combined with the specific situation of the nuclear and radiation accident in Hunan Province, reference location, rescue experience, emergency allocation of resources, teaching and research capacity, establish regional medical emergency center of nuclear and radiation accidents based on three level of first-class comprehensive hospital, break the traditional concept that the center must be provincial capital,form a multi-level, three-dimensional, network of emergency hospital rescue system. The main duties of the center are accident emergency response, on-site treatment and technical guidance of accident, psychological grooming. The author propose building measures according to the duties of the center: increase national and provincial financial investment, carry out training, drills and first aid knowledge missionaries regularly, innovative materials management, speed up the construction of information platform, establish and improve the hospital rescue system, improve organization institution and system of plans, reengineering rescue process. (authors)

  14. OCRWM International Cooperation in Nuclear Waste Management

    International Nuclear Information System (INIS)

    Jackson, R.; Levich, R.; Strahl, J.

    2002-01-01

    With the implementation of nuclear power as a major energy source, the United States is increasingly faced with the challenges of safely managing its inventory of spent nuclear materials. In 2002, with 438 nuclear power facilities generating electrical energy in 31 nations around the world, the management of radioactive material including spent nuclear fuel and high-level radioactive waste, is an international concern. Most of the world's nuclear nations maintain radioactive waste management programs and have generally accepted deep geologic repositories as the long-term solution for disposal of spent nuclear fuel and high-level radioactive waste. Similarly, the United States is evaluating the feasibility of deep geologic disposal at Yucca Mountain, Nevada. This project is directed by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM), which has responsibility for managing the disposition of spent nuclear fuel produced by commercial nuclear power facilities along with U.S. government-owned spent nuclear fuel and high-level radioactive waste. Much of the world class science conducted through the OCRWM program was enhanced through collaboration with other nations and international organizations focused on resolving issues associated with the disposition of spent nuclear fuel and high-level radioactive waste

  15. Emergency water supply facility for nuclear reactor

    International Nuclear Information System (INIS)

    Karasawa, Toru

    1998-01-01

    Water is stored previously in an equipment storage pit disposed on an operator floor of a reactor building instead of a condensate storage vessel. Upon occurrence of an emergency, water is supplied from the equipment storage pit by way of a sucking pipeline to a pump of a high pressure reactor core water injection circuit and a pump of a reactor-isolation cooling circuit to supply water to a reactor. The equipment storage pit is arranged in a building so that the depth thereof is determined to keep the required amount of water by storing water at a level lower than the lower end of a pool gate during normal operation. Water is also supplied from the equipment storage pit by way of a supply pipeline to a spent fuel storage pool on the operation floor of the reactor building. Namely, water is supplied to the spent fuel storage pool by a pump of a fuel pool cooling and cleaning circuit. This can eliminate a suppression pool cleaning circuit. (I.N.)

  16. Emergency management of acute abdomen in children.

    Science.gov (United States)

    Balachandran, Binesh; Singhi, Sunit; Lal, Sadhna

    2013-03-01

    Acute abdomen can be defined as a medical emergency in which there is sudden and severe pain in abdomen with accompanying signs and symptoms that focus on an abdominal involvement. It accounts for about 8 % of all children attending the emergency department. The goal of emergency management is to identify and treat any life-threatening medical or surgical disease condition and relief from pain. In mild cases often the cause is gastritis or gastroenteritis, colic, constipation, pharyngo-tonsilitis, viral syndromes or acute febrile illnesses. The common surgical causes are malrotation and Volvulus (in early infancy), intussusception, acute appendicitis, and typhoid and ischemic enteritis with perforation. Lower lobe pneumonia, diabetic ketoacidosis and acute porphyria should be considered in patients with moderate-severe pain with little localizing findings in abdomen. The approach to management in ED should include, in order of priority, a rapid cardiopulmonary assessment to ensure hemodynamic stability, focused history and examination, surgical consult and radiologic examination to exclude life threatening surgical conditions, pain relief and specific diagnosis. In a sick patient the initial steps include rapid IV access and normal saline 20 ml/kg (in the presence of shock/hypovolemia), adequate analgesia, nothing per oral/IV fluids, Ryle's tube aspiration and surgical consultation. An ultrasound abdomen is the first investigation in almost all cases with moderate and severe pain with localizing abdominal findings. In patients with significant abdominal trauma or features of pancreatitis, a Contrast enhanced computerized tomography (CECT) abdomen will be a better initial modality. Continuous monitoring and repeated physical examinations should be done in all cases. Specific management varies according to the specific etiology.

  17. Prudency reviews, cash management issues emerge

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Utility management is paying increasing attention to the broadening of regulatory commission prudency reviews to cover operating generating plants as well as those under construction. Utilities can expect a prudency review after a major outage, and should investigate the possibility for legal action against a third party or be prepared to defend itself. The Shoreham nuclear plant serves as a warning to utilities of the need for on-going documentation of cost-benefit analyses conducted during the construction period. Utility managers should demand a prudency standard from their regulators, and minority owners in large projects should make independent prudency findings. There is also a growing need for utilities to develop intelligent strategies for handling excess cash. Methods for handling cash flow include the financial investment, grid refurbishment, dividend payout, decapitalization, and diversification

  18. Psychiatric Case Management in the Emergency Department.

    Science.gov (United States)

    Turner, Stephanie B; Stanton, Marietta P

    2015-01-01

    The care of the mentally ill has reached a real crisis in the United States. There were more than 6.4 million visits to emergency departments (EDs) in 2010, or about 5% of total visits, involved patients whose primary diagnosis was a mental health condition or substance abuse (). That is up 28% from just 4 years earlier, according to the latest figures available from the Agency for Healthcare Research and Quality in Rockville, MD. Using a method called scoping, the purpose of this article is to examine the range, extent, and evidence available regarding case management as an intervention in the ED to manage mental health patients, to determine whether there is sufficient quantity and quality of evidence on this topic to conduct a meta-analysis, and to identify relevant studies that balance comprehensiveness with reasonable limitations. One solution for ensuring that the costs are contained, efficiency is maintained, and quality outcomes are achieved is the placement of a case manager in the ED. According to , because the majority of hospital admissions come through the ED, it makes sense to have case managers located there to act as gatekeepers and ensure that patients who are admitted meet criteria and are placed in the proper bed with the proper status. From the scoping techniques implemented in this study, the authors came to the conclusion that case management has been and can be used to effectively treat mental health patients in the emergency room. A good number of patients with psych mental health issues are frequent visitors and repeat visitors. Case management has not been used very often as a strategy for managing patients through the ED or for follow-up after the visit. Hospitals that have developed a protocol for managing these patients outside the main patient flow have had successful results. Staff training and development on psych mental health issues have been helpful in the ED. While there are not a large number of studies available on this topic

  19. Design of nuclear emergency decision-making support system based on the results of radiation monitoring

    International Nuclear Information System (INIS)

    Zheng Qiyan; Zhang Lijun; Huang Weiqi; Chen Lin

    2010-01-01

    For nuclear emergency decision-making support system based on the results of radiation monitoring, its main assignment is receiving radiation monitoring data and analyzing them, to accomplish some works such as environment influence evaluation, dose assessment for emergency responder, decision-making analyzing and effectiveness evaluation for emergency actions, etc.. This system is made up of server, communication terminal, data-analyzing terminal, GPRS modules, printer, and so on. The whole system make of a LAN. The system's software is made up of six subsystems: data-analyzing subsystem, reporting subsystem, GIS subsystem, communication subsystem, user-managing subsystem and data-base. (authors)

  20. Emergency management: Concepts and strategies for effective programs

    OpenAIRE

    Lucus, Valerie

    2007-01-01

    Review of Emergency Management: Concepts and Strategies for Effective Programs By Lucien G. Canton, CEM. By taking a different perspective on local government emergency management programs, this book presents the vision for a very different model--one that includes an independent emergency manager leading an enterprise-wide program focused on strategies that promote disaster resilient communities.

  1. Emerging technologies for knowledge resource management

    CERN Document Server

    Pandian, M

    2007-01-01

    Emerging Technologies for Knowledge Resource Management examines various factors that contribute to an enabled environment for optimum utilisation of information resources. These include the digital form of information resources, which are inherently sharable, consortia as a concept to bring people and materials together and unified portals as technology to bring together disparate and heterogeneous resources for sharing and access. The book provides a step-by-step guideline for system analysis and requirements analysis. The book also provides reviews of existing portal models for sharing reso

  2. Telemedicine for Trauma, Emergencies, and Disaster Management

    CERN Document Server

    Latifi, Rifat

    2010-01-01

    Telemedicine has evolved to become an important field of medicine and healthcare, involving everything from simple patient care to actual performance of operations at a distance. This groundbreaking volume addresses the complex technical and clinical development in the management of trauma, disaster, and emergency situations using telemedicine. The book explains how telemedicine and related technologies can be used to effectively handle a wide range of scenarios, from a situation as small as a car crash, to major disasters such as an earthquake. Professionals find critical discussions on the p

  3. Improvement of management systems for nuclear facilities

    International Nuclear Information System (INIS)

    2005-01-01

    The area of Quality Management/ Quality Assurance has been changed dramatically over the past years. The nuclear facilities moved from the 'traditional' Quality Assurance approach towards Quality Management Systems, and later a new concept of Integrated Management Systems was introduced. The IAEA is developing a new set of Standards on Integrated Management Systems, which will replace the current 50-C-Q/SG-Q1-Q14 Code. The new set of document will require the integration of all management areas into one coherent management system. The new set of standards on Management Systems promotes the concept of the Integrated Management Systems. Based on new set a big number of documents are under preparation. These documents will address the current issues in the management systems area, e.g. Management of Change, Continuous Improvement, Self-assessment, and Attributes of effective management, etc. Currently NPES is providing a number of TC projects and Extra Budgetary Programmes to assist Member States in this area. The new Standards on Management Systems will be published in 2006. A number of Regulatory bodies already indicated that they would take the new Management System Standards as a basis for the national regulation. This fact will motivate a considerable change in the management of nuclear utilities, requiring a new approach. This activity is suitable for all IAEA Members States with large or limited nuclear capabilities. The service is directed to provide assistance for the management of all organizations carrying on or regulating nuclear activities and facilities

  4. Reconstruction of the Chernobyl emergency and accident management

    International Nuclear Information System (INIS)

    Schinner, F.; Andreev, I.; Andreeva, I.; Fritsche, F.; Hofer, P.; Lettner, E.; Seidelberger, E.; Kromp-Kolb, H.; Kromp, W.

    1998-01-01

    Full text of publication follows: on April 26, 1986 the most serious civil technological accident in the history of mankind occurred of the Chernobyl Nuclear Power Plant (ChNPP) in the former Soviet Union. As a direct result of the accident, the reactor was severely destroyed and large quantities of radionuclides were released. Some 800000 persons, also called 'liquidators' - including plant operators, fire-fighters, scientists, technicians, construction workers, emergency managers, volunteers, as well as medical and military personnel - were part of emergency measurements and accident management efforts. Activities included measures to prevent the escalation of the accident, mitigation actions, help for victims as well as activities in order to provide a basic infrastructure for this unprecedented and overwhelming task. The overall goal of the 'Project Chernobyl' of the Institute of Risk Research of the University of Vienna was to preserve for mankind the experience and knowledge of the experts among the 'liquidators' before it is lost forever. One method used to reconstruct the emergency measures of Chernobyl was the direct cooperation with liquidators. Simple questionnaires were distributed among liquidators and a database of leading accident managers, engineers, medical experts etc. was established. During an initial struggle with a number of difficulties, the response was sparse. However, after an official permit had been issued, the questionnaires delivered a wealth of data. Furthermore a documentary archive was established, which provided additional information. The multidimensional problem in connection with the severe accident of Chernobyl, the clarification of the causes of the accident, as well as failures and successes and lessons to be learned from the Chernobyl emergency measures and accident management are discussed. (authors)

  5. Emergency response and nuclear risk governance. Nuclear safety at nuclear power plant accidents; Notfallschutz und Risk Governance. Zur nuklearen Sicherheit bei Kernkraftwerksunfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlen, Johannes

    2014-07-01

    The present study entitled ''Emergency Response and Nuclear Risk Governance: nuclear safety at nuclear power plant accidents'' deals with issues of the protection of the population and the environment against hazardous radiation (the hazards of nuclear energy) and the harmful effects of radioactivity during nuclear power plant accidents. The aim of this study is to contribute to both the identification and remediation of shortcomings and deficits in the management of severe nuclear accidents like those that occurred at Chernobyl in 1986 and at Fukushima in 2011 as well as to the improvement and harmonization of plans and measures taken on an international level in nuclear emergency management. This thesis is divided into a theoretical part and an empirical part. The theoretical part focuses on embedding the subject in a specifically global governance concept, which includes, as far as Nuclear Risk Governance is concerned, the global governance of nuclear risks. Due to their characteristic features the following governance concepts can be assigned to these risks: Nuclear Safety Governance is related to safety, Nuclear Security Governance to security and NonProliferation Governance to safeguards. The subject of investigation of the present study is as a special case of the Nuclear Safety Governance, the Nuclear Emergency governance, which refers to off-site emergency response. The global impact of nuclear accidents and the concepts of security, safety culture and residual risk are contemplated in this context. The findings (accident sequences, their consequences and implications) from the analyses of two reactor accidents prior to Fukushima (Three Mile Iceland in 1979, Chernobyl in 1986) are examined from a historical analytical perspective and the state of the Nuclear Emergency governance and international cooperation aimed at improving nuclear safety after Chernobyl is portrayed by discussing, among other topics, examples of &apos

  6. Harmonisation of Nuclear Emergency Preparedness in Central and Eastern Europe

    International Nuclear Information System (INIS)

    Buglova, E.; Crick, M.; Reed, J.; Winkler, G. L.; Martincic, R.

    2000-01-01

    Under its Technical Co-operation programme the International Atomic Energy Agency has implementing a Regional Project RER/9/050:- Harmonisation of Regional Nuclear Emergency Preparedness for its Member States in the Europe region since 1997. The background of the project together with its achievements and future plans are presented in this paper. (author)

  7. Neutron detector suitcase for the Nuclear Emergency Search Team

    International Nuclear Information System (INIS)

    Dowdy, E.J.; Henry, C.N.; Hastings, R.D.; France, S.W.

    1978-02-01

    A portable high-efficiency neutron detection system has been constructed for the Nuclear Emergency Search Team. It includes an alarm system based on time interval measurements of the incoming neutron detection pulses. The system is designed for transportation by vehicle in searching for neutron-emitting radioactive materials

  8. The nuclear emergency information system based on GRRS

    International Nuclear Information System (INIS)

    Wang Bairong; Fu Li; Ma Jie; Zheng Qiyan

    2012-01-01

    By utilizing high operation characteristic of GPRS and advantage of transferring largely data packets, this paper set up a wireless communication network and nuclear emergency information system. This system studies useful data, short message, picture, storage and processing function for wireless control network platform. (authors)

  9. Further development of nuclear emergency preparedness in Norway

    International Nuclear Information System (INIS)

    Harbitz, O.

    1995-06-01

    The threatpattern regarding nuclear accidents is summarized and the development of the Norwegian emergency preparedness through the last 10 years is examined. Relevant countermeasures during the acute phase of an accident is described and the sharing of responsibilities between central, regional and local level is presented. Suggestions on education and training are given. 9 refs., 2 figs

  10. Emergency plans for civil nuclear installations in the United Kingdom

    International Nuclear Information System (INIS)

    Gronow, W.S.

    1984-01-01

    The operators of nuclear installations in the United Kingdom have plans to deal with accidents or emergencies at their nuclear sites. These plans provide for any necessary action, both on and off the nuclear site, to protect members of the public and are regularly exercised. The off-site actions involve the emergency services and other authorities which may be called upon to implement measures to protect the public in any civil emergency. In a recent review of these plans by Government Departments and agencies and the nuclear site operators, a number of possible improvements were identified. These improvements are concerned mainly with the provisions made for liaison with local and national authorities and for public information and have been incorporated into existing plans. An outline is given of the most likely consequences of an accidental release of radioactive material and the scope of emergency plans. Details are also provided on the responsibilities and functions of the operator and other organizations with duties under the plans and the arrangements made for public information. (author)

  11. Technical information management in an emergency response

    International Nuclear Information System (INIS)

    Berry, H.A.; Greve, C.; Best, R.G.; Phillipson, D.S.

    1991-01-01

    Through many experiences in responding to real radiation accidents and emergency response exercises, the Department of Energy (DOE) has developed a technical information management system that will be used in the Federal Radiological Monitoring and Assessment Center (FRMAC) in the event of a major radiological accident. The core of the system is the Data Center in the FRMAC, utilizing a computerized database of all off-site environmental radiological data. The information contained and managed by the Data Center will be comprehensive, accountable, and traceable, providing information to the assessors for immediate health and safety needs as well as for long-term documentation requirements. A DOE task force has been formed to develop compatibility guidelines for video, automated data processing, and communication systems. An electronic mail, information status, and bulletin board system is also being developed to assist in the dissemination of information. Geographic Information Systems (GIS) offer a giant step forward in displaying and analyzing information in a geographically referenced system

  12. Nuclear Knowledge Management: the IAEA Approach

    International Nuclear Information System (INIS)

    Sbaffoni, M.; De Grosbois, J.

    2015-01-01

    Knowledge in an organization is residing in people, processes and technology. Adequate awareness of their knowledge assets and of the risk of losing them is vital for safe and secure operations of nuclear installations. Senior managers understand this important linkage, and in the last years there is an increasing tendency in nuclear organizations to implement knowledge management strategies to ensure that the adequate and necessary knowledge is available at the right time, in the right place. Specific and advanced levels of knowledge are clearly required to achieve and maintain technical expertise, and experience must be developed and be available throughout the nuclear technology lifecycle. If a nuclear organization does not possess or have access to the required technical knowledge, a full understanding of the potential consequences of decisions and actions may not be possible, and safety, security and safeguards might be compromised. Effective decision making during design, licencing, procurement, construction, commissioning, operation, maintenance, refurbishment, and decommissioning of nuclear facilities needs to be risk-informed and knowledge-driven. Nuclear technology is complex and brings with it inherent and unique risks that must be managed to acceptably low levels. Nuclear managers have a responsibility not only to establish adequate technical knowledge and experience in their nuclear organizations but also to maintain it. The consequences of failing to manage the organizations key knowledge assets can result in serious degradations or accidents. The IAEA Nuclear Knowledge Management (NKM) sub-programme was established more than 10 years ago to support Nuclear Organizations, at Member States request, in the implementation and dissemination of the NKM methodology, through the development of guidance and tools, and by providing knowledge management services and assistance. The paper will briefly present IAEA understanding of and approach to knowledge

  13. The link between off-site-emergency planning and plant-internal accident management

    Energy Technology Data Exchange (ETDEWEB)

    Braun, H.; Goertz, R.

    1995-02-01

    A variety of accident management measures has been developed and implemented in the German nuclear power plants. They constitute a fourth level of safety in the defence-in-depth concept. The containment venting system is an important example. A functioning link with well defined lines of communication between plant-internal accident management and off-site disaster emergency planning has been established.

  14. Safety management in nuclear technology. Proceedings

    International Nuclear Information System (INIS)

    2008-01-01

    At the symposium of TueV Sued AG (Munich, Federal Republic of Germany) held in Munich on 28 and 29 October 2008, the following lectures were held: (1) Fundamental requirements of the management system in nuclear technology - Experiences from the international developments at IAEA and WENRA (M. Herttrich); (2) Information from a comparison of requirements of safety management systems (B. Kallenbach-Herbert); (3) Requirements of a modern management system in German nuclear power plants from the view of nuclear safety (D. Majer); (4) Requirements on safety management in module 8 of the regulations project (M. Maqua); (5) Requirements on the management system in nuclear power plants according to GRS-229 and developments at the KTA 1402 ''Integrated management system for safe operation of nuclear power plants (in progress)'' (C. Verstegen); (6) Experiences from the development and implementation of safety management systems in connection with the works management of a nuclear power plant (K. Ramler); (7) Design of a safety management system of a nuclear power plant in consideration of existing management systems (U. Naumann); (8) Experiences in the utilization and evaluation of a safety management system (J. Ritter); (9) Aspects of leadership of safety management systems (S. Seitz); (10) Management of safety or safety management system? Prevailing or administration? (A. Frischknecht); (11) Change management - strategies for successful transfer of new projects: How can I motivate co-workers for a further development of the safety management system? (U. Schnabel); (12) Requirements concerning indicators in integrated management systems and safety management systems (J. Stiller); (13) Integration of proactive and reactive indicators in the safety management system (B. Fahlbruch); (14) What do indicators show? About the use of indicators by regulatory authorities (A. Kern); (15) Safety management and radiation protection in nuclear technology (K. Grantner); (16) Any more

  15. An emergency response centre (ERC) for the preparedness and response to nuclear and radiological emergencies

    International Nuclear Information System (INIS)

    Pradeepkumar, K.S.; Sharma, D.N.; Abani, M.C.

    2001-01-01

    This paper discusses the requirement for a state of the art Emergency Response Centre (ERC) to be developed and kept in readiness for the quick response to any nuclear or radiological emergencies. For an effective response to any major nuclear emergency an ERC having the facilities of i) environmental dose rate monitoring network established using both mobile and fixed units ii) on-line meteorological data collection and information station iii) on-line computation and prediction of isodose curves in real time and iv) properly developed and tested monitoring methodologies are essential. Vehicles with on-line data transfer facility to the ERC and equipped with different type of monitoring systems can function as Mobile Monitoring Laboratories (MMLs) and can help in quick decision making even during a radiological emergency far away from the ERC. (author)

  16. Quality procedure management for improved nuclear safety

    International Nuclear Information System (INIS)

    Forzano, P.; Castagna, P.

    1995-01-01

    Emergency Operating Procedures and Accident Management Procedures are the next step in the computerization of NPP control rooms. Different improvements are presently conceivable for this operator aid tool, and research activities are in development. Undergoing activities regard especially formal aspects of knowledge representation, Human-Machine interface and procedure life cycle management. These aspects have been investigated deeply by Ansaldo, and partially incorporated in the DIAM prototype. Nuclear Power Plant Procedures can be seen from essentially two viewpoints: the process and the information management. From the first point of view, it is important to supply the knowledge apt to solve problems connected with the control of the process, from the second one the focus of attention is on the knowledge representation, its structure, elicitation and maintenance, and formal quality assurance. These two aspects of procedure representation can be considered and solved separately. In particular, methodological, formal and management issues require long and tedious activities, that in most cases constitute a great barrier for procedures development and upgrade. To solve these problems, Ansaldo is developing DIAM, a wide integrated tool for procedure management to support in procedure writing, updating, usage, and documentation. One of the most challenging features of DIAM is AUTO-LAY, a CASE sub-tool that, in a complete automatical way, structures parts or complete flow diagram. This is the feature that is partial present in some other CASE products, that, anyway, do not allow complex graph handling and isomorphism between video and paper representation. AUTO-LAY has the unique prerogative to draw graphs of any complexity to section them in pages, and to automatically compose a document. This has been recognized in the literature as the most important a second-generation CASE improvement. (Author) 9 Figs., 5 Refs

  17. The international emergency management and engineering conference 1995: Proceedings. Globalization of emergency management and engineering: National and international issues concerning research and applications

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.D. [ed.] [Optimal Systems, Inc., Dallas, TX (United States); Wybo, J.L. [ed.] [Ecole des Mines de Paris (France); Buisson, L. [ed.] [CEMAGREF, Saint-Martin d`Heres (France). Div. Nivologie

    1995-12-31

    This conference was held May 9--12, 1995 in Nice, France. The purpose of this conference was to provide a forum for exchange of state-of-the-art information to cope more effectively with emergencies. Attention is focused on advance technology from both a managerial and a scientific viewpoint. Interests include computers and communication systems as well as the social science and management aspects involved in emergency management and engineering. The major sections are: Management and Social Sciences; Training; Natural Disasters; Nuclear Hazards; Chemical Hazards; Research; and Applications. Individual papers have been processed separately for inclusion in the appropriate data bases.

  18. Managing nuclear safety at Point Lepreau

    Energy Technology Data Exchange (ETDEWEB)

    Paciga, J [New Brunswick Power, Point Lepreau NGS, PQ (Canada)

    1997-12-01

    Managing nuclear safety at Point Lepreau nuclear power plant is described, including technical issues (station aging, definition of the safe operating envelope, design configuration management, code validation, safety analysis and engineering standards); regulatory issues (action items, probabilistic safety assessment, event investigation, periodic safety review, prioritization of regulatory issues, cost benefit assessment); human performance issues (goals and measures, expectations and accountability, supervisory training, safety culture, configuration management, quality of operations and maintenance).

  19. Managing nuclear wastes: the international connection

    International Nuclear Information System (INIS)

    Handl, G.

    1981-01-01

    The global health and environmental aspects of nuclear waste management transcend national decision making and must be coordinated with the management policies of other nuclear-power countries. Assuming that reprocessing will continue at limited sites, ocean transport of radioactive materials introduces the need for preventive standards that will eliminate transnational pollution. This requires a level of cooperation beyond local and national management that will have to be initiated by individual countries and then replaced by joint international action

  20. Managing nuclear safety at Point Lepreau

    International Nuclear Information System (INIS)

    Paciga, J.

    1997-01-01

    Managing nuclear safety at Point Lepreau nuclear power plant is described, including technical issues (station aging, definition of the safe operating envelope, design configuration management, code validation, safety analysis and engineering standards); regulatory issues (action items, probabilistic safety assessment, event investigation, periodic safety review, prioritization of regulatory issues, cost benefit assessment); human performance issues (goals and measures, expectations and accountability, supervisory training, safety culture, configuration management, quality of operations and maintenance)